
GPU Algorithms II
Models and CUDA

MADALGO Summer School on Algorithms for Modern Parallel

and Distributed Models

Suresh Venkatasubramanian
University of Utah

Previously...

1999 2006

Programmable
pipeline

sorting
matrices

Outline

1999 2006

Programmable
pipeline

sorting
matrices

geometry

A streaming model

Outline

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

The GPU Pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Fragment shader operations

Every pixel acts like a streaming SIMD processor
actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.
All computation on GPU from start of the vertex pipeline

Algorithms via Lower Envelopes[AKMV03]

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions

General Envelope Extents

• Let f1, . . . fn be a set of functions from R2 → R

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Compute (min, max)xE(x), L(x), U(x)

General Envelope Extents

• Let f1, . . . fn be a set of functions from R2 → R

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Compute (min, max)xE(x), L(x), U(x)

General Envelope Extents

• Let f1, . . . fn be a set of functions from R2 → R• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Compute (min, max)xE(x), L(x), U(x)

General Envelope Extents

• Let f1, . . . fn be a set of functions from R2 → R• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Compute (min, max)xE(x), L(x), U(x)

General Envelope Extents

• Let f1, . . . fn be a set of functions from R2 → R• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Compute (min, max)xE(x), L(x), U(x)

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

u

u

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

u

u

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Examples

uu

f (u) = maxp∈P〈u, p〉

u

f (u) = maxp∈P〈u, p〉f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

u∗

f (u) = maxp∈P〈u, p〉

∆(P) = maxu f (u)− f (−u)

Width(P) = minu W(u) , f (u)− f (−u)

Min-Bbox(P) = minu W(u) ·W(u⊥)

u u⊥

dp(x) = ‖p− x‖dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖
dp(x) = ‖p− x‖

MEB(P) = minc maxp dp(c)

g(x) = ∑p ‖p− x‖

1-median(P) = minx g(x)

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

dH(P, Q) = maxp∈P minq∈Q ‖p− q‖

Hausdorff Distance

• Penetration depth between two surfaces

• Best-fit circle, minimum width annulus

• Discretize the space to get an appropriate approximation

• Some computations happen in dual space

Development Support

Language Support
Brook[BFH+04]
Cg[MGAK03]
GLSL/HLSL[Fou, Mic]
LibSh[MDT04]

Coding Support
Cg debugger
Code optimizer

GPU programming moves closer to “real” programming

API is still delinked from hardware, and this is deliberate
Parallelism is still partly a fiction.

Geometry Shaders

CPU GPU

Vertex
pipeline

Fragment
pipeline

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

• Geometry shaders allow programming the vertex
pipeline

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

• Geometry shaders allow programming the vertex
pipeline

• Geometry can be generated inside the vertex pipeline

Geometry Shaders

CPU GPU

Vertex
pipeline

Fragment
pipeline

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

• Geometry shaders allow programming the vertex
pipeline

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

• Geometry shaders allow programming the vertex
pipeline

• Geometry can be generated inside the vertex pipeline

Geometry Shaders

CPU GPU

Vertex
pipeline

Fragment
pipeline

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

• Geometry shaders allow programming the vertex
pipeline

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

• Geometry shaders allow programming the vertex
pipeline

• Geometry can be generated inside the vertex pipeline

Geometry Shaders

CPU GPU

Vertex
pipeline

Fragment
pipeline

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

• Geometry shaders allow programming the vertex
pipeline

CPU GPU

Vertex
pipeline

Fragment
pipeline

• A multipass GPU computation requires crossing the
CPU-GPU interface

• Geometry shaders allow programming the vertex
pipeline

• Geometry can be generated inside the vertex pipeline

Outline

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

Revisiting the GPU model

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

SIMD execution across all elements of grid

ID7 ID8

ID5

ID2ID1

ID4

ID0

ID3

ID6ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

A ”block” of threads executing in SIMD

Revisiting the GPU model

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

SIMD execution across all elements of grid

ID7 ID8

ID5

ID2ID1

ID4

ID0

ID3

ID6ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

A ”block” of threads executing in SIMD

Revisiting the GPU model

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

SIMD execution across all elements of grid

ID7 ID8

ID5

ID2ID1

ID4

ID0

ID3

ID6ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

A ”block” of threads executing in SIMD

Revisiting the GPU model

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

SIMD execution across all elements of grid

ID7 ID8

ID5

ID2ID1

ID4

ID0

ID3

ID6ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

A ”block” of threads executing in SIMD

Revisiting the GPU model

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

SIMD execution across all elements of grid

ID7 ID8

ID5

ID2ID1

ID4

ID0

ID3

ID6

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

A ”block” of threads executing in SIMD

Revisiting the GPU model

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

SIMD execution across all elements of grid

ID7 ID8

ID5

ID2ID1

ID4

ID0

ID3

ID6

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

A ”block” of threads executing in SIMD

Revisiting the GPU model

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

SIMD execution across all elements of grid

ID7 ID8

ID5

ID2ID1

ID4

ID0

ID3

ID6ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

A ”block” of threads executing in SIMD

Revisiting the GPU model

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

(0, 0) (0, 1) (0, 2)

(1, 2)(1, 1)(1, 0)

(2, 0) (2, 1) (2, 2)

C[i, j] = ∑k A[i, k] · B[k, j]

SIMD execution across all elements of grid

ID7 ID8

ID5

ID2ID1

ID4

ID0

ID3

ID6ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

ID6 ID7 ID8

ID5

ID2
ID1ID4

ID0

ID3 C[i, j] = ∑k A[i, k] · B[k, j]

A ”block” of threads executing in SIMD

CUDA: Compute Unified Device Architecture[NVI]

Lightweight threads that run SIMD (SIMT) in “blocks”
Blocks run in “SPMD” mode (single program, multiple data)
Memory at multiple levels (thread, blocks, global)
Threads are very lightweight, and there are many of them.
Two views: programmer-centric and hardware-centric

CUDA Model: Blocks

Block

Block

• A block is a collection of threads

Block

• A block is a collection of threads

• A block can have different ”shapes”

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

• Block memory is low-latency and shared among threads

CUDA Model: Blocks

Block

Block

• A block is a collection of threads

Block

• A block is a collection of threads

• A block can have different ”shapes”

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

• Block memory is low-latency and shared among threads

CUDA Model: Blocks

BlockBlock

• A block is a collection of threads

Block

• A block is a collection of threads

• A block can have different ”shapes”

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

• Block memory is low-latency and shared among threads

CUDA Model: Blocks

BlockBlock

• A block is a collection of threads

Block

• A block is a collection of threads

• A block can have different ”shapes”

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

• Block memory is low-latency and shared among threads

CUDA Model: Blocks

BlockBlock

• A block is a collection of threads

Block

• A block is a collection of threads

• A block can have different ”shapes”

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

• Block memory is low-latency and shared among threads

CUDA Model: Blocks

BlockBlock

• A block is a collection of threads

Block

• A block is a collection of threads

• A block can have different ”shapes”

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

• Block memory is low-latency and shared among threads

CUDA Model: Blocks

BlockBlock

• A block is a collection of threads

Block

• A block is a collection of threads

• A block can have different ”shapes”

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

• Block memory is low-latency and shared among threads

CUDA Model: Grids

Grid

• A grid is a collection of blocks

Grid

• A grid is a collection of blocks

• A grid can have different shapes

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

• Blocks cannot coordinate with each other and are run
independently

CUDA Model: Grids

Grid

• A grid is a collection of blocks

Grid

• A grid is a collection of blocks

• A grid can have different shapes

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

• Blocks cannot coordinate with each other and are run
independently

CUDA Model: Grids

Grid

• A grid is a collection of blocks

Grid

• A grid is a collection of blocks

• A grid can have different shapes

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

• Blocks cannot coordinate with each other and are run
independently

CUDA Model: Grids

Grid

• A grid is a collection of blocks

Grid

• A grid is a collection of blocks

• A grid can have different shapes

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

• Blocks cannot coordinate with each other and are run
independently

CUDA Model: Grids

Grid

• A grid is a collection of blocks

Grid

• A grid is a collection of blocks

• A grid can have different shapes

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

• Blocks cannot coordinate with each other and are run
independently

CUDA Model: Overview

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Block

Host Device

GridProgram

Host Device

GridProgram

RUN

Host Device

GridProgram

RUN

CUDA Model: Overview

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Block

Host Device

GridProgram

Host Device

GridProgram

RUN

Host Device

GridProgram

RUN

CUDA Model: Overview

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Block

Host Device

GridProgram

Host Device

GridProgram

RUN

Host Device

GridProgram

RUN

CUDA Model: Overview

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Block

Host Device

GridProgram

Host Device

GridProgram

RUN

Host Device

GridProgram

RUN

CUDA Model: Overview

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Block

Host Device

GridProgram

Host Device

GridProgram

RUN

Host Device

GridProgram

RUN

CUDA Model: Overview

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Block

Host Device

GridProgram

Host Device

GridProgram

RUN

Host Device

GridProgram

RUN

CUDA Model: Overview

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Host Device

GridProgram

Block

Host Device

GridProgram

Host Device

GridProgram

RUN

Host Device

GridProgram

RUN

“Hello World”: CUDA Matrix Multiplication

Problem
Multiply two 64× 64 matrices.

CUDAalloc(Md, 64× 64) {Allocate device memory}
CUDAalloc(Nd, 64× 64)
CUDAalloc(Pd, 64× 64)

CUDAcopy(Md, M) {Transfer matrices to device memory}
CUDAcopy(Nd, N)

Initiate Kernel

CUDAcopy(P, Pd) {Retrieve result from device}

“Hello World”: CUDA Matrix Multiplication

Thread (i, j) will compute the dot product of row i of M and
column j of N
All threads will be in a single block of a single grid

(tx, ty)← (threadIdx.x, threadIdx.y)
P← 0 {Local thread storage}
for i = 1 . . . 64 do

P + = Md[64 · ty + i] · Nd[64 · i + tx]
end for
Pd[tx, ty]← P {Write to global memory}

Kernel is invoked as matmult 〈〈(1, 1), (64, 64)〉〉
Blocks can only allocate a maximum of 512 threads

CUDA execution model

CUDA looks different to programmer and hardware (like
MapReduce)
Understanding the execution model helps with design of
algorithms

CUDA Execution Model

Nickolls, Buck, Garland, Skadron, ACM Queue, Mar 2008[NBGS08]

CUDA Execution Model

Streaming multiprocessor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA gridsCUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

Streaming multiprocessor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA gridsCUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

Streaming multiprocessorStreaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA gridsCUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

Streaming multiprocessorStreaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA gridsCUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

Streaming multiprocessorStreaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA gridsCUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

Streaming multiprocessorStreaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA gridsCUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

Streaming multiprocessorStreaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA grids

CUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

Streaming multiprocessorStreaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA grids

CUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

Streaming multiprocessorStreaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA gridsCUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

Streaming multiprocessorStreaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Streaming multiprocessor

Streaming processor

Block shared memory

Streaming multiprocessor

Streaming processor

Block shared memory

”Grid” shared memory

CUDA gridsCUDA grids

• Each block is assigned to a single SP

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

SP

Block

Thread

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

• Warps are scheduled concurrently

CUDA Execution Model

SP

Block

Thread

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

• Warps are scheduled concurrently

CUDA Execution Model

SP

Block

Thread

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

• Warps are scheduled concurrently

CUDA Execution Model

SP

Block

Thread

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

• Warps are scheduled concurrently

CUDA Execution Model: Warps

Each warp consists of at most 32 threads taken from a single
block
All threads in a warp are executed in parallel with zero overhead
In each clock cycle, a GO command is issued to all threads of
warp to execute same command
If there’s branching, branches are executed sequentially –
non-executing threads are inactive.
Maximize throughput by minimizing branching

This is Single Instruction Multiple Threads (SIMT)

CUDA Execution Model: Warps

1

2

33

4

5

6

7

8

CUDA Execution Model: Warps

1

2

33

4

5

6

7

8

CUDA Execution Model: Warps

1

2

33

4

5

6

7

8

CUDA Execution Model: Warps

1

2

3

3

4

5

6

7

8

CUDA Execution Model: Warps

1

2

3

3

4

5

6

7

8

CUDA Execution Model: Warps

1

2

33

4

5

6

7

8

CUDA Execution Model: Warps

1

2

33

4

5

6

7

8

CUDA Execution Model: Warps

1

2

33

4

5

6

7

8

CUDA Execution Model: Warps

1

2

33

4

5

6

7

8

CUDA Execution Model: Warps

1

2

33

4

5

6

7

8

CUDA Execution Model: Scheduling Warps

At each clock tick, SM determines which warp is ready to execute
This is done by “scoreboarding”: hardware table that tracks

instructions
resources
which instructions use which registers

Using scoreboard, SM can figure out who’s ready for execution
next.

Sorting with CUDA

Many different implementations of sorting algorithms
Radix sort
Merge sort
Quick sort
Sample sort
Bitonic sort
Hybrid sorting methods

For fixed keys, radix sort is fastest

Radix Sort[MG10]

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

Radix Sort[MG10]

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

Radix Sort[MG10]

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

Radix Sort[MG10]

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

Radix Sort[MG10]

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

Radix Sort[MG10]

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

3

7

1

0 1 1

111

10 0

Prefix Counting

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

Flag vector

Prefix Counting

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

Flag vector

Prefix Counting

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

Flag vector

Prefix Counting

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

Flag vector

Prefix Counting

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

Flag vector

1
A

0
B

1
C

0
D

0
E

1
F

1
G

0
H

0
I

0
J

1
L

0 1 1 2 3 3 3 4 5 6 6 Prefix sums

0
B

0
D

0
E

0
H

0
I

0
J

1
A

1
C

1
F

1
G

1
L

Flag vector

Prefix Sums

For each digit
1 Construct flag vector locally and write to shared memory
2 Do parallel reduce on flag vector to find offsets
3 Move items to correct locations in global array
4 Repeat

Parallel Reduce

If all reducers in one block, easy to synchronize
If not, need to use global memory to communicate: Expensive !
Create multiple kernels for different levels of the reduce tree
(kernel creates sync)

Optimizations

Distribute reduce operations to blocks
Factor out branches to reduce divergence penalty
Unroll operations in reduce when possible.

Overall 1 GKeys/second, 3-4x over Larrabee

Level Selection and Two-Sided Tests[GKMV03]

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Mk(x) = kth-smallest (f1(x), f2(x), . . . fn(x))

Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|

Solution is to minimize over the median layer of an associated
arrangement

Level Selection and Two-Sided Tests[GKMV03]

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Mk(x) = kth-smallest (f1(x), f2(x), . . . fn(x))

Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|

Solution is to minimize over the median layer of an associated
arrangement

Level Selection and Two-Sided Tests[GKMV03]

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Mk(x) = kth-smallest (f1(x), f2(x), . . . fn(x))

Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|

Solution is to minimize over the median layer of an associated
arrangement

Level Selection and Two-Sided Tests[GKMV03]

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Mk(x) = kth-smallest (f1(x), f2(x), . . . fn(x))

Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|

Solution is to minimize over the median layer of an associated
arrangement

Level Selection and Two-Sided Tests[GKMV03]

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Mk(x) = kth-smallest (f1(x), f2(x), . . . fn(x))

Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|

Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|

Solution is to minimize over the median layer of an associated
arrangement

Level Selection and Two-Sided Tests[GKMV03]

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

• Let f1, . . . fn be a set of functions from R2 → R

U(x) = maxi fi(x)

L(x) = mini fi(x)

E(x) = U(x)− L(x)

Mk(x) = kth-smallest (f1(x), f2(x), . . . fn(x))

Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|

Best-Fit(P) = minc,R ∑ |‖p− c‖ − R|

Solution is to minimize over the median layer of an associated
arrangement

QuickSelect

Fragment Program: takes input x1, x2, . . . xn and k
(lo, hi)← arg min xi, arg max xi
while hi - lo > 1 do

Pick random mid between lo,hi
c = number of elements x such that xlo ≤ x ≤ xmid {two-sided
test}
if c ≥ k then
hi← mid

else
lo← mid

end if
end while
Return lo

QuickSelect

QuickSelect as a fragment program extracts the kth level of the
arrangement.
It uses three conditionals (one for the branching, and two for the
two-sided test
Two-sided test evaluated many times.
Overall complexity is O(log n) passes on average

Lemma
A fragment procesor that only uses a one-sided test, or is not randomized,
must take n passes.

Tradeoff between penalty of more conditional branching and number of passes

CUDA Execution Model: Design Choices

To make maximum use of SIMT, minimize branching
Memory bank conflicts have to be dealt with
If there are too many blocks, you pay switching overhead on an
SM
Two-level model allows for flexibility: CUDA program can be
adapted to different hardware configurations easily

(or even run on a single core machine!)

This Lecture

Examples of the streaming SIMD view of the GPU
Lower envelope computations
Multipass streaming median

The CUDA model:
The programmer’s view
Matrix multiplication
The hardware view
Radix Sorting

Next Lecture(s)

Solving different problems using CUDA:
Multipole methods
Sparse Matrix Operations
Graphs I: BFS
Graphs II: Coloring

Questions?

References I

P. Agarwal, S. Krishnan, N. Mustafa, and S. Venkatasubramanian.
Streaming geometric optimization using graphics hardware.
Algorithms-ESA 2003, pages 544–555, 2003.

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan.
Brook for gpus: stream computing on graphics hardware.
In ACM Transactions on Graphics (TOG), volume 23, pages 777–786. ACM,
2004.

OpenGL Foundation.
Opengl shading language.
http://www.opengl.org/documentation/glsl/.

S. Guha, S. Krishnan, K. Munagala, and S. Venkatasubramanian.
Application of the two-sided depth test to csg rendering.
In Proceedings of the 2003 symposium on Interactive 3D graphics, pages
177–180. ACM, 2003.

http://www.opengl.org/documentation/glsl/

References II

M.D. McCool and S. Du Toit.
Metaprogramming GPUs with Sh.
AK Peters Wellesley, 2004.

D.G. Merrill and A.S. Grimshaw.
Revisiting sorting for gpgpu stream architectures.
In Proceedings of the 19th international conference on Parallel architectures
and compilation techniques, pages 545–546. ACM, 2010.

W.R. Mark, R.S. Glanville, K. Akeley, and M.J. Kilgard.
Cg: A system for programming graphics hardware in a c-like language.
In ACM Transactions on Graphics (TOG), volume 22, pages 896–907. ACM,
2003.

Microsoft.
Hlsl.
http://msdn.microsoft.com/en-us/library/windows/desktop/
bb509561(v=vs.85).aspx.

http://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx

References III

J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable parallel programming with cuda.
Queue, 6(2):40–53, 2008.

NVIDIA.
Parallel programming and computing platform | CUDA.
http://www.nvidia.com/object/cuda_home_new.html.

http://www.nvidia.com/object/cuda_home_new.html

	Recap
	Envelope-based methods
	Evolution
	CUDA
	Review
	Questions
	References

