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Introduction Smart contracts are programs running on top of a blockchain. They often control big
amounts of cryptocurrency and cannot be changed after deployment. Unfortunately, many vulnerabilities
have been discovered in smart contracts and this has lead to huge financial losses (e.g. TheDAO, Parity’s
multi-signature wallet). So, smart contract verification is becoming increasingly important. Functional
smart contract languages (FSCLs) are becoming increasingly popular: e.g. Simplicity [9], Liquidity1, Plu-
tus2, Scilla [10] and Midlang3. A contract in such a language is just a function from a message type and
a current state to a new state and a list of actions (transfers, calls to other contracts), making smart con-
tracts more amenable for formal verification. We build on the ConCert framework [3] for embedding smart
contracts in Coq and the execution model introduced in [8]. In the present work, we extend ConCert with
an extraction functionality, implement anonymous voting based on the Open Vote Network protocol and
integrate property-based testing using QuickChick.4

Extraction The Coq proof assistant features a possibility of extracting the executable content of Gallina
terms into OCaml, Haskell and Scheme [6]. The extraction procedure is non-trivial since Gallina is a
dependently-typed functional language. The extraction code itself might contain errors and current Coq
extraction adds to the trusted computing base (TCB). Projects such as MetaCoq [11] and CertiCoq [1]
address this issue by verifying the extraction procedure in Coq, but do not extract to smart contract
languages. The general idea of extraction is to find and mark all parts of a program that do not contribute
to computation. That is, types and propositions in terms are replaced with � (a box). One of the important
results of [6] and [11] is that the computational properties of the erased terms are preserved. We extend on
the work on the certified erasure and implement deboxing — a simple optimisation procedure for removing
some redundant constructs (boxes) left after the erasure step. Following [6], we identify a safe way of
removing boxes: all the constants must be applied to all the logical arguments (the ones that correspond to
applied boxes). The validation procedures are implemented in Coq using the formally verified type checker
from the MetaCoq project. After the deboxing step, the code is pretty-printed to the target language.
Currently, we support Liquidity and Midlang as target languages, but the technique applies to the other
languages mentioned above.

As an example, let us consider a simple counter contract with the state being just an integer number
and accepting increment and decrement messages: counter : msg → Z → option (list action ∗ Z). The main
functionality is given by the two functions inc_counter and dec_counter. We use refinement types to encode
some invariants of these functions. E.g. for inc_counter we encode in the type that the result of the increment
is greater then the previous state.

Program Definition inc_counter (st : Z) (new_balance : {z : Z | 0 < z}) : {new_st : Z | st < new_st} :=
exist (st + proj1_sig new_balance) _. (* proof omitted *)

The Liquidity and Midlang extractions of this code can be seen in the listings below.

let exist a = a

let inc_counter (st : storage) (new_balance : int) =
exist (addInt st ((fun x → x) new_balance))

Listing 1: Liquidity

proj1_sig : Sig a → a

proj1_sig e = case e of Exist a → a

inc_counter : Z → Sig Z → Sig Z

inc_counter st new_balance =
Exist (add st (proj1_sig new_balance))

Listing 2: Midlang

As one can see, the extraction procedure removes all “logical” parts from the original Coq code. This
code is called from the counter function (not shown here) which performs input validation and constructs
the argument of type {z : Z | 0 < z} to call inc_counter. Since the only way of interacting with the contract
is by calling counter it is safe to execute inc_counter without additional input validation.

Despite the apparent similarity of our target languages and OCaml, there are many semantic differences
and restrictions that makes extraction non-trivial. E.g. the absence of unsafe coercions (Obj.magic), data
types are limited to non-recursive inductive types, support for recursive definitions is limited to tail recursion
on a single argument5.

1https://www.liquidity-lang.org/
2https://cardanodocs.com/technical/plutus/introduction/
3https://developers.concordium.com/midlang
4Our development is available at https://github.com/AU-COBRA/ConCert
5These restrictions apply to FSCLs to a different extent, but unsafe coercions are missing in all the FSCL we considered.
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We successfully applied the developed extraction to several variants of the counter contract, to the crowd-
funding contract described in [3] and to an interpreter for a simple expression language. The latter example
shows the possibility of extracting certified interpreters for domain-specific languages such as Marlowe6 and
CL [4, 2] representing an important step towards safe smart contract programming.

Boardroom Voting Hao, Ryan and Zielisky developed the Open Vote Network protocol [5], an e-voting
protocol that allows a small number of parties (‘a boardroom’) to vote anonymously on a topic. Their
protocol allows tallying the vote while still maintaining maximum voter privacy, meaning that each vote
is kept private unless all other parties collude. Each party proves with zero-knowledge to all other parties
that they are following the protocol correctly and that their votes are well-formed.

This protocol was implemented as an Ethereum smart contract by McCorry, Shahandashti and Hao [7].
In their implementation, the smart contract serves as the orchestrator of the vote by verifying the zero-
knowledge proofs and computing the final tally.

We implement a similar contract in the ConCert framework. Under the assumption that all participants
behave correctly, we prove that our contract cannot compute the wrong tally. We additionally implement
the zero-knowledge proofs that allow the contract to verify the behaviour of all participants. This consists of
functions to create zero-knowledge proofs and functions to verify these, used by the contract itself. We prove
the zero-knowledge proofs correct in the sense that we show that proofs constructed using our functions
also verify correctly.7

Both the tallying and the zero-knowledge proofs are based on finite field arithmetic, so we develop some
required theory about Zp including Fermat’s theorem and the extended Euclidean algorithm. In the future,
we hope that the stdlib2 project will integrate parts of MathComp such as finite field arithmetic into the
standard library of Coq and look forward to using that. For now, we choose to reimplement the parts
that we need. Additionally, since ConCert includes an executable specification we use the Bignums library
to implement computation in Zp in an efficient way, allowing us to compute with the boardroom voting
contract directly in Coq. We are currently working on using the extraction mechanism described above to
extract and run the boardroom voting contract on existing blockchains.

Testing smart contracts With ConCert’s executable specification our contracts are fully testable from
within Coq. This enables us to integrate property-based testing into ConCert using QuickChick.8 This
serves as a cost-effective, semi-formal, semi-automated approach to discover bugs and increases reliability
that the implementation is correct. It may be used either as a preliminary step to support formal verification
or as a complementary approach whenever the properties become too involved to prove.

The testing framework is semi-automated in the sense that the user must implement a generator function
for the message type of the contract they want to test, i.e. a function which generates “arbitrary” messages
to be sent to the contract. The framework then generates thousands of “arbitrary” blockchain execution
traces and uses QuickChick to test if the supplied properties hold.

We demonstrate the usability of the framework by testing complex contracts such as the congress contract
(the essence of TheDAO) and the Tezos FA2 token standard.9 The testing framework currently supports
testing of functional properties, as well as temporal properties (i.e. involving reachability of states).
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