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Multi-core Computing Lectures:
Progress-to-date on Key Open Questions

e How to formally model multi-core hierarchies?
e What is the Algorithm Designer’s model?

e What runtime task scheduler should be used?
e What are the new algorithmic techniques?

e How do the algorithms perform in practice?
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Lecture 1 & 2 Summary

e Multi-cores: today, future trends, challenges

e Computations & Schedulers
* Cache miss analysis on 2-level parallel hierarchy
* Low-depth, cache-oblivious parallel algorithms

e Modeling the Multicore Hierarchy

* Algorithm Designer’s model exposing Hierarchy

* Quest for a Simplified Hierarchy Abstraction

* Algorithm Designer’s model abstracting Hierarchy
* Space-Bounded Schedulers
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Lecture 3 Outline

o Cilk++

e Internally-Deterministic Algorithms

e Priority-write Primitive

e Work Stealing Beyond Nested Parallelism

e Other Extensions
— False Sharing
- Work Stealing under Multiprogramming

e Emerging Memory Technologies
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Multicore Programming using Cilk++

e Cilk extends the C language with just a handful
of keywords

e Every Cilk program has a serial semantics

* Not only is Cilk fast, it provides performance
guarantees based on performance abstractions

e Cilk is processor-oblivious

e Cilk’s provably good runtime system
automatically manages low-level aspects of
parallel execution, including protocols, load
balancing, and scheduling

Intel® Cilk™ Plus
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Cilk++ Example: Fibonacci

int fib (int n) {
if (n<2) return (n); -
else { Cilk code
int x,y; int fib (int n) {
x = fib(n-1); if (n<2) return (n);
} x = cilk spawn fib(n-1);
} y = cilk spawn £fib(n-2);
- cilk sync;
C elision return (x+y);

Cilk is a faithful extension of C. A Cilk program’s
serial elision is always a legal implementation of
Cilk semantics. Cilk provides no new data types.

(intel,
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Basic Cilk++ Keywords

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
X = cilk spawn fib(n
y = cilk spawn fib(n-2
cilk syndy
return (x+y);

The named child Cilk
procedure can
execute in parallel
with the parent caller

Control cannot pass this
point until all spawned
children have returned

Useful macro: cilk for
for recursive spawning of parallel loop iterates
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Nondeterminism in Cilk

» Cilk encapsulates the nondeterminism of
scheduling, allowing average programmers
to write deterministic parallel codes using
only 3 keywords to indicate logical parallelism

» The Cilkscreen race detector offers
provable guarantees of determinism
by certifying the absence of determinacy races

» Cilk’s reducer hyperobjects encapsulate the
nondeterminism of updates to nonlocal variables,
vielding deterministic behavior for parallel updates

» See next slide
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Summing Numbers in an Array
using sum_reducer [rrigo et al. '09]

int compute (const X& v);

int cilk_main ()

{
const std::s8ize_t n = 1000000
extern X myArrayl[n];

o
sum_reducer <int> result(0):
cilk_for (std::size_t i = 0; 1 < n; ++1i)

result += compute (myArray[il);

std::cout << "The result is: "
<< result.get_value ()
<< 8td::endl;

return 0O;

}
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Lecture 3 Outline

o Cilk++

e Internally-Deterministic Algorithms

e Priority-write Primitive

e Work Stealing Beyond Nested Parallelism

e Other Extensions
— False Sharing
- Work Stealing under Multiprogramming

e Emerging Memory Technologies
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Nondeterminism

eConcerned about nondeterminism due to
parallel scheduling orders and concurrency

© Phillip B. Gibbons Slides adapted from J. Shun’s



Nondeterminism is problematic

e Debugging is painful

e Hard to reason
about code

e Formal verification
iIs hard

e Hard to measure
performance

“Insanity: doing the same
thing over and over again and
expecting different results.”

- Albert Einstein
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Inherently Deterministic Problems

Breadth first search Spanning forest

Suffix array Minimum spanning
forest

Remove duplicates Maximal Independent
set

Comparison sort K-nearest neighbors

N-body Triangle ray intersect

Delaunay triangulation  Delaunay refinement

e Wide coverage of real-world non-numeric
problems

e Random numbers can be deterministic
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External vs. Internal Determinism

e External: same input 2 same result

e Internal: same input 2 same intermediate states
& same result
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Internal Determinism
[Netzer, Miller '92]

e Trace: a computation’s final
state, intermediate states,
and control-flow DAG

e Internally deterministic:
for any fixed input, all
possible executions result
In equivalent traces (w.r.t.
some level of abstraction)

— Also implies external determinism
— Provides sequential semantics
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Internally deterministic?

L. ®=10

2. in parallel do

3 { rs:=AtomicAdd(z,1) }

4. { 7ry:= AtomicAdd(z,10)

3 in parallel do

6. { 7re:= AtomicAdd(z,100) }

7. { 77 := AtomicAdd(z, 1000) }
}

8. returnz

© Phillip B. returns “11117



Commutative + Nested Parallel

- Internal Determinism
[Steele '90]

e Commutativity
- [Steele '90] define it in terms of memory operations
- [Cheng et al. 98] extend it to critical regions

— Two operations f and g commute if fo g and g - f have
same final state and same return values

e We look at commutativity in terms of arbitrary
abstraction by introducing “commutative
building blocks”

e We use commutativity strictly to get deterministic
behavior, but there are other uses...

© Phillip B. Gibbons 17
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System Approaches to Determinism

Determinism via

* Hardware mechanisms [Devietti et al. ‘11,
Hower et al. '11]

* Runtime systems and compilers [Bergan et al. ‘10,
Berger et al. ‘09, Olszewski et al. ‘09, Yu and Narayanasamy ‘09]

* Operating systems [Bergan et al. '10]

* Programming languages/frameworks
[Bocchino et al. '09]
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Commutative Building Blocks
[Blelloch, Fineman, G, Shun '12]

e Priority write
- pwrite, read

e Priority reserve
- reserve, check, checkReset

e Dynamic map
- insert, delete, elements

e Disjoint set
- find, link
e At this level of abstraction,

reads commute with reads &
updates commute with updates

© Phillip B. Gibbons



Dynamic Map

Using hashing:
* Based on generic hash and comparison

* Problem: representation can depend on
ordering. Also on which redundant element s
kept.

* Solution: Use history independent hash table
based on linear probing...once done inserting,
representation is independent of order of
insertion

70133 44

6 3 9 5 8
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Internally Deterministic Problems

Functional History-independ.

programming data structures

Suffix array

Remove duplicates 5panning forest

Comparison sort
N-body

K-nearest neighbors

Delaunay refinement inimum spanning forest

aximal independent set
Breadth first search
Triangle ray interseg Delaunay triangulation

Delaunay refinement
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Delaunay Triangulation/Refinement

e Incremental algorithm adds one point at a time,
but points can be added in parallel if they don’t
interact

e The problem is that the output will depend on
the order they are added.
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Delaunay Triangulation/Refinement

e Adding points deterministically
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Delaunay Triangulation/Refinement

e Adding points deterministically

M1 [ M3
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Delaunay Triangulation/Refinement

e Adding points deterministically
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Delaunay Triangulation/Refinement

e Adding points deterministically
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Delaunay Triangulation/Refinement

e Adding points deterministically
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Deterministic Reservations

Generic framework Delaunay triangulation/refinement
iterates = [1,...,n]; reserve(i){
while(iterates remain){ find cavity;

reserve points in cavity;
Phase 1: in parallel, all i in +
iterates call reserve(i);

commit(i){
check reservations;
if(all reservations successful){
add point and triangulate;
by

Phase 2: in parallel, all i in
iterates call commit(i);

Remove committed i's from
iterates;

Y ¥

Note: Performance can be
improved by processing prefixes
of iterates in each round

© Phillip B. Gibbons




Internally Deterministic Code

e Implementations of benchmark problems
— Internally deterministic
— Nondeterministic
— Sequential
— All require only 20-500 lines of code

e Use nested data parallelism

e Used library of parallel operations on
sequences: reduce, prefix sum, filter, etc.
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Experimental Results

Delaunay Triangulation Delaunay Refinement
= 'IserialDellaunay | ] | " [=— deterministicRefine |
s —+—deterministicDelaunay | @ Galois—Refine
0% L ¢ Galois—Delaunay

Run time (seconds)

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of threads Number of threads
32-core Intel Xeon 7500 Multicore

Input Sets: 2M random points within a unit circle &
2M random 2D points from the Kuzmin distribution
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Experimental Results
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Figure 7. Log-log plots of running times on a 32-core machine (with hyper-threading). Our deterministic algorithms are shown in red.




Speedups on 40-core Xeon E7-8870

Application 1 M Ty Ty Ts/Tw  Application i 0 T Tw Ts/Tw

A lgorithm thread come Algorithm thread core

Imteger Sort Nl imal Ind Set

serialR adix Sort D48 - - - serialMI3 0405 - - -

paraliziRadix Sort 0299 Q03 230 360 paralelMIS 0733 07 141 877

Comparison Sort M imal Matching

serialsor 185 - - - serialMatching 084 - - -

sample Sort 15  Obes 392 431 paralielMaiching 202 I8 187 178

R‘-‘_'"I':‘{“‘ h“"l’"'“""*-" e K-Nearest Neighhors

SENalrlEs 1 . - - - - [ . -] -

paralieiHash 0867 00 3x1 255 Cciireeheighbors M9 s A5 -
- : Delannay Triangulation

gﬁm 0574 - - - serialldelaanay 56.3 - - -

narallelHash 0748 0025 299 13 Pamlellelaunay e 16 283 217

Breadth First Search Convex Hull

swenalBF5 251 _ _ _ :-:E'I_'IE.I|'|1.III 1.0 L - - -

parallelRFS 554 07 124 qoe  guckHul 1655 0093 178 10.9

Spanning Forest Suffix A rray

rrp:alﬂr'-ln 1.733 - - - serialks 17.3 - - -

paraliel5F 512 0254 201 681 paralizl K5 1T o5 205 30.4

Min Spanning Forest Ray Casting

serialMSF 104 - - - kdTree 132 03d 219 -

paralielKruskal 149 0626 238 11.2
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Problem Based Benchmark Suite
http://www.cs.cmu.edu/~pbbs/

Goal: A set of “"problem based benchmarks”
Must satisfy a particular input-output interface,
but there are no rules on the techniques used

Measure the quality of solutions based on:

- Performance and speedup over a variety of input
types and w.r.t. best sequential implementations

* Quality of output. Some benchmarks don’t have a
right answer or are approximations

- Complexity of code. Lines of code & other measures

 Determinism. The code should always return the
same output on same input

- Generic. Code should be generic over types
- Correctness guarantees
- Easily analyze performance, at least approximately
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Lecture 3 Outline

o Cilk++

e Internally-Deterministic Algorithms

e Priority-write Primitive

e Work Stealing Beyond Nested Parallelism

e Other Extensions
— False Sharing
- Work Stealing under Multiprogramming

e Emerging Memory Technologies
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Priority Write as a Parallel Primitive

[Shun, Blelloch, Fineman, G]

e Priority-write: when there are multiple writes
to a location, possibly concurrently, the value
with the highest priority is written

- E.g., write-with-min: for each location, min value
written wins (used earlier in Delaunay Refinement)

A:=5 B:=17 B:=12 A:=9 A:=8

vieldsA=5and B =12

o Useful parallel primitive:
+ Low contention even under high degrees of sharing
+ Avoids many concurrency bugs since commutes
+ Useful for many algorithms & data structures

© Phillip B. Gibbons 36
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Priority-Write Performance

Times for 5 runs of 100 million operations to x random locations
on 40-core Intel machine

L L I B A L S L SIS R
F write-with-min
test-and-set - - - -
= fetch-and-add ----------
= 10 compare-and-swap ——— -
o Y write 3
@ " read-and-write-local
= 1k ~ =
= ) . etz
Cn
,
-
= D-l .__ - 3
o — e
D Dl L Ll L Ll L ol 1 Ll L P | L ' | L T |

1 10 100 1000 10000 100000 1le+06 1le+07 le+08

Number of total locations

Figure 1. Time for six different operations types on a 40-core Intel
Nehalem under various degrees of sharing (log-log scale).

e Similar results on 48-core AMD Opteron 6168



Theoretical Justification

Lemma: Consider a collection of n distinct priority-
write operations to a single location, where at
most p randomly selected operations occur
concurrently at any time. Then the number of CAS
attempts is O(p In n) with high probability.

Idea: Let X_k be an indicator for the event that the
kth priority-write performs an update. Then X_k =1
with probability 1/k, as it updates only if it is the
highest-priority of all k earliest writes. The expected
number of updates is then given by E[X_1+ ... +X_n]
= 1/1+1/2+1/3+... +1/n = H_n.
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Priority-Write in Algorithms

e Take the maximum/minimum of set of values
e Avoiding nondeterminism since commutative

e Guarantee progress in algorithm:
highest priority thread will always succeed

e Deterministic Reservations: speculative parallel
FOR loop (use iteration as priority)
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Priority Writes in Algorithms

e Parallel version of Kruskal’s minimum spanning-
tree algorithm so that the minimum-weight
edge into a vertex is always selected

e Boruvka’s algorithm to select the minimum-
weight edge

e Bellman-Ford shortest paths to update the
neighbors of a vertex with the potentially
shorter path

e Deterministic Breadth-First Search Tree

© Phillip B. Gibbons




E.g., Breadth-First Search Tree

Frontier = {source vertex}
In each round:
In parallel for all v in Frontier
Remove v;
Attempt to place all v’'s
neighbors in Frontier;

. n—k—1vertices k vertices

| g _"\l
S e

Input: Comb Graph

Running time (seconds)

Running time (seconds)

Times for Breadth-first search on the comb graph (KE=4)

10 — T T T T T
1k
| writeMinBFS
writeBF5s - - - -
serialBFs -
U_l 1 1 1 1 1
1 2 4 8 16 32 40
Mumber of threads
Times for BFS on comb graph with varying
contention on 40 processors (log-log scale)
W7 T T T T T
1F
| writeMinBFS
writeBFS - - - -
serialBFS .- --e-
U.l N PR | N o al N PR | . PR | N P | N PR | N
1 10 100 1000 10000 100000 le+06

k [lower k means higher contention)
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Priority-Write Definition

procedure PRIORITY WRITE( addr, newval, comp)
oldval + xaddr
while comp(newwval, oldval) do
it CAS(addr, oldval, newwval) then
return
else

oldval +— *addr
end if

end while
end procedure

© Phillip B. Gibbons



Priority-Writes on Locations

o Efficient implementation of a more general
dictionary-based priority-write where the
writes/inserts are made based on keys.

- E.qg., all writers might insert a character string
into a dictionary with an associated priority

— Use for prioritized remove-duplicates algorithm

Times for Remove Duplicates on all equal keys

10
W
=
, =
S 1E
i
L
o
E e U
=
=4
c E
= -
o [

L writeMinRemDups — 4
writeRemDups - - - - o —— ]
seralRemDups -

0.01 L L 1
1 2 4 8 16 32 40

Number of threads

Figure 9. Remove Duplicates times on the allEqual sequence (log-




Lecture 3 Outline

o Cilk++

e Internally-Deterministic Algorithms

e Priority-write Primitive

e Work Stealing Beyond Nested Parallelism

e Other Extensions
— False Sharing
- Work Stealing under Multiprogramming

e Emerging Memory Technologies
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Parallel Futures future

o Futures [Halstead '85], In Multilisp </\!

» Parallelism no longer nested T

« Here: explicit future and touch
keywords

. E.g. Halstead's quicksort, pipelining
tree merge [Blelloch, Reid-Miller '97] 1

. Strictly more expressive than fork/join ¥
L 4“%110
« E.g. can express parallel pipelining \I\IH
8
. ... but still deterministic! AN
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Work Stealing for Futures?

- - future
. Implementation choices: t
« What to do when touch causes /\«
processor to stall?

. Previous work beyond nested parallelism:
« Bound # of steals for WS [Arora et al. 98] ¢

. We show: not sufficient to bound WS overhead,
once add futures!

Summary of previous work

Nested Parallelism:
O(Pd) steals, Overheads additive in # of steals
Beyond Nested Parallelism:
O(Pd) steals, # steals can’t bound overheads

© Phillip B. Gibbons d = depth of DAG




Bounds for Work Stealing with Futures
[Spoonhower, Blelloch, G, Harper ‘09]

Extend study of Work Stealing (WS) to Futures:

 Study “deviations” as a replacement for “steals”
— Classification of deviations arising with futures
— Tight bounds on WS overheads as function of # of deviations

 Give tight upper & lower bounds on # of deviations for WS
— ©O(Pd + Td), where T is # of touches

» Characterize a class of programs using futures effectively
« Only O(Pd) deviations
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Futures + Parallelism

« Processor can stall when:
1. No more tasks in local work queue

future

2. Current task is waiting for a value
computed by another processor QD

. Existing WS only steals in case 1

. We call these parsimonious schedulers 3
(i.e., pays the cost of a steal only when
it must)

« Thus, in case 2, stalled processor
jumps to other work on its local
work queue

© Phillip B. Gibbons



Deviations

A deviation (from the sequential schedule) occurs
when...

« @ processor p visits a node n,

« the sequential schedule visits n” immediately
before n

. ...but p did not.

« Used by [Acar, Blelloch, Blumofe '02] to bound additional
cache misses in nested parallelism

« Our work: use deviations as means to bound
several measures of performance

. Bound # of “slow clone” invocations
(= computation overhead)

« Bound # of cache misses in private LRU cache

'intel'
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Sources of Deviations

. In nested parallelism:
. at steals & joins

. # deviations < 2x #
steals

« With futures:
. at steals & joins O
. at touches O

. Iindirectly after
touches (rest)

© Phillip B. Gibbons



Bounding WS Overheads

A = # of deviations

Invocations of slow clones
. Theorem: # of slow clone invocations < A

. Lower bound: # of slow clone invocations is Q(A)

Cache misses (extension of [Acar, Blelloch, Blumofe ‘02])

. Theorem: # of cache misses< Q,(M) +M A

« Each processor has own LRU cache; under dag
consistency

« M = size of a (private) cache

. Q,(M) = # of cache misses in sequential
execution

© Phillip B. Gibbons



Deviations: Example Graphs

2 processors: p & q

1 future, 1 touch, T futures, T touches,
1 steal, span=d 1 steal, O(log T) span
Q(d) deviations Q(T) deviations

© Phillip B. Gibbons 52 'intel’




Bounding Deviations, Upper Bound
Main Theorem:

v computations derived from futures with
depth d and T touches, the expected #
deviations by any parsimonious WS
scheduler on P processorsis O(Pd + Td)

. First term O(Pd) based on previous bound
on # of steals

« Second term O(Td) from indirect deviations
after touches

Proof relies on:
« Structure of graphs derived from uses of futures
« Behavior of parsimonious WS

© Phillip B. Gibbons 53
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Pure Linear Pipelining

. Identified restricted use case w/ less
overhead

. # of deviationsis O(Pd)

. Includes producer-consumer examples with
streams, lists, one-dimensional arrays

© Phillip B. Gibbons
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False Sharing

Block of size B shared by P1 and P2

—— T

False Sharing: BJ2 cache misses incurred by P1 and by P2

© Phillip B. Gibbons 56  slides adapted from V. Ramachandran’s intel'



Block-Resilience

[Cole, Ramachandran '12]

e Hierarchical Balanced Parallel (HBP) computations
use balanced fork-join trees and build richer
computations through sequencing and recursion

e Design HBP with good sequential cache complexity,
and good parallelism

e Incorporate block resilience in the algorithm to
guarantee low overhead due to false sharing

e Design resource-oblivious algorithms (i.e., with no
machine parameters in the algorithms) that are
analyzed to perform well (across different schedulers)
as a function of the number of parallel tasks generated
by the scheduler

© Phillip B. Gibbons 'intel’



BOUNDS FOR RANDOMIZED WORK STEALING (RWS)

Block Resilient RWS Expected # Steals, S Cache Misses with FS Misses
HEBP Algorithm with FS Misses [Cole-R12c] S Steals [Cole-R12a] [Cole-R12b]
Scans, MT p-(logn + 2B) Q + S [FS06,CR12a] S.B
RM to BI g;-{lugn+%ﬂ} Q+5-B 5.B
MM, Strassen p-(log”n + %Blr_\»g n) Q + S%i}; + S S.-B
Depth-n-MM p-(n+LtnvB) Q + §3% + S [FS06,CR12a] S-B
-GEP p-(n-log’n+ tnvB) Q487 4+ 8 [ans CR12a] S.B
Bl to RM for p-(logn + %B} Q4+ 5. B + 5 lug logp n 5-B
MM and FFT

LCS p(1+ &) plos23 Q +nv'S/B + S [FS06,CR12a] S.B
FFT, sort p-(logn-loglogn Coon =0(Q+S-B 5.-B

+¢Blogg n) + ]ﬂn[rrﬁﬁ:n 737)
List Ranking p-logn-loglogn Q4+ Coort - logn S.-B

(logn + EH:}
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Multiple Work-Stealing Schedulers
at Once?

e Dealing with multi-tenancy

e Want to run at same time

e Schedulers must provide throughput + fairness
- Failed steal attempts not useful work
- Yielding at failed steal attempts leads to unfairness

- BWS [Ding et al. '12] decreases average unfairness
from 124% to 20% and increases thruput by 12%

* Open: What bounds can be proved?
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Unfairness
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NAND Flash Chip Properties

Block (64-128 pages) Page (512-2048 B) .
Read/write pages,

erase blocks

* Write page once after a block is erased

In-place\ update

1. Copy 2.Erase 3. Write 4. Copy 5. Erase

Random
* Expensive operations: ‘,f Z ;f
* In-place updates % S §
Y RandOm Writes 0.4ms | 0.6ms || 0.4ms | 127ms
Read Write

These quirks are now hidden by Flash/SSD firmware
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Phase Change Memory (PCM)

* Byte-addressable non-volatile memory

* Two states of phase change material:

« Amorphous: high resistance, representing “"0”
« Crystalline: low resistance, representing “1”

* Operations:

A “RESET” to Amorphous

_ _F ________ e.g., ~610°C

]
.
ST “SET” to Crystalline
g T e /S |p———— — — e.g., ~350°C
O £

3

READ

» Time
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Comparison of Technologies

DRAM PCM NAND Flash
Page size 64B 64B 4KB
Page read latency 20-50ns ~ 50ns ~ 25 us
Page write latency 20-50ns ~1us ~ 500 us
Write bandwidth ~GB/s 50-100 MB/s 5-40 MB/s

per die per die per die
Erase latency N/A A ~2m
Endurance oo 10°-10° 10*-10°
Read energy 0.8J/GB 1.5J/GB [28]
Write energy 1.2J/GB 17.5)/GB [28]
Idle power ~100 mW/GB 1-10 mW/GB
Density 1x 4x

* Compared to NAND Flash, PCM is byte-addressable, has orders
of magnitude lower latency and higher endurance.

© Phillip B. Gibbons

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al. ‘09]
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Comparison of Technologies

DRAM PCM NAND Flash
Page size 648 64B 4KB

Page read latency 20-50ns ~ 50ns ~ 25 us
Page write latency 20-50ns ~ 1 us ~ 500 ps
Write bandwidth ~GB/s 50-100 MB/s 5-40 MB/s
per die per die per die
Erase latency A A ~2ms
Endurance oo 10°- 10" 10" - 10°
Read energy 1.5J/GB [28]
Write energy 17.51/GB [28]
Idle power 1-10 mW/GB
Density 4x

* Compared to DRAM, PCM has better density and scalability;
PCM has similar read latency but longer write latency

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al.’09]
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Relative Latencies:

Read
AL
~
<
v
©
S (e
) )
o =
<
=
i i i i i
10ns 100ns 1lus 10us 100us ims 10ms
= ~
© K%
S [T ()
2 2 E
=t T
~

Write
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Challenge: PCM Writes

* Limited endurance PeM
. Page size 64B
- Wear out C|U|Ck|y for Page read latency ~ 50ns
hot spots Page write latency ~1us
Write bandwidth 50-100 MB/s
- . per die
* High energy consumption Erase latency N/A
- 6'10X Mmore energy than Endurance 106—108
a read Read energy 1J/GB
Write energy 6J/GB
* High latency & low bandwidth/ldlepower =L lllyiet:
: . Densit 2 — 4x
- SET/RESET time > READ time =X

— Limited instantaneous electric current level,
requires multiple rounds of writes
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PCM Write Hardware Optimization

[Cho, Lee’09] [Lee et al. ’09] [Yang et al. ‘07] [Zhou et al. '09]

e Baseline: several rounds of writes for
a cache line

— Which bits in which rounds are hard wired

* Optimization: data comparison write

- Goal: write only modified bits rather than entire cache line
— Approach: read-compare-write

 Skipping rounds with no modified bits
Rounds

Cacheline (ol1lol1l1lolod1lol1l1 Om h.ighlightedw/
different colors
0[{1]0]1(1]{0]1]1({0{1]1]0]1(1]211]0

PCM
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PCM-savvy Algorithms?

New goal: minimize PCM writes
— Writes use 6X more energy than reads
- Writes 20X slower than reads, lower BW, wear-out

Data comparison writes:
— Minimize Number of bits that change
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Node size 8 cache lines; 50 million entries, 75% full;

B+_Tree Index Three workloads: Inserting / Deleting / Searching

[Chen, G, Nath '11] | 'SOOK random keys
PTLSSim extended with PCM support

3E+8 Total wear 16— E{ergy ce4o . Execytion time
8 14 /— \
b= / — 12 \
£ >
2 2
2 1E+§ e
£ / 3
=
c
OE+0

insert delefe

search

| HE
\'nS\ert Wsearch

Osorted Munsorted [Ounsorted-leaf Munsorted-leaf-bmp

Unsorted leaf schemes achieve the best performance
* For insert intensive: unsorted-leaf

* For insert & delete intensive: unsorted-leaf with bitmap
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Multi-core Computing Lectures:
Progress-to-date on Key Open Questions

e How to formally model multi-core hierarchies?
e What is the Algorithm Designer’s model?

e What runtime task scheduler should be used?
e What are the new algorithmic techniques?

e How do the algorithms perform in practice?
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