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Abstract

What is the higher-dimensional analog of a permutation? If we
think of a permutation as given by a permutation matrix, then the
following definition suggests itself: A d-dimensional permutation of
order n is an n × n × . . . n = [n]d+1 array of zeros and ones in which
every line contains a unique 1 entry. A line here is a set of entries of
the form {(x1, . . . , xi−1, y, xi+1, . . . , xd+1)|n ≥ y ≥ 1} for some index
d + 1 ≥ i ≥ 1 and some choice of xj ∈ [n] for all j 6= i. It is easy to
observe that a one-dimensional permutation is simply a permutation
matrix and that a two-dimensional permutation is synonymous with
an order-n Latin square. We seek an estimate for the number of d-
dimensional permutations. Our main result is the following upper
bound on their number

(
(1 + o(1))

n

ed

)nd

.

We tend to believe that this is actually the correct number, but the
problem of proving the complementary lower bound remains open.
Our main tool is an adaptation of Brègman’s [1] proof of the Minc
conjecture on permanents. More concretely, our approach is very close
in spirit to Radhakrishnan’s [10] proof of Brègman’s theorem.
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1 Introduction

The permanent of an n× n matrix A = (aij) is defined by

Per(A) =
∑

σ∈Sn

n∏
i=1

ai,σi

Permanents have attracted a lot of attention [9]. They play an important role
in combinatorics. Thus if A is a 0 − 1 matrix, then Per(A) counts perfect
matchings in the bipartite graph whose adjacency matrix is A. They are
also of great interest from the computational perspective. It is #P -hard to
calculate the permanent of a given 0−1 matrix [11], and following a long line
of research, an approximation scheme was found [6] for the permanents of
nonnegative matrices. Bounds on permanents have also been studied at great
depth. Van der Waerden conjectured that Per(A) ≥ n!

nn for every n×n doubly
stochastic matrix A, and this was established more than fifty years later by
Falikman and Egorychev [4, 3]. More recently, Gurvitz [5] discovered a new
conceptual proof for this conjecture (see [8] for a very readable presentation).
What is more relevant for us here are upper bounds on permanents. These
are the subject of Minc’s conjecture which was proved by Brègman.

Theorem 1.1. If A is an n × n 0 − 1 matrix with ri ones in the i-th row,
then

Per(A) ≤
n∏

i=1

(ri!)
1/ri .

In the next section we review Radhakrishnan’s proof, which uses the en-
tropy method. Our plan is to imitate this proof for a d-dimensional analogue
of the permanent. To this end we need the notion of d-dimensional permu-
tations.

Definition 1.2. 1. Let A be an [n]d array. A line of A is vector of the
form

(A(i1, ..., ij−1, t, ij+1, ..., id))
n
t=1,

where 1 ≤ j ≤ d and i1, ..., ij−1, ij+1, ..., id ∈ [n].

2. A d-dimensional permutation of order n is an [n]d+1 array P of zeros
and ones such that every line of P contains a single one and n − 1
zeros. Denote the set of all d-dimensional permutations of order n by
Sd,n.
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For example, a two dimensional array is a matrix. It has two kinds of
lines, usually called rows and columns. Thus a 1-permutation is an n × n
0− 1 matrix with a single one in each row and a single one in each column,
namely a permutation matrix. A 2-permutation is identical to a Latin square
and S2,n is the same as the set Ln, of order-n Latin squares. We now explain
the correspondence between the two sets. If X is a 2-permutation of order n,
then we associate with it a Latin square L, where L(i, j) as the (unique) index
of a 1 entry in the line A(i, j, ∗). For more on the subject of Latin squares,
see [12]. The same definition yields a one-to-one correspondence between
3-dimensional permutations and Latin cubes. In general, d-dimensional per-
mutations are synonymous with d-dimensional Latin hypercubes. For more
on d-dimensional Latin hypercubes, see [13]. To summarize, the following is
an equivalent definition of a d-dimensional permutation. It is an [n]d array
with entries from [n] in which every line contains each i ∈ [n] exactly once.
We interchange freely between these two definitions according to context.

Our main concern here is to estimate |Sd,n|, the number of d-dimensional
permutations of order n. By Stirling’s formula

|S1,n| = n! =
(
(1 + o(1))

n

e

)n

.

As we saw, |S2,n| is the number of order n Latin squares. The best known
estimate [12] is

|S2,n| = |Ln| =
(
(1 + o(1))

n

e2

)n2

.

This relation is proved using bounds on permanents. Brégman’s theorem for
the upper bound, and the Falikman-Egorychev theorem for the lower bound.

This suggests

Conjecture 1.3.

|Sd,n| =
(
(1 + o(1))

n

ed

)nd

.

In this paper we prove the upper bound

Theorem 1.4.

|Sd,n| ≤
(
(1 + o(1))

n

ed

)nd

.

As mentioned, our method of proof is an adaptation of [10]. We first need
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Definition 1.5. 1. An [n]d+1 0− 1 array M1 is said to include an array
M2 if

M2(i1, ..., id+1) = 1 ⇒ M1(i1, ..., id+1) = 1.

2. The d-permanent of a [n]d+1 0− 1 array A is

Perd(A) = The number of d-dimensional permutations included in A.

Note that in the one-dimensional case, this is indeed the usual definition
of Per(A). It is not hard to see that for d = 1 following theorem coincides
with Brègman’s theorem.

Theorem 1.6. Define the function f : N≥0 × N −→ R recursively by:

• f(0, r) = log(r), where the logarithm is in base e.

• f(d, r) = 1
r

∑r
k=1 f(d− 1, k).

Let A be an [n]d+1 0 − 1 array with ri1,...id ones in the line A(i1, ..., id, ∗).
Then

Perd(A) ≤
∏

i1,...,id

ef(d,ri1,...id
).

We will derive below fairly tight bounds on the function f that appears
in theorem 1.6. It is then an easy matter to prove theorem 1.4 by applying
theorem 1.6 to the all-ones array.

What about proving a matching lower bound on Sd,n (and thus proving
conjecture 1.3)? In order to follow the footsteps of [12], we would need a lower
bound on PerdA, namely, a higher-dimensional analog of the van der Waer-
den conjecture. The entries of a multi-stochastic array are nonnegative reals
and the sum of entries along every line is 1. This is the higher-dimensional
counterpart of a doubly-stochastic matrix. It should be clear how to extend
the notion of Perd(A) to real-valued arrays. In this approach we would need
a lower bound on Perd(A) that holds for every multi-stochastic array A.
However, this attempt (or at least its most simplistic version) is bound to
fail. An easy consequence of Hall’s theorem says that a 0−1 matrix in which
every line or column contains the same (positive) number of one-entries, has
a positive permanent. (We still do not know exactly how small such a per-
manent can be, see [8] for more on this). However, the higher dimensional
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analog of this is simply incorrect. There exist multi-stochastic arrays whose
d-permanent vanishes, as can easily be deduced e.g., from [7].

We can, however, derive a lower bound of |Sd,n| ≥ exp(Ω(nd)) for even n.
Consider the following construction: Let n be an even integer, and let P be

a d-dimensional permutation of order
[

n
2

]d
. It is easy to see that such a P

exists. Simply set

P (i1, ..., id) = (i1 + ... + id) mod
n

2
.

Now we construct a d-dimensional permutation Q of order [n]d by replacing
each element of P with a [2]d block. If P (i1, ..., id) = j, then the correspond-
ing block contains the values j and j + n. It is easy to see that there are
exactly two ways to arrange these values in each block, and that Q is indeed

a d-dimensional permutation of order [n]d. There are
(

n
2

)d
blocks, and so the

number of possible Q’s is 2(n
2 )

d

. For a constant d this is exp(Ω(nd)).
In section 2 we present Radhakrishnan’s proof of the Brègman bound.

In section 3 we prove theorem 1.6. In section 4 we use this bound to prove
theorem 1.4.

2 Radhakrishnan’s proof of Brègman’s theo-

rem

2.1 Entropy - Some basics

We review the basic material concerning entropy that is used here and refer
the reader to [2] for further information on the topic.

Definition 2.1. The entropy of a discrete random variable X is given by

H(X) =
∑

x

Pr(X = x) log

(
1

Pr(X = x)

)
.

For random variables X and Y , the conditional entropy of X given Y is

H(X|Y ) = E(H(X|Y = y)) =
∑

y

Pr(Y = y)H(X|Y = y).
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In this paper we will always consider the base e entropy of X which simply
means that the logarithm is in base e.

Theorem 2.2. 1. If X is a discrete random variable, then

H(X) ≤ log |range(X)|,

with equality iff X has a uniform distribution.

2. If X1, ..., Xn is a sequence of random variables, then

H(X1, ..., Xn) =
n∑

i=1

H(Xi|X1, ..., Xi−1).

3. The inequality
H(X|Y ) ≤ H(X|f(Y ))

holds for every two discrete random variables X and Y and every real
function f(·).

The following is a general approach using entropy that is useful for a
variety of approximate counting problems. Suppose that we need to estimate
the cardinality of some set S. If X is a random variable which takes values
in S under the uniform distribution on S, then H(X) = log(|S|). So, a good
estimate on H(X) yields bounds on |S|.

This approach is the main idea of both Radhakrishnan’s proof and our
work.

2.2 Radhakrishnan’s proof

Let A be an n × n 0 − 1 matrix with ri ones in the ith row. Our aim is to
prove the upper bound

Per(A) ≤
n∏

i=1

(ri!)
1
ri .

Let M be the set of permutation matrices included in A, and let X be
a uniformly sampled random element of M. Our plan is to evaluate H(X)
using the chain rule and estimate |M| using the fact (theorem 2.2) that
H(X) = log(|M|).
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Let Xi be the unique index j such that X(i, j) = 1. We consider a process
where we scan the rows of X in sequence and estimate H(X) = H(X1, ..., Xn)
using the chain rule in the corresponding order. To carry out this plan, we
need to bound the contribution of the term involving Xi conditioned on the
previously observed rows. That is, we write

H(X) =
n∑

i=1

H(Xi|X1, ..., Xi−1).

Let Ri be the set of indices of the one-entries in A-th i-th row. That is,

Ri = {j : A(i, j) = 1}.

Let
Zi = {j ∈ Ri : Xi′ = j for some i′ < i}.

Note that Xi ∈ Ri, because X is included in A. In addition, given that we
have already exposed the values Xi′ for i′ < i, it is impossible for Xi to take
any value j ∈ Zi, or else the column X(∗, j) contains more than a single
1-entry. Therefore, given the variables that precede it, Xi must take a value
in Ri r Zi. The cardinality Ni = |Ri r Zi| is a function of X1, ..., Xi−1 and
so by theorem 2.2,

H(X) =
n∑

i=1

H(Xi|X1, ..., Xi−1)

=
n∑

i=1

∑
x1,...,xi−1

Pr(X1 = x1, ..., Xi−1 = xi−1)H(Xi|X1 = x1, ..., Xi−1 = xi−1)

≤
n∑

i=1

∑
x1,...,xi−1

Pr(X1 = x1, ..., Xi−1 = xi−1) log(Ni)

=
n∑

i=1

EX1,...,Xi−1
[log(Ni)] =

n∑
i=1

EX [log(Ni)].

It is not clear how we should proceed from here, for how can we bound
log(Ni) for a general matrix? Moreover, different orderings of the rows will
give different bounds. We use this fact to our advantage and consider the
expectation of this bound over all possible orderings. Associated with a
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permutation σ ∈ Sn is an ordering of the rows where Xj is revealed before
Xi if σ(j) < σ(i). We redefine Zi and Ni to take the ordering σ into account.
Let

Zi(σ) = {j ∈ Ri : Xi′ = j for some σ(i′) < σ(i)}.
Ni(σ) = |Ri r Zi(σ)|.

Then Ni(σ) is the number of available values for Xi, given all the variables
Xj for j such that σ(j) < σ(i). As before, using the chain rule we obtain the
inequality

H(X) =
n∑

i=1

H(Xi|Xj : σ(j) < σ(i)) ≤
n∑

i=1

EX [log(Ni(σ))].

The inequality remains true if we take the expected value of both sides
when σ is a random permutation sampled from the uniform distribution on
Sn.

H(X) ≤
n∑

i=1

Eσ [EX [log(Ni(σ))]] =
n∑

i=1

EX [Eσ [log(Ni(σ))]].

Thus, the bound we get on H(X) depends on the distribution of the random
variable Ni(σ). The final observation that we need is that the distribution
of Ni(σ) is very simple and that it does not depend on X. Consequently we
can eliminate the step of taking expectation with respect to the choice of X.
Let us fix a specific X.

Let Wi denote the set of ri − 1 row indices j 6= i for which Xj ∈ Ri.
Note that Ni is equal to ri minus the number of indices in Wi that precede
i in the random ordering σ. Since σ was chosen uniformly, this number
is distributed uniformly in {0, ..., ri − 1}. Thus, Ni is uniform on the set
{1, ..., ri}. Therefore

Eσ [log(Ni(σ))] =

ri∑

k=1

1

ri

log(k) =
1

ri

log(ri!).

Hence

H(X) ≤
n∑

i=1

EX

[
1

ri

log(ri!)

]
=

n∑
i=1

1

ri

log(ri!)

which implies the Brègman bound.
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3 The d-dimensional case

3.1 An informal discussion

The core of the above-described proof of the Brègman bound can be viewed as
follows. Let us pick first a 1-permutation X that is contained in the matrix A
and consider the set Ri of the ri 1-entries in A’s i-th row. There are exactly ri

indices j for which Xj ∈ Ri. The random ordering of the rows that we select
σ, determines which of these will precede the i-th row (or will cast its shadow
on the i-th row). The random number ui of rows that cast a shadow on the i-
th row is uniformly distributed in the range {0, . . . , ri−1}. The contribution
of this row to the upper bound on H(X) is log Ni, where Ni = ri − ui.
The expectation of log Ni is exactly 1

ri

∑
j=1,...,ri

log j = 1
ri

log(ri!). In other
words, Ni is the number of 1-entries in the i-th row that are still unshaded
when we reach the i-th row in the chain rule evaluation of the entropy. The
contribution of this row to the estimate is log Ni.

How should we modify this argument to deal with d-dimensional permu-
tations? We fix a d-dimensional permutation X that is contained in A and
consider a random ordering of all lines of the form A(i1, ..., id, ∗). Given such
an ordering, we use the chain rule to derive an upper bound on H(X). Each
ordering yields a different bound. However, as in the one dimensional case,
the key insight is that averaging over all possible orderings (in a class that
we later define) gives us a simple bound on H(X).

The overall structure of the argument remains the same. We consider a
concrete line A(i1, ..., id, ∗). Its contribution to the estimate of the entropy is
log N where N is the number of 1-entries that remain unshaded at the time
(according to the chosen ordering) at which we compute the corresponding
term in the chain rule for the entropy. However, now shade can fall from d
different directions. The contribution of the line to the entropy will be the
expected logarithm of the number of ones that remain unshaded after each
of the d dimensions has cast its shade on it.

The ordering of the lines is done as follows: At the coarsest level lines
are ordered according to their first coordinate i1. This ordering is chosen
uniformly from Sn. The (random) order of lines with a fixed value of i1
is chosen by recursion on the dimension d. To understand how many 1’s
remain unshaded in a given line, we first consider the shade along the first
coordinate. If it initially has r 1-entries, then the number of unshaded 1-
entries after this stage is uniformly distributed on [r]. We then recurse with
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the remaining 1-entries and proceed on the subcube of codimension 1 that
is defined by the value of the first coordinate. It is not hard to see how the
recursive expression for f(d, r) reflects this calculation.

3.2 In detail

Let A be a [n]d+1-dimensional array of zeros and ones, and X is a random
d-permutation sampled uniformly from the set of d-permutations contained
in A. Then H(X) = log(Perd(A)) by theorem 2.2 and again we seek an
upper bound on H(X).

We think of X as an [n]d array each line of which contains each member
of [n] exactly once. The proof does its accounting using lines of the form
A(i1, ..., id, ∗), i.e., lines in which the last ((d+1)-st) coordinate varies. Such
a line is specified by i = (i1, ..., id). The random variable Xi is defined to be
the value of X(i1, ..., id). We think of the variables Xi as being revealed to
us one by one. Thus, Xi1,...,id must belong to

Ri = Ri1,...,id = {j : A(i1, ..., id, j) = 1}

the set of 1-entries in this line.
In the proof we scan these lines in a particular randomly chosen order.

Let us ignore this issue for a moment and consider some fixed ordering of
these lines. Initially, the number of 1-entries in this line is ri. As we proceed,
some of these 1’s become unavailable to Xi, since choosing them would result
in a conflict with the choice made in some previously revealed line. We say
that these 1’s are in the shade of previously considered lines. This shade can
come from any of the d possible directions. Thus we denote by Zi ⊆ Ri the
set of the indices of the 1-entries in Ri that are unavailable to Xi given the
values of the preceding variables. We can express Zi = ∪k=1,...,dZ

k
i where

entries in Zk
i are shaded from direction k. Namely, j ∈ Zk

i if there is an
already scanned line indexed by i’ with Xi’ = j and where i and i’ coincide
on all coordinates except the k-th. Thus, given the values of the previously
considered variables, there are at most

Ni = |Ri r Zi|

values that are available to Xi.
We next turn to the random ordering of the lines. Now, however, we

do not select a completely random ordering, but opt for a more structured
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ordering that respects the coordinate structure. Namely, we first select a
random ordering σ on [n]. If i1 6= i′1, then all lines of the form A(i1, ..., id, ∗)
precede all those of the form A(i′1, ..., i

′
d, ∗) provided that i1 precedes i′1 in

the ordering σ. We next select σ1, . . . , σn which are also orderings of [n].
If i1 = i′1 = i but i2 6= i′2, then the precedence between lines of the form
A(i, i2, ..., id, ∗) and A(i, i′2, ..., i

′
d, ∗) is determined by the order of σi(i2) and

σi(i
′
2). This is extended appropriately to all further coordinates where we

select for each d − 1 ≥ k ≥ 0 and each choice of (i1, . . . , ik), a random
ordering σ(i1,...,ik) of [n]. To determine which of the two lines A(i1, ..., id, ∗)
and A(i′1, ..., i

′
d, ∗) precede each other, we consult the ordering σ(i1,...,ik), where

i1 = i′1, . . . , ik = i′k but ik+1 6= i′k+1. The ordering between these lines is
the same as the ordering between σ(i1,...,ik)(ik+1) and σ(i1,...,ik)(i

′
k+1). Thus a

complete choice of the orderings σ(i1,...,ik) induces a total order on the lines
A(i1, ..., id, ∗). Denote this order by ≺. That is, we write i ≺ j if i comes
before j. We write i ≺k j if i ≺ j and i and i’ differ only in the kth coordinate.

We think of Xi as being revealed to us according to this order.
We turn to the definition of Ri, Zk

i and Ni. Their definitions are affected
by the chosen ordering of the lines. In addition, for reasons to be made
clear later, we generalize the definition of Ni. It is defined as the number
of values available to Xi (given the preceding lines) from a given index set
W ⊆ Ri. In the discussion below, we fix X, a d-dimensional permutation
that is contained in A.

Definition 3.1. The index set of the 1-entries in the line A(i1, ..., id, ∗) is
denoted by

Ri = Ri1,...,id = {j : A(i1, ..., id, j) = 1},
and its cardinality is ri = |Ri|.

Let W ⊆ Ri with i = (i1, ..., id), and suppose that Xi belongs to W . For
a given ordering ≺, let

Zk
i (X,≺) = {j ∈ Ri : Xi’ = j for some i’ ≺k i}.

Ni(W,X,≺) = |W r ∪d
k=1Z

k
i (X,≺)|.

Thus, Ni is a function of W ⊆ Ri, X and the ordering ≺. Each variable
Xi specifies a 1 entry of the line A(i1, ..., id, ∗). The entry thus specified
must conform to the values taken by the preceding variables. Namely, no
line of X can contain more than a single 1 entry. We consider the number of
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values that the variable Xi can take, given the values that precede it. Fix an
index tuple i = (i1, ..., id). The variable Xi should specify an index id+1 with
A(i1, ..., id+1) = 1, i.e., an element of Ri. Consider some element j ∈ Ri.
If Xi’ = j, for some i’ ≺k i and k ≤ d then clearly Xi 6= j, or else the
line X(i1, ..., ik−1, ∗, ik+1, ..., id) contains more than a single j-entry. In other
words, Xi cannot specify an element of Zk

i (X,≺) and is restricted to the set
Rir∪d

k=1Z
k
i (X,≺). Therefore, there are at most Ni(Ri, X,≺) possible values

that Xi can take given the variables that precede it in the order ≺.
For a given order ≺, we can use the chain rule to derive

H(X) =
∑

i

H(Xi|Xj : j ≺ i).

By theorem 2.2,

H(Xi|Xj : j ≺ i) = EXj:j≺i [H(Xi|Xj = xj : j ≺ i)]

≤ EXj:j≺i [log(Ni(Ri, X,≺))] = EX [log(Ni(Ri, X,≺))] .

The last equality holds because Ni depends only on the lines of X that
precede Xi, and so taking the expectation over the rest of X doesn’t change
anything.

As in the one dimensional case, the next step is to take the expectation
of both sides of the above inequality over ≺.

H(X) ≤
∑

i

E≺ [EX [log(Ni(Ri, X,≺))]]

=
∑

i

EX [E≺ [log(Ni(Ri, X,≺))]].

The key to unraveling this expression is the insight that the random variable
Ni has a simple distribution (as a function of ≺), and moreover, that this
distribution does not depend on X.

Recall that in the one dimensional case, we obtained the distribution of
Ni as follows. Initially, the number of ones in the ith row was ri. Then the
rows preceding the ith row were revealed, and some of the ones in the i-th
row became unavailable to X, because some other row had placed a one in
their column. We defined Ni = |RirZi(σ)|. The size of Zi(σ) was shown to
be uniformly distributed over {0, ..., ri − 1}, and thus the distribution of Ni

was shown to be uniform over {1, ..., ri}.
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A similar argument works in the d dimensional case, but the distribution
of Ni is no longer uniform. Recall that the function f is defined recursively
by

f(0, r) = log(r)

f(d, r) =
1

r

r∑

k=1

f(d− 1, k).

Claim 3.2. Let X be a d-permutation, i = (i1, ..., id) and let W be an index
set such that Xi ∈ W . Then E≺ [log(Ni(W,X,≺))] depends only on d and
r = |W |, and

E≺ [log(Ni(W,X,≺))] = f(d, r).

Proof. The proof proceeds by induction on d.
First, note that if |W | = r and d = 0, then Ni(W,X,≺) = |W | = r by

definition, and therefore

E≺ [log(Ni(W,X,≺))] = log(r) = f(0, r).

In order to proceed with the induction step, we must describe Ni(W,X,≺)
in terms of parameters of dimension d− 1 instead of d. To this end we need
the following definitions:

• X ′ = X(i1, ∗, ..., ∗). Note that X ′ is a (d−1)-dimensional permutation.

• W ′ = W r Z1
i (X,≺). Note that |W ′| actually depends only on σ, the

ordering of the first coordinate.

• Let i’ = (i′1, ..., i
′
d−1) = (i2, ..., id).

• Given an ordering≺, let≺′ be the ordering on the index tuples (i′1, ..., i
′
d−1)

defined by the orderings

σi1 , σi1,i2 , ..., σi1,...,id−1
.

Note that for every X,W , i and ≺ we have Ni(W,X,≺) = Ni’(W
′, X ′,≺′).

This equality follows directly from the definition of N . Now,

E≺ [log(Ni(W,X,≺))] = Eσ [E≺′ [log(Ni(W,X,≺))]]
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= Eσ [E≺′ [log(Ni’(W
′, X ′,≺′))]] = Eσ [f(d− 1, |W ′|)]

The last step follows from the induction hypothesis. Consequently,

E≺ [log(Ni(W,X,≺))] =
∑

k

Pr(|W ′| = k)f(d− 1, k).

The only remaining question is to determine the distribution of |W ′| as a
function of σ. Note, however, that we have already answered this question in
the one dimensional proof, namely, |W ′| is uniformly distributed on {1, ..., r}.
Indeed, W ′ = |W rZ1

i (X,≺)|, and Z1
i (X,≺) is the set of indices s such that:

• For some j ∈ W , X(s, i2, ..., id) = j (there are r − 1 such indices, one
for each j ∈ W ).

• The random ordering σ places s before i1.

In a random ordering, the position of i1 is uniformly distributed. Therefore
|Z1

i (X,≺)| is uniformly distributed on {0, ..., r − 1}, and Pr(|W ′| = k) = 1
r

for every 1 ≤ k ≤ r.
Putting this together, we have shown that

E≺ [log(Ni(W,X,≺))] =
1

r

r∑

k=1

f(d− 1, k) = f(d, r).

In conclusion, we have shown that

H(X) ≤
∑

i

EX [E≺ [log(Ni(Ri, X,≺))]]

=
∑

i

EX [f(d, ri)] =
∑

i

f(d, ri),

where ri = ri1,...,id is the number of ones in the vector A(i1, ..., id, ∗). There-
fore,

Perd(A) ≤
∏

i

ef(d,ri).
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4 An upper bound for the number of d-permutations

As mentioned, the upper bound on the number of d-dimensional permuta-
tions is derived by applying theorem 1.6 to the all-ones array J . The main
technical step is a derivation of an upper bound on the function f(d, r).

Theorem 4.1. For every d there exist constants cd and rd such that for all
r ≥ rd,

f(d, r) ≤ log(r)− d + cd
logd(r)

r
.

One possible choice that we adopt here is rd = ed for every d, c1 = 5, c2 = 8,

and cd = d3(1.1)d

d!
for d ≥ 3.

Proof. A straightforward induction on d yields the weaker bound f(d, r) ≤
log(r) for all d, r. For d = 0 there is equality and the general case follows
since f(d, r) = 1

r

∑r
k=1 f(d− 1, k) ≤ 1

r

∑r
k=1 log(k) ≤ log(r). This simple

bound serves us to deal with the range of small r’s (below rd−1). We turn to
the main part of the proof

f(d, r) =
1

r

r∑

k=1

f(d− 1, k) =
1

r




rd−1∑

k=1

f(d− 1, k) +
r∑

k=rd−1+1

f(d− 1, k)




≤ 1

r

[
rd−1 log(rd−1) +

r∑

k=1

log(k)− (d− 1) + cd−1
logd−1(k)

k

]

≤ ξ

r
+

1

r
log(r!)− (d− 1) +

cd−1

r

r∑

k=1

logd−1(k)

k

where ξ = rd−1 log(rd−1) = (d−1)ed−1. It is easily verified that for r ≥ rd ≥ 3
there holds log(r!) ≤ r log(r)− r + 2 log(r). We can proceed with

≤ ξ

r
+ log(r) +

2 log(r)

r
− d +

cd−1

r

r∑

k=1

logd−1(k)

k
.

We now bound the sum
∑r

k=1
logd−1(k)

k
by means of the integral

∫ r

1
logd−1(x)dx

x
=

logd(r)
d

. Note that the integrand is unimodal and its maximal value is γ =

15



(
d−1

e

)d−1
. Thus,

cd−1

r

r∑

k=1

logd−1(k)

k
≤ cd−1

r

(
logd(r)

d
+ γ

)
.

Putting this together, we have the inequality

f(d, r) ≤ log(r)− d +
2 log(r) + ξ + cd−1

(
γ + logd(r)

d

)

r
.

Therefore it is sufficient to choose cd such that for every r ≥ ed

2 log(r) + ξ + cd−1

(
γ +

logd(r)

d

)
≤ cd logd(r)

i.e.,
2

logd−1(r)
+

ξ

logd(r)
+ cd−1

(
γ

logd(r)
+

1

d

)
≤ cd.

The left hand side of the above inequality is clearly a decreasing function of
r. Therefore it is sufficient to verify the inequality for r = ed. Plugging this
and the values of the constants ξ and γ into the left hand side of the above
inequality, we get

2

dd−1
+

(d− 1)ed−1

dd
+ cd−1

(
(d− 1)d−1

ed−1dd
+

1

d

)

≤
(

1 +
1

ed−1

)
cd−1

d
+ d

(
2

dd
+

(e

d

)d
)

.

Thus, we may take

cd =

(
1 +

1

ed−1

)
cd−1

d
+ d

(
2

dd
+

(e

d

)d
)

.

Calculating cd using this recursion and the fact that c0 = 0, we get that

c1 = 2 + e ≤ 5, c2 ≤ 8, and c3 ≤ 33(1.1)3

3!
. Proceeding by induction,

cd =

(
1 +

1

ed−1

)
(d− 1)3(1.1)d−1

d!
+ d

(
2

dd
+

(e

d

)d
)
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≤ (1.1)d(d− 1)3

d!
+ 2d

(e

d

)d

≤ (1.1)d(d− 1)3 + 2d2

d!
≤ (1.1)dd3

d!
.

In the inequality before the last one, we used Stirling’s approximation to

show that d
d!
≤ (

e
d

)d
.

For the [n]d+1 all ones array J , ri1,...,id = n for every tuple (i1, ..., id), and
so for large enough n we have the bound

Perd(J) ≤
∏

i1,...,id

ef(d,n) = (ef(d,n))nd ≤ exp

[
log(n)− d + cd

logd(n)

n

]nd

.

For a constant d, letting n go to infinity, cd
logd(n)

n
= o(1) and therefore the

number of d permutations is at most

( n

ed
(1 + o(1))

)nd

.
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