On the I/O Complexity of Stencil Computations on 2 Dimensional Grids

Philipp Hupp (hupp@in.tum.de), Riko Jacob (jacob@in.tum.de)

Background, Task and Results

Stencil computations are important kernels in scientific computing. We consider the memory access requirements of such tasks, in particular the first two terms of the \mathbf{I} / \mathbf{O} complexity for evaluating the 5 -point stencil.

Computation Graphs

Compulsory I/Os, I/O Mode	Results
The I/O operations needed to initially read the input and write the output are called compulsory I/O operations. All other I/Os are called non-compulsory. For the grid there are $2 k_{1} k_{2}$ compulsory I/Os.	

Outlook

Deduce tight I/O bounds for sparse grids in high dimensions. $\quad \mid$ Sparse grid $\left|=\mathcal{O}\left(\frac{\log n}{n}\right)^{d-1} \cdot\right|$ Full grid \mid

The Lower Bound

Partition Arbitrary Algorithm into Rounds \& Bound Work per Round
Split arbitrary algorithm into rounds of $2(M-1)$ non-compulsory I/Os. In addition $2(M-1)$ vertices are transfered to or from that round in the internal memory. Fix one round:

- S : Vertices in internal memory at some point.
- $T \subset S$: Vertices also available in other rounds.
- $E \subset S$: Stencils computed in the current round.
- $<4(M-1)$ vertices available in other rounds
- $S \backslash T$ must have pathwidth $\leq M-1$
- $\Psi(S) \subset T$ and $E \subset \Delta(S) \longleftarrow$

Because of limited pathwidth [4] the torus behaves like an infinitely large grid:

Deducing the Lower Bound

Lower bound on torus:
By reduction - Lower bound on the grid:
$N C\left(k_{1}, k_{2}\right) \geq M-1+\left(\left\lfloor\frac{k_{1} k_{2}}{\frac{1}{2}(M-1)^{2}+1}\right\rfloor\right) 2(M-1)$
$N C\left(k_{1}, k_{2}\right) \geq 4 \frac{k_{1} k_{2}}{M-4}-\mathcal{O}\left(\frac{k_{1} k_{2}}{M^{2}}\right)-\mathcal{O}\left(k_{1}\right)$

An Isoperimetric Inequality [2]

- Fractional system f on $\mathbb{Z}_{k}^{n}: \quad f: \mathbb{Z}_{k}^{n} \rightarrow[0,1]$
- Weight $w(f)$ of a system $f: w(f)=\sum_{x \in \mathbb{Z}_{k}^{n}} f(x)$
- Closure ∂f of a system f :

$$
\partial f(x)= \begin{cases}1, & \text { if } f(x)>0 \\ \max \{f(y): d(x, y)=1\}, & \text { if } f(x)=0\end{cases}
$$

- Fractional ball b^{v} of weight $v: \exists(r, \alpha) \in \mathbb{N} \times[0,1]$ s.t.: $\quad\left\{\begin{array}{l}1, \quad \text { if } d(x, 0)<r\end{array}\right.$ $w\left(b^{v}\right)=v \quad$ and $\quad b^{v}(x)= \begin{cases}\alpha, & \text { if } d(x, 0)=r \\ 0, & \text { if } d(x, 0)>r\end{cases}$
Theorem 1 (Isoperimetric inequality - discrete torus [2]). For $k \geq 2$ even, f a system on \mathbb{Z}_{k}^{n} :

$$
w(\partial f) \geq w\left(\partial b^{w(f)}\right)
$$

- Inner core:

$$
\Delta f(x)= \begin{cases}0, & \text { if } f(x)<1 \\ \min \{f(y): d(x, y)=1\}, & \text { if } f(x)=1\end{cases}
$$

- Inner 2-core: $\odot f(x)=\Delta(\Delta f)(x)$
- Inner 2-boundary $\Psi f(x)=(f-\odot f)(x)$

Theorem 1 translates into

$$
\begin{aligned}
& w(\Delta(f)) \leq w\left(\Delta\left(b^{w(f)}\right)\right) \\
& w(\Psi(f)) \geq w\left(\Psi\left(b^{w(f)}\right)\right)
\end{aligned}
$$

References

[1] Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of sorting and related problems. Communications of he ACM, 31(9):1116-1127, 1988.
[2] Béla Bollobás and Imre Leader. An isoperimetric inequality on the discrete torus. SIAM J. Discret. Math., 3:32-37, January 1990
[3] Hong, Jia-Wei and H. T. Kung. I/O complexity: The redblue pebble game. In Proceedings of STOC '81, pages 326333, New York, NY, USA, 1981. ACM
[4] P. D. Seymour and Robin Thomas. Graph searching and a min-max theorem for tree-width. J. Comb. Theory Ser. B, 58:22-33, Мау 1993

