ALGORITHMS FOR DICTIONARY LEARNING

ANKUR MOITRA

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

a.k.a. sparse coding

a.k.a. sparse coding

Signal Processing/Statistics:

- De-noising, edge-detection, super-resolution
- Block compression for images/video

a.k.a. sparse coding

Signal Processing/Statistics:

- De-noising, edge-detection, super-resolution
- Block compression for images/video

Machine Learning:

- Sparsity as a regularizer to prevent over-fitting
- Learned sparse reps. play a key role in deep-learning

a.k.a. sparse coding

Signal Processing/Statistics:

- De-noising, edge-detection, super-resolution
- Block compression for images/video

Machine Learning:

- Sparsity as a regularizer to prevent over-fitting
- Learned sparse reps. play a key role in deep-learning

Computational Neuroscience (Olshausen-Field 1997):

 Applied to natural images yields filters with same qualitative properties as receptive field in V1

OUTLINE

Are there efficient algorithms for dictionary learning?

Introduction

- Origins of Sparse Recovery
- A Stochastic Model; Our Results

Provable Algorithms via Overlapping Clustering

- Uncertainty Principles
- Reformulation as Overlapping Clustering

Analyzing Alternating Minimization

Gradient Descent on Non-Convex Fctns

ORIGINS OF SPARSE RECOVERY

Donoho-Stark, Donoho-Huo, Gribonval-Nielsen, Donoho-Elad:

ORIGINS OF SPARSE RECOVERY

Donoho-Stark, Donoho-Huo, Gribonval-Nielsen, Donoho-Elad:

ORIGINS OF SPARSE RECOVERY

Donoho-Stark, Donoho-Huo, Gribonval-Nielsen, Donoho-Elad:

• If $k \le \sqrt{n} / 2\mu$ then x is the sparsest solution to the linear system, and can be found with l_1 -minimization

Are there efficient algorithms for dictionary learning?

Case #1: A has full column rank

Are there efficient algorithms for dictionary learning?

Case #1: A has full column rank

Theorem [Spielman, Wang, Wright '13]: There is a poly. time algorithm to exactly learn A when it has full column rank, for $k \approx \sqrt{n}$ (hence $m \le n$)

Are there efficient algorithms for dictionary learning?

Case #1: A has full column rank

Theorem [Spielman, Wang, Wright '13]: There is a poly. time algorithm to exactly learn A when it has full column rank, for $k \approx \sqrt{n}$ (hence $m \le n$)

Approach: find the rows of A^{-1} , using L_1 -minimization

Are there efficient algorithms for dictionary learning?

Case #1: A has full column rank

Theorem [Spielman, Wang, Wright '13]: There is a poly. time algorithm to exactly learn A when it has full column rank, for $k \approx \sqrt{n}$ (hence $m \le n$)

Approach: find the rows of A^{-1} , using L_1 -minimization

Stochastic Model:
unknown dictionary A
generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax

Claim: row-span(B) = row-span(X)

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #1:

(P0): min $||w^TB||_0$ s.t. $w \ne 0$

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #1: NP-hard

(P0): min $||w^TB||_1$ s.t. $w \ne 0$

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #2: L₁-relaxation

(P1): min $||w^TB||_1$ s.t. $w^Tr = 1$

where we will set r later...

(P1): min $||w^TB||_1$ s.t. $w^Tr = 1$

(P1): min
$$||w^TB||_1$$
 s.t. $w^Tr = 1$

Consider the bijection $z = A^Tw$, and set $c = A^{-1}r$.

(P1): min $||w^TB||_1$ s.t. $w^Tr = 1$

Consider the bijection $z = A^Tw$, and set r = Ac. We get:

(P1): min $||w^{T}AX||_{1}$ s.t. $w^{T}Ac = 1$

(P1): min
$$||w^TB||_1$$
 s.t. $w^Tr = 1$

(P1): min
$$||w^{T}AX||_{1}$$
 s.t. $w^{T}Ac = 1$

This is equivalent to:

(Q1): min
$$||z^TX||_1$$
 s.t. $z^Tc = 1$

(P1): min
$$||w^TB||_1$$
 s.t. $w^Tr = 1$

(P1): min
$$||w^{T}AX||_{1}$$
 s.t. $w^{T}Ac = 1$

This is equivalent to:

(Q1): min
$$||z^TX||_1$$
 s.t. $z^Tc = 1$

Set r = column of B, then $c = A^{-1}r = \text{column of X}$

(P1): min
$$||w^TB||_1$$
 s.t. $w^Tr = 1$

(P1): min
$$||w^{T}AX||_{1}$$
 s.t. $w^{T}Ac = 1$

This is equivalent to:

(Q1): min
$$||z^TX||_1$$
 s.t. $z^Tc = 1$

Set r = column of B, then $c = A^{-1}r = \text{column of X}$

Claim: If c has a strictly largest coordinate $(|c_i| > |c_j| \text{ for } j \neq i)$ in absolute value, then whp the soln to (Q1) is e_i

(P1): min
$$||w^TB||_1$$
 s.t. $w^Tr = 1$

(P1): min
$$||w^TAX||_1$$
 s.t. $w^TAc = 1$

Claim: Then the soln to (P1) is the ith row of X

This is equivalent to:

(Q1): min
$$||z^TX||_1$$
 s.t. $z^Tc = 1$

Set r = column of B, then $c = A^{-1}r = \text{column of X}$

Claim: If c has a strictly largest coordinate ($|c_i| > |c_j|$ for $j \ne i$) in absolute value, then whp the soln to (Q1) is e_i

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #2: L₁-relaxation

(P1): min $||w^TB||_1$ s.t. $w^Tr = 1$

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #2: L₁-relaxation

(P1): min $||w^TB||_1$ s.t. $w^Tr = 1$

Hence we can find the rows of X, and solve for A

THE OVERCOMPLETE CASE

What about overcomplete dictionaries?

(more expressive)

Case #2: A is incoherent

THE OVERCOMPLETE CASE

What about overcomplete dictionaries?

(more expressive)

Case #2: A is incoherent

Theorem [Arora, Ge, Moitra '13]: There is an algorithm to learn A within ε if it is n by m and μ -incoherent for $k \approx \min(\sqrt{n}/\mu \log n, m^{\frac{1}{2}-\eta})$

The running time and sample complexity are poly(n,m,log $1/\epsilon$)

THE OVERCOMPLETE CASE

What about overcomplete dictionaries?

(more expressive)

Case #2: A is incoherent

Theorem [Arora, Ge, Moitra '13]: There is an algorithm to learn A within ϵ if it is n by m and μ -incoherent for

 $k \approx \min(\sqrt{n}/\mu \log n, m^{\frac{1}{2}-\eta})$

The running time and sample complexity are poly(n,m,log $1/\epsilon$)

Approach: learn the support of the representations $X = [... \times ...]$ first, by solving an **overlapping clustering** problem...

THE OVERCOMPLETE CASE

What about overcomplete dictionaries?

(more expressive)

Case #2: A is incoherent

Theorem [Arora, Ge, Moitra '13]: There is an algorithm to learn A within ϵ if it is n by m and μ -incoherent for

 $k \approx \min(\sqrt{n}/\mu \log n, m^{\frac{1}{2}-\eta})$

The running time and sample complexity are poly(n,m,log $1/\epsilon$)

Approach: learn the support of the representations $X = [... \times ...]$ first, by solving an **overlapping clustering** problem...

Theorem [Agarwal et al '13]: There is a poly. time algorithm to learn A if it is μ -incoherent for $k \approx n^{\frac{1}{4}}/\mu$

THE MODEL

What about overcomplete dictionaries?

(more expressive)

Case #2: A is incoherent

THE MODEL

What about overcomplete dictionaries?

(more expressive)

Case #2: A is incoherent

Theorem [Barak, Kelner, Steurer '14]: There is a quasi-poly. time algorithm to learn A within any constant A if it is μ -incoherent for $k \approx n^{1-\eta}$ using the sum-of-squares hierarchy

THE MODEL

What about overcomplete dictionaries?

(more expressive)

Case #2: A is incoherent

Theorem [Barak, Kelner, Steurer '14]: There is a quasi-poly. time algorithm to learn A within any constant A if it is μ -incoherent for $k \approx n^{1-\eta}$ using the sum-of-squares hierarchy

Approach: find y that approximately maximizes $E[|b^Ty|^4]$ via a poly-logarithmic number of rounds; it is close to a coln of A

OUTLINE

Are there efficient algorithms for dictionary learning?

Introduction

- Origins of Sparse Recovery
- A Stochastic Model; Our Results

Provable Algorithms via Overlapping Clustering

- Uncertainty Principles
- Reformulation as Overlapping Clustering

Analyzing Alternating Minimization

Gradient Descent on Non-Convex Fctns

Claim: Given A, b and k it is **NP**-hard to decide if there is a k-sparse x such that Ax = b

Claim: Given A, b and k it is NP-hard to decide if there is a k-sparse x such that Ax = b

Why is this easier for incoherent dictionaries?

Claim: Given A, b and k it is NP-hard to decide if there is a k-sparse x such that Ax = b

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is μ-incoherent then

$$\langle Ay, Ax \rangle \approx \langle y, x \rangle$$

provided that x and y are k-sparse, for $k \le \sqrt{n}/2\mu$

Claim: Given A, b and k it is NP-hard to decide if there is a k-sparse x such that Ax = b

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is μ-incoherent then

$$\langle Ay, Ax \rangle \approx \langle y, x \rangle$$

provided that x and y are k-sparse, for $k \le \sqrt{n}/2\mu$

Proof: A^TA restricted to the support of x and y is $k \times k$ and

$$|(A^TA)_{i,j}| = \begin{cases} 1 & \text{if } i = j \\ \leq \mu/\sqrt{n} & \text{if } i \neq j \end{cases}$$

Claim: Given A, b and k it is NP-hard to decide if there is a k-sparse x such that Ax = b

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is μ-incoherent then

$$\langle Ay, Ax \rangle \approx \langle y, x \rangle$$

provided that x and y are k-sparse, for $k \le \sqrt{n}/2\mu$

Proof: A^TA restricted to the support of x and y is $k \times k$ and

$$|(A^TA)_{i,j}| = \begin{cases} 1 & \text{if } i = j \\ \leq \mu/\sqrt{n} & \text{if } i \neq j \end{cases}$$

Then use Gershgorin's Disk Thm...

Claim: Given A, b and k it is NP-hard to decide if there is a k-sparse x such that Ax = b

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is μ-incoherent then

$$\langle Ay, Ax \rangle \approx \langle y, x \rangle$$

provided that x and y are k-sparse, for $k \le \sqrt{n}/2\mu$

Claim: Given A, b and k it is NP-hard to decide if there is a k-sparse x such that Ax = b

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is μ-incoherent then

$$\langle Ay, Ax \rangle \approx \langle y, x \rangle$$

provided that x and y are k-sparse, for $k \le \sqrt{n}/2\mu$

This principle can be used to establish uniqueness for sparse recovery, and things like...

"b cannot be sparse in both standard and Fourier basis"

$$supp(x) = \bullet \bullet \bullet$$

$$supp(x') = \bullet \bullet \bullet$$

Given Ax = b and Ax' = b', do x and x' have intersection support?

Uncertainty Principle: for k-sparse x, incoherent A

Given Ax = b and Ax' = b', do x and x' have intersection support?

Uncertainty Principle: for k-sparse x, incoherent A

Given Ax = b and Ax' = b', do x and x' have intersection support?

Approach: Build a graph G on the p samples, with an edge btwn b and b' if and only if $|b^Tb'| > 1/2$

Given Ax = b and Ax' = b', do x and x' have intersection support?

Approach: Build a graph G on the p samples, with an edge btwn b and b' if and only if $|b^Tb'| > 1/2$

For the purposes of this talk, probability of an edge between b, b' is ½ iff supp(x) and supp(x') intersect

Let $C_i = \{b \mid x_i \neq 0\}$ (overlapping)

Let $C_i = \{b \mid x_i \neq 0\}$ (overlapping)

Can we find the clusters efficiently?

Let $C_i = \{b \mid x_i \neq 0\}$ (overlapping)

Can we find the clusters efficiently?

Challenge: Given (x, x', x'') where all the pairs belong to a cluster together, do all three belong to a common cluster too?

Let $C_i = \{ b \mid x_i \neq 0 \}$ (overlapping)

Can we find the clusters efficiently?

Challenge: Given (x, x', x'') where all the pairs belong to a cluster together, do all three belong to a common cluster too?

Let
$$C_i = \{b \mid x_i \neq 0\}$$
 (overlapping)

Can we find the clusters efficiently?

Challenge: Given (x, x', x'') where all the pairs belong to a cluster together, do all three belong to a common cluster too?

$$supp(x) = \bullet \bullet \bullet$$

$$supp(x') = \bullet \bullet \bullet$$

$$supp(x'') = \bullet \bullet \bullet$$

Key Idea: Use new samples y ...

Key Idea: Use new samples y ...

Case #1: all three intersect:

Key Idea: Use new samples y ...

Case #1: all three intersect:

Probability y intersects all three is at least k/m

New sample y only needs to contain one element from their joint union

Key Idea: Use new samples y ...

Key Idea: Use new samples y ...

Case #2: no common intersection

New sample y needs to contain at least two elements from their joint union

Key Idea: Use new samples y ...

Case #2: no common intersection, $|supp(x) \cap supp(x')| \le C$, etc

Probability y intersects all three is at most O(Ck³/m²)

New sample y needs to contain at least two elements from their joint union

Key Idea: Use new samples y' ...

Case #1: all three intersect:

Probability y intersects all three is at least k/m

Case #2: no common intersection, $|supp(x) \cap supp(x')| \le C$, etc

Probability y intersects all three is at most O(Ck³/m²)

A TRIPLE TEST

Key Idea: Use new samples y' ...

Case #1: all three intersect:

Probability y intersects all three is at least k/m

Case #2: no common intersection, $|\operatorname{supp}(x) \cap \operatorname{supp}(x')| \leq C$, etc

Probability y intersects all three is at most O(Ck³/m²)

Triple Test:

- Given (x, x', x'') where all the pairs intersect
- If there are at least T samples y where (x, x', x'', y) all

pairwise intersect, ACCEPT else REJECT

We can build a clustering algorithm on this primitive:

• For each pair (x, x'), find all x'' that pass the triple test

We can build a clustering algorithm on this primitive:

• For each pair (x, x'), find all x'' that pass the triple test

Claim: This set is the union of clusters corresponding to $supp(x) \cap supp(x')$

We can build a clustering algorithm on this primitive:

• For each pair (x, x'), find all x" that pass the triple test

Claim: This set is the union of clusters corresponding to $supp(x) \cap supp(x')$

Claim: For every cluster i, there is some x, x' that uniquely identify it – i.e. $supp(x) \cap supp(x') = \{i\}$

We can build a clustering algorithm on this primitive:

• For each pair (x, x'), find all x" that pass the triple test

Claim: This set is the union of clusters corresponding to $supp(x) \cap supp(x')$

Claim: For every cluster i, there is some x, x' that uniquely identify it – i.e. $supp(x) \cap supp(x') = \{i\}$

• Output inclusion-wise minimal sets – these are the clusters!

We can build a clustering algorithm on this primitive:

• For each pair (x, x'), find all x" that pass the triple test

Claim: This set is the union of clusters corresponding to $supp(x) \cap supp(x')$

Claim: For every cluster i, there is some x, x' that uniquely identify it – i.e. $supp(x) \cap supp(x') = \{i\}$

Output inclusion-wise minimal sets – these are the clusters!

Our full algorithm uses higher-order tests; analysis through connections to piercing number

Approach #1: Relative Signs

Plan: Refine C_i and find all the b's with $x_i > 0$

Approach #1: Relative Signs

Plan: Refine C_i and find all the b's with $x_i > 0$

Intuition: If supp(x) \cap supp(x') = {i}, the we can find relative sign of x_i and x'_i and there are many such pairs...

Approach #1: Relative Signs

Plan: Refine C_i and find all the b's with $x_i > 0$

Intuition: If $supp(x) \cap supp(x') = \{i\}$, the we can find relative sign of x_i and x'_i and there are many such pairs...

...enough so that whp we can find all relative signs by transitivity

Approach #1: Relative Signs

Plan: Refine C_i and find all the b's with $x_i > 0$

Intuition: If $supp(x) \cap supp(x') = \{i\}$, the we can find relative sign of x_i and x'_i and there are many such pairs...

...enough so that whp we can find all relative signs by transitivity

Claim: $E[b | Ax = b \text{ and } x_i > 0] = A_i E[x_i | x_i > 0]$

Hence their empirical average converges to A_i

Approach #2: SVD

Suppose we restrict to samples b with $x_i \neq 0...$

Approach #2: SVD

Suppose we restrict to samples b with $x_i \neq 0...$

Intuition: $E[bb^T|x_i \neq 0]$ has large variance in direction of A_i

Approach #2: SVD

Suppose we restrict to samples b with $x_i \neq 0...$

Intuition: $E[bb^T|x_i \neq 0]$ has large variance in direction of A_i

We also show that alternating minimization works when we're close enough...

(geometric convergence)

OUTLINE

Are there efficient algorithms for dictionary learning?

Introduction

- Origins of Sparse Recovery
- A Stochastic Model; Our Results

Provable Algorithms via Overlapping Clustering

- Uncertainty Principles
- Reformulation as Overlapping Clustering

Analyzing Alternating Minimization (out of time)

Gradient Descent on Non-Convex Fctns

A CONCEPTUAL OVERVIEW

A CONCEPTUAL OVERVIEW

Summary:

- Provable algorithms for learning incoherent, overcomplete dictionaries
 - Connections to overlapping clustering
- Analysis of alternating minimization gradient descent on non-convex objective
- Why does it work even from a random initialization?

Any Questions?

Summary:

- Provable algorithms for learning incoherent, overcomplete dictionaries
 - Connections to overlapping clustering
- Analysis of alternating minimization gradient descent on non-convex objective
- Why does it work even from a random initialization?