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Overview

Lecture 1:
Introduction to linear programming and the simplex algorithm.
Pivoting rules.
The RandomFacet pivoting rule.

Lecture 2:
The Hirsch conjecture.
Introduction to Markov decision processes (MDPs).
Upper bound for the LargestCoefficient pivoting rule for
MDPs.

Lecture 3:
Lower bounds for pivoting rules utilizing MDPs. Example:
Bland’s rule.
Lower bound for the RandomEdge pivoting rule.
Abstractions and related problems.
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Discounted Markov decision processes
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A discounted MDP with n states and a total of m actions can
be represented by:

A discount factor γ < 1.
A zero-one matrix J ∈ {0, 1}m×n, with Ja,i = 1 iff a ∈ Ai .
A stochastic matrix P ∈ Rm×n.
A reward vector c ∈ Rm.

A policy π is a choice of an action from each state. π defines
a Markov chain with rewards (Pπ, cπ).
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The stopping condition

ca

t

1− γ

γ

The discount factor γ < 1 was introduced because the
expected total reward

∑∞
k=0 bT Pk

πcπ, where b is some initial
distribution, may not converge.

For every action a, (1− γ) may be interpreted as the
probability of moving to a terminal state t.

To ensure convergence it is enough to satisfy the following
condition:

Stopping condition: The terminal state is eventually reached
with probability 1 from all states.
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The stopping condition

Let Pπ ∈ Rn×n be a matrix with non-negative entries such
that each row sums to at most 1.

The difference between 1 and the sum of the a’th row is the
probability of moving to the terminal state when using
action a.
Note that γP, where P is an n × n stochastic matrix, is a
special case.

If the stopping condition is satisfied, each row of Pn
π sums to

less than 1, and Pk
π → 0 for k →∞.

It is again not difficult to show that:

(I − Pπ)−1 =
∞∑

k=0

Pk
π

Everything that was said in lecture 2 about discounted
Markov chains with rewards remain true if γP is replaced by
P, where P satisfies the stopping condition.
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Markov decision processes
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An MDP with n states and a total of m actions can be
represented by:

A zero-one matrix J ∈ {0, 1}m×n, with Ja,i = 1 iff a ∈ Ai .
A matrix P ∈ Rm×n with non-negative entries and each row
summing to at most 1.
A reward vector c ∈ Rm.

An MDP satisfies the stopping condition if all policies π
satisfy the stopping condition. For simplicity, we will generally
assume that MDPs satisfy the stopping condition.
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Markov decision processes

Every policy π defines value and flux vectors:

vπ = (I − Pπ)−1cπ xT
π = eT (I − Pπ)−1

where (I − Pπ)−1 =
∑∞

k=0 Pk
π .

The value of state i , (vπ)i , is the expected total reward
accumulated when starting there.

A policy π∗ is optimal if it maximizes the values of all states:
vπ∗ ≥ vπ for all π.
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Markov decision processes

An optimal policy can be found by solving a linear program:

(P)
max cT x
s.t. (J − P)T x = e

x ≥ 0
(D)

min eT y
s.t. (J − P)y ≥ c

There is a one-to-one correspondence between policies and
basic feasible solutions of the primal LP (P).

The reduced cost vector, i.e. the coefficients of a tableau,
c̄π ∈ Rm for a policy π is defined by:

∀i ∈ S ,∀a ∈ Ai : c̄πa = (ca + Pavπ)− (vπ)i

c̄πa is the improvement over the current value by using a for
one step w.r.t. vπ.
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Markov decision processes

If c̄πa > 0 we say that a is an improving switch w.r.t. π. I.e.,
a ∈ Ai is an improving switch iff:

(vπ)i < ca + Pavπ

Lemma (Howard (1960))

Let π′ be obtained from π by jointly performing any non-empty set
of improving switches. Then vπ′ ≥ vπ and vπ′ 6= vπ.

Lemma (Howard (1960))

A policy π is optimal iff there are no improving switches.
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Markov decision processes

Function PolicyIteration(π)

while ∃ improving switch w.r.t. π do

Update π by performing improving switches

return π

The simplex algorithm applied to the primal LP (P) is a
special case of PolicyIteration.
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Example: A simple MDP

Notation for graphical
representation:

Circles are states.
Diamond-shaped vertices are
rewards.
Squares are randomization
vertices.

A policy π is shown as bold blue
arrows.

States and randomization vertices
are labelled by corresponding
values of π.

Improving switches are indicated
by red arrows.
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From MDP to LP
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From MDP to LP
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Lower bounds for pivoting rules utilizing MDPs

To prove lower bounds for a pivoting rule for the simplex
algorithm, we can prove lower bounds for the corresponding
PolicyIteration algorithm for MDPs:

There is a one-to-one correspondence between policies and
basic feasible solutions of the primal LP (P) for MDPs.
The simplex algorithm for the primal LP (P) is the special case
of PolicyIteration, where only single improving switches
are performed.

We next construct an exponential lower bound for
Bland’s rule as a warmup before sketching the 2Ω(n1/4)

lower bound for RandomEdge by Friedmann, Hansen and
Zwick (2011).
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Bland’s rule

Bland’s rule, Bland (1977)

Always pick the available variable with the smallest index, both
for entering and leaving the basis.

Bland’s rule for MDPs

Perform the improving switch a with the smallest index.
There is always only one action that can be exchanged with a,
namely the current action that originates from the same state
as a.

When constructing a lower bound, we may pick a worst-case
ordering of the indices.
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Lower bound construction

We define a family of lower bound MDPs Gn such that
Bland’s rule, and later RandomEdge, simulates an n-bit
binary counter.

We make use of exponentially growing rewards (and
penalties): To get a higher reward the MDP is willing to
sacrifice everything that has been built up so far.

Notation: Integer priority p corresponds to reward (−N)p,
where N = 3n + 1.

. . . < 5 < 3 < 1 < 2 < 4 < 6 < . . .

5 ≡ (−N)5
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Lower bound for Bland’s rule
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Lower bound for Bland’s rule

Let k be the lowest unset bit. Incrementing the counter
happened roughly through five phases:

1 Make bk = 1.
2 Make uk = 1 and ui = 0, for i < k .
3 Make bi = 0 and ai = 0, for i < k .
4 Make ak = 1.
5 Make wk = 1 and wi = 0, for i < k .

Only the last part of the ordering, involving a1
i and b1

i edges,
was important.

To implement a lower bound for RandomEdge we start out
with the same construction. We need a gadget to delay
improving switches like a1

i and b1
i , however.
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Delaying events

5

6

3

b1,j jε u3 ≡

5

6

u3

b1,1 ε

b1,2 2ε

b1,3 3ε

By replacing a vertex by a chain of vertices, a specific
sequence of improving switches has to be performed to get
the same effect as performing one improving switch originally.

RandomEdge performs uniformly random improving
switches, and a longer sequence therefore gives a longer delay.
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RandomEdge lower bound, first step

Let k be the lowest
unset bit.
Incrementing the
counter happens
through five phases:

1⇒ Make bk = 1.
2 Make uk = 1 and

ui = 0, for i < k.
3 Make bi = 0 and

ai = 0, for i < k.
4 Make ak = 1.
5 Make wk = 1 and

wi = 0, for i < k .
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Fast resetting

5

6

3

b1,j jε u3 ≡

5

6

u3

b1,1 ε

b1,2 2ε

b1,3 3ε

Moving in the other directions happens much faster since all
actions are improving switches simultaneously.
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Resetting partially set higher bits

Problem: Higher bits get a head start in later counting steps.
When resetting lower bits we must also reset higher bits that
are partially set.

Higher bits must have access to lower bits: Introduce actions
moving down to u1.

Note: The resulting MDP does not actually satisfy the
stopping condition, but this just means the LP us unbounded
towards −∞. Alternatively, we can introduce randomization
and always move up with an insignificant probability.

No state can have direct access to a large reward: Introduce a
stochastic action such that this happens only with an
insignificant probability ε = N−(4n+8).

Resetting higher bits requires alternating behaviour: Introduce
an additional chain of ci vertices.
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RandomEdge lower bound, full construction

Incrementing the
counter happens
through seven phases:

1 Make bk = 1.
2 Make ck = 1.
3 Make uk = 1 and

ui = 0, for i < k.
4 Make bi = 0 and

ai = 0, for i < k.
Reset bi for unset
bits i > k.

5 Make ak = 1.
6 Make wk = 1 and

wi = 0, for i < k.
7 Reset ci for all

unset bits.

w3 t u3

10

`2

b2,j jε

9 u2

w2

h

a2,j jε 7

6

`1

b1,j jε

5 u1

w1

h

a1,j jε 3
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Competing chains

The greatest challenge when setting the parameters is
to make sure that the lowest unset bit is incremented
next with high probability.

The situation occurs when two chains bi and bi+1 of
lengths `i and `i+1 are competing to change from 0
to 1.

In both chains there is always exactly one improving
switch, which means that the RandomEdge pivoting
rule will pick either of them with equal probability.

We bound the probability of failure with a Chernoff
bound, and show that it suffices to set `i = Θ(i2n).
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RandomEdge lower bound

Theorem (Friedmann, Hansen and Zwick (2011))

The worst-case expected number of pivoting steps performed by
RandomEdge on linear programs with n equalities and 2n
non-negative variables is 2Ω(n1/4).
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The linear program

maximize
∑n

i=1

∑h
j=1((−N)4i−1 + jε)a0

i,j+∑n
i=1((−N)4i+1 + ε(−N)4i+2)(a1

i,1 + u1
i )+∑n

i=1(ε(−N)4i+2)(b1
i,1 + c1

i,1)+∑n
i=1

∑`i
j=1 jεb0

i,j +
∑n

i=1

∑g
j=1 jεc0

i,j

subject to

∀1 ≤ i ≤ n : a0
i,h + a1

i,h = 1 + w 1
i

∀1 ≤ i ≤ n, ∀1 ≤ j < h : a0
i,j + a1

i,j = 1 + a1
i,j+1

∀1 ≤ i ≤ n : b0
i,`i

+ b1
i,`i

= 1 + 1−ε
2

(
a1

i,1 + b1
i,1 + c1

i,1 + u1
i

)
∀1 ≤ i ≤ n, ∀1 ≤ j < `i : b0

i,j + b1
i,j = 1 + b1

i,j+1

∀1 ≤ i ≤ n : c0
i,g + c1

i,g = 1 + 1−ε
2

(
a1

i,1 + b1
i,1 + c1

i,1 + u1
i

)
∀1 ≤ i ≤ n, ∀1 ≤ j < g : c0

i,j + c1
i,j = 1 + c1

i,j+1

u0
1 + u1

1 = 1 +
∑n

i=1

(∑h
j=1 a0

i,j +
∑`i

j=1 b0
i,j

)
∀2 ≤ i ≤ n : u0

i + u1
i = 1 + u0

i−1

w 0
1 + w 1

1 = 1 +
∑n

i=1

∑g
j=1 c0

i,j

∀2 ≤ i ≤ n : w 0
i + w 1

i = 1 + w 0
i−1 + ε

(
a1

i,1 + b1
i,1 + c1

i,1 + u1
i

)
a0

i,j , a
1
i,j , b

0
i,j , b

1
i,j , c

0
i,j , c

1
i,j , u

0
i , u

1
i ,w

0
i ,w

1
i ≥ 0
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The RandomFacet algorithm

Function RandomFacet(G , π)

if π contains all actions then
return π

else
Choose unused action a uniformly at random
π′ ← RandomFacet(G \ {a}, π)
if a is improving switch w.r.t. π′ then

π′′ ← π′[a]
return RandomFacet(G , π′′)

else
return π′

Thomas Dueholm Hansen - Lecture 3 MADALGO & CTIC Summer School Page 27/47



The “modified RandomFacet algorithm”

Function RandomFacet(G , π, ϕ)

if π contains all actions then
return π

else
a← argmina∈A\π ϕ(a)
π′ ← RandomFacet(G \ {a}, π, ϕ)
if a is improving switch w.r.t. π′ then

π′′ ← π′[a]
return RandomFacet(G , π′′, ϕ)

else
return π′
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Lower bound for RandomFacet dropped to 2Ω̃(n1/3)

In Friedmann, Hansen and Zwick (SODA, 2011) we proved a

2Ω̃(n1/2) lower bound, for parity games, for the “modified
RandomFacet algorithm” starting with a uniformly random
permutation.

We incorrectly believed, until less than three weeks ago, that
by linearity of expectation the RandomFacet algorithm
required the same expected number of steps. We now know
that this is not true.

Fortunately, using the same construction with different
parameters we have been able to prove a 2Ω̃(n1/3) lower bound,
which will be made public as soon as all the details have been
written and verified.
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Lower bound for RandomFacet dropped to 2Ω̃(n1/3)

Looking closer at the “modified RandomFacet algorithm”,
it turns out to be a dual, recursive variant of the
Randomized Bland’s rule.

In Friedmann, Hansen and Zwick (STOC, 2011) we showed a
simple transformation of our lower bound parity games to
MDPs, thereby getting lower bounds for the simplex
algorithm. This transformation remains the same.

The main result of this paper was the 2Ω(n1/4) lower bound for
RandomEdge which is unaffected.
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Simplified RandomFacet lower bound

The RandomFacet
algorithm picks a
random edge, here
b1

2, and removes it,
thereby disabling the
bit.

The MDP is then
solved recursively.

b1
2 is reintroduced

and a switch is made.

w3 t u3

10

b2

9 u2

w2 a2 7

6

b1

5 u1

w1 a1 3

0

01

0

1

1

1 0

0

0

1

0

1

1

1 0

0

0
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Simplified RandomFacet lower bound

A new random edge,
a1

2, is removed.

The MDP is again
solved recursively.
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We simulate a “randomized bitcounter”

Start with n bits with value 0: 00000

Pick a random bit i and fix it: 00000

Count recursively with the remaining n − 1 bits: 11011

Increment the i ’th bit: 11111

Reset the i − 1 lower bits: 11100

Count recursively with the i − 1 lower bits: 11100

Expected number of increments:

f (0) = 0

f (n) = f (n − 1) + 1 +
1

n

n−1∑
i=0

f (i) for n > 0

Solving the recurrence gives: f (n) = 2Θ(
√

n)
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Different challenges

When constructing lower bounds for the RandomFacet
pivoting rule, instead of delaying improving switches, the
challenge is to make sure that certain actions are not removed
before certain other actions.

Suppose an action a must not be removed before another
action b.

To achieve this with high probability we make use of
redundancy: Let a and b be copied k times, in such a way
that we only require that at least one copy of b is removed
before all copies of a are removed.

The only bad permutation for the “modified RandomFacet
pivoting rule” is then: aa . . . abb . . . b

The probability of choosing a bad permutation is (k!)2

(2k)! ≤
1

2k .
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Different gadgets

k

bi,j ui+1
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1−ε
k

We use different gadgets to ensure that we get the correct
behaviour with high probability.

For the “modified RandomFacet pivoting rule” this only
increases the number of states and actions by a
polylogarithmic factor.

For the real RandomFacet pivoting rule the increase needs
to be a factor Õ(

√
n).

Thomas Dueholm Hansen - Lecture 3 MADALGO & CTIC Summer School Page 34/47



RandomFacet lower bound construction
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Overview

Lecture 1:
Introduction to linear programming and the simplex algorithm.
Pivoting rules.
The RandomFacet pivoting rule.

Lecture 2:
The Hirsch conjecture.
Introduction to Markov decision processes (MDPs).
Upper bound for the LargestCoefficient pivoting rule for
MDPs.

Lecture 3:
Lower bounds for pivoting rules utilizing MDPs. Example:
Bland’s rule.
Lower bound for the RandomEdge pivoting rule.
Abstractions and related problems.
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2-player turn-based stochastic games (2TBSGs)
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A 2TBSG is an MDP where the set of states is partitioned
into two sets: S1 ∪ S2 = S .

S1 is controlled by player 1, the maximizer.
S2 is controlled by player 2, the minimizer.

A strategy π1 (or π2) for player 1 (or player 2) is a choice of
an action for each state i ∈ S1 (or i ∈ S2).
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2-player turn-based stochastic games (2TBSGs)

A strategy profile π = (π1, π2) is a pair of strategies, defining
a Markov chain with rewards.

The value vector for discounted 2TBSGs is again defined as:

vπ = (I − γPπ)−1cπ

For a fixed strategy π1 for player 1, a best response from
player 2 is a strategy:

π2(π1) ∈ argmin
π2

vπ1,π2

Note that π2(π1) can be computed by solving an MDP.

A best response from player 1, π1(π2), is defined analogously.
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2-player turn-based stochastic games (2TBSGs)

π∗1 and π∗2 are optimal if:

∀π1 : vπ∗1 ,π2(π∗1 ) ≥ vπ1,π2(π1)

∀π2 : vπ1(π∗2 ),π∗2
≤ vπ1(π2),π2

Alternatively, π∗1 and π∗2 are optimal if π∗1 is a best response to
π∗2, and π∗2 is a best response to π∗1. We then say that
(π∗1, π

∗
2) is a Nash equilibrium.

Shapley (1953): Optimal strategies always exist.

Solving a 2TBSG means finding an optimal strategy profile.

Note that the decision problem corresponding to solving
2TBSGs is in NP ∩ coNP, since an optimal strategy profile is
a witness for both yes and no answers. The problem is not
known to be in P.
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2-player turn-based stochastic games (2TBSGs)

We again say that a ∈ Ai , for i ∈ S1, is an improving switch
for player 1 w.r.t. π iff:

(vπ)i < ca + γPavπ

Similarly, a ∈ Ai , for i ∈ S2, is an improving switch for player
2 w.r.t. π iff:

(vπ)i > ca + γPavπ

The vector of reduced costs for a strategy profile π is again
defined as:

c̄π = c − (J − γP)vπ

Note that (π∗1, π
∗
2) is a Nash equilibrium iff there are no

improving switches.
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StrategyIteration

Function StrategyIteration(π1)

while ∃ improving switch w.r.t. (π1, π2(π1)) do

Update π1 by performing improving switches

return (π1, π2(π1))

Howard’s algorithm can be naturally extended to 2TBSGs by
choosing:

∀i ∈ S1 : π1(i)← argmax
a∈Ai

c̄
π1,π2(π1)
a
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Non-discounted MDPs and 2TBSGs

We have already seen that discounted MDPs are a special
case of MDPs satisfying the stopping condition, and the same
is true for 2TBSGs.

Liggett and Lippman (1969) showed that for any 2TBSG G
there exists a discount factor γG < 1, such that the same
strategies are optimal for all discount factors γ′ ∈ [γG , 1).

Andersson and Miltersen (2009) showed that γG can be
described with a number of bits that is polynomial in the bit
complexity of G .

A 2TBSG G is called non-discounted if it is implicitly using
discount factor γG .

MDPs (and 2TBSGs) satisfying the stopping condition are a
special case of non-discounted MDPs (and 2TBSGs). See,
e.g., Puterman (1994).
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Special cases of 2TBSGs

A non-discounted 2TBSG whose actions are all deterministic
is called a mean payoff game.

An n-state mean payoff game where the reward of every
action a is described by an integer priority pa, such that
ca = (−n)pa , and where all actions leaving the same state
have the same priority, is called a parity game.

Note that the mean of the rewards of a cycle is positive iff the
parity of the largest priority is even.

There is no known polynomial time algorithm for solving
parity games.

Thomas Dueholm Hansen - Lecture 3 MADALGO & CTIC Summer School Page 43/47



Special cases of 2TBSGs

A non-discounted 2TBSG whose actions are all deterministic
is called a mean payoff game.

An n-state mean payoff game where the reward of every
action a is described by an integer priority pa, such that
ca = (−n)pa , and where all actions leaving the same state
have the same priority, is called a parity game.

Note that the mean of the rewards of a cycle is positive iff the
parity of the largest priority is even.

There is no known polynomial time algorithm for solving
parity games.

Thomas Dueholm Hansen - Lecture 3 MADALGO & CTIC Summer School Page 43/47



Special cases of 2TBSGs

A non-discounted 2TBSG whose actions are all deterministic
is called a mean payoff game.

An n-state mean payoff game where the reward of every
action a is described by an integer priority pa, such that
ca = (−n)pa , and where all actions leaving the same state
have the same priority, is called a parity game.

Note that the mean of the rewards of a cycle is positive iff the
parity of the largest priority is even.

There is no known polynomial time algorithm for solving
parity games.

Thomas Dueholm Hansen - Lecture 3 MADALGO & CTIC Summer School Page 43/47



A few results about StrategyIteration

Friedmann (2009) showed that Howard’s algorithm requires
exponentially many iterations to solve parity games.

Fearnley (2010) transformed Friedmann’s construction to
MDPs.

These lower bounds are precursors for the lower bounds for
RandomEdge, RandomFacet and
Randomized Bland’s rule by Friedmann, Hansen and
Zwick (2011), and LeastEntered by Friedmann (2011). All
of which were also first obtained for parity games.

Ye (2010): O( mn
1−γ log n

1−γ ) iterations for discounted MDPs
with n states and m actions.

Hansen, Miltersen and Zwick (2011): O( m
1−γ log n

1−γ )
iterations for discounted 2TBSGs with n states and m actions.
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2TBSGs are LP-type problems

Ludwig (1995), Halman (2007): 2TBSGs are LP-type
problems.

Let H be the set of actions for player 1, and let ω map a
subgame to the sum of its optimal values. Bases are strategies
for player 1.
Monotonicity: More available actions only increases the value.
Locality: If F ⊆ G ⊆ H and −∞ < ω(F ) = ω(G ), then F and
G share optimal strategies, and if an added action h ∈ H is an
improving switch for one then it also is for the other.

Hence, the dual RandomFacet algorithm can be used to
solve 2TBSGs, and, in fact, it gives the best known bound for
solving the non-discounted problem.
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Unique sink orientations of cubes

MDPs and 2TBSGs with two actions per state can be
described abstractly by acyclic unique sink orientations
(AUSOs) of hypercubes:

Strategies for player 1 map to vertices of the cube, and
improving switches define an orientation of the edges such that
in each face there is a unique sink.
An algorithm can evaluate vertices of the cube to learn the
orientation of the adjacent edges, and the goal is to find the
unique sink of the entire cube.

Szabó and Welzl (2001) introduced the FibonacciSeesaw
algorithm for solving n dimensional unique sink orientations
with Fn+2 vertex evaluations.
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More extensions of 2TBSGs

There is no known way to formulate 2TBSGs as linear
programs.

Gärtner and Rüst (2005), and Jurdziński and Ravani (2008)
showed how to formulate 2TBSGs with two actions per state
as P-matrix linear complementarity problems.

P-matrix linear complementarity problems are also generalized
by USOs, but not by AUSOs.

Solving P-matrix linear complementarity problems, as well as
2TBSGs, is known to be in PPAD ∩ PLS. Daskalakis and
Papadimitriou (2011) suggested a new complexity class CLS
(continuous local search) for capturing these and other
problems.
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