TENSOR DECOMPOSITIONS AND THEIR APPLICATIONS

ANKUR MOITRA

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

To test this theory, he invented Factor Analysis:

students (1000)

M

eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

tests (10)

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

To test this theory, he invented Factor Analysis:

eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

Given:
$$M = \sum a_i \otimes b_i$$

= $A B^T$

"correct" factors

Given:
$$M = \sum a_i \otimes b_i$$

= $A B^T$

"correct" factors

When can we recover the factors a_i and b_i uniquely?

Given:
$$M = \sum a_i \otimes b_i$$

 $= A B^T = AR R^{-1}B^T$
"correct" factors alternative factorization

Given:
$$M = \sum a_i \otimes b_i$$

 $= A B^T = AR R^{-1}B^T$
"correct" factors alternative factorization

Claim: The factors $\{a_i\}$ and $\{b_i\}$ are not determined uniquely unless we impose additional conditions on them

Given:
$$M = \sum a_i \otimes b_i$$

 $= A B^T = AR R^{-1}B^T$
"correct" factors alternative factorization

Claim: The factors $\{a_i\}$ and $\{b_i\}$ are not determined uniquely unless we impose additional conditions on them

e.g. if $\{a_i\}$ and $\{b_i\}$ are orthogonal, or rank(M)=1

Given:
$$M = \sum a_i \otimes b_i$$

 $= A B^T = AR R^{-1}B^T$
"correct" factors alternative factorization

Claim: The factors $\{a_i\}$ and $\{b_i\}$ are not determined uniquely unless we impose additional conditions on them

e.g. if $\{a_i\}$ and $\{b_i\}$ are orthogonal, or rank(M)=1

This is called the **rotation problem**, and is a major issue in factor analysis and motivates the study of **tensor methods**...

OUTLINE

The focus of this tutorial is on Algorithms/Applications/Models for tensor decompositions

Part I: Algorithms

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Pure Topic Models

Part III: Smoothed Analysis

- Overcomplete Problems
- Kruskal Rank and the Khatri-Rao Product

MATRIX DECOMPOSITIONS

$$M = a_1 \otimes b_1 + a_2 \otimes b_2 + \dots + a_R \otimes b_R$$

MATRIX DECOMPOSITIONS

$$M = a_1 \otimes b_1 + a_2 \otimes b_2 + \dots + a_R \otimes b_R$$

TENSOR DECOMPOSITIONS

$$T = a_1 \otimes b_1 \otimes c_1 + \dots + a_R \otimes b_R \otimes c_R$$

(i, j, k) entry of
$$x \otimes y \otimes z$$
 is $x(i) \times y(j) \times z(k)$

Theorem [Jennrich 1970]: Suppose $\{a_i\}$ and $\{b_i\}$ are linearly independent and no pair of vectors in $\{c_i\}$ is a scalar multiple of each other...

Theorem [Jennrich 1970]: Suppose $\{a_i\}$ and $\{b_i\}$ are linearly independent and no pair of vectors in $\{c_i\}$ is a scalar multiple of each other. Then

$$T = a_1 \otimes b_1 \otimes c_1 + \cdots + a_R \otimes b_R \otimes c_R$$

is unique up to permuting the rank one terms and rescaling the factors.

Theorem [Jennrich 1970]: Suppose $\{a_i\}$ and $\{b_i\}$ are linearly independent and no pair of vectors in $\{c_i\}$ is a scalar multiple of each other. Then

$$T = a_1 \otimes b_1 \otimes c_1 + \cdots + a_R \otimes b_R \otimes c_R$$

is unique up to permuting the rank one terms and rescaling the factors.

Equivalently, the rank one factors are unique

Theorem [Jennrich 1970]: Suppose $\{a_i\}$ and $\{b_i\}$ are linearly independent and no pair of vectors in $\{c_i\}$ is a scalar multiple of each other. Then

$$T = a_1 \otimes b_1 \otimes c_1 + \cdots + a_R \otimes b_R \otimes c_R$$

is unique up to permuting the rank one terms and rescaling the factors.

Equivalently, the rank one factors are unique

There is a simple algorithm to compute the factors too!

Compute T(• , • , x)

$$\sum x_i T_i$$

Compute T(• , • , x)

$$\sum x_i T_i$$

If
$$T = a \otimes b \otimes c$$
 then $T(\bullet, \bullet, x) = \langle c, x \rangle a \otimes b$

Compute T(• , • , x)

$$\sum x_i T_i$$

Compute T(•,•,x) =
$$\sum \langle c_i, x \rangle a_i \otimes b_i$$

$$\sum x_i T_i$$

Compute T(•,•,x) =
$$\sum \langle c_i, x \rangle a_i \otimes b_i$$

i.e. add up matrix slices

$$\sum x_i T_i$$

(x is chosen uniformly at random from Sⁿ⁻¹)

Diag(
$$\langle c_i, x \rangle$$
)

Compute $T(\bullet, \bullet, x) = AD_x B^T$

i.e. add up matrix slices

$$\sum x_i T_i$$

(x is chosen uniformly at random from Sⁿ⁻¹)

Compute $T(\bullet, \bullet, x) = A D_x B^T$

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_y B^T$

- Compute $T(\bullet , \bullet , x) = A D_x B^T$
- Compute T(\bullet , \bullet , y) = A D_y B^T
- Diagonalize $T(\bullet, \bullet, x) T(\bullet, \bullet, y)^{-1}$

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_y B^T$
- Diagonalize $T(\bullet, \bullet, x) T(\bullet, \bullet, y)^{-1}$

$$A D_x B^T (B^T)^{-1} D_y^{-1} A^{-1}$$

- Compute $T(\bullet , \bullet , x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_y B^T$
- Diagonalize T(, , x) T(, , y)⁻¹

$$A D_x D_y^{-1} A^{-1}$$

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet, \bullet, y) = A D_y B^T$
- Diagonalize T(, , x) T(, , y)⁻¹

$$A D_x D_y^{-1} A^{-1}$$

Claim: whp (over x,y) the eigenvalues are distinct, so the Eigendecomposition is unique and recovers a_i 's

- Compute $T(\bullet , \bullet , x) = A D_x B^T$
- Compute T(\bullet , \bullet , y) = A D_y B^T
- Diagonalize $T(\bullet, \bullet, x) T(\bullet, \bullet, y)^{-1}$

- Compute $T(\bullet , \bullet , x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_y B^T$
- Diagonalize T(\bullet , \bullet ,x) T(\bullet , \bullet ,y)⁻¹
- Diagonalize $T(\bullet, \bullet, y) T(\bullet, \bullet, x)^{-1}$

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_y B^T$
- Diagonalize $T(\bullet, \bullet, x) T(\bullet, \bullet, y)^{-1}$
- Diagonalize $T(\bullet, \bullet, y) T(\bullet, \bullet, x)^{-1}$
- Match up the factors (their eigenvalues are reciprocals) and find $\{c_i\}$ by solving a linear syst.

Given:
$$M = \sum a_i \bigotimes b_i$$

This is only possible if $\{a_i\}$ and $\{b_i\}$ are orthonormal, or rank(M)=1

Given:
$$M = \sum a_i \bigotimes b_i$$

This is only possible if $\{a_i\}$ and $\{b_i\}$ are orthonormal, or rank(M)=1

Given:
$$T = \sum a_i \bigotimes b_i \bigotimes c_i$$

When can we recover the factors a_i, b_i and c_i uniquely?

Given:
$$M = \sum a_i \bigotimes b_i$$

When can we recover the factors a_i and b_i uniquely?

This is only possible if $\{a_i\}$ and $\{b_i\}$ are orthonormal, or rank(M)=1

Given:
$$T = \sum a_i \bigotimes b_i \bigotimes c_i$$

When can we recover the factors a_i, b_i and c_i uniquely?

Jennrich: If $\{a_i\}$ and $\{b_i\}$ are full rank and no pair in $\{c_i\}$ are scalar multiples of each other

OUTLINE

The focus of this tutorial is on Algorithms/Applications/Models for tensor decompositions

Part I: Algorithms

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Pure Topic Models

Part III: Smoothed Analysis

- Overcomplete Problems
- Kruskal Rank and the Khatri-Rao Product

"Tree of Life"

In each sample, we observe a symbol (Σ) at each extant (\bigcirc) node where we sample from π for the root, and propagate it using $R_{x,y}$, etc

O = hidden

In each sample, we observe a symbol (Σ_o) at each obs. (\bigcirc) node where we sample from π for the start, and propagate it using $R_{x,y}$, etc (Σ_s)

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Steel, 1994]: The following is a distance function on the edges

$$d_{x,y} = -\ln |\det(P_{x,y})| + \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{x,\sigma} - \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{y,\sigma}$$

where $P_{x,v}$ is the joint distribution

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Steel, 1994]: The following is a distance function on the edges

$$d_{x,y} = -\ln |\det(P_{x,y})| + \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{x,\sigma} - \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{y,\sigma}$$

where $P_{x,y}$ is the joint distribution, and the distance between leaves is the sum of distances on the path in the tree

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Steel, 1994]: The following is a distance function on the edges

$$d_{x,y} = -\ln |\det(P_{x,y})| + \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{x,\sigma} - \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{y,\sigma}$$

where $P_{x,y}$ is the joint distribution, and the distance between leaves is the sum of distances on the path in the tree

(It's not even obvious it's nonnegative!)

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests

to reconstruction the topology

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests

to reconstruction the topology, from polynomially many samples

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests

to reconstruction the topology, from polynomially many samples

For many problems (e.g. HMMs) finding the transition matrices is the main issue...

[Chang, 1996]: The model is identifiable (if R's are full rank)

Joint distribution over (a, b, c):

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

Joint distribution over (a, b, c):

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

$$\text{columns of } R_{z,b}$$

Question: Is the full-rank assumption necessary?

Question: Is the full-rank assumption necessary?

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Question: Is the full-rank assumption necessary?

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n) samples suffice but the best algorithms run in time $2^{n/\log(n)}$

Due to [Blum, Kalai, Wasserman, 2003]

Question: Is the full-rank assumption necessary?

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n) samples suffice but the best algorithms run in time $2^{n/\log(n)}$

Due to [Blum, Kalai, Wasserman, 2003]

(It's now used as a hard problem to build cryptosystems!)

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

topics (r)

words (m)

• Each topic is a distribution on words

topics (r)

words (m)

Each topic is a distribution on words

Each document is about only one topic

(stochastically generated)

topics (r)

Each topic is a distribution on words

Each document is about only one topic

(stochastically generated)

 Each document, we sample L words from its distribution

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure topic models from polynomially many samples (A is full rank)

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure topic models from polynomially many samples (A is full rank)

Question: Where can we find three conditionally independent random variables?

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure topic models from polynomially many samples (A is full rank)

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure topic models from polynomially many samples (A is full rank)

The first, second and third words are independent conditioned on the topic t (and are random samples from A_t)

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

[Pure Topic Models/LDA]: (joint distribution on first three words)

$$\sum_{j} Pr[topic = j] A_{j} \otimes A_{j} \otimes A_{j}$$

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

[Pure Topic Models/LDA]: (joint distribution on first three words)

$$\sum_{i} Pr[topic = j] A_{j} \otimes A_{j} \otimes A_{j}$$

[Community Detection]: (counting stars)

$$\sum_{i} Pr[C_{x} = j] (C_{A}\Pi)_{j} \otimes (C_{B}\Pi)_{j} \otimes (C_{C}\Pi)_{j}$$

OUTLINE

The focus of this tutorial is on Algorithms/Applications/Models for tensor decompositions

Part I: Algorithms

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Pure Topic Models

Part III: Smoothed Analysis

- Overcomplete Problems
- Kruskal Rank and the Khatri-Rao Product

$$T = \sum_{i=1}^{R} a_i \bigotimes a_i \bigotimes a_i$$

where {a_i} are n-dimensional vectors

$$T = \sum_{i=1}^{R} a_i \bigotimes a_i \bigotimes a_i$$

where {a_i} are n-dimensional vectors

Question: What if R is much larger than n?

$$T = \sum_{i=1}^{R} a_i \bigotimes a_i \bigotimes a_i$$

where {a_i} are n-dimensional vectors

Question: What if R is much larger than n?

This is called the **overcomplete** case — e.g. the number of factors is much larger than the number of observations...

$$T = \sum_{i=1}^{R} a_i \bigotimes a_i \bigotimes a_i$$

where {a_i} are n-dimensional vectors

Question: What if R is much larger than n?

This is called the **overcomplete** case —— e.g. the number of factors is much larger than the number of observations...

In such cases, why stop at third-order tensors?

$$T = \sum_{i=1}^{R} a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i$$

$$T = \sum_{i=1}^{R} a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i$$

Question: Can we find its factors, even if R is much larger than n?

$$T = \sum_{i=1}^{R} a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i$$

Question: Can we find its factors, even if R is much larger than n?

Let's flatten it:

flat(T) =
$$\sum_{i=1}^{R} b_i \bigotimes b_i \bigotimes b_i$$
 (where $b_i = a_i \bigotimes_{KR} a_i$)

 n^2 -dimensional vector whose $(j,k)^{th}$ entry is the product of the j^{th} and k^{th} entries of a_i — Khatri-Rao product

$$T = \sum_{i=1}^{R} a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i \bigotimes a_i$$

Question: Can we find its factors, even if R is much larger than n?

Let's flatten it by rearranging its entries into a third-order tensor:

flat(T) =
$$\sum_{i=1}^{R} b_i \bigotimes b_i \bigotimes b_i$$
 (where $b_i = a_i \bigotimes_{KR} a_i$)

 n^2 -dimensional vector whose $(j,k)^{th}$ entry is the product of the j^{th} and k^{th} entries of a_i — Khatri-Rao product

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

Example #1:

Let $\{a_i\}$ be all $\binom{n}{2}$ vectors with exactly two ones

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

Example #1:

Let $\{a_i\}$ be all $\binom{n}{2}$ vectors with exactly two ones

Then {b_i} are vectorizations of:

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

Example #1:

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

Example #1:

and are linearly independent

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

Example #2:

Let $\{a_{1...n}\}$ and $\{a_{n+1...2n}\}$ be two random orthonormal bases

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

Example #2:

Let $\{a_{1...n}\}$ and $\{a_{n+1..2n}\}$ be two random orthonormal bases

Then there is a linear dependence with 2n terms:

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

Example #2:

Let $\{a_{1...n}\}$ and $\{a_{n+1..2n}\}$ be two random orthonormal bases

Then there is a linear dependence with 2n terms:

$$\sum_{i=1}^{n} a_i \bigotimes_{kR} a_i - \sum_{i=n+1}^{2n} a_i \bigotimes_{kR} a_i = 0$$

When are the new factors $b_i = a_i \bigotimes_{KR} a_i$ linearly independent?

Example #2:

Let $\{a_{1...n}\}$ and $\{a_{n+1..2n}\}$ be two random orthonormal bases

Then there is a linear dependence with 2n terms:

$$\sum_{i=1}^{n} a_i \bigotimes_{kR} a_i - \sum_{i=n+1}^{2n} a_i \bigotimes_{kR} a_i = 0$$

(as matrices, both sum to the identity)

THE KRUSKAL RANK

THE KRUSKAL RANK

Definition: The Kruskal rank (k-rank) of $\{b_i\}$ is the largest k s.t. every set of k vectors is linearly independent

Definition: The **Kruskal rank** (k-rank) of {b_i} is the largest k s.t. every set of k vectors is linearly independent

$$b_i = a_i \bigotimes_{kR} a_i$$
 k-rank($\{a_i\}$) = n

Definition: The **Kruskal rank** (k-rank) of {b_i} is the largest k s.t. every set of k vectors is linearly independent

$$b_i = a_i \bigotimes_{KR} a_i$$
 k-rank($\{a_i\}$) = n

Example #1: k-rank(
$$\{b_i\}$$
) = R = $\binom{n}{2}$

Definition: The **Kruskal rank** (k-rank) of {b_i} is the largest k s.t. every set of k vectors is linearly independent

$$b_i = a_i \bigotimes_{kR} a_i$$
 k-rank($\{a_i\}$) = n

Example #1: k-rank(
$$\{b_i\}$$
) = R = $\binom{n}{2}$

Example #2: k-rank($\{b_i\}$) = 2n-1

Definition: The **Kruskal rank** (k-rank) of {b_i} is the largest k s.t. every set of k vectors is linearly independent

$$b_i = a_i \bigotimes_{KR} a_i$$
 k-rank($\{a_i\}$) = n

Example #1: k-rank(
$$\{b_i\}$$
) = R = $\binom{n}{2}$

Example #2: k-rank($\{b_i\}$) = 2n-1

The Kruskal rank always adds under the Khatri-Rao product, but sometimes it multiplies and that can allow us to handle R >> n

Proof: The set of {a_i} where

$$b_i = a_i \bigotimes_{kR} a_i$$
 and $det(\{b_i\}) = 0$

is measure zero

Proof: The set of $\{a_i\}$ where

$$b_i = a_i \bigotimes_{kR} a_i$$
 and $det(\{b_i\}) = 0$

is measure zero

But this yields a very weak bound on the **condition number** of $\{b_i\}...$

Proof: The set of {a_i} where

$$b_i = a_i \bigotimes_{kR} a_i$$
 and $det(\{b_i\}) = 0$

is measure zero

... which is what we need to apply it to learning/statistics, where we have an estimate to T

Definition: The **robust Kruskal rank** (k-rank_{γ}) of {b_i} is the largest k s.t. every set of k vector has condition number at most O(γ)

Definition: The **robust Kruskal rank** (k-rank_{γ}) of {b_i} is the largest k s.t. every set of k vector has condition number at most O(γ)

[Bhaskara, Charikar, Vijayaraghavan, 2013]: The robust Kruskal rank always under the Khatri-Rao product

Definition: The **robust Kruskal rank** (k-rank_{γ}) of {b_i} is the largest k s.t. every set of k vector has condition number at most O(γ)

[Bhaskara, Charikar, Vijayaraghavan, 2013]: The robust Kruskal rank always under the Khatri-Rao product

[Bhaskara, Charikar, Moitra, Vijayaraghavan, 2014]: Suppose the vectors $\{a_i\}$ are ϵ -perturbed...

Definition: The **robust Kruskal rank** (k-rank_{γ}) of {b_i} is the largest k s.t. every set of k vector has condition number at most O(γ)

[Bhaskara, Charikar, Vijayaraghavan, 2013]: The robust Kruskal rank always under the Khatri-Rao product

[Bhaskara, Charikar, Moitra, Vijayaraghavan, 2014]: Suppose the vectors $\{a_i\}$ are ϵ -perturbed. Then

$$k$$
-rank _{γ} ({ b_i }) = R

for R = $n^2/2$ and γ = poly(1/n, ϵ) with **exponentially** small failure probability (δ)

$$k$$
-rank _{γ} ({ b_i }) = R

for R = $n^2/2$ and γ = poly(1/n, ϵ) with **exponentially** small failure probability (δ)

$$k$$
-rank _{γ} ({ b_i }) = R

for R = $n^2/2$ and γ = poly(1/n, ϵ) with **exponentially** small failure probability (δ)

Hence we can apply Jennrich's Algorithm to flat(T) with R >> n

$$k$$
-rank _{γ} ({ b_i }) = R

for R = $n^2/2$ and γ = poly(1/n, ϵ) with **exponentially** small failure probability (δ)

Hence we can apply Jennrich's Algorithm to flat(T) with R >> n

Note: These bounds are easy to prove with inverse polynomial failure probability, but then γ depends δ

$$k$$
-rank _{γ} ({ b_i }) = R

for R = $n^2/2$ and γ = poly(1/n, ϵ) with **exponentially** small failure probability (δ)

Hence we can apply Jennrich's Algorithm to flat(T) with R >> n

Note: These bounds are easy to prove with inverse **polynomial** failure probability, but then γ depends δ

This can be extended to any constant order Khatri-Rao product

$$k$$
-rank _{γ} ({ b_i }) = R

for R = $n^2/2$ and γ = poly(1/n, ϵ) with **exponentially** small failure probability (δ)

Hence we can apply Jennrich's Algorithm to flat(T) with R >> n

$$k$$
-rank _{γ} ({ b_i }) = R

for R = $n^2/2$ and γ = poly(1/n, ϵ) with **exponentially** small failure probability (δ)

Hence we can apply Jennrich's Algorithm to flat(T) with R >> n

Sample application: Algorithm for learning mixtures of $n^{O(1)}$ spherical Gaussians in R^n , if their means are ϵ -perturbed

This was also obtained independently by [Anderson, Belkin, Goyal, Rademacher, Voss, 2014]

computational geometry

Is Learning Computationally Easy?

Summary:

- Tensor decompositions are unique under much more general conditions, compared to matrix decompositions
- Jennrich's Algorithm (rediscovered many times!),
 and its many applications in learning/statistics
- Introduced new models to study overcomplete problems (R >> n)
- Are there algorithms for order-k tensors that work with $R = n^{0.51 k}$?

Any Questions?

Summary:

- Tensor decompositions are unique under much more general conditions, compared to matrix decompositions
- Jennrich's Algorithm (rediscovered many times!),
 and its many applications in learning/statistics
- Introduced new models to study overcomplete problems (R >> n)
- Are there algorithms for order-k tensors that work with $R = n^{0.51 k}$?