madalgo ----**CENTER FOR MASSIVE DATA ALGORITHMICS**

Energy-Efficient Sorting using Solid State Disks

The Sort Benchmark

The Benchmark

- Sort 100 byte records with a 10 byte key
- Introduced 1985, starting with 100 MB
- New categories added targeting
- Speed/Size/Throughput (GraySort)
- Time (MinuteSort)
- Cost Efficiency (PennySort)
- Energy Efficiency (JouleSort, 2007)
- 10 GB, 100 GB, 1000 GB

Sorting large data sets

- Is easily described
- Has many applications
- Stresses both CPU and the I/O system

Energy Efficiency

- Energy (and cooling) is a significant cost factor in data centers
- Energy consumption correlates to pollution

JouleSort Hardware Selection

File S

2007

Rivoire, Shah, Ranganathan, Kozyrakis Stanford University and HP Labs

Intel Core 2 Duo T7600 (Mobile CPU) 2 cores, 2 threads, 1.66 GHz 2 GB 2 PCI-e Disk Controllers (8+4 SATA) 1 SATA (onboard) 13 x Hitachi Travelstar 5K160 160 GB Notebook HDD Linux XFS on Linux Software Raid (Striping) NSort (commercial sorter) 59 W 100 W **Power** 2007 JouleSort Winner 10 GB, 100 GB

Processor	Intel Atom 330 2 cores, 4 threads, 1.6 GHz
Memory	4 GB
I/O	4 x SATA 3.0 Gb/s (onboard
Disks	4 x SuperTalent FTM56GX2 256 GB SSD
OS File System	Linux XFS on Linux Software Raid
Software	EcoSort, DEMsort using ST
Power Idle Power Loaded	25 W 37 W

2010

Beckmann, Meyer, Sanders, Singler Goethe University and Karlsruhe Institute of Technology

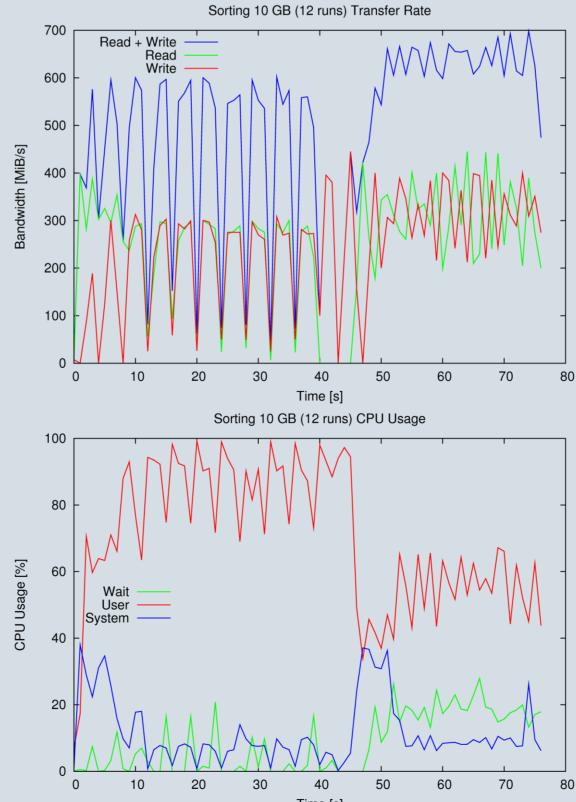
Andreas Beckmann Goethe University

Ulrich Meyer

Algorithms

External Memory Multiway Mergesor
Phase 1: Run Formation
Phase 2: Merge Runs

- Careful parameter selection for optimal performance while requiring a single merge pass
- Parallel implementations utilize the 4 CPU threads
- Overlapping of I/O and computation
- Run Formation uses key extraction and radix sort
- Two implementations:

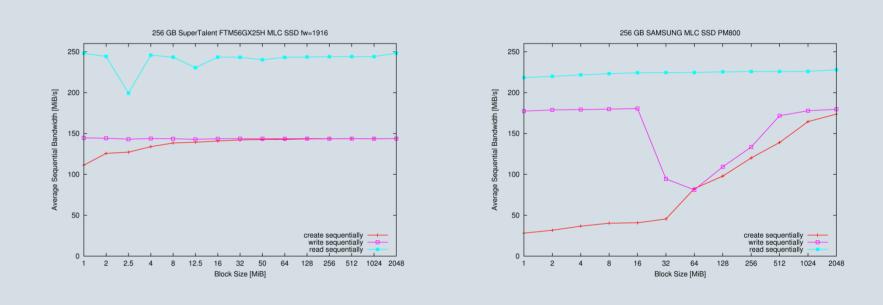

EcoSort (10 GB, 100 GB)

- Bring overlapping to the limits
- Allow independent tuning of more parameters

DEMsort (1000 GB)

- Developed by Sanders, Singler et al. at the Karlsruhe Institute of Technology
- Won the 2009 Sort Benchmark in the categories MinuteSort and GraySort using a 200-node cluster
- Efficient also on a single node
- Allows in-place sorting, needed to sort 1000 GB with just 1024 GB of storage

I/O and CPU utilization while sorting 10 GB:



Pro:

- Built from NAND flash memory chips
- No mechanically moving parts
- Good shock resistance
- Low energy consumption
- Higher throughput than HDDs

Con:

- Higher price and less capacity than today's HDDs Small block random writes are slow Performance may degrade depending on access pattern
- Properties vary depending on manufacturer, model, firmware:

Winner of the Sort Benchmark 2009/2010 mid-year round in the JouleSort categories 10 GB, 100 GB and 1000 GB!

	2007			2010			
Size [GB]	Time [s]	Energy [kJ]	Rec./J	Time [s]	Energy [kJ]	Rec./J	Energy Saving Factor
10	86.6	8.6	11628	76.7	2.8	35453	3.0
100	881	88.1	11354	756	27.5	36381	3.2
1000	7196*	2920*	3425	21906	723.7	13818	4.0

2010 Sort Benchmark.

* The 2007 results for the 1000 GB category were achieved on regular server hardware, not a low energy machine. So we cannot compete in terms of running time, only in energy consumption.

25H

d (Striping) XXL

Solid State Disks

Results

Using low power hardware does not imply an increase in running time: in the 10GB and 100 GB category we beat previous results both in terms of energy consumption and running time.

As a consequence of winning all three categories using a single machine, a new 100 TB JouleSort category was introduced for the