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Multi-core Computing Lectures:  
Progress-to-date on Key Open Questions 

• How to formally model multi-core hierarchies? 

• What is the Algorithm Designer’s model? 

• What runtime task scheduler should be used? 

• What are the new algorithmic techniques? 

• How do the algorithms perform in practice? 
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Lecture 1 & 2 Summary 

• Multi-cores: today, future trends, challenges 

• Computations & Schedulers 

• Cache miss analysis on 2-level parallel hierarchy 

• Low-depth, cache-oblivious parallel algorithms 

 

• Modeling the Multicore Hierarchy 

• Algorithm Designer’s model exposing Hierarchy 

• Quest for a Simplified Hierarchy Abstraction 

• Algorithm Designer’s model abstracting Hierarchy 

• Space-Bounded Schedulers 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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Multicore Programming using Cilk++ 

• Cilk extends the C language with just a handful 
of keywords 
 

• Every Cilk program has a serial semantics 
 

• Not only is Cilk fast, it provides performance 
guarantees based on performance abstractions 
 

• Cilk is processor-oblivious 
 

• Cilk’s provably good runtime system 
automatically manages low-level aspects of 
parallel execution, including protocols, load 
balancing, and scheduling 

Intel® Cilk™ Plus 

Slides adapted from C. Leiserson’s 
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Cilk++ Example: Fibonacci 

int fib (int n) { 
if (n<2) return (n); 
  else { 
    int x,y; 
    x = fib(n-1); 
    y = fib(n-2); 
    return (x+y); 
  } 
} 

C elision 

int fib (int n) { 
  if (n<2) return (n); 
  else { 
    int x,y; 
    x = cilk_spawn fib(n-1); 
    y = cilk_spawn fib(n-2); 
    cilk_sync; 
    return (x+y); 
  } 
} 

Cilk code 

Cilk is a faithful extension of C.  A Cilk program’s 
serial elision is always a legal implementation of 
Cilk semantics.  Cilk provides no new data types. 
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Basic Cilk++ Keywords 

int fib (int n) { 
  if (n<2) return (n); 
  else { 
    int x,y; 
    x = cilk_spawn fib(n-1); 
    y = cilk_spawn fib(n-2); 
    cilk_sync; 
    return (x+y); 
  } 
} 

The named child Cilk 
procedure can 

execute in parallel 
with the parent caller 

Control cannot pass this 
point until all spawned 
children have returned 

Useful macro: cilk_for 

    for recursive spawning of parallel loop iterates 
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Nondeterminism in Cilk 

 Cilk encapsulates the nondeterminism of 
scheduling, allowing average programmers 
to write deterministic parallel codes using 
only 3 keywords to indicate logical parallelism 
 

 The Cilkscreen race detector offers 
provable guarantees of determinism  
by certifying the absence of determinacy races 
 

 Cilk’s reducer hyperobjects encapsulate the 
nondeterminism of updates to nonlocal variables, 
yielding deterministic behavior for parallel updates 
 See next slide 
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Summing Numbers in an Array 
using sum_reducer [Frigo et al. ‘09] 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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Nondeterminism 

•Concerned about nondeterminism due to 
parallel scheduling orders and concurrency 

Slides adapted from J. Shun’s 
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Nondeterminism is problematic 

• Debugging is painful 

• Hard to reason  
   about code 

• Formal verification 
   is hard 

• Hard to measure 
   performance 

“Insanity: doing the same 
thing over and over again and 
expecting different results.” 
       - Albert Einstein 
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Inherently Deterministic Problems 

• Wide coverage of real-world non-numeric 
    problems 

• Random numbers can be deterministic 

Breadth first search Spanning forest 

Suffix array Minimum spanning 
forest 

Remove duplicates Maximal Independent 
set 

Comparison sort K-nearest neighbors 

N-body Triangle ray intersect 

Delaunay triangulation Delaunay refinement 
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External vs. Internal Determinism 

• External: same input  same result 

• Internal: same input  same intermediate states 

                                         & same result 
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Internal Determinism  
[Netzer, Miller ’92] 

• Trace: a computation’s final 
   state, intermediate states, 
   and control-flow DAG 

 

• Internally deterministic:  
   for any fixed input, all  
   possible executions result 
   in equivalent traces (w.r.t. 
   some level of abstraction) 

– Also implies external determinism  

– Provides sequential semantics 

Trace 
↓ 
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Internally deterministic? 
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Commutative + Nested Parallel   
 Internal Determinism 

[Steele ‘90] 

• Commutativity 

– [Steele ’90] define it in terms of memory operations 

– [Cheng et al. ’98] extend it to critical regions 

– Two operations f and g commute if f ◦ g and g ◦ f have 
same final state and same return values 

• We look at commutativity in terms of arbitrary 
   abstraction by introducing  “commutative      
   building blocks” 

• We use commutativity strictly to get deterministic  
    behavior, but there are other uses… 
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System Approaches to Determinism 

Determinism via  

• Hardware mechanisms [Devietti et al. ‘11,  

 Hower et al. ‘11] 

• Runtime systems and compilers [Bergan et al. ‘10,   

 Berger et al. ‘09, Olszewski et al. ‘09, Yu and Narayanasamy ‘09] 

• Operating systems [Bergan et al. ‘10] 

• Programming languages/frameworks  
 [Bocchino et al. ‘09] 
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Commutative Building Blocks 
[Blelloch, Fineman, G, Shun ‘12] 

• Priority write 

– pwrite, read 

• Priority reserve 

– reserve, check, checkReset 

• Dynamic map 

– insert, delete, elements 

• Disjoint set 

– find, link 

• At this level of abstraction,  
      reads commute with reads &  
      updates commute with updates 
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Dynamic Map 

Using hashing: 

• Based on generic hash and comparison 

• Problem: representation can depend on 
ordering. Also on which redundant element is 
kept. 

• Solution: Use history independent hash table 
based on linear probing…once done inserting, 
representation is independent of order of 
insertion 
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Internally Deterministic Problems 

Functional 
programming 

Suffix array 

Comparison sort 

N-body 

K-nearest neighbors 

Triangle ray intersect 

History-independ. 
data structures 

Remove duplicates 

Delaunay refinement 

Deterministic 
reservations 

Spanning forest 

Minimum spanning forest 

Maximal independent set 

Breadth first search 

Delaunay triangulation 

Delaunay refinement 
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Delaunay Triangulation/Refinement 

• Incremental algorithm adds one point at a time,  
   but points can be added in parallel if they don’t  
   interact 

• The problem is that the output will depend on 
   the order they are added. 
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Delaunay Triangulation/Refinement 

• Adding points deterministically 
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Delaunay Triangulation/Refinement 
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Deterministic Reservations 

Delaunay triangulation/refinement Generic framework 

iterates  = [1,…,n]; 
while(iterates remain){ 
 
   Phase 1: in parallel, all i in  
    iterates call reserve(i); 
 
   Phase 2: in parallel, all i in  
    iterates call commit(i); 
 
   Remove committed i‘s from 
    iterates; 
} 

 
Note: Performance can be 
improved by processing prefixes 
of iterates in each round         

reserve(i){ 
      find cavity; 
      reserve points in cavity; 
} 

         

commit(i){ 
      check reservations; 
      if(all reservations successful){ 
             add point and triangulate; 
      } 
} 
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Internally Deterministic Code 

• Implementations of benchmark problems 

– Internally deterministic 

– Nondeterministic 

– Sequential 

– All require only 20-500 lines of code 

• Use nested data parallelism 

• Used library of parallel operations on  
   sequences: reduce, prefix sum, filter, etc. 
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Experimental Results 

Delaunay Triangulation Delaunay Refinement 

32-core Intel Xeon 7500 Multicore 
Input Sets: 2M random points within a unit circle & 
2M random 2D points from the Kuzmin distribution 
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Experimental Results 
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Speedups on 40-core Xeon E7-8870 
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Problem Based Benchmark Suite 
http://www.cs.cmu.edu/~pbbs/ 

Goal:  A set of “problem based benchmarks” 
    Must satisfy a particular input-output interface, 
    but there are no rules on the techniques used  
  

Measure the quality of solutions based on: 

• Performance and speedup over a variety of input  
     types and w.r.t. best sequential implementations 

• Quality of output.  Some benchmarks don’t have a  
     right answer or are approximations 

• Complexity of code.  Lines of code & other measures 

• Determinism.  The code should always return the  
     same output on same input 

• Generic.   Code should be generic over types 

• Correctness guarantees 

• Easily analyze performance, at least approximately 



35 © Phillip B. Gibbons 

Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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• Priority-write: when there are multiple writes  
   to a location, possibly concurrently, the value  
   with the highest priority is written 

– E.g., write-with-min: for each location, min value 
written wins (used earlier in Delaunay Refinement) 

 

 

 

• Useful parallel primitive: 

+ Low contention even under high degrees of sharing 

+ Avoids many concurrency bugs since commutes 

+ Useful for many algorithms & data structures 

Priority Write as a Parallel Primitive 
[Shun, Blelloch, Fineman, G] 

A := 5    B := 17    B := 12    A := 9    A := 8 

yields A = 5 and B = 12 
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Priority-Write Performance 

Similar results on 48-core AMD Opteron 6168 
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Theoretical Justification 

Lemma: Consider a collection of n distinct priority-
write operations to a single location, where at 
most p randomly selected operations occur 
concurrently at any time. Then the number of CAS 
attempts is O(p ln n) with high probability. 

Idea: Let X_k be an indicator for the event that the  
kth priority-write performs an update. Then X_k = 1  
with probability 1/k, as it updates only if it is the  
highest-priority of all k earliest writes. The expected  
number of updates is then given by E[X_1+ … +X_n] 
= 1/1+1/2+1/3+... +1/n = H_n. 
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Priority-Write in Algorithms 

• Take the maximum/minimum of set of values 

• Avoiding nondeterminism since commutative 

• Guarantee progress in algorithm:  
    highest priority thread will always succeed 

• Deterministic Reservations: speculative parallel  
    FOR loop (use iteration as priority) 

 



40 © Phillip B. Gibbons 

Priority Writes in Algorithms 

• Parallel version of Kruskal’s minimum spanning-  
    tree algorithm so that the minimum-weight  
    edge into a vertex is always selected 

• Boruvka’s algorithm to select the minimum- 
    weight edge 

• Bellman-Ford shortest paths to update the  
    neighbors of a vertex with the potentially  
    shorter path 

•  Deterministic Breadth-First Search Tree 
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E.g., Breadth-First Search Tree 

Frontier  = {source vertex} 
In each round: 
   In parallel for all v in Frontier 

      Remove v; 
      Attempt to place all v’s 
           neighbors in Frontier; 

Input: Comb Graph 
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Priority-Write Definition 
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Priority-Writes on Locations 

• Efficient implementation of a more general  
   dictionary-based priority-write where the  
   writes/inserts are made based on keys.  

– E.g., all writers might insert a character string  
into a dictionary with an associated priority 

– Use for prioritized remove-duplicates algorithm 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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Parallel Futures 

 Futures [Halstead '85], in Multilisp 

 Parallelism no longer nested 

 Here: explicit future and touch 

keywords 

 E.g. Halstead's quicksort, pipelining 

tree merge [Blelloch, Reid-Miller '97] 

 Strictly more expressive than fork/join 

 E.g. can express parallel pipelining 

 … but still deterministic! 
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Work Stealing for Futures? 

 Implementation choices: 

 What to do when touch causes  

processor to stall? 

 

 Previous work beyond nested parallelism: 

 Bound # of steals for WS [Arora et al. ’98] 

 We show: not sufficient to bound WS overhead, 
once add futures! 

   Summary of previous work 
 

Nested Parallelism:   
O(Pd) steals,  Overheads additive in # of steals 

Beyond Nested Parallelism:  
O(Pd) steals,  # steals can’t bound overheads 

d = depth of DAG 
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Bounds for Work Stealing with Futures 
[Spoonhower, Blelloch, G, Harper ‘09] 

Extend study of Work Stealing (WS) to Futures: 

• Study “deviations” as a replacement for “steals” 

– Classification of deviations arising with futures 

– Tight bounds on WS overheads as function of # of deviations 
 

• Give tight upper & lower bounds on # of deviations for WS 

– Θ(Pd + Td), where T is # of touches 
 

• Characterize a class of programs using futures effectively 

•  Only O(Pd) deviations 
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Futures + Parallelism 

 Processor can stall when: 

1. No more tasks in local work queue 

2. Current task is waiting for a value 
computed by another processor 

 

 Existing WS only steals in case 1 

 We call these parsimonious schedulers 
(i.e., pays the cost of a steal only when 
it must) 

 Thus, in case 2, stalled processor 
jumps to other work on its local 
work queue  
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Deviations 

A deviation (from the sequential schedule) occurs 
when... 

 a processor p visits a node n, 

 the sequential schedule visits n’ immediately  
before n  

 ...but p did not. 

 Used by [Acar, Blelloch, Blumofe ’02] to bound additional 
cache misses in nested parallelism 

 Our work: use deviations as means to bound 
several measures of performance 

 Bound # of “slow clone” invocations  
         (≈ computation overhead) 

 Bound # of cache misses in private LRU cache 
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Sources of Deviations 

 In nested parallelism: 

 at steals & joins 

 # deviations ≤ 2× # 
steals 

 

 With futures: 

 at steals & joins 

 at touches 

 indirectly after 
touches 

touch 

1 

2 

8 

7 

4 

5 

10 

3 

6 
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12 

11 

14 

13 
15 

16 

(rest) 
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Bounding WS Overheads 

Invocations of slow clones 

 Theorem:  # of slow clone invocations ≤ ∆ 

 Lower bound: # of slow clone invocations is Ω(∆) 

 

Cache misses (extension of [Acar, Blelloch, Blumofe ‘02]) 

 Theorem:  # of cache misses < Q1(M) + M ∆ 

 Each processor has own LRU cache; under dag 
consistency  

 M = size of a (private) cache 

 Q1(M) = # of cache misses in sequential 
execution 

∆ = # of deviations 
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Deviations: Example Graphs 

1 future, 1 touch, 
1 steal, span=d 

 

Ω(d) deviations 

T futures, T touches, 
1 steal, O(log T) span 

 

Ω(T) deviations 

2 processors: p & q 
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Bounding Deviations, Upper Bound 

Main Theorem: 

∀ computations derived from futures with 
depth d and T touches, the expected # 
deviations by any parsimonious WS 
scheduler on P processors is O(Pd + Td) 

 

 First term O(Pd) based on previous bound 
on # of steals 

 Second term O(Td) from indirect deviations 
after touches 

Proof relies on: 

 Structure of graphs derived from uses of futures 

 Behavior of parsimonious WS 
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Pure Linear Pipelining 

 Identified restricted use case w/ less 
overhead 

 # of deviations is O(Pd) 
 

  

 Includes producer-consumer examples with 
streams, lists, one-dimensional arrays 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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False Sharing 

Slides adapted from V. Ramachandran’s 
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Block-Resilience 
[Cole, Ramachandran ‘12] 

 
• Hierarchical Balanced Parallel (HBP) computations 
use balanced fork-join trees and build richer 
computations through sequencing and recursion 

• Design HBP with good sequential cache complexity, 
and good parallelism 

• Incorporate block resilience in the algorithm to 
guarantee low overhead due to false sharing 

• Design resource-oblivious algorithms (i.e., with no 
machine parameters in the algorithms) that are 
analyzed to perform well (across different schedulers) 
as a function of the number of parallel tasks generated 
by the scheduler 



58 © Phillip B. Gibbons 



59 © Phillip B. Gibbons 

Multiple Work-Stealing Schedulers 
at Once? 

• Dealing with multi-tenancy 
 

• Want to run at same time 
 

• Schedulers must provide throughput + fairness 

– Failed steal attempts not useful work 

– Yielding at failed steal attempts leads to unfairness 

– BWS [Ding et al. ’12] decreases average unfairness 
from 124% to 20% and increases thruput by 12% 

 

• Open: What bounds can be proved? 
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Unfairness 

Throughput 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 
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– Work Stealing under Multiprogramming  
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NAND Flash Chip Properties 

… … 
Block (64-128 pages) Page (512-2048 B) 

Read/write pages, 
erase blocks 

• Write page once after a block is erased 

• Expensive operations: 

• In-place updates  

• Random writes 

In-place update 

1. Copy 2. Erase 3. Write 4. Copy 5. Erase 

R
an

d
o

m
 

Seq
u

en
tial 

0.4ms 0.6ms 

Read 

Random 

Seq
u

en
tial 

0.4ms 127ms 

Write 

These quirks are now hidden by Flash/SSD firmware 
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Phase Change Memory (PCM) 

• Byte-addressable non-volatile memory 

• Two states of phase change material: 

• Amorphous:  high resistance, representing “0” 

• Crystalline: low resistance, representing “1” 

• Operations: 

C
u

rr
e

n
t 

(T
e

m
p

e
ra

tu
re

) 

Time 

e.g., ~350⁰C 
“SET” to Crystalline 

e.g., ~610⁰C 
“RESET” to Amorphous 

READ 
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Comparison of Technologies 

  DRAM PCM NAND  Flash 

Page  size 
Page  read  latency 
Page  write latency 
Write bandwidth 
 
Erase  latency 

64B 
20-50ns 
20-50ns 
∼GB/s  
per die 

N/A 

64B 
∼ 50ns 
∼ 1 µs 

50-100 MB/s  
per die 

N/A 

4KB 
∼ 25 µs 
∼ 500 µs 

5-40 MB/s  
per die 
∼ 2 ms 

Endurance ∞ 10
6
 − 10

8 
10

4
 − 10

5 

Read  energy 
Write energy 
Idle power 

0.8 J/GB 
1.2 J/GB 

∼100 mW/GB 

1 J/GB 
6 J/GB 

∼1 mW/GB 

1.5 J/GB [28] 
17.5 J/GB [28] 
1–10 mW/GB 

Density 1× 2 − 4× 4× 

• Compared to NAND Flash, PCM is byte-addressable, has orders 
of magnitude lower latency and higher endurance. 

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al. ‘09] 
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Comparison of Technologies 

  DRAM PCM NAND  Flash 

Page  size 
Page  read  latency 
Page  write latency 
Write bandwidth 
 
Erase  latency 

64B 
20-50ns 
20-50ns 
∼GB/s  
per die 

N/A 

64B 
∼ 50ns 
∼ 1 µs 

50-100 MB/s  
per die 

N/A 

4KB 
∼ 25 µs 
∼ 500 µs 

5-40 MB/s  
per die 
∼ 2 ms 

Endurance ∞ 10
6
 − 10

8 
10

4
 − 10

5 

Read  energy 
Write energy 
Idle power 

0.8 J/GB 
1.2 J/GB 

∼100 mW/GB 

1 J/GB 
6 J/GB 

∼1 mW/GB 

1.5 J/GB [28] 
17.5 J/GB [28] 
1–10 mW/GB 

Density 1× 2 − 4× 4× 

• Compared to DRAM, PCM has better density and scalability; 
PCM has similar read latency but longer write latency 

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al. ’09] 
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Relative Latencies: 

10ns 100ns 1us 10us 100us 1ms 10ms 
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Write 
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Challenge: PCM Writes 

• Limited endurance 

– Wear out quickly for  
hot spots 

 

• High energy consumption 

– 6-10X more energy than  
a read 

 

• High latency & low bandwidth 

– SET/RESET time > READ time 

– Limited instantaneous electric current level,  
requires multiple rounds of writes 

  PCM 

Page  size 
Page  read  latency 
Page  write latency 
Write bandwidth 
 
Erase  latency 

64B 
∼ 50ns 
∼ 1 µs 

50-100 MB/s  
per die 

N/A 

Endurance 10
6
 − 10

8 

Read  energy 
Write energy 
Idle power 

1 J/GB 
6 J/GB 

∼1 mW/GB 

Density 2 − 4× 
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0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 

PCM Write Hardware Optimization 

0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 

0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 

PCM 
0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 

[Cho, Lee’09] [Lee et al. ’09] [Yang et al. ‘07] [Zhou et al. ’09] 

Cache line 
Rounds 

highlighted w/ 
different colors 

• Baseline: several rounds of writes for  
a cache line 

– Which bits in which rounds are hard wired 

• Optimization: data comparison write 

– Goal: write only modified bits rather than entire cache line 

– Approach: read-compare-write  

• Skipping rounds with no modified bits 
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PCM-savvy Algorithms? 
 

New goal: minimize PCM writes 

–  Writes use 6X more energy than reads 

–  Writes 20X slower than reads, lower BW, wear-out 

 

Data comparison writes: 

–  Minimize Number of bits that change 
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B+-Tree Index 

0E+0 

1E+9 

2E+9 

3E+9 

4E+9 

5E+9 

insert delete search 
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insert delete search 
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insert delete search 

e
n

e
r
g

y
 (

m
J
)
 

Node size 8 cache lines; 50 million entries, 75% full;  

Three workloads: Inserting / Deleting / Searching    
                                      500K random keys  

PTLSSim extended with PCM support 

Unsorted leaf schemes achieve the best performance 

• For insert intensive: unsorted-leaf 

• For insert & delete intensive: unsorted-leaf with bitmap 

Total wear Energy Execution time 

[Chen, G, Nath ‘11] 
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Multi-core Computing Lectures:  
Progress-to-date on Key Open Questions 

• How to formally model multi-core hierarchies? 

• What is the Algorithm Designer’s model? 

• What runtime task scheduler should be used? 

• What are the new algorithmic techniques? 

• How do the algorithms perform in practice? 
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