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 Data is growing faster than our ability to store or index it 

 There are 3 Billion Telephone Calls in US each day 
(100BN minutes), 30B emails daily, 4B SMS, IMs.  

 Scientific data: NASA's observation satellites 
generate billions of readings each per day. 

 IP Network Traffic: can be billions packets per hour per 
router.  Each ISP has many (hundreds) routers! 

 Whole genome sequences for individual humans now 
available: each is gigabytes in size 

Data is Massive 
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Massive Data Analysis 

Must analyze this massive data: 

 Scientific research (monitor environment, species) 

 System management (spot faults, drops, failures) 

 Customer research (association rules, new offers)  

 For revenue protection (phone fraud, service abuse) 

Else, why even measure this data? 
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Example: Network Data 

 Networks are sources of massive data: the metadata per hour 
per router is gigabytes 

 Fundamental problem of data stream analysis:  
Too much information to store or transmit 

 So process data as it passes each network device: 
one pass, small space—the data stream approach 

 Approximate answers to many questions are OK, if there are 
guarantees of result quality 

IP Network 

 

 
PSTN 

 

 
DSL/Cable 

Networks 

Network Operations 

Center  (NOC) 

BGP 

4 



Streaming Data Questions 

 Network managers ask questions requiring us to analyze 
and mine the data:  

– Find hosts with similar usage patterns (clusters)? 

– Which destinations or groups use most bandwidth? 

– Was there a change in traffic distribution overnight? 

– Build predictive models for future behavior?  

 Complexity comes from scale of the distributed data 

 Will introduce solutions for these and other problems 
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Other Streaming Applications 

 Wireless monitors 

– Monitor habitat and environmental parameters 

– Track many objects, intrusions, trend analysis… 

 

 

 Utility Companies 

– Monitor power grid, customer usage patterns etc. 

– Alerts and rapid response in case of problems 
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Data Stream Models 

 We model data streams as sequences of simple tuples 

 Problems hard due to scale and dimension of many streams 

 Arrivals only streams: 

– Example: (x, 3), (y, 2), (x, 2) encodes 
the arrival of 3 copies of item x,  
2 copies of y, then 2 copies of x. 

– Could represent eg. packets on a network; power usage 

 Arrivals and departures: 

– Example: (x, 3), (y,2), (x, -2) encodes 
 final state of (x, 1), (y, 2). 

–  Can represent fluctuating quantities, or measure differences 
between two distributions 

x 
y 

x 
y 
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Models of Distribution 

 One-shot computation [Gibbons, Tirthapura 01, Feldman et al. ‘08] 

– Build compact summaries of data that can be combined 

 Gossip-based communication [Kempe, Dobra, Gehrke 03] 

– Opportunistically swap info with neighbors until convergence 

 Continuous computation [C, 2011] 

– Track a (complex) function of distributed values 

 

Coordinator 

Fully Distributed Hierarchical “Flat”  
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MUD Model 

 Massive Unordered Data (MUD) model [Feldman et al. ‘08]  

– Special case of MapReduce/Hadoop processing 

– Theorem: Can simulate any deterministic streaming algs 

– Parameters: space used by each machine, message size, time 
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Approximation and Randomization 

 Many things are hard to compute exactly over a stream 

– Is the count of all items the same in two different streams? 

– Requires linear space to compute exactly 

 Approximation: find an answer correct within some factor 

– Find an answer that is within 10% of correct result 

– More generally, a (1 ) factor approximation 

 Randomization: allow a small probability of failure 

– Answer is correct, except with probability 1 in 10,000 

– More generally, success probability (1-) 

 Approximation and Randomization: (, )-approximations 
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First examples of streaming algorithms 

 How to draw a random sample? 

 How to estimate the entropy of a distribution? 

 How to efficiently find heavy hitters? 

 How to test if two distributed streams are equal? 

 How to compactly represent a set? 

…and do all of this over distributed data? 
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Small Summaries 

 A summary (approximately) allows answering such questions 

 To earn the name, should be (very) small! 

– Can keep in fast storage 

 Should be able to build, update and query efficiently 

 Key methods for summaries: 

– Create an empty summary 

– Update with one new tuple: streaming processing 

– Merge summaries together: distributed processing 

– Query: may tolerate some approximation 
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Sampling From a Data Stream 

 Fundamental prob: sample m items uniformly from data 

– Useful: approximate costly computation on small sample 

 Challenge: don’t know how large total input is 

– So when/how often to sample? 

 Several solutions, apply to different situations: 

– Reservoir sampling (dates from 1980s?) 

– Min-wise sampling (dates from 1990s?) 
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Min-wise Sampling 

 For each item, pick a random fraction between 0 and 1 

 Store item(s) with the smallest random tag [Nath et al.’04] 

 

0.391 0.908 0.291 0.555 0.619 0.273 

 Each item has same chance of least tag, so uniform 

 Can run on multiple streams separately, then merge 
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Advanced Sampling 

 Sampling widely used in practice: simple semantics 

– Can often apply exponential (Chernoff) error bounds 

– Sample of O(1/2) items gives  additive error on predicate queries 

 Much active research around sampling: 

– Sampling from unaggregated, weighted data? 

– Getting the most value from your sample 

– Sampling according to functions of weights 

– Sampling over distributed data with negative weights 
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Application of Sampling: Entropy 

 Given a long sequence of characters 

S = <a1, a2, a3… am>         each aj  {1… n} 

 Let fi = frequency of i in the sequence 

 Compute the empirical entropy: 

H(S) = - i fi/m log fi/m = - i pi log pi 

 

 Example: S = < a, b, a, b, c, a, d, a> 

– pa = 1/2, pb = 1/4, pc = 1/8, pd = 1/8 

– H(S) = ½ + ¼  2 + 1/8  3 + 1/8  3 = 7/4 

 Entropy promoted for anomaly detection in networks 
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Sampling Based Algorithm 

 Simple estimator (the “AMS estimator”):  

– Randomly (min-wise) sample a position j in a single stream  

– Count how many times aj appears subsequently = r 

– Output X = -(r log (r/m) – (r-1) log(r-1)/m) 

 

 Claim: Estimator is unbiased – E[X] = H(S) 

– Proof: prob of picking j = 1/m, sum telescopes correctly 

 Variance is not too large – Var[X] = O(log2 m) 

– Can be proven by bounding |X| ≤ log m 
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Analysis of Basic Estimator 

 A general technique in data streams: 

– Repeat in parallel an unbiased estimator with bounded 
variance, take average of estimates to improve result 

– Use concentration bounds (next lecture) to guarantee accuracy 

– Number of repetitions depends on ratio Var[X]/E2[X]  

– For entropy, this means space O(log2 m / H2(S)) 

 

 Problem for entropy: when H(S) is very small? 

– Space needed for an accurate approx goes as 1/H2! 
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Outline of Improved Algorithm 

 Observation: only way to get H(S) =o(1) is to have only one 
character with pi close to 1 

– aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaa 

 If we can identify this character, and make an estimator on 
stream without this token, can estimate H(S) 

 How to identify and remove all in one pass? 

 Keep a “back up” sample from the stream with aj removed 

– Use the back-up sample to estimate H if aj is most frequent item 

 Full details and analysis in [Chakrabarti, C, McGregor 07]   

– Total space is O(-2 log m log 1/) for (,) approx 
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Distributing entropy computation 

 Entropy summary allows update but not merge 

– How to set counts when summaries sample different items? 

 Can simulate the above algorithm across distributed streams: 

– All observers keep in sync over what are current sampled items 

– Keep local counts of occurrences, can sum when required 

 Adapt existing analysis to bound communication cost 

– Show that number of times sample changes is O(log n)  

 Need new approach for more general models: 

– If we want to build a self-contained summary for entropy… 

– If we want to continuously monitor entropy… 
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Misra-Gries Summary (1982) 

 Misra-Gries (MG) algorithm finds up to k items that occur 
more than 1/k fraction of the time in the input 

 Update: Keep k different candidates in hand.  For each item: 

– If item is monitored, increase its counter 

– Else, if < k items monitored, add new item with count 1 

– Else, decrease all counts by 1 

7 

5 

1 2 1 

4 

6 
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Streaming MG analysis 

 N = total weight of input 

 M = sum of counters in data structure 

 Error in any estimated count at most (N-M)/(k+1) 

– Estimated count a lower bound on true count 

– Each decrement spread over (k+1) items: 1 new one and k in MG 

– Equivalent to deleting (k+1) distinct items from stream 

– At most (N-M)/(k+1) decrement operations 

– Hence, can have “deleted” (N-M)/(k+1) copies of any item 

– So estimated counts have at most this much error 

7 

1 

4 

6 
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Merging two MG Summaries [ACHPWY ‘12] 

 Merge algorithm: 

– Merge the counter sets in the obvious way 

– Take the (k+1)th largest counter = Ck+1, and subtract from all 

– Delete non-positive counters 

– Sum of remaining counters is M12 

 This keeps the same guarantee as Update: 

– Merge subtracts at least (k+1)Ck+1 from counter sums 

– So (k+1)Ck+1  (M1 + M2 – M
12

) 

– By induction, error is  
((N1-M1) + (N2-M2) + (M1+M2–M12))/(k+1)=((N1+N2) –M12)/(k+1)  

(prior error) (from merge) (as claimed) 
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A Powerful Summary 

 MG summary with update and merge is very powerful 

– Builds a compact summary of the frequency distribution 

– Can also multiply the summary by any scalar 

– Hence can take (positive) linear combinations: x + y 

– Useful for building models of data 

 Will later see sketches that allow arbitrary linear combinations 

7 

1 

4 

6 
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Fingerprints 

 Test if two (distributed) binary streams are equal  
  d= (x,y) = 0 iff x=y, 1 otherwise 

 To test in small space: pick a suitable hash function h 

 Test h(x)=h(y) : small chance of false positive, no chance of 
false negative 

 Compute h(x), h(y) incrementally as new bits arrive  

– How to choose the function h()? 

 1 0 1 1 1 0 1 0 1 … 

 1 0 1 1 0 0 1 0 1 … 
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Polynomial Fingerprints 

 Pick h(x) = i=1
n xi r

i mod p for prime p, random r  {1…p-1} 

 Why? 

 Flexible: h(x) is linear function of x—easy to update and merge 

 For accuracy, note that computation mod p is over the field Zp 

– Consider the polynomial in , i=1
n (xi – yi) 

i  = 0 

– Polynomial of degree n over Zp has at most n roots 

 Probability that r happens to solve this polynomial is n/p 

 So Pr[ h(x) = h(y) | x  y ]  n/p 

– Pick p = poly(n), fingerprints are log p = O(log n) bits 

 Fingerprints applied to small subsets of data to test equality 

– Will see several examples that use fingerprints as subroutine 
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Bloom Filters 

 Bloom filters compactly encode set membership 

– k hash functions map items to bit vector k times 

– Set all k entries to 1 to indicate item is present 

– Can lookup items, store set of size n in O(n) bits 

 

 

 

 

 

 Duplicate insertions do not change Bloom filters 

 Can be merge by OR-ing vectors (of same size) 

item 

1 1 1 
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Bloom Filter analysis 

 How to set k (number of hash functions), m (size of filter)? 

 False positive: when all k locations for an item are set 

– If  fraction of cells are empty, false positive probability is (1-)k 

 Consider probability of any cell being empty: 

– For n items, Pr[ cell j is empty ] = (1 - 1/m)kn  ≈  ≈ exp(-kn/m) 

– False positive prob = (1 - )k = exp(k ln(1 - )) 
        = exp(-m/n ln() ln(1-)) 

 For fixed n, m, by symmetry minimized at  = ½ 

– Half cells are occupied, half are empty 

– Give k = (m/n)ln 2, false positive rate is  ½k 

– Choose m = cn to get constant FP rate, e.g. c=10 gives < 1% FP 
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Bloom Filters Applications 

 Bloom Filters widely used in “big data” applications 

– Many problems require storing a large set of items 

 Can generalize to allow deletions 

– Swap bits for counters: increment on insert, decrement on delete 

– If representing sets, small counters suffice: 4 bits per counter 

– If representing multisets, obtain sketches (next lecture) 

 Bloom Filters are an active research area 

– Several papers on topic in every networking conference… 

item 

1 1 1 
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Coming Soon 

 Lecture 2: Sketches and Concentration Bounds 

– Randomized sketch data structures (Count-Min, AMS, F0) 

– Proved using Markov, Chebyshev, Chernoff inequalities 

 Lecture 3: Lp sampling & Streaming verification 

– Lp sampling, with application to graph computations 

– Verifiable stream computations with interactive proofs 

 Lecture 4: Distributed Continuous Monitoring & Lower Bounds 

– The distributed continuous model and algorithms 

– Lower bounds: what can’t we do efficiently? 
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Sketch Data Structures and 
Concentration Bounds 



Frequency Moments 

 Intro to frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Frequency Distributions 

 Given set of items, let fi be the number of occurrences of item i 

 Many natural questions on fi values: 

– Find those i’s with large fi values (heavy hitters) 

– Find the number of non-zero fi values (count distinct) 

– Compute Fk = i (fi)
k – the k’th Frequency Moment 

– Compute  H = i (fi/F1) log (F1/fi) – the (empirical) entropy 

 “Space Complexity of the Frequency Moments” 
  Alon, Matias, Szegedy in STOC 1996 

– Awarded Gödel prize in 2005 

– Set the pattern for many streaming algorithms to follow 
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Concentration Bounds 

 Will provide randomized algorithms for these problems 

 Each algorithm gives a (randomized) estimate of the answer 

 Give confidence bounds on the final estimate X 

– Use probabilistic concentration bounds on random variables 

 A concentration bound is typically of the form 
   Pr[ |X – x| > y ] <  

– At most probability  of being more than y away from x 



Probability 
distribution 

Tail probability 
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Markov Inequality 

 Take any probability distribution X s.t. Pr[X < 0] = 0 

 Consider the event X  k for some constant k > 0 

 For any draw of X, kI(X  k)  X 

– Either 0  X < k, so I(X  k) = 0 

– Or X  k, lhs = k 

 Take expectations of both sides: k Pr[ X  k]  E[X] 

 Markov inequality: Pr[ X  k ]  E[X]/k 

– Prob of random variable exceeding k times its expectation < 1/k 

– Relatively weak in this form, but still useful 

k |X| 
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Sketch Structures 

 Sketch is a class of summary that is a linear transform of input 

– Sketch(x) = Sx for some matrix S 

– Hence, Sketch(x + y) =  Sketch(x) +  Sketch(y) 

– Trivial to update and merge 

 Often describe S in terms of hash functions 

– If hash functions are simple, sketch is fast 

 Aim for limited independence hash functions h: [n]  [m] 

– If PrhH[ h(i1)=j1  h(i2)=j2  … h(ik)=jk ] = m-k,  
then H is k-wise independent family (“h is k-wise independent”) 

– k-wise independent hash functions take time, space O(k) 
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Frequency Moments 

 Intro to frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Count-Min Sketch 

 Simple sketch idea relies primarily on Markov inequality 

 Model input data as a vector x of dimension U  

 Creates a small summary as an array of w  d in size 

 Use d hash function to map vector entries to [1..w] 

 Works on arrivals only and arrivals & departures streams 

W 

d 
Array: 

CM[i,j] 
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Count-Min Sketch Structure 

 Each entry in vector x is mapped to one bucket per row. 

 Merge two sketches by entry-wise summation 

 Estimate x[j] by taking mink CM[k,hk(j)] 
– Guarantees error less than F1 in size O(1/ log 1/) 

– Probability of more error is less than 1- 

+c 

+c 

+c 

+c 

h1(j) 

hd(j) 

j,+c 

d
=lo

g 1
/ 

w = 2/ 

[C, Muthukrishnan ’04] 
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Approximation of Point Queries 

Approximate point query x’[j] = mink CM[k,hk(j)] 

 Analysis: In k'th row, CM[k,hk(j)] = x[j] + Xk,j 

– Xk,j = Si x[i] I(hk(i) = hk(j)) 

– E[Xk,j] = Si j x[i]*Pr[hk(i)=hk(j)]  
   Pr[hk(i)=hk(j)] * Si x[i] 
  =  F1/2 – requires only pairwise independence of h 

– Pr[Xk,j  F1] = Pr[ Xk,j  2E[Xk,j] ]  1/2 by Markov inequality  

 So, Pr[x’[j]  x[j] + F1] = Pr[ k. Xk,j > F1]  1/2log 1/
 =  

 Final result: with certainty x[j]  x’[j] and  
with probability at least 1-,  x’[j] < x[j] + F1 
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Applications of Count-Min to Heavy Hitters 

 Count-Min sketch lets us estimate fi for any i (up to F1) 

 Heavy Hitters asks to find i such that fi is large (>  F1) 

 Slow way: test every i after creating sketch 

 Faster way: test every i after it is seen in the stream, and 
remember 1/ largest estimated values 

 Alternate way:  

– Keep binary tree over input domain: each node is a subset 

– Keep sketches of all nodes at same level 

– Descend tree to find large frequencies, discard ‘light’ branches 

– Same structure estimates arbitrary range sums 
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Application to Large Scale Machine Learning 

 In machine learning, often have very large feature space 

– Many objects, each with huge, sparse feature vectors 

– Slow and costly to work in the full feature space 

 “Hash kernels”: work with a sketch of the features 

– Works very well in practice! 

 Similar analysis explains why: 

– Essentially, not too much noise on the important features 
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Count-Min Exercises 

1. The median of a distribution is the item so that the sum of the 
frequencies of lexicographically smaller items is ½ F1. Use CM 
sketch to find the (approximate) median.  

2. Assume the input frequencies follow the Zipf distribution so 
that the i’th largest frequency is (i-z) for z>1.  Show that CM 
sketch only needs to be size -1/z to give same guarantee 

3. Suppose we have data where frequencies of items are allowed 
to be negative.  Extend CM sketch analysis to estimate these 
frequencies (note, Markov argument no longer works directly) 

4. How to efficiently find the large absolute frequencies when 
some are negative?  Or in the difference of two streams? 
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Frequency Moments 

 Intro to frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Chebyshev Inequality 

 Markov inequality is often quite weak 

 But Markov inequality holds for any random variable 

 Can apply to a random variable that is a function of X 

 Set Y = (X – E[X])2 

 By Markov, Pr[ Y > kE[Y] ] < 1/k 

– E[Y] = E[(X-E[X])2]= Var[X] 

 Hence, Pr[ |X – E[X]| > √(k Var[X]) ] < 1/k 

 Chebyshev inequality: Pr[ |X – E[X]| > k ] < Var[Y]/k2 

– If Var[X]  2 E[X]2, then Pr[|X – E[X]| >  E[X] ] = O(1) 
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F2 estimation 

 AMS sketch (for Alon-Matias-Szegedy) proposed in 1996 

– Allows estimation of F2 (second frequency moment) 

– Used at the heart of many streaming and non-streaming 
applications: achieves dimensionality reduction 

 Here, describe AMS sketch by generalizing CM sketch.  

 Uses extra hash functions g1...glog 1/ {1...U} {+1,-1} 

 Now, given update (j,+c), set CM[k,hk(i)] += c*gk(j) 

linear 

projection 

AMS sketch 
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F2 analysis 

 Estimate F2 = mediank i CM[k,i]2 

 Each row’s result is i g(i)2x[i]2  + h(i)=h(j) 2 g(i) g(j) x[i] x[j] 

 But g(i)2 = -12 = +12 = 1, and i x[i]2 = F2 

 g(i)g(j) has 1/2 chance of  +1 or –1 : expectation is 0 … 

+c*g1(j) 

+c*g2(j) 

+c*g3(j) 

+c*g4(j) 

h1(j) 

hd(j) 

j,+c 

d
=8

lo
g 1

/ 

w = 4/2 
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F2 Variance 

 Expectation of row estimate Rk = i CM[k,i]2 is exactly F2 

 Variance of row k, Var[Rk], is an expectation: 

– Var[Rk] = E[ (buckets b (CM[k,b])2 – F2)2 ] 

– Good exercise in algebra: expand this sum and simplify 

– Many terms are zero in expectation because of terms like 
g(a)g(b)g(c)g(d) (degree at most 4) 

– Requires that hash function g is four-wise independent: it 
behaves uniformly over subsets of size four or smaller 

 Such hash functions are easy to construct 
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F2 Variance 

 Terms with odd powers of g(a) are zero in expectation 
– g(a)g(b)g2(c), g(a)g(b)g(c)g(d), g(a)g3(b) 

 Leaves  
Var[Rk]  i g

4(i) x[i]4  
  + 2 j i g

2(i) g2(j) x[i]2 x[j]2   
  + 4 h(i)=h(j) g

2(i) g2(j) x[i]2 x[j]2  
  - (x[i]4 + j i 2x[i]2 x[j]2) 
   F2

2/w 

 Row variance can finally be bounded by F2
2/w 

– Chebyshev for w=4/2 gives probability ¼ of failure: 
       Pr[ |Rk – F2| > 2 F2 ]  ¼   

– How to amplify this to small  probability of failure? 

– Rescaling w has cost linear in 1/ 
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Tail Inequalities for Sums 

 We achieve stronger bounds on tail probabilities for the sum of 
independent Bernoulli trials via the Chernoff Bound:   

– Let X1, ..., Xm be independent Bernoulli trials s.t. Pr[Xi=1] = p 

(Pr[Xi=0] = 1-p).  

– Let X = i=1
m Xi  ,and μ = mp be the expectation of X.  

– Then, for >0, Chernoff bound states: 

  Pr[ |X - μ|  μ]  2 exp(- ½ μ2)  

– Proved by applying Markov inequality to Y = exp(X1  X2  …  Xm) 
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Applying Chernoff Bound 

 Each row gives an estimate that is within  relative error with 
probability p’ > ¾ 

 Take d repetitions and find the median.  Why the median? 

 

 

– Because bad estimates are either too small or too large 

– Good estimates form a contiguous group “in the middle” 

– At least d/2 estimates must be bad for median to be bad 

 Apply Chernoff bound to d independent estimates, p=1/4 

– Pr[ More than d/2 bad estimates ] < 2exp(-d/8) 

– So we set d = (ln 1/) to give  probability of failure 

 Same outline used many times in data streams  
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Aside on Independence 

 Full independence is expensive in a streaming setting 

– If hash functions are fully independent over n items, then we 
need (n) space to store their description 

– Pairwise and four-wise independent hash functions can be 
described in a constant number of words 

– Pairwise hashing: Prover random choice of h[h(i) = h(j)] = 1/(range(h)) 

 AMS sketch uses a careful mix of limited and full independence  

– Each hash function is four-wise independent over all n items 

– Each repetition is fully independent of all others – but there are 
only O(log 1/) repetitions. 
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AMS Sketch Exercises 

1. Let x and y be binary streams of length n.   
The Hamming distance H(x,y) = |{i | x[i] y[i]}| 
Show how to use AMS sketches to approximate H(x,y) 

2. Extend for strings drawn from an arbitrary alphabet 

3. The inner product of two strings x, y is x  y = i=1
n x[i]*y[i] 

Use AMS sketches to estimate x  y 

– Hint: try computing the inner product of the sketches. 
Show the estimator is unbiased (correct in expectation) 

– What form does the error in the approximation take? 

– Use Count-Min Sketches for same problem, compare the errors. 

– Is it possible to build a (1) approximation of x  y? 
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Frequency Moments 

 Introduction to Frequency Moments and Sketches 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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F0 Estimation 

 F0 is the number of distinct items in the stream  

– a fundamental quantity with many applications 

 Early algorithms by Flajolet and Martin [1983] gave nice 
hashing-based solution 

– analysis assumed fully independent hash functions 

 Will describe a generalized version of the FM algorithm due to 
Bar-Yossef et. al with only pairwise indendence 
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F0 Algorithm 

 Let m be the domain of stream elements 

– Each item in data is from [1…m] 

 Pick a random (pairwise) hash function h: [m]  [m3] 

– With probability at least 1-1/m, no collisions under h 

 

 
 For each stream item i, compute h(i), and track the t distinct 

items achieving the smallest values of h(i) 

– Note: if same i is seen many times, h(i) is same 

– Let vt = t’th smallest (distinct) value of h(i) seen 

 If F0 < t, give exact answer, else estimate F’0 = tm3/vt 

– vt/m3  fraction of hash domain occupied by t smallest 

m3 0m3 vt 
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Analysis of F0 algorithm 

 Suppose F’0 = tm3/vt > (1+) F0   [estimate is too high] 

 

 

 

 

 So for input = set S  2[m], we have  

– |{ s  S | h(s) < tm3/(1+)F0 }| > t 

– Because  < 1, we have tm3/(1+)F0  (1-/2)tm3/F0 

– Pr[ h(s) < (1-/2)tm3/F0]  1/m3 * (1-/2)tm3/F0 = (1-/2)t/F0 

 

– (this analysis outline hides some rounding issues) 

 

m3 tm3/(1+)F0 
0m3 vt 
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Chebyshev Analysis 

 Let Y be number of items hashing to under tm3/(1+)F0  

– E[Y] = F0 * Pr[ h(s) < tm3/(1+)F0] = (1-/2)t 

– For each item i, variance of the event = p(1-p) < p 

– Var[Y] = sS Var[ h(s) < tm3/(1+)F0] < (1-/2)t  

 We sum variances because of pairwise independence 

 

 Now apply Chebyshev inequality:  

– Pr[ Y > t ]   Pr[|Y – E[Y]| > t/2]  
    4Var[Y]/2t2  
   < 4t/(2t2)  

– Set t=20/2 to make this Prob  1/5 
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Completing the analysis 

 We have shown 
 Pr[ F’0 > (1+) F0 ] < 1/5 

 Can show Pr[ F’0 < (1-) F0 ] < 1/5 similarly 

– too few items hash below a certain value 

 So Pr[ (1-) F0  F’0  (1+)F0] > 3/5  [Good estimate] 

 

 Amplify this probability: repeat O(log 1/) times in parallel 
with different choices of hash function h 

– Take the median of the estimates, analysis as before 
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F0 Issues 

 Space cost:  

– Store t hash values, so O(1/2 log m) bits 

– Can improve to O(1/2 + log m) with additional tricks 

 

 

 

 Time cost:  

– Find if hash value h(i) < vt 

– Update vt and list of t smallest if h(i) not already present 

– Total time O(log 1/ + log m) worst case 
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F0 applications 

 Many cases where we want to track number of distinct items 

 Can also estimate size of subpopulations 

– E.g. “How many distinct Firefox users visited my network?” 

– Compute fraction of the t satisfying the predicate 

– Error is (additive) F0 

 Compare F0 to Bloom Filter 

– Bloom Filter: (n) space to test membership of set of n items  

– F0 estimation: O(1/2) space to approximate size of set  
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Range Efficiency 

 Sometimes input is specified as a stream of ranges [a,b] 

– [a,b] means insert all items (a, a+1, a+2 … b) 

– Trivial solution: just insert each item in the range 

 Range efficient F0 [Pavan, Tirthapura 05] 

– Start with an alg for F0 based on pairwise hash functions 

– Key problem: track which items hash into a certain range 

– Dives into hash fns to divide and conquer for ranges 

 Range efficient F2 [Calderbank et al. 05, Rusu,Dobra 06] 

– Start with sketches for F2 which sum hash values 

– Design new hash functions so that range sums are fast 
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F0 Exercises 

 Suppose the stream consists of a sequence of insertions and 
deletions.  
Design an algorithm to approximate F0 of the current set. 

– What happens when some frequencies are negative? 

 Give an algorithm to find F0 of the most recent W arrivals 

 Use F0 algorithms to approximate Max-dominance: given a 
stream of pairs (i,x(i)), approximate i max(i, x(i)) x(i) 
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Frequency Moments 

 Intro to frequency distributions and Concentration bounds 

 Count-Min sketch for F and frequent items 

 AMS Sketch for F2 

 Estimating F0 

 Extensions:  

– Higher frequency moments 

– Combined frequency moments 
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Higher Frequency Moments 

 Fk for k>2.  Use a sampling trick [Alon et al 96]: 

– Uniformly pick an item from the stream length 1…n 

– Set r = how many times that item appears subsequently  

– Set estimate F’k = n(rk – (r-1)k) 

 

 E[F’k]=1/n*n*[ f1
k - (f1-1)k + (f1-1)k - (f1-2)k + … + 1k-0k]+… 

 = f1
k + f2

k + … = Fk 

 Var[F’k]1/n*n2*[(f1
k-(f1-1)k)2 + …] 

– Use various bounds to bound the variance by k m1-1/k Fk
2 

– Repeat k m1-1/k times in parallel to reduce variance 

 Total space needed is O(k m1-1/k) machine words 

– Not a sketch: does not distribute easily 
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Improvements 

 [Coppersmith and Kumar ‘04]: Generalize the F2 approach 

– E.g. For F3, set p=1/m, and hash items onto {1-1/p, -1/p} with 
probability {1/p, 1-1/p} respectively. 

– Compute cube of sum of the hash values of the stream 

– Correct in expectation, bound variance  O(mF3
2) 

 [Indyk, Woodruff ‘05, Bhuvangiri et al. ‘06]: Optimal solutions by 
extracting different frequencies 

– Use hashing to sample items and fi’s, combine to build estimator 

– Cost is O(m1-2/k
 poly-log(m,n,1/)) space 

 [Andoni Krauthgamer Onak 11]: Precision sampling via sketches 

– Recover frequencies at different precision to get optimal bounds 

66 



Combined Frequency Moments 

 Want to focus on number of distinct communication pairs, 
not size of communication 

 So want to compute moments of F0 values... 

Consider network traffic data: defines a 
communication graph 

eg edge: (source, destination)  

or edge: (source:port, dest:port) 

Defines a (directed) multigraph 

We are interested in the underlying (support) 
graph on n nodes  
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Multigraph Problems 

 Let G[i,j] = 1 if (i,j) appears in stream:  
edge from i to j.  Total of m distinct edges 

 Let di = Sj=1
n G[i,j] : degree of node i 

 Find aggregates of di’s: 

– Estimate heavy di’s (people who talk to many) 

– Estimate frequency moments: 
number of distinct di values, sum of squares 

– Range sums of di’s (subnet traffic) 
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F (F0) using CM-FM 

 Find i’s such that di >  i di 

Finds the people that talk to many others 

 Count-Min sketch only uses additions, so can apply:  
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Accuracy for F(F0) 

 Focus on point query accuracy: estimate di.   

 Can prove estimate has only small bias in expectation 

– Analysis is similar to original CM sketch analysis, but now have 
to take account of F0 estimation of counts 

 Gives an bound of O(1/3 poly-log(n)) space: 

– The product of the size of the sketches 

 

 Other combinations of functions require fresh analysis, eg. 
F2(F0), F2(F2) etc. 
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Exercises / Problems 

1. (Research problem) What can be computed for other 
combinations of frequency moments, e.g. F2 of F2 values, etc.? 

2. The F2 algorithm uses the fact that +1/-1 values square to 
preserve F2 but are 0 in expectation.  Why won’t it work to 
estimate F4 with g  {-1, +1, -i, +i}? 

3. (Research problem) Read, understand and simplify analysis 
for optimal Fk estimation algorithms 

4. Take the sampling Fk algorithm and combine it with F0 
estimators to approximate Fk of node degrees 

5. Why can’t we use the sketch approach for F2 of node degrees?  
Show there the analysis breaks down 
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Distributed Issues 

 Sketches like these are easy to compute in distributed setting 

– CM Sketch, AMS sketch: merge by adding sketches 

– F0 sketch: can merge and take bottom-k set of items 

– Combined sketches also merge naturally 

 Stronger property: these sketches are data-order independent 

 Other questions remain:  

– When to merge?  

– How to deal with failure/loss? 
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Sketching Resources 

 Sample implementations on web 

– Ad hoc, of varying quality 

 Technical descriptions 

– Original papers  

– Surveys, comparisons 

 (Partial) wikis and book chapters 

– Wiki:  sites.google.com/site/countminsketch/ 

– “Sketch Techniques for Approximate Query Processing” 
 dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf 
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Lp Sampling and 
 Stream Verification 
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Lp Sampling:  
Sampling from Sketches 

i j 
+ 

= 



Sampling from Sketches 

 Given distributed streams with positive and negative weights 

 Want to sample based on the overall frequency distribution 

– Sample from support set of n possible items 

– Sample proportional to (absolute) weights 

– Sample proportional to some function of weights 

 How to do this sampling effectively? 

 Recent approach: Lp sampling 
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Lp Sampling 

 Lp sampling: use sketches to sample i w/prob (1±) fi
p/ǁfǁp

p 

 “Efficient” solutions developed of size O(-2 log2 n) 

– [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11] 

 L0 sampling enables novel “graph sketching” techniques 

– Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12] 

 L2 sampling  allows optimal estimation of frequency moments 

 

 Challenge: improve space efficiency of Lp sampling 

– Empirically or analytically 
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L0 Sampling 

 L0 sampling: sample with prob (1±) fi
0/F0

 

– i.e., sample (near) uniformly from items with non-zero frequency 

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05] 

– Sub-sample all items (present or not) with probability p 

– Generate a sub-sampled vector of frequencies fp 

– Feed fp to a k-sparse recovery data structure 

 Allows reconstruction of fp if F0 < k  

– If fp is k-sparse, sample from reconstructed vector 

– Repeat in parallel for exponentially shrinking values of p 
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Sampling Process 

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U 

– Let N = F0 = |{ i : fi  0}| 

– Want there to be a level where k-sparse recovery will succeed 

– At level p, expected number of items selected S is Np 

– Pick level p so that k/3 < Np  2k/3 

 Chernoff bound: with probability exponential in k, 1  S  k 

– Pick k = O(log 1/) to get 1- probability 

 

p=1 

p=1/U 

k-sparse recovery  
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k-Sparse Recovery 

 Given vector x with at most k non-zeros, recover x via sketching 

– A core problem in compressed sensing/compressive sampling 

 First approach: Use Count-Min sketch of x 

– Probe all U items, find those with non-zero estimated frequency 

– Slow recovery: takes O(U) time 

 Faster approach: also keep sum of item identifiers in each cell 

– Sum/count will reveal item id 

– Avoid false positives: keep fingerprint of items in each cell 

 Can keep a sketch of size O(k log U) to recover up to k items 

Sum, i : h(i)=j i 

Count, i : h(i)=j xi 

Fingerprint, i : h(i)=j xi r
i 
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Uniformity 

 Also need to argue sample is uniform 

– Failure to recover could bias the process 

 Pr[ i would be picked if k=n] = 1/F0 by symmetry 

 Pr[ i is picked ] = Pr[ i would be picked if k=n  S k] 
         (1-)/F0 

 So (1-)/N  Pr[i is picked]  1/N 

 Sufficiently uniform (pick  = ) 
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Application: Graph Sketching 

 Given L0 sampler, use to sketch (undirected) graph properties 

 Connectivity: want to test if there is a path between all pairs 

 Basic alg: repeatedly contract edges between components 

 Use L0 sampling to provide edges on vector of adjacencies 

 Problem: as components grow, sampling most likely to 
produce internal links 
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Graph Sketching 

 Idea: use clever encoding of edges 

 Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i 

 When node i and node j get merged, sum their L0 sketches 

– Contribution of edge (i,j) exactly cancels out 

 

 

 

 Only non-internal edges remain in the L0 sketches 

 Use independent sketches for each iteration of the algorithm 

– Only need O(log n) rounds with high probability 

 Result: O(poly-log n) space per node for connectivity 

 

i j 
+ 
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Other Graph Results via sketching 

 K-connectivity via connectivity 

– Use connectivity result to find and remove a spanning forest 

– Repeat k times to generate k spanning forests F1, F2, … Fk 

– Theorem: G is k-connected if i=1
k Fi is k-connected 

 Bipartiteness via connectivity:  

– Compute c = number of connected components in G 

– Generate G’ over V  V’ so (u,v)  E  (u, v’)  E’, (u’, v)  E’ 

– If G is bipartite, G’ has 2c components, else it has c components 

 Minimum spanning tree:  

– Round edge weights to powers of (1+) 

– Define ni = number of components on edges lighter than (1+)i 

– Exercise: weight of MST on rounded weights is i (1+)ini
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Application: Fk via L2 Sampling 

 Recall, Fk = i fi
k  

 L2 sampling lets us sample fi with probability fi
2/F2 

– Also estimate sampled fi with relative error  

 Estimator: X = F2 fi
k-2  (with estimates of F2, fi) 

– Expectation: E[X] = F2 i fi
k-2  fi

2 / F2 = Fk 

– Variance: Var[X]  E[X2] = i fi
2/F2 (F2 fi

k-2)2 = F2 F2k-2 
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Rewriting the Variance 

 Want to express variance of F2 F2k-2 in terms of Fk 

 Hölder’s inequality: x, y  ǁxǁp ǁyǁq for 1  p, q with 1/p+1/q=1 

– Generalizes Cauchy-Shwarz inequality, where p=q=2.  

 So pick p=k/(k-2) and q = k/2 for k > 2.  Then 
   1n, (fi)

2  ǁ1nǁk/(k-2) ǁ(fi)
2ǁk/2 

  F2  n
(k-2)/k

 Fk
2/k    (1) 

 Also, since ǁxǁp+a  ǁxǁp for any p 1, a > 0 

– Thus ǁxǁ2k-2  ǁxǁk for k  2 

– So F2k-2 = ǁfǁ2k-2
2k-2  ǁfǁk

2k-2 = Fk
2-2/k  (2) 

 Multiply (1) * (2) : F2 F2k-2  n1-2/k Fk
2 

– So variance is bounded by n1-2/k Fk
2 
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Fk Estimation 

 For k  3, we can estimate Fk via L2 sampling: 

– Variance of our estimate is O(Fk
2 n1-2/k) 

– Take mean of n1-2/k-2 repetitions to reduce variance 

– Apply Chebyshev inequality: constant prob of good estimate 

– Chernoff bounds: O(log 1/) repetitions reduces prob to  

 How to instantiate this? 

– Design method for approximate L2 sampling via sketches 

– Show that this gives relative error approximation of fi 

– Use approximate value of F2 from sketch 

– Complicates the analysis, but bound stays similar 
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L2 Sampling Outline 

 For each i, draw ui uniformly in the range 0…1 

– From vector of frequencies f, derive g so gi = fi/ui 

– Sketch gi vector (can do this over distributed streams) 

 Sample: return (i, fi) if there is unique i with gi
2 > t=F2/ threshold 

– Pr[ gi
2 > t   j  i : gj

2 < t] = Pr[gi
2 > t] ji Pr[gj

2 < t] 
    = Pr[ui < fi

2/F2] ji Pr[uj > fj
2/F2] 

    = (fi
2/F2 ) ji (1 - fj

2/F2) 
    ≈ fi

2/F2 

 Probability of returning anything is not so big: i  fi
2/F2 =  

– Repeat O(1/ log 1/) times to improve chance of sampling 
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L2 sampling continued 

 Given (estimated) gi s.t. gi
2  F2/, estimate fi = ui gi  

 Sketch size O(-1 log n) means estimate of fi
2 has error (fi

2 + ui
2) 

– With high prob, no ui < 1/poly(n), and so F2(g) = O(F2(f) log n) 

– Since estimated fi
2/ui

2  F2/, ui
2  fi

2/F2 

 Estimating fi
2 with error fi

2 sufficient for estimating Fk  

 

 Many details skipped… 
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Lp Sampling exercises 

1. Work through details of sketch-based L2 sampling for Fk 
estimation.  Can the details be simplified? 

2. (Research) The bound for Fk estimation is optimal in n 
(depends on n1-2/k), but not  (-4).  Can this be improved? 

3. (Research) The graph sampling result only requires an 
arbitrary sample to be drawn.  What is the best sketch for 
this? 

4. Design a graph sketch so that given a set S we can 
approximate cut(S), the number of edges in E  (S  (V \ S)) 
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Stream Verification: 
Checking the cloud with a stream 



Outsourced Computation 

 Current trend to ‘outsource’ computation 

– Cloud computing: Amazon EC2, Microsoft Azure… 

– Hardware support: multicore systems, graphics cards 

 We provide data to a third party, they return an answer 

 How can we be sure that the computation is correct? 

– Duplicate the whole computation ourselves? 

– Find some ad hoc sanity checks on the answer? 

 This talk: construct protocols to prove the correctness 

– Protocols must be very low cost for the data owner (streaming) 

– Amount of information transmitted should not be too large 
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Streaming Proofs 

 Objective: prove integrity of the computed solution 

– Not concerned with security: third party sees unencrypted data   

 Prover provides “proof” of the correct answer  

– Ensure that “verifier” has very low probability of being fooled 

– Related to communication complexity Arthur-Merlin model, and 
Arithmetization, with additional streaming constraints 

 
Data Stream 

P 
V “Proof” 
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Problem Setting 

 Data is large, so is not stored in full by the verifier 

– (Distributed) streaming model: verifier sees data in one pass 

 Consider large graph data 

– Verifier sees graph edge by edge in no particular order 

 Want to solve graph problems 

– Bipartite?  Connected? 

– Max flow/min cut 

– Shortest s-t paths 

– Matchings and MST 

– Counting triangles 
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One Round Model 

 One-round model [Chakrabarti, C, McGregor 09] 

– Define protocol with help function h over input length N 

– Maximum length of h over all inputs defines help cost, H 

– Verifier has V bits of memory to work in 

– Verifier uses randomness so that:  

 For all help strings,  Pr[output  f(x) ]   

 Exists a help string so that Pr[output = f(x) ]  1-  

– H = 0, V = N is trivial; but H = N, V = polylog N is not  

Data Stream 

P 
V “Proof” 
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Basic Tool: Fingerprints 

 Fingerprints allow us to test if two vectors (matrices, 
multisets) are equal, with high probability 

 

 Pick a prime p, and a random   [p] 

– Given vector x of dimension q 

– Compute f(x) = i xi 
i mod p 

– Pr[ f(x) = f(y) | x  y ]  q/p 

 

 Linearity: f can be computed incrementally as x is observed 

– E.g. if x is a stream of edges, can fingerprint multiset of nodes 
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Warm Up: Bipartiteness 

 Prove a graph is bipartite: exhibit a bipartition 

– List each edge with different labels on each node 

 Ensure consistent labels via fingerprinting 

– Fingerprint the (multi)set (node, label, degree)  

– Compare to fingerprint of claimed labeling 
 

 Prove a graph is not bipartite: exhibit an odd cycle 

– List all other edges, so fingerprints can be compared 
 

 Either way, size of proof is O(|E|) = O(m) 

– Verifier only needs to store O(1) fingerprints of O(log n) bits 

 Similar arguments for other problems, via (lots of) fingerprints 

u 

v 

w 

(u, B, 1)  

(v, R, 2) 

(w, B, 1) 

(u, B, v, R)  

(v, R, w, B) 
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General Simulation Argument 

 General simulation argument:  
Given a (deterministic) algorithm in the RAM model that 
solves a problem in time t(m,n), there is a protocol with proof 
size O(m + t(m,n)), using O(1) fingerprints 

– Main idea: use memory checking techniques 

– Verifier runs the algorithm, proof provides result of each 
memory access 

– Verifier uses fingerprints of reads and writes to memory to 
ensure consistency 

 Every memory access is a read followed by a write 
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Applications of Simulation Argument 

 Immediately provides: 

– O(m + n log n) size proof for single-source shortest paths 

– O(n3) size proof for all-pairs shortest paths 

 Minimum spanning tree has an O(n) sized proof 

– Based on linear time algorithms to verify that a tree is minimal 

 

 Limitation: small space but large proof   

– Can we reduce proof sizes by using slightly more space? 
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Streaming ILP problem 

 Stream defines (non-zero) entries of matrix A, vectors b and c 

– Updates “add k to entry (i,j) of A” in arbitrary order 

– Goal: prove x satisfies min {cT x | Ax ≤ b} 
 

 Use primal-duality and matrix-vector multiplication:  

1. Provide primal-feasible solution x 

2. For each row i of A: 

List xi, ci, bi to find ci xi 

List non-zeros Ai and corresponding entries of x to find Aix  

Verifier uses fingerprints ensure consistency 

3. Repeat for dual-feasible solution y s.t. ATy  c 

4. Accept if cT x= bT y 

A x b  
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Application to Graph Streams 

 Applies to Totally Unimodular Integer Programs (TUM IPs) 

– Optimality when primal=dual for LP relaxation 

 Gives protocols for (flow) problems formulated as TUM IPs: 

– Max-flow, min-cut 

– Minimum-weigh bipartite matching 

– Shortest s-t path 

 Size of proof = |A| = size of constraints = |E| 

– Verifier only remembers a constant number of fingerprints 

 Can show lower bound of n2 on (HV) product 

– Via reduction to canonical “hard” problem of INDEX 

 Can we increase space to decrease proof size? 
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Inner Product Computation 

 Given vectors a, b, defined in the stream, want to compute ab 

 Inner product appears in many problems 

– Core computation in data streams 

– Requires (N) space to compute in traditional models 

 

 Results: for h,v s.t. (hv) > N, there exists a protocol with proof 
size O(h log m), and space O(v log m) to compute inner product 

– Lower bounds: HV = (N) necessary for exact computation 
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Inner Product Protocol 

 Map [N] to h  v array 

 Interpolate entries in array as polynomials a(x,y), b(x,y) 

 Verifier picks random r, evaluates a(r, j) and b(r,j) for j  [v] 

 Helper sends s(x) = j[v] a(x, j)b(x,j) (degree h)  

– Verifier checks s(r) = j[v] a(r,j)b(r,j) 

– Output ab = i [h] s(i) if test passed 

 Probability of failure small if evaluated  
over large enough field 

– A “Low Degree Extension” / arithmetization technique 

3   7   1   2 

0   8   5   9 

1   1   1   0 

3  7  1  2  0  8  5  9  1  1  1  0 
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Streaming Computation 

 Must evaluate a(r,j) incrementally as a() is defined by stream 

 Structure of polynomial means updates to (w,z) cause 
 
   a(r,j)  a(r,j) + pw,z(r,j) 
 
where pw,z(x,y) = i [h]\{w} (x-i)(w-i)-1j [v]\{z} (y-j)(z-j)-1 

– p is a Lagrange polynomial corresponding to an impulse at (w,z)  
 

 Can be computed quickly, using appropriate precomputed 
look-up tables 

 Evaluation is linear: can be computed over distributed data 
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Matrix-Vector Computation 

 For Linear Programming, need to verify matrix-vector product 

– Equivalent to multiple vector-vector products 

– Use the fact that one vector is held constant  
 

 Central idea: “simulate” the multiple vector-vector protocols 

– Don’t explicitly store the evaluations of ai(r,j) for all i 

– Instead, keep a fingerprint of the evaluations 

– Evaluate the polynomials si(x) at r, fingerprint the result vector 

 Scale and add fingerprints of ai(r,j) 

– By linearity, f(j ai(r,j) b(r,j)) = j b(r,j) f(ai(r,j)) 

– Accept if the two fingerprints match—  
Implies whp that all the tests si(r) = j ai(r,j) b(r,j) passed  

A x b  
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Matrix-Vector Bounds 

 “Tradeoff” to verify Ax=b, for n x n matrix A 

– Size of proof = O(n1+) for any 0<<1 

– Space of verifier = O(n1-) 

 Applies to a variety of problems: 

– Protocols for dense LPs 

– Connectivity 

– Max bipartite matching 
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Connectivity Tradeoff 

 If graph is connected, can easily verify a spanning tree T 

 Challenge: show that T  E ! 

– Outline: show  T, E  = |n| 

– Inner product: n1+ proof, n1- space 

 

 If graph is not connected, prover lists connected component C 

 Challenge: verify that no edges leave C:  E  (C  (V / C)) = 0 

– Use matrix-vector protocol to compute EC 

– Check that support set of EC is C 

– Cost bounded: n1+ proof, n1- space 
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Multi-Round Protocols 

 Advantage of one-round protocols: Prover can provide proof 
without direct interaction (e.g. publish + go offline) 

 Disadvantage: Resources still polynomial in input size 

  Multi-round protocol can improve exponentially [C,Thaler,Yi 12]:  

– Prover and Verifier follow communication protocol 

– H now denotes upper bound on total communication 

– V is verifier’s space, study tradeoff between H and V as before 

Data Stream 

H 
V 

“Proof” 
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General Theorems 

 Universal Arguments works in this model [Kilian 92] 

– Implies computationally sound polylog n sized proof with 
polylog n space for all of NP 

 “Interactive Proofs for Muggles” [Goldwasser et al 08] 

– Implies statistically sound polylog n size proof with polylog n 
space for all of NP 

 In both cases, verifier computes LDE of input data 

 

 Challenge: these protocols are potentially unwieldy (e.g. 
Universal Arguments depends on building a PCP) 

– Can we find cheaper solutions for certain problems? 
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Multi-Round Index Protocol 

 Basic idea: V keeps hash of whole stream, use helper to help 
check hash of stream containing claimed answer 

– Verifier imposes a binary tree, and a (secret) hash for each level 

– Round 1: Prover sends answer, and its sibling 
  Verifier sends hash for leaf level 

– Round 2: Prover sends hash of answer’s parent’s sibling 
  Verifier sends hash for next  level… 

– Round log N: Verifier checks root hash 

 Correctness: Prover can only cheat via 
hash collisions—but doesn’t know  
hash function until too late to cheat 

– Small chance over log N levels Data Stream 
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Multi-Round Index Protocol 

 Challenge: Verifier must compute hash of root in small space 

 h(root)  = hlog N(hlog N – 1(left half), hlog N – 1(right half)) 
  = hlog N(hlog N … h2 ( h1 (x1, x2) …. ))) 

 Solution: appropriate choice of each hash function 

– hi(x, y) = x + ri y mod p gives sufficient security (1/p log N error)  

– Then h(root) =  i ( wi j=1
log N rj

bit(j,i)) where bit(j,i) = i’th bit of j 

– So each update requires only log N field multiplications 

 Final bounds: O(log2 N) communication, O(log2 N) space 
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Multi-Round Frequency Moments 

Now index data using {0,1}d in d = log N dimensional space 

 Verifier picks one (r1 … rd)  [p]d, and evaluates fk(r1, r2, … rd) 

 Round 1: Prover sends g1(x1)=x2…xd
 fk(x1, x2…xd), V sends r1 

 Round i: Prover sends gi(xi) = xi+1…xd
fk(r1, r2…ri-1, xi, xi+1…xd) 

  Verifier checks gi-1(ri-1) = gi(0) + gi(1), sends ri 

 Round d:  Prover sends gd(xd) = fk(r1, … rd-1, xd) 
  Verifier checks gd(rd) =  fk(r1, r2, … rd) 

3 7 1  2  0  8 5  9 1  1  1  0 … 

3  7  1  2  0  8  5  9  1  1  1  0 
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Multi-Round Frequency Moments 

 Correctness: helper can’t cheat last round without knowing rd 

 Then can’t cheat round i without knowing ri… 

– Similar to protocols from “traditional” Interactive Proofs 

 Inductive proof, conditioned on each later round succeeding 

 

 Bounds: O(k2 log N) total communication, O(k log N) space 

 V’s incremental computation possible in small space, via 
  j=1

d (rj + bit(j,i)(1-2rj)) 

 Intermediate polynomials relatively cheap for helper to find 
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Experimental Results 
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Extensions 

 Distributed/parallel versions of these protocols 

– Can compute proofs in MapReduce, multicore and GPU models 

 Lower bounds for multi-round versions of the protocols 

– May need new communication complexity models 

 Use these protocols 

– Protocols seem practical, but are they compelling?  

– For what problems are protocols most needed? 
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Continuous Distributed Monitoring 
and Lower Bounds 

Coordinator 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 



Continuous 
Distributed 
Monitoring 

 Coordinator 



Distributed Monitoring 

There are many scenarios where we need to track events: 

 Network health monitoring within a large ISP 

 Collecting and monitoring environmental data with sensors 

 Observing usage and abuse of distributed data centers 

All can be abstracted as a collection of observers who want to 
collaborate to compute a function of their observations 

From this we generate the Continuous Distributed Model 
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Continuous Distributed Model 

 Site-site communication only changes things by factor 2 

 Goal: Coordinator continuously tracks (global) function of streams 

– Achieve communication poly(k,1/,log n) 

– Also bound space used by each site, time to process each update 

Coordinator 

k sites 

local stream(s) 
seen at each site 

S1 Sk 

Track f(S1,…,Sk) 
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Challenges 

 Monitoring is Continuous… 

– Real-time tracking, rather than one-shot query/response 

 …Distributed… 

– Each remote site only observes part of the global stream(s) 

– Communication constraints: must minimize monitoring burden 

 …Streaming… 

– Each site sees a high-speed local data stream and can be resource 
(CPU/memory) constrained 

 …Holistic… 

– Challenge is to monitor the complete global data distribution 

– Simple aggregates (e.g., aggregate traffic) are easier 
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Baseline Approach 

 Sometimes periodic polling suffices for simple tasks 

– E.g., SNMP polls total traffic at coarse granularity 

 Still need to deal with holistic nature of aggregates 

 Must balance polling frequency against communication  

– Very frequent polling causes high communication,  

excess battery use in wireless devices 

– Infrequent polling means delays in observing events 

 Need techniques to reduce communication  

while guaranteeing rapid response to events 
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Variations in the model 

 Multiple streams define the input A 

 Given function f, several types of problem to study: 

– Threshold Monitoring: identify when f(A) >   
 Possibly tolerate some approximation based on  

– Value Monitoring: always report accurate approximation of f(A) 

– Set Monitoring: f(A) is a set, always provide a “close” set 

 Direct communication between sites and the coordinator 

– Other network structures possible (e.g., hierarchical) 
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Outline 

1. The Continuous Distributed Model 

2. How to count to 10 

3. The geometric approach 

4. A sample of sampling 

5. Prior work and future directions  
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The Countdown Problem 

 A first abstract problem that has many applications 

 Each observer sees events 

 Want to alert when a total of  events have been seen 

– Report when more than 10,000 vehicles have passed sensors 

– Identify the 1,000,000th customer at a chain of stores 

 Trivial solution: send 1 bit for each event, coordinator counts 

– O() communication 

– Can we do better?  
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A First Approach 

 One of k sites must see /k events before threshold is met 

 So each site counts events, sends message when /k are seen 

 Coordinator collects current count ni from each site 

– Compute new threshold ’ =  - i=1
k ni 

– Repeat procedure for ’ until ’ < k, then count all events 

 Analysis:  > ’/(1-1/k) > ’’/(1-1/k)2 > … 

– Number of thresholds = log (/k) / log(1/(1-1/k)) = O(k log (/k)) 

– Total communication: O(k2 log (/k)) [each update costs O(k)] 

 Can we do better?  
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A Quadratic Improvement 

 Observation: O(k) communication per update is wasteful 

 Try to wait for more updates before collecting 

 Protocol operates over log (/k) rounds [C.,Muthukrishnan, Yi 08] 

– In round j, each site waits to receive /(2j k) events 

– Subtract this amount from local count ni, and alert coordinator 

– Coordinator awaits k messages in round j, then starts round j+1 

– Coordinator informs all sites at end of each round 

 Analysis: k messages in each round, log (/k) rounds 

– Total communication is O(k log (/k)) 

– Correct, since total count can’t exceed  until final round 
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Approximate variation 

 Sometimes, we can tolerate approximation 

 Only need to know if threshold  is reached approximately 

 So we can allow some bounded uncertainty: 

– Do not report when count < (1-)  

– Definitely report when count >  

– In between, do not care 

 Previous protocol adapts immediately: 

– Just wait until distance to threshold reaches  

– Cost of the protocol reduces to O(k log 1/) (independent of ) 
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Extension: Randomized Solution 

 Cost is high when k grows very large 

 Randomization reduces this dependency, with parameter  

 Now, each site waits to see O(2/k) events 

– Roll a die: report with probability 1/k, otherwise stay silent 

– Coordinator waits to receive O(1/2) reports, then terminates 

 Analysis: in expectation, coordinator stops after (1-/2) events 

– With Chernoff bounds, show that it stops before  events 

– And does not stop before (1-) events 

 Gives a randomized, approximate solution: uncertainty of  
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Outline 

1. The Continuous Distributed Model 

2. How to count to 10 

3. The geometric approach 

4. A sample of sampling 

5. Prior work and future directions  
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General Non-linear Functions 

 For general, non-linear f(), the problem becomes a lot harder! 

– E.g., information gain over global data distribution  

 Non-trivial to decompose the global threshold into “safe” local 

site constraints 

 E.g., consider N=(N1+N2)/2 and f(N) = 6N – N2  > 1 

Tricky to break into thresholds for f(N1) and f(N2) 

S1 Sk 

Query:  f(S1,…,Sk) >   ? 
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The Geometric Approach 

 A general purpose geometric approach [Scharfman et al.’06] 

– Each site tracks a local statistics vector vi (e.g., data distribution) 

  Global condition is f(v) > , where  v = ii vi     (ii = 1) 

– v = convex combination of local statistics vectors 

 All sites share estimate e = ii vi
’
  of v  

 based on latest update vi
’ from site i 

 Each site i tracks its drift from its most recent update Δvi = vi-vi
’  
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Covering the convex hull 

 Key observation:   v = ii(e+Δvi)     

(a convex combination of “translated” local drifts) 

 v lies in the convex hull of 

the (e+Δvi) vectors  

 Convex hull is completely 

covered  by spheres with 

radii ǁΔvi/2ǁ2  centered at  

e+Δvi/2 

 Each such sphere can be 

constructed independently 

e 

Δv1 
Δv2 

Δv3 

Δv4 Δv5 
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Monochromatic Regions 

 Monochromatic Region:  For all points x in the region f(x) is on 

the same side of the threshold (f(x) >  or f(x)  )   

 Each site independently checks its sphere is monochromatic  

– Find max and min for f() in local sphere region (may be costly) 

– Broadcast updated value of vi if not monochrome 

e 

Δv1 
Δv2 

Δv3 

Δv4 Δv5 

f(x) >  
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Restoring Monochomicity 

 After broadcast, ǁΔviǁ2 = 0    Sphere at i is monochromatic 

e 

Δv1 
Δv2 

Δv3 

Δv4 Δv5 

f(x) >  
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Restoring Monochomicity 

 After broadcast, ǁΔviǁ2 = 0    Sphere at i is monochromatic 

– Global estimate e is updated, which may cause more site update 
broadcasts 

 Coordinator case:  Can allocate local slack vectors to sites to 
enable “localized” resolutions 

– Drift (=radius) depends on slack (adjusted locally for subsets) 

e 

Δv1 
Δv2 

Δv3 = 0 Δv4 Δv5 

f(x) >  
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Extension: Transforms and Shifts 

 Subsequent extensions further reduce cost [Scharfman et al. 10] 

– Same analysis of correctness holds  
when spheres are allowed to be ellipsoids 

– Additional offset vectors can be used  
to increase radius when close to  
threshold values 

– Combining these observations 
allows additional cost savings 
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5. Prior work and future directions  
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Drawing a Sample 

 A basic ‘set monitoring’ problem is to draw a uniform sample 

 Given inputs of total size N, draw a sample of size s 

– Uniform over all subsets of size s 

 Overall approach: 

– Define a general sampling technique amenable to distribution 

– Bound the cost 

– Extend to sliding windows 
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Binary Bernoulli Sampling 

 Always sample with probability p = 2-i 

 Randomly pick i bits, each of which is 0/1 with probability ½ 

 Select item if all i random bits are 0 

 (Conceptually) store the random bits for each item 

– Can easily pick more random bits if the sampling rate decreases 
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Sampling Protocol 

 Protocol based on [C., Muthukrishnan, Yi, Zhang 10] 

 In round i, each site samples with p = 2-i 

– Sampled items are sent to the coordinator 

– Coordinator picks one more random bit 

– End round i when coordinator has s items with (i+1) zeros 

– Coordinator informs each site that a new round has started 

– Coordinator picks extra random bits for items in its sample 
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Protocol Costs 

 Correctness: coordinator always has (at least) s items 

– Sampled with the same probability p 

– Can subsample to reach exactly s items 

 Cost: each round is expected to send O(s) items total 

– Can bound this with high probability via Chernoff bounds 

– Number of rounds is similarly bounded as O(log N) 

– Communication cost is O((k+s) log N)  

 Lower bound on communication cost of (k + s log N) 

– At least this many items are expected to appear in the sample 

– O(k logk/sN + s log N) upper bound by adjusting probabilities 
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Simplified Protocol 

 Can simplify the protocol further [Tirthapura, Woodruff 11]:  

– Site j generates random tag ui, sends if ui < local threshold pj 

– Coordinator receives sampled item, tests ui against local p value 

– Set p so there are at most s items with tag less than p 

– Inform site of current p value, which updates pj 

 Prove correctness by matching to previous algorithm 

– Show simplified protocol never sends more than round-based 
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Extension: Sliding Window 

 Extend to sliding windows: only sample from last T arrivals 

 Key insight: can break window into ‘arriving’ and ‘departing’ 

– Use multiple instances of Countdown protocol to track expiries 

 Cost of such a protocol is O(ks log (W/s)) 

– Near-matching (ks log(W/ks)) lower bound 

Current window 

T 2T 3
T 

4T 

Departing Arriving 
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1. The Continuous Distributed Model 

2. How to count to 10 

3. The geometric approach 

4. A sample of sampling 

5. Prior work and future directions  
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Early Work 

 Continuous distributed monitoring arose in several places: 

– Networks: Reactive monitoring [Dilman Raz 01] 

– Databases: Distributed triggers [Jain et al. 04] 

 Initial work on tracking multiple values 

– “Adaptive Filters” [Olston Jiang Widom 03] 

– Distributed top-k [Babcock Olston 03] 

Filters 
x 

“push” 

Filters 
x 

adjust 

145 



Prediction Models 

 Prediction further reduces cost [C, Garofalakis, Muthukrishnan, Rastogi 05] 

– Combined with approximate (sketch) representations 

Predicted Distribution 

Prediction used at  
coordinator for query 

answering 

Prediction error 
tracked locally 

by sites 
  (local constraints)  

True Distribution (at site) 

Rif

p

Rif

True Sketch (at site) 

)(sk Rif

Predicted Sketch 

)( Rifpsk
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Problems in Distributed Monitoring 

 Much interest in these problems in TCS and Database areas 

 Many specific functions of (global) data distribution studied: 

– Set expressions [Das Ganguly Garofalakis Rastogi 04] 

– Quantiles and heavy hitters [C, Garofalakis, Muthukrishnan, Rastogi 05] 

– Number of distinct elements [C., Muthukrishnan, Zhuang 06] 

– Conditional Entropy [Arackaparambil, Bratus, Brody, Shubina 10] 

– Spectral properties of data matrix [Huang et al. 06] 

– Anomaly detection in networks [Huang et al. 07] 

 Track functions only over sliding window of recent events 

– Samples [C, Muthukrishnan, Yi, Zhang 10] 

– Counts and frequencies [Chan Lam Lee Ting 10] 
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Other Work 

 Many open problems remain in this area 

– Improve bounds for previously studied problems 

– Provide bounds for other important problems 

– Give general schemes for larger classes of functions 

 Much ongoing work 

– See EU-support LIFT project, lift-eu.org 

 Two specific open problems: 

– Develop systems and tools for continuous distributed monitoring 

– Provide a deeper theory for continuous distributed monitoring 
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Monitoring Systems 

 Much theory developed, but less progress on deployment 

 Some empirical study in the lab, with recorded data 

 Still applications abound: Online Games [Heffner, Malecha 09] 

– Need to monitor many varying stats and bound communication 

 Several steps to follow: 

– Build libraries of code for basic monitoring problems 

– Evolve these into general purpose systems (distributed DBMSs?) 

 Several questions to resolve: 

– What functions to support?  General purpose, or specific? 

– What keywords belong in a query language for monitoring? 
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Theoretical Foundations 

“Communication complexity” studies lower bounds of distributed 
one-shot computations 

 Gives lower bounds for various problems,  e.g.,  
count distinct (via reduction to abstract problems) 

 Need new theory for continuous computations 

– Based on info. theory and models of how streams evolve? 

– Link to distributed source coding or network coding? 
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Distributed Monitoring Summary 

 Continuous distributed monitoring is a natural model 

 Captures many real world applications 

 Much non-trivial work in this model 

 Much work remains to do! 

 Longer survey: 
dimacs.rutgers.edu/~graham/pubs/papers/cdsurvey.pdf 
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Distributed Streaming 
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Streaming Lower Bounds 

 Lower bounds for data streams 

– Communication and information complexity bounds 

– Simple reductions 

– Hardness of Gap-Hamming problem 

– Reductions to Gap-Hamming 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Lower Bounds 

 So far, have seen many examples of things we can do in 
streaming models 

 What about things we can’t do?  

 What’s the best we could achieve for things we can do? 

 Will show lower bounds for (distributed) data streams based 
on communication complexity 
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Streaming As Communication 

 Imagine Alice processing a single stream 

 Then take the whole working memory, and send to Bob 

 Bob continues processing the remainder of the stream 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Streaming As Communication 

 Suppose Alice’s part of the stream corresponds to string x, 
and Bob’s part corresponds to string y... 

 ...and that computing the function on the stream corresponds 
to computing f(x,y)... 

 ...then if f(x,y) has communication complexity (g(n)), then 
the streaming computation has a space lower bound of 
(g(n)) 

 Proof by contradiction:   
If there was an algorithm with better space usage, we could 
run it on x, then send the memory contents as a message, and 
hence solve the communication problem 
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Deterministic Equality Testing 

 Alice has string x, Bob has string y, want to test if x=y 

 Consider a deterministic (one-round, one-way) protocol that 
sends a message of length m < n 

 There are 2m possible messages, so some strings must 
generate the same message: this would cause error 

 So a deterministic message (sketch) must be (n) bits 

– In contrast, we saw a randomized sketch of size O(log n) 

 

 1 0 1 1 1 0 1 0 1 … 

 1 0 1 1 0 0 1 0 1 … 
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Hard Communication Problems 

 INDEX: x is a binary string of length n 
y is an index in [n] 
Goal: output x[y] 
Result: (one-way) (randomized) communication complexity of 
INDEX is (n) bits 

 

 DISJ: x and y are both length n binary strings  

Goal: Output 1 if i: x[i]=y[i]=1, else 0 
Result: (multi-round) (randomized) communication 
complexity of DISJ  (disjointness) is (n) bits 
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Hardness of INDEX 

 Show hardness of INDEX via Information Complexity argument 

– Makes extensive use of Information Theory 

 Entropy of random variable X: H(X) = - x Pr[X=x] lg Pr[X=x] 

– (Expected) information (in bits) gained by learning value of X 

– If X takes on at most N values, H(X)  lg N 

 Conditional Entropy of X given Y: H(X|Y) = y Pr[y] H[X|Y=y] 

– (Expected) information (bits) gained by learning value of X given Y 

 Mutual Information: I(X : Y) = I(Y : X) = H(X) – H(X | Y) 

– Information (in bits) shared by X and Y 

– If X, Y are independent, I(X : Y) = 0 and I(XY : Z)  I(X : Z) + I(Y : Z) 
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Information Cost 

 Use Information Theoretic properties to lower bound 
communication complexity 

 Suppose Alice and Bob have random inputs X and Y 

 Let M be the (random) message sent by Alice in protocol P 

 The cost of (one-way) protocol P is cost(P) = max |M| 

– Worst-case size of message (in bits) sent in the protocol 

 Define information cost as icost(P) = I(M : X) 

– The information conveyed about X in M 

– icost(P) = I(M : X) = H(M) – H(M | X)  H(M)  cost(P) 
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Information Cost of INDEX 

 Give Alice random input X = n uniform random bits 

 Given protocol P for INDEX, Alice sends message M(X) 

 Give Bob input i.  He should output Xi 

 icost(P)  = I(X1 X2 … Xn : M) 
   I(X1 : M) + I(X2 : M) + … + I(Xn: M)   

 Now consider the mutual information of Xi and M 

– Have reduced the problem to n instances of a simpler problem 

 

164 



Fano’s Inequality 

 When forming estimate X’ from X given (message) M, where 
X, X’  have k possible values, let E denote X  X’.  We have: 
  H(E) + Pr[E] log(k-1)  H(X | M) 
where H(E) = -Pr[E]lg Pr[E] – (1-Pr[E]) lg(1-Pr[E]) 

 Here, k=2, so we get I(X : M) = H(X) - H(X | M)  H(X) – H(E) 

– H(X) = 1.  If Pr[E]=, we have H(E) < ½ for <0.1 

– Hence I(Xi : M) > ½  

 Thus cost(P)  icost(P) > ½ n if P succeeds w/prob 1- 

– Protocols for INDEX must send (n) bits 
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Outline for DISJOINTNESS hardness 

 Hardness for DISJ follows a similar outline 

 Reduce to n instances of the problem “AND” 

– “AND” problem: test whether Xi = Yi = 1 

 Show that the information cost of DISJ protocol is sufficient 
to solve all n instances of AND 

 Show that the information cost of each instance is (1) 

 Proves that communication cost of DISJ is (1) 

– Even allowing multiple rounds of communication 
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Simple Reduction to Disjointness 

 F: output the highest frequency in a stream 

 Input: the two strings x and y from disjointness instance 

 Stream: if x[i]=1, then put i in stream; then same for y 

– A streaming reduction (compare to polynomial-time reductions) 

 Analysis: if F=2, then intersection; if F1, then disjoint. 

 Conclusion: Giving exact answer to F requires (N) bits 

– Even approximating up to 50% relative error is hard 

– Even with randomization: DISJ bound allows randomness 

x: 1 0 1 1 0 1 

y: 0 0 0 1 1 0 

1, 3, 4, 6 

4, 5 
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Simple Reduction to Index 

 F0: output the number of items in the stream 

 Input: the strings x and index y from INDEX 

 Stream: if x[i]=1, put i in stream; then put y in stream 

 Analysis: if (1-)F’0(xy)>(1+)F’0(x) then x[y]=1, else it is 0 

 Conclusion: Approximating F0 for <1/N requires (N) bits 

– Implies that space to approximate must be (1/) 

– Bound allows randomization 

x: 1 0 1 1 0 1 

y: 5 

1, 3, 4, 6 

5 
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Hardness Reduction Exercises 

Use reductions to DISJ or INDEX to show the hardness of: 

1. Frequent items: find all items in the stream whose frequency 
> N, for some .  

2. Sliding window: given a stream of binary (0/1) values, 
compute the sum of the last N values 

– Can this be approximated instead? 

3. Min-dominance: given a stream of pairs (i,x(i)), approximate 
i min(i, x(i)) x(i) 

4. Rank sum: Given a stream of (x,y) pairs and query (p,q) 
specified after stream, approximate |{(x,y)| x<p, y<q}| 
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Streaming Lower Bounds 

 Lower bounds for data streams 

– Communication complexity bounds 

– Simple reductions 

– Hardness of Gap-Hamming problem 

– Reductions to Gap-Hamming 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Gap Hamming 

Gap-Hamming communication problem: 

 Alice holds x  {0,1}N, Bob holds y  {0,1}N 

 Promise: Ham(x,y) is either  N/2 - √N or  N/2 + √N 

 Which is the case? 

 Model: one message from Alice to Bob 

 Sketching upper bound: need relative error  = √N/F2 = 1/√N 

– Gives space O(1/2) = O(N) 

 

Requires (N) bits of one-way randomized communication  
[Indyk, Woodruff’03, Woodruff’04, Jayram, Kumar, Sivakumar ’07] 

171 



Hardness of Gap Hamming 

 Reduction starts with an instance of INDEX 

– Map string x to u by 1  +1, 0  -1  (i.e. u[i] = 2x[i] -1 ) 

– Assume both Alice and Bob have access to public random 
strings rj, where each bit of rj is iid {-1, +1} 

– Assume w.l.o.g. that length of string n is odd (important!) 

– Alice computes aj = sign(rj  u) 

– Bob computes bj = sign(rj[y]) 

 Repeat N times with different random strings, and consider 
the Hamming distance of a1... aN with b1 ... bN 

– Argue if we solve Gap-Hamming on (a, b), we solve INDEX 
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Probability of a Hamming Error 

 Consider the pair aj= sign(rj  u),  bj = sign(rj[y]) 

 Let w = i  y u[i] rj[i] 

– w is a sum of (n-1) values distributed iid uniform {-1,+1} 

 Case 1: w  0.  So |w| 2, since (n-1) is even    

– so sign(aj) = sign(w), independent of x[y] 

– Then Pr[aj  bj] = Pr[sign(w)  sign(rj[y])] = ½   

 Case 2: w = 0.  
So aj = sign(rju) = sign(w + u[y]rj[y]) = sign(u[y]rj[y]) 

– Then Pr[aj  bj] = Pr[sign(u[y]rj[y]) = sign(rj[y])] 

– This probability is 1 is u[y]=+1, 0 if u[y]=-1 

– Completely biased by the answer to INDEX 
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Finishing the Reduction 

 So what is Pr[w=0]? 

– w is sum of (n-1) iid uniform {-1,+1} values 

– Exercise: Pr[w=0] = 2-n(n choose n/2) = c/n, for some constant c 

 Do some probability manipulation: 

– Pr[aj = bj] = ½ + c/2n if x[y]=1 

– Pr[aj = bj] = ½ - c/2n if x[y]=0 

 Amplify this bias by making strings of length N=4n/c2 

– Apply Chernoff bound on N instances  

– With prob>2/3, either Ham(a,b)>N/2 + N or Ham(a,b)<N/2 - N 

 If we could solve Gap-Hamming, could solve INDEX 

– Therefore, need (N) = (n) bits for Gap-Hamming 
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Streaming Lower Bounds 

 Lower bounds for data streams 

– Communication complexity bounds 

– Simple reductions 

– Hardness of Gap-Hamming problem 

– Reductions to Gap-Hamming 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 
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Lower Bound for Entropy 

Gap-Hamming instance—Alice: x  {0,1}N, Bob: y  {0,1}N 

Entropy estimation algorithm A 

 Alice runs A on enc(x) = (1,x1), (2,x2), …, (N,xN) 

 Alice sends over memory contents to Bob 

 Bob continues A on enc(y) = (1,y1), (2,y2), …, (N,yN) 

0 1 0 0 1 1 

(6,0) (5,1) (4,0) (3,0) (2,1) (1,1) 

Bob 

(6,1) (5,1) (4,0) (3,0) (2,1) (1,0) 

1 1 0 0 1 0 
Alice 
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Lower Bound for Entropy 

 Observe: there are 

– 2Ham(x,y) tokens with frequency 1 each 

– N-Ham(x,y) tokens with frequency 2 each 

 So (after algebra), H(S) = log N + Ham(x,y)/N = log N + ½  1/√N 

 If we separate two cases, size of Alice’s memory contents = (N)   
Set  = 1/(√(N) log N) to show bound of (/log 1/)-2) 

0 1 0 0 1 1 

(6,0) (5,1) (4,0) (3,0) (2,1) (1,1) 

Bob 

(6,1) (5,1) (4,0) (3,0) (2,1) (1,0) 

1 1 0 0 1 0 
Alice 
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Lower Bound for F0 

 Same encoding works for F0 (Distinct Elements) 

– 2Ham(x,y) tokens with frequency 1 each 

– N-Ham(x,y) tokens with frequency 2 each 

 F0(S) = N + Ham(x,y) 

 Either Ham(x,y)>N/2 + N or Ham(x,y)<N/2 - N 

– If we could approximate F0 with  < 1/N, could separate 

– But space bound = (N) = (-2) bits 

 Dependence on  for F0 is tight 

 

 Similar arguments show (-2) bounds for Fk 

– Proof assumes k (and hence 2k) are constants 
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Lower Bounds Exercises 

1. Formally argue the space lower bound for F2 via Gap-
Hamming 

2. Argue space lower bounds for Fk via Gap-Hamming 

3. (Research problem) Extend lower bounds for the case when 
the order of the stream is random or near-random 
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Other Streaming Directions 

Many fundamentals have been studied, not time to cover here: 

 Different streaming data types 

– Massive Matrices, Permutations, Graph Data, Geometric Data 

 Different streaming processing models 

– Sliding Windows, Exponential and other decay,  
Random order streams, Skewed streams 

 Different streaming scenarios 

– Gossip computations, sensor network computations, 
MapReduce computations 

 Different streaming applications 

– Advanced mining algorithms, large scale machine learning 
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