





## An Optimal Algorithm for the Distinct Elements Problem

#### Problem and Results

#### Sequence of integers

1 17 2 4 17 9 2 5 1 1 4 6

- One pass over a stream of integers each between 1 and n
- Query() Output the number of distinct integers seen thus far
- Goals Use little memory, and process each integer quickly

#### **Applications**

track spread of Code Red worm

network intrusion detection

database query optimization







#### Algorithm Ideas

### Balls-and-bins approach Inspired by [Bar-Yossef et al. 2002]

- Subsample the stream at geometrically decreasing rates
- Perform balls and bins at each level



- When i appears in stream, put a ball in cell (g(i), h(i))
- For each column, store the largest row containing a ball
- Identify the largest row j which is at least half full, and count the number of columns with at least j written. Base estimate on this count.

|                                                        | Memory                                                   | Update Time |
|--------------------------------------------------------|----------------------------------------------------------|-------------|
| Flajolet, Martin 1983                                  | O(log n)                                                 |             |
| Alon, Matias, Szegedy 1996                             | O(log n)                                                 | O(log n)    |
| Gibbons, Tirthapura 2001                               | O((log n)/ε²)                                            | O(1/ε²)     |
| Bar-Yossef, Jayram, Kumar,<br>Sivakumar, Trevisan 2002 | O((log n)/ε²)                                            | O(log(1/ε)) |
| Bar-Yossef, Jayram, Kumar,<br>Sivakumar, Trevisan 2002 | $O((\log\log n + \log(1/\epsilon))/\epsilon^2 + \log n)$ | O(1/ε²)     |
| Durand, Flajolet 2003                                  | O((loglog n)/ε² + log n)                                 | _           |
| Kane, Nelson, Woodruff 2010                            | $O(1/\epsilon^2 + \log n)$                               | O(1)        |

# Some implementation details

- Store column array in variable length array data structure of [Blandford, Belloch 2008] (bitpacked)
- In column array, store offset from topmost active row and not absolute index.
- Use deamortization of global rebuilding for worst-case time [Overmars 1983]
- Use high-performance hash functions of [Siegel 1989] and [Pagh, Pagh 2008]

#### References

- [1] Alon, Matias, Szegedy. On the Space Complexity of Approximating the Frequency Moments. STOC 1996
- [2] Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan. Counting distinct elements in a data stream. RANDOM 2002
- [3] Blandford, Blelloch. Compact dictionaries for variable-length keys and data with applications. ACM Transactions on Algorithms 2008
- [4] Flajolet, Martin. Probabilistic Counting. FOCS 1983
- [5] Gibbons, Tirthapura. Estimating simple functions on the union of data streams. SPAA 2001
- [6] Kane, Nelson, Woodruff. *An Optimal Algorithm for the Distinct Elements Problem*. PODS 2010
- [7] Overmars. The Design of Dynamic Data Structures. Springer 1983
- [8] Pagh, Pagh. Uniform Hashing in Constant Time and Optimal Space. SICOMP 2008
- [9] Siegel. On Universal Classes of Uniformly Random Constant-Time Hash Functions. SICOMP 2004