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Multi-core Computing Lectures:  
Progress-to-date on Key Open Questions 

• How to formally model multi-core hierarchies? 

• What is the Algorithm Designer’s model? 

• What runtime task scheduler should be used? 

• What are the new algorithmic techniques? 

• How do the algorithms perform in practice? 
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Lecture 1 & 2 Summary 

• Multi-cores: today, future trends, challenges 

• Computations & Schedulers 

• Cache miss analysis on 2-level parallel hierarchy 

• Low-depth, cache-oblivious parallel algorithms 

 

• Modeling the Multicore Hierarchy 

• Algorithm Designer’s model exposing Hierarchy 

• Quest for a Simplified Hierarchy Abstraction 

• Algorithm Designer’s model abstracting Hierarchy 

• Space-Bounded Schedulers 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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Multicore Programming using Cilk++ 

• Cilk extends the C language with just a handful 
of keywords 
 

• Every Cilk program has a serial semantics 
 

• Not only is Cilk fast, it provides performance 
guarantees based on performance abstractions 
 

• Cilk is processor-oblivious 
 

• Cilk’s provably good runtime system 
automatically manages low-level aspects of 
parallel execution, including protocols, load 
balancing, and scheduling 

Intel® Cilk™ Plus 

Slides adapted from C. Leiserson’s 
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Cilk++ Example: Fibonacci 

int fib (int n) { 
if (n<2) return (n); 
  else { 
    int x,y; 
    x = fib(n-1); 
    y = fib(n-2); 
    return (x+y); 
  } 
} 

C elision 

int fib (int n) { 
  if (n<2) return (n); 
  else { 
    int x,y; 
    x = cilk_spawn fib(n-1); 
    y = cilk_spawn fib(n-2); 
    cilk_sync; 
    return (x+y); 
  } 
} 

Cilk code 

Cilk is a faithful extension of C.  A Cilk program’s 
serial elision is always a legal implementation of 
Cilk semantics.  Cilk provides no new data types. 



7 © Phillip B. Gibbons 

Basic Cilk++ Keywords 

int fib (int n) { 
  if (n<2) return (n); 
  else { 
    int x,y; 
    x = cilk_spawn fib(n-1); 
    y = cilk_spawn fib(n-2); 
    cilk_sync; 
    return (x+y); 
  } 
} 

The named child Cilk 
procedure can 

execute in parallel 
with the parent caller 

Control cannot pass this 
point until all spawned 
children have returned 

Useful macro: cilk_for 

    for recursive spawning of parallel loop iterates 
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Nondeterminism in Cilk 

 Cilk encapsulates the nondeterminism of 
scheduling, allowing average programmers 
to write deterministic parallel codes using 
only 3 keywords to indicate logical parallelism 
 

 The Cilkscreen race detector offers 
provable guarantees of determinism  
by certifying the absence of determinacy races 
 

 Cilk’s reducer hyperobjects encapsulate the 
nondeterminism of updates to nonlocal variables, 
yielding deterministic behavior for parallel updates 
 See next slide 
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Summing Numbers in an Array 
using sum_reducer [Frigo et al. ‘09] 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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Nondeterminism 

•Concerned about nondeterminism due to 
parallel scheduling orders and concurrency 

Slides adapted from J. Shun’s 
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Nondeterminism is problematic 

• Debugging is painful 

• Hard to reason  
   about code 

• Formal verification 
   is hard 

• Hard to measure 
   performance 

“Insanity: doing the same 
thing over and over again and 
expecting different results.” 
       - Albert Einstein 
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Inherently Deterministic Problems 

• Wide coverage of real-world non-numeric 
    problems 

• Random numbers can be deterministic 

Breadth first search Spanning forest 

Suffix array Minimum spanning 
forest 

Remove duplicates Maximal Independent 
set 

Comparison sort K-nearest neighbors 

N-body Triangle ray intersect 

Delaunay triangulation Delaunay refinement 
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External vs. Internal Determinism 

• External: same input  same result 

• Internal: same input  same intermediate states 

                                         & same result 
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Internal Determinism  
[Netzer, Miller ’92] 

• Trace: a computation’s final 
   state, intermediate states, 
   and control-flow DAG 

 

• Internally deterministic:  
   for any fixed input, all  
   possible executions result 
   in equivalent traces (w.r.t. 
   some level of abstraction) 

– Also implies external determinism  

– Provides sequential semantics 

Trace 
↓ 
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Internally deterministic? 
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Commutative + Nested Parallel   
 Internal Determinism 

[Steele ‘90] 

• Commutativity 

– [Steele ’90] define it in terms of memory operations 

– [Cheng et al. ’98] extend it to critical regions 

– Two operations f and g commute if f ◦ g and g ◦ f have 
same final state and same return values 

• We look at commutativity in terms of arbitrary 
   abstraction by introducing  “commutative      
   building blocks” 

• We use commutativity strictly to get deterministic  
    behavior, but there are other uses… 
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System Approaches to Determinism 

Determinism via  

• Hardware mechanisms [Devietti et al. ‘11,  

 Hower et al. ‘11] 

• Runtime systems and compilers [Bergan et al. ‘10,   

 Berger et al. ‘09, Olszewski et al. ‘09, Yu and Narayanasamy ‘09] 

• Operating systems [Bergan et al. ‘10] 

• Programming languages/frameworks  
 [Bocchino et al. ‘09] 
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Commutative Building Blocks 
[Blelloch, Fineman, G, Shun ‘12] 

• Priority write 

– pwrite, read 

• Priority reserve 

– reserve, check, checkReset 

• Dynamic map 

– insert, delete, elements 

• Disjoint set 

– find, link 

• At this level of abstraction,  
      reads commute with reads &  
      updates commute with updates 
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Dynamic Map 

Using hashing: 

• Based on generic hash and comparison 

• Problem: representation can depend on 
ordering. Also on which redundant element is 
kept. 

• Solution: Use history independent hash table 
based on linear probing…once done inserting, 
representation is independent of order of 
insertion 
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Internally Deterministic Problems 

Functional 
programming 

Suffix array 

Comparison sort 

N-body 

K-nearest neighbors 

Triangle ray intersect 

History-independ. 
data structures 

Remove duplicates 

Delaunay refinement 

Deterministic 
reservations 

Spanning forest 

Minimum spanning forest 

Maximal independent set 

Breadth first search 

Delaunay triangulation 

Delaunay refinement 



23 © Phillip B. Gibbons 

Delaunay Triangulation/Refinement 

• Incremental algorithm adds one point at a time,  
   but points can be added in parallel if they don’t  
   interact 

• The problem is that the output will depend on 
   the order they are added. 
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Delaunay Triangulation/Refinement 

• Adding points deterministically 
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Delaunay Triangulation/Refinement 
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Deterministic Reservations 

Delaunay triangulation/refinement Generic framework 

iterates  = [1,…,n]; 
while(iterates remain){ 
 
   Phase 1: in parallel, all i in  
    iterates call reserve(i); 
 
   Phase 2: in parallel, all i in  
    iterates call commit(i); 
 
   Remove committed i‘s from 
    iterates; 
} 

 
Note: Performance can be 
improved by processing prefixes 
of iterates in each round         

reserve(i){ 
      find cavity; 
      reserve points in cavity; 
} 

         

commit(i){ 
      check reservations; 
      if(all reservations successful){ 
             add point and triangulate; 
      } 
} 
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Internally Deterministic Code 

• Implementations of benchmark problems 

– Internally deterministic 

– Nondeterministic 

– Sequential 

– All require only 20-500 lines of code 

• Use nested data parallelism 

• Used library of parallel operations on  
   sequences: reduce, prefix sum, filter, etc. 
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Experimental Results 

Delaunay Triangulation Delaunay Refinement 

32-core Intel Xeon 7500 Multicore 
Input Sets: 2M random points within a unit circle & 
2M random 2D points from the Kuzmin distribution 
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Experimental Results 
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Speedups on 40-core Xeon E7-8870 
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Problem Based Benchmark Suite 
http://www.cs.cmu.edu/~pbbs/ 

Goal:  A set of “problem based benchmarks” 
    Must satisfy a particular input-output interface, 
    but there are no rules on the techniques used  
  

Measure the quality of solutions based on: 

• Performance and speedup over a variety of input  
     types and w.r.t. best sequential implementations 

• Quality of output.  Some benchmarks don’t have a  
     right answer or are approximations 

• Complexity of code.  Lines of code & other measures 

• Determinism.  The code should always return the  
     same output on same input 

• Generic.   Code should be generic over types 

• Correctness guarantees 

• Easily analyze performance, at least approximately 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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• Priority-write: when there are multiple writes  
   to a location, possibly concurrently, the value  
   with the highest priority is written 

– E.g., write-with-min: for each location, min value 
written wins (used earlier in Delaunay Refinement) 

 

 

 

• Useful parallel primitive: 

+ Low contention even under high degrees of sharing 

+ Avoids many concurrency bugs since commutes 

+ Useful for many algorithms & data structures 

Priority Write as a Parallel Primitive 
[Shun, Blelloch, Fineman, G] 

A := 5    B := 17    B := 12    A := 9    A := 8 

yields A = 5 and B = 12 
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Priority-Write Performance 

Similar results on 48-core AMD Opteron 6168 
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Theoretical Justification 

Lemma: Consider a collection of n distinct priority-
write operations to a single location, where at 
most p randomly selected operations occur 
concurrently at any time. Then the number of CAS 
attempts is O(p ln n) with high probability. 

Idea: Let X_k be an indicator for the event that the  
kth priority-write performs an update. Then X_k = 1  
with probability 1/k, as it updates only if it is the  
highest-priority of all k earliest writes. The expected  
number of updates is then given by E[X_1+ … +X_n] 
= 1/1+1/2+1/3+... +1/n = H_n. 
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Priority-Write in Algorithms 

• Take the maximum/minimum of set of values 

• Avoiding nondeterminism since commutative 

• Guarantee progress in algorithm:  
    highest priority thread will always succeed 

• Deterministic Reservations: speculative parallel  
    FOR loop (use iteration as priority) 
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Priority Writes in Algorithms 

• Parallel version of Kruskal’s minimum spanning-  
    tree algorithm so that the minimum-weight  
    edge into a vertex is always selected 

• Boruvka’s algorithm to select the minimum- 
    weight edge 

• Bellman-Ford shortest paths to update the  
    neighbors of a vertex with the potentially  
    shorter path 

•  Deterministic Breadth-First Search Tree 
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E.g., Breadth-First Search Tree 

Frontier  = {source vertex} 
In each round: 
   In parallel for all v in Frontier 

      Remove v; 
      Attempt to place all v’s 
           neighbors in Frontier; 

Input: Comb Graph 
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Priority-Write Definition 
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Priority-Writes on Locations 

• Efficient implementation of a more general  
   dictionary-based priority-write where the  
   writes/inserts are made based on keys.  

– E.g., all writers might insert a character string  
into a dictionary with an associated priority 

– Use for prioritized remove-duplicates algorithm 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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Parallel Futures 

 Futures [Halstead '85], in Multilisp 

 Parallelism no longer nested 

 Here: explicit future and touch 

keywords 

 E.g. Halstead's quicksort, pipelining 

tree merge [Blelloch, Reid-Miller '97] 

 Strictly more expressive than fork/join 

 E.g. can express parallel pipelining 

 … but still deterministic! 
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Work Stealing for Futures? 

 Implementation choices: 

 What to do when touch causes  

processor to stall? 

 

 Previous work beyond nested parallelism: 

 Bound # of steals for WS [Arora et al. ’98] 

 We show: not sufficient to bound WS overhead, 
once add futures! 

   Summary of previous work 
 

Nested Parallelism:   
O(Pd) steals,  Overheads additive in # of steals 

Beyond Nested Parallelism:  
O(Pd) steals,  # steals can’t bound overheads 

d = depth of DAG 
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Bounds for Work Stealing with Futures 
[Spoonhower, Blelloch, G, Harper ‘09] 

Extend study of Work Stealing (WS) to Futures: 

• Study “deviations” as a replacement for “steals” 

– Classification of deviations arising with futures 

– Tight bounds on WS overheads as function of # of deviations 
 

• Give tight upper & lower bounds on # of deviations for WS 

– Θ(Pd + Td), where T is # of touches 
 

• Characterize a class of programs using futures effectively 

•  Only O(Pd) deviations 
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Futures + Parallelism 

 Processor can stall when: 

1. No more tasks in local work queue 

2. Current task is waiting for a value 
computed by another processor 

 

 Existing WS only steals in case 1 

 We call these parsimonious schedulers 
(i.e., pays the cost of a steal only when 
it must) 

 Thus, in case 2, stalled processor 
jumps to other work on its local 
work queue  
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Deviations 

A deviation (from the sequential schedule) occurs 
when... 

 a processor p visits a node n, 

 the sequential schedule visits n’ immediately  
before n  

 ...but p did not. 

 Used by [Acar, Blelloch, Blumofe ’02] to bound additional 
cache misses in nested parallelism 

 Our work: use deviations as means to bound 
several measures of performance 

 Bound # of “slow clone” invocations  
         (≈ computation overhead) 

 Bound # of cache misses in private LRU cache 
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Sources of Deviations 

 In nested parallelism: 

 at steals & joins 

 # deviations ≤ 2× # 
steals 

 

 With futures: 

 at steals & joins 

 at touches 

 indirectly after 
touches 

touch 

1 

2 
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7 

4 

5 

10 

3 
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15 

16 

(rest) 
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Bounding WS Overheads 

Invocations of slow clones 

 Theorem:  # of slow clone invocations ≤ ∆ 

 Lower bound: # of slow clone invocations is Ω(∆) 

 

Cache misses (extension of [Acar, Blelloch, Blumofe ‘02]) 

 Theorem:  # of cache misses < Q1(M) + M ∆ 

 Each processor has own LRU cache; under dag 
consistency  

 M = size of a (private) cache 

 Q1(M) = # of cache misses in sequential 
execution 

∆ = # of deviations 
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Deviations: Example Graphs 

1 future, 1 touch, 
1 steal, span=d 

 

Ω(d) deviations 

T futures, T touches, 
1 steal, O(log T) span 

 

Ω(T) deviations 

2 processors: p & q 
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Bounding Deviations, Upper Bound 

Main Theorem: 

∀ computations derived from futures with 
depth d and T touches, the expected # 
deviations by any parsimonious WS 
scheduler on P processors is O(Pd + Td) 

 

 First term O(Pd) based on previous bound 
on # of steals 

 Second term O(Td) from indirect deviations 
after touches 

Proof relies on: 

 Structure of graphs derived from uses of futures 

 Behavior of parsimonious WS 
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Pure Linear Pipelining 

 Identified restricted use case w/ less 
overhead 

 # of deviations is O(Pd) 
 

  

 Includes producer-consumer examples with 
streams, lists, one-dimensional arrays 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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False Sharing 

Slides adapted from V. Ramachandran’s 
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Block-Resilience 
[Cole, Ramachandran ‘12] 

 
• Hierarchical Balanced Parallel (HBP) computations 
use balanced fork-join trees and build richer 
computations through sequencing and recursion 

• Design HBP with good sequential cache complexity, 
and good parallelism 

• Incorporate block resilience in the algorithm to 
guarantee low overhead due to false sharing 

• Design resource-oblivious algorithms (i.e., with no 
machine parameters in the algorithms) that are 
analyzed to perform well (across different schedulers) 
as a function of the number of parallel tasks generated 
by the scheduler 
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Multiple Work-Stealing Schedulers 
at Once? 

• Dealing with multi-tenancy 
 

• Want to run at same time 
 

• Schedulers must provide throughput + fairness 

– Failed steal attempts not useful work 

– Yielding at failed steal attempts leads to unfairness 

– BWS [Ding et al. ’12] decreases average unfairness 
from 124% to 20% and increases thruput by 12% 

 

• Open: What bounds can be proved? 
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Unfairness 

Throughput 
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Lecture 3 Outline 

• Cilk++ 

• Internally-Deterministic Algorithms 

• Priority-write Primitive 

• Work Stealing Beyond Nested Parallelism 

• Other Extensions 

– False Sharing 

– Work Stealing under Multiprogramming  

• Emerging Memory Technologies 
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NAND Flash Chip Properties 

… … 
Block (64-128 pages) Page (512-2048 B) 

Read/write pages, 
erase blocks 

• Write page once after a block is erased 

• Expensive operations: 

• In-place updates  

• Random writes 

In-place update 

1. Copy 2. Erase 3. Write 4. Copy 5. Erase 

R
an

d
o

m
 

Seq
u

en
tial 

0.4ms 0.6ms 

Read 

Random 

Seq
u

en
tial 

0.4ms 127ms 

Write 

These quirks are now hidden by Flash/SSD firmware 
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Phase Change Memory (PCM) 

• Byte-addressable non-volatile memory 

• Two states of phase change material: 

• Amorphous:  high resistance, representing “0” 

• Crystalline: low resistance, representing “1” 

• Operations: 

C
u

rr
e

n
t 

(T
e

m
p

e
ra

tu
re

) 

Time 

e.g., ~350⁰C 
“SET” to Crystalline 

e.g., ~610⁰C 
“RESET” to Amorphous 

READ 
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Comparison of Technologies 

  DRAM PCM NAND  Flash 

Page  size 
Page  read  latency 
Page  write latency 
Write bandwidth 
 
Erase  latency 

64B 
20-50ns 
20-50ns 
∼GB/s  
per die 

N/A 

64B 
∼ 50ns 
∼ 1 µs 

50-100 MB/s  
per die 

N/A 

4KB 
∼ 25 µs 
∼ 500 µs 

5-40 MB/s  
per die 
∼ 2 ms 

Endurance ∞ 10
6
 − 10

8 
10

4
 − 10

5 

Read  energy 
Write energy 
Idle power 

0.8 J/GB 
1.2 J/GB 

∼100 mW/GB 

1 J/GB 
6 J/GB 

∼1 mW/GB 

1.5 J/GB [28] 
17.5 J/GB [28] 
1–10 mW/GB 

Density 1× 2 − 4× 4× 

• Compared to NAND Flash, PCM is byte-addressable, has orders 
of magnitude lower latency and higher endurance. 

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al. ‘09] 
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Comparison of Technologies 

  DRAM PCM NAND  Flash 

Page  size 
Page  read  latency 
Page  write latency 
Write bandwidth 
 
Erase  latency 

64B 
20-50ns 
20-50ns 
∼GB/s  
per die 

N/A 

64B 
∼ 50ns 
∼ 1 µs 

50-100 MB/s  
per die 

N/A 

4KB 
∼ 25 µs 
∼ 500 µs 

5-40 MB/s  
per die 
∼ 2 ms 

Endurance ∞ 10
6
 − 10

8 
10

4
 − 10

5 

Read  energy 
Write energy 
Idle power 

0.8 J/GB 
1.2 J/GB 

∼100 mW/GB 

1 J/GB 
6 J/GB 

∼1 mW/GB 

1.5 J/GB [28] 
17.5 J/GB [28] 
1–10 mW/GB 

Density 1× 2 − 4× 4× 

• Compared to DRAM, PCM has better density and scalability; 
PCM has similar read latency but longer write latency 

Sources: [Doller ’09] [Lee et al. ’09] [Qureshi et al. ’09] 
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Relative Latencies: 

10ns 100ns 1us 10us 100us 1ms 10ms 
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Challenge: PCM Writes 

• Limited endurance 

– Wear out quickly for  
hot spots 

 

• High energy consumption 

– 6-10X more energy than  
a read 

 

• High latency & low bandwidth 

– SET/RESET time > READ time 

– Limited instantaneous electric current level,  
requires multiple rounds of writes 

  PCM 

Page  size 
Page  read  latency 
Page  write latency 
Write bandwidth 
 
Erase  latency 

64B 
∼ 50ns 
∼ 1 µs 

50-100 MB/s  
per die 

N/A 

Endurance 10
6
 − 10

8 

Read  energy 
Write energy 
Idle power 

1 J/GB 
6 J/GB 

∼1 mW/GB 

Density 2 − 4× 
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0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 

PCM Write Hardware Optimization 

0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 

0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 

PCM 
0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 

[Cho, Lee’09] [Lee et al. ’09] [Yang et al. ‘07] [Zhou et al. ’09] 

Cache line 
Rounds 

highlighted w/ 
different colors 

• Baseline: several rounds of writes for  
a cache line 

– Which bits in which rounds are hard wired 

• Optimization: data comparison write 

– Goal: write only modified bits rather than entire cache line 

– Approach: read-compare-write  

• Skipping rounds with no modified bits 
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PCM-savvy Algorithms? 
 

New goal: minimize PCM writes 

–  Writes use 6X more energy than reads 

–  Writes 20X slower than reads, lower BW, wear-out 

 

Data comparison writes: 

–  Minimize Number of bits that change 
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B+-Tree Index 

0E+0 

1E+9 

2E+9 

3E+9 

4E+9 

5E+9 

insert delete search 
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3E+8 

insert delete search 

n
u

m
 b

it
s
 m

o
d

if
ie

d
 

0 

2 

4 

6 

8 

10 

12 

14 

16 

insert delete search 
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y
 (

m
J
)
 

Node size 8 cache lines; 50 million entries, 75% full;  

Three workloads: Inserting / Deleting / Searching    
                                      500K random keys  

PTLSSim extended with PCM support 

Unsorted leaf schemes achieve the best performance 

• For insert intensive: unsorted-leaf 

• For insert & delete intensive: unsorted-leaf with bitmap 

Total wear Energy Execution time 

[Chen, G, Nath ‘11] 
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Multi-core Computing Lectures:  
Progress-to-date on Key Open Questions 

• How to formally model multi-core hierarchies? 

• What is the Algorithm Designer’s model? 

• What runtime task scheduler should be used? 

• What are the new algorithmic techniques? 

• How do the algorithms perform in practice? 
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