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The GPU Pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



Fragment shader operations

Every pixel acts like a streaming SIMD processor
actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.
All computation on GPU from start of the vertex pipeline



Algorithms via Lower Envelopes[AKMV03]
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Voronoi diagram is lower envelope of collection of distance
functions
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Development Support

Language Support
Brook[BFH+04]
Cg[MGAK03]
GLSL/HLSL[Fou, Mic]
LibSh[MDT04]

Coding Support
Cg debugger
Code optimizer

GPU programming moves closer to “real” programming

API is still delinked from hardware, and this is deliberate
Parallelism is still partly a fiction.
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CUDA: Compute Unified Device Architecture[NVI]

Lightweight threads that run SIMD (SIMT) in “blocks”
Blocks run in “SPMD” mode (single program, multiple data)
Memory at multiple levels (thread, blocks, global)
Threads are very lightweight, and there are many of them.
Two views: programmer-centric and hardware-centric
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“Hello World”: CUDA Matrix Multiplication

Problem
Multiply two 64× 64 matrices.

CUDAalloc(Md, 64× 64) {Allocate device memory}
CUDAalloc(Nd, 64× 64)
CUDAalloc(Pd, 64× 64)

CUDAcopy(Md, M) {Transfer matrices to device memory}
CUDAcopy(Nd, N)

Initiate Kernel

CUDAcopy(P, Pd) {Retrieve result from device}



“Hello World”: CUDA Matrix Multiplication

Thread (i, j) will compute the dot product of row i of M and
column j of N
All threads will be in a single block of a single grid

(tx, ty)← (threadIdx.x, threadIdx.y)
P← 0 {Local thread storage}
for i = 1 . . . 64 do

P + = Md[64 · ty + i] · Nd[64 · i + tx]
end for
Pd[tx, ty]← P {Write to global memory}

Kernel is invoked as matmult 〈〈(1, 1), (64, 64)〉〉
Blocks can only allocate a maximum of 512 threads



CUDA execution model

CUDA looks different to programmer and hardware (like
MapReduce)
Understanding the execution model helps with design of
algorithms



CUDA Execution Model

Nickolls, Buck, Garland, Skadron, ACM Queue, Mar 2008[NBGS08]
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CUDA Execution Model: Warps

Each warp consists of at most 32 threads taken from a single
block
All threads in a warp are executed in parallel with zero overhead
In each clock cycle, a GO command is issued to all threads of
warp to execute same command
If there’s branching, branches are executed sequentially –
non-executing threads are inactive.
Maximize throughput by minimizing branching

This is Single Instruction Multiple Threads (SIMT)
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CUDA Execution Model: Scheduling Warps

At each clock tick, SM determines which warp is ready to execute
This is done by “scoreboarding”: hardware table that tracks

instructions
resources
which instructions use which registers

Using scoreboard, SM can figure out who’s ready for execution
next.



Sorting with CUDA

Many different implementations of sorting algorithms
Radix sort
Merge sort
Quick sort
Sample sort
Bitonic sort
Hybrid sorting methods

For fixed keys, radix sort is fastest
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Prefix Counting
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Prefix Sums

For each digit
1 Construct flag vector locally and write to shared memory
2 Do parallel reduce on flag vector to find offsets
3 Move items to correct locations in global array
4 Repeat



Parallel Reduce

If all reducers in one block, easy to synchronize
If not, need to use global memory to communicate: Expensive !
Create multiple kernels for different levels of the reduce tree
(kernel creates sync)



Optimizations

Distribute reduce operations to blocks
Factor out branches to reduce divergence penalty
Unroll operations in reduce when possible.

Overall 1 GKeys/second, 3-4x over Larrabee



Level Selection and Two-Sided Tests[GKMV03]

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)
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Solution is to minimize over the median layer of an associated
arrangement
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QuickSelect

Fragment Program: takes input x1, x2, . . . xn and k
(lo, hi)← arg min xi, arg max xi
while hi - lo > 1 do

Pick random mid between lo,hi
c = number of elements x such that xlo ≤ x ≤ xmid {two-sided
test}
if c ≥ k then
hi← mid

else
lo← mid

end if
end while
Return lo



QuickSelect

QuickSelect as a fragment program extracts the kth level of the
arrangement.
It uses three conditionals (one for the branching, and two for the
two-sided test
Two-sided test evaluated many times.
Overall complexity is O(log n) passes on average

Lemma
A fragment procesor that only uses a one-sided test, or is not randomized,
must take n passes.

Tradeoff between penalty of more conditional branching and number of passes



CUDA Execution Model: Design Choices

To make maximum use of SIMT, minimize branching
Memory bank conflicts have to be dealt with
If there are too many blocks, you pay switching overhead on an
SM
Two-level model allows for flexibility: CUDA program can be
adapted to different hardware configurations easily

(or even run on a single core machine!)



This Lecture

Examples of the streaming SIMD view of the GPU
Lower envelope computations
Multipass streaming median

The CUDA model:
The programmer’s view
Matrix multiplication
The hardware view
Radix Sorting



Next Lecture(s)

Solving different problems using CUDA:
Multipole methods
Sparse Matrix Operations
Graphs I: BFS
Graphs II: Coloring



Questions?
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