
Introduction Reduction to Arrangements of Hyperplanes We keep the canonical triangulation (bottom, left corner triangulation) of

each convex cell of the arrangement, see the above figure (blue lines), and

we maintain:

 for each simplex of the triangulation we have a conflict list of all

hyperplanes intersecting it,

 and likewise we have a conflict list of all simplices a hyperplane

intersect.
Now to insert a new hyperplane we look at all simplices it intersects (pink

areas). The convex cell the simplex lies in must be cut into two, and we

have to retriangulate both parts, and remove the old simplices (dashed

blue lines).

Problem [3]

Below we see another example of a k’th order Voronoi diagram in the

plane, here and therefore all points in the same cell have the same k

nearest sites. Here the sites could be restaurants, and we want to know

the k closest restaurants at any given point in the plane.

Motivation

Voronoi diagrams is used in many different places in the natural sciences,

among some of the countless examples here are some which also benefits

from having the k’th order Voronoi diagram

Computer science [5]

 Computational geometry

 Associative file search

Natual sciences [5]

 Thiessen polygons in metrology (the post office problem)

See also [5] for many more examples.

RIC in the I/O model/Future work

If we try to use the previous algorithm on large inputs it will be very

ineffective as there will be a hard disk access each time a new hyper-

planes is inserted. To get a efficient algorithm we need to consider another

model than the RAM model, we should instead consider the I/O model.

In the I/O model we only count accesses to the hard disk, and we are here

allowed to transfer elements, between disk and RAM, at the same time-

cost as to transfer one element, this is illustrated on the figure below.

The previous RAM algorithm used a framework for RIC [4], this framework

can also be made to work in the I/O model as described in [1]. But here we

need to handle a larger amount of hyperplanes at each step of the

algorithm, that is we need graduations, where we divide the input

hyperplanes into groups of hyperplanes. Now we have to insert all

hyperplanes of one group at the same time. This gives more complex

procedures for maintaining the convex cells.

Arrangements in the RAM model

For the I/O model there are currently no algorithms to compute -level,

and in the RAM model the current best bounds can be seen below, the

bound by Mulmuley is optimal. All running times are expected, as all

algorithms uses a random incremental construction (RIC) to compute the

–level.

References

[1] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer and E. A. Ramos.

Randomized external-memory algorithms for line segment intersection

and some other geometric problems, 2001 Int. Jou. of CG & App.

[2] P. K. Agarwal, M. de Berg, J. Matousek and O. Schwarzkopf.

Constructing levels in arrangements and higher order Voronoi

diagrams, 1998 SIAM.

[3] H. Edelsbrunner. Algorithms in combinatorial geometry, 1987Springer.

[4] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars.

Computational geometry - algorithms and applications, 1997 Springer.

[5] F. Aurenhammer. Voronoi diagrams - A survey of a fundamental

geometric data structure, 1991 ACM.

K-order Voronoi Diagrams in the I/O Model

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Casper Kejlberg-Rasmussen

Aarhus University

We can reduce the k’th order Voronoi diagram into the problem of computing

arrangements of hyperplanes [3]. We do this by transforming every site

into a hyperplane according to the transformation

The hyperplane is the tangent plane to the point on the paraboloid

Now every point in the -dimensional

space which have hyperplanes above it and

hyperplanes below it, are said to belong to

the k’th level. See the figure to the right for an

example of how to construct the second order

Voronoi diagram in one dimension. Here the red

points are the sites, and the red lines are the

Voronoi cells. The second level is show in

shaded on the figure, notice that if we project

these areas down onto the line we will get the

second-order Voronoi diagram of the four points

in one dimension.

Author Dimension RAM model I/O model

Agarwal et al. [2]

Agarwal et al. [2]

Mulmuley [2]*

If we are given a set of sites

which are points, we want to

compute the cell-complex where

we in each cell have the same k

nearest sites.

This can be illustrated in the plane,

, for the seven points to the

right, here . Notice that all

interior points in the purple cell

have the same points as

the k nearest sites.

)(22:)(
22

1111 dddd xxxs   

),,(1 ds  

)(s)(sU
22

11:)(dd xxxsU  

)1(d
k

kn

k

k

))log()((nnnkO 

))(log(32 nnnkO 
   )(2/2/ dd knO

2d

3d

4d

B

Disk
CPU

Main memory

B

dRS 

2d
2k

321 ,, ppp

5k

3p

1p

2p

