INNADALGO "-". -7

CENTER FOR MASSIVE DATA ALGORITHMICS

Lap-Kel Lee

Max Planck Institute for Informatics

Danmarks
Grundforskningsfond
Danish National
Research Foundation

lleII%

Continuous Monitoring of Distributed Data Streams over a Time-based Sliding Window

Suppose a set of routers are monitoring a network. To allow an early detection of a
Distributed Denial-of-service (DDo0S) attack, we need to answer at any time:

In the |IP packets received by all the routers over the last hour, does there exist any
frequent destination address?

The problem is to minimize the communication overhead to maintain such statistics.

Distributed Data Stream Model

We have k =2 1 remote sites and a single root (or coordinator) distant apart.

= Each remote site is monitoring a stream of items, where each item contains an
item label and a timestamp.

A B A

- - E
Time 1 Time 2 Time 5 Time 9

As the stream contains a massive volume of data items, the remote site cannot
store the whole stream for processing, and hence each remote site can only
maintain an approximation of some stream statistics on its own stream.

= The root is required to compute the (approximate) global statistics on the union
of the k streams.

N

Remote site 1| |Remote site 2| |Remote site 3 Remote site k
<l 1 [I T S]

= Only communication between the root and each remote site is allowed; remote
sites cannot communicate with each other. This restriction is practical; e.g., in a
sensor network, the sensors are cheap devices with limited processing power
and memory, and they cannot communicate with each other.

Algorithms in this model are communication protocols for the root and remote sites.
They can be classified into two types:

= Two-way algorithms: bi-directional communication between the root and
remote sites are allowed.

= One-way algorithms: only the remote sites are allowed to communicate with
the root and the root cannot send message to any remote site.

One-way algorithms are usually simple and thus easy to implement, as each remote
site has only local information about its own stream; the best the remote site can do
is to update the root if its local statistics deviate too much from the one it previously

sent to the root.

Two-way communication allows more sophisticated algorithm. Thus, it is believed
that two-way algorithms are more communication-efficient than one-way algorithms.

We study algorithms that enable the root to answer the following
classical e-approximate queries, where 0 < € < 1 is a user-specified error
bound. Let ¢ be the total count of all items in the stream.

Basic Counting: Estimate the total count ¢ with absolute error ec.

Frequent Items: Let 0 <@ < 1 be a user-specified threshold. The query
asks for a set of items, which contains

= all frequent items appearing at least ¢ c times.

= some items appearing at least (¢ - €) c times.

It is well-known that to return frequent items, it suffices to answer
Approximate Counting: Estimate the count of any item with absolute
error &c.

Quantiles: Given any 0 <¢ < 1, in the sorted order of all items in the
stream, return an item with rank in [(¢ - €) ¢, (¢ + €) c].

Stream statistics can be computed over

= whole data stream

= a sliding window of recent items: all items with timestamps in the
most recent W time units, where W is the window size.

Sliding window is more difficult to handle as items will expire.

All previous work focuses on the whole data stream setting.
Let N be the number of items in all the k streams.

= Basic Counting: 0(% log %) words (one-way) [2]
* Frequent Iltems / Approximate Counting:
O(% log &) words (one-way) [1]; O(£log f¥) words (two-way) [4]
= Quantiles:
O(Z log &) words (one-way) [1]; O(£ log?(1)log &) words (two-way) [4]

Our results [3] extend the above study to the sliding window setting.

Let N be the number of items in all the k streams that arrive or expire
within the current sliding window of W time units. We show upper bounds
of one-way algorithms and lower bounds for any two-way algorithms.

= Basic Counting: ©(£1log &) bits (this result also improves that in [2])

* Frequent Items / Approximate Counting:
O(£log &) words Q(%1log &Y) words

= Quantiles:

O(Z&log) words Q(%£1og &Y) words

Our upper bounds match or nearly match the lower bounds, which reveals
that for these statistics, two-way algorithms could not be much better than
one-way algorithms in the worst case.

MADALGO - Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Algorithm. Let A=¢/9.

Each remote site: keeps an A-approximate local count.

Let ¢, and c,, be current estimate and the previously sent estimate.
At any time, it updates the root about c,, if the following event occurs
= Upevent: c,,-c,y>4AcC,y

= Down event: c,,- C.,,> 4A Cy

The root: upon a query, returns the sum of all the k estimates received.

Analysis techniques. In a remote site, let n be the number of items
arriving or expiring in the current sliding window [t,,t,].

If items do not expire, only Up’s occur. When an Up occurs, n increases
by a fraction of (1+0(¢)), so no. of Up’s is O(log;, . en) = O(2 logen).
Expiry of items destroys the monotonic property of n. Our idea is to
define a characteristic set of items as a new measure of progress.

= Up event: The set is the items arriving from ¢, up to the time the Up
occurs. When an Up occurs, the size of this set increases by a
fraction of (1+O(¢)), and thus the no. of Up’s is O(z logen) .

= Down event: The set is the items expiring from ¢, up to the time the
Down occurs. Similarly, the no. of Down’s is O(: logen) .

The total no. of events is O(£log &%). To reduce message size, we restrict
the estimates to a predefined set, giving the required upper bound.

Approximate Counting

Previous and Our Results Algorithm. Let A=¢/11.

Each remote site: keeps an A-approximate item count ¢, (j) for each
item j, and an A/6-approximate total count c,, .

At any time, for each item j, it updates c_(j) if the following event occurs
. Up event: Ccur(j) - Co/d(j) > 9A Ceur

= Down event: c,(j) - c,,j) > 9A ¢,

The root: upon a query on item j, returns the total estimate of j received.

Analysis techniques. Up’s can be caused by a big increase of item j, or
a small increase of j but significant drop of c,,, which requires different
characteristic set analysis. Furthermore, the communication cost would
depend on the no. of possible items. We observe that if ¢ (j) < 34 ¢,
we can treat c_,(j) = 0 and stop updating j until c_(j) 2 3A. This keeps
O(1) ‘active’ items at any time, leading to the required upper bound.

References

[1] Cormode, Garofalakis, Muthukrishnan, Rastogi. Holistic aggregates
in a networked world: distributed tracking of approximate quantiles.
SIGMOD 2005.

[2] Keralapura, Cormode, Ramamirtham. Communication-efficient

distributed monitoring of thresholded counts. SIGMOD 2006.

[3] Chan, Lam, Lee, Ting. Continuous monitoring of distributed data
Streams over a time-based sliding window. STACS 2010.

[4] Yi, Zhang. Optimal tracking of distributed heavy hitters and quantiles.
PODS 2009.

