
mapalgo -----**CENTER FOR MASSIVE DATA ALGORITHMICS**

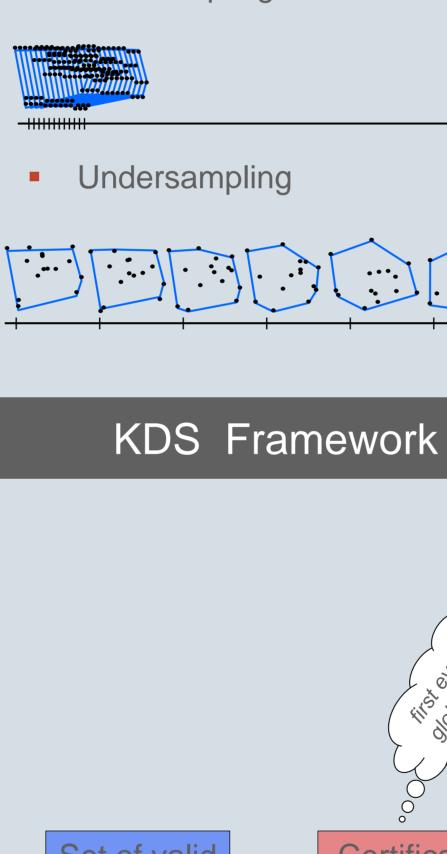
Motivation

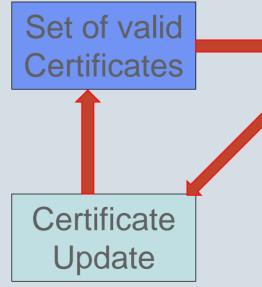
Motion is ubiquitous in the physical world and due to recent advances in sensing and tracking technology, motion data is becoming more and more available in a variety of areas:,mobile communication, geographic information system, air-traffic control, and so on. It is not surpising, therefore, that it is necessary to store, analyze, and create or manipulate motion data. As a result, modeling moving objects has become an important area of study in many areas of computer science such as computation geometry, databases, graphics, wireless netwroks,

Geometric study of moving objects

Simulate system of continuously moving objects and efficiently maintain discrete geometic attributes of objects such as the convex hull of moving points.

Two main approaches


- Time sampling
- Kinetic data structures

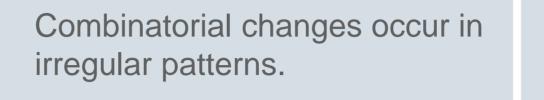

Time Sampling Approach

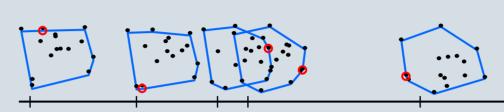
- Choose fixed time step.
- Update the positions of moving objects at each time step.
- Update the data structure with the new positions of objects.

How to choose time step?

Oversampling:

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation


Kinetic Data Structures


Certificate

Failure

Attribute

Update

KDS consists of two parts

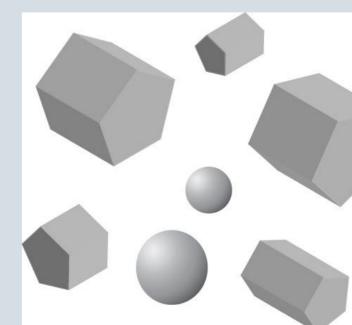
- Combinatorial description of the attribute.
- A set of certificates—elementary test on the input objects—with the property that as long as the outcome of the certificates do not change, the attribute does not change.

KDS Properties

- **Compact:** if it uses little space in addition to the input.
- **Responsive:** if data structure invariants can be restored quickly after the failure of a certificate.
- Local: if it can be updated easily if flight plan for an object changes.
- **Efficient:** if the worst-case number of events handled by the data structure is small compared to some worst case number of external events.

Kinetic Data Structures

Structures


- Proof of correctness o (certificates)
- Priority queue (event of

Assumptions

- A simple model for mo each object follows a flight plan with rational parameters.
- Certificates are algebra failure is next largest i

Collision Detect

Kinetic methods can be a collision detection probler is a basic problem arising areas of geometric model involving objects in motior motion planning, compute simulated environments,

Mohammad Abam University of Aarhus

	Example
of attribute queue)	a d d b
otion: known al raic; root.	Certificates a is to the left of bc d is to the left of bc b is to the right of ad c is to the left of ad
tion	Query Data Structures
applied to m which g in all ling on er-	 Kinetic method can be used to maintain a QDS in order to quickly answer queries involving objects in motion: What are the points currently inside a given region? What is currently are nearest
	point to a given query point?
	Rank-based kd-tree is efficient to answer above queries.