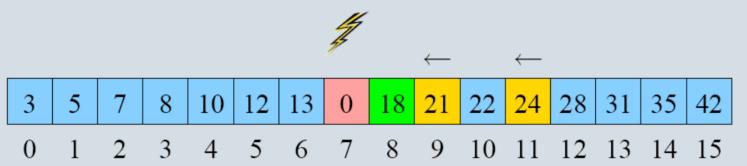
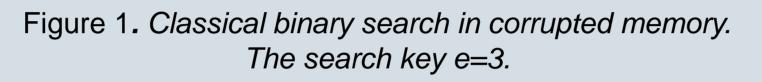
mapalgo - -**CENTER FOR MASSIVE DATA ALGORITHMICS**

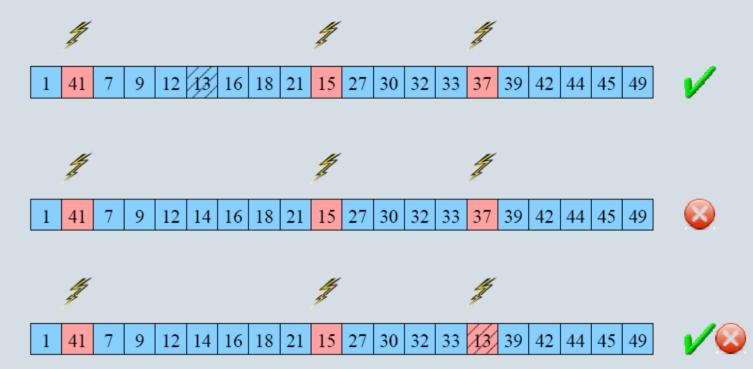

Dictionaries Resilient to Memory Faults


Soft memory errors	
 Nowadays memories High frequencies, small geometries, complex circuitry, low voltages These improvements come at the cost of reliability Soft memory errors Random bit flips, corrupting the content of the affected memory cells Multiple causes, e.g. power failures, alpha particles, cosmic rays 	Most algo
 Occurrence rates every few months for an usual RAM becomes a serious concern when many memories are involved, e.g. arge clusters o rends point that soft memory error rates are expected to grow 	Algorithm affected Classical • Output • Search • A single
Break two JVM implementations • Increase the occurrence rate of soft memory errors by heating the RAM Cryptography • Cryptographic protocols provably secure become insecure Break smart-cards	 A Rand Corrupt Corrupt No increase At most Resilier

Algorithms in unreliable memory

orithms assume reliable storage

ms which are unaware of memory corruptions may be seriously


- I binary search in a sorted array in Figure 1:
- is incorrect (algorithm outputs NO)
- n path ends very far from the correct position
- le corruption suffices

Faulty-memory RAM

- dom Access Machine (RAM) with possibly corrupted cells
- otions occur at any time and at any place
- oted and uncorrupted cells cannot be distinguished
- rease in space complexity
- st δ corruptions possible, O(1) corruption-free cells
- ent algorithms: work correctly on uncorrupted cells

Searching operation returns

- search key

Resilient dictionaries

- Static: $\theta(\log n + \delta)$ worst case time [1-3]
- time for updates [3]
- In ACM STOC'04, 101-110.
- ESA'07, 347-358.

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Resilient dictionaries

• YES, if there exists an uncorrupted value equal to the search key • NO, if there are no elements, corrupted or uncorrupted, matching the

• YES/NO, if a corrupted element matches the search key.

Figure 2. Outputs of resilient dictionaries for search key e=13.

• Dynamic: $\theta(\log n + \delta)$ worst case time for searches, $\theta(\log n + \delta)$ amortized

References

[1] I. Finocchi and G. F. Italiano. Sorting and searching in faulty memories.

[2] I. Finocchi, F. Grandoni, and G. F. Italiano. *Optimal sorting and* searching in the presence of memory faults. In ICALP'06, 286–298.

[3] G.S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G.F. Italiano, A. Jørgensen, G. Moruz, and T. Mølhave. Optimal resilient dictionaries. In

