# madalgo ----**CENTER FOR MASSIVE DATA ALGORITHMICS**

# Parallel External Memory Model for Private-cache Chip Multiprocessors

Motivation

Parallel processors are becoming common place. Each core of a multi-core processor consists of a CPU and a private cache. Inter-processor communication is performed by writing and reading to/from shared memory (higher level cache or the main memory).



Intel Quad-core processor



AMD 6-core processor

We need new models of computation which model parallelism while taking into account the latencies of memory hierarchies.

# PEM Model

The existing parallel random access (PRAM) model does not have a notion of caches and, therefore, does not account for spatial locality. On the other hand, the existing *external memory (EM)* model, while explicitly modeling cache access, is not a parallel model.



PRAM model

EM model

Main Memory

We combine the two models to obtain the *parallel external memory (PEM)* model – a parallel model that explicitly counts cache accesses.



There are three complexity metrics in the PEM model:

- Space amount of memory used
- Parallel time max. time spent by a CPU for computing
- Parallel I/O max. number of transfers between the main memory and the cache of a CPU

 $b_i = a_1 + \dots + a_i$ .

the PEM model.





### **Fundamental Problems**

- **Prefix sums:** Given a sequence  $A = \{a_1, \dots, a_n\}$  compute  $B = \{b_1, \dots, b_n\}$ , s.t.
- A: {2, 4, 1, 9, 3, 2, 7, 1, 1, 8}  $\implies$  B: {2, 6, 7, 16, 19, 21, 28, 29, 30, 38}
- Prefix sums is a basic building block for solutions to many problems in parallel models. Our PEM prefix sums solution is optimal in all three complexity metrics.
- **Sorting** is a fundamental problems in computer science and a building block for solutions to many problems.
- $\{3, 5, 1, 7, 2, 8, 4, 6, 9, 10\} \implies \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- We develop an optimal sorting algorithm in all three complexity metrics in

### Problems on Trees

**List ranking**: Given a linked list of *N* elements assign each element its rank, the distance from the head of the list to the element.



List ranking is a linchpin to solving problems on trees:



**Solution**: We solve the list ranking problem by identifying a maximal independent set via *deterministic coin tossing*, bridging the set out and recursively solving the problem on the remaining list. All steps are completed in parallel and I/O efficiently, resulting in optimal sorting complexity in all three complexity metrics in the PEM model.



efficiently:



Minimum spanning tree

We parallelize the *distribution sweeping* technique.





Line segment intersections

- algorithms, IPDPS, 2010.

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation



# Problems on Graphs

Using list ranking and solutions on trees, we can solve problems on graphs



**Bi-connected** components



Ear decomposition

## Orthogonal Geometric Problems



Using distribution sweeping, we obtain efficient solutions to orthogonal





Range query

### References

[1] L. Arge. M. T. Goodrich, M. Nelson, N. Sitchinava, Fundamental algorithms for private-cache chip multiprocessors, SPAA, 2008. [2] L. Arge, M.T. Goodrich, N. Sitchinava, Parallel external memory graph

[3] D. Ajwani, N. Sitchinava, N. Zeh, Geometric algorithms for privatecache chip multiprocessors. Manuscript.