ALGORITHMS FOR DICTIONARY LEARNING

ANKUR MOITRA
MASSACHUSETTS INSTITUTE OF TECHNOLOGY




SPARSE REPRESENTATIONS




SPARSE REPRESENTATIONS

Many data-types are sparse in an appropriately chosen basis:




SPARSE REPRESENTATIONS

Many data-types are sparse in an appropriately chosen basis:

e.g. images,
signals, ...

\ J
[

data (n x p)




SPARSE REPRESENTATIONS

Many data-types are sparse in an appropriately chosen basis:

dictionary (n x m)
A

A TN ARTY N ... D.| sos

e.g. images,
signals, ...

\ J \ J
[ [

representations (m x p) data (n x p)




SPARSE REPRESENTATIONS

Many data-types are sparse in an appropriately chosen basis:

at most k
dictionary (n x m) non-zeros
A \ /
A soee X. (o000 = soe b so 0
| == |
e.g. images,
signals, ...

\ J \ J
[ [

representations (m x p) data (n x p)




SPARSE REPRESENTATIONS

Many data-types are sparse in an appropriately chosen basis:

at most k
dictionary (n x m) non-zeros
| \
A soee X. (o000 = XK b o0
| ~ |
.. . e.g. images,
Dictionary Learning: .g 5
signals, ...
Can we learn A from : ‘ ]
examples? J !

representations (m x p) data (n x p)




APPLICATIONS OF DICTIONARY LEARNING

a.k.a. sparse coding




APPLICATIONS OF DICTIONARY LEARNING

a.k.a. sparse coding

Signal Processing/Statistics:
* De-noising, edge-detection, super-resolution

* Block compression for images/video




APPLICATIONS OF DICTIONARY LEARNING

a.k.a. sparse coding

Signal Processing/Statistics:
* De-noising, edge-detection, super-resolution

* Block compression for images/video

Machine Learning:
* Sparsity as a regularizer to prevent over-fitting

* Learned sparse reps. play a key role in deep-learning




APPLICATIONS OF DICTIONARY LEARNING

a.k.a. sparse coding

Signal Processing/Statistics:
* De-noising, edge-detection, super-resolution

* Block compression for images/video

Machine Learning:
* Sparsity as a regularizer to prevent over-fitting

* Learned sparse reps. play a key role in deep-learning

Computational Neuroscience (Olshausen-Field 1997):

* Applied to natural images yields filters with same qualitative
properties as receptive field in V1
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ORIGINS OF SPARSE RECOVERY

Donoho-Stark, Donoho-Huo, Gribonval-Nielsen, Donoho-Elad:

e [f k <Vn/2u then x is the sparsest solution to the linear
system, and can be found with |,-minimization

dictionary (n x m) at most k

, | ‘ non-zeros
O

A X S b

Incoherence:

L = max;, <Ai, A> /Nn

for spikes-and-sines u=1
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THE FULL RANK CASE

Are there efficient algorithms for dictionary learning?

Case #1: A has full column rank

Theorem [Spielman, Wang, Wright ‘13]: There is a poly. time
algorithm to exactly learn A when it has full column rank,
for k = Vn (hence m £ n)

Approach: find the rows of A%, using L,-minimization

Stochastic Model:

* unknown dictionary A

* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7
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Notation: AX = B, where the columns of B, X are samples and
their representations respectively

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #2: L,-relaxation

(P1): min ||w'B|]|; st.w'r=1

where we will set r later...
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(P1): min ||w'B|]|; st.w'r=1
Consider the bijection z = A'w, and set r = Ac. We get:
(P1): min ||w'AX]||; s.t.w'Ac=1

Claim: Then the soln to (P1) is the it" row of X

This is equivalent to:
(Q1): min ||z'X|]; s.t.zlc=1

Set r = column of B, then ¢ = Alr = column of X

Claim: If ¢ has a strictly largest coordinate (|c;| > |¢;| forj#i)
in absolute value, then whp the soln to (Q1) is e,
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Notation: AX = B, where the columns of B, X are samples and
their representations respectively

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #2: L,-relaxation

(P1): min ||w'B|]|; st.w'r=1

Hence we can find the rows of X, and solve for A
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THE OVERCOMPLETE CASE

What about overcomplete dictionaries? (more expressive)

Case #2: A is incoherent

Theorem [Arora, Ge, Moitra ‘13]: There is an algorithm to learn
A within € if it is n by m and p-incoherent for

k = min(Vn/u log n, m”™M)
The running time and sample complexity are poly(n,m,log 1/¢)

Approach: learn the support of the representations X =[... x ...]
first, by solving an overlapping clustering problem...

Theorem [Agarwal et al “13]: There is a poly. time algorithm
to learn A if it is p-incoherent for k = n”/u
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THE MODEL

What about overcomplete dictionaries? (more expressive)

Case #2: A is incoherent

Theorem [Barak, Kelner, Steurer ‘14]: There is a quasi-poly. time
algorithm to learn A within any constant A if it is p-incoherent
for k = n'™ using the sum-of-squares hierarchy

Approach: find y that approximately maximizes E[|b"y|*] via a
poly-logarithmic number of rounds; it is close to a coln of A
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UNCERTAINTY PRINCIPLES

Claim: Given A, b and k it is NP-hard to decide if there is a
k-sparse x such that Ax=Db

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is p-incoherent then

<Ay, Ax> ~ <y, x>

provided that x and y are k-sparse, for k < vi/2u

This principle can be used to establish uniqueness for sparse
recovery, and things like...

“b cannot be sparse in both standard and Fourier basis”
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Given Ax = b and Ax’ = b’, do x and x’ have intersection support?

supp(x) = eee

.
__ I

supp(xX’)= e e

—

| Zero maybe
K>
non-zero  yes

—

gu—

<x',x> ~ <Ax’,Ax> | zero maybe

\ non-zero  yes, whp

Uncertainty Principle: for k-sparse x, incoherent A
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A PAIR-WISE TEST

Given Ax = b and Ax’ = b’, do x and x’ have intersection support?

supp(x) = eee soe

.
__ I

supp(xX’)= e e

Approach: Build a graph G on the p samples, with an edge btwn
band b’ if and only if |[b™b’| >1/2

For the purposes of this talk, probability of an edge
between b, b’ is ¥ iff supp(x) and supp(x’) intersect
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Let C.={b | x, 20} (overlapping)

Challenge: Given (x, x’, x”’) where all the pairs belong to a cluster
together, do all three belong to a common cluster too?

supp(x) = e [ N
1N
I

supp(x’) ~ o060

SUpp(X”) ~ o060
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A TRIPLE TEST

Key Idea: Use new samples y’ ...
Case #1: all three intersect:

Probability y intersects all three is at least k/m

Case #2: no common intersection, |supp(x)Nsupp(x’)| < C, etc

Probability y intersects all three is at most O(Ck3/m?)

Triple Test:

* Given (x, x’, X”’) where all the pairs intersect
* If there are at least T samples y where (x, x’, x”’, y) all
pairwise intersect, ACCEPT else REJECT 7




FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

* For each pair (x, x’), find all x”” that pass the triple test




FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

* For each pair (x, x’), find all x”” that pass the triple test

Claim: This set is the union of clusters corresponding to
supp(x) N supp(x’)




FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

* For each pair (x, x’), find all x”” that pass the triple test

Claim: This set is the union of clusters corresponding to
supp(x) N supp(x’)

Claim: For every cluster i, there is some x, x’ that uniquely identify
it —i.e. supp(x)Nsupp(x’) = {i}




FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

* For each pair (x, x’), find all x”” that pass the triple test

Claim: This set is the union of clusters corresponding to
supp(x) N supp(x’)

Claim: For every cluster i, there is some x, x’ that uniquely identify
it —i.e. supp(x)Nsupp(x’) = {i}

* Qutput inclusion-wise minimal sets — these are the clusters!




FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

* For each pair (x, x’), find all x”” that pass the triple test

Claim: This set is the union of clusters corresponding to
supp(x) N supp(x’)

Claim: For every cluster i, there is some x, X’ that uniquely identify
it —i.e. supp(x)Nsupp(x’) = {i}

* Qutput inclusion-wise minimal sets — these are the clusters!

Our full algorithm uses higher-order tests; analysis
through connections to piercing number
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Many ways to get the dictionary from the clustering...

Approach #1: Relative Signs

Plan: Refine C. and find all the b’s with x, >0

Intuition: If supp(x)N supp(x’) = {i}, the we can find relative
sign of x.and x’; and there are many such pairs...

...enough so that whp we can find all relative signs by transitivity
Claim: E[b|Ax = b and x, > 0] = A, E[x.|x, > 0]

Hence their empirical average converges to A,
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Many ways to get the dictionary from the clustering...
Approach #2: SVD

Suppose we restrict to samples b with x. # 0....

Intuition: E[bb"|x. # 0] has large variance in direction of A,

We also show that alternating minimization works when we’re
close enough...

(geometric convergence)
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Any Questions?

Summary:

* Provable algorithms for learning incoherent,
overcomplete dictionaries

* Connections to overlapping clustering

* Analysis of alternating minimization — gradient
descent on non-convex objective

* Why does it work even from a random
initialization?




