
Multi-core Computing
Lecture 3

MADALGO Summer School 2012
Algorithms for Modern Parallel and Distributed Models

Phillip B. Gibbons
Intel Labs Pittsburgh

August 22, 2012

2 © Phillip B. Gibbons

Multi-core Computing Lectures:
Progress-to-date on Key Open Questions

• How to formally model multi-core hierarchies?

• What is the Algorithm Designer’s model?

• What runtime task scheduler should be used?

• What are the new algorithmic techniques?

• How do the algorithms perform in practice?

3 © Phillip B. Gibbons

Lecture 1 & 2 Summary

• Multi-cores: today, future trends, challenges

• Computations & Schedulers

• Cache miss analysis on 2-level parallel hierarchy

• Low-depth, cache-oblivious parallel algorithms

• Modeling the Multicore Hierarchy

• Algorithm Designer’s model exposing Hierarchy

• Quest for a Simplified Hierarchy Abstraction

• Algorithm Designer’s model abstracting Hierarchy

• Space-Bounded Schedulers

4 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

5 © Phillip B. Gibbons

Multicore Programming using Cilk++

• Cilk extends the C language with just a handful
of keywords

• Every Cilk program has a serial semantics

• Not only is Cilk fast, it provides performance
guarantees based on performance abstractions

• Cilk is processor-oblivious

• Cilk’s provably good runtime system
automatically manages low-level aspects of
parallel execution, including protocols, load
balancing, and scheduling

Intel® Cilk™ Plus

Slides adapted from C. Leiserson’s

6 © Phillip B. Gibbons

Cilk++ Example: Fibonacci

int fib (int n) {
if (n<2) return (n);
 else {
 int x,y;
 x = fib(n-1);
 y = fib(n-2);
 return (x+y);
 }
}

C elision

int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = cilk_spawn fib(n-1);
 y = cilk_spawn fib(n-2);
 cilk_sync;
 return (x+y);
 }
}

Cilk code

Cilk is a faithful extension of C. A Cilk program’s
serial elision is always a legal implementation of
Cilk semantics. Cilk provides no new data types.

7 © Phillip B. Gibbons

Basic Cilk++ Keywords

int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = cilk_spawn fib(n-1);
 y = cilk_spawn fib(n-2);
 cilk_sync;
 return (x+y);
 }
}

The named child Cilk
procedure can

execute in parallel
with the parent caller

Control cannot pass this
point until all spawned
children have returned

Useful macro: cilk_for

 for recursive spawning of parallel loop iterates

8 © Phillip B. Gibbons

Nondeterminism in Cilk

 Cilk encapsulates the nondeterminism of
scheduling, allowing average programmers
to write deterministic parallel codes using
only 3 keywords to indicate logical parallelism

 The Cilkscreen race detector offers
provable guarantees of determinism
by certifying the absence of determinacy races

 Cilk’s reducer hyperobjects encapsulate the
nondeterminism of updates to nonlocal variables,
yielding deterministic behavior for parallel updates
 See next slide

9 © Phillip B. Gibbons

Summing Numbers in an Array
using sum_reducer [Frigo et al. ‘09]

10 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

11 © Phillip B. Gibbons

Nondeterminism

•Concerned about nondeterminism due to
parallel scheduling orders and concurrency

Slides adapted from J. Shun’s

12 © Phillip B. Gibbons

Nondeterminism is problematic

• Debugging is painful

• Hard to reason
 about code

• Formal verification
 is hard

• Hard to measure
 performance

“Insanity: doing the same
thing over and over again and
expecting different results.”
 - Albert Einstein

13 © Phillip B. Gibbons

Inherently Deterministic Problems

• Wide coverage of real-world non-numeric
 problems

• Random numbers can be deterministic

Breadth first search Spanning forest

Suffix array Minimum spanning
forest

Remove duplicates Maximal Independent
set

Comparison sort K-nearest neighbors

N-body Triangle ray intersect

Delaunay triangulation Delaunay refinement

14 © Phillip B. Gibbons

External vs. Internal Determinism

• External: same input same result

• Internal: same input same intermediate states

 & same result

15 © Phillip B. Gibbons

Internal Determinism
[Netzer, Miller ’92]

• Trace: a computation’s final
 state, intermediate states,
 and control-flow DAG

• Internally deterministic:
 for any fixed input, all
 possible executions result
 in equivalent traces (w.r.t.
 some level of abstraction)

– Also implies external determinism

– Provides sequential semantics

Trace
↓

16 © Phillip B. Gibbons

Internally deterministic?

17 © Phillip B. Gibbons

Commutative + Nested Parallel
 Internal Determinism

[Steele ‘90]

• Commutativity

– [Steele ’90] define it in terms of memory operations

– [Cheng et al. ’98] extend it to critical regions

– Two operations f and g commute if f ◦ g and g ◦ f have
same final state and same return values

• We look at commutativity in terms of arbitrary
 abstraction by introducing “commutative
 building blocks”

• We use commutativity strictly to get deterministic
 behavior, but there are other uses…

18 © Phillip B. Gibbons

System Approaches to Determinism

Determinism via

• Hardware mechanisms [Devietti et al. ‘11,

 Hower et al. ‘11]

• Runtime systems and compilers [Bergan et al. ‘10,

 Berger et al. ‘09, Olszewski et al. ‘09, Yu and Narayanasamy ‘09]

• Operating systems [Bergan et al. ‘10]

• Programming languages/frameworks
 [Bocchino et al. ‘09]

19 © Phillip B. Gibbons

Commutative Building Blocks
[Blelloch, Fineman, G, Shun ‘12]

• Priority write

– pwrite, read

• Priority reserve

– reserve, check, checkReset

• Dynamic map

– insert, delete, elements

• Disjoint set

– find, link

• At this level of abstraction,
 reads commute with reads &
 updates commute with updates

20 © Phillip B. Gibbons

Dynamic Map

Using hashing:

• Based on generic hash and comparison

• Problem: representation can depend on
ordering. Also on which redundant element is
kept.

• Solution: Use history independent hash table
based on linear probing…once done inserting,
representation is independent of order of
insertion

6

11

9 3

7

5

11 11

8

21 © Phillip B. Gibbons

Dynamic Map

Using hashing:

• Based on generic hash and comparison

• Problem: representation can depend on
ordering. Also on which redundant element is
kept.

• Solution: Use history independent hash table
based on linear probing…once done inserting,
representation is independent of order of
insertion

6

11

9 3

7

5

11 11

8

22 © Phillip B. Gibbons

Internally Deterministic Problems

Functional
programming

Suffix array

Comparison sort

N-body

K-nearest neighbors

Triangle ray intersect

History-independ.
data structures

Remove duplicates

Delaunay refinement

Deterministic
reservations

Spanning forest

Minimum spanning forest

Maximal independent set

Breadth first search

Delaunay triangulation

Delaunay refinement

23 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Incremental algorithm adds one point at a time,
 but points can be added in parallel if they don’t
 interact

• The problem is that the output will depend on
 the order they are added.

24 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

25 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

26 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

16

17

27 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

16

16

16

16

16

17

17

16

17

28 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

16

16

16

16

16

17

17

16

17

29 © Phillip B. Gibbons

Deterministic Reservations

Delaunay triangulation/refinement Generic framework

iterates = [1,…,n];
while(iterates remain){

 Phase 1: in parallel, all i in
 iterates call reserve(i);

 Phase 2: in parallel, all i in
 iterates call commit(i);

 Remove committed i‘s from
 iterates;
}

Note: Performance can be
improved by processing prefixes
of iterates in each round

reserve(i){
 find cavity;
 reserve points in cavity;
}

commit(i){
 check reservations;
 if(all reservations successful){
 add point and triangulate;
 }
}

30 © Phillip B. Gibbons

Internally Deterministic Code

• Implementations of benchmark problems

– Internally deterministic

– Nondeterministic

– Sequential

– All require only 20-500 lines of code

• Use nested data parallelism

• Used library of parallel operations on
 sequences: reduce, prefix sum, filter, etc.

31 © Phillip B. Gibbons

Experimental Results

Delaunay Triangulation Delaunay Refinement

32-core Intel Xeon 7500 Multicore
Input Sets: 2M random points within a unit circle &
2M random 2D points from the Kuzmin distribution

32 © Phillip B. Gibbons

Experimental Results

33 © Phillip B. Gibbons

Speedups on 40-core Xeon E7-8870

34 © Phillip B. Gibbons

Problem Based Benchmark Suite
http://www.cs.cmu.edu/~pbbs/

Goal: A set of “problem based benchmarks”
 Must satisfy a particular input-output interface,
 but there are no rules on the techniques used

Measure the quality of solutions based on:

• Performance and speedup over a variety of input
 types and w.r.t. best sequential implementations

• Quality of output. Some benchmarks don’t have a
 right answer or are approximations

• Complexity of code. Lines of code & other measures

• Determinism. The code should always return the
 same output on same input

• Generic. Code should be generic over types

• Correctness guarantees

• Easily analyze performance, at least approximately

35 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

36 © Phillip B. Gibbons

• Priority-write: when there are multiple writes
 to a location, possibly concurrently, the value
 with the highest priority is written

– E.g., write-with-min: for each location, min value
written wins (used earlier in Delaunay Refinement)

• Useful parallel primitive:

+ Low contention even under high degrees of sharing

+ Avoids many concurrency bugs since commutes

+ Useful for many algorithms & data structures

Priority Write as a Parallel Primitive
[Shun, Blelloch, Fineman, G]

A := 5 B := 17 B := 12 A := 9 A := 8

yields A = 5 and B = 12

37 © Phillip B. Gibbons

Priority-Write Performance

Similar results on 48-core AMD Opteron 6168

38 © Phillip B. Gibbons

Theoretical Justification

Lemma: Consider a collection of n distinct priority-
write operations to a single location, where at
most p randomly selected operations occur
concurrently at any time. Then the number of CAS
attempts is O(p ln n) with high probability.

Idea: Let X_k be an indicator for the event that the
kth priority-write performs an update. Then X_k = 1
with probability 1/k, as it updates only if it is the
highest-priority of all k earliest writes. The expected
number of updates is then given by E[X_1+ … +X_n]
= 1/1+1/2+1/3+... +1/n = H_n.

39 © Phillip B. Gibbons

Priority-Write in Algorithms

• Take the maximum/minimum of set of values

• Avoiding nondeterminism since commutative

• Guarantee progress in algorithm:
 highest priority thread will always succeed

• Deterministic Reservations: speculative parallel
 FOR loop (use iteration as priority)

40 © Phillip B. Gibbons

Priority Writes in Algorithms

• Parallel version of Kruskal’s minimum spanning-
 tree algorithm so that the minimum-weight
 edge into a vertex is always selected

• Boruvka’s algorithm to select the minimum-
 weight edge

• Bellman-Ford shortest paths to update the
 neighbors of a vertex with the potentially
 shorter path

• Deterministic Breadth-First Search Tree

41 © Phillip B. Gibbons

E.g., Breadth-First Search Tree

Frontier = {source vertex}
In each round:
 In parallel for all v in Frontier

 Remove v;
 Attempt to place all v’s
 neighbors in Frontier;

Input: Comb Graph

42 © Phillip B. Gibbons

Priority-Write Definition

43 © Phillip B. Gibbons

Priority-Writes on Locations

• Efficient implementation of a more general
 dictionary-based priority-write where the
 writes/inserts are made based on keys.

– E.g., all writers might insert a character string
into a dictionary with an associated priority

– Use for prioritized remove-duplicates algorithm

44 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

45 © Phillip B. Gibbons

Parallel Futures

 Futures [Halstead '85], in Multilisp

 Parallelism no longer nested

 Here: explicit future and touch

keywords

 E.g. Halstead's quicksort, pipelining

tree merge [Blelloch, Reid-Miller '97]

 Strictly more expressive than fork/join

 E.g. can express parallel pipelining

 … but still deterministic!

46 © Phillip B. Gibbons

Work Stealing for Futures?

 Implementation choices:

 What to do when touch causes

processor to stall?

 Previous work beyond nested parallelism:

 Bound # of steals for WS [Arora et al. ’98]

 We show: not sufficient to bound WS overhead,
once add futures!

 Summary of previous work

Nested Parallelism:
O(Pd) steals, Overheads additive in # of steals

Beyond Nested Parallelism:
O(Pd) steals, # steals can’t bound overheads

d = depth of DAG

47 © Phillip B. Gibbons

Bounds for Work Stealing with Futures
[Spoonhower, Blelloch, G, Harper ‘09]

Extend study of Work Stealing (WS) to Futures:

• Study “deviations” as a replacement for “steals”

– Classification of deviations arising with futures

– Tight bounds on WS overheads as function of # of deviations

• Give tight upper & lower bounds on # of deviations for WS

– Θ(Pd + Td), where T is # of touches

• Characterize a class of programs using futures effectively

• Only O(Pd) deviations

48 © Phillip B. Gibbons

Futures + Parallelism

 Processor can stall when:

1. No more tasks in local work queue

2. Current task is waiting for a value
computed by another processor

 Existing WS only steals in case 1

 We call these parsimonious schedulers
(i.e., pays the cost of a steal only when
it must)

 Thus, in case 2, stalled processor
jumps to other work on its local
work queue

49 © Phillip B. Gibbons

Deviations

A deviation (from the sequential schedule) occurs
when...

 a processor p visits a node n,

 the sequential schedule visits n’ immediately
before n

 ...but p did not.

 Used by [Acar, Blelloch, Blumofe ’02] to bound additional
cache misses in nested parallelism

 Our work: use deviations as means to bound
several measures of performance

 Bound # of “slow clone” invocations
 (≈ computation overhead)

 Bound # of cache misses in private LRU cache

50 © Phillip B. Gibbons

Sources of Deviations

 In nested parallelism:

 at steals & joins

 # deviations ≤ 2× #
steals

 With futures:

 at steals & joins

 at touches

 indirectly after
touches

touch

1

2

8

7

4

5

10

3

6

9

12

11

14

13
15

16

(rest)

51 © Phillip B. Gibbons

Bounding WS Overheads

Invocations of slow clones

 Theorem: # of slow clone invocations ≤ ∆

 Lower bound: # of slow clone invocations is Ω(∆)

Cache misses (extension of [Acar, Blelloch, Blumofe ‘02])

 Theorem: # of cache misses < Q1(M) + M ∆

 Each processor has own LRU cache; under dag
consistency

 M = size of a (private) cache

 Q1(M) = # of cache misses in sequential
execution

∆ = # of deviations

52 © Phillip B. Gibbons

Deviations: Example Graphs

1 future, 1 touch,
1 steal, span=d

Ω(d) deviations

T futures, T touches,
1 steal, O(log T) span

Ω(T) deviations

2 processors: p & q

53 © Phillip B. Gibbons

Bounding Deviations, Upper Bound

Main Theorem:

∀ computations derived from futures with
depth d and T touches, the expected #
deviations by any parsimonious WS
scheduler on P processors is O(Pd + Td)

 First term O(Pd) based on previous bound
on # of steals

 Second term O(Td) from indirect deviations
after touches

Proof relies on:

 Structure of graphs derived from uses of futures

 Behavior of parsimonious WS

54 © Phillip B. Gibbons

Pure Linear Pipelining

 Identified restricted use case w/ less
overhead

 # of deviations is O(Pd)

 Includes producer-consumer examples with
streams, lists, one-dimensional arrays

55 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

56 © Phillip B. Gibbons

False Sharing

Slides adapted from V. Ramachandran’s

57 © Phillip B. Gibbons

Block-Resilience
[Cole, Ramachandran ‘12]

• Hierarchical Balanced Parallel (HBP) computations
use balanced fork-join trees and build richer
computations through sequencing and recursion

• Design HBP with good sequential cache complexity,
and good parallelism

• Incorporate block resilience in the algorithm to
guarantee low overhead due to false sharing

• Design resource-oblivious algorithms (i.e., with no
machine parameters in the algorithms) that are
analyzed to perform well (across different schedulers)
as a function of the number of parallel tasks generated
by the scheduler

58 © Phillip B. Gibbons

59 © Phillip B. Gibbons

Multiple Work-Stealing Schedulers
at Once?

• Dealing with multi-tenancy

• Want to run at same time

• Schedulers must provide throughput + fairness

– Failed steal attempts not useful work

– Yielding at failed steal attempts leads to unfairness

– BWS [Ding et al. ’12] decreases average unfairness
from 124% to 20% and increases thruput by 12%

• Open: What bounds can be proved?

60 © Phillip B. Gibbons

Unfairness

Throughput

61 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

62 © Phillip B. Gibbons

NAND Flash Chip Properties

… …
Block (64-128 pages) Page (512-2048 B)

Read/write pages,
erase blocks

• Write page once after a block is erased

• Expensive operations:

• In-place updates

• Random writes

In-place update

1. Copy 2. Erase 3. Write 4. Copy 5. Erase

R
an

d
o

m

Seq
u

en
tial

0.4ms 0.6ms

Read

Random

Seq
u

en
tial

0.4ms 127ms

Write

These quirks are now hidden by Flash/SSD firmware

63 © Phillip B. Gibbons

Phase Change Memory (PCM)

• Byte-addressable non-volatile memory

• Two states of phase change material:

• Amorphous: high resistance, representing “0”

• Crystalline: low resistance, representing “1”

• Operations:

C
u

rr
e

n
t

(T
e

m
p

e
ra

tu
re

)

Time

e.g., ~350⁰C
“SET” to Crystalline

e.g., ~610⁰C
“RESET” to Amorphous

READ

64 © Phillip B. Gibbons

Comparison of Technologies

 DRAM PCM NAND Flash

Page size
Page read latency
Page write latency
Write bandwidth

Erase latency

64B
20-50ns
20-50ns
∼GB/s
per die

N/A

64B
∼ 50ns
∼ 1 µs

50-100 MB/s
per die

N/A

4KB
∼ 25 µs
∼ 500 µs

5-40 MB/s
per die
∼ 2 ms

Endurance ∞ 10
6
 − 10

8
10

4
 − 10

5

Read energy
Write energy
Idle power

0.8 J/GB
1.2 J/GB

∼100 mW/GB

1 J/GB
6 J/GB

∼1 mW/GB

1.5 J/GB [28]
17.5 J/GB [28]
1–10 mW/GB

Density 1× 2 − 4× 4×

• Compared to NAND Flash, PCM is byte-addressable, has orders
of magnitude lower latency and higher endurance.

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al. ‘09]

65 © Phillip B. Gibbons

Comparison of Technologies

 DRAM PCM NAND Flash

Page size
Page read latency
Page write latency
Write bandwidth

Erase latency

64B
20-50ns
20-50ns
∼GB/s
per die

N/A

64B
∼ 50ns
∼ 1 µs

50-100 MB/s
per die

N/A

4KB
∼ 25 µs
∼ 500 µs

5-40 MB/s
per die
∼ 2 ms

Endurance ∞ 10
6
 − 10

8
10

4
 − 10

5

Read energy
Write energy
Idle power

0.8 J/GB
1.2 J/GB

∼100 mW/GB

1 J/GB
6 J/GB

∼1 mW/GB

1.5 J/GB [28]
17.5 J/GB [28]
1–10 mW/GB

Density 1× 2 − 4× 4×

• Compared to DRAM, PCM has better density and scalability;
PCM has similar read latency but longer write latency

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al. ’09]

66 © Phillip B. Gibbons

Relative Latencies:

10ns 100ns 1us 10us 100us 1ms 10ms

N
A

N
D

 F
la

sh

P
C

M

D
R

A
M

H
ar

d
 D

is
k

N
A

N
D

 F
la

sh

P
C

M

D
R

A
M

H
ar

d
 D

is
k

Read

Write

67 © Phillip B. Gibbons

Challenge: PCM Writes

• Limited endurance

– Wear out quickly for
hot spots

• High energy consumption

– 6-10X more energy than
a read

• High latency & low bandwidth

– SET/RESET time > READ time

– Limited instantaneous electric current level,
requires multiple rounds of writes

 PCM

Page size
Page read latency
Page write latency
Write bandwidth

Erase latency

64B
∼ 50ns
∼ 1 µs

50-100 MB/s
per die

N/A

Endurance 10
6
 − 10

8

Read energy
Write energy
Idle power

1 J/GB
6 J/GB

∼1 mW/GB

Density 2 − 4×

68 © Phillip B. Gibbons

0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0

PCM Write Hardware Optimization

0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1

0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0

PCM
0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1

[Cho, Lee’09] [Lee et al. ’09] [Yang et al. ‘07] [Zhou et al. ’09]

Cache line
Rounds

highlighted w/
different colors

• Baseline: several rounds of writes for
a cache line

– Which bits in which rounds are hard wired

• Optimization: data comparison write

– Goal: write only modified bits rather than entire cache line

– Approach: read-compare-write

• Skipping rounds with no modified bits

69 © Phillip B. Gibbons

PCM-savvy Algorithms?

New goal: minimize PCM writes

– Writes use 6X more energy than reads

– Writes 20X slower than reads, lower BW, wear-out

Data comparison writes:

– Minimize Number of bits that change

70 © Phillip B. Gibbons

B+-Tree Index

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

insert delete search

c
y
c
le

s

0E+0

1E+8

2E+8

3E+8

insert delete search

n
u

m
 b

it
s
 m

o
d

if
ie

d

0

2

4

6

8

10

12

14

16

insert delete search

e
n

e
r
g

y
 (

m
J
)

Node size 8 cache lines; 50 million entries, 75% full;

Three workloads: Inserting / Deleting / Searching
 500K random keys

PTLSSim extended with PCM support

Unsorted leaf schemes achieve the best performance

• For insert intensive: unsorted-leaf

• For insert & delete intensive: unsorted-leaf with bitmap

Total wear Energy Execution time

[Chen, G, Nath ‘11]

71 © Phillip B. Gibbons

Multi-core Computing Lectures:
Progress-to-date on Key Open Questions

• How to formally model multi-core hierarchies?

• What is the Algorithm Designer’s model?

• What runtime task scheduler should be used?

• What are the new algorithmic techniques?

• How do the algorithms perform in practice?

72 © Phillip B. Gibbons

References
[Acar, Blelloch, Blumofe ’02] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing.
Theory of Comput. Syst., 35(3), 2002

[Arora et al. ’98] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multiprogrammed
multiprocessors. ACM SPAA, 1998

[Bergan et al. ’10] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-Det: A compiler and
runtime system for deterministic multithreaded execution. ACM ASPLOS, 2010

[Berger et al. ’09] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multithreaded programming for
C/C++. ACM OOPSLA, 2009

[Blelloch, Fineman, G, Shun ‘12] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally deterministic
algorithms can be fast. ACM PPoPP, 2012

[Blelloch, Reid-Miller '97] G. E. Blelloch and M. Reid-Miller. Pipelining with futures. ACM SPAA, 1997

[Bocchino et al. ‘09] R. L. Bocchino, V. S. Adve, S. V. Adve, and M. Snir. Parallel programming must be
deterministic by default. Usenix HotPar, 2009

[Chen, G, Nath ‘11] S. Chen, P. B. Gibbons, S. Nath. Rethinking database algorithms for phase change memory.
CIDR, 2011

[Cheng et al. ’98] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting data races in
Cilk programs that use locks. ACM SPAA, 1998

[Cho, Lee’09] S. Cho and H. Lee. Flip-N-Write: A simple deterministic technique to improve PRAM write
performance, energy and endurance. IEEE MICRO, 2009

[Cole, Ramachandran ‘12] R. Cole and V. Ramachandran. Efficient resource oblivious algorithms for multicores
with false sharing. IEEE IPDPS 2012

[Devietti et al. ’11] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman. RCDC: A relaxed consistency
deterministic computer. ACM ASPLOS, 2011

[Ding et al. ’12] Xiaoning Ding, Kaibo Wang, Phillip B. Gibbons, Xiaodong Zhang: BWS: balanced work stealing
for time-sharing multicores. EuroSys 2012

73 © Phillip B. Gibbons

[Doller ’09] E. Doller. Phase change memory and its impacts on memory hierarchy.
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf, 2009

[Frigo et al. ‘09] M. Frigo, P. Halpern, C. E. Leiserson, S. Lewin-Berlin. Reducers and other Cilk++ hyperobjects.
ACM SPAA, 2009

[Halstead '85] R. H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM TOPLAS, 7(4),
1985

[Hower et al. ’11] D. Hower, P. Dudnik, M. Hill, and D. Wood. Calvin: Deterministic or not? Free will to choose.
IEEE HPCA, 2011

[Lee et al. ’09] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a scalable
DRAM alternative. ACM ISCA, 2009

[Netzer, Miller ’92] R. H. B. Netzer and B. P. Miller. What are race conditions? ACM LOPLAS, 1(1), 1992

[Olszewski et al. ’09] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deterministic multithreading in
software. ACM ASPLOS, 2009

[Qureshi et al.’09] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high performance main memory
system using phase-change memory technology. ACM ISCA, 2009

[Shun, Blelloch, Fineman, G] J. Shun, G. E. Blelloch, J. Fineman, P. B. Gibbons. Priority-write as a parallel
primitive. Manuscript, 2012

[Spoonhower, Blelloch, G, Harper ‘09] D. Spoonhower, G. E. Blelloch, P. B. Gibbons, R. Harper. Beyond nested
parallelism: tight bounds on work-stealing overheads for parallel futures. ACM SPAA, 2009

[Steele ‘90] G. L. Steele Jr. Making asynchronous parallelism safe for the world. ACM POPL, 1990

[Yang et al. ’07] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu. A low power phase-change
random access memory using a data-comparison write scheme. IEEE ISCAS, 2007

[Yu and Narayanasamy ‘09] J. Yu and S. Narayanasamy. A case for an interleaving constrained shared-memory
multi-processor. ACM ISCA, 2009

[Zhou et al. ‘09] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient main memory using
phase change memory technology. ACM ISCA, 2009

