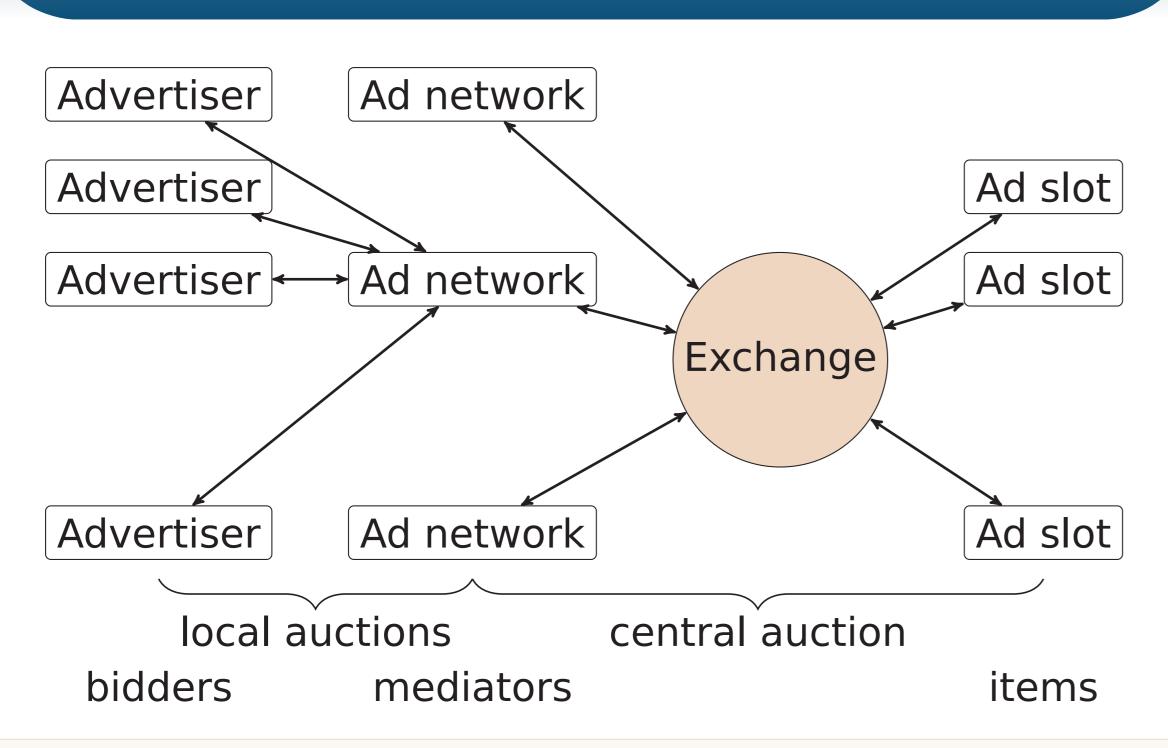
Ad Exchange: General Envy-free Auctions with Mediators

Oren Ben-Zwi Monika Henzinger Veronika Loitzenbauer

Research Group Theory and Applications of Algorithms
University of Vienna, Austria
veronika.loitzenbauer@univie.ac.at

Problem



- started with DoubleClick Ad Exchange (Google) in 2007
- Facebook and Amazon started 2012, Ebay 2013
- market volume recently estimated to \$2 billion
- The **utility** of a bidder for an item set *S* is defined as valuation(*S*) price(*S*).
- The **revenue** of a mediator for item set S is revenue(S) = local auction prices(S) central auction prices(S) (i.e. money received from bidders minus money paid to ad exchange) if the local auction outcome for item set S is globally envy-free for its bidders and revenue(S) = -1 otherwise.
- The **demand** is the set of item sets with highest utility / revenue.

A **general envy-free** (or **Walrasian**) **equilibrium** is a price vector and an allocation s.t. all bidders and mediators receive a set in their demand and all items with positive price are sold.

- Does a general envy-free equilibrium always exists?
- Can it be computed?

Main Result

If all bidders have **unit demand** valuations, then there is a way for the mediators to compute their bids for the central auction and the prices for their bidders such that a **general envy-free equilibrium always exists**.

unit demand valuation: $v(S) = \max_{j \in S} v(j)$

Central Auction

- input: valuations of bidders (only known to their mediator)
- **result:** assignment μ to mediators, central auction prices p, assignments μ'_{M_i} to bidders, and local auction prices p'_{M_i} s.t. bidders and mediators are envy-free and all items with positive price are sold

each mediator offers $p(j) \leftarrow 0$ to each item j each item accepts one offer and rejects all others **while** some offer rejected **do**

for all mediators M_i **do**

for all itams i do

for all items j do

if j has accepted M_i 's offer then

 $p_{M_i}(j) \leftarrow p(j)$

else

 $p_{M_i}(j) \leftarrow p(j) + 1$

 $D_{M_i} \leftarrow \text{demandInclAccepted}(p_{M_i}, D_{M_i}^=)$

offer p_{M_i} to all $j \in D_{M_i}$

each item accepts one highest offer p(j) and rejects all others

based on salary-adjustment process by Kelso and Crawford (1982)

Mediators' Demand

- mediators have to repeat accepted offers
- input: central auction prices p_M , set $D_M^=$ of accepted items for M
- **result:** returns set D_M in demand of M with $D_M^- \subseteq D_M$ and stores result (μ', p') of local auction
- The local auction is run within the subroutine localMinWalrasianEquilibrium. It returns the local Walrasian equilibrium for the bidders of mediator M with the smallest prices $p' \ge p_M$ that matches all items j in $D_M^=$ with $p_M(j) > 0$. For this we can use the algorithm and results from Dütting et al. (2011).
- (μ', p') can be initialized with $(\emptyset, 0)$

procedure demandInclAccepted(p, $D^=$) $\hat{p}(j) \leftarrow \max(p'(j), p(j)) \quad \forall j$ $\hat{\mu} \leftarrow \{(i, j) \in \mu' \mid j \in D^=\}$ $(\mu', p') \leftarrow \text{localMinWalrasianEquilibrium}(\hat{\mu}, \hat{p})$ $\text{save}(\mu', p')$ $\text{return}\{j \mid \exists (i, j) \in \mu'\} \lor \{j \in D^= \mid p(j) = 0\}$

Example

$$v(1) = 30, v(2) = 4$$
 $\rho'_{M_1}(1) = 30$ $p(1) = 15$ $v(1) = 40, v(2) = 0$ $p'_{M_2}(2) = 5$ $p(2) = 5$

- revenue_{M_1} = 15, revenue_{M_2} = 0
- competition between ad networks ⇒ revenue for ad exchange
- competition within ad network ⇒ revenue for ad network

Further Results

The minimal demand sets of a mediator form the **bases of a matroid** (for any given price vector).

• similar result for gross-substitute valuations in Gul and Stacchetti (2000)

If all bidders have **additive valuations** $v(S) = \sum_{i \in S} v(i)$, then

- all mediators have additive valuations,
- a Walrasian equilibrium always exists,
- and it can be computed with multiple second price single item auctions.

Open Questions

- Does a strongly polynomial time mechanism exist?
- Can the result be generalized to other valuation classes?
- What if budgets are introduced in the unit demand case?

References and Acknowledgements

O. Ben-Zwi, M. Henzinger, and V. Loitzenbauer. *Ad Exchange: Query Every Demand*, submitted.

P. Dütting, M. Henzinger, and I. Weber. *An Expressive Mechanism for Auctions on the Web*, WWW 2011, 127–136.

F. Gul and E. Stacchetti. *The English Auction with Differentiated Commodities*, Journal of Economic Theory 92 (2000), no. 1, 66–95.

A. S. Jr. Kelso and V. P. Crawford. *Job Matching, Coalition Formation, and Gross Substitutes*, Econometrica 50 (1982), no. 6, 1483–1504.

S. Muthukrishnan. *Ad Exchanges: Research Issues*, WINE 2009, 1–12.

This work was funded by the Vienna Science and Technology Fund (WWTF) through project ICT10-002.