
ParallelMain-Memory Indexing forMoving-
ObjectQueryandUpdateWorkloads

Darius Šidlauskas

Aalborg University
darius@cs.aau.dk

Simonas Šaltenis

Aalborg University
simas@cs.aau.dk

Christian S. Jensen

Aarhus University
csj@cs.au.dk

Abstract
This paper presents PGrid, a main-memory spa-
tial index that targets extreme location-related
query/update workloads generated by very large
populations of moving objects. PGrid implements
the proposed freshness semantics that deliver up-
to-date query results and enable exploiting the
thread-level parallelism offered by multi-core pro-
cessors.

Freshness Semantics
Traditional database serializability requires
extensive locking and implements timeslice
semantics, meaning that a query reports pre-
cisely the objects within its range at a specific
time instance, usually just after the query
processing starts (and the necessary locks
are acquired). Consequently, many items are
locked for the duration of the query, dramat-
ically slowing down updates.

Freshness semantics: a query, processed
from ts to te, returns all objects that have
their last reported positions before ts in the
query range, and it reports some (fresher) ob-
jects that have their last reported positions
after ts (and before te) in the query range.
In the example, the reported positions are in
green (updates occur between t1 and t2).

Key observation: te − ts < To , where To is the time between two consecutive updates of an object.

PGrid
◮ Implements freshness semantics
◮ Relies on hardware-assisted atomic opera-

tions for concurrency control
◮ Services both updates and queries using a

common data store
◮ Maintains multiple copies of data at object

granularity
◮ Services queries via a uniform and static grid
◮ Services updates via a secondary index

(bottom-up approach [2])

Empirical Study
◮ Includes four diverse multi-core platforms
◮ Studies five grid-based index variants
◮ Exercises the indexes under massive

workloads generated using an open-
source moving object trace generator
(http://moto.sourceforge.net)

The figures show throughputs obtained on an
8-core SPARC-T2 machine with 64 hardware
threads in total. The default workload fea-
tures 10M moving objects that emit updates
every 10 s on average.

 Serial PGridOLFIT PGridSIMD TwinGrid u−Grid

250 500 1000 2000 4000 8000
0

2

4

6

8

10

12

Grid cell size, m

T
hr

ou
gh

pu
t,

×
10

6

best throughput

Optimal Grid Cell Size

 Serial PGridOLFIT PGridSIMD TwinGrid u−Grid

1 4 8 12 16 20 24 28 32 40 48 56 64 72
0

2

4

6

8

10

12

Threads

T
hr

ou
gh

pu
t,

×
10

6

Multi-threaded Scalability

single-thr’ed multi-thr’ed
Method read write read write

multi-rd/wrt 6 6 - -
mutex_t 46 46 358 374
rwlock_t 91 86 716 772
spinlock_t 27 27 98 128
1B latching 25 25 108 144
OLFIT 9 64 251 247
SIMD 4 4 25 21

CPU Cycles per 128-bit Read/Write

250 500 1K 2K 4K 8K 16K
1

2

4

8

16

32

Update/query ratio, x/1

T
hr

ou
gh

pu
t,

×
10

6

Varying U/Q Ratio

0.25 1 4 16 32

1

2

4

8

16

32

Range query size, km 2

T
hr

ou
gh

pu
t,

×
10

6

Varying RQ Size

10 20 40 80 160

2

4

6

8

10

12

Time between updates, sec.

T
hr

ou
gh

pu
t,

×
10

6

Varying To

5 10 20 40

2

4

8

16
20

Objects, × 106

T
hr

ou
gh

pu
t,

×
10

6

Varying #objects

Motivation
Today, increased on-chip parallelism is a key mean
of improving processor performance. This develop-
ment calls for software techniques that are capa-
ble of scaling linearly with the available hardware
threads. Moving-object workloads with queries
and massive numbers of updates render it particu-
larly challenging to avoid inter-thread interference
and thus achieve scalability.
Existing spatial indexing techniques efficiently re-
move conflicts between concurrent queries and
updates by maintaining two separate index
structures—one for queries and one for updates
[1, 3]. However, such snapshot-based techniques
suffer from the following disadvantages:
◮ Stale query results
◮ CPU waste on full snapshots
◮ Stop-the-world problem
◮ The snapshotting frequency is difficult to set

We explore the specifics of application domain and
propose a highly parallel index that avoids the men-
tioned drawbacks.

Conclusion
PGrid scales near-linearly with #threads and out-
performs the alternatives. Key advantages include:
◮ Fresh query results
◮ No CPU resources wasted on snapshotting
◮ No stop-the-world problem
◮ Treats updates as non-divisible operations
◮ Eliminates a difficult-to-set tuning parameter—

snapshotting frequency

Acknowledgements
This research was supported by grant 09-064218/FTP from the Danish Council for Independent
Research—Technology and Production Sciences. We thank Kenneth A. Ross for his support with the
experimental hardware and the anonymous peer reviewers for constructive feedback.

References:
[1] J. Dittrich et al. Indexing moving objects using short-lived throwaway indexes. In SSTD ’09.
[2] M. L. Lee et al. Supporting frequent updates in R-trees: a bottom-up approach. In VLDB ’03.
[3] D. Šidlauskas et al. Thread-level parallel indexing of update intensive moving-object workloads. In

SSTD ’11.

