GPU Algorithms III/IV
Computing with CUDA

MADALGO Summer School on Algorithms for Modern Parallel
and Distributed Models

Suresh Venkatasubramanian
University of Utah

Previously...

Programmable CUDA
pipeline
---------- I)
1999 2006
sorting geometry
matrices

A streaming model

Outline

Programmable CUDA
pipeline
—————————— | | >
1999 2006
sorting geometry sorting graphs
matrices matrices

A streaming model

CUDA: Compute Unified Device Architecture

Lightweight threads that run SIMD (SIMT) in “blocks”
Blocks run in “SPMD” mode (single program, multiple data)
Memory at multiple levels (thread, blocks, global)

Threads are very lightweight, and there are many of them.

Two views: programmer-centric and hardware-centric

CUDA Model: Blocks

A block is a collection of threads

A block can have different “shapes”

All threads run the same instructions and can
synchronize

Theads have local memory (and so do blocks)

Block memory is low-latency and shared among threads

CUDA Model: Grids

Grid

kernel<< 4,3 >> —b

OO0
OO0
OO
OO0

e A grid is a collection of blocks

e A grid can have different shapes

A grid of blocks is initiated by a request from the host
¢ A grid has shared memory

Blocks cannot coordinate with each other and are run
independently

| CUDA Model: Overview

Host Device

Program Grid

—
E AANANNNNNNNY
o N [=

:\ \\\\\\\ RRSRRRNRAR

R EZA

CUDA Execution Model

pixel work R compute work
distribution distribution

tex L1 tex L1 tex L1 tex L1

=== === === ==
interconnection network

Nickolls, Buck, Garland, Skadron, ACM Queue, Mar 2008 NBGS08]

CUDA Execution Model

e
~__ |

<

8

X/

| N Y
L\

MY

CUDA grids

o Each block is assigned to a single SP

e Grid is a software construct

o Block memory managed by SM

CUDA Execution Model

~_» Thread

Block

SP

Warps

e Each block is divided into groups of 32 threads called "warps”
o Warp threads are scheduled SIMD on the processor

o Warps are scheduled concurrently

CUDA Design Pitfalls: Branch Divergence

CUDA Design Pitfalls: Branch Divergence

110 Q Q

CUDA Design Pitfalls: Branch Divergence

XX

CUDA Design Pitfalls: Branch Divergence

o

CUDA Design Pitfalls: Branch Divergence

%
L

CUDA Design Pitfalls: Branch Divergence

CUDA Design Pitfalls: Branch Divergence

CUDA Design Pitfalls: Branch Divergence

CUDA Design Pitfalls: Branch Divergence

CUDA Design Pitfalls: Branch Divergence

CUDA Design Pitfalls: Memory Bank Conflicts

Warp | [[[| o o o ||

e

CUDA Design Pitfalls: Memory Bank Conflicts

Warp | [[[| o o o ||

Sharedy ANAAHANAN'NANNNANNRRRNNRN Y
memor — % e+ e —

Banks

CUDA Design Pitfalls: Memory Bank Conflicts

halfwarp

Warp | [[[] o o o []|

pey

Sharedy ANAAHANAN'NANNNANNRRRNNRN Y
memor — % e+ . —

Banks

CUDA Design Pitfalls: Memory Bank Conflicts

halfwarp

Warp|||||o..||

[[]]] e
rsr}:;rlf <

ory AN\
Banks

CUDA Design Pitfalls: Memory Bank Conflicts

halfwarp

Warp | [[[] o o o []|

%

Sharedy ANAAHANAN'NANNNANNRRRNNRN Y
memor — % e+ . —

Banks

CUDA Design Pitfalls: Memory Bank Conflicts

halfwarp

Warp | [[[] o o o []|

l L/ Conflict!

Shared " \JANANTANANNNNNNNNNNNNNNNY|
mem % . —

Ory L] [] []
Banks

CUDA Design Pitfalls: Memory Bank Conflicts

halfwarp

Warp | [[[] o o o []|

||

Sharedy ANAAHANAN'NANNNANNRRRNNRN Y
memor — % e+ . —

Banks

CUDA Design Pitfalls: Memory Bank Conflicts

halfwarp

Warp | [[[] o o o []|

/

Shared " \JANANTANANNNNNNNNNNNNNNNY|
me % . —

mory . o e
Banks

CUDA Design Pitfalls: Memory Bank Conflicts

halfwarp

Warp | [[[] o o o []|

/

Shafec‘y ANAAHANAN'NANNNANNRRRNNRN Y
memor — % e+ . —

Banks

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Global Memory Coalescing

Warp | [[| | .« o o]

A\

CUDA Design Pitfalls: Global Memory Coalescing

Warp||||| o o o ||

A\

CUDA Design Pitfalls: Global Memory Coalescing

Warp | [[| | .« o o]

CUDA Design Pitfalls: Global Memory Coalescing

Warp | [| [] e« []

~ CUDA Design Pitfalls: Global Memory Coalescing

Warp | [| [] e« []

vy

Both cache blocks are returned

o Threads should ”coalesce” access to single memory line

o This is akin to block transfer in external memory

@

NVIDIA.

@ Avoid global sync by decomposing computation
into multiple kernel invocations

8 blocks

N /,’,'
N 7ot

Level 1:
1 block
< In the case of reductions, code for all levels is the

same
@ Recursive kernel invocation

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

Reduction #1: Interleaved Addressing >

NVIDIA.

__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];

/I each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdataltid] = g_idata[i];

__syncthreads();

// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

__syncthreads();

}

/I write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

NVIDIA
Values(sharedmemory)lloh[‘8'[-11212[i[5[f[-3[i[7[i[11[3[2|
1@1/ l@ﬁl | 1@1/ H/ 1@1/1 T: 2]

s T B —

values [18[1 [7 []e[2]8[5]a]3]0]7]1s][n]2]2]

Step 3 Thread @ / @ /

Stride 4 IDs
Values [24[1 [7 []6 [2] 8]

Step 4 Thread
Stride 8 IDs

values [[7 [7 [[[2] 8 [s [w][a]s[7 [[n]2]z2]

a
-
J
&
©
~
-
w
-
jry
)
)

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

Reduction #1: Interleaved Addressing >

NVIDIA.

__global__ void reduce1(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];

/I each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdataltid] = g_idata[i];

__syncthreads();

// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0){ <—-—

sdataftid] += stataftid + =]; Problem: highly divergent

} warps are very inefficient, and
__syncthreads(); % operator is very slow
}

/I write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

Performance for 4M element reduction IE%A

Time (222ints) Bandwidth
Kernel 1: 8.054 ms 2.083 GB/s

interleaved addressing
with divergent branching

Note: Block Size = 128 threads for all tests

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

@

NVIDIA.
Just replace divergent branch in inner loop:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

__syncthreads();

}

With strided index and non-divergent branch:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
intindex =2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

__syncthreads();

}

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

@

NVIDIA.

Values(sharedmemory)lﬂ)[[3[1[0[2 3[5 2 3 [7[0[11 0 I
Sty e @Y @7 @Y @7 <§> @/ % é;/
values [11[1 [7[a2]2]8]s5]s]a]o]7[nn][n]2]2]
s T @ @
values [18[1 [7 [e [2]8[5]a]3[o[7]1s]1]2]2

Step 3 Thread @ / /

Stride 4 IDs
Values [24[1 [7 [4]

Step 4 Thread .
Stride 8 IDs N

values [[7 [7 [[[2] 8 [s [w][a]s[7 [[n]2]z2]

)
)
©
a
-
J
&
©
~
-
=)
-
jry
)
)

| New Problem: Shared Memory Bank Conflicts |

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

Performance for 4M element reduction)
NVIDIA.

Step Cumulative
Time (222ints) Bandwidth Speedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:

prellee ol 3456ms 4.854GB/s 2.33x 2.33x

with bank conflicts

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

@

NVIDIA.

Values(sharedmemory)lml1[8[.1[o[.2[3[5[-2[-3[2[7[0[11[0[2]

6@/
Values [8 [-2[1w0]6Jofofa]7]2]a]2]7]o][n]o]2]
S e

Values [8 [7 [13]13] 0o [o[a]7[2]a]2]7]0o[n]o]2]
Sst:(iedpeaZ Tf:g!sad

Values [21 [20[13][138] o[o [a[7]2]a]2 7 o][n]o]2]

Step 4 Thread /%
Stride 1 IDs

Values [41[20[13[13] o Jo[a[7]2]a]2]7]o][nn]o]2]

Step 1 Thread l
Stride 8 Ds @ G! G‘

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

@

NVIDIA.
Just replace strided indexing in inner loop:

for (unsigned int s=1; s < blockDim.x; s *=2) {
intindex =2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

__syncthreads();

}
With reversed loop and threadIlD-based indexing:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];

__syncthreads();

}

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

Performance for 4M element reduction)
NVIDIA.

Step Cumulative
Time (222ints) Bandwidth Speedup Speedup

Kernel 1:
interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:
e 3456 ms 4.854GB/s 2.33x 2.33x

with bank conflicts

Kernel 3: 1.722ms 9.741GB/s 2.01x 4.68x

sequential addressing

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM* 07, SHZOO07]

Applications

| Sample Sort[LOS10]

1 23 7 19 25 42 4

| Sample Sort[LOS10]

1 23 7 19 25 42 4

| Sample Sort[LOS10]

1 23 7 19 25 42 4

19 23

Sample Sort[LOS10]

1 23 7 19 25 42 4

19 23
25 42

Sample Sort[LOS10]

1 23 7 19 25 42 4

19 23
25 42

1 4 719 23 2542

Sample Sort

Given X = {x1,x2,...Xn},k

if n < M then
SimpleSort(X)
end if
Pick random sample R = x; , x;,, ... X;,
Sort(R) = {rg = —oo, 71,72, ..., 1%, +00 = I}s1 }

Place x; in bucket b; if r; < x; < rj44

Concatenate SampleSort(by, k), SampleSort(by, k), . ..

@ Parallelize the individual sorts

@ Use parallel reductions to partition elements

GPU Algorithm: A single phase

Phase 1 Compute the sample and sort it

Phase 2 Within each block, figure out the bucket indices for
each element. Construct k-element histogram. Copy to
global memory

Phase 3 Do prefix sum (parallel reduction!) to find global offsets
Phase 4 Distribute items using global offset

~ Data-parallel Binary Search

—
— <

|
‘ ‘ min(a,b) max(a,b)

~ Data-parallel Binary Search

5

|
‘ ‘ min(a,b) max(a,b)

—
— <

~ Data-parallel Binary Search

5

€9
o @ T
min(a,b) max(a, b)

—
— <

~ Data-parallel Binary Search

-3

|
‘ ‘ min(a,b) max(a,b)

—
— <

~ Data-parallel Binary Search

-3

€9
@) T
min(a,b) max(a, b)

—
— <

~ Data-parallel Binary Search

5 6
&) L
||
|
min(a,b) max(a,b)

~ Data-parallel Binary Search

5 6
&) L]
||
|
min(a,b) max(a,b)

~ Data-parallel Binary Search

|
@ ‘ min(a,b) max(a,b)

~ Data-parallel Binary Search

|
@ ‘ min(a,b) max(a,b)

Data-parallel Binary Search

-3

|
@ ‘ min(a,b) max(a,b)

o In first comparator, a path is taken or not.

L— QO
— SN

o In second, both paths are used, but by different data

Predicated Instructions

Predicated Instructions

Predicated Instructions

Predicated Instructions

Predicated Instructions

j=1

r fori =1tolog4 do
j 2+ (q>m)

end for

je—j—4+1

[T ee || 11121314 1516 17

Predicated Instructions

j=1

fori =1tolog4 do
j 2+ (q>m)

end for

je—j—4+1

11213747576 17
A

Predicated Instructions

j=1

fori =1tolog4 do
j 2+ (q>m)

end for

je—j—4+1

Y1 123747571y

f

Predicated Instructions

j=1

fori =1tolog4 do
j 2+ (q>m)

end for

je—j—4+1

Y1 123747571y

f

Predicated Instructions

j=1
r fori =1tolog4 do
j 2+ (q>r)
end for
"2 '3 jej—4+1
T4 s 76l 17
[T]] ee] "1 1213141576 17

f

Conditionals are replaced by predicated statements

Parallel Prefix Sum for Offsets

Parallel Prefix Sum for Offsets

Parallel Prefix Sum for Offsets

Parallel Prefix Sum for Offsets

:

Parallel Prefix Sum for Offsets

£

Global
memory

Parallel Prefix Sum for Offsets

—
> Number of
» elements in each
bucket

Global
memory

Parallel Prefix Sum for Offsets

—
] > Number of
Prefix Sum , elements in each
bucket

Global
memory

Distribution

Distribution

N - =

1,4,6,8 2,0,9,5

Distribution

N - =

1,4,6,8 2,0,9,5
1,2,1 2,1,1

Distribution

(3,7)
1,4,6,8 2,0,9,5
1,2,1 2,1,1
0,0,0
1,2,1
3,3,2

Distribution

(3,7)
1,4,6,8 2,0,9,5
1,2,1 2,1,1
0,0,0
1,2,1
3,3,2

Distribution

(3,7)
1,4,6,8 2,0,9,5
1,2,1 2,1,1
0,0,0
1,2,1
3,3,2

[[Jafe] [8] |

Distribution

(3,7)
1,4,6,8 2,0,9,5
1,2,1 2,1,1
0,0,0
1,2,1
3,3,2

[1[2]o]4]6[5]8[9]

Distribution

(3,7)
1,4,6,8 2,0,9,5
1,2,1 2,1,1
0,0,0
1,2,1
3,3,2

[1[2]o0]4]6[5]8[9]

Repeat in each block

Convex Hulls

| Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

GPU QuickHull[SKGNOQ09]

Phase 1 Compute the sample and sort it

Phase 2 Within each block, figure out the bucket indices for
each element. Construct k-element histogram. Copy to
global memory

Phase 3 Do prefix sum (parallel reduction!) to find global offsets
Phase 4 Distribute items using global offset

GPU QuickHull[SKGNOQ09]

Phase 1 Compute the pivot point

Phase 2 Within each block, eliminate elements above the pivot
segment. Store the rest

Phase 3 Do prefix sum (parallel reduction!) to find global offsets
Phase 4 Distribute items using global offset

3D Quick Hull Algorithm

@ Instead of line segments, the separating objects are planes.

@ As before, points are distributed to the planes that they are
“outside” of.

@ The operation of extending the hull can create “concave” edges
that need to be repaired.

@ This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

@ Instead of line segments, the separating objects are planes.

@ As before, points are distributed to the planes that they are
“outside” of.

@ The operation of extending the hull can create “concave” edges
that need to be repaired.

@ This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

@ Instead of line segments, the separating objects are planes.

@ As before, points are distributed to the planes that they are
“outside” of.

@ The operation of extending the hull can create “concave” edges
that need to be repaired.

@ This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

@ Instead of line segments, the separating objects are planes.

@ As before, points are distributed to the planes that they are
“outside” of.

@ The operation of extending the hull can create “concave” edges
that need to be repaired.

@ This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

@ Instead of line segments, the separating objects are planes.

@ As before, points are distributed to the planes that they are
“outside” of.

@ The operation of extending the hull can create “concave” edges
that need to be repaired.

@ This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

@ Instead of line segments, the separating objects are planes.

@ As before, points are distributed to the planes that they are
“outside” of.

@ The operation of extending the hull can create “concave” edges
that need to be repaired.

@ This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

@ Instead of line segments, the separating objects are planes.

@ As before, points are distributed to the planes that they are
“outside” of.

@ The operation of extending the hull can create “concave” edges
that need to be repaired.

@ This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

@ Instead of line segments, the separating objects are planes.

@ As before, points are distributed to the planes that they are
“outside” of.

@ The operation of extending the hull can create “concave” edges
that need to be repaired.

@ This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

@ Instead of line segments, the separating objects are planes.

@ As before, points are distributed to the planes that they are
“outside” of.

@ The operation of extending the hull can create “concave” edges
that need to be repaired.

@ This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

Lifting map

Lifting map

Lifting map

Lifting map

Lifting map

Lifting map

Lifting map

Lifting map

Lifting map

Lifting map

3D convex hull < 2D Delaunay < 2D Voronoi

| Jump Flooding algorithm[RT06]

Jump Flooding algorithm[RT06]

Jump Flooding algorithm[RT06]

Jump Flooding algorithm[RT06]

Challenge

Challenge

Can we get better algorithms for computing 2D Voronoi diagrams
and lower envelopes ?

k-means clustering[ZG09]

Find k centers C = ¢y, . .. ¢ such that

: 2
m —C
ng CE%‘”P |

is minimized

k-means clustering[ZG09]

Find k centers C = ¢y, . .. ¢ such that

: 2
m —C
ng CE%‘”P |

is minimized

k-means clustering[ZG09]

Find k centers C = ¢y, . .. ¢ such that

: 2
m —C
ng CE%‘”P |

is minimized

k-means clustering[ZG09]

Find k centers C = ¢y, . .. ¢ such that

: 2
m —C
ng CE%‘”P |

is minimized

k-means clustering[ZG09]

Find k centers C = ¢y, . .. ¢ such that

: 2
m —C
ng CE%‘”P |

is minimized

Where are the expensive computations ?

@ Each point finds its nearest neighbor (O(nk) or O(nlogk) if
clever)

@ We compute the centroids of points in clusters

@ Points are fixed in all iterations, but centroids change.

Standard Implementation: CPU-GPU hybrid

@ For each point, need to compute ming ||p — ¢||
@ This is a trivial parallelization

@ One thread for each point (or block appropriately)
o In each iteration, compute distances from a single center.
e k < n, so this is not expensive

@ For each labelling, find new center.

e Could do this entirely in GPU: centers computed via reduce
operation.
e Most algorithms don’t do it: copy to CPU.

Why irregular access is a problem

@ GPUs are designed for high arithmetic intensity and SIMT
behavior

@ Irregular data locality and access (such as with graphs) reduces
the benefit of these methods

@ To handle sparse data, you need to store the data compactly, and
process it efficiently based on the format.

Sparse Matrix-Vector multiplication

y = Ax

e Fasy if A is dense using kernel at each vector: O(n?)

@ If number of nonzeros in A is small, would prefer O(nnz(A)) (or
linear in input)

Representations

1 7 0 0
0 2 8 0
A= 5 0 3 9
0 6 0 4
Diagonal form
[] [] x 1 7
u u data = * 2 8
- . 4
I ¥
[| H B B offsets= [—2 0 1]
[]

Representations

ptr = [O 2

indices =

0 1 1 2

data =
[1 7 2 8

S 1o -
ANO NN
S W oo
=~ O © O

4 7 9

023 1 3

53 9 6 4

CSR representation

GPU SpMV 1

ptr:[O 2 4 7 9}

indices =

01120231 3]

data =
[172853964}

CSR representation

start < ptr[ID]
end < ptr[ID + 1]
fori = start to end do
d =4 + datali] + x[indices[start]]
end for

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr = [O 2 4 7 9}

indices=1[0 1 1 2 0 2 3 1 3]
data=[1 7 2 8 5 3 9 6 4

Round 1:
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr = [O 2 4 7 9}

indices=1[0 1 1 2 0 2 3 1 3]
data=[1 7 2 8 5 3 9 6 4

Round 1: X
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr = [O 2 4 7 9}

indices=1[0 1 1 2 0 2 3 1 3]
data=[1 7 2 8 5 3 9 6 4

Round 1: X X
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr = [O 2 4 7 9}

indices=1[0 1 1 2 0 2 3 1 3]
data=[1 7 2 8 5 3 9 6 4

Round 1: X X X
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr = [O 2 4 7 9}

indices=1[0 1 1 2 0 2 3 1 3]
data=[1 7 2 8 5 3 9 6 4

Round 1: X X X X
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr = [O 2 4 7 9}

indices=1[0 1 1 2 0 2 3 1 3]
data=[1 7 2 8 5 3 9 6 4

Round 1: X X X X
Round 2: X X X X
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr = [O 2 4 7 9}

indices=1[0 1 1 2 0 2 3 1 3]
data=[1 7 2 8 5 3 9 6 4

Round 1: X X X X
Round 2: X X X X
Round 3: X

GPU SpMV I

New idea: instead of assigning one thread per row, assign one warp
per row.

@ Each thread in a warp sums up a piece of the dot product

@ Atend, a parallel reduction combines the pieces of the sum

@ Unrolling helps speed the reduction.

Rw [| [[o o o ||

GPU SpMV I

New idea: instead of assigning one thread per row, assign one warp
per row.

@ Each thread in a warp sums up a piece of the dot product

@ Atend, a parallel reduction combines the pieces of the sum

@ Unrolling helps speed the reduction.

Row L] [["o e e [|

* 4 4 Thread 0

GPU SpMV I

New idea: instead of assigning one thread per row, assign one warp
per row.

@ Each thread in a warp sums up a piece of the dot product

@ Atend, a parallel reduction combines the pieces of the sum

@ Unrolling helps speed the reduction.

Row [[0] | . []

* 4 4 Thread 0
+ 4 4 Thread 1

GPU SpMV I

New idea: instead of assigning one thread per row, assign one warp
per row.

@ Each thread in a warp sums up a piece of the dot product

@ Atend, a parallel reduction combines the pieces of the sum

@ Unrolling helps speed the reduction.

Row [[0] | . []

* 4 4 Thread 0
+ 4 4 Thread 1

GPU SpMV I

New idea: instead of assigning one thread per row, assign one warp
per row.

@ Each thread in a warp sums up a piece of the dot product

@ Atend, a parallel reduction combines the pieces of the sum

@ Unrolling helps speed the reduction.

Row [[0] | . []

* 4 4 Thread 0
+ 4 4 Thread 1

e o o Parallel Reduce

Compute a BFS ordering of a graph[MGG12]

1 —3 7
4 /
/ 6
2
5
e BFS is notoriously hard to parallelize well

e Main challenge is managing the nonuniform vertex and edge
frontier

Compute a BFS ordering of a graph[MGG12]

e BFS is notoriously hard to parallelize well

e Main challenge is managing the nonuniform vertex and edge
frontier

Compute a BFS ordering of a graph[MGG12]

e BFS is notoriously hard to parallelize well

e Main challenge is managing the nonuniform vertex and edge
frontier

Compute a BFS ordering of a graph[MGG12]

e BFS is notoriously hard to parallelize well

e Main challenge is managing the nonuniform vertex and edge
frontier

Matrix View

If A is the adjacency matrix of a graph, and x is a vector representing
the current vertex frontier, then

y=x
is the new frontier.

@ This is under the (min, +) algebra, rather than (4, x) for regular
matrix operations
@ Methods from sparse matrix multiplication can be used here.
@ But this is very expensive.
Plan:
@ Replace matrix view by a “parallel” frontier expansion

o Carefully manage duplicate neighbors

Better Implementation I

How to construct a new frontier from current frontier ?
@ Every thread manages one node, and counts its neighbors.
@ Once we have all neighbors, we invoke a prefix sum.

@ Now threads can write new frontier into shared memory.

Better Implementation II

New frontier can have many duplicates in it, if individual threads
share neighbors.

Better Implementation II

New frontier can have many duplicates in it, if individual threads
share neighbors.

Better Implementation II

New frontier can have many duplicates in it, if individual threads
share neighbors.

-

Better Implementation II

New frontier can have many duplicates in it, if individual threads
share neighbors.

-

Better Implementation II

New frontier can have many duplicates in it, if individual threads
share neighbors.

-

Graph Coloring

Niyad

@ Core problem in graph optimization
@ Register allocation, spectrum assignment, scheduling, ...

Graph Coloring

@ Core problem in graph optimization

@ Register allocation, spectrum assignment, scheduling,

Graph Coloring

@ Core problem in graph optimization

@ Register allocation, spectrum assignment, scheduling, ...

Graph Coloring

@ Core problem in graph optimization

@ Register allocation, spectrum assignment, scheduling, ...

What do we know about it

@ NP-hard, and n' ~¢-hard to approximate
@ Many heuristics (based on greedy ordering)

o Fix an arbitrary ordering of the vertices
e Color a vertex with the smallest feasible color.

Noad

What do we know about it

@ NP-hard, and n' ~¢-hard to approximate
@ Many heuristics (based on greedy ordering)

o Fix an arbitrary ordering of the vertices
e Color a vertex with the smallest feasible color.

W

What do we know about it

@ NP-hard, and n' ~¢-hard to approximate
@ Many heuristics (based on greedy ordering)

o Fix an arbitrary ordering of the vertices
e Color a vertex with the smallest feasible color.

Vg

What do we know about it

@ NP-hard, and n' ~¢-hard to approximate
@ Many heuristics (based on greedy ordering)

o Fix an arbitrary ordering of the vertices
e Color a vertex with the smallest feasible color.

W

What do we know about it

@ NP-hard, and n' ~¢-hard to approximate
@ Many heuristics (based on greedy ordering)

o Fix an arbitrary ordering of the vertices
e Color a vertex with the smallest feasible color.

W

What do we know about it

@ NP-hard, and n' ~¢-hard to approximate
@ Many heuristics (based on greedy ordering)

o Fix an arbitrary ordering of the vertices
e Color a vertex with the smallest feasible color.

1 2

What do we know about it

@ NP-hard, and n' ~¢-hard to approximate
@ Many heuristics (based on greedy ordering)

o Fix an arbitrary ordering of the vertices
e Color a vertex with the smallest feasible color.

1 2

What do we know about it

@ NP-hard, and n' ~¢-hard to approximate
@ Many heuristics (based on greedy ordering)

o Fix an arbitrary ordering of the vertices
e Color a vertex with the smallest feasible color.

1 2

Ordering Heuristics

First Fit Choose any ordering

SDO/LDO Color is allocated to vertex with highest “saturation”
(number of distinct neighboring colors) and then
highest degree.

MAX OUT Choose vertex that has the maximum number of edges
going out of the subgraph

MIN OUT Choose vertex that has fewest number of edges out of
the subgraph.

Parallel Coloring

@ Partition the graph into roughly equal-sized pieces that have
very few connections between them

@ Color each piece in parallel
@ Fix conflicts at boundaries of pieces

GPU has fine-grained parallelism, faster SIMD processors. Can we do better ?

GPU Coloring| GZL*11]

@ Arbitrarily partition vertices into pieces
@ Color each piece in a thread block, but use common color pool

@ Suppose conflicts occur (at boundary)
Erase colors of conflicted nodes
Try to color them again

]
@ Repeat until number of conflicts is small
o Shift to CPU.

Summary

@ GPU SIMD makes conflict checking very easy

@ Doing careful partitioning (METIS) doesn’t really help (GPU is
more tolerant to “bad” partitioning)

@ CPU is very slow to resolve conflicts sequentially: best to use it
when number of conflicts is small

@ GPU heuristics give good quality colorings (not sure why!)

Software Tools

@ CUDPP (http://code.google.com/p/cudpp (basic data-parallel
tools)

@ CUBLAS (http://developer.nvidia.com/cuda/cublas)

@ Thrust (https://code.google.com/p/thrust/) (template
library)

@ Cusp (http://code.google.com/p/cusp-library/) (sparse
linear algebra)

http://code.google.com/p/cudpp
http://developer.nvidia.com/cuda/cublas
https://code.google.com/p/thrust/
http://code.google.com/p/cusp-library/

Research Tools

high performance computing on graphics processing units

hgpu.org

@ Applications ® Hardwars @ Programming - Resources
Where its Specs and Algorithms and Source codes,
used reviews techniques totorials, books,

The most recent entries

Coding Ants: Using Ant Colony Optimization to Accelerate CTReconstruction
There is na one size fits all solution when it comes o GT reconstruction. Many different GT recanstrucion
algorithms and implementations have been devised in an attemptto solve the problem of producing an
image under a specific set of constraints. One optimal CT reconstruction implementation can look very
different fom another optimal implementation; depending on the data, quality, and time constraints. \mms
paper, we present a framework that is able to dynamically create and compile n

Tools

GRU
ete. senvices

Most viewed papers (last 30 days)
= Ice Simulation Using GPGPU
= Efficient Algorithms for Sorting on GPUs.
= Fast Linear Algebra on GPU

= Distributed-Shared CUDA Virtualization of Large-Scale
GPU Systems for Programmability and Reliability

optimize the multiple abjectives contained in CT reconstruction. We then
August 22,2012 - 5>

Parallel Trajectory Planning on GPU

The release of the CUDA archilecture made massively parallel computing possible on ordinary deskiops
and opened a door to enarmous computing power of raphics adapters. The trajectory planning for aerial
vehicles is one of the tasks that can benefit from it The sought path must respectall physical limitations of
the airplane and avoid all no-flight zones. The thesis presents two algorithms for trajectory planning on the
CUDA architecture: a parallel version of A" algorithm and Accelerated A" algorithm that uses varying
planning steps to speed up the planning. The parallelization relies on a

August22, 2012 - =>>

Improving OpenACC compatibility within accULL
The irruption in the HPC scene of hardware accelerators, ke GPUs, has made available unprecedented
performance to developers. However, even expert develapers may not be ready o exploit the new complex
processor hierarchies. We needto find a way 1o leverage the programming effortin these devices at
programming language level, otherwise, developers will spend most of their ime focusing on device-
specific code instead of implementing aigorithmic enhancements. The recent advent of the OpenACC
standard for heterogeneous computing repres ents an eflortin this direction. This iniiative,

August 22, 2012 - =>>

of Software

for the
Multiplication
In this paper there are considered several approaches for ine increasing performance of software
implementation of integer multiplication algorithm for the 32-bit & 64-bit platforms via parallelization. The
main idea of algorithm parallelization consists in delayed carry mechanism using which authors have
proposed earlisr [11]. The dslayed carry allows to get rid of conneciivty in loop iterations for sums
accumulation ef products, which allows parallel execution of loops iterations in separate threads. Upon

of Integer

= High- Spatial Join Processing on GPGPUS
with Applications to Large-Scale Tax Trip Data

= Automated Tnm to Generate Parallel CUDA code fram a
Serial C Cod

= SnuCL:an apenCUramewurwurhe«emgenenus
CPUIGPU clusters

- Real-Time Exact Graph atching with Application in
Human Action Recagnition

= Optimising Cosmological N-bady Simulations in GPU
Clusters

= Glustering Based Search Algofithm For Motion Estimation

Rating

sesdesok Parallelization of calculations using GPU in
aptimization approach for macromadels
construction

Sedededed accULL: An User-directed Approach to
Heterogeneous Programming

CUSIMANN: An optimized simulated annealing
sofware for GPUS

ANew Caoperative Evolutionary Multi-Swarm
Optimizer Algorithm Based an CUDA Parallel

Sededeseie

Network Simulator Tools and GPU Parallel Systems

hgpu.org Have an account? | sign in
Search

Events

‘September 10-13,2013
Munich, Germany
International Conference on Parallel
Computing 2013, ParCe2013
March 2829, 2013
Wadrid, Spain
International Conference on Computational
Physics, ICCP 2013
March 19-22, 2013
San Jose, California, USA
GPU Tscnrmmgy Conference 2013, 6TC.

Febmzly 23 27 2013
Shenzhen
The 190 IEEE Inemational Symposium on
High Performance Computer Architecture
Collocated with PPoPP-2013 and
CGO-2013, HPCA-2013
‘September 17 - 18,2012
Bali,Indonesia
3rd Annual International Conference on
Advances in Distributed and Parallel
Computing, ADPC 2012

Registered users can now run their
OpenCL application at hgpu org. We
provide 1 minute of computer time per
each run on two nodes with two AMD
and one nVidia graphics processing
units, correspondingly. There are no
restrictions on the number of starts

Overview of lectures

@ GPU in the BC era: vertex and fragment shaders. Can do
Voronoi diagrams !

@ SIMD view key to designing and exploiting behavior of card.
CUDA provides general purpose SIMD framework

Low-level SIMD violations can lose many factors in performance
Parallel reduction and prefix sum is an important primitive.
Many applications: dense systems, sparse systems, geometry, ...

For efficient code, reduce to known primitives like
reduction/prefix sm

Debate

The GPU represents the realistic future of high intensity parallel
computing. SIMD is the only way to get the throughput needed

for many problems, and once memory buses become faster, GPUs
will become the primary model.

Versus

While the GPU can demonstrate great performance, the hoops you
have to jump through to get this performance are so constraining
and so artificial that GPUs will never be more than a boutique
processor that is great for games.

Questions?

References 1

@ A.V.P. Grosset, P. Zhu, S. Liu, S. Venkatasubramanian, and M. Hall.
Evaluating graph coloring on gpus.

In Proceedings of the 16th ACM symposium on Principles and practice of
parallel programming, pages 297-298. ACM, 2011.

@ M. Harris, G.E. Blelloch, B.M. Maggs, N.K. Govindaraju, B. Lloyd,
W. Wang, M. Lin, D. Manocha, PX. Smolarkiewicz, L.G. Margolin, et al.

Optimizing parallel reduction in cuda.
Proc. of ACM SIGMOD, 21, 13:104-110, 2007.

@ N. Leischner, V. Osipov, and P. Sanders.
Gpu sample sort.

In Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, pages 1-10. Ieee, 2010.

@ Duane Merrill, Michael Garland, and Andrew Grimshaw.
Scalable gpu graph traversal.
In Proceedings of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, PPoPP "12, pages 117-128, New York,
NY, USA, 2012. ACM.

References 11

@ J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable parallel programming with cuda.
Queue, 6(2):40-53, 2008.

@ G. Rong and T.S. Tan.

Jump flooding in gpu with applications to voronoi diagram and distance
transform.

In Proceedings of the 2006 symposium on Interactive 3D graphics and games,
pages 109-116. ACM, 2006.

@ S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens.
Scan primitives for gpu computing.

In Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, pages 97-106. Eurographics Association, 2007.

@ D.P.R. Srikanth, K. Kothapalli, R. Govindarajulu, and PJ] Narayanan.
Parallelizing two dimensional convex hull on nvidia gpu and cell be.

In International Conference on High Performance Computing (HiPC), pages
1-5, 2009.

References 111

M. Zechner and M. Granitzer.
Accelerating k-means on the graphics processor via cuda.

In Intensive Applications and Services, 2009. INTENSIVE’09. First
International Conference on, pages 7-15. IEEE, 2009.

	Recap
	Parallel Reduction
	Sample Sort
	Quick Hull
	3D Quick Hullayal12:cudah
	k-means
	Irregular access problems
	Sparse Matrix Vector Operationsbell2008efficient

	BFS
	Coloring
	Discussion
	Questions
	References

