
A call-by-need basis

Olivier Danvy

& Ian Zerny (now at Google)

Programming-languages Group

23 May 2014

Olivier Danvy – Computer Science Day 2014 1 / 14



Reminders (1/4)

• A programming language

is a notation for expressing computations.

Analogy: language and thought.

Olivier Danvy – Computer Science Day 2014 2 / 14



Reminders (1/4)

• A programming language

is a notation for expressing computations.

• Programs are written in this notation.

Analogy: recipes in a cookbook.

Olivier Danvy – Computer Science Day 2014 2 / 14



Reminders (2/4)

Syntactic units:

• expressions

• commands / statements

• declarations

• types

• etc.

Olivier Danvy – Computer Science Day 2014 3 / 14



Reminders (3/4)

Named and parameterized syntactic units:

• functions

• procedures / methods

• modules

• classes

• etc.

Olivier Danvy – Computer Science Day 2014 4 / 14



Reminders (4/4)

Formal and actual parameters:

• call by value

• call by name

• call by need

• etc.

Olivier Danvy – Computer Science Day 2014 5 / 14



The topic of this talk: call by need

A notation to express computations that are

• demand driven, and

• where intermediate results are memoized.

Olivier Danvy – Computer Science Day 2014 6 / 14



The topic of this talk: call by need

A notation to express computations that are

• demand driven, and

• where intermediate results are memoized.

Are there any questions?

Olivier Danvy – Computer Science Day 2014 6 / 14



Pay attention: I will say zis only once

Olivier Danvy – Computer Science Day 2014 7 / 14



The two key features of call by need

• demand-driven computation

• memoization of intermediate results

Olivier Danvy – Computer Science Day 2014 8 / 14



A bewildering amount of related work

• in theory (semantics)

• in practice (implementation)

• in the middle (abstract machines)

Olivier Danvy – Computer Science Day 2014 9 / 14



Theory and practice of call by need

• In theory, we know why it works.

• In practice, we know how to make it works.

But do theory and practice agree?

Surprisingly, nobody knew.

Olivier Danvy – Computer Science Day 2014 10 / 14



Our contribution

A grand unified account of call by need

solving

a problem that was open since the 1970’s.

Olivier Danvy – Computer Science Day 2014 11 / 14



Our unified account

Surprisingly simple in retrospect:

• The syntactic correspondence and

the functional correspondence,

as developed here at AU.

• Lock-step equivalence (bisimilarity),

as taught here at AU.

And also, non-trivially: K.I.S.S.

Olivier Danvy – Computer Science Day 2014 12 / 14



Impact

• peer-reviewed articles in conferences

• peer-reviewed articles in journals

• tips of the hat in various scientific blogs

• followup peer-reviewed articles by others

• invited talks for Olivier

• elite-research funding for Ian

Olivier Danvy – Computer Science Day 2014 13 / 14



Another sort of impact

• Path-dependent types in Scala.

• Wild cards in Java.

Olivier Danvy – Computer Science Day 2014 14 / 14



Another sort of impact

• Path-dependent types in Scala.

• Wild cards in Java.

They originate in Erik Ernst’s PhD thesis.

Olivier Danvy – Computer Science Day 2014 14 / 14



Another sort of impact

• Path-dependent types in Scala.

• Wild cards in Java.

They originate in Erik Ernst’s PhD thesis.

Good bye, Erik.

Olivier Danvy – Computer Science Day 2014 14 / 14



Another sort of impact

• Path-dependent types in Scala.

• Wild cards in Java.

They originate in Erik Ernst’s PhD thesis.

Good bye, Erik.

And thanks.

Olivier Danvy – Computer Science Day 2014 14 / 14


