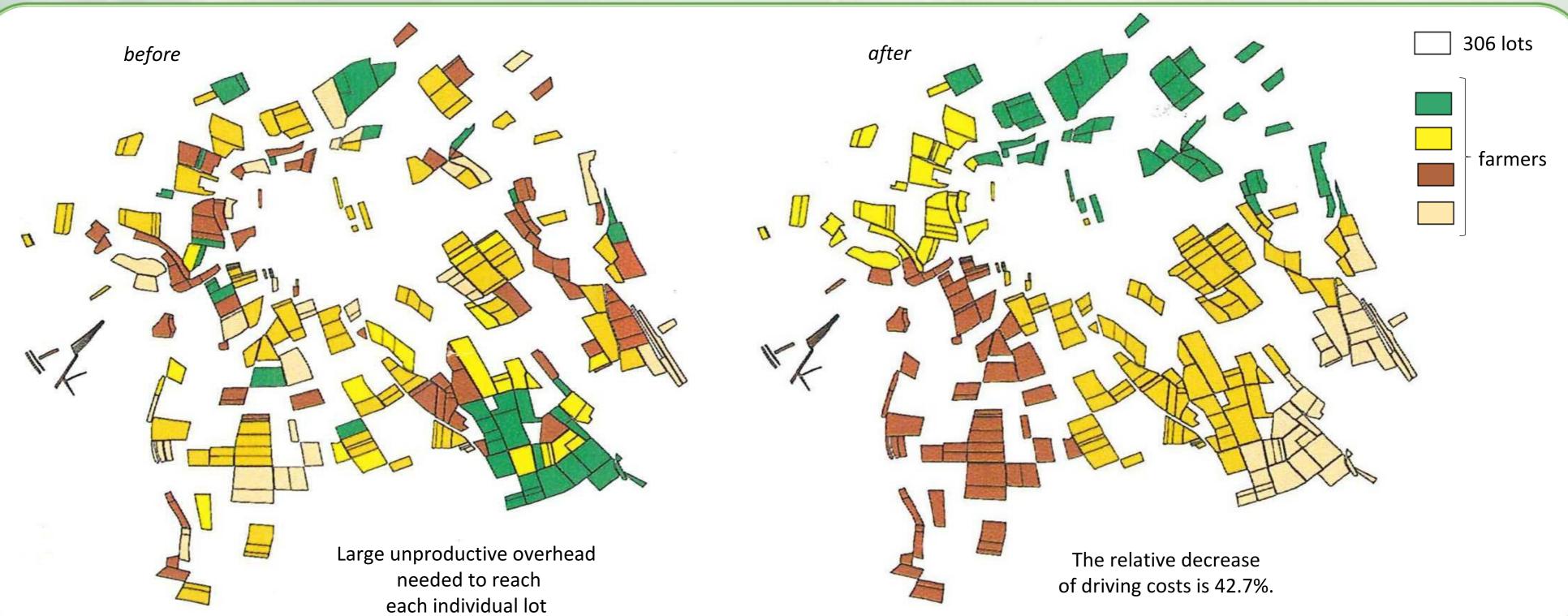


How to Distribute Lots Among Farmers or is it Hard to Approximate Constrained k-Clustering Problem?

Anastasia Shakhshneyder, Zentrum Mathematik, Technische Universität München, Garching bei München

Joint work with : A. Brieden (Universität der Bundeswehr, Neubiberg, Germany) and P. Gritzmann (Zentrum Mathematik, Technische Universität München, Garching bei München)



Model with known cluster centers

Formulation

Let

 $\circ G = (V, E, w_v, w_F)$ be a complete undirected weighted graph with $\circ V = \{V_1, ..., V_m\}$ $\circ w_F : E \rightarrow R^+$ satisfies the triangle inequality $\circ \kappa_1, \ldots, \kappa_k \in (R^+)^d$ with $d \in N$ $\circ \mathbf{w}_{v}: \mathbf{V} \rightarrow (\mathbf{R}^{+})^{d} \text{ with } \sum_{i=1}^{n} \kappa_{i} = \mathbf{w}_{v}(\mathbf{V})$ $\circ \mathcal{E}_{1}^{\pm},\ldots,\mathcal{E}_{k}^{\pm}\in (\mathbf{R}^{+})^{d}$

The goal is • to compute a partition $C = (C_{11}, ..., C_{1\mu_1}, ..., C_{k1}, ..., C_{k\mu_k})$ of V with $\circ c_{ij} \in C_{ij}$ for $i \in \{1, ..., k\}, j \in \{1, ..., \mu_i\}$ $\circ (1 - \varepsilon_i) \circ \kappa_i \leq \sum_{i=1}^{k} w_v(C_{ij}) \leq (1 + \varepsilon_i^+) \circ \kappa_i \quad (i \in \{1, ..., k\})$ such that $val(C) = \sum \sum w_{E}(\{c_{ij}, u\})$ is minimal among all such partitions

Method

Model with unknown cluster centers

Formulation

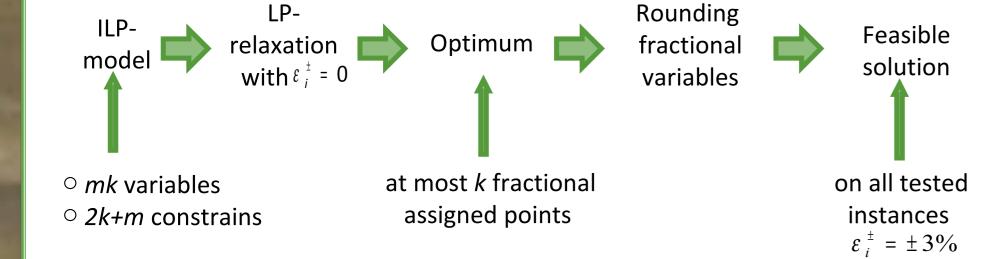
Let $\circ k, d \in N$ \circ set X = { x_1, \dots, x_m } of m points of R^d \circ non - negative integral k-vector ($\kappa_1, \dots, \kappa_k$)^T $\circ W_V: X \rightarrow (R^+)^d \text{ with } \sum_{i=1}^k \kappa_i = W_V(X)$ $\circ \mathcal{E}_{1}^{\pm},\ldots,\mathcal{E}_{k}^{\pm}\in (\mathbf{R}^{+})^{d}$ $\circ \Sigma$ denote the set of feasible clusterings of X whereby

Feasible clustering C of *X* consists of \circ k pairwise disjoint subsets C_1, \dots, C_k of X such that $\circ (1-\varepsilon_i) \circ \kappa_i \leq W_V(C_i) \leq (1+\varepsilon_i^+) \circ \kappa_i, 1 \leq i \leq k$ $\circ \bigcup C_i = X.$

For any given cluster C_i $\circ c_i$ be its center of gravity, $c_i = 1/\kappa_i \sum_{i=1}^{\kappa_i} w_v(x_{ij})x_{ij}$, where $\circ x_{i1}, \dots, x_{ik}$ are the points contained in C_i .

The goal is \circ to compute a clustering $C^* \in \Sigma$ of X such that $\circ C^*$ is maximal among all $C \in \Sigma$ according to $\circ val(C) = \sum_{i=1}^{n} \sum_{j=1}^{n} |c_i - c_j||_p^p$

Method



For 7 farmers and 651 lots according bonity and size - decreasing till 10,7% cultivation - and 50,42% driving costs

S.Borgwardt, A. Brieden, P.Gritzmann: Constrained Minimum k-star Clustering and its Application to the Consolidation of Farmland, Operation Research, 2009

A.Brieden, P.Gritzmann: A quadratic optimization model for the consolidation of farmland by means of lend-lease agreements, Operation Research Proceedings 2003, Selected Papers of the International Conference on Operation Research (OR2003), Springer-Verlag, Heidelberg, 2003, 324-331.

