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We keep the canonical triangulation (bottom, left corner triangulation) of

each convex cell of the arrangement, see the above figure (blue lines), and

we maintain:

= for each simplex of the triangulation we have a conflict list of all
hyperplanes intersecting it,

= and likewise we have a conflict list of all simplices a hyperplane
Intersect.

Now to insert a new hyperplane we look at all simplices it intersects (pink

areas). The convex cell the simplex lies in must be cut into two, and we

K-order Voronoi Diagrams in the I/O Model

Introduction

Reduction to Arrangements of Hyperplanes

Problem [3]

If we are given a set of sites S ¢ R¢
which are points, we want to
compute the cell-complex where .
we in each cell have the same k
nearest sites.

We can reduce the k'th order Voronoi diagram into the problem of computing
arrangements of hyperplanes [3]. We do this by transforming every site
s=(oy,...,04) into a hyperplane according to the transformation

£(8): Xy, =20 % +... 420, %, —(0° +...+0,°)

The hyperplane&(S) is the tangent plane to the point U(S) on the paraboloid

This can be illustrated in the plane,
d =2, for the seven points to the
right, here k =2. Notice that all
Interior points in the purple cell

U(S): Xy, =X +...+X;
Now every point in the (d +1) -dimensional
space which have K hyperplanes above it and

n—k hyperplanes below it, are said to belong to /

kx,

have to retriangulate both parts, and remove the old simplices (dashed

blue lines).

RIC In the I/O model/Future work

the k’th level. See the figure to the right for an o \

have the same points Py, Py, P3 as ._

example of how to construct the second order ’4\ | If we try to use the previous algorithm on large inputs it will be very
" ",
%

the k nearest sites.

Voronoi diagram in one dimension. Here the red | ineffective as there will be a hard disk access each time a new hyper-

: L _ points are the sites, and the red lines are the N |/
Below we see another example of a k'th order Voronoi diagram in the 2N

| N « 1 theref 1 points in th h N ‘ Voronoi cells. The second level is show In 9
plane, here ;5 anh t erefore % l;30|nts In the samedce ave t eksame shaded on the figure, notice that if we project -
nearest sites. Here the sites cou 1 be resftaqrants, and we want to know these areas down onto the line we will get the
the k closest restaurants at any given point in the plane.

planes is inserted. To get a efficient algorithm we need to consider another
i model than the RAM model, we should instead consider the I/O model.
é 77 In the I/O model we only count accesses to the hard disk, and we are here

/// allowed to transfer B elements, between disk and RAM, at the same time-

cost as to transfer one element, this is illustrated on the figure below.

&

second-order Voronoi diagram of the four points
In one dimension.

Main memory

Disk

Arrangements in the RAM model

CPU
For the 1/0 model there are currently no algorithms to compute <K-level,

and in the RAM model the current best bounds can be seen below, the
bound by Mulmuley is optimal. All running times are expected, as all
algorithms uses a random incremental construction (RIC) to compute the

“B

The previous RAM algorithm used a framework for RIC [4], this framework

<k-level. can also be made to work in the I/O model as described in [1]. But here we
Author Dimension RAM model /O model need to handle a larger amount of hyperplanes at each step of the
algorithm, that is we need graduations, where we divide the input
Agarwal et al. [2] d=2 O(nk +e(n) log(n)) @‘GX\ hyperplanes into groups of hyperplanes. Now we have to insert all
Agarwal et al. [2] d=3 O(nk® +nlog®(n)) @@%@ hyperplanes of one group at the same time. This gives more complex
Mulmuley [2]* d>4 O(n|_d/2Jk]_d/2-|) @ﬁ procedures for maintaining the convex cells.
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Motivation ’ /
Voronol diagrams is used in many different places in the natural sciences, / /
among some of the countless examples here are some which also benefits /

from having the k’th order Voronoi diagram [2] P. K. Agarwal, M. de Berg, J. Matousek and O. Schwarzkopf.

Computer science [5]
= Computational geometry

Constructing levels in arrangements and higher order Voronoi
diagrams, 1998 SIAM.

= Associative file search [3] H. Edelsbrunner. Algorithms in combinatorial geometry, 1987 Springer.

[4] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars.
Computational geometry - algorithms and applications, 1997 Springer.

[5] F. Aurenhammer. Voronoi diagrams - A survey of a fundamental
== geometric data structure, 1991 ACM.

Natual sciences [5]
= Thiessen polygons in metrology (the post office problem)

See also [5] for many more examples.
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