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Overview

Lecture 1:
Introduction to linear programming and the simplex algorithm.
Pivoting rules.
The RandomFacet pivoting rule.

Lecture 2:
The Hirsch conjecture.
Introduction to Markov decision processes (MDPs).
Upper bound for the LargestCoefficient pivoting rule for
MDPs.

Lecture 3:
Lower bounds for pivoting rules utilizing MDPs. Example:
Bland’s rule.
Lower bound for the RandomEdge pivoting rule.
Abstractions and related problems.

Thomas Dueholm Hansen - Lecture 1 MADALGO & CTIC Summer School Page 2/32



The simplex algorithm, Dantzig (1947)

maximize cTx

subject to Ax ≤ b
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Convex polytopes

A convex polytope (or polyhedron)
P in dimension d is a set of points

P = {x ∈ Rd | Ax ≤ b}

where A is an n × d matrix and b is a
vector in Rn.

I.e., P is the intersection of n
halfspaces aTi x ≤ bi , where aTi is the
i ’th row of A.

P is bounded if there exists a
constant K such that for all x ∈ P,
the absolute value of every component
xi is at most K . Otherwise P is
unbounded.

P
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Convex polytopes

A point x ∈ Rd is a basic solution if
it satisfies d linearly independent
constraints, aTi x ≤ bi , with equality.

x ∈ Rd is a basic feasible solution if
x ∈ P and x is a basic solution.

x ∈ P is a vertex (or corner) if there
exists a vector c ∈ Rd such that for all
y ∈ P, if y 6= x then cT x > cT y .

Every basic feasible solution x is a
vertex of P.

x

P
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Convex polytopes

If P is bounded, P can be equivalently
defined as the convex hull of its
vertices.

A k-face is a k dimensional polytope
defined by a set of vertices that satisfy
the same d − k constraints with
equality.

A 0-face is a vertex.
A 1-face is an edge.
A (d − 1)-face is a facet.

Alternatively, a k-face is the polytope
obtained by eliminating d − k variables
using the d − k constraints that are
satisfied with equality.

P
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Linear programming

A linear program (LP) is the
optimization problem:

maximize cT x
s.t. Ax ≤ b

For simplicity, we generally assume
that a linear program is in canonical
form:

maximize cT x
s.t. Ax ≤ b

x ≥ 0

Every linear program has an equivalent
canonical form.

cP
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Linear programming

A constraint aTi x ≤ bi can be expressed equivalently as
(aTi x) + si = bi , where si ≥ 0 is a non-negative slack
variable.

A canonical form linear program can be transformed to
equational form (or standard form) by introducing n slack
variables:

maximize cT x
s.t. Ax ≤ b

x ≥ 0

maximize cT x
s.t. Ax + Is = b

x , s ≥ 0

The resulting linear program has m = d + n non-negative
variables.

Note that an inequality from the original linear program is
satisfied with equality if the corresponding (slack) variable is
zero in the equational form.
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Linear programming

Consider a linear program in equational form, defined by an
n ×m matrix A, with m = d + n:

maximize cT x
s.t. Ax = b

x ≥ 0

A basis is a subset B ⊆ {1, . . . ,m} of n linearly independent
columns of A.

Every basis B defines a basic solution xB ∈ Rm, as the unique
solution to:

Ax = b and ∀i 6∈ B : xi = 0

Every basic solution x ∈ Rm is defined by at least one basis. If
x is defined by more than one basis, x is a degenerate basic
solution.
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Linear programming

A basic solution xB is feasible if xB ≥ 0.

For some basis B, the variables xi , for i ∈ B, are called basic,
and the remaining variables are called non-basic.

If xB is a basic feasible solution, then the non-basic variables
correspond to facets defining the vertex.

The operation of exchanging a single basic variable in B with
a non-basic variable, producing a new basis B ′, is called
pivoting.

Geometrically, if xB and xB′ are different basic feasible
solutions, pivoting corresponds to moving from xB to xB′ along
an edge of the polytope.
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The simplex algorithm

The simplex algorithm, Dantzig (1947):

Start with some basis B corresponding to a basic feasible
solution xB .

Repeatedly perform pivots leading to new bases B ′

corresponding to basic feasible solutions xB′ with better
values, cT xB′ ≥ cT xB .

Stop when no pivot can increase the value further.
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Example: The tableau method

max 2x1 − 2x2 − x3

s.t. 1
3x1 − 2

3x2 − 2
3x3 ≤ 1

x2 + x3 ≤ 2
x3 ≤ 1

x1, x2, x3 ≥ 0

Transform a linear program in canonical form to equational
form by introducing slack variables.

Pick a basis, in this case {4, 5, 6}, and express the basic
variables and the objective function in terms of non-basic
variables. This representation is called a tableau.

The corresponding basic solution and its value can be read by
setting the non-basic variables to zero.
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If the coefficient of a non-basic variable xi in the objective
function is positive, increasing xi will improve the value.

xi can be increased until another basic variable xj becomes
zero, which completes the pivot. The basis is then updated by
exchanging i and j . If no variable becomes zero the value is
unbounded.

When all coefficients are negative, the solution is optimal.
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6
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2
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Example: The tableau method
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0

6
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4

5

3
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Example: The tableau method
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0

6
10
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{2, 3, 4}

{1, 3, 5}

{1, 2, 6}

{1, 2, 3}

xT = (7, 1, 1, 0, 0, 0)

4

5

6
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The tableau method, formally

Let B be a basis, and let A = [AB | AB̄ ] and xT = [xTB | xTB̄ ].
I.e., AB is the matrix of basic columns and AB̄ is the matrix of
non-basic columns, and similar for x .

The tableau method rewrites the linear program:

max cT x

s.t. Ax = b
x ≥ 0

max cTB A−1
B b + c̄T x

s.t. xB = A−1
B b − A−1

B AB̄xB̄
x ≥ 0

where c̄ ∈ Rm is the vector of reduced costs:

c̄ = c − (A−1
B A)T cB
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Pivoting rules

Two choices must be made when pivoting:
1 Which non-basic variable with positive coefficient enters the

basis?
2 Which basic variable leaves the basis, in case of a tie?

These choices are specified by a pivoting rule.

LargestCoefficient, Dantzig (1947)

The non-basic variable with largest coefficient enters the basis.

LargestIncrease

The non-basic variable that gives the largest increase enters
the basis.

SteepestEdge

The non-basic variable whose pivot corresponds to the edge
with direction closest to c enters the basis.
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Pivoting rules

If the current basic feasible solution is degenerate, it is
possible that the value does not increase when pivoting.

Such situations may lead to cycling. The following two
pivoting rules do not cycle, however.

Bland’s rule, Bland (1977)

Always pick the available variable with the smallest index, both
for entering and leaving the basis.

Lexicographic rule, Dantzig, Orden and Wolfe (1955)

Pick any variable xi with positive coefficient for entering the
basis.
Pick xj for leaving the basis such that the right-hand-side
coefficients in the tableau are lexicographically smallest when
divided by the coefficient of xi in that row.
This corresponds to a small pertubation of the b vector.
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Pivoting rules

ShadowVertex

Let x0 be some initial basic feasible solution, and let c0 be a
vector for which cT0 x0 is optimal. Define:

max (1− λ)cT0 x + λcT x
s.t. Ax = b

x ≥ 0

Maintain an optimal solution for λ going from 0 to 1.
This corresponds to moving along edges of a 2-dimensional
projection of the polytope (a “shadow”).
Vertices and edges of the projection correspond to vertices and
edges of the original polytope.
Spielman and Teng (2004) gave a smoothed analysis of the
ShadowVertex pivoting rule, showing that it is polynomial
under certain pertubations of the linear program.
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Lower bounds

All the previous pivoting rules are known to require exponentially
many steps in the worst case:

LargestCoefficient: Klee and Minty (1972), the
Klee-Minty cube1.

LargestIncrease: Jeroslow (1973).

SteepestEdge: Goldfarb and Sit (1979).

Bland’s rule: Avis and Chvátal (1978).

ShadowVertex: Murty (1980),
Goldfarb (1983).

Amenta and Ziegler (1996) gave a
unified view of all these lower bounds.

1Picture from Gärtner, Henk and Ziegler (1998)
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More pivoting rules

RandomEdge

Let a uniformly random non-basic variable with positive
coefficient enter the basis.

RandomFacet, Kalai (1992) and Matoušek, Sharir and
Welzl (1992)

Pick a uniformly random facet that contains the current vertex,
and recursively find an optimal solution within that facet. If
possible, make an improving pivot leaving the facet and repeat.

This randomized pivoting rule finds an optimal solution in an

expected subexponential, 2O(
√

(n−d) log n), number of steps.

Randomized Bland’s rule

Reorder the indices of the variables according to a random
permutation and use Bland’s rule.

LeastEntered, Zadeh (1980)

Pick the non-basic variable that has previously entered the
basis the fewest number of times.
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New lower bounds

Friedmann, Hansen and Zwick (2011) proved lower bounds of
subexponential form (2Ω(dα), for α < 1) for the worst-case
expected number of steps of the pivoting rules:

RandomEdge
RandomFacet
Randomized Bland’s rule

Friedmann (2011) proved a subexponential lower bound for
the worst-case number of steps required for the
LeastEntered pivoting rule.

These lower bounds are based on a tight connection between
Markov decision processes and linear programs.
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Solving linear programs

Linear programs can be solved in polynomial time:

Khachiyan (1979): The ellipsoid method
Karmarkar (1984): The interior point method
Best complexity results - Renegar (1988), Gonzaga (1989),
Roos and Vial (1990): O(n3L) arithmetic operations, where L
is the bit complexity. Based on the interior point method.

Let T (d , n) and TR(d , n) be the maximum (expected)
number of arithmetic operations required for deterministic and
randomized algorithms, respectively, for solving any linear
program in d-space with n constraints.

The best bound for TR(d , n) is subexponential in d . No
subexponential bound is known for T (d , n).

Finding a (strongly) polynomial bound for T (d , n) and
TR(d , n) is a major open problem in linear programming.

A polynomially bounded pivoting rule that performs each step
in polynomial time would give such a bound.
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The RandomFacet pivoting rule

RandomFacet, Kalai (1992):
1 Pick a uniformly random facet f that contains the current

basic feasible solution x .
2 Recursively find the optimal solution x ′ within the picked facet

f .
3 If possible, make an improving pivot from x ′, leaving the facet

f , and repeat from (1). Otherwise return x ′.

A dual variant of the RandomFacet pivoting rule was
discovered independently by Matoušek, Sharir and Welzl
(1992).
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The RandomFacet pivoting rule

x

P

f1

f2

f3

Pick a uniformly random facet fi that contains the current
basic feasible solution x .
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The RandomFacet pivoting rule

x

P

f1

f2

f3

x′

Recursively find the optimal solution x ′ within the picked
facet fi .
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The RandomFacet pivoting rule

x

P

f1

f2

f3

x′

x′′

If possible, make an improving pivot from x ′, leaving the facet
fi , and repeat from the beginning. Otherwise return x ′.
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The RandomFacet pivoting rule

x

P

f1

f2

f3

x′

x′′

Note that if the facets f1, . . . , fd containing x are ordered
according to their optimal value, then from x ′′ we never visit
f1, . . . , fi again.
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The RandomFacet pivoting rule

The number of pivoting steps for a linear program with d
variables and n constraints, including non-negativity
constraints, is at most:

f (d , n) ≤ f (d − 1, n − 1) + 1 +
1

d

d∑
i=1

f (d , n − i)

with f (d , n) = 0 for n ≤ d .

Solving the corresponding recurrence gives:

f (d , n) ≤ 2O(
√

(n−d) log n)
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The RandomFacet pivoting rule

The RandomFacet pivoting rule can also be applied to the
dual LP, which has n − d free variables and n inequality
constraints. It follows that:

TR(d , n) = min
{

2O(
√

(n−d) log n), 2O(
√
d log n)

}

Clarkson (1988) showed that:

TR(d , n) = O(d2n + d4√n log n + TR(d , 9d2)d2 log n)

By combining Clarkson’s algorithm and the RandomFacet
algorithm applied to the dual we get:

TR(d , n) = O(d2n + 2O(
√
d log d))

This is the best known bound for TR(d , n). I.e., the best
bound independent of the bit complexity.
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RandomFacet: Non-recursive version

The recursion of the RandomFacet pivoting rule can be
unrolled, and the algorithm can be equivalently stated as:

1 Start with a random permutation x1, . . . , xd of the non-basic
variables.

2 Let xi be the first variable with positive coefficient according
to the permutation. Make a pivot exchanging xi with some
other variable x in the basis.

3 Replace xi by x in the list of non-basic variables and randomly
permute the first i variables. Repeat from (2).

The procedure resembles the Randomized Bland’s rule,
but the expected number of steps is different.

Open problem: Is there a subexponential upper bound on
the expected number of pivoting steps performed by the
Randomized Bland’s rule?
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Duality

(P)

maximize cT x
s.t. Ax = b

x ≥ 0

(D)
minimize bT y
s.t. AT y ≥ c

Basic feasible solutions give immediate lower bounds on the
optimal value z∗. Is there a simple way to get upper bounds?

The optimal solution must satisfy any linear combination
y ∈ Rn of the equality constraints.

If we can construct a linear combination of the equality
constraints yT (Ax) = yTb, for y ∈ Rn, such that
cT x ≤ yT (Ax), then yT (Ax) = yTb is an upper bound on z∗.

The problem of finding the best such upper bound can be
formulated as a dual linear program (D). The original linear
program (P) is referred to as primal.

By the strong duality theorem, (P) and (D) have the same
value, assuming that (P) is feasible and has a maximal value.
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RandomFacet: Dual view

max cT x
s.t.

(P ) A x = b

x ≥ 0

min bT y
s.t.

(D) AT y ≥ c

Consider a primal linear program (P) and its dual (D).

Recall that the non-basic variables for some basis B
correspond to facets that contain the basic feasible solution
xB .

Staying within a facet fi means that the variable xi stays
non-basic.

I.e., xi is fixed to 0, which is like removing the i ’th column of
A, or for the dual like removing the i ’th constraint.
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correspond to facets that contain the basic feasible solution
xB .

Staying within a facet fi means that the variable xi stays
non-basic.

I.e., xi is fixed to 0, which is like removing the i ’th column of
A, or for the dual like removing the i ’th constraint.
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RandomFacet: Dual view

Let H be the set of constraints (halfspaces) of the dual.

Every subset of constraints G ⊆ H defines a linear program.

Let zG be the optimal value of the linear program defined by
G .

If zG is finite, then the corresponding primal LP has the same
optimal solution.

A basis for the dual refers to n linearly independent
constraints. I.e., a basic solution.

A basis B ⊆ G ⊆ H is optimal for G if zB = zG .

A constraint h is violated by B if zB < zB∪{h}.

If h is violated by a basis B, then zB is not optimal for the
corresponding primal LP, and adding h to the basis must be an
improving pivot.
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RandomFacet: Dual view

The dual RandomFacet algorithm starts with a basis B
such that zB > −∞.

Any basic feasible solution of the primal LP gives such a basis,
but the algorithm works even if the corresponding basic
solution in the primal is not feasible.

RandomFacet, dual view, Matoušek, Sharir and Welzl
(1992):

1 Remove a uniformly random constraint h ∈ H that is not in
the current basis B.

2 Recursively find an optimal basis B ′ for H \ {h}.
3 If B ′ violates h repeat from the beginning, starting with the

optimal basis B ′′ for B ′ ∪ {h}. Otherwise return B ′.
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Repeating the analysis

Order constraints h ∈ H \ B such that:

zH\{h1} ≤ zH\{h2} ≤ . . . ≤ zH\{hi} ≤ . . . ≤ zH\{hm−n}

If zB′′ > zH\{hi}, then after reaching B ′′ the constraints
h1, . . . , hi must remain in the basis until termination.

This corresponds to the facets never being visited again.

The number of steps is bounded by:

fD(k,m) = fD(k ,m − 1) + 1 +
1

m − n

m−n∑
i=1

fD(k − i ,m)

where k is the number of unfixed constraints (the “hidden
dimension”), and fD(m, k) = 0 for m ≤ k or k ≤ 0.

Again, fD(k,m) ≤ 2O(
√
k log m).
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LP-type problems

An LP-type problem, (H, ω), is defined as follows:

H = {1, . . . ,m} is a finite set.

ω : 2H →W is a function that maps subsets of H to a linearly
ordered set (W,≤) with minimal value −∞, such that:

1 Monotonicity: For all F ⊆ G ⊆ H, ω(F ) ≤ ω(G ).
2 Locality: For all F ⊆ G ⊆ H with −∞ < ω(F ) = ω(G ), and

any h ∈ H:

ω(G ) < ω(G ∪ {h}) ⇒ ω(F ) < ω(F ∪ {h})

B ⊆ H is an optimal basis if ω(B) = ω(H), and for every
proper subset B ′ ( B, ω(B ′) < ω(B).

Goal: Find an optimal basis for H.

The dual RandomFacet algorithm can be applied to any
LP-type problem.
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Overview

Lecture 1:
Introduction to linear programming and the simplex algorithm.
Pivoting rules.
The RandomFacet pivoting rule.

Lecture 2:
The Hirsch conjecture.
Introduction to Markov decision processes (MDPs).
Upper bound for the LargestCoefficient pivoting rule for
MDPs.

Lecture 3:
Lower bounds for pivoting rules utilizing MDPs. Example:
Bland’s rule.
Lower bound for the RandomEdge pivoting rule.
Abstractions and related problems.
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