
Multi-core Computing
Lecture 3

MADALGO Summer School 2012
Algorithms for Modern Parallel and Distributed Models

Phillip B. Gibbons
Intel Labs Pittsburgh

August 22, 2012

2 © Phillip B. Gibbons

Multi-core Computing Lectures:
Progress-to-date on Key Open Questions

• How to formally model multi-core hierarchies?

• What is the Algorithm Designer’s model?

• What runtime task scheduler should be used?

• What are the new algorithmic techniques?

• How do the algorithms perform in practice?

3 © Phillip B. Gibbons

Lecture 1 & 2 Summary

• Multi-cores: today, future trends, challenges

• Computations & Schedulers

• Cache miss analysis on 2-level parallel hierarchy

• Low-depth, cache-oblivious parallel algorithms

• Modeling the Multicore Hierarchy

• Algorithm Designer’s model exposing Hierarchy

• Quest for a Simplified Hierarchy Abstraction

• Algorithm Designer’s model abstracting Hierarchy

• Space-Bounded Schedulers

4 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

5 © Phillip B. Gibbons

Multicore Programming using Cilk++

• Cilk extends the C language with just a handful
of keywords

• Every Cilk program has a serial semantics

• Not only is Cilk fast, it provides performance
guarantees based on performance abstractions

• Cilk is processor-oblivious

• Cilk’s provably good runtime system
automatically manages low-level aspects of
parallel execution, including protocols, load
balancing, and scheduling

Intel® Cilk™ Plus

Slides adapted from C. Leiserson’s

6 © Phillip B. Gibbons

Cilk++ Example: Fibonacci

int fib (int n) {
if (n<2) return (n);
 else {
 int x,y;
 x = fib(n-1);
 y = fib(n-2);
 return (x+y);
 }
}

C elision

int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = cilk_spawn fib(n-1);
 y = cilk_spawn fib(n-2);
 cilk_sync;
 return (x+y);
 }
}

Cilk code

Cilk is a faithful extension of C. A Cilk program’s
serial elision is always a legal implementation of
Cilk semantics. Cilk provides no new data types.

7 © Phillip B. Gibbons

Basic Cilk++ Keywords

int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = cilk_spawn fib(n-1);
 y = cilk_spawn fib(n-2);
 cilk_sync;
 return (x+y);
 }
}

The named child Cilk
procedure can

execute in parallel
with the parent caller

Control cannot pass this
point until all spawned
children have returned

Useful macro: cilk_for

 for recursive spawning of parallel loop iterates

8 © Phillip B. Gibbons

Nondeterminism in Cilk

 Cilk encapsulates the nondeterminism of
scheduling, allowing average programmers
to write deterministic parallel codes using
only 3 keywords to indicate logical parallelism

 The Cilkscreen race detector offers
provable guarantees of determinism
by certifying the absence of determinacy races

 Cilk’s reducer hyperobjects encapsulate the
nondeterminism of updates to nonlocal variables,
yielding deterministic behavior for parallel updates
 See next slide

9 © Phillip B. Gibbons

Summing Numbers in an Array
using sum_reducer [Frigo et al. ‘09]

10 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

11 © Phillip B. Gibbons

Nondeterminism

•Concerned about nondeterminism due to
parallel scheduling orders and concurrency

Slides adapted from J. Shun’s

12 © Phillip B. Gibbons

Nondeterminism is problematic

• Debugging is painful

• Hard to reason
 about code

• Formal verification
 is hard

• Hard to measure
 performance

“Insanity: doing the same
thing over and over again and
expecting different results.”
 - Albert Einstein

13 © Phillip B. Gibbons

Inherently Deterministic Problems

• Wide coverage of real-world non-numeric
 problems

• Random numbers can be deterministic

Breadth first search Spanning forest

Suffix array Minimum spanning
forest

Remove duplicates Maximal Independent
set

Comparison sort K-nearest neighbors

N-body Triangle ray intersect

Delaunay triangulation Delaunay refinement

14 © Phillip B. Gibbons

External vs. Internal Determinism

• External: same input  same result

• Internal: same input  same intermediate states

 & same result

15 © Phillip B. Gibbons

Internal Determinism
[Netzer, Miller ’92]

• Trace: a computation’s final
 state, intermediate states,
 and control-flow DAG

• Internally deterministic:
 for any fixed input, all
 possible executions result
 in equivalent traces (w.r.t.
 some level of abstraction)

– Also implies external determinism

– Provides sequential semantics

Trace
↓

16 © Phillip B. Gibbons

Internally deterministic?

17 © Phillip B. Gibbons

Commutative + Nested Parallel
 Internal Determinism

[Steele ‘90]

• Commutativity

– [Steele ’90] define it in terms of memory operations

– [Cheng et al. ’98] extend it to critical regions

– Two operations f and g commute if f ◦ g and g ◦ f have
same final state and same return values

• We look at commutativity in terms of arbitrary
 abstraction by introducing “commutative
 building blocks”

• We use commutativity strictly to get deterministic
 behavior, but there are other uses…

18 © Phillip B. Gibbons

System Approaches to Determinism

Determinism via

• Hardware mechanisms [Devietti et al. ‘11,

 Hower et al. ‘11]

• Runtime systems and compilers [Bergan et al. ‘10,

 Berger et al. ‘09, Olszewski et al. ‘09, Yu and Narayanasamy ‘09]

• Operating systems [Bergan et al. ‘10]

• Programming languages/frameworks
 [Bocchino et al. ‘09]

19 © Phillip B. Gibbons

Commutative Building Blocks
[Blelloch, Fineman, G, Shun ‘12]

• Priority write

– pwrite, read

• Priority reserve

– reserve, check, checkReset

• Dynamic map

– insert, delete, elements

• Disjoint set

– find, link

• At this level of abstraction,
 reads commute with reads &
 updates commute with updates

20 © Phillip B. Gibbons

Dynamic Map

Using hashing:

• Based on generic hash and comparison

• Problem: representation can depend on
ordering. Also on which redundant element is
kept.

• Solution: Use history independent hash table
based on linear probing…once done inserting,
representation is independent of order of
insertion

6

11

9 3

7

5

11 11

8

21 © Phillip B. Gibbons

Dynamic Map

Using hashing:

• Based on generic hash and comparison

• Problem: representation can depend on
ordering. Also on which redundant element is
kept.

• Solution: Use history independent hash table
based on linear probing…once done inserting,
representation is independent of order of
insertion

6

11

9 3

7

5

11 11

8

22 © Phillip B. Gibbons

Internally Deterministic Problems

Functional
programming

Suffix array

Comparison sort

N-body

K-nearest neighbors

Triangle ray intersect

History-independ.
data structures

Remove duplicates

Delaunay refinement

Deterministic
reservations

Spanning forest

Minimum spanning forest

Maximal independent set

Breadth first search

Delaunay triangulation

Delaunay refinement

23 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Incremental algorithm adds one point at a time,
 but points can be added in parallel if they don’t
 interact

• The problem is that the output will depend on
 the order they are added.

24 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

25 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

26 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

16

17

27 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

16

16

16

16

16

17

17

16

17

28 © Phillip B. Gibbons

Delaunay Triangulation/Refinement

• Adding points deterministically

16

16

16

16

16

17

17

16

17

29 © Phillip B. Gibbons

Deterministic Reservations

Delaunay triangulation/refinement Generic framework

iterates = [1,…,n];
while(iterates remain){

 Phase 1: in parallel, all i in
 iterates call reserve(i);

 Phase 2: in parallel, all i in
 iterates call commit(i);

 Remove committed i‘s from
 iterates;
}

Note: Performance can be
improved by processing prefixes
of iterates in each round

reserve(i){
 find cavity;
 reserve points in cavity;
}

commit(i){
 check reservations;
 if(all reservations successful){
 add point and triangulate;
 }
}

30 © Phillip B. Gibbons

Internally Deterministic Code

• Implementations of benchmark problems

– Internally deterministic

– Nondeterministic

– Sequential

– All require only 20-500 lines of code

• Use nested data parallelism

• Used library of parallel operations on
 sequences: reduce, prefix sum, filter, etc.

31 © Phillip B. Gibbons

Experimental Results

Delaunay Triangulation Delaunay Refinement

32-core Intel Xeon 7500 Multicore
Input Sets: 2M random points within a unit circle &
2M random 2D points from the Kuzmin distribution

32 © Phillip B. Gibbons

Experimental Results

33 © Phillip B. Gibbons

Speedups on 40-core Xeon E7-8870

34 © Phillip B. Gibbons

Problem Based Benchmark Suite
http://www.cs.cmu.edu/~pbbs/

Goal: A set of “problem based benchmarks”
 Must satisfy a particular input-output interface,
 but there are no rules on the techniques used

Measure the quality of solutions based on:

• Performance and speedup over a variety of input
 types and w.r.t. best sequential implementations

• Quality of output. Some benchmarks don’t have a
 right answer or are approximations

• Complexity of code. Lines of code & other measures

• Determinism. The code should always return the
 same output on same input

• Generic. Code should be generic over types

• Correctness guarantees

• Easily analyze performance, at least approximately

35 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

36 © Phillip B. Gibbons

• Priority-write: when there are multiple writes
 to a location, possibly concurrently, the value
 with the highest priority is written

– E.g., write-with-min: for each location, min value
written wins (used earlier in Delaunay Refinement)

• Useful parallel primitive:

+ Low contention even under high degrees of sharing

+ Avoids many concurrency bugs since commutes

+ Useful for many algorithms & data structures

Priority Write as a Parallel Primitive
[Shun, Blelloch, Fineman, G]

A := 5 B := 17 B := 12 A := 9 A := 8

yields A = 5 and B = 12

37 © Phillip B. Gibbons

Priority-Write Performance

Similar results on 48-core AMD Opteron 6168

38 © Phillip B. Gibbons

Theoretical Justification

Lemma: Consider a collection of n distinct priority-
write operations to a single location, where at
most p randomly selected operations occur
concurrently at any time. Then the number of CAS
attempts is O(p ln n) with high probability.

Idea: Let X_k be an indicator for the event that the
kth priority-write performs an update. Then X_k = 1
with probability 1/k, as it updates only if it is the
highest-priority of all k earliest writes. The expected
number of updates is then given by E[X_1+ … +X_n]
= 1/1+1/2+1/3+... +1/n = H_n.

39 © Phillip B. Gibbons

Priority-Write in Algorithms

• Take the maximum/minimum of set of values

• Avoiding nondeterminism since commutative

• Guarantee progress in algorithm:
 highest priority thread will always succeed

• Deterministic Reservations: speculative parallel
 FOR loop (use iteration as priority)

40 © Phillip B. Gibbons

Priority Writes in Algorithms

• Parallel version of Kruskal’s minimum spanning-
 tree algorithm so that the minimum-weight
 edge into a vertex is always selected

• Boruvka’s algorithm to select the minimum-
 weight edge

• Bellman-Ford shortest paths to update the
 neighbors of a vertex with the potentially
 shorter path

• Deterministic Breadth-First Search Tree

41 © Phillip B. Gibbons

E.g., Breadth-First Search Tree

Frontier = {source vertex}
In each round:
 In parallel for all v in Frontier

 Remove v;
 Attempt to place all v’s
 neighbors in Frontier;

Input: Comb Graph

42 © Phillip B. Gibbons

Priority-Write Definition

43 © Phillip B. Gibbons

Priority-Writes on Locations

• Efficient implementation of a more general
 dictionary-based priority-write where the
 writes/inserts are made based on keys.

– E.g., all writers might insert a character string
into a dictionary with an associated priority

– Use for prioritized remove-duplicates algorithm

44 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

45 © Phillip B. Gibbons

Parallel Futures

 Futures [Halstead '85], in Multilisp

 Parallelism no longer nested

 Here: explicit future and touch

keywords

 E.g. Halstead's quicksort, pipelining

tree merge [Blelloch, Reid-Miller '97]

 Strictly more expressive than fork/join

 E.g. can express parallel pipelining

 … but still deterministic!

46 © Phillip B. Gibbons

Work Stealing for Futures?

 Implementation choices:

 What to do when touch causes

processor to stall?

 Previous work beyond nested parallelism:

 Bound # of steals for WS [Arora et al. ’98]

 We show: not sufficient to bound WS overhead,
once add futures!

 Summary of previous work

Nested Parallelism:
O(Pd) steals, Overheads additive in # of steals

Beyond Nested Parallelism:
O(Pd) steals, # steals can’t bound overheads

d = depth of DAG

47 © Phillip B. Gibbons

Bounds for Work Stealing with Futures
[Spoonhower, Blelloch, G, Harper ‘09]

Extend study of Work Stealing (WS) to Futures:

• Study “deviations” as a replacement for “steals”

– Classification of deviations arising with futures

– Tight bounds on WS overheads as function of # of deviations

• Give tight upper & lower bounds on # of deviations for WS

– Θ(Pd + Td), where T is # of touches

• Characterize a class of programs using futures effectively

• Only O(Pd) deviations

48 © Phillip B. Gibbons

Futures + Parallelism

 Processor can stall when:

1. No more tasks in local work queue

2. Current task is waiting for a value
computed by another processor

 Existing WS only steals in case 1

 We call these parsimonious schedulers
(i.e., pays the cost of a steal only when
it must)

 Thus, in case 2, stalled processor
jumps to other work on its local
work queue

49 © Phillip B. Gibbons

Deviations

A deviation (from the sequential schedule) occurs
when...

 a processor p visits a node n,

 the sequential schedule visits n’ immediately
before n

 ...but p did not.

 Used by [Acar, Blelloch, Blumofe ’02] to bound additional
cache misses in nested parallelism

 Our work: use deviations as means to bound
several measures of performance

 Bound # of “slow clone” invocations
 (≈ computation overhead)

 Bound # of cache misses in private LRU cache

50 © Phillip B. Gibbons

Sources of Deviations

 In nested parallelism:

 at steals & joins

 # deviations ≤ 2× #
steals

 With futures:

 at steals & joins

 at touches

 indirectly after
touches

touch

1

2

8

7

4

5

10

3

6

9

12

11

14

13
15

16

(rest)

51 © Phillip B. Gibbons

Bounding WS Overheads

Invocations of slow clones

 Theorem: # of slow clone invocations ≤ ∆

 Lower bound: # of slow clone invocations is Ω(∆)

Cache misses (extension of [Acar, Blelloch, Blumofe ‘02])

 Theorem: # of cache misses < Q1(M) + M ∆

 Each processor has own LRU cache; under dag
consistency

 M = size of a (private) cache

 Q1(M) = # of cache misses in sequential
execution

∆ = # of deviations

52 © Phillip B. Gibbons

Deviations: Example Graphs

1 future, 1 touch,
1 steal, span=d

Ω(d) deviations

T futures, T touches,
1 steal, O(log T) span

Ω(T) deviations

2 processors: p & q

53 © Phillip B. Gibbons

Bounding Deviations, Upper Bound

Main Theorem:

∀ computations derived from futures with
depth d and T touches, the expected #
deviations by any parsimonious WS
scheduler on P processors is O(Pd + Td)

 First term O(Pd) based on previous bound
on # of steals

 Second term O(Td) from indirect deviations
after touches

Proof relies on:

 Structure of graphs derived from uses of futures

 Behavior of parsimonious WS

54 © Phillip B. Gibbons

Pure Linear Pipelining

 Identified restricted use case w/ less
overhead

 # of deviations is O(Pd)

 Includes producer-consumer examples with
streams, lists, one-dimensional arrays

55 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

56 © Phillip B. Gibbons

False Sharing

Slides adapted from V. Ramachandran’s

57 © Phillip B. Gibbons

Block-Resilience
[Cole, Ramachandran ‘12]

• Hierarchical Balanced Parallel (HBP) computations
use balanced fork-join trees and build richer
computations through sequencing and recursion

• Design HBP with good sequential cache complexity,
and good parallelism

• Incorporate block resilience in the algorithm to
guarantee low overhead due to false sharing

• Design resource-oblivious algorithms (i.e., with no
machine parameters in the algorithms) that are
analyzed to perform well (across different schedulers)
as a function of the number of parallel tasks generated
by the scheduler

58 © Phillip B. Gibbons

59 © Phillip B. Gibbons

Multiple Work-Stealing Schedulers
at Once?

• Dealing with multi-tenancy

• Want to run at same time

• Schedulers must provide throughput + fairness

– Failed steal attempts not useful work

– Yielding at failed steal attempts leads to unfairness

– BWS [Ding et al. ’12] decreases average unfairness
from 124% to 20% and increases thruput by 12%

• Open: What bounds can be proved?

60 © Phillip B. Gibbons

Unfairness

Throughput

61 © Phillip B. Gibbons

Lecture 3 Outline

• Cilk++

• Internally-Deterministic Algorithms

• Priority-write Primitive

• Work Stealing Beyond Nested Parallelism

• Other Extensions

– False Sharing

– Work Stealing under Multiprogramming

• Emerging Memory Technologies

62 © Phillip B. Gibbons

NAND Flash Chip Properties

… …
Block (64-128 pages) Page (512-2048 B)

Read/write pages,
erase blocks

• Write page once after a block is erased

• Expensive operations:

• In-place updates

• Random writes

In-place update

1. Copy 2. Erase 3. Write 4. Copy 5. Erase

R
an

d
o

m

Seq
u

en
tial

0.4ms 0.6ms

Read

Random

Seq
u

en
tial

0.4ms 127ms

Write

These quirks are now hidden by Flash/SSD firmware

63 © Phillip B. Gibbons

Phase Change Memory (PCM)

• Byte-addressable non-volatile memory

• Two states of phase change material:

• Amorphous: high resistance, representing “0”

• Crystalline: low resistance, representing “1”

• Operations:

C
u

rr
e

n
t

(T
e

m
p

e
ra

tu
re

)

Time

e.g., ~350⁰C
“SET” to Crystalline

e.g., ~610⁰C
“RESET” to Amorphous

READ

64 © Phillip B. Gibbons

Comparison of Technologies

 DRAM PCM NAND Flash

Page size
Page read latency
Page write latency
Write bandwidth

Erase latency

64B
20-50ns
20-50ns
∼GB/s
per die

N/A

64B
∼ 50ns
∼ 1 µs

50-100 MB/s
per die

N/A

4KB
∼ 25 µs
∼ 500 µs

5-40 MB/s
per die
∼ 2 ms

Endurance ∞ 10
6
 − 10

8
10

4
 − 10

5

Read energy
Write energy
Idle power

0.8 J/GB
1.2 J/GB

∼100 mW/GB

1 J/GB
6 J/GB

∼1 mW/GB

1.5 J/GB [28]
17.5 J/GB [28]
1–10 mW/GB

Density 1× 2 − 4× 4×

• Compared to NAND Flash, PCM is byte-addressable, has orders
of magnitude lower latency and higher endurance.

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al. ‘09]

65 © Phillip B. Gibbons

Comparison of Technologies

 DRAM PCM NAND Flash

Page size
Page read latency
Page write latency
Write bandwidth

Erase latency

64B
20-50ns
20-50ns
∼GB/s
per die

N/A

64B
∼ 50ns
∼ 1 µs

50-100 MB/s
per die

N/A

4KB
∼ 25 µs
∼ 500 µs

5-40 MB/s
per die
∼ 2 ms

Endurance ∞ 10
6
 − 10

8
10

4
 − 10

5

Read energy
Write energy
Idle power

0.8 J/GB
1.2 J/GB

∼100 mW/GB

1 J/GB
6 J/GB

∼1 mW/GB

1.5 J/GB [28]
17.5 J/GB [28]
1–10 mW/GB

Density 1× 2 − 4× 4×

• Compared to DRAM, PCM has better density and scalability;
PCM has similar read latency but longer write latency

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al. ’09]

66 © Phillip B. Gibbons

Relative Latencies:

10ns 100ns 1us 10us 100us 1ms 10ms

N
A

N
D

 F
la

sh

P
C

M

D
R

A
M

H
ar

d
 D

is
k

N
A

N
D

 F
la

sh

P
C

M

D
R

A
M

H
ar

d
 D

is
k

Read

Write

67 © Phillip B. Gibbons

Challenge: PCM Writes

• Limited endurance

– Wear out quickly for
hot spots

• High energy consumption

– 6-10X more energy than
a read

• High latency & low bandwidth

– SET/RESET time > READ time

– Limited instantaneous electric current level,
requires multiple rounds of writes

 PCM

Page size
Page read latency
Page write latency
Write bandwidth

Erase latency

64B
∼ 50ns
∼ 1 µs

50-100 MB/s
per die

N/A

Endurance 10
6
 − 10

8

Read energy
Write energy
Idle power

1 J/GB
6 J/GB

∼1 mW/GB

Density 2 − 4×

68 © Phillip B. Gibbons

0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0

PCM Write Hardware Optimization

0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1

0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0

PCM
0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1

[Cho, Lee’09] [Lee et al. ’09] [Yang et al. ‘07] [Zhou et al. ’09]

Cache line
Rounds

highlighted w/
different colors

• Baseline: several rounds of writes for
a cache line

– Which bits in which rounds are hard wired

• Optimization: data comparison write

– Goal: write only modified bits rather than entire cache line

– Approach: read-compare-write

• Skipping rounds with no modified bits

69 © Phillip B. Gibbons

PCM-savvy Algorithms?

New goal: minimize PCM writes

– Writes use 6X more energy than reads

– Writes 20X slower than reads, lower BW, wear-out

Data comparison writes:

– Minimize Number of bits that change

70 © Phillip B. Gibbons

B+-Tree Index

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

insert delete search

c
y
c
le

s

0E+0

1E+8

2E+8

3E+8

insert delete search

n
u

m
 b

it
s
 m

o
d

if
ie

d

0

2

4

6

8

10

12

14

16

insert delete search

e
n

e
r
g

y
 (

m
J
)

Node size 8 cache lines; 50 million entries, 75% full;

Three workloads: Inserting / Deleting / Searching
 500K random keys

PTLSSim extended with PCM support

Unsorted leaf schemes achieve the best performance

• For insert intensive: unsorted-leaf

• For insert & delete intensive: unsorted-leaf with bitmap

Total wear Energy Execution time

[Chen, G, Nath ‘11]

71 © Phillip B. Gibbons

Multi-core Computing Lectures:
Progress-to-date on Key Open Questions

• How to formally model multi-core hierarchies?

• What is the Algorithm Designer’s model?

• What runtime task scheduler should be used?

• What are the new algorithmic techniques?

• How do the algorithms perform in practice?

72 © Phillip B. Gibbons

References
[Acar, Blelloch, Blumofe ’02] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing.
Theory of Comput. Syst., 35(3), 2002

[Arora et al. ’98] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multiprogrammed
multiprocessors. ACM SPAA, 1998

[Bergan et al. ’10] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-Det: A compiler and
runtime system for deterministic multithreaded execution. ACM ASPLOS, 2010

[Berger et al. ’09] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multithreaded programming for
C/C++. ACM OOPSLA, 2009

[Blelloch, Fineman, G, Shun ‘12] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally deterministic
algorithms can be fast. ACM PPoPP, 2012

[Blelloch, Reid-Miller '97] G. E. Blelloch and M. Reid-Miller. Pipelining with futures. ACM SPAA, 1997

[Bocchino et al. ‘09] R. L. Bocchino, V. S. Adve, S. V. Adve, and M. Snir. Parallel programming must be
deterministic by default. Usenix HotPar, 2009

[Chen, G, Nath ‘11] S. Chen, P. B. Gibbons, S. Nath. Rethinking database algorithms for phase change memory.
CIDR, 2011

[Cheng et al. ’98] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting data races in
Cilk programs that use locks. ACM SPAA, 1998

[Cho, Lee’09] S. Cho and H. Lee. Flip-N-Write: A simple deterministic technique to improve PRAM write
performance, energy and endurance. IEEE MICRO, 2009

[Cole, Ramachandran ‘12] R. Cole and V. Ramachandran. Efficient resource oblivious algorithms for multicores
with false sharing. IEEE IPDPS 2012

[Devietti et al. ’11] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman. RCDC: A relaxed consistency
deterministic computer. ACM ASPLOS, 2011

[Ding et al. ’12] Xiaoning Ding, Kaibo Wang, Phillip B. Gibbons, Xiaodong Zhang: BWS: balanced work stealing
for time-sharing multicores. EuroSys 2012

73 © Phillip B. Gibbons

[Doller ’09] E. Doller. Phase change memory and its impacts on memory hierarchy.
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf, 2009

[Frigo et al. ‘09] M. Frigo, P. Halpern, C. E. Leiserson, S. Lewin-Berlin. Reducers and other Cilk++ hyperobjects.
ACM SPAA, 2009

[Halstead '85] R. H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM TOPLAS, 7(4),
1985

[Hower et al. ’11] D. Hower, P. Dudnik, M. Hill, and D. Wood. Calvin: Deterministic or not? Free will to choose.
IEEE HPCA, 2011

[Lee et al. ’09] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a scalable
DRAM alternative. ACM ISCA, 2009

[Netzer, Miller ’92] R. H. B. Netzer and B. P. Miller. What are race conditions? ACM LOPLAS, 1(1), 1992

[Olszewski et al. ’09] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deterministic multithreading in
software. ACM ASPLOS, 2009

[Qureshi et al.’09] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high performance main memory
system using phase-change memory technology. ACM ISCA, 2009

[Shun, Blelloch, Fineman, G] J. Shun, G. E. Blelloch, J. Fineman, P. B. Gibbons. Priority-write as a parallel
primitive. Manuscript, 2012

[Spoonhower, Blelloch, G, Harper ‘09] D. Spoonhower, G. E. Blelloch, P. B. Gibbons, R. Harper. Beyond nested
parallelism: tight bounds on work-stealing overheads for parallel futures. ACM SPAA, 2009

[Steele ‘90] G. L. Steele Jr. Making asynchronous parallelism safe for the world. ACM POPL, 1990

[Yang et al. ’07] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu. A low power phase-change
random access memory using a data-comparison write scheme. IEEE ISCAS, 2007

[Yu and Narayanasamy ‘09] J. Yu and S. Narayanasamy. A case for an interleaving constrained shared-memory
multi-processor. ACM ISCA, 2009

[Zhou et al. ‘09] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient main memory using
phase change memory technology. ACM ISCA, 2009

