
GPU Algorithms III/IV
Computing with CUDA

MADALGO Summer School on Algorithms for Modern Parallel

and Distributed Models

Suresh Venkatasubramanian
University of Utah

Previously...

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

Outline

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

sorting
matrices

graphs

CUDA: Compute Unified Device Architecture

Lightweight threads that run SIMD (SIMT) in “blocks”
Blocks run in “SPMD” mode (single program, multiple data)
Memory at multiple levels (thread, blocks, global)
Threads are very lightweight, and there are many of them.
Two views: programmer-centric and hardware-centric

CUDA Model: Blocks

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

• Block memory is low-latency and shared among threads

CUDA Model: Grids

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

• Blocks cannot coordinate with each other and are run
independently

CUDA Model: Overview

Host Device

GridProgram

RUN

CUDA Execution Model

Nickolls, Buck, Garland, Skadron, ACM Queue, Mar 2008[NBGS08]

CUDA Execution Model

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM

CUDA Execution Model

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

• Warps are scheduled concurrently

CUDA Design Pitfalls: Branch Divergence

1

2

33

4

5

6

7

8

CUDA Design Pitfalls: Branch Divergence

1

2

33

4

5

6

7

8

CUDA Design Pitfalls: Branch Divergence

1

2

33

4

5

6

7

8

CUDA Design Pitfalls: Branch Divergence

1

2

3

3

4

5

6

7

8

CUDA Design Pitfalls: Branch Divergence

1

2

3

3

4

5

6

7

8

CUDA Design Pitfalls: Branch Divergence

1

2

33

4

5

6

7

8

CUDA Design Pitfalls: Branch Divergence

1

2

33

4

5

6

7

8

CUDA Design Pitfalls: Branch Divergence

1

2

33

4

5

6

7

8

CUDA Design Pitfalls: Branch Divergence

1

2

33

4

5

6

7

8

CUDA Design Pitfalls: Branch Divergence

1

2

33

4

5

6

7

8

CUDA Design Pitfalls: Memory Bank Conflicts

Warp

Shared
memory

Warp

Shared
memory

Banks

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

All memory accesses
processed in parallel

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Conflict!

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Memory Bank Conflicts

Warp

Shared
memory

Warp

Shared
memory

Banks

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

All memory accesses
processed in parallel

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Conflict!

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Memory Bank Conflicts

Warp

Shared
memory

Warp

Shared
memory

Banks

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

All memory accesses
processed in parallel

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Conflict!

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Memory Bank Conflicts

Warp

Shared
memory

Warp

Shared
memory

Banks

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

All memory accesses
processed in parallel

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Conflict!

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Memory Bank Conflicts

Warp

Shared
memory

Warp

Shared
memory

Banks

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

All memory accesses
processed in parallel

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Conflict!

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Memory Bank Conflicts

Warp

Shared
memory

Warp

Shared
memory

Banks

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

All memory accesses
processed in parallel

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Conflict!

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Memory Bank Conflicts

Warp

Shared
memory

Warp

Shared
memory

Banks

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

All memory accesses
processed in parallel

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Conflict!

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Memory Bank Conflicts

Warp

Shared
memory

Warp

Shared
memory

Banks

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

All memory accesses
processed in parallel

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Conflict!

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Memory Bank Conflicts

Warp

Shared
memory

Warp

Shared
memory

Banks

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

All memory accesses
processed in parallel

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Conflict!

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Warp

Shared
memory

Banks

halfwarp

Memory bank conflicts can result in serialized access

CUDA Design Pitfalls: Global Memory Coalescing

Warp

WarpWarpWarp

Both cache blocks are returned

Warp

Both cache blocks are returned

• Threads should ”coalesce” access to single memory line

• This is akin to block transfer in external memory

CUDA Design Pitfalls: Global Memory Coalescing

Warp

Warp

WarpWarp

Both cache blocks are returned

Warp

Both cache blocks are returned

• Threads should ”coalesce” access to single memory line

• This is akin to block transfer in external memory

CUDA Design Pitfalls: Global Memory Coalescing

WarpWarp

Warp

Warp

Both cache blocks are returned

Warp

Both cache blocks are returned

• Threads should ”coalesce” access to single memory line

• This is akin to block transfer in external memory

CUDA Design Pitfalls: Global Memory Coalescing

WarpWarpWarp

Warp

Both cache blocks are returned

Warp

Both cache blocks are returned

• Threads should ”coalesce” access to single memory line

• This is akin to block transfer in external memory

CUDA Design Pitfalls: Global Memory Coalescing

WarpWarpWarpWarp

Both cache blocks are returned

Warp

Both cache blocks are returned

• Threads should ”coalesce” access to single memory line

• This is akin to block transfer in external memory

5

Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation
into multiple kernel invocations

In the case of reductions, code for all levels is the
same

Recursive kernel invocation

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

7

Reduction #1: Interleaved AddressingReduction #1: Interleaved Addressing

__global__ void reduce0(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];
__syncthreads();

// do reduction in shared mem

for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}

// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

8

Parallel Reduction: Interleaved AddressingParallel Reduction: Interleaved Addressing

2011072-3-253-20-18110Values (shared memory)

0 2 4 6 8 10 12 14

22111179-3-558-2-2-17111Values

0 4 8 12

22111379-3458-26-17118Values

0 8

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread

IDs

Step 1

Stride 1

Step 2
Stride 2

Step 3

Stride 4

Step 4
Stride 8

Thread
IDs

Thread

IDs

Thread
IDs

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

9

Reduction #1: Interleaved AddressingReduction #1: Interleaved Addressing

__global__ void reduce1(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];
__syncthreads();

// do reduction in shared mem

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}

// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Problem: highly divergent
warps are very inefficient, and

% operator is very slow

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

10

Performance for 4M element reductionPerformance for 4M element reduction

2.083 GB/s8.054 msKernel 1:
interleaved addressing
with divergent branching

Note: Block Size = 128 threads for all tests

BandwidthTime (222 ints)

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

11

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}
__syncthreads();

}

for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}
__syncthreads();

}

Reduction #2: Interleaved AddressingReduction #2: Interleaved Addressing

Just replace divergent branch in inner loop:

With strided index and non-divergent branch:

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

12

Parallel Reduction: Interleaved AddressingParallel Reduction: Interleaved Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

22111179-3-558-2-2-17111Values

0 1 2 3

22111379-3458-26-17118Values

0 1

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread

IDs

Step 1

Stride 1

Step 2
Stride 2

Step 3

Stride 4

Step 4
Stride 8

Thread
IDs

Thread

IDs

Thread
IDs

New Problem: Shared Memory Bank Conflicts

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

13

Performance for 4M element reductionPerformance for 4M element reduction

2.33x4.854 GB/s

2.083 GB/s

2.33x3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1:
interleaved addressing
with divergent branching

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

14

Parallel Reduction: Sequential AddressingParallel Reduction: Sequential Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

2011072-3-27390610-28Values

0 1 2 3

2011072-3-27390131378Values

0 1

2011072-3-2739013132021Values

0

2011072-3-2739013132041Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3

Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

Sequential addressing is conflict free

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

15

for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}
__syncthreads();

}

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}

Reduction #3: Sequential AddressingReduction #3: Sequential Addressing

Just replace strided indexing in inner loop:

With reversed loop and threadID-based indexing:

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

16

Performance for 4M element reductionPerformance for 4M element reduction

2.01x

2.33x

9.741 GB/s

4.854 GB/s

2.083 GB/s

4.68x

2.33x

1.722 msKernel 3:
sequential addressing

3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1:
interleaved addressing
with divergent branching

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]

Applications

Sample Sort[LOS10]

1 23 7 19 25 42 4

1 23 7 19 25 42 41 23 7 19 25 42 4

2319

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 4 7 19 23 25 42

Sample Sort[LOS10]

1 23 7 19 25 42 4

1 23 7 19 25 42 4

1 23 7 19 25 42 4

2319

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 4 7 19 23 25 42

Sample Sort[LOS10]

1 23 7 19 25 42 41 23 7 19 25 42 4

1 23 7 19 25 42 4

2319

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 4 7 19 23 25 42

Sample Sort[LOS10]

1 23 7 19 25 42 41 23 7 19 25 42 41 23 7 19 25 42 4

2319

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 4 7 19 23 25 42

Sample Sort[LOS10]

1 23 7 19 25 42 41 23 7 19 25 42 41 23 7 19 25 42 4

2319

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 23 7 19 25 42 4

2319
1 7

4
25 42

1 4 7 19 23 25 42

Sample Sort

Given X = {x1, x2, . . . xn}, k
if n ≤ M then
SimpleSort(X)

end if
Pick random sample R = xi1 , xi2 , . . . xik
Sort(R) = {r0 = −∞, r1, r2, . . . , rk,+∞ = rk+1}
Place xi in bucket bj if rj ≤ xi < rj+1
Concatenate SampleSort(b0, k), SampleSort(b1, k), . . .

Parallelize the individual sorts
Use parallel reductions to partition elements

GPU Algorithm: A single phase

Phase 1 Compute the sample and sort it
Phase 2 Within each block, figure out the bucket indices for

each element. Construct k-element histogram. Copy to
global memory

Phase 3 Do prefix sum (parallel reduction!) to find global offsets
Phase 4 Distribute items using global offset

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0
a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0
a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0
a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0
a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0
a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0
a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7

a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0
a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7

a b

min(a, b) max(a, b)

a > 0

−3 9 7

a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Data-parallel Binary Search

a b

min(a, b) max(a, b)

a > 0
a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

5

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 5 6

a b

min(a, b) max(a, b)

a > 0

−3 9 7
a b

min(a, b) max(a, b)

a > 0

−3 9 7

a b

min(a, b) max(a, b)

a > 0

−3 9 7

• In first comparator, a path is taken or not.

• In second, both paths are used, but by different data

Predicated Instructions

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

Conditionals are replaced by predicated statements

Predicated Instructions

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

Conditionals are replaced by predicated statements

Predicated Instructions

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

Conditionals are replaced by predicated statements

Predicated Instructions

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

Conditionals are replaced by predicated statements

Predicated Instructions

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

Conditionals are replaced by predicated statements

Predicated Instructions

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

Conditionals are replaced by predicated statements

Predicated Instructions

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

Conditionals are replaced by predicated statements

Predicated Instructions

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

Conditionals are replaced by predicated statements

Predicated Instructions

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

r1

r2 r3

r4 r5 r6 r7

r1 r2 r3 r4 r5 r6 r7

j = 1
for i = 1 to log 4 do

j← 2j + (q > ri)
end for
j← j− 4 + 1

Conditionals are replaced by predicated statements

Parallel Prefix Sum for Offsets

Global
memory
Global

memory

Number of
elements in each
bucket

Global
memory

Number of
elements in each
bucket

Prefix Sum

Parallel Prefix Sum for Offsets

Global
memory
Global

memory

Number of
elements in each
bucket

Global
memory

Number of
elements in each
bucket

Prefix Sum

Parallel Prefix Sum for Offsets

Global
memory
Global

memory

Number of
elements in each
bucket

Global
memory

Number of
elements in each
bucket

Prefix Sum

Parallel Prefix Sum for Offsets

Global
memory
Global

memory

Number of
elements in each
bucket

Global
memory

Number of
elements in each
bucket

Prefix Sum

Parallel Prefix Sum for Offsets

Global
memory

Global
memory

Number of
elements in each
bucket

Global
memory

Number of
elements in each
bucket

Prefix Sum

Parallel Prefix Sum for Offsets

Global
memory

Global
memory

Number of
elements in each
bucket

Global
memory

Number of
elements in each
bucket

Prefix Sum

Parallel Prefix Sum for Offsets

Global
memory
Global

memory

Number of
elements in each
bucket

Global
memory

Number of
elements in each
bucket

Prefix Sum

Distribution

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 8

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

Repeat in each block

Distribution

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 8

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

Repeat in each block

Distribution

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 8

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

Repeat in each block

Distribution

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 8

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

Repeat in each block

Distribution

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 8

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

Repeat in each block

Distribution

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 8

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

Repeat in each block

Distribution

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 8

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

Repeat in each block

Distribution

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 8

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

(3, 7)

1, 4, 6, 8 2, 0, 9, 5

1, 2, 1 2, 1, 1
0, 0, 0
1, 2, 1
3, 3, 2

1 4 6 82 0 5 9

Repeat in each block

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

Convex Hulls

GPU QuickHull[SKGN09]

Phase 1 Compute the sample and sort it
Phase 2 Within each block, figure out the bucket indices for

each element. Construct k-element histogram. Copy to
global memory

Phase 3 Do prefix sum (parallel reduction!) to find global offsets
Phase 4 Distribute items using global offset

GPU QuickHull[SKGN09]

Phase 1 Compute the pivot point
Phase 2 Within each block, eliminate elements above the pivot

segment. Store the rest
Phase 3 Do prefix sum (parallel reduction!) to find global offsets
Phase 4 Distribute items using global offset

3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Lifting map

3D convex hull⇔ 2D Delaunay⇔ 2D Voronoi

Jump Flooding algorithm[RT06]

Jump Flooding algorithm[RT06]

Jump Flooding algorithm[RT06]

Jump Flooding algorithm[RT06]

Challenge

Challenge
Can we get better algorithms for computing 2D Voronoi diagrams
and lower envelopes ?

k-means clustering[ZG09]

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

k-means clustering[ZG09]

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

k-means clustering[ZG09]

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

k-means clustering[ZG09]

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

k-means clustering[ZG09]

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Find k centers C = c1, . . . ck such that

∑
p∈P

min
c∈C
‖p− c‖2

is minimized

Where are the expensive computations ?

Each point finds its nearest neighbor (O(nk) or O(n log k) if
clever)
We compute the centroids of points in clusters
Points are fixed in all iterations, but centroids change.

Standard Implementation: CPU-GPU hybrid

For each point, need to compute minC ‖p− c‖
This is a trivial parallelization

One thread for each point (or block appropriately)
In each iteration, compute distances from a single center.
k� n, so this is not expensive

For each labelling, find new center.
Could do this entirely in GPU: centers computed via reduce
operation.
Most algorithms don’t do it: copy to CPU.

Why irregular access is a problem

GPUs are designed for high arithmetic intensity and SIMT
behavior
Irregular data locality and access (such as with graphs) reduces
the benefit of these methods
To handle sparse data, you need to store the data compactly, and
process it efficiently based on the format.

Sparse Matrix-Vector multiplication

y = Ax

Easy if A is dense using kernel at each vector: O(n2)

If number of nonzeros in A is small, would prefer O(nnz(A)) (or
linear in input)

Representations

A =




1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4




Diagonal form

data =




∗ 1 7
∗ 2 8
5 3 9
6 4 ∗




offsets =
[−2 0 1

]

ptr =
[
0 2 4 7 9

]

indices =[
0 1 1 2 0 2 3 1 3

]

data =[
1 7 2 8 5 3 9 6 4

]

CSR representation

Representations

A =




1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4




Diagonal form

data =




∗ 1 7
∗ 2 8
5 3 9
6 4 ∗




offsets =
[−2 0 1

]

ptr =
[
0 2 4 7 9

]

indices =[
0 1 1 2 0 2 3 1 3

]

data =[
1 7 2 8 5 3 9 6 4

]

CSR representation

GPU SpMV I

ptr =
[
0 2 4 7 9

]

indices =[
0 1 1 2 0 2 3 1 3

]

data =[
1 7 2 8 5 3 9 6 4

]

CSR representation

start← ptr[ID]
end← ptr[ID + 1]
for i = start to end do
d = d + data[i] + x[indices[start]]

end for

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:
ptr =

[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

GPU SpMV I: Access Patterns

Threads in this kernel access elements haphazardly:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

ptr =
[
0 2 4 7 9

]

indices =
[
0 1 1 2 0 2 3 1 3

]

data =
[
1 7 2 8 5 3 9 6 4

]

Round 1:
Round 2:
Round 3:

GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

Row

Row

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce

GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

Row

Row

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce

GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

RowRow

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce

GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

RowRow

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce

GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

RowRow

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce

Compute a BFS ordering of a graph[MGG12]

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

Compute a BFS ordering of a graph[MGG12]

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

Compute a BFS ordering of a graph[MGG12]

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

Compute a BFS ordering of a graph[MGG12]

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

Matrix View

If A is the adjacency matrix of a graph, and x is a vector representing
the current vertex frontier, then

y = x>A

is the new frontier.

This is under the (min,+) algebra, rather than (+,×) for regular
matrix operations
Methods from sparse matrix multiplication can be used here.
But this is very expensive.

Plan:
Replace matrix view by a “parallel” frontier expansion
Carefully manage duplicate neighbors

Better Implementation I

How to construct a new frontier from current frontier ?

Every thread manages one node, and counts its neighbors.
Once we have all neighbors, we invoke a prefix sum.
Now threads can write new frontier into shared memory.

Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.

Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.

Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.

Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.

Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.

Graph Coloring

Core problem in graph optimization
Register allocation, spectrum assignment, scheduling,

Graph Coloring

Core problem in graph optimization
Register allocation, spectrum assignment, scheduling,

Graph Coloring

Core problem in graph optimization
Register allocation, spectrum assignment, scheduling,

Graph Coloring

Core problem in graph optimization
Register allocation, spectrum assignment, scheduling,

What do we know about it

NP-hard, and n1−ε-hard to approximate
Many heuristics (based on greedy ordering)

Fix an arbitrary ordering of the vertices
Color a vertex with the smallest feasible color.

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

What do we know about it

NP-hard, and n1−ε-hard to approximate
Many heuristics (based on greedy ordering)

Fix an arbitrary ordering of the vertices
Color a vertex with the smallest feasible color.

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

What do we know about it

NP-hard, and n1−ε-hard to approximate
Many heuristics (based on greedy ordering)

Fix an arbitrary ordering of the vertices
Color a vertex with the smallest feasible color.

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

What do we know about it

NP-hard, and n1−ε-hard to approximate
Many heuristics (based on greedy ordering)

Fix an arbitrary ordering of the vertices
Color a vertex with the smallest feasible color.

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

What do we know about it

NP-hard, and n1−ε-hard to approximate
Many heuristics (based on greedy ordering)

Fix an arbitrary ordering of the vertices
Color a vertex with the smallest feasible color.

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

What do we know about it

NP-hard, and n1−ε-hard to approximate
Many heuristics (based on greedy ordering)

Fix an arbitrary ordering of the vertices
Color a vertex with the smallest feasible color.

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

What do we know about it

NP-hard, and n1−ε-hard to approximate
Many heuristics (based on greedy ordering)

Fix an arbitrary ordering of the vertices
Color a vertex with the smallest feasible color.

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

What do we know about it

NP-hard, and n1−ε-hard to approximate
Many heuristics (based on greedy ordering)

Fix an arbitrary ordering of the vertices
Color a vertex with the smallest feasible color.

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

1 2 3

4

5

6

7

Ordering Heuristics

First Fit Choose any ordering
SDO/LDO Color is allocated to vertex with highest “saturation”

(number of distinct neighboring colors) and then
highest degree.

MAX OUT Choose vertex that has the maximum number of edges
going out of the subgraph

MIN OUT Choose vertex that has fewest number of edges out of
the subgraph.

Parallel Coloring

1 Partition the graph into roughly equal-sized pieces that have
very few connections between them

2 Color each piece in parallel
3 Fix conflicts at boundaries of pieces

GPU has fine-grained parallelism, faster SIMD processors. Can we do better ?

GPU Coloring[GZL+11]

1 Arbitrarily partition vertices into pieces
2 Color each piece in a thread block, but use common color pool
3 Suppose conflicts occur (at boundary)

Erase colors of conflicted nodes
Try to color them again
Repeat until number of conflicts is small
Shift to CPU.

Summary

GPU SIMD makes conflict checking very easy
Doing careful partitioning (METIS) doesn’t really help (GPU is
more tolerant to “bad” partitioning)
CPU is very slow to resolve conflicts sequentially: best to use it
when number of conflicts is small
GPU heuristics give good quality colorings (not sure why!)

Software Tools

CUDPP (http://code.google.com/p/cudpp (basic data-parallel
tools)
CUBLAS (http://developer.nvidia.com/cuda/cublas)
Thrust (https://code.google.com/p/thrust/) (template
library)
Cusp (http://code.google.com/p/cusp-library/) (sparse
linear algebra)

http://code.google.com/p/cudpp
http://developer.nvidia.com/cuda/cublas
https://code.google.com/p/thrust/
http://code.google.com/p/cusp-library/

Research Tools

Overview of lectures

GPU in the BC era: vertex and fragment shaders. Can do
Voronoi diagrams !
SIMD view key to designing and exploiting behavior of card.
CUDA provides general purpose SIMD framework
Low-level SIMD violations can lose many factors in performance
Parallel reduction and prefix sum is an important primitive.
Many applications: dense systems, sparse systems, geometry, . . .
For efficient code, reduce to known primitives like
reduction/prefix sm

Debate

The GPU represents the realistic future of high intensity parallel
computing. SIMD is the only way to get the throughput needed
for many problems, and once memory buses become faster, GPUs
will become the primary model.

Versus

While the GPU can demonstrate great performance, the hoops you
have to jump through to get this performance are so constraining
and so artificial that GPUs will never be more than a boutique
processor that is great for games.

Questions?

References I

A.V.P. Grosset, P. Zhu, S. Liu, S. Venkatasubramanian, and M. Hall.
Evaluating graph coloring on gpus.
In Proceedings of the 16th ACM symposium on Principles and practice of
parallel programming, pages 297–298. ACM, 2011.

M. Harris, G.E. Blelloch, B.M. Maggs, N.K. Govindaraju, B. Lloyd,
W. Wang, M. Lin, D. Manocha, P.K. Smolarkiewicz, L.G. Margolin, et al.
Optimizing parallel reduction in cuda.
Proc. of ACM SIGMOD, 21, 13:104–110, 2007.

N. Leischner, V. Osipov, and P. Sanders.
Gpu sample sort.
In Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, pages 1–10. Ieee, 2010.

Duane Merrill, Michael Garland, and Andrew Grimshaw.
Scalable gpu graph traversal.
In Proceedings of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, pages 117–128, New York,
NY, USA, 2012. ACM.

References II

J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable parallel programming with cuda.
Queue, 6(2):40–53, 2008.

G. Rong and T.S. Tan.
Jump flooding in gpu with applications to voronoi diagram and distance
transform.
In Proceedings of the 2006 symposium on Interactive 3D graphics and games,
pages 109–116. ACM, 2006.

S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens.
Scan primitives for gpu computing.
In Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, pages 97–106. Eurographics Association, 2007.

D.P.R. Srikanth, K. Kothapalli, R. Govindarajulu, and PJ Narayanan.
Parallelizing two dimensional convex hull on nvidia gpu and cell be.
In International Conference on High Performance Computing (HiPC), pages
1–5, 2009.

References III

M. Zechner and M. Granitzer.
Accelerating k-means on the graphics processor via cuda.
In Intensive Applications and Services, 2009. INTENSIVE’09. First
International Conference on, pages 7–15. IEEE, 2009.

	Recap
	Parallel Reduction
	Sample Sort
	Quick Hull
	3D Quick Hullayal12:cudah
	k-means
	Irregular access problems
	Sparse Matrix Vector Operationsbell2008efficient

	BFS
	Coloring
	Discussion
	Questions
	References

