v~ Parallel Main-Memory Indexing for Moving-
5’({ % Object Query and Update Workloads

/v

-I
4"7 Darius Sidlauskas Simonas Saltenis Christian S. Jensen AARHUS UNIVERSITY
EnMm AT Aalborg University Aalborg University Aarhus University
darius@cs.aau.dk simas@cs.aau.dk csj@cs.au.dk
This paper presents PGrid, a main-memory spa- Traditional database serializability requires Monitored area
tial index that targets extreme location-related extensi\./e Iocking and implements timeslice s 8 2. Cora#l 2@;——@;;————:@@_"
query/update workloads generated by very large semantics, meaning that a query reports pre- — —\ | tTTTTTooooo
populations of moving objects. PGrid implements cisely the objects within its range at a specific 7 1 Core#0 1 = 79 ---
the proposed freshness semantics that deliver up- time instance, usually just after the query 3 9
to-date query results and enable exploiting the processing starts (and the necessary locks . - 5 ; >
thread-level parallelism offered by multi-core pro- are acquired). Consequently, many items are - Processing time
_cessors. J | locked for the duration of the query, dramat- Range Update
ically slowing down updates. query
Freshness semantics: a query, processed Already scanned (L _ Yet unscanned
Today, increased on-chip parallelism is a key mean fror_n ts 1O e, returns.a.ll objects that. have queryregion eF \‘B ? query region
of improving processor performance. T his develop- their last reporte.d positions before £ in the e = E G
ment calls for software techniques that are capa- query range, and it "éports some (fresher).ob— '”iti(ii‘t’izjfd ° Eb@ Updated object
ble of scaling linearly with the available hardware jects that have their Iast. reported positions i \ ie ‘/p . N o position
threads. Moving-object workloads with queries after t; (and before t.) in the query fange. .D/ - QA‘ >
and massive numbers of updates render it particu- In the example, the reported positions are in , — - —
larly challenging to avoid inter-thread interference green (updates occur between t; and t,). b bt ‘e
and thus achieve scalability. Key observation: t. — t; < T,, where T, is the time between two consecutive updates of an object.
Existing spatial indexing techniques efficiently re- | J
move conflicts between concurrent queries and
structures—one for queries and one for upc.nlates > Implements freshness semantics Axt[nO ["R oid[x Ty Tt
[1.3]. However, such snapshot—based techniques » Relies on hardware-assisted atomic opera- emn ' ey g
suffer from the followmg dlsadvantages: tions for concurrency control o M:JMIMH‘:"’I‘:ﬂnlﬁ;;“gnlt;;;"yz‘entry3
> Stale query results » Services both updates and queries using a |Meta entry1 |
» CPU waste on full snapshots car e dEe ehelE : Bucket List
> Stop-the-world problem » Maintains multiple copies of data at object v, I Secondary Index
» The snapshotting frequency is difficult to set granularity O O O T St e
We explore the specifics of application domain and > Services queries via a uniform and static grid ,
propose a highly parallel index that avoids the men- > Services updates via a secondary index S| Entry
tioned drawbacks. (bottom-up approach [2]) oid | cell [bekt | idx [idcCellfidBckd] Ididx

Grid Directory x

Empirical Study

> Includes four diverse multi-core platforms —x— Serial v PGrdOLFIT -4 PGridSIMD — & — TwinGrid — — u-Grid -~ Serial v PGrdOLFIT & PGrdSIMD - & - TwinGrid ~ - u-Grid
» Studies five grid-based index variants - - .
» Exercises the indexes under massive O best throughput
Y% RV
i ©_ 10¢ ©_ 10r v \V4
workloads generated using an open- S = o
source moving object trace generator X 8r X 8 oo
(http: //moto.sourceforge.net) =g SO = oY R
%) o | T~ %) .V'E//D“E//
The figures show throughputs obtained on an > 4 B =T . s o “ ﬂ/»E’/a - o= SR <
. . en - - T~ = o /X_/x/*/x N
8-core SPARC-T2 machine with 64 hardware = 2t _--""° T oo Ao N
. lig — = \V4 ImEs N
threads in total. The default workload fea- e ittt = m P S . é%—-,—-—,-—-,—-—,-—,-—-,—-—,-—-—-T ----- — == == = =
tures 10M moving objects that emit updates 230 =00 ey - ant oIt St 14 8 121620242832 40 48 56 64 72
10 | Grid cgll size, m Threads
cvery > ON dVErage. Optimal Grid Cell Size Multi-threaded Scalability
> V--"v””v 32Y-7.\."""v. 12‘7"-.._ igv
single-thr'ed | multi-thr'ed o . © 16f o« o 10! V.o o s
Method read | write | read | write S _— PR, ~ S e % 8F -
- X X B — _ _ N . X : R s = e
multi-rd /wrt 6 6 - - 3 SR E | - “\%*E ° I =, 7
= v ~ Az S . - = ——dE-- g - - = N o
mutex_t 46 | 46 | 358 | 374 2 | o 2 4 e S -] S W
2 e \ - - ~ -
rwlock_t 91 | 86 | 716 | 772 S 4§ - S \ = S N S
. O 7 — 27 | @ £— — = X — . — . bl o~
spinlock_t 2(27 98 128 £ e = " = TX- £ 2 > b
1B latching 25 25 108 | 144 i 1} N 2| s
OLFIT 9 64 251 | 247 | - - — - - x
SIMD 1 1 5 71 250 500 1K 2K 4K 8K 16K bzs L ¢ 168l 10 20 40 80 160 £ 1L 0 40
5 Update/query ratio, x/1 Range query size, km Time between updates, sec. Objects, x 10
CPU Cycles per 128-bit Read /Write Varying U/Q Ratio Varying RQ Size Varying T, Varying #objects
. J

Acknowledgements

PGrid scales near-linearly with #threads and out- This research was supported by grant 09-064218/FTP from the Danish Council for Independent
performs the alternatives. Key advantages include: Research—Technology and Production Sciences. We thank Kenneth A. Ross for his support with the
» Fresh query results experimental hardware and the anonymous peer reviewers for constructive feedback.
» No CPU resources wasted on snapshotting References:
> No stop-the-world problem 1] J. Dittrich et al. Indexing moving objects using short-lived throwaway indexes. In SSTD '09.
> Treats updates as non-divisible operations 2] M. L. Lee et al. Supporting frequent updates in R-trees: a bottom-up approach. In VLDB "03.
> Eliminates a difficult-to-set tuning parameter— 3] D. Sidlauskas et al. Thread-level parallel indexing of update intensive moving-object workloads. In
. snapshotting frequency)\ SSTD '11.)

