
Adaptive and Approximate Orthogonal Range Counting
Timothy M. Chan and Bryan T. Wilkinson

David R. Cheriton School of Computer Science, University of Waterloo

Problem

We are given a 2-D point set P of size n. Given a query rectangle Q, we
must compute k, the number of points of P that lie in Q. We must create a
data structure that supports a single static point set P but multiple online
queries. This problem is called static 2-D orthogonal range counting.

k = 5

Motivation

For example, an SQL query with inequality filters on two columns maps to a
2-D orthogonal range query.

SELECT *

FROM employee

WHERE age >= 20

AND age <= 25

AND salary >= 50000

AND salary <= 60000

age

salary

Model

We work under the w-bit word RAM model:

I w-bit words

I unit-cost operations on words

I fixed size universe {1, . . . , U}

We make two standard assumptions:

I every element in the universe fits in a word (i.e., w = Ω(logU)), and

I every index into the input array fits in a word (i.e., w = Ω(logn)).

This model very closely matches modern computers operating on internal
memory.

Previous Results

Reference Space Query Time

Bentley [Commun. ACM, 1980] O(n logn) O(log2n)
Willard [SIAM J. Comput., 1985] O(n logn) O(logn)
Chazelle [SIAM J. Comput., 1988] O(n) O(logn)
Shi and JaJa [Tech. Report, 2003] O(n logεn) O(logw n)
JaJa et al. [ISAAC, 2004] O(n) O(logw n)

Pătraşcu [STOC, 2007] gives a Ω(logw n) lower bound on query
time for data structures that use up to n logO(1)n space. Thus,
the data structure of JaJa et al. [ISAAC, 2004] is optimal and it
seems that the problem has been solved...

A Way Forward

Chan et al. [SoCG, 2011] give a data structure for static 2-D
orthogonal range emptiness (i.e., deciding whether or not k > 0)
with efficient O(log logn)-time queries. In other words, we can
count up to a maximum of 1 in o(logw n) time. Thus, there is
hope for more efficient counting data structures by parameterizing
the problem on k. Note that this hope only exists under the word
RAM model, as under other models, lower bounds for the
emptiness problem match those for the counting problem.

New Results

We give an adaptive data structure that answers queries in
O(log logn+ logw k) time. The data structure requires
O(n log logn) space. These specific bounds are important for
two reasons:

I they match the bounds of Chan et al. [SoCG, 2011] for the
emptiness problem when k = O(wlog logn), and

I they match the lower bound of Pătraşcu [STOC, 2007] when
k = Ω(nε).

We also give data structures for approximate counting (when the
output count can be off by a multiplicative constant factor). Our
data structures match the bounds of Chan et al. [SoCG, 2011] for
the emptiness problem:

I O(n log logn) space and O(log logn) query time, or

I O(n) space and O(logεn) query time.

Techniques

We introduce a variant of range counting called K-capped range counting. In this variant,
we are allowed to report failure if k > K. For solutions to this variant we give bounds
that are parameterized on K instead of k. By combining several existing techniques in a
highly non-trivial fashion, we obtain K-capped data structures with bounds that match
the emptiness problem modulo extra O(logwK) terms in their query times.

K-Capped 4-Sided
Range Counting

K-Capped 3-Sided
Range Counting

compressed range tree
with ball inheritance

standard range counting
in a narrow grid

shallow cuttings

saving space by
dividing into blocks

succinct
van Emde Boas tree

Our adaptive and approximate data structures use K-capped data structures as black
boxes. Our adaptive data structure consists of O(log logn) K-capped data structures
for double-exponentially increasing values of K. An adaptive query makes K-capped
queries in increasing order of K until failure is not reported. A converging geometric
series keeps the sum of the O(logwK) terms bounded by O(logw k).

k

Our approximate data structure uses a K-capped data structure to handle the case where
k is small and uses a standard random sampling technique to handle the case where k is
large.

Open Problems

Are any of the following possible?

Problem Space Query Time

2-D counting O(n) O(logεn+ logw k)
3-D counting O(n log1+εn) O(log logn+ (logw k)2)
2-D emptiness O(n) O(log logn)

http://www.uwaterloo.ca/ {tmchan, b3wilkin}@uwaterloo.ca


