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When initiated in 2007, the ambitious goal of the Danish National Research Foundation Center for Massive 
Data Algorithmics (MADALGO) was to become a world-leading center in algorithms for handling massive 
data. The high-level objectives of the center were: 

 To significantly advance the fundamental algorithms knowledge in the area of efficient processing of 
massive datasets; 

 To educate the next generation of researchers in a world-leading and international environment; 
 To be a catalyst for multidisciplinary collaborative research on massive dataset issues in commercial 

and scientific applications. 
 
Building on the research strength at the main center site at Aarhus University in Denmark, and at the sites of 
the other participants at Max Planck Institute for Informatics and at Frankfurt University in Germany, and at 
Massachusetts Institute of Technology in the US, as well as on significant international research 
collaboration, multidisciplinary and industry collaboration, and in general on a vibrant international 
environment at the main center site, I believe we have met the goal.  
 
Following the guidelines of the Foundation, this report contains a short reflection on the center’s results, 
impact and international standing (section A), along with appendices with statistics on patents and spin-off 
companies (section A) and the statistics collected by the Foundation (section C). It also contains 10 
publications reflecting the breadth and depth of center research.  
 

 
 
Lars Arge 
Center Director 
May, 2016 
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A. Center results, impact and international standing 
 
Center Results. A key motivation for establishment of Center for Massive Data Algorithmics was the 
inadequacy of traditional algorithms theory in many applications involving massive amounts of data. In 
particular, traditional algorithm theory use simplistic machine models (mathematical model in which 
algorithms are designed and analyzed) that do not take the hierarchical memory organization of modern 
machines into account. This translates into software inadequacies when processing massive data. Based on 
an ambitious research plan, center researchers have obtained a large number of results centered around four 
key areas that all relate to the design of algorithms in more realistic models of computations than traditional 
algorithm theory. Below we briefly highlight a few results (corresponding to the 10 selected papers). 
In the area of I/O-efficient algorithms, the goal is to design algorithms in a model of computation that takes 
the large access time of disk (compared to main memory) into account. Center results on fundamental 
problems in the area include results on sorting algorithms that are provably optimal in terms of both I/O and 
internal memory computation time (selected paper 1, which won the best paper awards at the 2013 ISAAC 
conference). Center researchers have also obtained results on processing of massive terrain data, including 
several results on modeling water flow on terrains, such as for example algorithms for computing how 
depressions in a terrain fills with water as it rains (paper 2, which appeared in the top computational 
geometry conference SoCG). Overall, we believe center work in the area has been very successful. 
In the area of cache-oblivious algorithms, the aim is to develop algorithms that automatically adapt to the 
unknown multiple levels of modern memory hierarchies. Developing cache-oblivious algorithms is very 
challenging; at the start of the center, techniques for obtaining cache-oblivious algorithms was not very 
developed and the fundamental limitations in the area not well understood. Center researchers have obtained 
a good number of results in the area, and e.g. developed new fundamental techniques used to obtain an 
optimal cache-oblivious data structure that allows for fast search for a data element among a set of elements 
(paper 3, which appeared in the top algorithms conference SODA). However, overall we have not made as 
much progress on cache-oblivious problems as we would have liked. 
In the area of streaming algorithms, the aim is to develop algorithms that only perform one sequential pass 
over the input data, while processing each input element as fast as possible using significantly less space than 
the input data size. Center researchers have obtained a large number of results in the area. For example, we 
have developed the first optimal algorithm for the well-studied and fundamental problem of estimating the 
number of distinct elements in a stream (paper 4, which won the best paper awards at the top theoretical 
database conference PODS in 2010). We have also obtained a large number of results in relation to the so-
called linear sketching technique, and recently we showed the very first known lower bounds on how fast 
data stream elements can be processed (paper 5, which appeared in the top theoretical computer science 
conference STOC). Overall, we believe center work in the area has been very successful. 
The area of algorithm engineering covers the design and analysis of practical algorithms, their efficient 
implementation, as well as experimentation that provides insight into their applicability and further 
improvement. Center researches have in particular engineered many I/O-efficient algorithms. For example, 
the center has had great success with engineering algorithms for flood risk analysis using detailed (and thus 
massive) terrain data. This work includes implementation of results on how depressions fill during a rain 
event mentioned above (paper 2) and recent work on modelling and computing flood risk from water rising 
in rivers (paper 6, which appear in the good geographic information systems conference GIScience). It also 
formed the basis of the center startup company SCALGO, which has very successfully marketed flood risk 
analysis products based on the openly available detailed terrain model of Denmark. For example, the 
depression risk analysis results (paper 2) formed the basis of analysis purchased by more than half of the 
local Danish governments. Center algorithm engineering work has also formed the basis for collaboration 
with several other companies, as well as for extensive collaboration with researchers in other fields, in 
particular biology (bioinformatics and biodiversity) researchers. The river flood risk research (paper 6) is e.g. 
performed with a number of biology researchers, and the collaboration has also led to a Science paper (paper 
7). Overall, we believe center algorithm engineering work has been very successful. 
In addition to the above four core areas, center researchers have obtained a large number of results on 
research questions in relation to e.g. models of parallel computation, flash memory, fault tolerance, 
memory efficient (succinct) data structures, as well as to fundamental problems in more traditional models 
of computation, in particular data structure and lower bound problems. As a few examples, center 
researchers have solved longstanding open problems in succinct (paper 8, which won the best student paper 
award at the top theoretical computer science conference FOCS in 2008) and priority queue (paper 9, which 
appeared in top theoretical computer science conferences STOC and is co-authored by Turing Award winner 
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Tarjan) data structures. Much of the center’s data structure work (in various models of computation) has 
been on fundamental range searching problems (storing a set of d-dimensional points such that points in a 
query range can be identified efficiently), and we have e.g. showed very strong lower bound tradeoffs 
between search and update time for several variants of the problem (paper 10, which won both best paper 
and best student paper awards in the top theoretical computer science conferences STOC in 2012). 

A key goal of the center has been to educate the next generation of researchers in a world-leading and 
international environment. Altogether, 28 PhD students have graduated from the center (19 from AU), and 
the center currently houses 14 PhD students (7 at AU). Among the 26 students at AU, 12 students are 
internationals. Additionally, the center has hosted 24 Post Doc (22 at AU). The center has emphasized 
creation of a vibrant and international environment at the main center site at AU. The center has hosted 
numerous research visitors, just as we have organized annual summer schools at the center. The summer 
school series has been very successful, with around 70 participants from 30+ institutions attending every 
year. The center has also hosted the top computational geometry conference (SoCG) in 2009, and is hosting 
the top European algorithms event ALGO (including the top European algorithms conference ESA) in 2016. 
The center also initiated Workshop on Massive Data Algorithmics (MASSIVE) in 2009 and the successful 
workshop has been held every year since in connection with SoCG or ALGO.  

Center international standing and impact. Overall, we believe the center has been very successful. From a 
purely bibliometric point of view, this can e.g. be seen from the fact that in the last four years, center 
researchers have published 90+ peer-reviewed papers a year, with consistently 10+ papers in the top three 
general theoretical computer science conferences STOC, FOCS and SODA. According to google scholar, 
center papers have received 12.000+ citations (steadily increasing over the years and reaching 3000 in 2015). 
This is an exceptionally good record in theoretical computer science, and the center strength is confirmed by 
the many center best papers award, the around 30 annual invited presentations at research conferences, 
workshops and seminars given by center researchers, as well as by the numerous awards and recognitions 
received by center members. On a more subjective level, we believe that the center is among the top 
algorithms research centers in Europe (possibly only rivaled by the Max Planck Institute for Informatics). 
We believe the center is the top institution worldwide in I/O-efficient algorithms and possibly also in cache-
oblivious algorithms, among the top in streaming algorithms and algorithm engineering, as well as among 
the top in data structures (including lower bounds) in general. This was confirmed by the international 
evaluation of the center in 2011, where the panel concluded that “MADALGO is a truly international 
research center with high visibility and respect in the worldwide computer-science community. There is no 
doubt that it is the world-leading center in the area of massive dataset algorithmics”. 
 
In terms of broader impact, we believe that the center has contributed significantly to the transformation of 
the algorithms field, from a very theoretical field where results are proved in elegant but somewhat 
unrealistic models of computation, to a field where practical applicability of theoretical results is a key focus. 
This general transformation has occurred worldwide during the last decade, and the center focus on new and 
more practically realistic models of computation has certainly contributed to the transformation. Similarly, 
the center’s focus on understanding practical performance through algorithm engineering has contributed to 
the field of algorithm engineering gaining worldwide recognition. Supported by algorithm engineering work, 
the center has certainly also had an impact in terms of interdisciplinary and industry collaboration, including 
by contributing to the transformation of parts of the biological sciences to being more data driven, and by 
introducing innovative research based products in the marked through SCALGO (which e.g. also is involved 
in producing sea-charts for Greenland and contour maps for Denmark in collaboration with Danish 
authorities). On several occasions, the center’s collaborative activities and success in transforming research 
into innovative products has been highlighted as examples of the broader impact of basic research, for 
example when the Minister for Higher Education and Science visited the center in 2013. In general, the 
center has prioritized outreach events and maintaining a good public visibility. 
The center has also had an impact in terms of education of PhD students and Post Docs. The many center 
PhDs and Post Docs are now excellent ambassadors in research institutions and industry worldwide, and in 
general we believe that the international visibility and recognition of the center, also supported by the many 
international events the center has organized and participated in, will have a lasting impact on Danish 
algorithms research. Concretely, the center locally at AU contributed to development of the streaming 
algorithms area (which was not really present in Denmark at the start of the center), and is now contributing 
to buildup in related areas such as Machine Learning and “Big Data”. For example, recent Big Data faculty 
candidates have specifically mentioned center strength and visibility as a reason for applying to AU. 



B. Appendices

Appendix a: Patents and spin-off companies 

Number of inventions 
reported to institution

Number of submitted 
patent applications

Number of granted 
patents

Number of mutually 
agreed licence, sale 

and option 
agreements

Names of spin-off 
companies established

Scalable Algorithmics 
(SCALGO



Appendix b: Center publications

Number of publications (May 2016)
Journal articles 204 (137) + 11 accepted 0
Conference proceedings 413 (226) 30 (20)
Monographs 0 (0) 2 (0)
Book chapters 2 (0) 0 (0)
Others 0 (0) 96 (24)

The 10 most prestegious conferences within the Center's research area
1. ACM Symposium on Theory of Computing (STOC)
2. IEEE Symposium on Foundations of Computer Science (FOCS)
3. ACM-SIAM Symposium on Discrete Algorithms (SODA)
4. Symposium on Computational Geometry (SoCG)
5. International Colloquium on Automata, Languages, and Programming (ICALP)
6. European Symposium on Algorithms (ESA)
7. ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
8. International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX)/
    International Workshop on Randomizationand Computation (RANDOM)
9. Scandinavian Workshop on Algorithm Theory (SWAT)/
   Algorithms and Data Structures Symposium (WADS), previously Workshop on Algorithms and Data Structures
10. Workshop on Algorithm Engineering and Experiments (ALENEX)

The 10 most prestegious journals in the Center's research area
1. Journal of the ACM
2. SIAM Journal on Computing
3. ACM Transactions on Algorithms
4. Discrete & Computational Geometry
5. Algorithmica
6. Journal of Computer and System Sciences
7. Computational Geometry: Theory and Applications
8. ACM Journal of Experimental Algorithmics
9. Theoretical Computer Science
10. Journal of Discrete Algorithms

Bibliometric information
Distribution of center publications on 10 most prestigious conferences:

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
STOC 1 0 0 0 3 4 1 1 4 ?
FOCS 1 7 3 2 3 1 0 3 4 ?
SODA 0 6 5 6 6 11 11 7 5 5
SoCG 0 5 3 3 2 3 2 2 3 5
ICALP 1 0 7 1 3 2 5 4 0 4
ESA 3 1 0 3 1 5 3 2 2 ?
SPAA 3 1 0 3 1 1 0 2 0 ?
APPROX/RANDOM 0 1 0 1 3 0 0 0 0 ?
SWAT/WADS 1 3 6 1 3 1 2 2 5 ?
ALENEX 0 0 1 0 1 0 1 2 1 1
STOC, FOCS and SODA can be rated as "best non specialized" conferences
SoCG and ALENEX can be rated as "best specialized" conferences

Center publications have been authored by 924 unique authors - 130 associated with the center and 794 not.
Only 203 center publications are by center researchers only.
Citations to center publication (according to Google scholar, which is the most reliable 
 - but certainly not perfect - source of citation information in the area) can be found at 
http://scholar.google.com/citations?user=fRowhXcAAAAJ

Peer-reviewed (OA) Not peer-reviewed (OA)



Conference proceedings
C1 2007 B. Escoffier, G. Moruz 

and A. Ribichini
Adapting Parallel Algorithms 
to the W-Stream Model, with 
Applications to Graph 
Problems

Proc. International 
Symposium on Mathematical 
Foundations of Computer 
Science (MFCS)

(PR)(CO)

C2 2007 S. Guha, P. Indyk and A. 
McGregor

Sketching Information 
Divergences

Proc. Annual Conference on 
Learning Theory (COLT)

(PR)(CO)

C3 2007 G. S. Brodal and A. G. 
Jørgensen

A Linear Time Algorithm for 
the k Maximal Sums Problem

Proc. International 
Symposium on Mathematical 
Foundations of Computer 
Science (MFCS)

(PR)(CO)

C4 2007 G. S. Brodal, L. 
Georgiadis, K. A. Hansen 
and I. Katriel

Dynamic Matchings in 
Convex Bipartite Graphs

Proc. International 
Symposium on Mathematical 
Foundations of Computer 
Science (MFCS)

(PR)(CO)

C5 2007 G. Jørgensen, G. Moruz 
and T. Mølhave

Resilient Priority Queues Proc. International Workshop 
on Algorithms and Data 
Structures (WADS)

(PR)

C6 2007 G. S. Brodal, R. 
Fagerberg, I. Finocchi, F. 
Grandoni, G. Italiano, A. 
G. Jørgensen, G. Moruz 
and T. Mølhave

Optimal Resilient Dynamic 
Dictionaries

Proc. European Symposium 
on Algorithms (ESA)

(PR)(CO)

C7 2007 P. K. Agarwal, L. Arge, A. 
Danner, H. Mitasova, T. 
Mølhave and K. Yi

TerraStream: From Elevation 
Data to Watershed 
Hierarchies

Proc. ACM International 
Symposium on Advances in 
Geographical Information 
Systems (ACM-GIS)

(PR)(CO)

C8 2007 M. Patrascu and Mikkel 
Thorup

Planning for Fast 
Connectivity Updates

Proc. IEEE Symposium on 
Foundations of Computer 
Science (FOCS)

(PR)(CO)

C9 2007 G. Franceschini, S. 
Muthukrishnan, and M. 
Patrascu

Radix Sorting With No Extra 
Space

Proc. European Symposium 
on Algorithms (ESA)

(PR)(CO)

C10 2007 E. D. Demaine, S. Mozes, 
B. Rossman and O. 
Weimann

An Optimal Decomposition 
Algorithm for Tree Edit 
Distance

Proc. International 
Colloquium on Automata, 
Languages and Programming 
(ICALP)

(PR)(CO)

C11 2007 M. A. Bender, M. Farach-
Colton, J. T. Fineman, Y. 
Fogel, B. C. Kuszmaul 
and J. Nelson

Cache-Oblivious Streaming B-
trees

Proc. ACM Symposium on 
Parallelism in Algorithms and 
Architectures (SPAA)

(PR)(CO)

C12 2007 E. D. Demaine, M. 
Ghodsi, M. Hajiaghayi, A. 
S. Sayedi-Roshkhar and 
M. Zadimoghaddam

Scheduling to Minimize Gaps 
and Power Consumption

Proc. ACM Symposium on 
Parallelism in Algorithms and 
Architectures (SPAA)

(PR)(CO)

C13 2007 M. Patrascu Lower Bounds for 2-
Dimensional Range Counting

Proc. ACM Symposium on 
Theory of Computing (STOC)

(PR)

C14 2007 G. M. Landau, D. Tsur 
and O. Weimann

Indexing a Dictionary for 
Subset Matching Queries

Proc. Symposium on String 
Processing and Information 
Retrieval (SPIRE)

(PR)(CO)

C15 2007 T. Friedrich and D. Ajwani Average-Case Analysis of 
Online Topological Ordering

Proc. International 
Symposium on Algorithms 
and Computation (ISAAC)

(PR)

C16 2007 K. Chang Multiple pass streaming 
algorithms for learning 
mixtures of distributions in 
R^d

Proc. Algorithmic Learning 
Theory (ALT)

(PR)



C17 2007 M. Westergaard, L. M. 
Kristensen, G. S. Brodal 
and L. Arge

The ComBack Method - 
Extending Hash Compaction 
with Backtracking

Proc. International 
Conference on Applications 
and Theory of Petri Nets and 
Other Models of Concurrency 
(ICATPN)

(PR)

C18 2007 M. A. Bender, G. S. 
Brodal, R. Fagerberg, R. 
Jacob and E. Vicari

Optimal Sparse Matrix Dense 
Vector Multiplication in the 
I/O-Model

Proc. ACM Symposium on 
Parallelism in Algorithms and 
Architectures (SPAA)

(PR)(CO)

C19 2007 A. Golynski, R. Grossi, A. 
Gupta, R. Raman and S. 
S. Rao

On the Size of Succinct 
Indices

Proc. European Symposium 
on Algorithms (ESA)

(PR)(CO)

C20 2007 M. Olsen Nash Stability in Additively 
Separable Hedonic Games is 
NP-hard

Proc. Conference on 
Computability in Europe (CiE)

(PR)

C21 2008 M. Ruzic and P. Indyk Near-Optimal Sparse 
Recovery in the L1 norm

Proc. Symposium on 
Foundations of Computer 
Science (FOCS)

(PR)(CO)

C22 2008 M. Patrascu (Data) STRUCTURES Proc. Symposium on 
Foundations of Computer 
Science (FOCS)

(PR)

C23 2008 M. Patrascu Succincter Proc. Symposium on 
Foundations of Computer 
Science (FOCS)

(PR)

C24 2008 E. Demaine, S. 
Langerman and E. Price

Confluently Persistent Tries 
for Efficient Version Control

Proc. Scandinavian Workshop 
on Algorithm Theory (SWAT)

(PR)(CO)

C25 2008 D. Ajwani, I. Malinger, U. 
Meyer and S. Toledo

Characterizing the 
Performance of Flash 
Memory Storage Devices and 
Its Impact on Algorithm 
Design

Proc. Workshop on 
Experimental Algorithms 
(WEA)

(PR)(CO)

C26 2008 U. Meyer On Dynamic Breadth-First 
Search in External-Memory

Proc. Symposium on 
Theoretical Aspects (STACS)

(PR)

C27 2008 U. Meyer On Trade-Offs in External-
Memory Diameter 
Approximation

Proc. Scandinavian Workshop 
on Algorithm Theory (SWAT)

(PR)

C28 2008 G. S. Brodal and A. G. 
Jørgensen

Selecting Sums in Arrays Proc.International 
Symposium on Algorithms 
and Computation (ISAAC)

(PR)

C29 2008 L. Arge, G. S. Brodal and 
S. S. Rao

External Memory Planar 
Point Location with 
Logarithmic Updates

Proc. Symposium on 
Computational Geometry 
(SoCG)

(PR)

C30 2008 A. Golynski, R. Raman 
and S. S. Rao

On the Redundancy of 
Succinct Data Structures

Proc. Scandinavian Workshop 
on Algorithm Theory (SWAT)

(PR)(CO)

C31 2008 M. Olsen The Computational 
Complexity of Link Building

Proc. International 
Conference on Computing 
and Combinatorics (COCOON)

(PR)

C32 2008 M.A. Abam, M. de Berg 
and J. Gudmundsson

A Simple and Efficient Kinetic 
Spanner

Proc. Symposium on 
Computational Geometry 
(SoCG)

(PR)(CO)

C33 2008 L. Arge, M.T. Goodrich, 
M. Nelson and N. 
Sitchinava

Fundamental Parallel 
Algorithms for Private-Cache 
Chip Multiprocessors

Proc. Symposium on 
Parallelism in Algorithms and 
Architectures (SPAA)

(PR)(CO)

C34 2008 L. Arge, T. Moelhave and 
N. Zeh

Cache-Oblivious Red-Blue 
Line Segment Intersection

Proc. European Symposium 
on Algorithm (ESA)

(PR)(CO)

C35 2008 P.K. Agarwal, L. Arge, T. 
Moelhave and B. Sadri

I/O-efficient Algorithms for 
Computing Contour Lines on 
a Terrain

Proc. Symposium on 
Computational Geometry 
(SoCG)

(PR)(CO)

C36 2008 J. Feldman, S. 
Muthukrishnan, A. 
Sidiropoulos, C. Stein 
and Z. Svitkina

On Distributing Symmetric 
Streaming Computations

Proc. Symposium on Discrete 
Algorithms (SODA)

(PR)(CO)

C37 2008 P. Indyk Explicit Constructions for 
Compressed Sensing of 
Sparse Signals

Proc Symposium on Discrete 
Algorithms (SODA)

(PR)



C38 2008 A. Andoni, P. Indyk and 
R. Krauthgamer

Earth Mover Distance over 
High-Dimensional Spaces

Proc. Symposium on Discrete 
Algorithms (SODA)

(PR)(CO)

C39 2008 P. Indyk and  A. 
McGregor

Declaring Independence via 
the Sketching of Sketches

Proc. Symposium on Discrete 
Algorithms (SODA)

(PR)(CO)

C40 2008 K. Onak and A. 
Sidiropoulos

Circular Partitions with 
Applications to Visualization 
and Embeddings

Proc. Symposium on 
Computational Geometry 
(SoCG)

(PR)(CO)

C41 2008 J. Matousek and A. 
Sidiropoulos

Inapproximability for metric 
embeddings into R^d

Proc. Symposium on 
Foundations of Computer 
Science (FOCS)

(PR)(CO)

C42 2008 N. J. A. Harvey, J. Nelson 
and K. Onak

Sketching and Streaming 
Entropy via Approximation 
Theory

Proc. Symposium on 
Foundations of Computer 
Science (FOCS)

(PR)(CO)

C43 2008 A. Andoni, D. Croitoru 
and M. Patrascu

Hardness of Nearest 
Neighbor under L-infinity

Proc. Symposium on 
Foundations of Computer 
Science (FOCS)

(PR)(CO)

C44 2008 T. Chan, M. Patrascu and 
L. Roditty

Dynamic Connectivity: 
Connecting to Networks and 
Geometry

Proc. Symposium on 
Foundations of Computer 
Science (FOCS)

(PR)(CO)

C45 2008 S. Mozes, K. Onak and 
Oren Weimann

Finding an Optimal Tree 
Searching Strategy in Linear 
Time

Proc. Symposium on Discrete 
Algorithms (SODA)

(PR)(CO)

C46 2008 A. Chakrabarti, T.S. 
Jayram and M. Patrascu

Tight Lower Bounds for 
Selection in Randomly 
Ordered Streams

Proc. Symposium on Discrete 
Algorithms (SODA)

(PR)(CO)

C47 2008 E. Demaine, T. Ito, Ni. J. 
A. Harvey, C. H. 
Papadimitriou, M. Sideri, 
R. Uehara and Yushi Uno

On the Complexity of 
Reconfiguration Problems

Proc. International 
Symposium on Algorithms 
and Computation (ISAAC)

(PR)(CO)

C48 2008 E. Demaine, G. Aloupis, 
S. Collette, S. 
Langerman, V. Sacristan 
and S. Wuhrer

Reconfiguration of Cube-
Style Modular Robots Using 
O(log n) Parallel Moves

Proc. International 
Symposium on Algorithms 
and Computation (ISAAC)

(PR)(CO)

C49 2008 E. Demaine, M. Buadoiu, 
M. Hajiaghayi, A. 
Sidiropoulos and M. 
Zadimoghaddam

Ordinal Embedding: 
Approximation Algorithms 
and Dimensionality Reduction

Proc. International Workshop 
on Approximation Algorithms 
for Combinatorial 
Optimization Problems 
(APPROX)

(PR)(CO)

C50 2008 E. Demaine, T. G. 
Abbott, Z. Abel, D. 
Charlton, M. L. Demaine 
and S. D. Kominers

Hinged Dissections Exist Proc. Symposium on 
Computational Geometry 
(SoCG)

(PR)(CO)

C51 2008 E. R. Hansen, S. S. Rao 
and P. Tiedemann

Compressing Binary Decision 
Diagrams

European Conference on 
Artificial Intelligence (ECAI)

(PR)(CO)

C52 2008 R. Berinde, P. Indyk and 
M. Ruzic

Practical Near-Optimal 
Sparse Recovery in the L1 
Norm (invited paper)

Proc. Allerton Conference (CO)

C53 2008 R. Berinde, A. Gilbert, P. 
Indyk, H. Karloff and M. 
Strauss

Combining Geometry and 
Combinatorics: A Unified 
Approach to Sparse Signal 
Recovery (invited paper)

Proc. Allerton Conference (CO)

C54 2008 M.A. Abam, M. de Berg, 
and S-H. Poon

Fault-Tolerant Conflict-Free 
Coloring

Proc. Canadian Conference 
on Computational Geometry

(CO)

C55 2009 R. Berinde, G. Cormode, 
P. Indyk and M. Strauss

Space-optimal Heavyhitters 
with Strong Error Bounds

Proc. Symposium on 
Principles of Database 
Systems (PODS)

(PR)(CO)

C56 2009 V. Cevher, C. Hegde, P. 
Indyk and R. G. Baraniuk

Recovery of Clustered 
Sparse Signal from 
Compressive Measurements

Proc. International 
Conference on Sampling 
Theory and Applications 
(SAMPTA)

(PR)(CO)



C57 2009 E. Demaine, G. Landau 
and O. Weimann

On Cartesian Trees and 
Range Minimum Queries

Proc. International 
Colloquium on Automata, 
Languages and Programming 
(ICALP)

(PR)(CO)

C58 2009 D. Hermelin, G. M. 
Landau, S. Landau and 
O. Weimann

A Unified Algorithm for 
Accelerating Edit-Distance 
Computation via Text-
Compression

Proc. International 
Symposium on Theoretical 
Aspects of Computer Science 
(STACS)

(PR)(CO)

C59 2009 A. Kovacs, U. Meyer, G. 
Moruz and A. Negoescu

Online Paging for Flash 
Memory Devices

Proc. International 
Symposium on Algorithms 
and Computation (ISAAC)

(PR)

C60 2009 G. Brodal, A. Jørgensen, 
G. Moruz and T. Mølhave

Counting in the Presence of 
Memory Faults

Proc. International 
Symposium on Algorithms 
and Computation (ISAAC)

(PR)

C61 2009 D. Ajwani, A. Beckmann, 
R. Jacob, U. Meyer and 
G. Moruz

On Computational Models for 
Flash Memory Devices

Proc. Symposium on 
Experimental Algorithms 
(SEA)

(PR)(CO)

C62 2009 U. Meyer and V. Osipov Design and Implementation 
of a Practical I/O-efficient 
Shortest Paths Algorithm

Proc. Workshop on Algorithm 
Engineering and Experiments 
(ALENEX)

(PR)

C63 20009 U. Meyer Via Detours to I/O-Efficient 
Shortest Paths

Proc. Efficient Algorithms - 
Essays dedicated to Kurt 
Mehlhorn on the Occasion of 
his 60th birthday

C64 2009 D. Ajwani, R. Dementiev, 
U. Meyer and V. Osipov

Breadth First Search on 
Massive Graphs

Proc. Ninth DIMACS 
Implementation Challenge: 
The Shortest Path Problem

(PR)

C65 2009 A. Beckmann, R. 
Dementiev and J. Singler

Building a Parallel Pipelined 
External Memory Algorithm 
Library

Proc. International 
Symposium on Parallel and 
Distributed Processing 
(IPDPS)

(PR)

C66 2009 G. S. Brodal and A. 
Jørgensen

Data Structures for Range 
Median Queries

Proc. International 
Symposium on Algorithms 
and Computation (ISAAC)

(PR)

C67 2009 G. S. Brodal, R. 
Fagerberg, M. Greve and 
A. López-Ortiz

Online Sorted Range 
Reporting
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C. Center statistics 
 
In the following, the center statistics collected by the foundation is enclosed. Note that since the same 
statistics is collected for all centers, not all of it is particularly relevant or meaningful for MADALGO. For 
example, since the tradition in the algorithms field is that only researcher that contributed very substantially 
to a result is a co-author on the paper with the results, and since authors are (almost) always listed 
alphabetically, statistics on “centerleder as co-author” and “centerleader is either first or last author” are not 
very relevant. Also, note that publication and citation statistics is also given in Section B. 
 
 



Center 84 Center for Massive Data Algorithmics DG.84/26-5 Date: 26-05-2016

Page 1/3

0

10

20

30

40

50

60

70
No.

Publications
Book Chapters - Peer
Reviewed
Book Chapters - Not Peer
Reviewed
Conference Proceedings -
Peer Reviewed
Conference Proceedings - Not
Peer Reviewed
Journal article - Peer
Reviewed
Journal article - Not Peer
Reviewed
Monographs - Peer Reviewed

Monographs - Not Peer
Reviewed
Other means of publication -
Peer Reviewed
Other means of publication -
Not Peer Reviewed

DG.84/26-5-2016

DG.84/26-5-2016

No journal impact factor data available.

DG.84/26-5-2016

No citation data available.

0

10

20

30

40

50

60
No.

International conferences
Conferences organized Invited talks

DG.84/26-5-2016

0

10

20

30

40

50

60

70

80

90

100
No.

External Relations
Companies - International

Companies - Danish

Universities / research groups - International

Universities / research groups - Danish

DG.84/26-5-2016

0

5

10

15

20

25

30

35
No.

Public Outreach

DG.84/26-5-2016

0

1

2

3

4

5

6
Mill DKK

External Funding

DG.84/26-5-2016

0

10

20

30

40

50

60

70

80

90

100
No.

Educational Activities
ECTS points taught Number of courses taught

DG.84/26-5-2016

0

1

2

3

4

5

6

7

8

9

10
No.

Awards

DG.84/26-5-2016

0

0,2

0,4

0,6

0,8

1

1,2
No.

Patents
Submitted patent applications

Spin-off companies established

Granted patents

DG.84/26-5-2016

0

1

2

3

4

5

6

7

8

9

10
Titel

Publications pr. VIP FtE
with PhD without PhD

DG.84/26-5-2016



Center 84 Center for Massive Data Algorithmics Date: 26-05-2016

Page 2/3

0

1

2

3

4

5

6

7

8

2007 2008 2009 2010 2011 2012 2013 2014 2015

No.
Faculty

Total - Staff Total - Full-time equivalent International - Staff International - Full-time equivalent

DG.84/26-5-2016

0

2

4

6

8

10

12

14

2007 2008 2009 2010 2011 2012 2013 2014 2015

No.
Post-docs

Total - Staff Total - Full-time equivalent International - Staff International - Full-time equivalent

DG.84/26-5-2016

0

5

10

15

20

25

2007 2008 2009 2010 2011 2012 2013 2014 2015

No.
Ph.D. students

Total - Staff Total - Full-time equivalent International - Staff

International - Full-time equivalent PhD degrees - Staff PhD degrees - Full-time equivalent

DG.84/26-5-2016

0

1

2

3

4

5

6

7

8

2007 2008 2009 2010 2011 2012 2013 2014 2015

No.
Guest Scientists

Total - Staff Total - Full-time equivalent International - Staff International - Full-time equivalent

DG.84/26-5-2016

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

2007 2008 2009 2010 2011 2012 2013 2014 2015

No.
TAP & Administration

Technical Administrative Personnel Administrative Personnel

DG.84/26-5-2016



Center 84 Center for Massive Data Algorithmics Date: 26-05-2016

Number of scientists included: Ph.D. students: 20 Post-docs: 8 Associate Professors: 1 Professors: 6
Field of ResNatural scie2015 gender distribution by scientific degree, compared toNot included: 0

 
Page 3/3

0

10

20

30

40

50

60

70

80

90

100

2007 2008 2009 2010 2011 2012 2013 2014 2015

No. of papers
Centerleader as co-author

Total number of center papers Centerleader co-author

DG.84/26-5-2016

0

10

20

30

40

50

60

70

80

90

100

2007 2008 2009 2010 2011 2012 2013 2014 2015

%
Centerleader is either first or last author

Center Leader First author Center Leader Last author

DG.84/26-5-2016

0

5

10

15

20

25

30

35

2007 2008 2009 2010 2011 2012 2013 2014 2015

Title
No. of authors per paper

max average min

DG.84/26-5-2016

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Associate Professor Professor

Master student Ph.D. students Post-docs Faculty

2015 gender distribution by scientific degree, compared to the national distribution for 
Natural sciences

Male - National

Male - Center of
Excellence
Female - National

Female - Center of
Excellence

DG.84/26-5-2016



 Final report

Selected publications 
The below ten papers are selected in an attempt to both cover the breadth of the center’s research and to 
showcase some of the main center results. This is obviously not a simple task, and many important and 
interesting papers could not be selected. The number of each paper in the center publication list is listed 
below each paper, along with a few keywords describing the paper. 
 
1. L. Arge and M. Thorup 

RAM-Efficient External Memory Sorting  
Proc. International Symposium on Algorithms and Computation (ISAAC), 2013 
C267 (I/O and internal memory optimality – best paper award) 

 
2. L. Arge, M. Revsbæk and N. Zeh 

I/O-Efficient Computation of Water Flow Across a Terrain  
Proc. Symposium on Computational Geometry (SoCG), 2010 
C127 (I/O and terrain flood risk ) 

 
3. G.S. Brodal, E. Demaine, J.T. Fineman, J. Iacono, S. Langerman and J.I. Munro  

Cache-Oblivious Dynamic Dictionaries with Optimal Update/Query Tradeoff 
Proc. Symposium on Discrete Algorithms (SODA), 2010  
C119 (Cache-oblivious data structures) 
 

4. D.M. Kane, J. Nelson and D.P. Woodruff  
An Optimal Algorithm for the Distinct Elements Problem  
Proc. Symposium on Principles of Database Systems (PODS), 2010 
C112 (Streaming algorithms – best paper award) 

 
5. K. G. Larsen, J. Nelson and H. L. Nguyen 

Time Lower Bounds for Nonadaptive Turnstile Streaming Algorithms 
Proc. Symposium on Theory of Computing (STOC), 2015 
C382 (Streaming algorithms)  

 
6. C. Alexander, L. Arge, P.K. Bøcher, M. Revsbæk, B. Sandel, J.-C. Svenning,  

C. Tsirogiannis, and J. Yang 
Computing River Floods Using Massive Terrain Data 
Proc. International Conference on Geographic Information Science (GIScience), 2016 
C431 (I/O, algorithm engineering and terrain flood risk) 

 
7. B. Sandel, L. Arge, B. Dalsgaard, R. Davies, K. Gaston, W. Sutherland and J.-C. Svenning 

The influence of Late Quaternary climate-change velocity on species endemism 
Science 334 
J34 (Interdisciplinary collaboration and algorithm engineering) 

 
8. M. Patrascu  

Succincter 
Proc. Symposium on Foundations of Computer Science (FOCS), 2008  
C23 (Succinct data structures – best student paper award) 

 
9. G.S. Brodal, G. Lagogiannis and R.E. Tarjan 

Strict Fibonacci Heaps 
Proc. Symposium on Theory of Computing (STOC), 2012 
C214 (Classical data structures) 

 
10. K. G. Larsen 

The Cell Probe Complexity of Dynamic Range Counting 
Proc. Symposium on Theory of Computing (STOC), 2012 
C199 (Lower bounds – best paper and best student paper award) 
 



RAM-Efficient External Memory Sorting

Lars Arge1,� and Mikkel Thorup2,��

1 MADALGO� � �, Aarhus University, Aarhus, Denmark
2 University of Copenhagen,† Copenhagen, Denmark

Abstract. In recent years a large number of problems have been consid-
ered in external memory models of computation, where the complexity
measure is the number of blocks of data that are moved between slow
external memory and fast internal memory (also called I/Os). In prac-
tice, however, internal memory time often dominates the total running
time once I/O-efficiency has been obtained. In this paper we study al-
gorithms for fundamental problems that are simultaneously I/O-efficient
and internal memory efficient in the RAM model of computation.

1 Introduction

In the last two decades a large number of problems have been considered in
the external memory model of computation, where the complexity measure is
the number of blocks of elements that are moved between external and internal
memory. Such movements are also called I/Os. The motivation behind the model
is that random access to external memory, such as disks, often is many orders of
magnitude slower than random access to internal memory; on the other hand, if
external memory is accessed sequentially in large enough blocks, then the cost
per element is small. In fact, disk systems are often constructed such that the
time spent on a block access is comparable to the time needed to access each
element in a block in internal memory.

Although the goal of external memory algorithms is to minimize the number
of costly blocked accesses to external memory when processing massive datasets,
it is also clear from the above that if the internal processing time per element in
a block is large, then the practical running time of an I/O-efficient algorithm is
dominated by internal processing time. Often I/O-efficient algorithms are in fact
not only efficient in terms of I/Os, but can also be shown to be internal memory
efficient in the comparison model. Still, in many cases the practical running time
of I/O-efficient algorithms is dominated by the internal computation time. Thus
both from a practical and a theoretical point of view it is interesting to investigate
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how internal-memory efficient algorithms can be obtained while simultaneously
ensuring that they are I/O-efficient. In this paper we consider algorithms that
are both I/O-efficient and efficient in the RAM model in internal memory.

Previous results. We will be working in the standard external memory model
of computation, where M is the number of elements that fit in main memory
and an I/O is the process of moving a block of B consecutive elements between
external and internal memory [1]. We assume thatN ≥ 2M ,M ≥ 2B and B ≥ 2.
Computation can only be performed on elements in main memory, and we will
assume that each element consists of one word. We will sometime assume the
comparison model in internal memory, that is, that the only computation we can
do on elements are comparisons. However, most of the time we will assume the
RAM model in internal memory. In particular, we will assume that we can use
elements for addressing, e.g. trivially implementing permuting in linear time. Our
algorithms will respect the standard so-called indivisibility assumption, which
states that at any given time during an algorithm the original N input elements
are stored somewhere in external or internal memory. Our internal memory time
measure is simply the number of performed operations; note that this includes
the number of elements transferred between internal and external memory.

Aggarwal and Vitter [1] described sorting algorithms using O(NB logM/B
N
B )

I/Os. One of these algorithms, external merge-sort, is based on Θ(M/B)-way
merging. FirstO(N/M) sorted runs are formed by repeatedly sortingM elements
in main memory, and then these runs are merged together Θ(M/B) at a time
to form longer runs. The process continues for O(logM/B

N
M ) phases until one is

left with one sorted list. Since the initial run formation and each phase can be
performed in O(N/B) I/Os, the algorithm uses O(NB logM/B

N
B ) I/Os. Another

algorithm, external distribution-sort, is based on Θ(
√

M/B)-way splitting. The

N input elements are first split into Θ(
√

M/B) sets of roughly equal size, such
that the elements in the first set are all smaller than the elements in the second
set, and so on. Each of the sets are then split recursively. After O(log√

M/B
N
M ) =

O(logM/B
N
M ) split phases each set can be sorted in internal memory. Although

performing the split is somewhat complicated, each phase can still be performed
in O(N/B) I/Os. Thus also this algorithm uses O(NB logM/B

N
B ) I/Os.

Aggarwal and Vitter [1] proved that external merge- and distribution-sort are
I/O-optimal when the comparison model is used in internal memory, and in the
following we will use sortE(N) to denote the number of I/Os per block of ele-
ments of these optimal algorithms, that is, sortE(N) = O(logM/B

N
B ) and exter-

nal comparison model sort takes Θ(NB sortE(N)) I/Os. (As described below, the
I/O-efficient algorithms we design will move O(N · sortE(N)) elements between
internal and external memory, so O(sortE(N)) will also be the per element in-
ternal memory cost of obtaining external efficiency.) When no assumptions other
than the indivisibility assumption are made about internal memory computation
(i.e. covering our definition of the use of the RAM model in internal memory),
Aggarwal and Vitter [1] proved that permuting N elements according to a given
permutation requires Ω(min{N, N

B sortE(N)}) I/Os. Thus this is also a lower
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bound for RAM model sorting. For all practical values of N , M and B the bound
is Ω(NB sortE(N)). Subsequently, a large number of I/O-efficient algorithms have
been developed. Of particular relevance for this paper, several priority queues
have been developed where insert and deletemin operations can be performed
in O( 1

B sortE(N)) I/Os amortized [2,4,8]. The structure by Arge [2] is based on
the so-called buffer-tree technique, which uses O(M/B)-way splitting, whereas
the other structures also use O(M/B)-way merging.

In the RAM model the best known sorting algorithm uses O(N log logN)
time [6]. Similar to the I/O-case, we use sortI(N) = O(log logN) to denote the
per element cost of the best known sorting algorithm. If randomization is allowed
then this can be improved to O(

√
log logn) expected time [7]. A priority queue

can also be implemented so that the cost per operation is O(sortI (N)) [9].

Our results. In Section 2 we first discuss how both external merge-sort and
external distribution-sort can be implemented to use optimal O(N logN) time
if the comparison model is used in internal memory, by using an O(N logN)
sorting algorithm and (in the merge-sort case) an O(logN) priority queue. We
also show how these algorithms can relatively easily be modified to use

O(N · (sortI(N) + sortI(M/B) · sortE(N))) and

O(N · (sortI(N) + sortI(M) · sortE(N)))

time, respectively, if the RAM model is used in internal memory, by using an
O(N · sortI(N)) sorting algorithm and an O(sortI (N)) priority queue.

The question is of course if the above RAM model sorting algorithms can be
improved. In Section 2 we discuss how it seems hard to improve the running time
of the merge-sort algorithm, since it uses a priority queue in the merging step. By
using a linear-time internal-memory splitting algorithm, however, rather than an
O(N · sortI(N)) sorting algorithm, we manage to improve the running time of
external distribution-sort to

O(N · (sortI(N) + sortE(N))).

Our new split-sort algorithm still uses O(NB sortE(N)) I/Os. Note that for small
values ofM/B the N ·sortE(N)-term, that is, the time spent on moving elements
between internal and external memory, dominates the internal time. Given the
conventional wisdom that merging is superior to splitting in external memory, it
is also surprising that a distribution algorithm outperforms a merging algorithm.

In Section 3 we develop an I/O-efficient RAM model priority queue by modi-
fying the buffer-tree based structure of Arge [2]. The main modification consists
of removing the need for sorting of O(M) elements every time a so-called buffer-
emptying process is performed. The structure supports insert and deletemin op-
erations in O( 1

B sortE(N)) I/Os and O(sortI (N) + sortE(N)) time. Thus it can

be used to develop anotherO(NB sortE(N)) I/O andO(N ·(sortI (N)+sortE(N)))
time sorting algorithm.

Finally, in Section 4 we show that when N
B sortE(N) = o(N) (and our sorting

algorithms are I/O-optimal), any I/O-optimal sorting algorithm must transfer
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a number of elements between internal and external memory equal to Θ(B)
times the number of I/Os it performs, that is, it must transfer Ω(N · sortE(N))
elements and thus also use Ω(N · sortE(N)) internal time. In fact, we show
a lower bound on the number of I/Os needed by an algorithm that transfers
b ≤ B elements on the average per I/O, significantly extending the lower bound
of Aggarwal and Vitter [1]. The result implies that (in the practically realistic
case) when our split-sort and priority queue sorting algorithms are I/O-optimal,
they are in fact also CPU optimal in the sense that their running time is the
sum of an unavoidable term and the time used by the best known RAM sorting
algorithm. As mentioned above, the lower bound also means that the time spent
on moving elements between internal and external memory resulting from the
fact that we are considering I/O-efficient algorithms can dominate the internal
computation time, that is, considering I/O-efficient algorithms implies that less
internal-memory efficient algorithms can be obtained than if not considering
I/O-efficiency. Furthermore, we show that when B ≤ M1−ε for some constant
ε > 0 (the tall cache assumption) the same Ω(N ·sortE(N)) number of transfers
are needed for any algorithm using less than εN/4 I/Os (even if it is not I/O-
optimal).

To summarize our contributions, we open up a new area of algorithms that
are both RAM-efficient and I/O-efficient. The area is interesting from both a
theoretical and practical point of view. We illustrate that existing algorithms,
in particular multiway merging based algorithms, are not RAM-efficient, and
develop a new sorting algorithm that is both efficient in terms of I/O and RAM
time, as well as a priority queue that can be used in such an efficient algo-
rithm. We prove a lower bound that shows that our algorithms are both I/O
and internal-memory RAM model optimal. The lower bound significantly ex-
tends the Aggarwal and Vitter lower bound [1], and shows that considering
I/O-efficient algorithms influences how efficient internal-memory algorithms can
be obtained.

2 Sorting

External merge-sort. In external merge-sortΘ(N/M) sorted runs are first formed
by repeatedly loading M elements into main memory, sorting them, and writing
them back to external memory. In the first merge phase these runs are merged
together Θ(M/B) at a time to form longer runs. The merging is continued for
O(logM/B

N
M ) = O(sortE(N)) merge phases until one is left with one sorted

run. It is easy to realize that M/B runs can be merged together in O(N/B)
I/Os: We simply load the first block of each of the runs into main memory,
find and output the B smallest elements, and continue this process while load-
ing a new block from the relevant run every time all elements in main mem-
ory from that particular run have been output. Thus external merge-sort uses
O(NB logM/B

N
M ) = O(NB sortE(N)) I/Os.

In terms of internal computation time, the initial run formation can trivially
be performed inO(N/M ·M logM) = O(N logM) time using any O(N logN) in-
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ternal sorting algorithm. Using an O(log(M/B)) priority queue to hold the mini-
mal element from each of theM/B runs during a merge, each of theO(logM/B

N
M )

merge phases can be performed in O(N log M
B ) time. Thus external merge-sort

can be implemented to use O(N logM + logM/B
N
M · N log M

B ) = O(N logM +

N log N
M ) = O(N logN) time, which is optimal in the comparison model.

When the RAM model is used in internal memory, we can improve the in-
ternal time by using a RAM-efficient O(M · sortI(M)) algorithm in the run
formation phase and by replacing the O(log(M/B)) priority queue with an
O(sortI (M/B)) time priority queue [9]. This leads to an O(N · (sortI(M) +
sortI(M/B) · sortE(N)) algorithm. There seems no way of avoiding the extra
sortI(M/B)-term, since that would require an O(1) priority queue.

External distribution-sort. In external distribution-sort the input set of N el-
ements is first split into

√
M/B sets X0, X1, . . . , X√

M/B−1
defined by s =√

M/B − 1 split elements x1 < x2 < . . . < xs, such that all elements in X0 are
smaller than x1, all elements in X√

M/B−1
are larger than or equal to xs, and

such that for 1 ≤ i ≤ √
M/B − 2 all elements in Xi are larger than or equal

to xi and smaller than xi+1. Each of these sets is recursively split until each
set is smaller than M (and larger than M/(M/B) = B) and can be sorted in
internal memory. If the s split elements are chosen such that |Xi| = O(N/s) then
there are O(logs

N
B ) = O(logM/B

N
B ) = O(sortE(N)) split phases. Aggarwal and

Vitter [1] showed how to compute a set of s split elements with this property in
O(N/B) I/Os. Since the actual split of the elements according to the split ele-
ments can also be performed in O(N/B) I/Os (just like merging of M/B sorted
runs), the total number of I/Os needed by distribution-sort is O(NB sortE(N)).

Ignoring the split element computation it is easy to implement external
distribution-sort to use O(N logN) internal time in the comparison model: Dur-
ing a split we simply hold the split elements in main memory and perform a
binary search among them with each input element to determine to which set
Xi the element should go. Thus each of the O(logM/B

N
B ) split phases uses

O(N log
√
M/B) time. Similarly, at the end of the recursion we sort O(N/M)

memory loads using O(N logM) time in total. The split element computation
algorithm of Aggarwal and Vitter [1], or rather its analysis, is somewhat com-
plicated. Still it is easy to realize that it also works in O(N logM) time as
required to obtain an O(N logN) time algorithm in total. The algorithm works
by loading the N elements a memory load at a time, sorting them and pick-
ing every

√
M/B/4’th element in the sorted order. This obviously requires

O(N/M · M logM) = O(N logM) time and results in a set of 4N/
√
M/B el-

ements. Finally, a linear I/O and time algorithm is used
√
M/B times on this

set of elements to obtain the split elements, thus using O(N) additional time.
If we use a RAM sorting algorithm to sort the memory loads at the end of

the split recursion, the running time of this part of the algorithm is reduced to
O(N · sortI(M)). Similarly, we can use the RAM sorting algorithm in the split
element computation algorithm, resulting in an O(N · sortI(M)) algorithm and
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consequently a sortI(M)-term in the total running time. Finally, in order to
avoid the binary search over

√
M/B split elements in the actual split algorithm,

we can modify it to use sorting instead: To split N elements among s splitting
elements stored in s/B blocks in main memory, we allocate a buffer of one block
in main memory for each of the s + 1 output sets. Thus in total we require
s/B+(s+1)B < M/2 of the main memory for split elements and buffers. Next
we repeatedly bring M/2 elements onto main memory, sort them, and distribute
them to the s + 1 buffers, while outputting the B elements in a buffer when it
runs full. Thus this process requires O(N ·sortI(M)) time and O(N/B) I/Os like
the split element finding algorithm. Overall this leads to an O(N · (sortI(M) +
sortI(M) · sortE(N))) time algorithm.

Split-sort. While it seems hard to improve the RAM running time of the external
merge-sort algorithm, we can actually modify the external distribution-sort algo-
rithm further and obtain an algorithm that in most cases is optimal both in terms
of I/O and time. This split-sort algorithm basically works like the distribution-
sort algorithm with the split algorithm modification described above. However,
we need to modify the algorithm further in order to avoid the sortI(M)-term in
the time bound that appears due to the repeated sorting of O(M) elements in
the split element finding algorithm, as well as in the actual split algorithm.

First of all, instead of sorting each batch ofM/2 elements in the split algorithm
to split them over s =

√
M/B − 1 <

√
M/2 split elements, we use a previous

result that shows that we can actually perform the split in linear time.

Lemma 1 (Han and Thorup [7]). In the RAM model N elements can be
split over N1−ε split elements in linear time and space for any constant ε > 0.

Secondly, in order to avoid the sorting in the split element finding algorithm of
Aggarwal and Vitter [1], we design a new algorithm that finds the split elements
on-line as part of the actual split algorithm, that is, we start the splitting with
no split elements at all and gradually add at most s =

√
M/B−1 split elements

one at a time. An online split strategy was previously used by Frigo et al [5] in a
cache-oblivious algorithm setting. More precisely, our algorithm works as follows.
To split N input elements we, as previously, repeatedly bring M/2 elements
onto main memory, distribute them to buffers using the current split elements
and Lemma 1, while outputting the B elements in a buffer when it runs full.
However, during the process we keep track of how many elements are output to
each subset. If the number of elements in a subset Xi becomes 2N/s we pause
the split algorithm, compute the median of Xi and add it to the set of splitters,
and split Xi at the median element into two sets of size N/s. Then we continue
the splitting algorithm.

It is easy to see that the above splitting process results in at most s+1 subsets
containing between N/s and 2N/s− 1 elements each, since a set is split when it
has 2N/s elements and each new set (defined by a new split element) contains
at least N/s elements. The actual median computation and the split of Xi can
be performed in O(|Xi|) = O(N/s) time and O(|Xi|/B) = O(N/sB) I/Os [1].
Thus if we charge this cost to the at least N/s elements that were inserted in Xi
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since it was created, each element is charged O(1) time and O(1/B) I/Os. Thus
each distribution phase is performed in linear time and O(N/B) I/Os, leading
to an O(N · (sortI (M) + sortE(N))) time algorithm.

Theorem 1. The split-sort algorithm can be used to sort N elements in O(N ·
(sortI(M) + sortE(N))) time and O(NB sortE(N)) I/Os.

Remarks. Since sortI(M) + sortE(N) ≥ sortI(N) our split-sort algorithm uses
Ω(N · sortI(N)) time. In Section 4 we prove that the algorithm in some sense
is optimal both in terms of I/O and time. Furthermore, we believe that the
algorithm is simple enough to be of practical interest.

3 Priority Queue

In this section we discuss how to implement an I/O- and RAM-efficient priority
queue by modifying the I/O-efficient buffer tree priority queue [2].

Structure. Our external priority queues consists of a fanout
√
M/B B-tree [3] T

over O(N/M) leaves containing between M/2 and M elements each. In such a
tree, all leaves are on the same level and each node (except the root) has fan-out
between 1

2

√
M/B and

√
M/B and contains at most

√
M/B splitting elements

defining the element ranges of its children. Thus T has height O(log√
M/B

N
M ) =

O(sortE(N)). To support insertions efficiently in a “lazy” manner, each internal
node is augmented with a buffer of size M and an insertion buffer of size at most
B is maintained in internal memory. To support deletemin operations efficiently,
a RAM-efficient priority queue [9] supporting both deletemin and deletemax,1

called the mini-queue, is maintained in main memory containing the up to M/2
smallest elements in the priority queue.

Insertion. To perform an insertion we first check if the element to be inserted
is smaller than the maximal element in the mini-queue, in which case we insert
the new element in the mini-queue and continue the insertion process with the
currently maximal element in the mini-queue. Next we insert the element to
be inserted in the insertion buffer. When we have collected B elements in the
insertion buffer we insert them in the buffer of the root. If this buffer now contains
more than M/2 elements we perform a buffer-emptying process on it, “pushing”
elements in the buffer one level down to buffers on the next level of T : We load
the M/2 oldest elements into main memory along with the less than

√
M/B

splitting elements, distribute the elements among the splitting elements, and
finally output them to the buffers of the relevant children. Since the splitting and
buffer elements fit in memory and the buffer elements are distributed to

√
M/B

buffers one level down, the buffer-emptying process is performed in O(M/B)
I/Os. Since we distribute M/2 elements using

√
M/B splitters the process can

1 A priority queue supporting both deletemin and deletemax can easily be obtained
using two priority queues supporting deletemin and delete as the one by Thorup [9].
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be performed in O(M) time (Lemma 1). After emptying the buffer of the root
some of the nodes on the next level may contain more than M/2 elements. If
they do we perform recursive buffer-emptying processes on these nodes. Note
that this way buffers will never contain more than M elements. When (between
1 and M/2) elements are pushed down to a leaf (when performing a buffer-
emptying process on its parent) resulting in the leaf containing more than M
(and less than 3M/2) elements we split it into two leaves containing between
M/2 and 3M/4 elements each. We can easily do so in O(M/B) I/Os and O(M)
time [1]. As a result of the split the parent node v gains a child, that is, a new leaf
is inserted. If needed, T is then balanced using node splits as a normal B-tree,
that is, if the parent node now has

√
M/B children it is split into two nodes

with 1/2
√
M/B children each, while also distributing the elements in v’s buffer

among the two new nodes. This can easily be accomplished in O(M/B) I/Os and
M time. The rebalancing may propagate up along the path to the root (when
the root splits a new root with two children is constructed).

During buffer-emptying processes we push Θ(M) elements one level down the
tree using O(M/B) I/Os and O(M) time. Thus each element inserted in the
root buffer pays O(1/B) I/Os and O(1) time amortized, or O( 1

B logM/B
N
B ) =

O( 1
B sortE(N)) I/Os andO(logM/B

N
B ) = O(sortE(N)) time amortized on buffer-

emptying processes on a root-leaf path. When a leaf splits we may use O(M/B)
I/Os and O(M) time in each node of a leaf-root path of length O(sortE(N)).
Amortizing among the at least M/4 elements that were inserted in the leaf since
it was created, each element is charged and additional O( 1

B sortE(N)) I/Os and
O(sortE(N)) time on insertion in the root buffer. Since insertion of an element
in the root buffer is always triggered by an insertion operation, we can charge
the O( 1

B sortE(N)) I/Os and O(sortE(N)) time cost to the insertion operation.

Deletemin. To perform a deletemin operation we first check if the mini-queue
contains any elements. If it does we simply perform a deletemin operation on it
and return the retrieved element usingO(sortI (M)) time and no I/Os. Otherwise
we perform buffer-emptying processes on all nodes on the leftmost path in T
starting at the root and moving towards the leftmost leaf. After this the buffers
on the leftmost path are all empty and the smallest elements in the structure
are stored in the leftmost leaf. We load the between M/2 and M elements in
the leaf into main memory, sort them and remove the smallest M/2 elements
and insert them in the mini-queue in internal memory. If this results in the leaf
having less than M/2 elements we insert the elements in a sibling and delete the
leaf. If the sibling now has more than M elements we split it. As a result of this
the parent node v may lose a child. If needed T is then rebalanced using node
fusions as a normal B-tree, that is, if v now has 1/2

√
M/B children it is fused

with its sibling (possibly followed by a split). As with splits after insertion of a
new leaf, the rebalancing may propagate up along the path to the root (when
the root only has one leaf left it is removed). Note that no buffer merging is
needed since the buffers on the leftmost path are all empty.
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If buffer-emptying processes are needed during a deletemin operation we
spend O(MB logM/B

N
B ) = O(MB sortE(N)) I/Os and O(M logM/B

N
B ) = O(M ·

sortE(N)) time on such processes that are not paid by buffers running full
(containing more than M/2 elements). We also use O(M/B) I/Os and O(M ·
sortI(M)) time to load and sort the leftmost leaf, and another O(M · sortI(M))
time is used to insert the M/2 smallest elements in the mini-queue. Then we
may spend (M/B) I/Os and O(M) time on each of at most O(logM/B

N
B ) nodes

on the leftmost path that need to be fused or split. Altogether the filling up of
the mini-queue requires O(MB sortE(N)) I/Os and O(M ·(sortI(M)+sortE(N)))
time. Since we only fill up the mini-queue when M/2 deletemin operations have
been performed since the last fill up, we can amortize this cost over these M/2
deletemin operations such that each deletemin is charged O( 1

B sortE(N)) I/Os
and O(sortE(N) + sortI(M)) time.

Theorem 2. There exists a priority queue supporting an insert operation in
O( 1

B sortE(N)) I/Os and O(sortE(N)) time amortized and a deletemin opera-
tion in O( 1

B sortE(N)) I/Os and O(sortI (M) + sortE(N)) time amortized.

Remarks. Our priority queue obviously can be used in a simple O(NB sortE(N))
I/O and O(N · (sortI (M) + sortE(N))) time sorting algorithm. Note that it is
essential that a buffer-emptying process does not require sorting of the elements
in the buffer. In normal buffer-trees [2] such a sorting is indeed performed, mainly
to be able to support deletions and (batched) rangesearch operations efficiently.
Using a more elaborate buffer-emptying process we can also support deletions
without the need for sorting of buffer elements.

4 Lower Bound

Assume that N
B sortE(N) = o(N) and for simplicity also that B divides N .

Recall that under the indivisibility assumption we assume the RAM model in
internal memory but require that at any time during an algorithm the original
N elements are stored somewhere in memory; we allow copying of the original
elements. The internal memory contains at most M elements and the external
memory is divided into N blocks of B elements each; we only need to consider
N blocks, since we are considering algorithms doing less than N I/Os. During
an algorithm, we let X denote the set of original elements (including copies) in
internal memory and Yi the set of original elements (including copies) in the i’th
block; an I/O transfers up to B elements between an Yi and X . Note that in
terms of CPU time, an I/O can cost anywhere between 1 and B (transfers).

In the external memory permuting problem, we are given N elements in the
first N/B blocks and want to rearrange them according to a given permutation;
since we can always rearrange the elements within the N/B blocks in O(N/B)
I/Os, a permutation is simply given as an assignment of elements to blocks
(i.e. we ignore the order of the elements within a block). In other words, we
start with a distribution of N elements in X,Y1, Y2, . . . YN such that |Y1| =
|Y2| = . . . = |YN/B| = B and X = Y(N/B)+1 = Y(N/B)+2 = . . . = YN = ∅,
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and should produce another given distribution of the same elements such that
|Y1| = |Y2| = . . . = |YN/B| = B and X = Y(N/B)+1 = Y(N/B)+2 = . . . = YN = ∅.

To show that any permutation algorithm that performs O(NB sortE(N)) I/Os
has to transfer Ω(N ·sortE(N)) elements between internal and external memory,
we first note that at any given time during a permutation algorithm we can
identify a distribution (or more) of the original N elements (or copies of them)
in X,Y1, Y2, . . . YN . We then first want to bound the number of distributions
that can be created using T I/Os, given that bi, 1 ≤ i ≤ T , is the number of
elements transferred in the i’th I/O; any correct permutation algorithm needs
to be able to create at least N !

B!N/B = Ω((N/B)N ) distributions.
Consider the i’th I/O. There are at most N possible choices for the block Yj

involved in the I/O; the I/O either transfers bi ≤ B elements from X to Yj or

from Yj to X . In the first case there are at most
(
M
bi

)
ways of choosing the bi

elements, and each element is either moved or copied. In the second case there
are at most most

(
B
bi

)
ways of choosing the elements to move or copy. Thus the

I/O can at most increase the number of distributions that can be created by a
factor of

N ·
((

M

bi

)
+

(
B

bi

))
· 2bi < N(2eM/bi)

2bi .

Now the T I/Os can thus at most create
∏T

i=1 N(2eM/bi)
2bi distributions. That

this number is bounded by
(
N(2eM/b)2b

)T
, where b is the average of the bi’s,

can be seen by just considering two values b1 and b2 with average b. In this case
we have

N(2eM/b1)
2b1 ·N(2eM/b2)

2b2 ≤ N2(2eM)2(b1+b2)

b2(b1+b2)
≤ (

N(2eM/b)2b
)2

.

Next we consider the number of distributions that can be created using T
I/Os for all possible values of bi, 1 ≤ i ≤ T , with a given average b. This
can trivially be bounded by multiplying the above bound by BT (since this is a
bound on the total number of possible sequences b1, b2, . . . , bT ). Thus the number

of distributions is bounded by BT
(
N(2eM/b)2b

)T
= ((BN)(2eM/b)2b)T . Since

any permutation algorithm needs to be able to create Ω((N/B)N ) distributions,
we get the following lower bound on the number of I/Os T (b) needed by an
algorithm that transfers b ≤ B elements on the average per I/O:

T (b) = Ω

(
N log(N/B)

logN + b log(M/b)

)
.

Now T (B) = Ω(min{N, NB sortE(N)}) corresponds to the lower bound proved

by Aggarwal and Vitter [1]. Thus when N
B sortE(N) = o(N) we get T (B) =

Ω(NB sortE(N)) = Ω
(

N log(N/B)
B log(M/B)

)
. Since 1 ≤ b ≤ B ≤ M/2, we have T (b) =

ω(T (B)) for b = o(B). Thus any algorithm performing optimal O(NB sortE(N))
I/Os must transfer Ω(N · sortE(N)) elements between internal and external
memory.
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Reconsider the above analysis under the tall cache assumption B ≤ M1−ε for
some constant ε > 0. In this case, we have that the number of distributions any
permutation algorithm needs to be able to create is Ω((N/B)N ) = Ω(NεN ).
Above we proved that with T I/Os transferring an average number of b keys
an algorithm can create at most (BN(2eM/b)2b)T < N2TM2bT distributions.
Thus we have M2bT ≥ NεN−2T . For T < εN/4, we get M2bT ≥ NεN/2 and
thus that the number of transferred elements bT is Ω(N logM N). Since the tall
cache assumption implies that log(N/B) = Θ(logN) and log(M/B) = Θ(logM)
we have that N logM N = Θ(N logM/B(N/B)) = Θ(N · sortE(N)). Thus any
algorithm using less than εN/4 I/Os must transfer Ω(N · sortE(N)) elements
between internal and external memory.

Theorem 3. When B ≤ 1
2M and N

B sortE(N) = o(N), any I/O-optimal per-
muting algorithm must transfer Ω(N · sortE(N)) elements between internal and
external memory under the indivisibility assumption.

When B ≤ M1−ε for some constant ε > 0 any, permuting algorithm using
less than εN/4 I/Os must transfer Ω(N · sortE(N)) elements between internal
and external memory under the indivisibility assumption.

Remark. The above means that in practice where N
B sortE(N) = o(N) our

O(NB sortE(N)) I/O and O(N · (sortI(N) + sortE(N)) time split-sort and prior-
ity queue sort algorithms are not only I/O-optimal but also CPU optimal in the
sense that their running time is the sum of an unavoidable term and the time
used by the best known RAM sorting algorithm.
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ABSTRACT

Consider rain falling at a uniform rate onto a terrain T rep-
resented as a triangular irregular network. Over time, water
collects in the basins of T , forming lakes that spill into ad-
jacent basins. Our goal is to compute, for each terrain ver-
tex, the time this vertex is flooded (covered by water). We
present an I/O-efficient algorithm that solves this problem
using O(sort(X) log(X/M) + sort(N)) I/Os, where N is the
number of terrain vertices, X is the number of pits of the
terrain, sort(N) is the cost of sorting N data items, and M
is the size of the computer’s main memory. Our algorithm
assumes that the volumes and watersheds of the basins of T
have been precomputed using existing methods.
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1. INTRODUCTION
An important problem in terrain analysis is the prediction

of water flow across a terrain. Traditional approaches focus
on computing the river network of the terrain under the
assumption that water does not collect in the basins of the
terrain. In reality, water does collect in the terrain’s basins,
particularly during heavy rainfall. This may cause basins to
spill into adjacent basins, changing the river network of the
terrain as a result. Thus, to model the flow of water across
a terrain over time, it is necessary to compute the times at
which the basins of the terrain spill. In this paper, we solve
the more general problem of computing, for every vertex v
of a terrain T , the time tv at which it is flooded. We assume
the terrain T is represented as a triangular irregular network
(TIN) and the amount of rain is uniform across the terrain.

The accuracy of predictions of natural phenomena, such
as flooding, depends on the precision of the data used in
these predictions. High-resolution elevation models even of
fairly small geographic regions often exceed the size of a
computer’s main memory. Current GIS tools cannot handle
data sets of this size efficiently and therefore need to work
with models of lower resolutions. This sacrifices accuracy
because lower-resolution models do not capture all terrain
features. For example, in experiments we conducted to pre-
dict the flooding of coastal regions of Denmark due to rising
sea levels, an elevation model with one data point every 10m
failed to capture a dike around an island, and the island was
predicted to be flooded if the sea rises by 2m, while the dike
can in fact withstand 2m higher sea levels. Using a higher-
resolution model with one data point every 2m, we obtained
the correct prediction, but storing elevation data for Den-
mark alone requires 500GB of space at this resolution, an
input size well beyond the size of main memory and beyond
the reach of current GIS tools.

To process data sets beyond the size of main memory ef-
ficiently, it is necessary to develop I/O-efficient algorithms,
that is, algorithms that focus on minimizing the number of
disk accesses they perform to swap data between disk and
internal memory, as a disk access is orders of magnitude
slower than an internal-memory computation step. In this
paper, we propose an I/O-efficient algorithm for computing
the flooding times of all vertices of a terrain T .

The core of the problem is computing the spill times of all
basins of T . A simple method to compute these spill times
is to simulate the entire sequence of spill events of the basins
of T and maintain the watersheds of all basins that yet have
to spill, as well as predicted spill times for these basins based
on their current watersheds. An internal-memory solution
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based on this idea has been presented in [14]. In Section 3.2,
we discuss an O(N log N) time implementation of this ap-
proach using a priority queue and a union-find structure.
This simulation approach does not translate into an I/O-
efficient algorithm, as the only known I/O-efficient union-
find structure [1] requires the sequence of Union operations
to be known in advance. In simulating the sequence of spill
events, the set of Union operations is known, but their
order depends on the spill times of the basins. Using an
internal-memory union-find structure and an I/O-efficient
priority queue (e.g., [3, 12]), a cost of O(Xα(X) + sort(N))
disk accesses can be achieved, where α(·) is the inverse of
Ackermann’s function, sort(N) � N is the I/O complex-
ity of sorting N data items (see next section), and X is
the number of pits of the terrain. In contrast, the algo-
rithm presented in this paper achieves an I/O complexity of
O(sort(X) log(X/M) + sort(N)) disk accesses.

In the remainder of this section, we formally define the
computational model we use, discuss previous work, and
give an overview of our algorithm. Section 2 introduces the
terminology and notation we use throughout the paper. Sec-
tion 3 discusses our algorithm for computing the spill times
of the terrain’s basins and the flooding times of all terrain
vertices. This algorithm makes use of an I/O-efficient meld-
able priority queue, which we discuss in Section 4.

1.1 I/O Model
We use the I/O model with one (logical) disk [2] to design

and analyze our algorithm. In this model, the computer is
equipped with a two-level memory hierarchy consisting of an
internal memory and a (disk-based) external memory. The
internal memory is capable of holding M data items (ver-
tices, edges, etc.), while the external memory is of conceptu-
ally unlimited size. All computation has to happen on data
in internal memory. Data is transferred between internal
and external memory in blocks of B consecutive data items.
Such a transfer is referred to as an I/O operation or I/O.
The cost of an algorithm is the number of I/Os it performs.
The number of I/Os required to read N contiguous items
from disk is �N/B�. The number of I/Os required to sort N
items is sort(N) = Θ((N/B) logM/B(N/B)) [2]. For all real-
istic values of N , M , and B, we have N/B < sort(N) � N .

1.2 Related Work
Due to its importance, the problem of computing water

flow across a terrain (usually in the form of a river net-
work) has been studied extensively. Most existing meth-
ods for computing river networks assume that once water
flows into a small basin of the terrain, it never flows out—in
other words, basins do not spill. Therefore, to avoid water
getting caught in small local basins, most flow modelling
approaches first remove all basins by flooding the terrain,
that is, conceptually pouring water onto the terrain until all
basins are filled [4, 13, 15]. However, this often leads to un-
realistic flow patterns, since many important geographical
features are removed. Recent papers [1,5] suggested partial
flooding algorithms that flood only “small” basins, where the
size of a basin can be defined using different measures, such
as height, volume or area. Agarwal, Arge and Yi [1] de-
scribed an O(sort(N)) I/O partial flooding algorithm that
removes all basins of small height. This is done by com-
puting the topological persistence [10, 11] of each basin and
removing the ones with persistence below a small threshold.

The key to obtaining an O(sort(N)) I/O solution to this
problem is an algorithm that can process a sequence of N
Union and Find operations using O(sort(N)) I/Os, assum-
ing the entire sequence of operations is provided in advance.
Arge and Revsbæk [5] extended the result of [1] to remov-
ing basins based on different geometric measures, including
volume and area.

Partial flooding methods provide a basis only for approxi-
mate solutions to flow modelling, as the underlying assump-
tion is that all “small” basins are flooded at a certain time,
while all “big” basins are not. This assumption may not be
true, as the spill time of a basin depends on its volume and
its watershed, and the watershed of a basin may grow over
time as a result of other basins spilling into it; in particular,
the watershed of a big basin may grow to a size far exceeding
the size of the watershed of a small basin and, thus, the big
basin may spill before the small basin. To model the flow
network at time t accurately, it is necessary to compute the
times the basins of T fill and remove the basins that are
full at time t. This is much harder than the partial flood-
ing approaches discussed above, as the above methods are
based on local measures associated with each basin, while
the computation of the actual spill time of each basin β de-
pends on the spill times of other basins that spill into β. As
mentioned in the introduction, Liu and Snoeyink [14] pre-
sented an internal-memory algorithm for computing actual
spill times and used it for flow prediction. While the pa-
per does not present the algorithm in detail, we discuss an
efficient implementation using a union-find structure and a
priority queue in Section 3.2; this implementation is needed
as part of our I/O-efficient algorithm.

We also require a tree structure that represents the nesting
of the basins of T . This tree has been termed the merge tree
of T in [7,8] (also see Section 2) and can be computed using
O(sort(N)) I/Os using the topological persistence algorithm
of [1]. This algorithm is easily augmented to compute the
lowest saddle on the boundary of each basin and, as shown
in [5], the volume of each basin.

Computing the watershed sizes of all basins of T is harder.
The watershed sizes of all basins of T are easily computed
from the watershed sizes of all pits by summing watershed
sizes bottom up in the merge tree. However, the only I/O-
efficient algorithm for computing the watersheds of all pits
of a terrain exactly is the one of [9]. This algorithm per-
forms O(sort(N + S)) I/Os for fat terrains, where S is the
size of the terrain’s strip map. The size of the strip map of
a fat terrain is Θ(N2) in the worst case [9], in which case
the exact computation of watersheds becomes infeasible. An
approach often taken in practice [16–18] is to assume that
water flows only along terrain edges, allowing the computa-
tion of watersheds using O(sort(N)) I/Os. While this may
lead to poor approximations of the watersheds for irregular
terrains [9], TIN’s derived from LIDAR data, for example,
are rather regular, and the computed watersheds match the
real watersheds rather closely.

1.3 New Result
We present an algorithm that computes the flooding times

of all terrain vertices using O(sort(X) log(X/M) + sort(N))
I/Os, where N is the size of the terrain and X is the number
of pits. This assumes that the watershed sizes and volumes
of all basins are given and that every vertex is labelled with
the pit whose watershed contains it. The cost of computing
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this information has been discussed in the previous section.
Our algorithm operates on the merge tree M of the given
terrain T . Given a node β of M, we employ a recursive
strategy to compute the spill times of all basins represented
by descendants of β. If there are at most M such descen-
dants, we use an augmented version of the internal-memory
algorithm mentioned in the introduction to compute the spill
times of their corresponding basins using O(sort(Y )) I/Os,
where Y is the number of descendants of β plus the number
of basins that spill into β. Otherwise we consider an appro-
priate path P from β to a descendant leaf and prove that
we can compute the spill times of all basins whose parents
belong to P using O(sort(Y )) I/Os, where Y is defined as
above. The path P is chosen so that every subtree attached
to P contains at most half of β’s descendants, and we invoke
our algorithm recursively on the root of each such subtree.
This ensures that log(X/M) levels of recursion suffice to
break M into subtrees of size at most M , to which the above
internal-memory algorithm can be applied. The cost per
level of recursion is O(sort(X)) I/Os. Hence, the total cost
of the algorithm is O(sort(X) log(X/M)) I/Os. This gives
only the spill times of the basins. To compute the flooding
times of all terrain vertices, we use a post-processing step
that can be seen as a simpler version of the recursive step of
our algorithm and performs O(sort(N)) I/Os.

The intuition behind the computation in each recursive
step is the following. In general, there are two directions
water can flow across any saddle of the terrain T . Given the
flow direction for each saddle, spill times could be computed
rather easily, but the direction for each saddle is determined
by the spill times of the two basins that merge at this sad-
dle. For the saddles between the basins corresponding to the
path P in each recursive steps, we can characterize each flow
direction as either “confluent” (toward the basin represented
by the leaf of P ) or “diffluent” (away from the leaf), and
we can show that confluent spill events that influence other
spill events—we call these watershed events—can themselves
depend only on confluent watershed events. This allows us
to perform a sweep in the confluent direction first to com-
pute the times of all confluent watershed events. In a second
phase, we sweep in the diffluent direction and use the times
computed in the first phase to compute the correct times for
all spill events.

2. PRELIMINARIES
In this section, we introduce the basic terminology used

throughout this paper. In the following, we make some as-
sumptions about the structure of the terrain that simplify
the exposition in the rest of the paper. All these assumptions
can be removed using standard perturbation techniques.

Terrains, pits, and basins. We consider the terrain T
to be represented as a triangular irregular network, which
is a planar triangulation each of whose vertices v has an
associated elevation T (v). The elevation of a point interior
to a triangle is a linear interpolation of the elevations of the
triangle vertices. In this manner, the terrain is represented
as a continuous piecewise linear surface, and we use T (p)
to refer to the elevation of the point p ∈ R

2. We assume
that no two adjacent vertices have the same elevation. A
pit of T is a local minimum, that is, a terrain vertex all
of whose neighbours have higher elevations. A saddle point
of T is a vertex v with four vertices w1, w2, w3, w4 among
its neighbours that satisfy max(T (w1), T (w3)) < T (v) <

min(T (w2), T (w4)) and appear in the order w1, w2, w3, w4

clockwise around v.
A basin is a maximal connected set of points β ⊆ R

3 such
that T ((x, y)) ≤ z ≤ hβ , for all (x, y, z) ∈ β, where hβ is a
fixed elevation chosen as the upper boundary of β. A basin β
is maximal if there exists a saddle point pβ on the boundary
of β such that T (pβ) = hβ. The point pβ is called the spill
point of basin β, since water poured into β spills over pβ

into an adjacent basin once β becomes full. We assume pβ

is unique, that is, there are no two saddles with elevation hβ

on the boundary of β. We also assume exactly two basins
meet in each spill point. Throughout this paper, we are
interested almost exclusively in maximal basins and refer to
them simply as basins. Every basin contains at least one
pit, and for every pit there exists a unique (maximal) basin
that contains only this pit. We call such a basin elementary.

Trickle paths, watersheds, and tributaries. The
trickle path of a point q ∈ T is the path that starts at q,
continues in the direction of steepest descent for every point
it visits, and ends either in a pit p or at the boundary of T .
In the former case, water falling onto q collects in the ele-
mentary basin corresponding to p; in the latter, it flows off
the edge of the terrain. The watershed of a pit p is the set of
points whose trickle paths end in p. The watershed W 0

β of a
basin β is the union of the watersheds of all pits contained
in β. More generally, we use W t

β to denote the watershed of
basin β at time t, which is the area such that water falling
onto W t

β at time t collects in basin β. A tributary of β is
a basin τ such that τ ∩ β = ∅, τ spills before β, and water
falling onto W tτ

τ at the time tτ when τ spills collects in β;
that is, τ spills into β and the watershed of τ at this time
becomes part of the watershed of β. Note that τ is usually
a tributary of more than one basin. In particular, if β is the
smallest basin that has τ as a tributary, then τ is a tributary
of every basin that contains β but not τ .

Merge tree and flow tree. The basins of T form a
hierarchy that is easily represented using a rooted tree, the
merge tree M of T . The leaves of M are the elementary
basins of T . A basin β1 is the parent of a basin β2 if and
only if β2 ⊂ β1 and there exists no basin β3 such that β2 ⊂
β3 ⊂ β1. Under the assumptions we made about T , M is
a binary tree. For a subset S of nodes of M, let M(S) be
the subgraph of M induced by S. For a node α of M, Mα

denotes the subtree of M induced by α and its descendants.
We do not distinguish between merge tree nodes and their
corresponding basins. For a basin β, we use Vβ to denote
β’s volume, W t

β to denote β’s watershed at time t or its size
(which will be clear from the context), Eβ to denote the
event that β spills into an adjacent basin, and tβ to denote
the time of event Eβ. We call Eβ the spill event associated
with β. See Figure 1 for an illustration of these definitions.

Now consider a subset S of nodes of M such that M(S)
is a tree. The flow paths between the basins in S form
a flow tree F(S) defined as follows. Let S′ be the set of
leaves of M(S). The elements of S′ are the vertices of F(S).
There is an edge between two such vertices α1 and α2 if their
watersheds touch in the common spill point of two basins
β1, β2 ∈ S. See Figure 2.

3. COMPUTING FLOODING TIMES
Our algorithm for computing the flooding times of all ter-

rain vertices has two phases. The first phase (Sections 3.1–
3.3) computes the spill times tβ of all basins of T using
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Figure 1: (a) A 1-d terrain with its corresponding merge tree and volumes and initial watersheds of its basins.
(b) The spill times of the basins and the water levels in the basins at time t = 2.
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Figure 2: Figure (a) shows the merge tree M(S) of a set S = {α0, α1, β1, . . . , α7, β7} of basins. Figure (b)
illustrates the nesting of these basins using contour lines through their spill points. Figure (c) shows the flow
tree of basins α7, β1, β2, . . . , β7. Every edge corresponds to a spill point and joins the two basins containing
the endpoints of the trickle paths starting at this spill point (shown as dashed lines in Figure (b)). Note that
the trickle paths corresponding to different edges incident to a flow tree node βi may end in different pits
inside the basin βi. This is the case for basin β6 in Figure (b).

O(sort(X) log(X/M)) I/Os. The second phase (Section 3.4)
then computes the flooding times of all vertices of T using
O(sort(N)) I/Os.

3.1 Computing Spill Times
We assume the merge tree M is given and every node

β ∈ M stores Vβ , W 0
β , as well as identifiers of the two ele-

mentary basins λf (β) and λr(β) such that λf (β) ∈ Mβ and
W 0

λf (β) and W 0
λr(β) touch in pβ; λf (β) is needed for some

data structure queries in our algorithm, while λr(β) is the
basin where water spilling from β would collect if we poured
water only into β. We further assume the elementary basins
of T have been numbered using a preorder traversal of the
flow tree F of T starting at an arbitrary root, and every
elementary basin stores the preorder interval of its descen-
dants. This information can be computed from the input of
our algorithm using O(sort(X)) I/Os using standard tech-
niques. Details appear in the full paper.

Our algorithm for computing the spill times of all basins
is recursive. Every recursive call takes a node β ∈ M and
a list Rβ of all tributaries of β as input. Each tributary
τ ∈ Rβ stores its spill time tτ , its watershed Wτ := W tτ

τ at
time tτ , and the preorder number of an elementary basin it
contains. The task of the recursive call on a node β is to
compute the spill times of all proper descendants of β in M.
The top-level invocation takes the root ρ of M and an empty
list of tributaries as input (since ρ has no tributaries). We
distinguish two cases for each recursive call.

If |Mβ | ≤ M , we use the algorithm in Section 3.2 below
to solve the problem using O(sort(X)) I/Os, where X is the
total input size of the invocation, that is, X := |Mβ |+ |Rβ |.

If |Mβ| > M , we compute a heaviest path P in Mβ . This
path consists of a sequence of nodes α0, α1, . . . , αk, where
α0 = β, αk is a leaf, and, for 1 ≤ i ≤ k, αi is the child of
αi−1 with the bigger subtree Mαi

among the two children
of αi−1. We use βi to denote the other child of αi−1. See
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Figure 2(a). The first step of the algorithm is to compute the
spill times tαi

and tβi
and the set Rβi

of tributaries of βi, for
all 1 ≤ i ≤ k. To finish the computation of spill times, we
recursively invoke the algorithm on each node βi, 1 ≤ i ≤ k.
As we show in Section 3.3, the computation of the spill times
tαi

and tβi
, for 1 ≤ i ≤ k, and of the lists of tributaries of the

basins β1, β2, . . . , βk takes O(sort(k + |Rβ |)) = O(sort(X))
I/Os, where X := |Mβ|+|Rβ |. The path P can be computed
using O(sort(X)) I/Os using the Euler tour technique and
list ranking [6]. This gives the following result.

Theorem 1. The spill times of all basins of a terrain T
can be computed using O(sort(X) log(X/M)) I/Os, where X
is the number of elementary basins of T .

Proof. We prove in Section 3.2 that, given the tribu-
taries of β, we compute the correct spill times for all basins
in Mβ in the case |Mβ| ≤ M . In Section 3.3, we prove
that, in the case |Mβ | > M , we compute the spill times of
basins αi and βi and the tributary lists Rβi

, for 1 ≤ i ≤ k,
correctly. The correctness of the algorithm then follows by
induction. The I/O complexity of an invocation of the al-
gorithm with total input size X := |Mβ | + |Rβ | and merge
tree size Y := |Mβ| is given by the recurrence

T (X,Y ) =

(
O(sort(X)) Y ≤ M

O(sort(X)) +
Pk

i=1 T (Xi, Yi) Y > M
,

where Yi := |Mβi
| and Xi := Yi + |Rβi

|. By the definition
of a tributary, every basin τ with τ ∈ Mβ or τ ∈ Rβ can
be the tributary of at most one basin βi. Hence, we havePk

i=1 Xi ≤ X. Furthermore, the choice of the path P as
a heaviest path ensures that Yi ≤ Y/2, for all 1 ≤ i ≤ k.
Together, these two facts imply that the recurrence solves
to T (X,Y ) = O(sort(X) log(Y/M)). For the root of M, we
have X = Y , that is, the overall complexity of the algorithm
is O(sort(X) log(X/M)), as claimed.

3.2 Small Basins
To solve the case |Mβ| ≤ M , we provide an implemen-

tation of the algorithm of [14] using a union-find structure
and a priority queue and extend it to take the tributaries of
the basin β into account when computing the spill times of
all sub-basins of β. Before running the actual algorithm, we
compute, for each tributary τ of β, the elementary sub-basin
λr(τ ) of β that τ spills into; that is, τ spills into β across
a saddle on the boundary of W 0

λr(τ). These basins can be
computed from the preorder numbers stored with the trib-
utaries of β and the preorder intervals of the elementary
sub-basins of β using O(sort(X)) I/Os. Details appear in
the full paper.

The algorithm maintains a set of active basins in Mβ ,
which are the basins that have not spilled yet but whose
children have already spilled. A basin that has spilled is
finished, and a basin with at least one unfinished child is
inactive. The set of active basins always contains the next
basin in Mβ to spill. We maintain the set of active basins
using two data structures: a priority queue Q and a union-
find structure U . The priority queue stores the active basins
with priorities equal to their predicted spill times—these
times decrease over time as we discover more tributaries of
active basins. The union-find structure stores the elemen-
tary basins (leaves) in Mβ and allows us to find, for each
such basin α, the active basin α′ such that W 0

α is currently

part of Wα′ . More precisely, a Find(α) operation returns
a representative elementary sub-basin of α′, and it is easy
to ensure that at all times, the representative of α′ stores
the ID of α′. Initially, all elementary basins are active and
all other basins are inactive; the predicted spill time of an
elementary basin α is t′α := Vα/W 0

α. To allow the updating
of predicted spill times, each active basin α also stores the
time uα when its watershed changed last—that is, the spill
time of its most recent tributary—as well as its residual vol-
ume V r

α at time uα, which is the portion of Vα left to be
filled at this time. Initially, V r

α = Vα and uα = 0, for every
elementary basin α of T .

After initializing the algorithm’s data structures as just
described, we process the events in Q and Rβ by increasing
time until Q contains only the basin β. The details of each
iteration are as follows. Let τ be the next tributary in Rβ to
be processed, and let α be the active basin with minimum
priority in Q. If tτ < t′α, we remove τ from Rβ and process
Eτ as a watershed event with time tτ , as described below.
If t′α < tτ , we remove α from Q and consider its sibling σ.
If σ is not finished, we process Eα as a watershed event
with time t′α; otherwise we process it as a basin event with
time t′α.

Watershed event: A watershed event occurs when a basin
α spills into a non-full basin α′, thereby increasing the water-
shed of α′. To process a watershed event Eα with time t, we
find the active basin α′ that α spills into using a Find(λr(α))
operation on U . We update the information for α′ as V r

α′ :=
V r

α′ − Wα′(t − uα′), Wα′ := Wα′ + Wα, uα′ := t, and
t′α′ := t + V r

α′/Wα′ , and then update the priority of α′ in Q
accordingly. If α ∈ Rβ, this finishes the processing of Eα. If
α ∈ Mβ, we need to update U to reflect that water falling
or flowing onto Wα after time t flows into α′. We do this
by performing a Union(λf (α), λr(α)) operation on U and
ensuring that the representative of the resulting set of ele-
mentary basins points to α′. We also label the node α in
Mβ as finished.

Basin event: A basin event occurs when the second of two
sibling basins becomes full, leaving its parent basin in Mβ

to fill. When processing a basin event Eα with time t, for
some α ∈ Mβ , both α and its sibling σ in Mβ are full at
time t. Thus, we label α as finished in Mβ and mark its
parent γ as active. Water that flowed into α before time t
now collects in γ. Thus, we set Wγ := Wα and ensure that
the representative of α now points to γ. Since both α and σ
are full at time t, we set V r

γ := Vγ − Vα − Vσ, uγ := t, and
t′γ := t + V r

γ /Wγ . Then we insert γ into Q with priority t′γ .

The following lemma states the correctness and I/O com-
plexity of the above procedure.

Lemma 1. Let β be a basin with at most M sub-basins,
and let X := |Mβ| + |Rβ |. The spill times of all basins
α ∈ Mβ can be computed using O(sort(X)) I/Os.

Proof. To bound the I/O complexity of the procedure,
we observe that Q, U , and Mβ fit in memory and that
scanning the sorted list of tributaries Rβ requires us to keep
only one buffer block of size B in memory. Thus, apart
from sorting the tributaries in Rβ by their spill times using
O(sort(X)) I/Os, the algorithm only loads Mβ into mem-
ory and scans Rβ , which takes O(X/B) I/Os. All other
processing happens in memory.
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To prove the correctness of the algorithm, we consider
the sequence of events E1, E2, . . . , EX affecting basin β and
its sub-basins, sorted by their times t1, t2, . . . , tX . That is,
every event Ei is an event Eα with α ∈ Mβ or such that
α /∈ Mβ and α is a tributary of a basin α′ ∈ Mβ, in which
case α is also a tributary of β and belongs to Rβ .

We use t′i to denote the “current” predicted time of the
event Ei. Consider the basin α such that Ei = Eα. Then
we define t′i := ti if α is a tributary of β and t′i := ∞ if
α ∈ Mβ and α is inactive; if α ∈ Mβ and α is active, we
define t′i to be its priority in Q. We use induction on i to
prove that t′i = ti when event Ei is processed. To do so, we
prove that the following holds after processing event Ei:

(i) Events E1, E2, . . . , Ei have been processed. No other
events have been processed.

(ii) Wα = W ti
α , for all active basins α ∈ Mβ.

(iii) t′i+1 = ti+1, while t′j ≥ tj , for all j > i + 1.

The base case is i = 0, setting t0 = 0. Property (i) holds
because no events have been processed yet. Property (ii)
holds because initially Wα = W 0

α, for every elementary basin
in Mβ, which is exactly the set of active basins at the begin-
ning of the procedure. To see that (iii) holds, observe that
t′j = tj if Ej = Eτ , for some tributary τ of β. If Ej = Eα,
for α ∈ Mβ, and α is inactive, then t′j = ∞; if α is active,

then t′j = Vα/W 0
α ≥ tj . Moreover, if E1 = Eα, for some

α ∈ Mβ , then α has no tributaries and t1 = Vα/W 0
α = t′1.

For the inductive step, consider i > 0 and assume the
claim holds for all j < i. By part (i) of the inductive hy-
pothesis, Ei−1 is the (i − 1)st event to be processed. By
part (iii) of the inductive hypothesis, we have t′i = ti and
t′j ≥ tj > ti, for all j > i, after processing Ei−1. Hence, Ei

is the ith event to be processed. This establishes (i).
To prove (ii), we consider the two possible types of event

Ei separately. Let Ei = Eα. If Ei is a watershed event, part
(ii) of the inductive hypothesis implies that we identify the
correct watershed Wα′ into which α spills at time ti and,
hence, that we update Wα′ to W ti

α′ ; all other watersheds
remain unchanged. If Ei is a basin event, α and its sibling
are full at time ti, while α’s parent γ has to fill. Furthermore,
all water flowing into γ immediately before time ti collects in
α because α’s sibling is already full. Therefore, W ti

γ = W ti
α ,

and we correctly set Wγ := Wα.
Finally, consider (iii). We consider only events Ej = Eα

with α an active basin in Mβ because, by definition, t′j = tj ,
for every spill event Ej of a tributary of β, and t′j = ∞,
for every spill event Ej of an inactive basin in Mβ. It is
easily verified that we update t′α correctly whenever we in-
crease Wα. By (ii), each event Eh with h ≤ i updates Wα

if and only if Eh = Eτ , for some tributary τ of α. Thus,
t′j ≥ tj , for all j ≥ i. For j = i + 1, the spill events of the
tributaries of α are a subset of E1, E2, . . . , Ei, as they have
to happen before Eα = Ei+1. Thus, we have t′i+1 = ti+1

after Ei is processed.

3.3 Basin Sets With Linear Merge Trees
Now consider a path P = 〈β = α0, α1, . . . , αk〉 from a

merge tree node β to a descendant leaf αk, and let βi be
the sibling of αi, for all 1 ≤ i ≤ k. The basic step of our
solution for the case |Mβ| > M computes the spill times
of α1, β1, α2, β2, . . . , αk, βk, as well as the lists of tributaries

Rβ1
,Rβ2

, . . . ,Rβk
of the basins β1, β2, . . . , βk. Our algo-

rithm for this problem operates on the flow tree F := F(S)
of the set S of basins in P . Note that every edge in F corre-
sponds to the spill point connecting two basins αi and βi, for
1 ≤ i ≤ k, and that λf (αi) = λr(βi) and λf (βi) = λr(αi) in
this case. So the tree is easy to construct using a constant
number of sorting and scanning steps of S. Details appear
in the full paper.

We call a spill event Eβi
confluent, as the water spilling

from βi at time tβi
spills towards αk. Similarly, we call a

spill event Eαi
diffluent, as the water spilling from αi at time

tαi
spills away from αk (αk is a sub-basin of αi). We define

Fβi
to be the subtree of F rooted in βi, assuming αk is cho-

sen as the root of F . Our algorithm proceeds in two phases.
The confluent phase computes times t′β1

, t′β2
, . . . , t′βk

. These
times satisfy t′βi

= tβi
if Eβi

is a watershed event and
t′βi

≥ tβi
if Eβi

is a basin event. In addition, this phase
constructs a list Lβi

, for each 1 ≤ i ≤ k, which is a su-
perset of those tributaries of βi that belong to Fβi

or spill
into β across a saddle on the boundary of a basin βj ∈ Fβi

.
The second, diffluent phase computes times t′′α1

, t′′α2
, . . . , t′′αk

and t′′β1
, t′′β2

, . . . , t′′βk
from the times and potential tributary

lists computed in the confluent phase, and we prove that
t′′αi

= tαi
and t′′βi

= tβi
, for all 1 ≤ i ≤ k. In the process, the

diffluent phase computes the list Rβi
of tributaries of βi, for

every 1 ≤ i ≤ k.
Intuitively, this two-phase approach works because the

confluent phase ensures that the spill times of all basins βi

that are tributaries of other basins are computed correctly
(since βi can be a tributary only if its spill event is a water-
shed event). A basin αi can have only confluent tributaries,
since basins α1, α2, . . . , αk are nested. A basin βi can have
only one diffluent tributary, namely αi, because βi is a sub-
basin of αj , for all j < i, and αi is a super-basin of αh, for all
h > i. Thus, by processing the basins “outwards” from αk—
that is, by decreasing index i—in the diffluent phase, we can
ensure that the spill times of all tributaries of a basin are
known by the time the basin is processed.

3.3.1 From Tributaries to Spill Times

Both phases of our algorithm use the same elementary
procedure to compute a predicted spill time for a basin. To
avoid duplication, we describe this procedure here and refer
to it as procedure FindSpillTime later. The input of this
procedure is a basin α, a time uα, the residual volume V r

α of
α at time uα, and the watershed Wα = W uα

α of α at time uα.
In addition, we are given a priority queue Q containing a
set of potential tributaries of α; each entry τ ∈ Q satisfies
t′τ > uα, where t′τ denotes the priority of τ . The output of
the procedure is a predicted spill time t′α of α and a list L
of entries removed from Q while computing t′α.

Initially, we set t′α := uα + V r
α /Wα. Then we repeat the

following steps to update t′α until either Q is empty or the
minimum entry τ in Q satisfies t′τ ≥ t′α. We remove the min-
imum entry τ (which satisfies t′τ < t′α) from Q and append it
to L. Then we set V r

α := V r
α −Wα(t′τ −uα), Wα := Wα+Wτ ,

uα := t′τ , and t′α := uα + V r
α /Wα.

Lemma 2. Assume at the beginning of procedure Find-

SpillTime, Wα and V r
α reflect the actual watershed and

residual volume of α at time uα, Q contains only entries
τ with t′τ ≥ uα, and t′τ < tα if and only if τ is a tributary of
α. Assume further that every tributary τ ∈ Q of α satisfies
t′τ = tτ . Then t′α ≥ tα when the procedure terminates. If Q
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contains every tributary τ of α with tτ ≥ uα, then t′α = tα,
and L = {τ ∈ Rα | tτ ≥ uα}.

Proof. First assume for the sake of contradiction that
t′α < tα when the algorithm terminates. Then the last ele-
ment τ ∈ Q processed by procedure FindSpillTime satis-
fies t′τ < t′α, as the update of t′α when processing an entry τ
does not decrease t′α below t′τ . Hence, every processed entry
τ satisfies t′τ < tα. This implies that all processed elements
are tributaries of α that satisfy uα < t′τ = tτ < tα, and we
process them in order. Thus, after processing every tribu-
tary τ , we have Wα ≤ W tτ

α , which implies that t′α ≥ tα, a
contradiction.

Now assume Q contains all tributaries of α and t′α > tα

when procedure FindSpillTime finishes. This is possible
only if we do not process all tributaries of α. An unprocessed
tributary τ would have to remain in Q by the end of the
procedure and, thus, satisfies t′τ > t′α. However, t′τ = tτ <
tα < t′α, again a contradiction.

Finally, observe that, if t′α = tα, we process exactly the
elements τ ∈ Q with t′τ < tα, and place them into L. These
are exactly the tributaries of α that satisfy tτ ≥ uα.

3.3.2 Confluent Phase

To implement the confluent phase of the algorithm, we
root the flow tree F in αk and process its nodes in post-
order. With every node α ∈ F we associate a list Sα ⊆ Rβ

containing all tributaries τ of β that spill into β across a sad-
dle on the boundary of W 0

α. These lists are easy to compute
using O(sort(X)) I/Os from the preorder numbers of the el-
ementary basins associated with the tributaries, assuming
that every basin in M stores the largest preorder interval
of all its elementary sub-basins, which is easily computed
in a preprocessing step using a bottom-up traversal in M.
Details appear in the full paper.

During the traversal of F , we ensure that visiting a node
βi produces a priority queue Qβi

that contains all basins τ
that satisfy (i) τ ∈ {βj} ∪ Sβj

, for some βj ∈ Fβi
, and (ii)

t′τ ≥ t′βh
, for all βh on the path from βj to βi in F , inclu-

sive. At any point during the postorder traversal, there is
a set of active nodes, which are nodes that have been vis-
ited already but whose parents in F have not. We maintain
the priority queues of all active nodes in a sequence sorted in
the order these nodes are visited and represent this sequence
of priority queues using a data structure that supports In-

sert and DeleteMin operations on the last priority queue
in the sequence, the creation of a new priority queue at the
end of the sequence, as well as a Meld operation, which
replaces the last two priority queues in the sequence with
their union. In Section 4, we show that the external heap of
Fadel et al. [12] can be extended to process a sequence of N
Insert, DeleteMin, Create, and Meld operations using
O(sort(N)) I/Os.

The processing of a node βi distinguishes two cases. If
βi is a leaf, we create a new priority queue Qβi

at the end
of the sequence of priority queues of active nodes. If βi

is an internal node with children βj1 , βj2 , . . . , βjh
, the cor-

responding priority queues Qβj1
, Qβj2

, . . . , Qβjh
are at the

end of the current sequence of priority queues, and we con-
struct Qβi

by melding these priority queues. In both cases,
we continue by inserting all elements τ ∈ Sβi

into Qβi
, with

priority t′τ = tτ . Then we use procedure FindSpillTime to
compute t′βi

and Lβi
; the input to the procedure is βi, Qβi

,

uβi
:= 0, Wβi

:= W 0
βi

, and V r
βi

:= Vβi
. Once this procedure

terminates, we insert βi into Qβi
, with priority t′βi

.
The confluent phase terminates when the traversal reaches

the root αk of F . Since Eαk
is a diffluent spill event, we

do not compute its time in this phase of the algorithm.
We only construct a list Lαk

by collecting all elements in
Qβj1

, Qβj2
, . . . , Qβjh

and Sαk
, where βj1 , βj2 , . . . , βjh

are
the children of αk in F .

To establish the correctness of the confluent phase, we
require a number of technical lemmas. The first one char-
acterizes the spill events of basins on the flow path between
a basin and its tributary. For three basins βj , βh ∈ F and a
basin α ∈ {αi, βi}, we say βh is on the path from βj to α in
F if βh is not a sub-basin of α but belongs to the path from
βj to every sub-basin α′ ∈ F of α.

Lemma 3. Consider a tributary τ of a basin α ∈ {αi, βi},
and assume that τ ∈ {βj} ∪ Sβj

, for some j. Then Eβh
is a

watershed event, for every basin βh on the path from βj to
α in F that is not a sub-basin of αi.

Proof. For j > i, the lemma holds vacuously because
βj is a sub-basin of αi in this case and α ∈ {αi, βi}; this
implies that every basin βh on the path from βj to α is a
sub-basin of αi. For j ≤ i, assume there exists a basin βh on
the path from βj to α that is not a sub-basin of αi and such
that Eβh

is a basin event. Since βh is not a sub-basin of αi,
we have h ≤ i. If α = αi, this implies that α is a sub-basin
of αh and tα ≤ tαh

≤ tβh
. If α = βi, then h < i because

βh �= α. Thus, α is again a sub-basin of αh; in particular,
tα ≤ tβh

. However, since βj is a tributary of α, we have
tβj

< tα and, therefore, tβj
< tβh

in both cases. For βj to
be a tributary of α, there has to exist a down-hill path from
βj to α at time tβj

. By the choice of βh, any path from βj

to α has to pass through a point interior to βh first and then
through pβh

. Since βh is not full at time tβj
, no such path

is down-hill at time tβj
, a contradiction.

Our next lemma shows that, if a basin τ ∈ {βj} ∪ Rβj
is

a tributary of a basin βi with βj ∈ Fβi
, then τ ∈ Lβi

, that
is, τ is processed when computing t′βi

; otherwise, if it is a
tributary of α ∈ {αi, βi}, then it is in Lγ , for some sub-basin
γ of αi. The first part is used to prove in Lemma 5 below
that the confluent phase computes the correct spill times for
all confluent watershed events. The second part is used to
establish the correctness of the diffluent phase, discussed in
Section 3.3.3.

Lemma 4. Consider a basin τ ∈ {βj} ∪ Sβj
with τ ∈ Lγ .

Assume further that every basin βh in Fγ satisfies t′βh
≥ tβh

,
with equality if Eβh

is a watershed event. If τ is a tributary
of βi and βj ∈ Fβi

, then γ = βi. Otherwise, if τ is a
tributary of a basin α ∈ {αi, βi}, then γ is a sub-basin of αi.

Proof. First assume τ is a tributary of βi and βj ∈ Fβi
.

Then Eτ is a watershed event and either τ ∈ Sβj
or τ = βj .

In both cases, we have t′τ = tτ , in the latter case by the
assumption that t′βh

= tβh
for every watershed event on the

path from βj to γ. If γ belongs to the path from βj to βi and
γ �= βi, then we have t′γ = tγ < tτ because τ is a tributary
of βi and, hence, Eγ is a watershed event. However, γ �= αk

in this case, and every element τ in Lγ is removed from
Qγ while computing t′γ . Thus, t′τ < t′γ , a contradiction.
This shows that γ is an ancestor of βi in F . This, however,
implies that t′βi

≥ tβi
> tτ = t′τ . Thus, the computation of

t′βi
removes τ from Qβi

, and τ ∈ Lβi
.
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Now assume that τ is a tributary of a basin α ∈ {αi, βi}
and, if α = βi, that βj �∈ Fβi

. Then, if γ belongs to the
path from βj to αi, we obtain t′γ = tγ < tτ = t′τ on the one
hand, because τ is a tributary of α and, by Lemma 3, Eγ

is a watershed event; on the other hand, t′γ > t′τ because
otherwise τ /∈ Lγ . Thus, we obtain a contradiction and γ is
a sub-basin of αi.

Lemma 5. For all 1 ≤ i ≤ k, we have t′βi
≥ tβi

. If Eβi
is

a watershed event, equality holds.

Proof. By induction on |Fβi
|. The base case is |Fβi

| = 0,
in which case there is nothing to prove. So consider a node
βi and assume the claim holds for all its descendants. Then,
by Lemma 4, every tributary τ ∈ {βj} ∪ Sβj

, for some de-
scendant βj of βi, is inspected when computing t′βi

, and
each such tributary satisfies t′τ = tτ by the inductive hy-
pothesis. In particular, each such tributary belongs to Qβi

when invoking procedure FindSpillTime to compute t′βi
.

We prove that any other element α ∈ Qβi
satisfies t′α ≥ tβi

.
By Lemma 2, this implies that t′βi

≥ tβi
, with t′βi

= tβi
if

Qβi
contains all tributaries of βi, which is the case if Eβi

is
a watershed event. Indeed if there was a tributary τ such
that τ ∈ {βj} ∪ Rβj

, for some βj /∈ Fβi
, the water spilling

from τ into βi would have to flow through a point interior
to αi and then through pαi

= pβi
. Since tτ < tβi

and Eβi
is

a watershed event, αi is not full at time tτ , that is, the path
from τ to βi cannot be down-hill at time tτ , a contradiction.

So consider an element α ∈ Qβi
, and assume that α ∈

{βj} ∪ Sβj
, for some βj ∈ Fβi

, and t′α < tβi
. We prove

that α is a tributary of βi. We have t′α ≥ t′βh
, for all βh

on the path from βj to βi, excluding βi, because otherwise
βh would have removed α from Qβh

when computing t′βh
.

Since, by the inductive hypothesis, tβh
≤ t′βh

, this implies
that tβh

< tβi
. Also by the inductive hypothesis, we have

t′α ≥ tα. If tα ≥ tβh
, for all βh on the path from βj to βi,

then α is a tributary of βi. If tα < tβh
≤ t′α, for some βh,

then, by the inductive hypothesis, Eα is not a watershed
event. In particular, α = βj , for some j < i, and tβi

< tαj
≤

tβj
= tα because βi is a sub-basin of αj . This contradicts

our assumption that tα ≤ t′α < tβi
.

3.3.3 Diffluent Phase

In the diffluent phase, we process the basins in Mβ in the
order αk, βk, αk−1, βk−1, . . . , α1, β1. We initialize a priority
queue Q to contain all events in Lαk

. Then we repeat the
following steps for i = k, k − 1, . . . , 1:

First we compute t′′αi
. If i = k, we do this by invoking

procedure FindSpillTime with arguments αk, Q, uαk
:= 0,

Wαk
:= W 0

αk
, and V r

αk
:= Vαk

. If i < k, we invoke the
procedure with arguments αi, Q, uαi

:= max(t′′αi+1
, t′′βi+1

),

Wαi
:= max(Wαi+1

, Wβi+1
), and V r

αi
:= Vαi

−Vαi+1
−Vβi+1

.
We place the elements of Q processed by procedure Find-

SpillTime into a list R′′
αi

.
Then we compute t′′βi

. To do so, we insert αi (with pri-
ority t′′αi

) and the events in Lβi
into Q and invoke pro-

cedure FindSpillTime with arguments βi, Q, uβi
:= 0,

Wβi
:= W 0

βi
, and V r

βi
:= Vβi

. We place the elements of Q
processed by procedure FindSpillTime into a list R′′

βi
.

The computation of t′′αi
and t′′βi

may not process all ele-
ments in Q, and some of these elements may be sub-basins
of αi. These elements should be ignored in subsequent com-
putations, as they cannot be tributaries of any αj or βj with
j < i. To ensure this, we augment the above procedure to

ignore in iteration i all elements αj or βj in Q with j > i.
(Note that we ignore only these basins, not the elements of
Sαk

or Sβj
with j > i.)

Lemma 6. For all 1 ≤ i ≤ k, we have tαi
= t′′αi

, tβi
= t′′βi

,

Rβi
= R′′

βi
, and Rαi

= R′′
αk

∪
Sk−1

j=i R′′
βj

.

Proof. By induction on i. For i = k, Lemmas 4 and 5
imply that every tributary τ of αk belongs to Lαk

and sat-
isfies t′τ = tτ . Any other basin α ∈ Lαk

satisfies t′α ≥ tα,
and the same arguments as in the proof of Lemma 5 show
that t′α ≥ tαk

in this case. Hence, by Lemma 2, the first
iteration computes t′′αk

= tαk
and processes only tributaries

of αk, that is, R′′
αk

= Rαk
.

Now consider βk. By Lemmas 4 and 5, every tributary of
βk belongs to {αk} ∪ Lαk

∪ Lβk
, and we have just argued

that the computation of αk processes only tributaries of αk.
Hence, Q contains all tributaries of βk. We have just argued
that t′′αk

= tαk
and, by Lemma 5, any other tributary τ of

βk satisfies t′τ = tτ . For an element α ∈ Q that is not a trib-
utary of βk, the same arguments as in the proof of Lemma 5
show that t′α ≥ tβk

. (However, we have to distinguish the
cases βj ∈ Fβk

and βj /∈ Fβk
, where α ∈ {βj}∪Rβj

.) Thus,
by Lemma 2, we compute t′′βk

= tβk
and R′′

βk
= Rβk

.
Now assume that i < k and that the inductive hypoth-

esis holds for all j > i. By Lemmas 4 and 5, every trib-
utary τ of αi is contained in L := Lαk

∪
Sk

j=i+1 Lβj
=

Q ∪
Sk

j=i+1(R
′′
αj

∪ R′′
βj

) and satisfies t′τ = tτ . Using the
arguments from the proof of Lemma 5 again, every α ∈ L
that is not a tributary of αi satisfies t′α ≥ tαi

. Moreover,
the elements of L \ Q are exactly the tributaries of αi+1

and βi+1, that is, the tributaries τ of αi that satisfy tτ < uαi
.

Hence, by Lemma 2, we compute t′′αi
= tαi

and R′′
αi

to con-
tain exactly the tributaries τ of αi that satisfy tτ ≥ uαi

.

Thus, Rα = R′′
αi

∪
Sk

j=i+1(R
′′
αj

∪ R′′
βj

). The correctness

proof for the computation of t′′βi
and R′′

βi
is identical to that

for βk.

Lemma 7. The computation of the spill times tαi
and tβi

and of the tributary lists Rβi
, for all 1 ≤ i ≤ k, takes

O(sort(X)) I/Os.

Proof. The correctness of the algorithm is established
by Lemma 6. Its I/O-complexity is established as follows:
Both phases of the algorithm perform O(X) priority queue
operations, as every event is inserted and removed from a
priority queue only once in each of the two phases and the
confluent phase performs at most X Meld operations. By
Theorem 3 in Section 4, these priority queue operations cost
O(sort(X)) I/Os. Apart from this, the algorithm traverses
trees F and M(S) once each and scans lists associated with
the tree nodes of total length O(X). After arranging the tree
nodes and list elements in the right order, using a sorting
step, the scanning of these lists takes O(X/B) I/Os.

3.4 Computing the Flooding Times of All Ter-
rain Vertices

The terrain vertices that are not spill points of basins can
be seen as partitioning the basins of T into sub-basins as
follows. For each terrain vertex v, let αv be the smallest
basin that contains v. For a basin β, let V (β) be the set of
terrain vertices with αv = β. Each vertex v ∈ V (β) defines a
sub-basin βT (v) of β containing the portion of β below eleva-
tion T (v). Let v1, v2, . . . , vk be the vertices in V (β) sorted by
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increasing elevation. Then the water from every tributary in
R′′

βi
first collects in βT (v1); once βT (v1) is full, the water col-

lects in βT (v2), and so on. This is just a simplified version of
the diffluent flow computation in Section 3.3.3, and comput-
ing the spill times of basins βT (v1), βT (v2), . . . , βT (vk)—that
is, the flooding times of vertices v1, v2, . . . , vk—from the list
R′′

β takes O(sort(N)) I/Os in total for all basins of T . The
computation of the sets V (β) can be incorporated in the
computation of the basins of T without increasing the I/O
complexity of that phase. Details appear in the full paper.
Thus, we have the following result.

Theorem 2. The flooding times of all vertices of a ter-
rain T with N vertices and X pits can be computed using
O(sort(X) log(X/M) + sort(N)) I/Os, given the watersheds
and volumes of all basins of T .

4. A MELDABLE PRIORITY QUEUE
In this section, we discuss how to extend the external heap

of Fadel et al. [12] to obtain a meldable priority queue that
can be used in the procedure in Section 3.3.2. This struc-
ture maintains a sequence of priority queues Q1, Q2, . . . , Qk

under Create, Insert, DeleteMin, and Meld operations.
Given the current sequence Q1, Q2, . . . , Qk, a Create op-
eration creates a new, empty priority queue Qk+1 and ap-
pends it to the end of the sequence; an Insert(x) oper-
ation inserts element x into Qk; a DeleteMin operation
deletes and returns the minimum element in Qk; a Meld

operation replaces Qk−1 and Qk with a new priority queue
Q′

k−1 := Qk−1 ∪Qk containing the elements from Qk−1 and
Qk. We prove the following result.

Theorem 3. There exists a linear-space data structure
that uses O(sort(N)) I/Os to process a sequence of N Cre-

ate, Insert, DeleteMin, and Meld operations.

4.1 The Structure
Each priority queue Qi is represented as an external heap

similar to the one presented in [12]. The underlying struc-
ture is a rooted tree whose internal nodes have between
a = M/(4B) and b = M/B children. There are two types
of leaves: regular leaves are on the lowest level of the tree,
which we call the leaf level ; leaves above the leaf level are
special.

Every node v has an associated buffer Xv. If v is an
internal node, Xv has size M . If v is a leaf, there is no
bound on the size of Xv. The elements in Xv are sorted,
and the buffer contents of adjacent nodes satisfy the heap
property : for every node v with parent u and every pair of
elements x ∈ Xu and y ∈ Xv, we have x ≤ y.

To support Insert and DeleteMin operations efficiently,
every priority queue Qi is equipped with an insert/delete
buffer or I/D buffer for short. This buffer is capable of
holding up to M elements and stores the minimum elements
in Qi as well as newly inserted elements. To distinguish
newly inserted elements in Qi’s I/D buffer from minimum
elements, Qi has an associated priority pi, which is the min-
imum priority of the elements stored in the external part
of Qi.

The I/D buffers of priority queues Q1, Q2, . . . , Qk are kept
on a buffer stack, with the buffer of Q1 at the bottom and
the buffer of Qk at the top. The I/D buffers of consecutive
priority queues are separated by special marker elements.

We always keep the topmost M elements of this stack in
memory, which ensures in particular that the I/D buffer of
Qk is in memory.

4.2 Operations
Create. To create a new priority queue Qk+1, a Create op-
eration pushes a new marker element onto the buffer stack.

Insert. An Insert operation on Qk adds the inserted el-
ement x to Qk’s I/D buffer. If the buffer now contains M
elements, we Flush the buffer as described below. Then we
Fill the I/D buffer with the M/2 minimum elements in Qk

and update pk accordingly.

DeleteMin. A DeleteMin operation on Qk returns the
minimum element in Qk’s I/D buffer. Before doing so, how-
ever, it checks whether the I/D buffer of Qk is empty or
its minimum element is greater than pk. If so, it Flushes
the I/D buffer and then Fills it with the M/2 minimum
elements in Qk.

Meld. A Meld operation behaves differently depending
on the structure of the two involved priority queues, Qk−1

and Qk. During different stages of its life time, a priority
queue may have no external portion because all its elements
fit in the I/D buffer. If at least one of the two priority
queues, say Qk, has no external portion, we destroy its I/D
buffer, and Insert its elements into Qk−1. If both prior-
ity queues have external portions, we Flush and destroy
their I/D buffers, Merge their two trees as described be-
low, and then Fill the I/D buffer of the merged priority
queue Q′

k−1 := Qk−1 ∪Qk with the M/2 minimum elements
in Q′

k−1.

Flush. A Flush operation of an I/D buffer containing K
elements creates a new leaf l at the leaf level and stores
these K elements in l. Then it applies a Heapify operation
to the path from l to the root to restore the heap property.
If the addition of l increased the degree of l’s parent p to
M/B + 1, we split p into two nodes p′ and p′′, each with
half of p’s children. We associate the buffer of p with p′ and
populate the buffer of p′′ with the M smallest elements in
its subtree using a Fill operation. If this split increases the
degree of p’s parent to M/B + 1, we apply this rebalancing
procedure recursively until we reach the root. If the root has
degree greater than M/B, we split it into two nodes with a
new parent.

Fill. A Fill operation applied to a node v repeatedly takes
the smallest element stored in the buffers of v’s children, re-
moves it from the corresponding child’s buffer and stores it
in v’s buffer. This continues until M elements have been col-
lected in v’s buffer or there are no elements left in the buffers
of v’s children. Whenever a child buffer runs empty while
filling v’s buffer, its buffer is filled recursively before continu-
ing to fill v’s buffer. Once there are no more elements left in
a node v’s subtree, we mark v as exhausted, in order to avoid
repeatedly trying to fill v with elements. More precisely, a
node is marked as exhausted once its buffer becomes empty
and all its children are exhausted. To fill the I/D buffer of
a priority queue Qk with the M/2 smallest elements in Qk,
we transfer the M/2 smallest elements from the root of Qk

into the I/D buffer, Filling the root’s buffer whenever it
runs empty. If the root becomes exhausted in the process,
we delete the entire external portion of the priority queue.
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Merge. A Merge operation between two trees T1 and T2

of heights h1 > h2 proceeds as follows. We locate a node v
at height h2 + 1 in T1 and make the root r2 of T2 a child
of v. We also create a new special leaf node l that is a child
of v. Now let v = v0, v1, . . . , vh be the ancestors of v, by
increasing distance from v, let Ki be the number of elements
in Xvi

, and let K =
Ph

i=0 Ki. First we collect the elements
in Xv0

, Xv1
, . . . , Xvh

in sorted order and store them in l.
Then we repeatedly remove the minimum element from Xr2

and Xl, refilling Xr2
as necessary, until we have collected

the K smallest elements in the subtrees rooted at r2 and l.
We store these elements in buffers Xv0

, Xv1
, . . . , Xvh

, sorted
top-down and so that each node vi receives Ki elements. We
clear the“exhausted”labels of all nodes among v0, v1, . . . , vh.
If v has degree greater than M/2 as a result of gaining two
children, r2 and l, we rebalance the tree using node splits
starting at v similar to the rebalancing done after a Flush

operation.

Heapify. The final operation to discuss is the Heapify op-
eration. Given a node v and its path v = v0, v1, . . . , vh to the
root, a Heapify operation ensures that the elements stored
on the path satisfy the heap property. It assumes that the
elements in v1, v2, . . . , vh already do so, but some elements
in v0 may be less than elements stored at higher nodes. To
restore the heap property, we sort the elements in v0 and col-
lect the elements in v1, v2, . . . , vh in sorted order. Then we
merge the two sorted sequences to obtain a sorted sequence
of the elements stored in v0, v1, . . . , vh and distribute these
elements over the buffers of nodes v0, v1, . . . , vh, assigning
the same number of elements to each node as it had before
the operation and storing the elements sorted top-down on
the path. If some of the nodes on the path were marked as
exhausted before this operation, we unmark them.

4.3 Analysis
To prove the correctness of all priority queue operations,

we need to verify that the heap property is maintained at all
times. This is little more than an exercise and is therefore
omitted.

It is easy to see that every Create, Insert, DeleteMin,
and Meld operation makes only O(1) changes to the buffer
stack and thus has an amortized cost of O(1/B) I/Os, ex-
cluding the manipulations performed by the Flush, Fill,
Merge, and Heapify operations they trigger. The follow-
ing two lemmas bound the cost of all Flush, Fill, Merge,
and Heapify operations performed during a sequence of N
priority queue operations. Due to lack of space, their proofs
are omitted.

Lemma 8. During a sequence of N priority queue opera-
tions, at most O(N/M) Flush, Fill, Merge, and Heapify

operations are performed.

Lemma 9. The amortized cost per Flush, Fill, Merge

or Heapify operation is O((M/B) logM/B(N/M)) I/Os.
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Cache-Oblivious Dynamic Dictionaries with Update/Query Tradeoffs
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Abstract
Several existing cache-oblivious dynamic dictionaries

achieve O(logB N) (or slightly better O(logB
N
M )) mem-

ory transfers per operation, where N is the number of

items stored, M is the memory size, and B is the

block size, which matches the classic B-tree data struc-

ture. One recent structure achieves the same query

bound and a sometimes-better amortized update bound

of O
(

1
BΘ(1/(log log B)2) logB N + 1

B log2 N
)

memory trans-

fers. This paper presents a new data structure, the xDict,
implementing predecessor queries in O( 1

ε logB
N
M ) worst-

case memory transfers and insertions and deletions in

O
(

1
εB1−ε logB

N
M

)
amortized memory transfers, for any

constant ε with 0 < ε < 1. For example, the xDict

achieves subconstant amortized update cost when N =
M Bo(B1−ε), whereas the B-tree’s Θ(logB

N
M ) is subcon-

stant only when N = o(MB), and the previously ob-

tained Θ
(

1
BΘ(1/(log log B)2) logB N + 1

B log2 N
)

is subcon-

stant only when N = o(2
√

B). The xDict attains the optimal

tradeoff between insertions and queries, even in the broader

external-memory model, for the range where inserts cost be-

tween Ω( 1
B lg1+ε N) and O(1/ lg3 N) memory transfers.

1 Introduction
This paper presents a new data structure, the xDict, which

is the asymptotically best data structure for the dynamic-
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Université Libre de Bruxelles, CP212, Boulevard du Triomphe, 1050

Bruxelles, Belgium, stefan.langerman@ulb.ac.be
∗∗Cheriton School of Computer Science, University of Waterloo, Water-

loo, Ontario N2L 3G1, Canada, imunro@uwaterloo.ca

dictionary problem in the cache-oblivious model.

Memory models. The external-memory (or I/O) model
[1] is the original model of a two-level memory hierarchy.

This model consists of an internal memory of size M and a

disk storing all remaining data. The algorithm can transfer

contiguous blocks of data of size B to or from disk at unit

cost. The textbook data structure in this model is the B-

tree [2], a dynamic dictionary that supports inserts, deletes,

and predecessor queries in O(logB N) memory transfers per

operation.

The cache-oblivious model [9, 10] arose in particular

from the need to model multi-level memory hierarchies. The

premise is simple: analyze a data structure or algorithm just

as in the external-memory model, but the data structure or

algorithm is not explicitly parametrized by M or B. Thus

the analysis holds for an arbitrary M and B, in particular all

the M ’s and B’s encountered at each level of the memory

hierarchy. The algorithm could not and fortunately does

not have to worry about the block replacement strategy

because the optimal strategy can be simulated with constant

overhead. This lack of parameterization has let algorithm

designers develop elegant solutions to problems by finding

the best ways to enforce data locality.

Comparison of cache-oblivious dictionaries. Refer to

Table 1. In the cache-oblivious model, Prokop’s static search

structure [10] was the first to support predecessor searches in

O(logB N) memory transfers, but it does not support inser-

tion or deletion. Cache-oblivious B-trees [3, 4, 7] achieve

O(logB N) memory transfers for insertion, deletion, and

search. The shuttle tree [5] supports insertions and dele-

tions in amortized O
(

1
BΘ(1/(log log B)2) logB N + 1

B log2 N
)

memory transfers, which is an improvement over Θ(logB N)
for N = 2o(B/ log B), while preserving the O(logB N) query

bound.1 Our xDict reduces the insertion and deletion bounds

further to O
(

1
εB1−ε logB

N
M

)
, for any constant 0 < ε ≤ 1,

under the tall-cache assumption (common to many cache-

oblivious algorithms) that M = Ω(B2). For all of these data

structures, the query bounds are worst case and the update

bounds are amortized.

1For these previous data structures, the logB N terms may well reduce

to logB
N
M

terms, but only logB N was explicitly proven.
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Data Structure Search Insert/Delete
static search [10] O(logB N) not supported

B-trees [3, 4, 7] O(logB N) O(logB N)
shuttle tree [5] O(logB N) O

(
1

BΘ(1/(log log B)2) logB N + 1
B log2 N

)
lower bound [6] O( 1

ε logB
N
M ) =⇒ Ω

(
1

εB1−ε logB
N
M

)
xDict [this paper] O( 1

ε logB
N
M ) O

(
1

εB1−ε logB
N
M

)
Table 1: Summary of known cache-oblivious dictionaries. Our xDict uses the tall-cache assumption that M = Ω(B2).

Lower bounds. The tradeoff between insertion and

search costs was partly characterized in the external-

memory model [6]. Because any algorithm in the cache-

oblivious model is also an algorithm in the external-

memory model using the same number of memory trans-

fers, lower bounds for the external-memory model carry

over to the cache-oblivious model. Brodal and Fagerberg

[6] proved that any structure supporting insertions in I =
O

(
1

εB1−ε logB(N/M)
)

amortized memory transfers, when

I is between Ω( 1
B lg1+ε N) and O(1/ lg3 N) and when N ≥

M2, must use Ω( 1
ε logB(N/M)) worst-case memory trans-

fers for search. They also produced a data structure achiev-

ing this tradeoff, but their structure is not cache-oblivious,

using knowledge of the parameters B and M . The xDict

structure achieves the same tradeoff in the cache-oblivious

model, and is therefore optimal for this range of insertion

cost I . Slightly outside this range, the optimal bounds are

not known, even in the external-memory model.

2 Introducing the x-box
Our xDict dynamic-dictionary data structure is built in terms

of another structure called the x-box. For any positive inte-

ger x, an x-box supports a batched version of the dynamic-

dictionary problem (defined precisely later) in which ele-

ments are inserted in batches of Θ(x). Each x-box will be

defined recursively in terms of y-boxes for y < x, and later

we build the overall xDict data structure in terms of x-boxes

for x increasing doubly exponentially. Every x-box uses a

global parameter, a real number α > 0, affecting the inser-

tion cost, with lower values of α yielding cheaper insertions.

This parameter is chosen globally and remains fixed through-

out.

As shown in Figure 1, an x-box is composed of three

buffers (arrays) and many
√

x-boxes, called subboxes. The

three buffers of an x-box are the input buffer of size x, the

middle buffer of size x1+α/2, and the output buffer of size

x1+α. The
√

x-subboxes of an x-box are divided into two

levels: the upper level consists of at most 1
4x1/2 subboxes,

and the lower level consists of at most 1
4x1/2+α/2 subboxes.

Thus, in total, there are fewer than 1
2x1/2+α/2 subboxes. See

Table 2 for a table of buffer counts and sizes. As a base

case, an O(1)-box consists of a single array that acts as both

the input and output buffers, with no recursive subboxes or

middle buffer.

Logically, the upper-level subboxes are children of the

input buffer and parents of the middle buffer. Similarly, the

lower-level subboxes are children of the middle buffer and

parents of the output buffer. However, the buffers and sub-

boxes do not necessarily form a tree structure. Specifically,

for an x-box D, there are pointers from D’s input buffer

to the input buffers of its upper-level subboxes. Moreover,

there may be many pointers from D’s input buffers to a sin-

gle subbox. There are also pointers from the output buffers

of the upper-level subboxes to D’s middle buffer. Again,

there may be many pointers originating from a single sub-

box. Similarly, there are pointers from D’s middle buffer to

its lower-level subboxes’ input buffers, and from the lower-

level subboxes’ output buffers to D’s output buffers.

The number of subboxes in each level has been chosen

to match the buffer sizes. Specifically, the total size of the

input buffers of all subboxes in the upper level is at most
1
4x1/2 · x1/2 = 1

4x, which is a constant factor of the size of

the x-box’s input buffer. Similarly, the total size of the upper-

level subboxes’ output buffers is at most 1
4x1/2 ·(x1/2)1+α =

1
4x1+α/2, which matches the size of the x-box’s middle

buffer. The total size of the lower-level subboxes’ input and

output buffers are at most 1
4x1/2+α/2 · x1/2 = 1

4x1+α/2 and
1
4x1/2+α/2 · (x1/2)1+α = 1

4x1+α, which match the sizes of

the x-box’s middle and output buffers, respectively, to within

a constant factor.

An x-box D organizes elements as follows. Sup-

pose that the keys of elements contained in D range from

[κmin, κmax). The elements located in the input buffer oc-

cur in sorted order, as do the elements located in the mid-

dle buffer and the elements located in the output buffer. All

three of these buffers may contain elements having any keys

between κmin and κmax. The upper-level subboxes, how-

ever, partition the key space. More precisely, suppose that

there are r upper-level subboxes. Then there exist keys

κmin = κ0 < κ1 < · · · < κr = κmax such that each sub-

box contains elements in a distinct range [κi, κi+1). Simi-

larly, the lower-level subboxes partition the key space. There

is, however, no relationship between the partition imposed

by the upper-level subboxes and that of the lower-level sub-

boxes; the subranges are entirely unrelated. What this setup
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Figure 1: The recursive structure of an x-box. The arrows represent lookahead pointers. These lookahead pointers are

evenly distributed in the target buffer, but not necessarily in the source buffer. Additional pointers (not shown) allow us to

find the nearest lookahead pointer(s) in O(1) memory transfers. The white space at the right of the buffers indicates empty

space, allowing for future insertions.

Buffer Size per buffer Number of buffers Total size
Top buffer x 1 x

Top buffer x1/2 1
4x1/2 1

4x
Middle buffer (x1/2)1+α/2 1

4x1/2 1
4x1+α/4

Bottom buffer (x1/2)1+α 1
4x1/2 1

4x1+α/2

Middle buffer x1+α/2 1 x1+α/2

Top buffer x1/2 1
4x1/2+α/2 1

4x1+α/2

Middle buffer (x1/2)1+α/2 1
4x1/2+α/2 1

4x1+3α/4

Bottom buffer (x1/2)1+α 1
4x1/2+α/2 1

4x1+α

Bottom buffer x1+α 1 x1+α

Table 2: Sizes of buffers in an x-box. This table lists the sizes of the three buffers in an x-box and the sizes and number of

buffers in its recursive x1/2-boxes, expanding just one level of recursion.

means is that an element with a particular key may be located

in the input buffer or the middle buffer or the output buffer

or a particular upper-level subbox or a particular lower-level

subbox. Our search procedure will thus look in all five of

these locations to locate the element in question.

Before delving into more detail about the x-boxes, let

us first give a rough sketch of insertions into the data struc-

ture. When an element is inserted into an x-box D, it is

first inserted into D’s input buffer. As the input buffer stores

elements in sorted order, elements in the input buffer must

move to the right to accommodate newly inserted elements.

When D’s input buffer becomes full (or nearly full), the

elements are inserted recursively into D’s upper-level sub-

boxes. When an upper-level subbox becomes full enough,

it is “split” into two subboxes, with one subbox taking the

half of the elements with smaller keys and the other taking

the elements with larger keys. When the maximum number

of upper-level subboxes is reached, all elements are moved

from the upper-level subboxes to D’s middle buffer (which

stores all elements in sorted order). When the middle buffer

becomes full enough, elements are moved to the lower-level

subboxes in a similar fashion. When the maximum number

of lower-level subboxes is reached, all elements are moved

from the lower-level subboxes to D’s output buffer.

To aid in pushing elements down to the appropriate sub-

boxes, we embed in the input (and middle) buffers a pointer

to each of the upper-level (and lower-level) subboxes. These

subbox pointers are embedded into the buffers by associating

with them the minimum key stored in the corresponding sub-

box, and then storing them along with the buffer’s elements

in sorted order by key.

To facilitate searches, we employ the technique of frac-
tional cascading [8], giving an x-box’s input buffer (and

middle buffer) a sample of the elements of the upper-level

subboxes’ (and lower-level subboxes’) input buffers. Specif-

ically, let U be an upper-level subbox of the x-box D. Then

a constant fraction of the keys stored in U ’s input buffer are

also stored in D’s input buffer. This sampling is performed

deterministically by placing every sixteenth element in U ’s

input buffer into D’s input buffer. The sampled element (in

D’s input buffer) has a pointer to the corresponding element

in U ’s input buffer. This type of pointer also occurs in [5],

where they are called “lookahead pointers.” We adopt the

same term here. This sampling also occurs on the output

buffers. Specifically, the output buffers of the upper-level

(and lower-level) subboxes contain a similar sample of the
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elements in D’s middle buffer (and output buffer).2

The advantage of lookahead pointers is roughly as fol-

lows. Suppose we are looking for a key κ in some buffer A.

Let s be the multiple of 16 (i.e., a sampled element) such that

A[s] ≤ κ < A[s + 16]. Then our search procedure will scan

slots s to s + 16 in the buffer A. If κ is not located in any

of these slots, then it is not in the buffer. Ideally, this scan

would also provide us with a good starting point to search

within the next buffer.

As the lookahead pointers may be irregularly distributed

in D’s input (or middle) buffer, a stretch of sixteen elements

in D’s input (or middle) buffer may not contain a lookahead

pointer to an upper (or lower)-level subboxes. To remedy

this problem, we associate with each element in D’s input (or

middle) buffer a pointer to the nearest lookahead or subbox

pointers preceding and following it.

Techniques. While fractional cascading has been em-

ployed before [5], we are not aware of any previous cache-

oblivious data structures that are both recursive and that use

fractional cascading. Another subtler difference between the

x-box and previous cache-oblivious structures involves the

sizing of subboxes and our use of the middle buffer. If the

x-box matched typical structures, then an x-box with an in-

put buffer of size x and an output buffer of size x1+α would

have a middle buffer of size x
√

1+α, not the x1+α/2 that we

use. That is to say, it is natural to size the buffers such that

a size-x input buffer is followed by a size-xδ middle buffer

for some δ, and a size-y = xδ middle buffer is followed by

a size-yδ = xδ2
output buffer. Our choice of sizes causes

the data structure to be more topheavy than usual, a feature

which facilitates obtaining our query/update tradeoff.

3 Sizing an x-box
An x-box stores the following fields, in order, in a fixed

contiguous region of memory.

1. A counter of the number of real elements (not counting

lookahead pointers) stored in the x-box.

2. The top buffer.

3. Array of booleans indicating which upper-level sub-

boxes are being used.

4. Array of upper-level subboxes, in an arbitrary order.

2Any sufficiently large sampling constant suffices here. We chose 16

as an example of one such constant for concreteness. The constant must be

large enough that, when sampling D’s output buffer, the resulting lookahead

pointers occupy only a constant fraction of the lower-level subboxes’ output

buffers. To make the description more concise, the constant fraction we

allow is 1
4

, but in fact any constant would work. As the lower-level

subboxes’ output buffers account for only 1
4

of the space of D’s output

buffer, these two constants are multiplied to get that only 1
16

of the elements

in D’s output buffer may be sampled.

5. The middle buffer.

6. Array of booleans indicating which lower-level sub-

boxes are being used.

7. Array of lower-level subboxes, in an arbitrary order.

8. The bottom buffer.

In particular, the entire contents of each
√

x-subbox are

stored within the x-box itself. In order for an x-box to

occupy a fixed contiguous region of memory, we need a

upper bound on the maximum possible space usage of a box.

LEMMA 3.1. The total space usage of an x-box is at most
c x1+α for some constant c > 0.

Proof. The proof is by induction. An x-box contains three

buffers of total size c′(x+x1+α/2+x1+α) ≤ 3c′x1+α, where

c′ is the constant necessary for each array entry (including

information about lookahead pointers, etc.). The boolean

arrays use a total of at most 1
2x1/2+α/2 ≤ c′x1+α space,

giving us a running total of 4c′x1+α space. Finally, the

subboxes by assumption use a total of at most c(x1/2)1+α ·
1
2x1/2+α/2 = c

2x1+α space. Setting c ≥ 8c′ yields a total

space usage of at most cx1+α. ��

4 Operating an x-box
An x-box D supports two operations:

1. BATCH-INSERT(D, e1, e2, . . . , eΘ(x)): Insert Θ(x)
keyed elements e1, e2, . . . , eΘ(x), given as a sorted ar-

ray, into the x-box D. BATCH-INSERT maintains

lookahead pointers as previously described.

2. SEARCH(D, s, κ): Return a pointer to an element with

key κ in the x-box D if such an element exists. If no

such element exists, return a pointer to κ’s predecessor

in D’s output buffer, that is, the element located in D’s

output buffer with the largest key smaller than κ. We

assume that we are given the nearest lookahead pointer

s preceding κ pointing into D’s input buffer: that is,

s points to the sampled element (i.e., having an index

that is a multiple of 16) in D’s input buffer that has the

largest key not exceeding κ.

We treat an x-box as full or at capacity when it con-

tains 1
2x1+α real elements. A BATCH-INSERT is thus only

allowed when the inserted elements would not cause the x-

box to contain more than 1
2x1+α elements. Our algorithm

does not continue to insert into any recursive x-box when

this number of elements is exceeded. The constant can be

tuned to waste less space, but we choose 1
2 here to simplify

the presentation. Recall that the output buffer of an x-box

has size x1+α, which is twice the size necessary to accom-

modate all the real elements in the x-box. We allow the other

1451 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



1
2x1+α space in the output buffer to store external lookahead

pointers (i.e., lookahead pointers into a buffer in the contain-

ing x2-box).

4.1 SEARCH. Searches are easiest. The operation

SEARCH(D, s, κ) starts by scanning D’s input buffer at slot

s and continues until reaching an element with key κ or un-

til reaching slot s′ where the key at s′ is larger than κ. By

assumption on lookahead pointers, this scan considers O(1)
array slots. If the scan finds an element with key κ, then we

are done. Otherwise, we consider the nearest lookahead or

subbox pointer preceding slot s′ − 1. We follow this pointer

and search recursively in the corresponding subbox. That re-

cursive search returns a pointer in the subbox’s output buffer.

We again reference the nearest lookahead pointer and jump

to a point in the middle buffer. This process continues, scan-

ning a constant-size region in middle buffer, searching re-

cursively in the lower-level subbox, and scanning a constant-

size region in the output buffer.

LEMMA 4.1. For x > B, a SEARCH in an x-box costs
O((1 + α) logB x) memory transfers.

Proof. The search considers a constant-size region in the

three buffers, for a total of O(1) memory transfers, and per-

forms two recursive searches. Thus, the cost of a search can

be described by the recurrence S(x) = 2S(
√

x) + O(1).
Once x1+α = O(B), or equivalently x = O(B1/(1+α)),
an entire x-box fits in a block, and no further recursions

incur any other cost. Thus, we have a base case of

S(O(B1/(1+α))) = 0.

The recursion therefore proceeds with a nonzero cost

for lg lg x − lg lg O(B1/(1+α)) levels, for a total of

2lg lg x−lg lg O(B1/(1+α)) = (1 + α) lg x/ lg O(B) = O((1 +
α) logB x) memory transfers. ��

4.2 BATCH-INSERT overview. For clarity, we decom-

pose BATCH-INSERT into several operations, including two

new auxiliary operations:

1. FLUSH(D): After this operation, all k elements in the

x-box D are located in the first Θ(k) slots of D’s output

buffer. These elements occur in sorted order. All other

buffers and recursive subboxes are emptied, temporarily

leaving the D without any internal lookahead pointers

(to be fixed later by a call SAMPLE-UP). The Θ() arises

because of the presence of lookahead pointers directed

from the output buffer. The FLUSH operation is an

auxiliary operation used by the BATCH-INSERT.

2. SAMPLE-UP(D): This operation may only be invoked

on an x-box that is entirely empty except for its out-

put buffer (as with one that has just been FLUSHed).

The sampling process is employed from the bottom up,

creating subboxes as necessary, and placing the appro-

priate lookahead pointers. The SAMPLE-UP operation

is an auxiliary operations used by BATCH-INSERT.

4.3 FLUSH. To FLUSH an x-box, first flush all the sub-

boxes. Now consider the result. Elements can live in only

five possible places: the input buffer, the middle buffer, the

output buffer, the upper-level subboxes’ output buffers, and

the lower-level subboxes’ output buffers. The elements are

in sorted order in all of the buffers. Moreover, as the upper-

level (and lower-level) subboxes partition the key space, the

collection of upper-level subboxes’ output buffers form a

fragmented sorted list of elements. Thus, after flushing all

subboxes, moving all elements to the output buffer requires

just a 5-way merge into the output buffer. A constant-way

merge can be performed in a linear number of memory trans-

fers in general, but here we have to deal with the fact that

upper-level and lower-level subboxes represent fragmented

lists, requiring random accesses to jump from the end of one

output buffer to the beginning of another.

When merging all the elements into the output buffer,

we merge only real elements, not lookahead pointers (except

for the lookahead pointers that already occur in the output

buffer). This step breaks the sampling structure of the data

structure, which we will later resolve with the SAMPLE-UP

procedure.

When the flush completes, the input and middle buffers

are entirely empty, and all subboxes are deleted.3

LEMMA 4.2. For x1+α > B, a FLUSH in an x-box costs
O(x1+α/B) memory transfers.

Proof. We can describe the flush by the recurrence

F (x) = O(x1+α/B) + O(x1/2+α/2) +
1
2
x1/2+α/2F (

√
x) ,

where the first term arises due to scanning all the buffers

(i.e., the 5-way merge), the second term arises from the

random accesses both to load the first block of any of the

subboxes and to jump when scanning the concatenated list of

output buffers, and the third term arises due to the recursive

flushing. When x1+α = O(M), the second term disappears

as the entire x-box fits in memory, and we thus need only

pay for loading each block once. When applying a tall-

cache assumption that M = Ω(B2), it follows that the

second term only occurs when x1/2+α/2 = Ω(B), and

hence when x1/2+α/2 = x1+α/x1/2+α/2 = x1+α/Ω(B) =
O(x1+α/B). We thus have a total cost of

F (x) ≤ c1x
1+α/B +

1
2
x1/2+α/2F (

√
x) ,

3In fact, the subboxes use a fixed memory footprint, so they are simply

marked as deleted.
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where c1 is a constant hidden by the order notation.

We next prove that F (x) ≤ cx1+α/B by induction. As

a base case, when y1+α fits in memory, the cost is F (y) =
cy1+α/B as already noted, to load each block into memory

once. Applying the inductive hypothesis that F (y) ≤
cy1+α/B for some sufficiently large constant c and y < x,

we have F (x) ≤ c1x
1+α/B + 1

2x1/2+α/2(cx1/2+α/2/B) =
c1x

1+α/B + 1
2cx1+α/B. Setting c > 2c1 completes the

proof. ��

4.4 SAMPLE-UP. When invoking a SAMPLE-UP, we as-

sume that the only elements in the x-box live in the output

buffer. In this state, there are no lookahead pointers to fa-

cilitate searches. The SAMPLE-UP recomputes the looka-

head pointers, allowing future searches to be performed effi-

ciently.

The SAMPLE-UP operates as follows. Suppose that the

output buffer contains k < x1+α elements. Then we cre-

ate (k/16)/(x1/2+α/2/2) = k/8x1/2+α/2 ≤ x1/2+α/2/8
new lower-level subboxes. Recall that this is half the num-

ber of available lower-level subboxes. We then assign to each

of these subboxes x1/2+α/2/2 of contiguous sampled point-

ers (filling half of their respective output buffers), and recur-

sively call SAMPLE-UP in the subboxes. Then, we sample

from the lower-level subboxes’ input buffers to the middle

buffer, and we sample the middle-buffer to upper-level sub-

boxes in a similar fashion. Finally, we sample the upper-level

subboxes up to the input buffer.

LEMMA 4.3. A SAMPLE-UP in an x-box, for x1+α > B,
costs O(x1+α/B).

Proof. The proof is virtually identical to the proof for

FLUSH. The recurrence is the same (in fact, it is better here

because we can guarantee that the subboxes are, in fact, con-

tiguous).

��

4.5 BATCH-INSERT. The BATCH-INSERT operation

takes as input a sorted array of elements to insert. In par-

ticular, when inserting into an x-box D, a BATCH-INSERT

inserts Θ(x) elements. For conciseness, let us say that the

constant hidden by the theta notation is 1/2. First, merge

the inserted elements into D’s input buffer, and increment

the counter of elements contained in D by (1/2)x. For

simplicity, also remove the lookahead pointers during this

step. We will readd them later.

Then, (implicitly) partition the input buffer according

to the ranges owned by each of the upper-level subboxes.

For any partition containing at least (1/2)
√

x elements,

repeatedly remove (1/2)
√

x elements from D’s input buffer

and insert them recursively into the appropriate subbox

until the partition contains less than (1/2)
√

x elements. If

performing a recursive insert would cause the number of

(real) elements in the subbox to exceed (1/2)
√

x
1+α

, first

“split” the subbox. A “split” entails first FLUSHing the

subbox, creating a new subbox, moving the larger half of

the elements from the old subbox’s output buffer to the new

subbox’s output buffer (involving two scans), and calling

SAMPLE-UP on both subboxes, and updating the counter

recording the number of elements in each subbox to reflect

the number of real elements in each.

Observe that after all the recursions occur, the number

of real elements in D’s input buffer is at most (1/2)
√

x ·
(1/4)

√
x = (1/8)x, as otherwise more elements would have

moved down to a subbox.

After moving elements from the input buffer to the

upper-level subboxes, resample from the upper-level sub-

boxes’ input buffers into D’s input buffer. Note that the num-

ber of lookahead pointers introduced into the input buffer is

at most 1
16

√
x · 1

4

√
x. When combining the number of looka-

head pointers with the number of real elements, we see that

D’s input buffer is far less than half full, and hence it can

accommodate the next insertion.

When a split causes the last available subbox to be al-

located, we abort any further recursive inserts and instead

merge all of D’s input-buffer and upper-level subbox el-

ements into D’s middle buffer. This merge entails first

FLUSHing all the upper-level subboxes, and then merging

into the middle buffer (similar to the process for the full

FLUSH). We then perform an analogous movement from

the middle buffer to the lower-level subboxes, matching

the movement from the upper-level subboxes to the middle

buffer. (If the last lower-level subbox is allocated, we move

all elements from D’s middle buffer and lower-level sub-

boxes to D’s output buffer and then call SAMPLE-UP on D.)

When insertions into the lower-level subboxes complete, we

allocate new upper-level subboxes (as in SAMPLE-UP) and

sample from D’s middle buffer into the upper-level suboxes’

output buffers, call SAMPLE-UP recursively on these sub-

boxes, and finally sample from the subboxes’ input buffers

into D’s input buffer.

Observe that the upper-level subboxes’ output buffers

collectively contain at most 1
16x1+α/2 lookahead pointers.

Moreover, after elements are moved into the middle buffer,

these are the only elements in the upper-level subboxes, and

they are spread across at most half (x1/2/8) the upper-level

subboxes, as specified for SAMPLE-UP. Hence, there must

be at least x1/2/8 subbox splits between moves into the

middle buffer. Because subboxes splits only occur when

the two resulting subboxes contain at least (1/4)x1+α/2 real

elements, it follows that there must be at least (1/4)x1+α/2 ·
(1/8)x1+α/2 = Ω(x1+alpha/2) insertions into D between

moves into the middle buffer. A similar argument shows that

there must be at least Ω(x1+α) insertions into D between

insertions into the output buffer.
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THEOREM 4.1. A BATCH-INSERT into an x-box, with x >
B, costs an amortized O((1 + α) logB(x)/B1/(1+α)) mem-
ory transfers per element.

Proof. An insert has several costs per element. First, there

is the cost of merging into the input array, which is simply

O(1/B) per element. Next, each element is inserted recur-

sively into a top-level subbox. These recursive insertions en-

tail random accesses to load the first block of each of the sub-

boxes. Then these subboxes must be sampled, which is dom-

inated by the cost of the aforementioned random accesses

and scans. An element may also contribute to a split of a sub-

box, but each split may be amortized against Ω(x1/2+α/2)
insertions. Then we must also consider the cost of moving

elements from the upper-level subboxes to the middle buffer,

but this movement may be amortized against the Ω(x1+α/2)
elements being moved. Finally, there are similar costs among

the lower-level subboxes.

Let us consider the cost of the random accesses more

closely. If all of the upper-level subboxes fit into mem-

ory, then the cost of random accesses is actually the mini-

mum of performing the random accesses or loading the en-

tire upper-level into memory. For the upper-level, we denote

this value by UpperRA(x). We thus have UpperRA(x) =
O( 1

4x1/2) if x1+α/2 = Ω(M), and UpperRA(x) =
O(min

{
1
4x1/2, x1+α/2/B

}
) if x1+α/2 = O(M). In fact,

we are really concerned with UpperRA(x)/x, as the ran-

dom accesses can be amortized against the x elements in-

serted. We analyze the two cases separately, and we assume

the tall-cache assumption that M > B2.

1. Suppose that x1+α/2 = Ω(M). Then we have

x1+α/2 = Ω(B2) by the tall-cache assumption,

and hence x1/2 = Ω(B2/(2+α)). It follows that

UpperRA(x)/x = O(1/
√

x) = O(1/B2/(2+α).

2. Suppose that x1+α/2 = O(M). We have two subcases

here. If x > B2/(1+α), then we have a cost of at most

UpperRA(x)/x = O(x1/2/x) = O(1/B1/(1+α)).
If, on the other hand, x < B2/(1+α), then we have

UpperRA(x)/x = O(x1+α/2/Bx) = O(xα/2/B) =
O(Bα/(1+α)/B) = O(1/B1/(1+α)).

Because 1/B2/(2+α) < 1/B1/(1+α), we conclude that

UpperRA(x)/x = O(1/B1/(1+α)).
We must also consider the cost of random accesses into

the lower-level subboxes, which can be amortized against the

x1+α/2 elements moved. A similar case analysis shows that

LowerRA(x)/x1+α/2 = O(1/B1/(1+α)).
We thus have a total insertion cost of

I(x) = O

(
x/B

x

)
+ O

(
UpperRA(x)

x

)
+ I(

√
x)

+ O

(
F (

√
x)

x1/2+α/2

)
+ O

(
1
4x1/2F (

√
x)

x1+α/2

)

O

(
x1+α/2/B

x1+α/2

)
+ O

(
LowerRA(x)

x1+α/2

)
+ I(

√
x) + O

(
F (

√
x)

x1/2+α/2

)
+ O

(
1
4x1/2+α/2F (

√
x)

x1+α

)
+ O

(
x1+α/B

x1+α

)
= O(1/B) + O

(
UpperRA(x)

x

)
+ O

(
LowerRA(x)

x1+α/2

)
+ O

(
F (

√
x)

x1/2+α/2

)
+ 2 I(

√
x)

= O(1/B) + O(1/B1/(1+α)) + O(1/B1/(1+α))

+ O

(
x1/2+α/2/B

x1/2+α/2

)
+ 2 I(

√
x)

= O(1/B1/(1+α)) + 2 I(
√

x)

As we charge loading the first block of a sub-

box to an insert into the parent, we have a base

case of I(O(B1/(1+α)) = 0, i.e., when the x-

box fits into a single block. Solving the recur-

rence, we get a per element cost of O(1/B1/(1+α)) at

lg lg x − lg lg O(B1/(1+α)) levels of recursion, and hence

a total cost of O(2lg lg x−lg lg O(B1/(1+α))/B1/(1+α)) =
O

(
(1+α) lg x

B1/(1+α) lg O(B)

)
= O((1 + α) logB(x)/B1/(1+α)). ��

5 Building a dictionary out of x-boxes
The xDict data structure consists of log1+α log2 N + 1
x-boxes of doubly increasing size, where α is the same

parameter for the underlying x-boxes. Specifically, for 0 ≤
i ≤ log1+α log2 N , the ith box has x = 2(1+α)i

. The

x-boxes are linked together by incorporating into the ith
box’s output buffer the lookahead pointers corresponding to

a sample from the (i + 1)st box’s input buffer.

We can define the operations on an xDict in terms of

x-box operations. To insert an element into an xDict, we

simply insert it into the smallest x-box (i = 0), which

has x = Θ(1) so supports individual element insertions.

When the ith box reaches capacity (containing 2(1+α)i+1
/2

elements), we FLUSH it, insert all of its elements (contained

in its output buffer) into the (i + 1)st box, and empty the ith
box’s output buffer. This process terminates after performing

a batch insert into the jth box if the jth box is the first box

that can accommodate the elements (having not yet reached

capacity). At this point, all boxes preceding the jth box are

entirely empty. We next rebuild the lookahead starting from

the (j − 1)st box down to the 0th box by sampling from

the (i + 1)st box’s input buffer into the ith box’s output

buffer and then calling SAMPLE-UP on the ith box. As

elements are first inserted into the 0th box and eventually
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move through all boxes, our insertion analysis accounts for

an insertion into each box for each element inserted. The cost

of the FLUSH and SAMPLE-UP incurred by each element as

it moves through each of the boxes is dominated by the cost

of the insertion.

To search in the xDict, we simply search in each of

the x-boxes, and return the closest match. Specifically, we

search the boxes in order from smallest to largest. If the

element is not found in the ith box, we have a pointer into

the ith box’s output buffer. We use this pointer to find an

appropriate lookahead pointer into the (i + 1)st box’s input

buffer, and begin the search from that point.

The performance of the xDict is essentially a geometric

series:

THEOREM 5.1. The xDict supports searches in
O( 1

α logB
N
M ) memory transfers and (single-element)

inserts in O( 1
α (logB

N
M )/B1/(1+α)) amortized memory

transfers, for 0 < α ≤ 1.

Proof. A simple upper bound on the search cost is

log1+α log2 N∑
i=0

O((1 + α) logB(2(1+α)i

)

= O

⎛⎝1 + α

lg B

log1+α log2 N∑
i=0

(1 + α)i

⎞⎠
= O

(
(1 + α) lg N

lg B

∞∑
i=0

1
(1 + α)i

)

= O

(
(1 + α)2

α
logB N

)
= O

(
1
α

logB N

)
.

The last step of the derivation follows from the assumption

that α ≤ 1 and hence that (1 + α)2 = O(1).
The above analysis, however, exploits only a constant

number of cache blocks. If we assume that the memory

already holds all x-boxes smaller than O(M1/(1+α)),4 the

first O( 1
α logB M1/(1+α)) = O( 1

α logB M) transfers are

free, resulting in a search cost of O( 1
α logB

N
M ). The cache-

oblivious model assumes an optimal paging strategy, and

using half the memory to store the smallest x-boxes is no

better than optimal.

The analysis for insertions is identical except that all

costs are multiplied by O(1/B1/(1+α)). ��

COROLLARY 5.1. For any ε with 0 < ε < 1, there exists
a setting of α such that the xDict supports searches in

4All x-boxes with size at most O(M1/(1+α)) fit in O(M) memory as

the x-box sizes increase supergeometrically.

O( 1
ε logB

N
M ) memory transfers and supports insertions in

O( 1
ε logB( N

M )/B1−ε) amortized memory transfers.

Proof. First off, we consider only ε < 1
2 (rolling up a

particular constant into the big-O notation), as larger ε only

hurt the performance of inserts.

Choose α = ε/(1 − ε), which gives B1/(1+α) = B1−ε.

Because ε < 1
2 , we have α < 1, and we can apply

Theorem 5.1. The 1/α term solves to 1/α = (1 − ε)/ε =
O(1/ε) to complete the proof. ��

6 Final notes
We did not address deletion in detail, but claim that it can

be handed using standard techniques. For example, to delete

an element we can insert an anti-element with the same key

value. In the course of an operation, should a key value and

its antivalue be discovered, they annihilate each other while

releasing potential which is used to remove them from the

buffers they are in. Rebuilding the whole structure when

the number of deletions since the last rebuild is half of the

structure ensures that the total size does not get out of sync

with the number of not-deleted items currently stored.

Another detail is that, to hold n items, the xDict may

create an n-box, which occupies up to Θ(n1+α) of address

space. However, only Θ(n) space of the xDict will ever be

occupied, and the layout ensures that the unused space is at

the end. Therefore the xDict data structure can use optimal

Θ(n) space.
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ABSTRACT
We give the first optimal algorithm for estimating the num-
ber of distinct elements in a data stream, closing a long line
of theoretical research on this problem begun by Flajolet
and Martin in their seminal paper in FOCS 1983. This
problem has applications to query optimization, Internet
routing, network topology, and data mining. For a stream
of indices in {1, . . . , n}, our algorithm computes a (1 ± ε)-
approximation using an optimal O(ε−2+log(n)) bits of space
with 2/3 success probability, where 0 < ε < 1 is given. This
probability can be amplified by independent repetition. Fur-
thermore, our algorithm processes each stream update in
O(1) worst-case time, and can report an estimate at any
point midstream in O(1) worst-case time, thus settling both
the space and time complexities simultaneously.

We also give an algorithm to estimate the Hamming norm
of a stream, a generalization of the number of distinct ele-
ments, which is useful in data cleaning, packet tracing, and
database auditing. Our algorithm uses nearly optimal space,
and has optimal O(1) update and reporting times.

Categories and Subject Descriptors: F.2.0 [Analysis
of Algorithms and Problem Complexity]: General; H.2.m
[Database Management]: Miscellaneous

General Terms: Algorithms, Theory

Keywords: distinct elements, streaming, query optimiza-
tion, data mining

1. INTRODUCTION
Estimating the number of distinct elements in a data stream
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is a fundamental problem in network traffic monitoring, query
optimization, data mining, and several other database areas.
For example, this statistic is useful for selecting a minimum-
cost query plan [33], database design [18], OLAP [30, 34],
data integration [10, 14], and data warehousing [1].

In network traffic monitoring, routers with limited mem-
ory track statistics such as distinct destination IPs, requested
URLs, and source-destination pairs on a link. Distinct ele-
ments estimation is also useful in detecting Denial of Service
attacks and port scans [2, 17]. In such applications the data
is too large to fit at once in main memory or too massive
to be stored, being a continuous flow of data packets. This
makes small-space algorithms necessary. Furthermore, the
algorithm should process each stream update (i.e., packet)
quickly to keep up with network speeds. For example, Estan
et al [17] reported packet header information being produced
at .5GB per hour while estimating the spread of the Code
Red worm, for which they needed to estimate the number
of distinct Code Red sources passing through a link.

Yet another application is to data mining: for example,
estimating the number of distinct queries made to a search
engine, or distinct users clicking on a link or visiting a web-
site. Distinct item estimation was also used in estimating
connectivity properties of the Internet graph [32].

We formally model the problem as follows. We see a
stream i1, . . . , im of indices ij ∈ [n], and our goal is to
compute F0 = |{i1, . . . , im}|, the number of distinct in-
dices that appeared, using as little space as possible. Since
it is known that exact or deterministic computation of F0

requires linear space [3], we settle for computing a valueeF0 ∈ [(1 − ε)F0, (1 + ε)F0] for some given 0 < ε < 1 with
probability 2/3, over the randomness used by the algorithm.
This probability can be amplified by independent repetition.

The problem of space-efficient F0-estimation is well-studied,
beginning with the work of Flajolet and Martin [20], and
continuing with a long line of research, [3, 4, 5, 6, 9, 12, 16,
17, 19, 23, 24, 26, 36]. In this work, we finally settle both
the space- and time-complexities of F0-estimation by giving
an algorithm using O(ε−2+log(n)) bits of space, with worst-
case update and reporting times O(1). By update time, we
mean the time to process a stream token, and by reporting
time, we mean the time to output an estimate of F0 at any
point in the stream. Our space upper bound matches the
known lower bounds [3, 26, 36] up to a constant factor, and
the O(1) update and reporting times are clearly optimal. A
detailed comparison of our results to those in previous work
is given in Figure 1. There is a wide spectrum of time/space
tradeoffs but the key points are that none of the previous
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Paper Space Update Time Notes
[20] O(log n) - Assumes random oracle, constant ε
[3] O(log n) O(log n) Only works for constant ε
[24] O(ε−2 log n) O(ε−2)
[5] O(ε−3 log n) O(ε−3)
[4] O(ε−2 log n) O(log(ε−1)) Algorithm I in the paper
[4] O(ε−2 log log n + poly(log(ε−1), log log n) log n) ε−2 poly(log log n + log(ε−1)) Algorithm II in the paper
[4] O(ε−2(log(ε−1) + log log n) + log n) O(ε−2(log(ε−1) + log log n)) Algorithm III in the paper
[16] O(ε−2 log log n + log n) - Assumes random oracle, additive error
[17] O(ε−2 log n) - Assumes random oracle
[6] O(ε−2 log n) O(log(ε−1))
[19] O(ε−2 log log n + log n) - Assumes random oracle, additive error
This work O(ε−2 + log n) O(1) Optimal

Figure 1: Comparison of our algorithm to previous algorithms on estimating the number of distinct elements
in a data stream.

algorithms achieved our optimal O(ε−2+log n) bits of space,
and the only ones to achieve optimal O(1) update and/or re-
porting time had various restrictions, e.g., the assumption of
access to a random oracle (that is, a truly random hash func-
tion) and/or a small constant additive error in the estimate.
The best previous algorithms without any assumptions are
due to Bar Yossef et al [4], who provide algorithms with
various tradeoffs (Algorithms I, II, and III in Figure 1).

We also give a new algorithm for estimating L0, also
known as the Hamming norm of a vector [13], with opti-
mal running times and near-optimal space. This problem is
a generalization of F0-estimation to the case when items can
be removed from the stream. While F0-estimation is useful
for a single stream or for taking unions of streams if there
are no deletions, L0-estimation can be applied to a pair of
streams to measure the number of unequal item counts. This
makes it more flexible than F0, and can be used in applica-
tions such as maintaining ad-hoc communication networks
amongst cheap sensors [25]. It also has applications to data
cleaning to find columns that are mostly similar [14]. Even if
the rows in the two columns are in different orders, stream-
ing algorithms for L0 can quickly identify similar columns.
As with F0, L0-estimation is also useful for packet tracing
and database auditing [13].

Formally, in this problem there is a vector x = (x1, . . . , xn)
which starts off as the 0 vector, and receives m updates of
the form (i, v) ∈ [n]×{−M, . . . , M} in a stream (M is some
positive integer). The update (i, v) causes the change xi ←
xi +v. At the end of the stream, we should output (1±ε)L0

with probability at least 2/3, where L0 = |{i : xi �= 0}|.
Note that L0-estimation is a generalization of F0-estimation,
since in the latter case an index i in the stream corresponds
to the update (i, 1) in an L0-estimation problem.

We give an L0-estimation algorithm with O(1) update and
reporting times, using O(ε−2 log(n)(log(1/ε)+log log(mM)))
bits of space, both of which improve upon the previously best
known algorithm of Ganguly [22], which had O(log(1/ε)) up-
date time and required O(ε−2 log(n) log(mM)) space. Our
update and reporting times are optimal, and the space is op-
timal up to the log(1/ε) + log log(mM) term due to known
lower bounds [3, 27]. Furthermore, unlike with Ganguly’s
algorithm, our algorithm does not require that xi ≥ 0 for
each i to operate correctly.

1.1 Overview of our algorithms
Our algorithms build upon several techniques given in pre-

vious works, with added twists to achieve our stated per-
formance. In for example [4], it was observed that if one
somehow knows ahead of time a value R = Θ(F0), refining
to (1 ± ε)-approximation becomes easier. For example, [4]
suggested a“balls and bins”approach to estimating F0 given
such an R. The key intuition is that when hashing A balls
randomly into K bins, the number of bins hit by at least
one ball is highly concentrated about its expectation, and
treating this expectation as a function of A then inverting
provides a good approximation to A with high probability
for A = Θ(K). Then if one subsamples each index in [n]

with probability 2− log(R/K), in expectation the number of
distinct items surviving is Θ(K), at which point the balls-
and-bins approach can be simulated by hashing indices (the
“balls”) into entries of a bitvector (the “bins”).

Following the above scheme, an estimate of F0 can be ob-
tained by running a constant-factor approximation in par-
allel to obtain such an R at the end of the stream, and
meanwhile performing the above scheme for geometrically
increasing guesses of R, one of which must be correct to
within a constant factor. Thus, the bits tracked can be
viewed as a bitmatrix: rows corresponding to log(n) lev-
els of subsampling, and columns corresponding to entries in
the bitvector. At the end of the stream, upon knowing R,
the estimate from the appropriate level of subsampling is
used. Such a scheme with K = Θ(1/ε2) works, and gives
O(ε−2 log(n)) space, since there are log(n) levels of subsam-
pling.

It was then first observed in [16] that, in fact, an estima-
tor can be obtained without maintaining the full bitmatrix
above. Specifically, for each column they gave an estimator
that required only maintaining the deepest row with its bit
set to 1. This allowed them to collapse the bitmatrix above
to O(ε−2 log log(n)) bits. Though, their estimator and anal-
ysis required access to a purely random hash function.

Our F0 algorithm is inspired by the above two algorithms
of [4, 16]. We give a subroutine RoughEstimator using
O(log(n)) space which with high probability, simultaneously
provides a constant-factor approximation to F0 at all times
in the stream. Previous subroutines gave a constant factor
approximation to F0 at any particular point in the stream
with probability 1−δ using O(log(n) log(1/δ)) space; a good
approximation at all times then required setting δ = 1/m to
apply a union bound, thus requiring O(log(n) log(m)) space.
The next observation is that if R = Θ(F0), the largest row
index with a 1 bit for any given column is heavily concen-
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trated around the value log(F0/K). Thus, if we bitpack the
K counters and store their offsets from log(R/K), we expect
to only use O(K) space for all counters combined. Whenever
R changes, we update all our offsets.

There are of course obvious obstacles in obtaining O(1)
running times, such as the occasional need to decrement
all K counters (when R increases), or to locate the start-
ing position of a counter in a bitpacked array when reading
and writing entries. For the former, we use a “variable-bit-
length array” data structure [7], and for the latter we use
an approach inspired by the technique of deamortization of
global rebuilding (see [29, Ch. 5]). Furthermore, we ana-
lyze our algorithm without assuming a truly random hash
function, and show that a combination of fast k-wise inde-
pendent hash functions [35] and uniform hashing [31] suffice
to have sufficient concentration in all probabilistic events we
consider.

Our L0-estimation algorithm also uses subsampling and a
balls-and-bins approach, but needs a different subroutine for
obtaining the value R, and for representing the bitmatrix.
Specifically, if one maintains each bit as a counter and tests
for the counter being non-zero, frequencies of opposite sign
may cancel to produce 0 and give false negatives. We instead
store the dot product of frequencies in each counter with a
random vector over a suitably large finite field. We remark
that Ganguly’s algorithm [22] is also based on a balls-and-
bins approach, but on viewing the number of bins hit by
exactly one ball (and not at least one ball), and the source
of his algorithm’s higher complexity stems from technical
issues related to this difference.

1.2 Preliminaries
Throughout this paper, all space bounds are given in bits.

We always use m to denote stream length and [n] to denote
the universe (the notation [n] represents {1, . . . , n}). With-
out loss of generality, we assume n is a power of 2, and ε ≤ ε0

for some fixed constant ε0 > 0. In the case of L0, M denotes
an upper bound on the magnitude of updates to the xi. We
use the standard word RAM model, and running times are
measured as the number of standard machine word opera-
tions (integer arithmetic, bitwise operations, and bitshifts).
We assume a word size of at least Ω(log(nmM)) bits to be
able to manipulate counters and indices in constant time.

For reals A, B, ε ≥ 0, we use the notation A = (1 ± ε)B
to denote that A ∈ [(1 − ε)B, (1 + ε)B]. We use lsb(x) to
denote the (0-based index of) the least significant bit of a
nonnegative integer x when written in binary. For example,
lsb(6) = 1. We define lsb(0) = log(n). All our logarithms
are base 2 unless stated otherwise. We also use Hk(U, V )
to denote some k-wise independent hash family of functions
mapping U into V . Using known constructions [11], a ran-
dom h ∈ Hk(U, V ) can be represented in O(k log(|U |+ |V |))
bits when |U |, |V | are powers of 2, and computed in the
same amount of space. Also, henceforth, whenever we dis-
cuss picking an h ∈ Hk(U, V ), it should be understood that
h is being chosen as a random element of Hk(U, V ).

When discussing F0, for t ∈ [m] we use I(t) to denote
{i1, . . . , it}, and define F0(t) = |I(t)|. We sometimes use I
to denote I(m) so that F0 = F0(m) = |I|. In the case of L0-
estimation, we use I(t) to denote the i with xi �= 0 at time

t. For an algorithm which outputs an estimate eF0 of F0, we

let eF0(t) be its estimate after only seeing the first t updates
(and similarly for L0). More generally, for any variable y

kept as part of the internal state of any of our algorithms,
we use y(t) to denote the contents of that variable at time
t.

Lastly, we analyze our algorithm without any idealized as-
sumptions, such as access to a cryptographic hash function,
or to a hash function which is truly random. Our analyses
all take into account the space and time complexity required
to store and compute the types of hash functions we use.

2. BALLS AND BINS WITH LIMITED IN-
DEPENDENCE

In the analysis of the correctness of our algorithms, we
require some understanding of the balls and bins random
process with limited independence. We note that [4] also
required a similar analysis, but was only concerned with ap-
proximately preserving the expectation under bounded inde-
pendence whereas we are also concerned with approximately
preserving the variance. Specifically, consider throwing a
set of A balls into K bins at random and wishing to un-
derstand the random variable X being the number of bins
receiving at least one ball. This balls-and-bins random pro-
cess can be modeled by choosing a random hash function
h ∈ HA([A], [K]), i.e. h acts fully independently on the A
balls, and letting X = |i ∈ [K] : h−1(i) �= ∅|. When analyz-
ing our F0 algorithm, we require an understanding of how
X behaves when h ∈ Hk([A], [K]) for k 	 A.

Henceforth, we let Xi denote the random variable indicat-
ing that at least one ball lands in bin i under a truly random
hash function h, so that X =

PK
i=1 Xi.

The following fact is standard.

Fact 1. E[X] = K
“
1 − `1 − 1

K

´A”
The proof of the following lemma is deferred to the full

version due to space constraints.

Lemma 1. If 100 ≤ A ≤ K/20, then Var[X] < 4A2/K.

We now state a lemma that k-wise independence for small
k suffices to preserve E[X] to within 1 ± ε, and to preserve
Var[X] to within an additive ε2. We note that item (1) in
the following lemma was already shown in [4, Lemma 1] but
with a stated requirement of k = Ω(log(1/ε)), though their
proof actually seems to only require k = Ω(log(1/ε)/ log log(1/ε)).
Our proof of item (1) also only requires this k, but we require
dependence on K in our proof of item (2). The proof of the
following lemma is in Section A.1, and is via approximate
inclusion-exclusion.

Lemma 2. There exists some constant ε0 such that the
following holds for ε ≤ ε0. Let A balls be mapped into
K bins using a random h ∈ H2(k+1)([A], [K]), where k =
c log(K/ε)/ log log(K/ε) for a sufficiently large constant c >
0. Suppose 1 ≤ A ≤ K. For i ∈ [K], let X ′

i be an indicator
variable which is 1 if and only if there exists at least one
ball mapped to bin i by h. Let X ′ =

PK
i=1 X ′

i. Then the
following hold:

(1). |E[X ′] − E[X]| ≤ εE[X]

(2). Var[X ′] − Var[X] ≤ ε2

We now give a consequence of the above lemma.
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Lemma 3. There exists a constant ε0 such that the fol-
lowing holds. Let X ′ be as in Lemma 2, and also assume
100 ≤ A ≤ K/20 with K = 1/ε2 and ε ≤ ε0. Then

Pr[|X ′ − E[X]| ≤ 8εE[X]] ≥ 4/5

. Proof. Observe that

E[X] ≥ (1/ε2)

 
1 −

 
1 − Aε2 +

 
A

2

!
ε4

!!

= (1/ε2)

 
Aε2 −

 
A

2

!
ε4

!
≥ (39/40)A,

since A ≤ 1/(20ε2).
By Lemma 2 we have E[X ′] ≥ (1 − ε)E[X] > (9/10)A,

and additionally using Lemma 1 we have that Var[X ′] ≤
Var[X] + ε2 ≤ 5ε2A2. Set ε′ = 7ε. Applying Chebyshev’s
inequality,

Pr[|X ′ − E[X ′]| ≥ (10/11)ε′E[X ′]]

≤ Var[X ′]/((10/11)2(ε′)2E2[X ′])

≤ 5 · A2ε2/((10/11)2(ε′)2(9/10)2A2)

< (13/2)ε2/(10ε′/11)2

< 1/5

Thus, with probability at least 1/5, by the triangle in-
equality and Lemma 2 we have |X ′−E[X]| ≤ |X ′−E[X ′]|+
|E[X ′] − E[X]| ≤ 8εE[X].

3. F0 ESTIMATION ALGORITHM
In this section we describe our F0-estimation algorithm.

Our algorithm requires, in part, a constant-factor approx-
imation to F0 at every point in the stream in which F0 is
sufficiently large. We describe a subroutine RoughEsti-

mator in Section 3.1 which provides this, using O(log(n))
space, then we give our full algorithm in Section 3.2.

We remark that the algorithm we give in Section 3.2 is
space-optimal, but is not described in a way that achieves
O(1) worst-case update and reporting times. In Section 3.4,
we describe modifications to achieve optimal running times
while preserving space-optimality.

We note that several previous algorithms could give a
constant-factor approximation to F0 with success probabil-
ity 2/3 using O(log(n)) space. To understand why our guar-
antees from RoughEstimator are different, one should pay
particular attention to the quantifiers. In previous algo-
rithms, it was guaranteed that there exists a constant c > 0
such that at any particular point t in the stream, with prob-

ability at least 1 − δ the output eF0(t) is in [F0(t), cF0(t)],
with the space used being O(log(n) log(1/δ)). To then guar-

antee eF0(t) ∈ [F0(t), cF0(t)] for all t ∈ [m] with probability
2/3, one should set δ = 1/(3m) to then union bound over all
t, giving an overall space bound of O(log(n) log(m)). Mean-
while, in our subroutine RoughEstimator, we ensure that

with probability 2/3, eF0(t) ∈ [F0(t), cF0(t)] for all t ∈ [m]
simultaneously, and the overall space used is O(log(n)).

3.1 RoughEstimator
We now show that RoughEstimator (Figure 2) with

probability 1 − o(1) (as n → ∞) outputs a constant-factor

approximation to F0(t) for every t in which F0(t) is suffi-

ciently large. That is, if our estimate of F0(t) is eF0(t),

Pr[∀t ∈ [m] s.t. F0 ≥ KRE, eF0(t) = Θ(F0(t))] = 1 − o(1),

where KRE is as in Figure 2.

Theorem 1. With probability 1 − o(1), the output eF0 of

RoughEstimator satisfies F0(t) ≤ eF0(t) ≤ 8F0(t) for ev-
ery t ∈ [m] with F0(t) ≥ KRE simultaneously. The space
used is O(log(n)).

Proof. We first analyze space. The counters in total take
O(KRE log log(n)) = O(log(n)) bits. The hash functions
hj

1, h
j
2 each take O(log(n)) bits. The hash functions hj

3 take
O(KRE log(KRE)) = O(log(n)) bits.

We now analyze correctness.

Lemma 4. For any fixed point t in the stream with F0(t) ≥
KRE, and fixed j ∈ [3], with probability 1 − O(1/KRE) we

have F0(t) ≤ eF j
0 (t) ≤ 4F0(t).

Proof. The algorithm RoughEstimator of Figure 2
can be seen as taking the median output of three instan-
tiations of a subroutine, where each subroutine has KRE

counters C1, . . . , CKRE , hash functions h1, h2, h3, and de-
fined quantities Tr(t) = |{i : Ci(t) ≥ r}|, where Ci(t) is the
state of counter Ci at time t. We show that this subrou-
tine outputs a value eF0(t) ∈ [F0(t), 4F0(t)] with probability
1 − O(1/KRE).

Define Ir(t) ⊆ I(t) as the set of i ∈ I(t) with lsb(h1(i)) ≥
r. Note |Ir(t)| is a random variable, and

E[|Ir(t)|] =
F0(t)

2r
, Var[|Ir(t)|] =

F0(t)

2r
−F0(t)

22r
≤ E[|Ir(t)|],

with the latter using 2-wise independence of h1. Then by
Chebyshev’s inequality,

Pr

»˛̨̨̨
|Ir(t)| − F0(t)

2r

˛̨̨̨
≥ q · F0(t)

2r

–
≤ 1

q2 · E[|Ir(t)|] . (1)

Since F0(t) ≥ KRE, there exists an r′ ∈ [0, log n] such that
KRE/2 ≤ E[|Ir′(t)|] < KRE. We condition on the event E
that KRE/3 ≤ Ir′(t) ≤ 4KRE/3, and note

Pr[E ] = 1 − O(1/KRE)

by Eq. (1). We also condition on the event E ′ that for all
r′′ > r′ + 1, Ir′′(t) ≤ 7KRE/24. Applying Eq. (1) with
r = r′ + 2 and using that Ir+1(t) ⊆ Ir(t),

Pr[E ′] ≥ 1 − O(1/KRE).

We now define two more events. The first is the event
E ′′ that Tr′(t) ≥ ρKRE. The second is the event E ′′′ that
Tr′′(t) < ρKRE for all r′′ > r′ + 1. Note that if E ′′ ∧ E ′′′

holds, then F0(t) ≤ eF0(t) ≤ 4F0(t). We now show that these
events hold with large probability.

Define the event A that the indices in Ir′(t) are per-
fectly hashed under h2, and the event A′ that the indices
in Ir′+2(t) are perfectly hashed under h2. Then

Pr[A | E ] ≥ 1 − O(1/KRE).

and similarly for Pr[A′ | E ′].
Note that, conditioned on E ∧ A, Tr′(t) is distributed

exactly as the number of non-empty bins when throwing
|Ir′(t)| balls uniformly at random into KRE bins. This is
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1. Set KRE = max{8, log(n)/ log log(n)}.
2. Initialize 3KRE counters Cj

1 , . . . , Cj
KRE

to −1 for j ∈ [3].

3. Pick random hj
1 ∈ H2([n], [0, n − 1]), hj

2 ∈ H2([n], [KRE
3]), hj

3 ∈ H2KRE ([KRE
3], [KRE]) for j ∈ [3].

4. Update(i): For each j ∈ [3], set Cj

h
j
3(h

j
2(i))

← max

j
Cj

h
j
3(h

j
2(i))

, lsb(hj
1(i))

ff
.

5. Estimator: For integer r ≥ 0, define T j
r = |{i : Cj

i ≥ r}|.
For the largest r = r∗ with T j

r ≥ ρKRE, set eF j
0 = 2r∗

KRE. If no such r exists, eF j
0 = −1.

Output eF0 = median{ eF 1
0 , eF 2

0 , eF 3
0 }.

Figure 2: RoughEstimator pseudocode. With probability 1 − o(1), eF0(t) = Θ(F0(t)) at every point t in the

stream for which F0(t) ≥ KRE. The value ρ is .99 · (1 − e−1/3).

because, conditioned on E ∧ A, there are no collisions of
members of Ir′(t) under h2, and the independence of h3 is
larger than |Ir′(t)|. Thus,

E[Tr′(t) | E ∧ A] =

 
1 −

„
1 − 1

KRE

«|Ir′ (t)|
!

KRE.

The same argument applies for the conditional expectation
E[Tr′′(t) | E ′ ∧ A′] for r′′ > r′ + 1. Call these conditional
expectations Er. Then since (1−1/n)/e ≤ (1−1/n)n ≤ 1/e
for all real n ≥ 1 (see Proposition B.3 of [28]), we have that
Er/KRE lies in the interval24„1 − e

− |Ir(t)|
KRE

«
,

0@1 − e
− |Ir(t)|

KRE

„
1 − 1

KRE

« |Ir(t)|
KRE

1A35
Thus for r′′ > r′ + 1,

Er′′ ≤
 

1 − e−7/24

„
1 − 1

KRE

«7/24
!

KRE, and

Er′ ≥
“
1 − e−1/3

”
KRE.

A calculation shows that Er′′ < .99Er′ since KRE ≥ 8.
By negative dependence in the balls and bins random pro-

cess (see [15]), the Chernoff bound applies to Tr(t) and thus

Pr [|Tr′(t) − Er′ | ≥ εEr′ | E ∧ A] ≤ 2e−ε2Er′/3

for any ε > 0, and thus by taking ε a small enough constant,

Pr[E ′′ | E ∧ A] ≥ 1 − e−Ω(KRE).

We also have, for r′′ > r′ + 1,

Pr[E ′′′ | E ′∧A′] = Pr
ˆ
Tr′′(t) ≥ ρKRE | E ′ ∧ A′˜ ≥ 1−e−Ω(KRE).

Thus, overall,

Pr[E ′′ ∧ E ′′′] ≥ Pr[E ′′ ∧ E ′′′ ∧ E ∧ E ′ ∧ A ∧A′]

≥ Pr[E ′′ ∧ E ∧ A] + Pr[E ′′′ ∧ E ′ ∧ A′] − 1

= Pr[E ′′ | E ∧ A] · Pr[A | E ] · Pr[E ]

+ Pr[E ′′′ | E ′ ∧ A′] · Pr[A′ | E ′] · Pr[E ′]

− 1

≥ 1 − O(1/KRE)

Now, note that for any t ∈ [m], if eF j
0 (t) is a 4-approximation

to F0(t) for at least two values of j, then eF0(t) ∈ [F0(t), 4F0(t)].

Thus by Lemma 4, eF0(t) ∈ [F0(t), 4F0(t)] with probability
1−O(1/KRE

2). Let tr be the first time in the stream when
F0(tr) = 2r (if no such time exists, let tr = ∞). Then by a

union bound, our estimate of eF0(tr) is in [F0(tr), 4F0(tr)] at
all tr for r ∈ [0, log n] with probability 1−O(log(n)/KRE

2) =

1−o(1). Now, observe that our estimates eF0(t) can only ever
increase with t. Thus, if our estimate is in [F0(tr), 4F0(tr)]
at all points tr, then it is in [F0(t), 8F0(t)] for all t ∈ [m].
This concludes our proof.

3.2 Full algorithm
In this section we analyze our main algorithm (Figure 3),

which (1 ± O(ε))-approximates F0 with 11/20 probability.
We again point out that the implementation described in
Figure 3 is not our final algorithm which achieves O(1) up-
date and reporting times; the final optimal algorithm is a
modification of Figure 3, described in Section 3.4. We as-
sume throughout that F0 ≥ K/32 and deal with the case of
small F0 in Section 3.3. The space used is O(ε−2 + log(n))
bits. Note that the 5/8 can be boosted to 1 − δ for arbi-
trary δ > 0 by running O(log(1/δ)) instantiations of our
algorithm in parallel and returning the median estimate
of F0. Also, the O(ε) term in the error guarantee can be
made ε by running the algorithm with ε′ = ε/C for a suffi-
ciently large constant C. Throughout this section we with-
out loss of generality assume n is larger than some constant
n0, and 1/ε2 ≥ C log(n) for a constant C of our choice,
and is a power of 2. If one desires a (1 ± ε)-approximation

for ε > 1/
p

C log(n), we simply run our algorithm with

ε = 1/
p

C log(n), which worsens our promised space bound
by at most a constant factor.

The algorithm of Figure 3 works as follows. We main-
tain K = 1/ε2 counters C1, . . . , CK as well as three values
A, b, est. Each index is hashed to some level between 0 and
log(n), based on the least significant bit of its hashed value,
and is also hashed to one of the counters. Each counter
maintains the deepest level of an item that was hashed to
it. Up until this point, this information being kept is iden-
tical as in the LogLog [16] and HyperLogLog [19] algorithms
(though our analysis will not require that the hash functions
be truly random). The value A keeps track of the amount of
storage required to store all the Ci, and our algorithm fails
if this value ever becomes much larger than a constant times
K (which we show does not happen with large probability).
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1. Set K = 1/ε2.

2. Initialize K counters C1, . . . , CK to −1.

3. Pick random h1 ∈ H2([n], [0, n−1]), h2 ∈ H2([n], [K3]), h3 ∈ Hk([K3], [K]) for k = Ω(log(1/ε)/ log log(1/ε)).

4. Initialize A, b, est = 0.

5. Run an instantiation RE of RoughEstimator.

6. Update(i): Set x ← max{Ch3(h2(i)), lsb(h1(i)) − b}.
Set A ← A − ˚

log(2 + Ch3(h2(i)))
ˇ

+ �log(2 + x)�.
If A > 3K, Output FAIL.

Set Ch3(h2(i)) ← x. Also feed i to RE.

Let R be the output of RE.

if R > 2est:

(a) est ← log(R), bnew ← max{0, est − log(K/32)}.
(b) For each j ∈ [K], set Cj ← max{−1, Cj + b − bnew}
(c) b ← bnew, A ← PK

j=1 �log(Cj + 2)�.

7. Estimator: Define T = |{j : Cj ≥ 0}|. Output eF0 = 2b · ln(1− T
K )

ln(1− 1
K )

.

Figure 3: F0 algorithm pseudocode. With probability 11/20, eF0 = (1 ± O(ε))F0.

The value est is such that 2est is a Θ(1)-approximation to
F0, and is obtained via RoughEstimator, and b is such
that we expect F0(t)/2b to be Θ(K) at all points t in the
stream. Each Ci then actually holds the offset (from b) of
the deepest level of an item that was hashed to it; if no
item of level b or deeper hashed to Ci, then Ci stores −1.
Furthermore, the counters are bitpacked so that Ci only re-
quires O(1 + log(Ci)) bits of storage (Section 3.4 states a
known data structure which allows the bitpacked Ci to be
stored in a way that supports efficient reads and writes).

Theorem 2. The algorithm of Figure 3 uses O(ε−2 +
log(n)) space.

Proof. The hash functions h1, h2 each require O(log(n))
bits to store. The hash function h3 takes O(k log(K)) =
O(log2(1/ε)) bits. The value b takes O(log log n) bits. The
value A never exceeds the total number of bits to store all
counters, which is O(ε−2 log(n)), and thus A can be rep-
resented in O(log(1/ε) + log log(n)) bits. The counters Cj

never in total consume more than O(1/ε2) bits by construc-
tion, since we output FAIL if they ever would.

Theorem 3. The algorithm of Figure 3 outputs a value
which is (1±O(ε))F0 with probability at least 11/20 as long
as F0 ≥ K/32.

Proof. Let eFRE
0 (t) be the estimate of F0 offered by RE

at time t. Throughout this proof we condition on the event

E that F0(t) ≤ eFRE
0 (t) ≤ 8F0(t) for all t ∈ [m], which occurs

with probability 1 − o(1) by Theorem 1.
We first show that the algorithm does not output FAIL

with large probability. Note A is always
PK

i=1 �log(Ci + 2)�,
and we must thus show that with large probability this quan-
tity is at most 3K at all points in the stream. Let A(t) be the
value of A at time t (before running steps (a)-(c)), and sim-
ilarly define Cj(t). We condition on the randomness used
by RE, which is independent from the remaining parts of
the algorithm. Let t1, . . . , tr−1 be the points in the stream

where the output of RE changes, i.e eFRE
0 (tj − 1) �= eFRE

0 (tj)
for all j ∈ [r − 1], and define tr = m. We note that A(t)

takes on its maximum value for t = tj for some j ∈ [r], and
thus it suffices to show that A(tj) ≤ 3K for all j ∈ [r]. We

furthermore note that r ≤ log(n)+3 since eFRE
0 (t) is weakly

increasing, only increases in powers of 2, and is always be-
tween 1 and 8F0 ≤ 8n given that E occurs. Now,

A(t) ≤ K +

KX
i=1

log(Ci(t) + 2)

≤ K + K · log

 PK
i=1 Ci(t)

K
+ 2

!
with the last inequality using concavity of the logarithm and
Jensen’s inequality. It thus suffices to show that, with large
probability,

PK
i=1 Ci(tj) ≤ 2K for all j ∈ [r].

Fix some t = tj for j ∈ [r]. For i ∈ I(t), let Xi(t) be the
random variable max{−1, lsb(h1(i)) − b}, and let X(t) =P

i∈I(t) Xi(t). Note
PK

i=1 Ci(t) ≤ X(t), and thus it suffices

to lower bound Pr[X(t) ≤ 2K].
We have that Xi(t) equals s with probability 1/2b+s+1 for

0 ≤ s < log(n) − b, equals log(n) − b with probability 1/n,
and equals −1 with the remaining probability mass. Thus

E[X(t)] ≤ F0(t) ·
0@1/n +

log(n)−b−1X
s=0

2−(b+s+1)

1A = F0(t)/2b.

Furthermore, by choice of h1 the Xi(t) are pairwise inde-
pendent, and thus Var[X(t)] ≤ E[X(t)] since Var[Xi(t)] ≤
E[Xi(t)]. Then by Chebyshev’s inequality,

Pr[X(t) > 2K] <
F0(t)

2b · (2K − F0(t)/2b)2

Conditioned on E , K/256 ≤ F0(t)/2b ≤ K/32, implying
the above probability is at most 1/(32K). Then by a union
bound over all tj for j ∈ [r], we have that X(t) ≤ 2K for all
j ∈ [r] with probability at least 1 − r/(32K) ≥ 1 − 1/32 by
our assumed upper bound on ε, implying we output FAIL
with probability at most 1/32.

We now show that the output from Step 7 in Figure 3 is
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(1 ± O(ε))F0 with probability 11/16. Let A be the algo-
rithm in Figure 3, and let A′ be the same algorithm, but
without the third line in the update rule (i.e., A′ never

outputs FAIL). We first show that the output eF0 of A′ is
(1 ± O(ε))F0 with probability 5/8. Let Ib be the set of in-
dices i ∈ I such that lsb(i) ≥ b. Then E[|Ib|] = F0/2b, and
Var[|Ib|] ≤ E[|Ib|], with the last inequality in part using
pairwise independence of h1. We note that conditioned on
E , we have

K/256 ≤ E[|Ib|] ≤ K/32

Let E ′ be the event that K/300 ≤ |Ib| ≤ K/20. Then by
Chebyshev’s inequality,

Pr[E ′ | E ] ≥ 1 − O(1/K) = 1 − o(1).

Also, if we let E ′′ be the event that Ib is perfectly hashed
under h2, then pairwise independence of h2 gives

Pr[E ′′ | E ′] ≥ 1 − O(1/K) = 1 − o(1).

Now, conditioned on E ′ ∧ E ′′, we have that T is a random
variable counting the number of bins hit by at least one ball
under a k-wise independent hash function, where there are
B = |Ib| balls, K bins, and k = Ω(log(K/ε)/ log log(K/ε)).
Then by Lemma 3, T = (1±8ε)(1− (1−1/K)B)K with 4/5
probability, in which case

ln(1 − T/K) = ln((1 − 1/K)B ± 8ε(1 − (1 − 1/K)B))

Conditioned on E ′, (1 − 1/K)B = Θ(1), and thus the above
is ln((1 ± O(ε))(1 − 1/K)B) = B ln(1 − 1/K) ± O(ε) since
ln(1 + x) = O(|x|) for |x| < 1/2, and thuseF0 = B · 2b ± O(ε · 2bK). (2)

Conditioned on E , we have that 2b ≤ 256F0/K, and thus
the error term in Eq. (2) is O(εF0). Also, E[B] = F0/2b,
which is at least K/256 conditioned on E . Thus by pairwise
independence of h1, Chebyshev’s inequality implies

Pr[|B − E[B]| ≥ c/
√

K] ≤ E[B]

(c2/K) · E[B]2
≤
„

16

c

«2

since Var[B] ≤ E[B], which we can make an arbitrarily
small constant by setting c to be a large constant. Note that
1/

√
K is just ε, and thus we have that B = (1±O(ε))F0/2b

with arbitrarily large constant probability.
Putting everything together, we have that, conditioned

on E ∧ E ′ ∧ E ′′, eF0 = (1 ± O(ε))F0 with probability at least
4/5 − δ for any constant δ > 0 of our choice, e.g. δ = 1/5.
Since Pr[E ∧ E ′ ∧ E ′′] ≥ 1 − o(1), we thus have

Pr[ eF0 = (1 ± O(ε))F0] ≥ 3/5 − o(1).

Note our algorithm in Figure 3 succeeds as long as (1) we

do not output FAIL, and (2) eF0 = (1 ± O(ε))F0, and thus
overall we succeed with probability at least 1− 2

5
−o(1)− 1

32
>

11
20

.

3.3 Handling small F0

In Section 3.2, we assumed that F0 = Ω(K) for K = 1/ε2

(specifically, F0 ≥ K/32). In this subsection, we show how
to deal with the case that F0 is small, by running a similar
(but simpler) algorithm to that of Figure 3 in parallel.

The case F0 < 100 can be dealt with simply by keeping
the first 100 distinct indices seen in the stream in memory,
taking O(log(n)) space.

For the case F0 ≥ 100 we can apply Lemma 3 as was
done in the proof of Theorem 3. We maintain K′ = 2K
bits B1, . . . , BK′ in parallel, initialized to 0. When seeing
an index i in the stream, in addition to carrying out Step
6 of Figure 3, we also set Bh3(h2(i)) to 1 (h3 can be taken
to have range K′ = 2K, and its evaluation can be taken
modulo K when used in Figure 3 to have a size-K range).
Let t0 be the smallest t ∈ [m] with F0(t) = K′/64, and t1
be the smallest t ∈ [m] with F0(t) = K′/32 (if no such ti

exist, set them to ∞). Define TB(t) = |{i : Bi(t) = 1}|,
and define eF B

0 (t) = ln(1 − TB(t)/K′)/ ln(1 − 1/K′). Then
by similar calculations as in Theorem 3 and a union bound

over t0, t1, Pr[ eF B
0 (ti) = (1±O(ε))F0(ti) for i ∈ {0, 1}] is at

least 1 − 2 · (1/5) − o(1) = 3/5 − o(1). Noting that eF B
0 (t)

monotonically increases with t, we can do the following: for

t with eF B
0 (t) ≥ K′/32 = K/16, we output the estimator

from Figure 3; else, we output eF B
0 (t). We summarize this

section with the following theorem.

Theorem 4. Let δ > 0 be any fixed constant, and ε > 0
be given. There is a subroutine requiring O(ε−2 + log(n))
space which with probability 1 − δ satisfies the property that
there is some t′ ∈ [m] satisfying: (1) for any fixed t < t′,
(1±O(ε))F0 is output, and (2) for any t ≥ t′ the subroutine
outputs LARGE, and we are guaranteed F0(t) ≥ 1/(16ε2).’

3.4 Running time
In this subsection we discuss an implementation of our F0

algorithm in Figure 3 with O(1) update and reporting times.
We first state a few theorems from previous works.

Theorem 5 (Brodnik [8], Fredman and Willard [21]).

The least and most significant bits of an integer fitting in a
machine word can be computed in constant time.

The next two theorems give hash families which have
strong independence properties while only requiring O(1)
evaluation time (recall that the k-wise independent hash
functions of Carter and Wegman require Θ(k) evaluation
time).

Theorem 6 (Pagh and Pagh [31, Theorem 1.1]). Let
S ⊆ U = [u] be a set of z > 1 elements, and let V = [v],
with 1 < v ≤ u. Suppose the machine word size is Ω(log(u)).
For any constant c > 0 there is word RAM algorithm that,
using time log(z) logO(1)(v) and O(log(z) + log log(u)) bits
of space, selects a family H of functions from U to V (inde-
pendent of S) such that:

1. With probability 1−O(1/zc), H is z-wise independent
when restricted to S.

2. Any h ∈ H can be represented by a RAM data structure
using O(z log(v)) bits of space, and h can be evaluated
in constant time after an initialization step taking O(z)
time.

The following is a corollary of Theorem 2.16 in [35].

Theorem 7 (Siegel [35]). Let U = [u] and V = [v]
with u = vc for some constant c ≥ 1, where the machine
word size is Ω(log(v)). Suppose one wants a k(v)-wise in-
dependent hash family H of functions mapping U to V for
k(v) = vo(1). For any constant ε > 0 there is a random-
ized procedure for constructing such an H which succeeds
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with probability 1 − 1/vε, taking vε bits of space. A random
h ∈ H can be selected using vε bits of random seed, and h
can be evaluated in O(1) time.

We now describe a fast version of RoughEstimator.

Lemma 5. RoughEstimator can be implemented with
O(1) worst-case update and reporting times, at the expense
of only giving a 16-approximation to F0(t) for every t ∈ [m]
with F0(t) ≥ KRE, for KRE as in Figure 2.

Proof. We first discuss update time. We replace each
hj

3 with a random function from the hash family H of Theo-
rem 6 with z = 2KRE, u = KRE

3, v = KRE. The constant c
in Item 1 of Theorem 6 is chosen to be 1, so that each hj

3 is
uniform on any given subset of z items of [u] with probability
1−O(1/KRE). Note that the proof of correctness of Rough-

Estimator (Theorem 1) only relied on the hj
3 being uniform

on some unknown set of 4KRE/3 < 2KRE indices with prob-
ability 1 − O(1/KRE) (namely, those indices in Ir′(t)). The
space required to store any h ∈ H is z log(v) = O(log(n)),
which does not increase our space bound for RoughEsti-

mator. Updates then require computing a least significant
bit, and computing the hj

1, h
j
2, h

j
3, all taking constant time.

For reporting time, in addition to the information main-
tained in Figure 2, we also maintain three sets of counters
Aj

0, A
j
1, A

j
2, A

j
3, A

j
4 for j ∈ [3]. For a fixed j, the Aj

i store

T j
r+i for an r we now specify. Roughly speaking, for the val-

ues of t where F0(t) ≥ KRE, r will be such that, conditioned
on RoughEstimator working correctly, 2r will always be
in [F0(t)/2, 8F0(t)]. We then alter the estimator of Rough-

Estimator to being 2r+1.
Note that, due to Theorem 4, the output of RoughEs-

timator does not figure into our final F0-estimator until
F0(t) ≥ (1 − O(ε))/(32ε2), and thus the output of the al-
gorithm is irrelevant before this time. We start off with
r = log(1/(32ε2)). Note that Aj

0, A
j
1, A

j
2, A

j
3, A

j
4 can be

maintained in constant time during updates. At some point
t1, the estimator from Section 3.3 will declare that F0(t1) =
(1 ± O(ε))/(32ε2), at which point we are assured F0(t1) ≥
1/(64ε2) ≥ log(n) (assuming ε is smaller than some con-
stant, and assuming that 1/ε2 ≥ 64 log(n)). Similarly, we
also have F0(t1) ≤ 1/(16ε2) ≤ 4 log(n). Thus, by our choice
of r and conditioned on the event that RoughEstimator

of Figure 2 succeeds (i.e., outputs a value in [F0(t), 8F0(t)]
for all t with F0(t) ≥ KRE), we can determine the median
across the j of the largest r∗ such that T j

r ≥ ρKRE from the
Aj

i and set r(t1) = r∗ so that 2r(t1) is in [F0(t1), 8F0(t1)].
Our argument henceforth is inductive: conditioned on the

output of RoughEstimator from Figure 2 being correct
(always in [F0(t), 8F0(t)]), 2r(t) will always be in [F0(t)/2, 8F0(t)]
for all t ≥ t1, which we just saw is true for t = t1. Note
that conditioned on RoughEstimator being correct, its es-
timate of F0 cannot jump by a factor more than 8 at any
given point in the stream. Furthermore, if this happens, we
will detect it since we store up to Aj

4. Thus, whenever we
find that the estimate from RoughEstimator changed (say

from 2r′
to 2r′′

), we increment r by r′′ − r′ and set each Aj
i

to Aj
i+r′′−r′ for i ≤ 4+r′−r′′ For 4+r′−r′′ < i ≤ 4, we re-

compute Aj
i from scratch, by looping over the KRE counters

Ci. This requires O(KRE) work, but note that since t ≥ t1,
there must be at least KRE updates before F0(t) doubles,
and thus we can afford to do O(1) work toward this looping
per update. In the meantime 2r cannot fall below F0/2.

We will use the following “variable-bit-length array” data
structure to implement the array C of counters in Figure 3,
which has entries whose binary representations may have
unequal lengths. Specifically, in Figure 3, the bit represen-
tation of Ci requires O(1 + log(Ci + 2)) bits.

Definition 1 (Blandford, Blelloch [7]). A variable-
bit-length array (VLA) is a data structure implementing an
array C1, . . . , Cn supporting the following operations: (1)
update(i, x) sets the value of Ci to x, and (2) read(i) re-
turns Ci. Unlike in standard arrays, the Ci are allowed
to have bit-representations of varying lengths, and we use
len(Ci) to represent the length of the bit-representation of
Ci.

Theorem 8 (Blandford and Blelloch [7]). There is
a VLA data structure using O(n+

P
i len(Ci)) space to store

n elements, supporting worst-case O(1) updates and reads,
under the assumptions that (1) len(Ci) ≤ w for all i, and
(2) w ≥ log(M). Here w is the machine word size, and M
is the amount of memory available to the VLA.

We now give a time-optimal version of Figure 3.

Theorem 9. The algorithm of Figure 3 can be imple-
mented with O(1) worst-case update and reporting times.

Proof. For update time, we select h3 from the hash fam-
ily of Theorem 7, which requires O(1/εε) space for arbitrar-
ily small ε > 0 of our choosing (say, ε = 1), and thus this
space is dominated by other parts of the algorithm. We then
can evaluate h1, h2, h3 in constant time, as well as compute
the required least significant bit in constant time. Updat-
ing A requires computing the ceiling of a base-2 logarithm,
but this is just a most significant bit computation which we
can do in O(1) time. We can also read and write the Cj

in constant time whilst using the same asymptotic space by
Theorem 8.

What remains is to handle the if statement for when
R > 2est. Note that a näıve implementation would require
O(K) time. Though this if statement occurs infrequently
enough that one could show O(1) amortized update time,
we instead show the stronger statement that an implemen-
tation is possible with O(1) worst case update time. The
idea is similar to that in the proof of Lemma 5: when bnew

changes, it cannot change more than a constant number of
times again in the next O(K) updates, and so we can spread
the O(K) required work over the next O(K) stream updates,
doing a constant amount of work each update.

Specifically, note that bnew only ever changes for times t
when R(t) > 2est(t) ≥ K/16, conditioned on the subroutine
of Theorem 4 succeeding, implying that F0(t) ≥ K/256,
and thus there must be at least K/256 updates for F0(t)
to double. Since RoughEstimator always provides an 8-
approximation, est can only increase by at most 3 in the
next K/256 stream updates. We will maintain a primary
and secondary instantiation of our algorithm, and only the
primary receives updates. Then in cases where R > 2est

and bnew changes from b, we copy a sufficiently large con-
stant number of the Cj (specifically, 3 · 256) for each of the
next K/256 updates, from the primary to secondary struc-
ture, performing the update Cj ← max{−1, Cj + b − bnew}
in the secondary structure. If RoughEstimator fails and
est changes by more than 3 in the next K/256 updates,
we output FAIL. Meanwhile, during this copy phase, we
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process new stream updates in both the primary and sec-
ondary structures, and we answer updates from the primary
structure. The analysis of correctness remains virtually un-
changed, since the value 2b corresponding to the primary
structure still remains a constant-factor approximation to
F0 during this copy phase.

For reporting time, note we can maintain T = |{i : Ci ≥
0}| during updates, and thus the reporting time is the time
to compute a natural logarithm, which can be made O(1)
via a small lookup table (see Section A.2).

4. L0 ESTIMATION ALGORITHM
Here we give an algorithm for estimating L0, the Ham-

ming norm of a vector updated in a stream.
Our L0 algorithm is based on the approach to F0 estima-

tion in Figure 4. In this approach, we maintain a lg(n)×K
bit-matrix A, and upon receiving an update i, we subsam-
ple i to the row determined by the lsb of a hash evalua-
tion, then evaluate another hash function to tell us a col-
umn and set the corresponding bit of A to 1. Note that
our algorithm from Section 3 is just a space-optimized im-
plementation of this approach. Specifically, in Figure 3
we obtained a c-approximation R to F0 via RoughEsti-

mator for c = 8. The value b we maintained was just
max{0, lg(32R/K)}. Then rather than explicitly maintain-
ing A, we instead maintained counters Cj which allowed
us to deduce whether Ab,j = 1 (specifically, Ab,j = 1 iff
Cj = 0).

The proof of correctness of the approach in Figure 4 is thus
essentially identical to that of Theorem 3 (in fact simpler,
since we do not have to upper bound the case of outputting
FAIL), so we do not repeat it here. Thus, we need only show
that the approach in Figure 4 can be implemented for some
constant c ≥ 1 in the context of L0-estimation. Specifically,
we must show that (a) the bit-matrix A can be maintained
(with large probability), and (b) we can implement the ora-
cle in Step 4 of Figure 4 to give a c-approximation to L0 for
some constant c ≥ 1.

We first show (a), that we can maintain the bit-matrix
A with large probability. In fact, note our estimate of L0

only depends on one particular row i∗ = log(16R/K) of A,
so we need only ensure that we maintain row i∗ with large
constant probability. We first give two facts.

Fact 2. Let t, r > 0 be integers. Pick h ∈ H2([r], [t]).

For any S ⊂ [r] , E[
Ps

i=1

`|h−1(i)∩S|
2

´
] ≤ |S|2/(2t).

Proof. Write |S| = s. Let Xi,j indicate h(i) = j. By
linearity of expectation, the desired expectation is then

t
X
i<i′

E[Xi,1]E[Xi′,1] = t

 
s

2

!
1

t2
≤ s2

2t
.

Fact 3. Let Fq be a finite field and v ∈ F
d
q be a non-zero

vector. Then, a random w ∈ F
d
q gives Prw[v · w = 0] = 1/q,

where v · w is the inner product over Fq.

Proof. The set of vectors orthogonal to v is a linear sub-
space V ⊂ F

d
q of dimension d − 1 and thus has qd−1 points.

Thus, Pr[w ∈ V ] = 1/q.

Lemma 6. There is a scheme which represents each Ai,j

using O(log(1/ε) + log log(mM)) bits such that, for i∗ =

log(16R/K), the (i∗)th row of A can be recovered with proba-
bility 2/3. Furthermore, the update time and time to recover
any Ai,j are both O(1).

Proof. We represent each Ai,j as a counter Bi,j of O(log(K)+
log log(mM)) bits. We interpret Ai,j as being the bit “1” if
Bi,j is non-zero; else we intrepret Ai,j as 0. The details are
as follows. We choose a prime p randomly in [D, D3] for D =
100K log(mM). Notice that for mM larger than some con-
stant, by standard results on the density of primes there are
at least K2 log2(mM) primes in the interval [D, D3]. Since
every frequency xi is at most mM in magnitude and thus
has at most log(mM) prime factors, non-zero frequencies re-
main non-zero modulo p with probability 1−O(1/K2), which
we condition on occurring. We also randomly pick a vector
u ∈ F

K
p and h4 ∈ H2([K

3], [K]). Upon receiving an update
(i, v), we increment Blsb(h1(i)),h3(h2(i)) by v ·uh4(h2(i)), then
reduce modulo p.

Define Ii∗ = {i ∈ I : lsb(i) = i∗}. Note that condi-
tioned on R ∈ [L0, cL0], we have E[Ii∗ ] ≤ K/32, and thus
Pr[|Ii∗ | ≤ K/20] = 1 − O(1/K) = 1 − o(1) by Chebyshev’s
inequality. We condition on this event occurring. Also, since
the range of h2 is of size K3, the indices in Ii∗ are perfectly
hashed with probability 1 − O(1/K) = 1 − o(1), which we
also condition on occurring.

Let Q be the event that p does not divide any |xj | for
j ∈ Ii∗ . Then by a union bound, Pr[Q] = 1 − O(1/K).

Let Q′ be the event that h4(h2(j)) �= h4(h2(j
′)) for dis-

tinct j, j′ ∈ Ii∗ with h3(h2(j)) = h3(h2(j
′)).

Henceforth, we also condition on both Q and Q′ occurring,
which we later show holds with good probability. Define J
as the set of j ∈ [K] such that h3(h2(i)) = j for at least one
i ∈ Ii∗ , so that to properly represent the Ai∗,j we should
have Bi∗,j non-zero iff j ∈ J . For each j ∈ J , Bi∗,j can be
viewed as maintaining the dot product of a non-zero vector
v, the frequency vector x restricted to coordinates in Ii∗

which hashed to j, with a random vector w, namely, the
projection of u onto coordinates in Ii∗ that hashed to j.
The vector v is non-zero since we condition on Q, and w is
random since we condition on Q′.

Now, let Xi,j be a random variable indicating that h3(h2(j)) =
h3(h2(j

′)) for distinct j, j′ ∈ Ii∗ . Let X =
P

j<j′ Xj,j′ . By

Fact 2 with r = K3, t = K, and s = |Ii∗ | < K/20, we have
that E[X] ≤ K/800. Let Z = {{j, j′} ∈ `Ii∗

2

´
: h3(h2(j)) =

h3(h2(j
′))}. For (j, j′) ∈ Z let Yj,j′ be a random variable in-

dicating h4(h2(j)) = h4(h2(j
′)), and let Y =

P
(j,j′)∈Z Yj,j′ .

Then by pairwise independence of h4, and the fact that we
conditioned on Ii∗ being perfectly hashed under h2, we have

E[Y ] =
X

(j,j′)∈Z

Pr[h4(h2(j)) = h4(h2(j
′))] = |Z|/K.

Note |Z| = X. Conditioned on X ≤ 20E[X] ≤ K/40,
which happens with probability at least 19/20 by Markov’s
inequality, we have that E[Y ] ≤ |Z|/K ≤ 1/40, so that
Pr[Y ≥ 1] ≤ 1/40. Thus, Q′ holds with probability at least
(19/20) · (39/40) > 7/8.

Finally, by Fact 3 with q = p, and union bounding over
all K counters Bi∗,j , no Bi∗,j for j ∈ J is 0 with probability
1 − K/p ≥ 99/100. Thus, our scheme overall succeeds with
probability (7/8) · (99/100) − o(1) > 2/3.

We next show (b) in Section A.3, i.e. give an algorithm
providing an O(1)-approximation to L0 with O(1) update
and reporting times. The space used is O(log(n) log log(mM)).
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1. Set K = 1/ε2.

2. Instantiate a lg(n) × K bit-matrix A, initializing each Ai,j to 0.

3. Pick random h1 ∈ H2([n], [0, n − 1]), h2 ∈ H2([n], [K3]), h3 ∈ Hk([K3], [K]) for k = Ω(lg(1/ε)/ lg lg(1/ε)).

4. Obtain a value R ∈ [F0, cF0] from some oracle, for some constant c ≥ 1.

5. Update(i): Set Alsb(h1(i)),h3(h2(i)) ← 1.

6. Estimator: Define T = |{j ∈ [K] : Alog(16R/K),j = 1}|. Output eF0 = 32R
K

· ln(1− T
K )

ln(1− 1
K )

.

Figure 4: An algorithm skeleton for F0 estimation.

Note that, as with our F0 algorithm, we also need to have
an algorithm which provides a (1 ± ε)-approximation when
L0 	 1/ε2. Just as in Section 3.3, this is done by handling
the case of small L0 in two cases separately: detecting and
estimating when L0 ≤ 100, and (1 ± ε)-approximating L0

when L0 > 100. In the former case, we can compute L0 ex-
actly with large probability by perfect hashing (see Lemma 8
in Section A.3). In the latter case, we use the same scheme
as in Section 3.3, but using Lemma 6 to represent our bit
array.

Putting everything together, we have the following.

Theorem 10. There is an algorithm for (1±ε)-approximating
L0 using space O(ε−2 log(n)(log(1/ε) + log log(mM))), with
2/3 success probability, and with O(1) update and reporting
times.
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APPENDIX
A. APPENDIX

A.1 Expectation and variance analyses for balls
and bins with limited independence

The following is a proof of Lemma 2. Below, X corre-
sponds to the random variable which is the number of bins
receiving at least one ball when tossing A balls into K inde-
pendently at random.
Lemma 2 (restatement). There exists some constant ε0

such that the following holds for ε ≤ ε0. Let A balls be
mapped into K bins using a random h ∈ H2(k+1)([A], [K]),
where k = c log(K/ε)/ log log(K/ε) for a sufficiently large
constant c > 0. Suppose 1 ≤ A ≤ K. For i ∈ [K], let X ′

i

be an indicator variable which is 1 if and only if there exists
at least one ball mapped to bin i by h. Let X ′ =

PK
i=1 X ′

i.
Then the following hold:

(1). |E[X ′] − E[X]| ≤ εE[X]

(2). Var[X ′] − Var[X] ≤ ε2

Proof. Let Ai be the random variable number counting
the number of balls in bin i when picking h ∈ H2(k+1)([A], [K]).
Define the function:

fk(n) =

kX
i=0

(−1)i

 
n

i

!

We note that fk(0) = 1, fk(n) = 0 for 1 ≤ n ≤ k and
|fk(n)| ≤ `

n
k+1

´
otherwise. Let f(n) = 1 if n = 0 and 0

otherwise. We now approximate Xi as 1− fk(Ai). We note
that this value is determined entirely by k-wise independence
of h. We note that this is also

1 − f(Ai) ± O

  
Ai

k + 1

!!
= Xi ± O

  
Ai

k + 1

!!
.

The same expression holds for the X ′
i, and thus both E[X ′

i]
and E[Xi] are sandwiched inside an interval of size bounded
by twice the expected error. To bound the expected error
we can use (k+1)-independence. We have that the expected
value of

`
Ai

k+1

´
is
`

A
k+1

´
ways of choosing k + 1 of the balls

times the product of the probabilities that each ball is in bin
i. This is 

A

k + 1

!
K−(k+1) ≤

„
eA

K(k + 1)

«k+1

≤ A

K
·(e(k+1))−(k+1),

with the last inequality using that A ≤ K. Thus, |E[Xi] −
E[X ′

i]| ≤ ε2A/K for k = c log(1/ε)/ log log(1/ε) for suffi-
ciently large constant c. In this case |E[X]−E[X ′]| ≤ ε2A ≤
εE[X] for ε smaller than some constant since E[X] = Ω(A)
for A ≤ K.

We now analyze Var[X ′]. We approximate XiXj as (1 −
fk(Ai))(1−fk(Aj)). This is determined by 2k-independence

of h and is equal to 
1 − f(Ai) ± O

  
Ai

k + 1

!!! 
1 − f(Aj) ± O

  
Aj

k + 1

!!!

= XiXj ± O

  
Ai

k + 1

!
+

 
Aj

k + 1

!
+

 
Ai

k + 1

! 
Aj

k + 1

!!

We can now analyze the error using 2(k + 1)-wise inde-
pendence. The expectation of each term in the error is cal-
culated as before, except for products of the form 

Ai

k + 1

! 
Aj

k + 1

!
.

The expected value of this is 
A

k + 1, k + 1

!
K−2(k+1) ≤

 
A

k + 1

!2

K−2(k+1)

≤
„

eA

K(k + 1)

«2(k+1)

.

Thus, for k = c′ log(K/ε)/ log log(K/ε) for sufficiently large
c′ > 0, each summand in the error above is bounded by
ε3/(6K2), in which case |E[XiXj ]−E[XiXj ]| ≤ ε3/K2. We
can also make c′ sufficiently large so that |E[X] − E[X ′]| ≤
ε3/K2. Now, we have

Var[X ′] − Var[X]

≤ |(E[X] − E[X ′]) + 2
X
i<j

(E[XiXj ] − E[X ′
iX

′
j ])

− (E2[X] − E2[X ′])|
≤ |E[X] − E[X ′]|

+ K(K − 1) · max
i<j

|E[XiXj ] − E[X ′
iX

′
j ]|

+ |E2[X] − E2[X ′]|
≤ ε3/K2 + ε3 + E2[X](2ε3/K2 + (ε3/K2)2)

≤ 5ε3

which is at most ε2 for ε sufficiently small.

A.2 A compact lookuptable for the natural log-
arithm

Lemma 7. Let K > 4 be a positive integer, and write
γ = 1/

√
K. It is possible to construct a lookup table requir-

ing O(γ−1 log(1/γ)) bits such that ln(1 − c/K) can then be
computed with relative accuracy γ in constant time for all
integers c ∈ [4K/5].

Proof. We set γ′ = γ/15 and discretize the interval
[1, 4K/5] geometrically by powers of (1 + γ′). We precom-
pute the natural algorithm evaluated at 1 − ρ/K for all
discretization points ρ, with relative error γ/3, creating a
table A taking space O(γ−1 log(1/γ)). We answer a query
ln(1− c/K) by outputting the natural logarithm of the clos-
est discretization point in A. First, we argue that the error
from this output is small enough. Next, we argue that the
closest discretization point can be found in constant time.
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For the error, the output is up to (1 ± γ/3),

ln(1 − (1 ± γ′)c/K) = ln(1 − c/K ± γ′c/K)

= ln(1 − c/K) ± 5γ′c/K

= ln(1 − c/K) ± γc/(3K).

Using the fact that | ln(1− z)| ≥ z/(1− z) for 0 < z < 1, we
have that | ln(1 − c/K)| ≥ c/(K − c) ≥ c/K. Thus,

(1 ± γ/3)(ln(1 − c/(3K)) ± γc/K) = (1 ± γ/3)2 ln(1 − c/K)

= (1 ± γ) ln(1 − c/K).

Now, for finding the discretization point, note we need to
look up A[

˚
log1+γ′(c)

ˇ
] = A[�log(c)/(aγ′)�], where aγ′ =

log(1 + γ′) (note, we can compute log(1 + γ′) = aγ′ in pre-
processing). Now, write c = d · 2k where k = �log(c)� and
thus 1 ≤ d < 2. We can compute k in O(1) time since
it is the most significant bit of c. We know log1+γ′(c) =

log(d · 2k)/(aγ′) = k/(aγ′) + log(d)/(aγ′). Now, the deriva-
tive of the log function in the range [1, 2) is sandwiched
between two constants. Thus, if we discretize [1, 2) evenly
into O(γ′−1) buckets and store the log of a representative of
each bucket in a lookup table B, we can additively O(γ′)-
approximate log(d) by table lookup of B[�(d − 1)/γ′�]. So
now we have computed

k/(aγ′)+(log(d) + O(γ′))/(aγ′)

= k/(aγ′) + log(d)/(aγ′) ± O(1).

This O(1) can be taken to be arbitrarily small, say at most
1/3, by tuning the constant in the discretization. So we
know the correct index to look at in our index table A up
to ±1/3; since indices are integers, we are done.

A.3 A Rough Estimator for L0-estimation
We describe here a subroutine RoughL0Estimator which

gives a constant-factor approximation to L0 with probability
9/16. First, we need the following lemma which states that
when L0 is at most some constant c, it can be computed
exactly in small space. The lemma follows by picking a ran-
dom prime p = Θ(log(mM) log log(mM)) and pairwise in-
dependently hashing the universe into [Θ(c2)] buckets. Each
bucket is a counter which tracks the sum of frequencies mod-
ulo p of updates to universe items landing in that bucket.
The estimate of L0 is then the total number of non-zero
counters, and the maximum estimate after O(log(1/η)) tri-
als is finally output. This gives the following.

Lemma 8. There is an algorithm which, when given the
promise that L0 ≤ c, outputs L0 exactly with probability at
least 1 − η using O(c2 log log(mM)) space, in addition to
needing to store O(log(1/η)) independently chosen pairwise
independent hash functions mapping [n] into [c2]. The up-
date and reporting times are O(1).

Now we describe RoughL0Estimator. We pick a func-
tion h : [n] → [n] at random from a pairwise independent
family. For each 0 ≤ j ≤ log(n) we create a substream Sj

consisting of those x ∈ [n] with lsb(h(x)) = j. Let L0(S)
denote L0 of the substream S. For each Sj we run an in-
stantiation Bj of Lemma 8 with c = 141 and η = 1/16.
All instantiations share the same O(log(1/η)) hash functions

h1, . . . , hO(log(1/η)).
To obtain our final estimate of L0 for the entire stream, we

find the largest value of j for which Bj declares L0(Sj) > 8.

Our estimate of L0 is L̃0 = 2j . If no such j exists, we
estimate L̃0 = 1.

Theorem 11. RoughL0Estimator with probability at
least 9/16 outputs a value L̃0 satisfying L0 ≤ L̃0 ≤ 110L0.
The space used is O(log(n) log log(mM)), and the update
and reporting times are O(1).

Proof. The space to store h is O(log n). The Θ(log(1/η))
hash functions hi in total require O(log(1/η) log n) = O(log n)
bits to store since 1/η = O(1). The remaining space to store
a single Bj for a level is O(log log(mM)) by Lemma 8, and
thus storing all Bj across all levels requires O(log(n) log log(mM))
space.

As for running time, upon receiving a stream update (x, v),
we first hash x using h, taking time O(1). Then, we com-
pute lsb(h(x)), also in constant time. Now, given our choice
of η for Bj , we can update Bj in O(1) time by Lemma 8.

To obtain O(1) reporting time, we again use the fact that
we can compute the least significant bit of a machine word
in constant time. We maintain a single machine word z of
at least log(n) bits and treat it as a bit vector. We maintain
that the jth bit of z is 1 iff L0(Sj) is reported to be greater
than 8 by Bj . This property can be maintained in constant
time during updates. Constant reporting time then follows
since finding the deepest level j with greater than 8 reported
elements is equivalent to computing lsb(z).

Now we prove correctness. Observe that E[L0(Sj)] =
L0/2j+1 when j < log n and E[L0(Sj)] = L0/2j = L0/n
when j = log n. Let j∗ be the largest j satisfying E[L0(Sj)] ≥
1 and note that 1 ≤ E[L0(Sj∗)] ≤ 2. For any j > j∗,
Pr[L0(Sj) > 8] < 1/(8 · 2j−j∗−1) by Markov’s inequality.
Thus, by a union bound, the probability that any j > j∗

has L0(Sj) > 8 is at most (1/8) ·P∞
j−j∗=1 2−(j−j∗−1) = 1/4.

Now, let j∗∗ < j∗ be the largest j such that E[L0(Sj)] ≥ 55,
if such a j exists. Since we increase the j by powers of 2, we
have 55 ≤ E[L0(Sj∗∗)] < 110. Note that h is pairwise inde-

pendent, so Var[L0(Sj∗∗)] ≤ E[L0(Sj∗∗)]. For this range of

E[L0(Sj∗∗)], we then have by Chebyshev’s inequality that

Pr
h
|L0(Sj∗∗) − E[L0(Sj∗∗)]| ≥ 3

p
E[L0(Sj∗∗)]

i
≤ 1/9.

If |L0(Sj∗∗) − E[L0(Sj∗∗)]| < 3
p

E[L0(Sj∗∗)], then

32 < 55 − 3
√

55 < L0(Sj∗∗) < 110 + 3
√

110 < 142

since 55 ≤ E[L0(Sj∗∗)] < 110.
So far we have shown that with probability at least 3/4,

L0(Sj) ≤ 8 for all j > j∗. Thus, for these j the Bj will
estimate L0 of the corresponding substreams to be at most
8, and we will not output L̃0 = 2j for j > j∗. On the other
hand, we know for j∗∗ (if it exists) that with probability at

least 8/9, Sj∗∗ will have 32 < L0(Sj∗∗
i ) < 142. By our choice

of c = 141 and η = 1/16 in the Bj , Bj∗∗ will output a value

L̃0(Sj∗∗
i ) ≥ L0(Sj∗∗

i )/4 > 8 with probability at least 1 −
(1/9 + 1/16) > 13/16 by Lemma 8. Thus, with probability

at least 1−(3/16+1/4) = 9/16, we output L̃0 = 2j for some
j∗∗ ≤ j ≤ j∗, which satisfies 110 ·2j < L0 ≤ 2j . If such a j∗∗

does not exist, then L0 < 55, and 1 is a 55-approximation
in this case.
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ABSTRACT
We say a turnstile streaming algorithm is non-adaptive if,
during updates, the memory cells written and read depend
only on the index being updated and random coins tossed
at the beginning of the stream (and not on the memory con-
tents of the algorithm). Memory cells read during queries
may be decided upon adaptively. All known turnstile stream-
ing algorithms in the literature, except a single recent exam-
ple for a particular promise problem [7], are non-adaptive.
In fact, even more specifically, they are all linear sketches.

We prove the first non-trivial update time lower bounds
for both randomized and deterministic turnstile streaming
algorithms, which hold when the algorithms are non-adaptive.
While there has been abundant success in proving space
lower bounds, there have been no non-trivial turnstile up-
date time lower bounds. Our lower bounds hold against clas-
sically studied problems such as heavy hitters, point query,
entropy estimation, and moment estimation. In some cases
of deterministic algorithms, our lower bounds nearly match
known upper bounds.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Theory, Algorithms

Keywords
streaming; time lower bounds; cell probe model; heavy hit-
ters; point query
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1. INTRODUCTION
In the turnstile streaming model of computation [36] there

is some vector v ∈ R
n initialized to �0, and we must provide a

data structure that processes coordinate-wise updates to v.
An update of the form (i,Δ) causes the change vi ← vi+Δ,
where Δ ∈ {−M, . . . ,M}. Occasionally our data structure
must answer queries for some function of v. In many ap-
plications n is extremely large, and thus it is desirable to
provide a data structure with space consumption much less
than n, e.g. polylogarithmic in n. For example, n may be
the number of valid IP addresses (n = 2128 in IPv6), and vi
may be the number of packets sent from source IP address i
on a particular link. A query may then ask for the support
size of v (the “distinct elements” problem [14]), which was
used for example to estimate the spread of the Code Red
worm after filtering the packet stream based on the worm’s
signature [13, 35]. Another query may be the �2 norm of v
[2], which was used by AT&T as part of a packet monitor-
ing system [31, 42]. In some examples there is more than
one possible query to be asked; in “point query” problems a
query is some i ∈ [n] and the data structure must output
vi up to some additive error, e.g. ε‖v‖p [6, 12]. Such point
query data structures are used as subroutines in the heavy
hitters problem, where informally the goal is to output all i
such that vi is “large”. If the data structure is linearly com-
posable (meaning that data structures for v and v′ can be
combined to form a data structure for v− v′), heavy hitters
data structures can be used for example to detect trending
topics in search engine query streams [20, 21, 6]. In fact the
point query structure [6] has been implemented in the log
analysis language Sawzall at Google [41].

Coupled with the great success in providing small-space
data structures for various turnstile streaming problems has
been a great amount of progress in proving space lower
bounds, i.e. theorems which state that any data structure
for some particular turnstile streaming problem must use
space (in bits) above some lower bound. For example, tight
or nearly tight space lower bounds are known for the dis-
tinct elements problem [2, 43, 44, 25], �p norm estimation
[2, 3, 5, 43, 29, 22, 24, 26, 44, 25], heavy hitters [27], entropy
estimation [4, 29], and several other problems.

While there has been much previous work on understand-
ing the space required for solving various streaming prob-
lems, much less progress has been made regarding time com-
plexity: the time it takes to process an update in the stream
and the time it takes to answer a query about the stream.
This is despite strong motivation, since in several applica-
tions the data stream may be updated at an extremely fast
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rate, so that in fact update time is often arguably more im-
portant than space consumption; for example, [42] reported
in their application for �2-norm estimation that their system
was constrained to spend only 130 nanoseconds per packet
to keep up with high network speeds. If for example n is
the number of IP addresses 2128, then certainly the (com-
puter connected to the) router has much more than lg n bits
of memory or even cache, which is a regime much previous
streaming literature has focused on. Arguably this primary
focus on space was not because of the greater practical in-
terest in space complexity, but simply because up until this
point there was a conspicuous absence of understanding con-
cerning the tradeoff between update time and memory con-
sumption (especially from the perspective of lower bounds).
In short, many previous research targets were defined by
what our tools allowed us to prove. In fact, in high-speed
applications such as in networking, one could easily imagine
preferring a solution using nε memory (as long as it fit in
cache) with a very fast update time than, say, polylogarith-
mic memory with worse update time.

Of course, without any space constraint achieving fast up-
date and query times is trivial: store v and its norm in mem-
ory explicitly and spend constant time to add Δ to vi and
change the stored norm after each update. Thus an inter-
esting data structural issues arises: how can we simultane-
ously achieve small space and low time for turnstile stream-
ing data structures? As mentioned, surprisingly very little
is understood about this question for any turnstile stream-
ing problem. For some problems we have very fast algo-
rithms (e.g. constant update time for distinct elements [30],
and also for �2 estimation [42]), whereas for others we do
not (e.g. super-constant time for �p estimation for p �= 2
[28] and heavy hitters problems [6, 12]), and we do not have
proofs precluding the possibility that a fast algorithm exists.
Indeed, the only previous time lower bounds for streaming
problems are those of Clifford and Jalsenius [8] and Clif-
ford, Jalsenius, and Sach [9, 10] for streaming multiplica-
tion, streaming edit distance and streaming Hamming dis-
tance computation. These problems are significantly harder
than e.g. �p estimation (the lower bounds proved apply even
for super-linear space usage) and there appears to be no way
of extending their approach to obtain lower bounds for the
problems above. Importantly, the problems considered in
[8, 9, 10] are not in the turnstile model.

A natural model for upper bounds in the streaming liter-
ature (and also for data structures in general), is the word
RAM model: basic arithmetic operations on machine words
of w bits each cost one unit of time. In the data structure
literature, one of the strongest lower bounds that can be
proven is in the cell probe model [34, 15, 45], where one
assumes that the data structure is broken up into S words
each of size w bits and cost is only incurred when the user
reads a memory cell from the data structure (S is the space).
Lower bounds proven in this model hold against any algo-
rithm operating in the word RAM model. In recent years
there has been much success in proving data structure lower
bounds in the cell probe model (see for example [39, 33])
using techniques from communication complexity and infor-
mation theory. Can these techniques be imported to obtain
time lower bounds for clasically studied turnstile streaming
problems?

Question 1. Can we use techniques from cell probe lower
bound proofs to lower bound the time complexity for classical
streaming problems?

Indeed the lower bounds for streaming multiplication and
Hamming distance computation were proved using the in-
formation transfer technique of Pǎtraşcu and Demaine [40],
but this approach does not seem effective against the turn-
stile streaming problems above.

There are a couple of obvious problems to attack for Ques-
tion 1. For example, for many streaming problems one can
move from, say, 2/3 success probability to 1−δ success prob-
ability by running Θ(lg(1/δ)) instantiations of the algorithm
in parallel then outputting the median answer. This is possi-
ble whenever the output of the algorithm is numerical, such
as for example distinct elements, moment estimation, en-
tropy estimation, point query, or several other problems.
Note that doing so increases both the space and update
time complexity of the resulting streaming algorithm by a
Θ(lg(1/δ)) factor. Is this necessary? It was shown that the
blowup in space is necessary for several problems by Jayram
and Woodruff [26], but absolutely nothing is known about
whether the blowup in time is required. Thus, any non-
trivial lower bound in terms of δ would be novel.

Another problem to try for Question 1 is the heavy hitters
problem. Consider the �1 heavy hitters problem: a vector
v receives turnstile updates, and during a query we must
report all i such that |vi| ≥ ε‖v‖1. Our list is allowed to
contain some false positives, but not “too false”, in the sense
that any i output should at least satisfy |vi| ≥ (ε/2)‖v‖1.
Algorithms known for this problem using non-trivially small
space, both randomized [12] and deterministic [19, 37], re-

quire Ω̃(lg n) update time. Can we prove a matching lower
bound?

Our Results.
In this paper we present the first update time lower bounds

for a range of classical turnstile streaming problems. The
lower bounds apply to a restricted class of randomized stream-
ing algorithms that we refer to as randomized non-adaptive
algorithms. We say that a randomized streaming algorithm
is non-adaptive if:

• Before processing any elements of the stream, the al-
gorithm may toss some random coins.

• The memory words read/written to (henceforth jointly
referred to as probed) on any update operation (i,Δ)
are completely determined from the index i and the
initially tossed random coins.

Thus a non-adaptive algorithm may not decide which mem-
ory words to probe based on the current contents of the
memory words. Note that in this model of non-adaptivity,
the random coins can encode e.g. a hash function chosen
(independent of the stream) from a desirable family of hash
functions and the update algorithm can choose what to probe
based on the hash function. It is only the input-specific con-
tents of the probed words that the algorithm may not use
to decide which words to probe. To the best of our knowl-
edge, all the known algorithms for classical turnstile stream-
ing problems are indeed non-adaptive, in particular linear
sketches (i.e. maintaining Πv in memory for some r × n
matrix Π, r 	 n). One exception we are aware of is an

804



adaptive algorithm given for a promise problem in [7] (it is
also worth mentioning that for the non-promise version of
the problem, the algorithm given in the same work is again
non-adaptive). We further remark that our lower bounds
only require the update procedure to be non-adaptive and
still apply if adaptivity is used to answer queries.

Remark 2. One common technique in turnstile stream-
ing (e.g. see [28]) is to batch some number of updates then
process them all more time-efficiently once the batch is large
enough. In all examples we are aware of using this technique,
a time savings is gained solely because batching allows for
faster evaluation of the hash functions involved (e.g. using
fast multipoint evaluation of polynomials). Thus, such tech-
niques have only ever found application to decreasing word
RAM time complexity, but have thus far never been effec-
tive in decreasing cell probe complexity, which is what our
current work here lower bounds. Thus, in all these cases,
there is a non-adaptive algorithm achieving the best known
cell probe complexity.

For the remainder of the paper, for ease of presentation we
assume that the update increments are (possibly negative)
integers bounded by some M ≤ poly(n) in magnitude, and
that the number of updates in the stream is also at most
poly(n). We further assume the trans-dichotomous model
[16, 17], i.e. that the machine word size w is Θ(lg n) bits.
This is a natural assumption, since typically the stream-
ing literature assumes that basic arithmetic operations on a
value |vi|, the index of the current position in the stream,
or an index i into v can be performed in constant time.

We prove lower bounds for the following types of queries
in turnstile streams. For each problem listed, the query
function takes no input (other than point query, which takes
an input i ∈ [n]). Each query below is accompanied by a
description of what the data structure should output.

• �1 heavy hitter: return an index i such that |vi| ≥
‖v‖∞ − ‖v‖1/2.

• Point query: given i at query time, returns vi ±
‖v‖1/2.

• �p/�q norm estimation (1 ≤ q ≤ p ≤ ∞): returns
‖v‖p ± ‖v‖q/2.

• Entropy estimation. returns a 2-approximation of
the entropy of the distribution which assigns probabil-
ity |vi|/‖v‖1 to i for each i ∈ [n].

The lower bounds we prove for non-adaptive streaming
algorithms are as follows (n−O(1) ≤ δ ≤ 1/2 − Ω(1) is the
failure probability of a query):

• Any randomized non-adaptive streaming algorithm for
point query, �p/�q estimation with 1 ≤ q ≤ p ≤ ∞, and
entropy estimation, must have worst case update time

tu = Ω( lg(1/δ)√
lgn lg(eS/tu)

).

We also show that any deterministic non-adaptive stream-
ing algorithm for the same problems must have worst
case update time tu = Ω(lg n/ lg(eS/tu)).

• Any randomized non-adaptive streaming algorithm for
�1 heavy hitters, must have worst case update time

tu = Ω(min{
√

lg(1/δ)
lg(eS/tu)

, lg(1/δ)√
lg tu·lg(eS/tu)

}). Any deter-

ministic and non-adaptive streaming algorithm for �1
heavy hitters must have worst case update time tu =
Ω( lgn

lg(eS/tu)
).

Remark 3. The deterministic lower bound above for
point query matches two previous upper bounds for point
query [37], which use error-correcting codes to yield deter-
ministic point query data structures. Specifically, for space
S = O(lg n), our lower bound implies tu = Ω(lg n), match-
ing an upper bound based on random codes. For space
O((lg n/ lg lg n)2), our lower bound is tu = Ω(lg n/ lg lg n),
matching an upper bound based on Reed-Solomon codes.
Similarly, the deterministic bound above for deterministic
�2/�1 norm estimation matches the previous upper bound
for this problem [37], showing that for the optimal space
S = Θ(lg n), the fastest query time of non-adaptive algo-
rithms is tu = Θ(lg n).

These deterministic upper bounds are also in the cell
probe model. In particular, the point query data struc-
ture based on random codes and the norm estimation data
structure require access to combinatorial objects that are
shown to exist via the probabilistic method, but for which we
do not have explicit constructions. The point query struc-
ture based on Reed-Solomon codes can be implemented in
the word RAM model with tu = Õ(lg n) using fast multi-
point evaluation of polynomials. This is because perform-
ing an update, in addition to accessing O(lg n/ lg lg n) mem-
ory cells of the data structure, requires evaluating a degree-
O(lg n/ lg lg n) polynomial on O(lg n/ lg lg n) points to de-
termine which memory cells to access (see [37] for details).

Remark 4. The best known randomized upper bounds
are S = tu = O(lg(1/δ)) for point query [12] and �p/�p
estimation for p ≤ 2 [42, 28]. For entropy estimation the

best upper bound has S = tu = Õ((lg n)2 lg(1/δ)) [23]. For
�1 heavy hitters the best known upper bound (in terms of S
and tu) has S = tu = O(lg(n/δ)).

In addition to being the first non-trivial turnstile update
time lower bounds, we also managed to show that the update
time has to increase polylogarithmically in 1/δ as the error
probability δ decreases, which is achieved with the typical
reduction using lg(1/δ) independent copies of a data struc-
ture with constant error probability.

Our lower bounds can also be viewed in another light. If
one is to obtain constant update time algorithms for the
above problems, then one has to design algorithms that are
adaptive. Since all known upper bounds have non-adaptive
updates, this would require a completely new strategy to
designing turnstile streaming algorithms. Note that for ran-
domized algorithms, our lower bounds do not rule out con-
stant update time with constant error probability. If how-

ever the error probability is upper bounded by 2−ω(
√
lgn),

then adaptivity is necessary to achieve constant update time.
We also show a new cell probe upper bound for �1 point

query which outperforms the CountMin sketch [12] in terms
of query time, while matching it in both space and update
time (see Section 4.2). Our new algorithm is inspired by the
solution to the hard instance for our above lower bounds and
we believe this upper bound provides evidence that despite
the importance of the problems, the effort on understand-
ing the time complexity of them has been insufficient and
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perhaps better algorithms are achievable. In fact, our up-
per bound even demonstrates the lg(1/δ)/

√
lg n behaviour

of our lower bounds, further supporting the hypothesis that
faster algorithms exist. Our upper bound is randomized,
non-adaptive and in the cell probe model, meaning that we
assume computation is free of charge and that we have ac-
cess to input independent truly random hash functions that
can be evaluated free of charge. Clearly our lower bounds
apply to this setting. It would be interesting to find a fast
implementation of our algorithm in the word-RAM model.

Technique.
As suggested by Question 1, we prove our lower bounds

using recent ideas in cell probe lower bound proofs. More
specifically, we use ideas from the technique now formally
known as cell sampling [18, 38, 32]. This technique derives
lower bounds based on one key observation: if a data struc-
ture/streaming algorithm probes t memory words on an up-
date, then there is a set C of t memory words such that at
least m/St updates probe only memory words in C, where
m is the number of distinct updates in the problem (for data
structure lower bound proofs, we typically consider queries
rather than updates, and we obtain tighter lower bounds by
forcing C to have near-linear size).

We use this observation in combination with the stan-
dard one-way communication games typically used to prove
streaming space lower bounds. In these games, Alice receives
updates to a streaming problem and Bob receives a query.
Alice runs her updates through a streaming algorithm for
the corresponding streaming problem and sends the result-
ing Sw bit memory footprint to Bob. Bob then answers his
query using the memory footprint received from Alice. By
proving communication lower bounds for any communica-
tion protocol solving the one-way communication game, one
obtains space lower bounds for the corresponding streaming
problem.

At a high level, we use the cell sampling idea in combi-
nation with the one-way communication game as follows: if
Alice’s non-adaptive streaming algorithm happens to “hash”
her updates such that they all probe the same t memory
cells, then she only needs to send Bob the contents of those
t cells. If t < S, this gives a communication saving over
the standard reduction above. We formalize this as a gen-
eral sketch-compression theorem, allowing us to compress
the memory footprint of any non-adaptive streaming algo-
rithm at the cost of increasing the error probability. This
general theorem has the advantage of allowing us to re-use
previous space lower bounds that have been proved using
the standard reduction to one-way communication games,
this time however obtaining lower bounds on the update
time. We demonstrate these ideas in Section 2 and also give
a more formal definition of the classic one-way communica-
tion game.

2. SKETCH COMPRESSION
In the following, we present a general theorem for com-

pressing non-adaptive sketches. Consider a streaming prob-
lem in which we are to maintain an n-dimensional vector v.
Let U be the update domain, where each element of U is a
pair (i,Δ) ∈ [n] × {−M, . . . ,M} for some M = poly(n).
We interpret an update (i,Δ) ∈ U as having the effect
v[i] ← v[i] + Δ. Initially all entries of v are 0. We also de-
fine the query domain Q = {q1, . . . , qr}, where each qi ∈ Q

is a function qi : Z
n → R. With one-way communication

games in mind, we define the input to a streaming prob-
lem as consisting of two parts. More specifically, the pre-
domain Dpre ⊆ Ua consists of sequences of a update op-
erations. The post-domain Dpost ⊆ {U ∪ Q}b consists of
sequences of b updates and/or queries. Finally, the input
domain D ⊆ Dpre ×Dpost denotes the possible pairings of a
initial updates followed by b intermixed queries and updates.
The set D defines a streaming problem PD.

We say that a randomized streaming algorithm for a prob-
lem PD uses S words of space if the maximum number of
memory words used when processing any d ∈ D is S. Here
a memory word consists of w = Θ(lg n) bits. The worst case
update time tu is the maximum number of memory words
read/written to upon processing an update operation for any
d ∈ D. The error probability δ is defined as the maximum
probability over all d ∈ D and queries qi ∈ d ∩ Q, of re-
turning an incorrect results on query qi after the updates
preceding it in the sequence d.

A streaming problem PD of the above form naturally de-
fines a one-way communication game: on an input (d1, d2) ∈
D, Alice receives d1 (the first a updates) and Bob receives
d2 (the last b updates and/or queries). Alice may now send
a message to Bob based on her input and Bob must answer
all queries in his input as if streaming through the concate-
nated sequence of operations d1 ◦ d2. The error probability
of a communication protocol is defined as the maximum over
all d ∈ D and qi ∈ {d∩Q}, of returning an incorrect results
on qi when receiving d as input.

Traditionally, the following reduction is used:

Theorem 5. If there is a randomized streaming algorithm
for PD with space usage S and error probability δ, then there
is a private coin protocol for the corresponding one-way com-
munication game in which Alice sends Sw bits to Bob and
the error probability is δ.

Proof. Alice simply runs the streaming algorithm on her
input and sends the memory image to Bob. Bob continues
the streaming algorithm and outputs the answers. �

Recall from Section 1 that a randomized streaming algo-
rithm is non-adaptive if:

• Before processing any elements of the stream, the al-
gorithm may toss some random coins.

• The memory words read/written to (henceforth jointly
referred to as probed) on any update operation (i,Δ) is
completely determined from i and the initially tossed
random coins.

We show that for non-adaptive algorithms, one can effi-
ciently reduce the communication by increasing the error
probability. We require some additional properties of the
problem however: we say that a streaming problem PD is
permutation invariant if for any permutation π : [n] → [n],
it holds that π(qi(v)) = (π(qi)(π(v))) for all qi ∈ Q. Here
π(v) is the n-dimensional vector with value v[i] in entry π[i],
π(qi) maps all indices (if any) in the definition of the query
qi wrt. π and π(qi(v)) maps all indices in the answer qi(v)
(if any) wrt. π.

Observe that point query, �p estimation, entropy estima-
tion and heavy hitters all are permutation invariant prob-
lems. For point query, we have π(qi(v)) = qi(v) since an-
swers contain no indices, but π(qi) might differ from qi
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since queries are defined from indices. For �p estimation
and entropy estimation, we simply have π(qi(v)) = qi(v)
and π(qi) = qi since neither queries or answers involve in-
dices. For heavy hitters we have π(qi) = qi (there is only
one query), but we might have that π(qi(v)) �= qi(v) since
the answer to the one query is an index. We now have the
following:

Theorem 6. If there is a randomized non-adaptive stream-
ing algorithm for a permutation invariant problem PD with
a ≤ √

n, having space usage S, error probability δ, and
worst case update time tu ≤ (1/2)(lg n/ lg(eS/tu)), then
there is a private coin protocol for the corresponding one-way
communication game in which Alice sends at most a lg e +
tua lg(eS/tu) + lg a + lg lg(en/a) + tuw + 1 bits to Bob and
the error probability is 2ea · (eS/tu)tuaδ.

Before giving the proof, we present the two main ideas.
First observe that once the random choices of a non-adaptive
streaming algorithm have been made, there must be a large
collection of indices I ⊆ [n] for which all updates (i,Δ),
where i ∈ I, probe the same small set of memory words
(there are at most

(
S
tu

)
distinct sets of tu words to probe). If

all of Alice’s updates probed only the same set of tu words,
then Alice could simply send those words to Bob and we
would have reduced the communication to tuw bits. To
handle the case where Alice’s updates probe different sets of
words, we make use of the permutation invariant property.
More specifically, we show that Alice and Bob can agree on
a collection of k permutations of the input indices, such that
one of these permutes all of Alice’s updates to a new set of
indices that probe the same tu memory cells. Alice can then
send this permutation to Bob and they can both alter their
input based on the permutation. Therefore Alice and Bob
can solve the communication game with lg k + tuw bits of
communication. The permutation of indices unfortunately
increases the error probability as we shall see below. With
these ideas in mind, we now give the proof of Theorem 6.

Proof (of Theorem 6). Alice and Bob will permute the
indices in their communication problem and use the random-
ized non-adaptive streaming algorithm on this transformed
instance to obtain an efficient protocol for the original prob-
lem.

By Yao’s principle, we have that the randomized com-
plexity of a private coin one-way communication game with
error probability δ equals the complexity of the best deter-
ministic algorithm with error probability δ over the worst
distribution. Hence we show that for any distribution μ on
D ⊆ Dpre×Dpost, there exists a deterministic one-way com-
munication protocol with tua lgS+lg a+lg lg n+tuw bits of
communication and error probability 2ea · (eS/tu)tuaδ. We
let μ1 denote the marginal distribution over Dpre and μ2 the
marginal distribution over Dpost.

Let μ = (μ1, μ2) be a distribution on D. Define a new
distribution γ = (γ1, γ2): pick a uniform random permuta-
tion π of [n]. Now draw an input d from μ and permutate
all indices of updates (and queries if defined for such) using
the permutation π. The resulting sequence π(d) is given to
Alice and Bob as before, which defines the new distribution
γ = (γ1, γ2). We use A ∼ μ1 to denote the r.v. providing
Alice’s input drawn from distribution μ1 and π(A) ∼ γ1
denotes the random variable providing Alice’s transformed
input. We define B ∼ μ2 and π(B) ∼ γ2 symmetrically.

Recall we want to solve the one-way communication game
on A and B. To do this, first observe that by fixing the
random coins, the randomized non-adaptive streaming al-
gorithm gives a non-adaptive and deterministic streaming
algorithm that has error probability δ and space usage S
under distribution γ. Before starting the communication
protocol on A and B, Alice and Bob both examine the algo-
rithm (it is known to both of them). Since it is non-adaptive
and deterministic, they can find a set of tu memory words C,
such that at least n/

(
S
tu

)
> n/(eS/tu)

tu ≥ √
n ≥ a indices

i ∈ [n] satisfy that any update (i,Δ) probes only memory
words in C. We let IC denote the set of all such indices
(again, IC is known to both Alice and Bob). Alice and Bob
also agree on a set of permutations {ρ1, . . . , ρk} (we deter-
mine a value for k later), such that for any set of at most
a indices, I ′, that can occur in Alice’s updates, there is at
least one permutation ρi where:

• ρi(j) ∈ IC for all j ∈ I ′

• Let I(A) denote the (random) indices of the updates
in A. Then the probability that the non-adaptive and
deterministic protocol errs on input ρi(A), conditioned
on I(A) = I ′, is at most 2ea ·(eS/tu)tua ·εI(A)=I′ where
εI(A)=I′ is the error probability of the deterministic
and non-adaptive streaming algorithm on distribution
γ, conditioned on I(A) = I ′.

Again, this set of permutations is known to both players.
The protocol is now simple: upon receiving A, Alice finds
the index i of a permutation ρi satisfying the above for the
indices I(A). She then sends this index to Bob and runs
the deterministic and non-adaptive algorithm on ρi(A). She
forwards the addresses and contents of all memory words in
C as well. This costs a total of lg k+ |C| ·w ≤ lg k+ tu(n)w
bits. Note that no words outside C are updated during
Alice’s updates. Bob now remaps his input B according to
ρi and runs the deterministic and non-adaptive streaming
algorithm on his updates and queries. Observe that for each
query qj ∈ B, Bob will get the answer ρi(qj)(ρi(v)) if the
algorithm does not err, where v is the“non-permuted”vector
after processing all of Alice’s updates A and all updates in B
preceeding the query qj . For each such answer, he computes
ρ−1
i (ρi(qj)(ρi(v))). Since PD is permutation invariant, we

have ρ−1
i (ρi(qj)(ρi(v))) = ρ−1

i (ρi(qj(v))) = qj(v). The final
error probability (over μ) is hence at most 2ea ·(eS/tu)tua ·δ
since EI′ εI(A)=I′ = δ.

We only need a bound on k. For this, fix one set I ′ of at
most a indices in [n] and consider drawing k uniform random
permutations. For each such random permutation Γ, note
that Γ(I ′) is distributed as I(π(A)) conditioned on I(A) =
I ′. Hence, the expected error probability when using the
map Γ (expectation over choice of Γ) is precisely εI(A)=I′ .
We also have

P(Γ(I ′) ⊆ IC) =

(|IC |
|I′|

)
(

n
|I′|

) ≥
( |IC |

en

)|I′|
≥ e−a ·

(
eS

tu

)−tua

By Markov’s inequality and a union bound, we have both
Γ(I ′) ⊆ IC and error probability at most 2ea · (eS/tu)tua ·
εI(A)=I′ with probability at least e−a · (eS/tu)−tua/2

def
= p

over the choice of Γ. Thus if we pick k = (1/p)a lg(en/a) >
(1/p) · lg (n

a

)
and use that 1 + x ≤ ex for all real x, then

setting the probability that all permutations Γ chosen fail
to have the desired failure probability and Γ(I ′) ⊆ IC is at
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most (1− p)k < 1/
(
n
a

)
. Thus by a union bound over all

(
n
a

)
size-a subsets of indices, we can conclude that the desired
set of permutations exists. �

3. IMPLICATIONS
In this section, we present the (almost) immediate im-

plications of Theorem 6. All these results follow by re-
using the one-way communication game lower bounds orig-
inally proved to obtain space lower bounds of heavy hitters
[27]. Consider the generic protocol in Figure 1. For differ-
ent streaming problems, we will show the different ways to
implement the function Check(t, j) using the updates and
queries of the problems, where Check(t, j) is supposed to be
able to tell if t is equal to ij with failure probability δ. We
show first that if this is the case, we obtain a lower bound
on the update time tu. The lower bounds then follow from
the implementation of Check(t, j).

1: Alice chooses a indices i1, . . . , ia randomly without re-
placement in [n].

2: Alice performs updates v[ij ] ← v[ij ] + Cj for j =
1, . . . , a, where C is a large constant.

3: Alice sends her memory state to Bob.
4: for j from a down to 1 do 	 Bob decodes ia, . . . , i1

from Alice’s message.
5: for all t ∈ [n] do
6: if Check(t,j) then
7: Bob declares ij = t.
8: Bob performs the update v[ij ] ← v[ij ]− Cj

9: end if
10: end for
11: end for

Figure 1: The communication protocol for Alice to
send a random numbers in [n] to Bob.

The proofs of the following two theorems follow easily from
Theorem 6:

Theorem 7. Any randomized non-adaptive streaming al-
gorithm that can implement all the Check(t, j) calls using no

more than k ≤ nO(1) queries with failure probability n−Ω(1) ≤
δ ≤ 1/2 − Ω(1) each, must have worst case update time

tu = Ω

(
min

{√
lg 1/δ

lg(eS/tu)
, lg 1/δ√

lg k lg(eS/tu)

})
.

Proof. We first prove the lower bound for the case where√
lg 1/δ

lg(eS/tu)
is the smaller of the two terms. This is the case

at least from n−Ω(1) ≤ δ ≤ k−3. Assume for contradic-
tion that such a randomized non-adaptive algorithm exists
with tu = o(

√
lg(1/δ)/ lg(eS/tu)). Set a = c0tu for a suf-

ficiently large constant c0. We invoke Theorem 6 to con-
clude that Alice can send her memory state to Bob using
a lg e+ tua lg(eS/tu)+ lg a+lg lg(en/a)+ tuw+1 bits while
increasing the failure probability of Bob’s k queries to

2ea · (eS/tu)tuaδ ≤ (eS/tu)
c0t

2
uδ1−o(1) ≤ δ1−o(1) ≤ k−2

each. By a union bound, the answer to all Bob’s queries
are correct with probability at least 1 − 1/k ≥ 9/10, so
Bob can recover i1, . . . , ia with probability 9/10. By Fano’s
inequality, Alice must send Bob at least Ω(H(i1, . . . , ia)) =

Ω(a lg(n/a)) ≥ c0c1tu lg n bits for some constant c1 (where
c1 does not depend on c0). But the size of her message was

a lg e+ tua lg(eS/tu) + lg a+ lg lg(en/a) + tuw + 1 ≤
c0t

2
u lg(eS/tu) + tuw + o(tu lg n).

We assumed

tu = o
(√

lg(1/δ)/ lg(eS/tu)
)
= o

(√
lg n/ lg(eS/tu)

)
and thus the above is bounded by tuw + o(tu lg n). Setting
c0 high enough, we get that w ≥ (c0c1 lg n)/2 and thus we
have reached a contradiction.

For the case k−3 < δ < 1/2−Ω(1), observe that we can de-
crease the failure probability to k−3 by increasing the space,
update time and query time by a factor α = Θ(lg1/δ k):
simply run α independent copies of the streaming algorithm
and return the majority answer on a query. Hence the lower
bound becomes

Ω

⎛
⎝

√
lg k

lg(eSα/(tuα))

α

⎞
⎠ = Ω

(
lg 1/δ√

lg k lg(eS/tu)

)
.

�

Theorem 8. Any deterministic non-adaptive streaming
algorithm that can implement Check(t, j) must have worst
case update time tu = Ω( lgn

lg(eS/tu)
).

Proof. The proof is similar to that of Theorem 7. As-
sume for contradiction there is a deterministic non-adaptive
streaming algorithm with tu = o(lg n/ lg(eS/tu)). Choose
a = c0tu for sufficiently large constant c0. By Theorem 6,
Alice can send her memory state to Bob using

a lg e+ tua lg(eS/tu) + lg a+ lg lg(en/a) + tuw + 1 ≤
c0t

2
u lg(eS/tu) + tuw + o(tu lg n) ≤

tuw + o(tu lg n)

bits and Bob can still answer every query correctly. Since
Bob can recover i1, . . . , ia, Alice must send Bob at least
H(i1, . . . , ia) = Ω(a lg(n/a)) = c0c1tu lg n for some con-
stant c1 (independent of c0). Setting c0 large enough gives
w ≥ (c0c1 lg n)/2, thus deriving the contradiction. �

3.1 Applications to specific problems

Point query.
We can implement each Check(t, j) by simply querying

for the value of v[t] and check if the returned value is at
least Cj/3. By the guarantee of the algorithm, if it does
not fail, the returned value is within a factor 3 from the
right value and thus, Check(t, j) can correctly tell if t = vj .

Thus we run a total of na = nO(1) queries to implement all
Check(t, j)’s.

�p/�q estimation.
We can implement Check(t, j) as follows.

• v[t] ← v[t]− Cj

• Check if ‖v‖p is at most Cj/3

• v[t] ← v[t] + Cj
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By the guarantee of the algorithm, if it does not fail, the
estimated �p/�q norm is at most 3Cj−1 < Cj/3 if t = ij
and it is greater than Cj/3 if t �= ij . Thus, Check(t, j) can

correctly tell if t = vj . Again we used nO(1) queries in total.
We can also implement Check(t, j) for entropy estimation.

Entropy estimation.
We implement Check(t, j) as follows.

• v[t] ← v[t]− Cj

• Check if the entropy is at most 1/3

• v[t] ← v[t] + Cj

Consider the case the algorithm does not fail. First, if t = ij
then the entropy is at most

j∑
i=1

Ci(C − 1)

Cj+1 − C
lg

Cj+1 − C

Ci(C − 1)

≤
j−1∑
i=1

Ci(C − 1)

Cj+1 − C
lg 2Cj−i +

Cj(C − 1)

Cj+1 − C
lg

Cj+1 − C

Cj(C − 1)

≤ O

(
lgC

C − 1

)
+

Cj(C − 1)

Cj+1 − C
· Cj − C

Cj(C − 1)

≤ O

(
lgC

C − 1

)
≤ 1/10.

On the other hand, if t �= ij then after the first operation,

‖v‖1 ≤ 2Cj+1−Cj−C
C−1

< 3Cj so the entropy is at least the
binary entropy of whether the index ij is picked, which is
greater than H(1/3) > 0.9. Thus, by the guarantee of the

algorithm, Check(t, j) correctly tells if t = vj using nO(1)

queries.

Corollary 9. Any randomized non-adaptive streaming
algorithm for �1 heavy hitters with failure probability n−O(1) ≤
δ ≤ 1/2 − Ω(1) must have worst case update time tu =

Ω(min{
√

lg(1/δ)
lg(eS/tu)

, lg(1/δ)√
lg tu·lg(eS/tu)

}). Any deterministic non-

adaptive streaming algorithm must have worst case update

time tu = Ω
(

lgn
lg(eS/tu)

)
.

Proof. We use a slightly different decoding procedure for
Bob. Instead of running Check(t, j) all indices t ∈ [n], in
iteration j, Bob can simply query for the heavy hitter to

find ij . Note that in iteration j, we have ‖v‖1 = Cj+1−C
C−1

<

2Cj = 2v[ij ] so if the algorithm is correct, Bob will find the
index ij . We have thus implemented all the Check(t, j)’s
using only a queries. Recall from the proof of Theorem 7
that a = O(tu). �

4. UPPER BOUNDS
In this section we first present an upper bound for the con-

crete hard instance used in Section 3 to derive our update
time lower bounds. The upper bound nearly matches our
lower bound and in particular exhibits the lg(1/δ)/

√
lg n be-

haviour with optimal space usage. In Section 4.2 we present
an algorithm for �1 point query which outperforms the Count-
Min sketch in terms of query time, while matching it in both
space and update time. Our new algorithm is inspired by

the solution to the hard instance from Section 3 and we be-
lieve this upper bound provides evidence that it might actu-
ally be the known upper bounds and not the lower bounds
we present that are sub-optimal. Both our upper bounds
are randomized, non-adaptive and in the cell probe model,
meaning that we assume computation is free of charge and
that we have access to truly random hash functions that can
be evaluated free of charge. Clearly our lower bounds ap-
ply to this setting. Obtaining similar upper bounds in the
word-RAM seems to require more ideas. We discuss this in
further detail in Section 4.1 and Section 4.2.

4.1 Solving the Hard Instance
Recall from Section 3 that the hard instance used to derive

the lower bounds has the following form: We have k distinct
indices i1, . . . , ik and k values Δ1, . . . ,Δk ∈ V where V =
{1, . . . , nO(1)}. We perform the updates vij ← vij + Δj

for j = 1, . . . , k. Following that, we perform the updates
vij ← vij − Δj for j = k, . . . , 1 possibly intermixed with
queries asking whether a given index i satisfies vi = Γi for
a query value Γi ∈ V . We present a randomized and non-
adaptive algorithm for this problem, where we assume the
availability of truly random hash functions. Our solution
uses optimal space Θ(k lg(1/δ)/ lg n) words, each word of
w = Θ(lg n) bits. The query time and update time are both
Θ(lg(1/δ)/

√
lg n) for any δ ≤ exp(−Θ(

√
lg n)).

Algorithm.
Construct a table T with t rows and r columns. We denote

the rows by T1, . . . , Tt. Every entry of the table stores a w
bit word, which is initialized to 0. We have t truly random
hash functions h1, . . . , ht : [n] → [r] mapping indices to
uniform random table cells. We also have t truly random
hash functions σ1, . . . , σt : [n]× V → (

w√
w

)
mapping indices

and a value to uniform random length w bit strings with
precisely

√
w 1-bits. Upon an update vi ← vi +Δ or vi ←

vi − Δ for some Δ ∈ V , we do a bitwise XOR of σj(i,Δ)
onto the word stored in entry Tj [hj(i)] for j = 1, . . . , t.

To answer whether an index i satisfies vi = Γ for some Γ ∈
V , we compute the standard inner product 〈Tj [hj(i)], σj(i,Γ)〉
for all j = 1, . . . , t (interpreting the words as {0, 1}-vectors
in R

w). Note that such an inner product is simply a count of
how many 1’s Tj [hj(i)] and σj(i,Γ) have in common. Since
σj(i,Γ) has only

√
w 1’s, this number of always bounded by√

w. If the majority of the Tj [hj(i)]’s have

〈Tj [hj(i)], σj(i,Γ)〉 ≥
√
w/2,

we return that vi equals Γ and otherwise that vi �= Γ.

Analysis.
In the cell probe model, we measure query time and up-

date time only as the number of memory words read/updated.
Thus the query time and update time is t and the space
usage is tr words. Given a desired error probability δ ≤
exp(−Θ(

√
lg n)), we set t = Θ(lg(1/δ)/

√
lg n) and let r =

ck/
√
lg n for some constant c > 0. This gives optimal space

and an update and query time of O(lg(1/δ)/
√
lg n). What

remains is to show that the error probability is bounded by
δ. For this, consider a query asking whether vi = Γ for
some Γ ∈ V . Since the hash functions used for the different
rows are independent, we restrict our attention to one row
Tj . Let Kj(i,Γ) be set of pairs (i′,Δi′) such that Δi′ ∈ V ,
vi′ = Δi′ and either i′ �= i or Δi′ �= Γ. Note that Δi′ ∈ V
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implies Δi′ �= 0 and thus |Kj(i,Γ)| ∈ {k − 1, k} depending
on whether Γ = vi or not. From Kj(i,Γ) we also define
Cj(i,Γ) ⊆ Kj(i,Γ) as the pairs (i′,Δi′) ∈ Kj(i,Γ) satisfy-
ing hj(i

′) = hj(i), i.e. Cj(i,Γ) is the conflict list of pairs
hashing to the same word as index i in table Tj .

Let Σ denote the bitwise XOR of σj(i
′,Δi′) for all (i

′,Δi′)
in Cj(i,Γ). Then if vi = Γ we have Tj [hj(i)] = (Σ XOR
σj(i,Γ)) and if vi �= Γ we have Tj [hj(i)] = Σ. It follows
that if 〈Σ, σj(i,Γ)〉 <

√
w/2, then 〈Tj [hj(i)], σj(i,Γ)〉 >√

w/2 iff vi = Γ. Hence we let Eerr denote the event that
〈Σ, σj(i,Γ)〉 ≥ √

w/2. We wish to bound P(Eerr).
For this, let Efew denote the event |Cj(i,Γ)| ≤ √

w/4.
Now observe that conditioned on Efew, there are no more
than w/4 bits in Σ that are 1. Since σj is truly random
and (i,Γ) /∈ Cj(i,Γ), we have that σj(i,Γ) is independent of
these set bits and

E[〈Σ, σj(i,Γ)〉] ≤
√
w/4.

It follows that

P(Eerr | Efew) ≤ exp(−Ω(
√
w)) = exp(−Ω(

√
lg n)).

Next observe that

E[|Cj(i,Γ)|] ≤ k/r =
√

lg n/c.

For big enough constant c, this is less than
√
w/8 and we

get from a Chernoff bound that

P(¬Efew) = P(|Cj(i,Γ)| >
√
w/4) < exp(−Ω(

√
w)) =

exp(−Ω(
√

lg n)).

We conclude

P(Eerr) =

P(Eerr | Efew)P(Efew) + P(Eerr | ¬Efew)P(¬Efew) =

exp(−Ω(
√

lg n)).

The probability that we fail in most of the t rows is thus
bounded by exp(−Ω(t

√
lg n)) ≤ δ which completes the anal-

ysis.

Discussion.
There are two places in the above algorithm where we

make use of free computation in the cell probe model: Com-
puting 〈Tj [hj(i)], σj(i,Γ)〉 and in the efficient truly random
hash functions. There seems to be hope of getting around
the true randomness by resorting to Θ(lg n)-wise indepen-
dent hash functions and batching several evaluations to ex-
ploit algorithms such as fast multipoint evaluation of polyno-
mials to obtain close-to-constant amortized evaluation time,
see e.g. [28]. Hashing only to bit strings with exactly

√
w

1’s in near-constant time might need some additional ideas.

4.2 Faster �1 Point Query in the Cell Probe
Model

Below we present our improved algorithm for �1 point
query. In this problem we must support updates vi ← vi+Δ
for Δ ∈ {−nO(1), . . . , nO(1)}. Given a query index i, we
must return vi up to an additive error of ε‖v‖1 with proba-
bility at least 1− δ. For the reader familiar with the classic
CountMin sketch, our basic idea is to use the word-packing
approach from Section 4.1 to pack roughly lg n counters in
one word. The difficulty here is that Δ requires Θ(lg n)
bits and not just one bit as in Section 4.1, thus no more

than one counter fits in a word. We get around this by
storing a summary word for groups of roughly lg n coun-
ters. The summary words store (1 + ε)-approximations of
the values of the counters and hence several approximations
can be packed in one word. When answering queries, it
suffices to use the approximate counters and thus we have
effectively reduced the number of words that must be read.
Our final result, in the cell probe model, is O(ε−1 lg(1/δ))
words of space, update time O(lg(1/δ)), and query time

O(1 + ε lg(1/δ) + lg(1/δ)√
lgn

· √lg lg n+ lg(1/ε)). The space

and update time match the CountMin sketch, whereas the
query time strictly outperforms it for 1/no(1) ≤ ε ≤ o(1)
and δ = o(1). The details are as follows.

Algorithm.
Let k = Θ(min{lg−2(1/δ), ε−2, lg n/ lg lg1+ε n}). We store

a table T with t rows denoted T1, . . . , Tt. Each row Tj is
partitioned into r blocks of k entries each. We use Tj [h, �]
to denote the �’th entry of the h’th block in Tj for any
(h, �) ∈ [r] × [k]. Each of the trk entries stores a Θ(lg n)-
bit counter which is initialized to 0. In addition to T , we
store a table A with t rows and r columns. The rows of A
are denoted A1, . . . , At and entry Aj [h] stores a (1 + ε/4)-
approximation of Tj [h, �] for each � ∈ [k] and thus an entry
of A takes O(k lg lg1+ε n) ≤ O(lg n) bits.

We have t truly random hash functions h1, . . . , ht : [n] →
[r] mapping indices to blocks and t truly random hash func-
tions σ1, . . . , σt : [n] →

(
k√
k

)
mapping indices to a subset of√

k counters inside a block.
Upon an update vi ← vi + Δ, we add Δ to all counters

Tj [hj(i), �] for j = 1, . . . , t and � ∈ σj(i). We also update
the corresponding (1+ ε/4)-approximations of the counters.
These are stored in Aj [hj(i)] for j = 1, . . . , t.

To answer a query for index i, we read Aj [hj(i)] for j =
1, . . . , t. For each j, we extract from Aj [hj(i)] a (1 + ε/4)-
approximations of Tj [hj(i), �] for each � ∈ σj(i). We finally
return the median of these approximations as our estimate
of vi.

Analysis.
We first analyse the resource requirements. The space

usage is O(trk) words. In the cell probe model, the query
time and update time is defined as the number of words
read/updated and thus the algorithm has update timeO(t

√
k)

and query time O(t).
We fix the parameters in the following. Given a desired

error probability δ, we set t = 1+O(lg(1/δ)/
√
k). To obtain

asymptotically optimal space, we set r = c(ε−1 lg(1/δ))/(tk)
for a large constant c > 0. Note that by our choice of k,
we have r ≥ c(ε−1 lg(1/δ))/(k + O(lg(1/δ)

√
k)) ≥ 1 if c is

sufficiently large. What remains is to show that this gives
the desired error probability on a query for index i. What
makes the analysis more cumbersome than for the standard
CountMin sketch is mainly the dependencies introduced by
the blocking.

For the analysis, first observe that if we consider a counter
Tj [hj(i), �] for an � ∈ σj(i) and let β denote the sum of ab-
solute values of all other indices contributing to Tj [hj(i), �],
i.e. β =

∑
i′ �=i:hj(i)=hj(i′)∧�∈σj(i′) |vi′ |, then if β ≤ ε‖v‖1/2

we have

(vi−ε‖v‖1/2)/(1+ε/4) ≤ Aj [hj(i)] ≤ (vi+ε‖v‖1/2)(1+ε/4).
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Since vi ≤ ‖v‖1, this implies

Aj [hj(i)] ≥ (1− ε/4)(vi − ε‖v‖1/2)
≥ vi − ε‖v‖1/2− ε‖v‖1/4− ε‖v‖1/8
≥ vi − ε‖v‖1.

and

Aj [hj(i)] ≤ (vi + ε‖v‖1/2)(1 + ε/4)

≤ vi + ε‖v‖1/2 + ε‖v‖1/4 + ε‖v‖1/8
≤ vi + ε‖v‖1.

It follows that our median estimate is correct if more than
half of the counters Tj [hj(i), �] satisfy∑

i′ �=i:hj(i)=hj(i′)∧�∈σj(i′)

|vi′ | ≤ ε‖v‖1/2.

To bound the probability this happens, let Cj denote the
subset of indices i′ �= i such that hj(i

′) = hj(i). We say

that the event Eerr happens if there are more than
√
k/4

indices � ∈ σj(i) for which
∑

i′∈Cj :�∈σj(i′) |vi′ | > ε‖v‖1/2.
We wish to bound P(Eerr). For this, partition Cj into two
sets Hj and Lj . The set Hj contains the heavy indices
i′ ∈ Cj such that |vi′ | ≥ ε‖v‖1/2. Lj contains the re-
maining light indices. We define two auxiliary events. Let
EerrH be the event |Hj | ≥

√
k/16 and let EerrL be the event∑

i′∈Lj
|vi′ | ≥ ε‖v‖1

√
k/16. If we condition on ¬EerrH and

¬EerrL, then there can be no more than k/16 + k/8 < k/5
indices � ∈ [k] for which

∑
i′∈Cj :�∈σj(i′) |vi′ | > ε‖v‖1/2.

From this it follows from a Chernoff bound that P(Eerr |
¬EerrH ∧ ¬EerrL) = exp(−Ω(

√
k)).

Next observe that there can be no more than 2ε−1 in-
dices i′ for which |vi′ | ≥ ε‖v‖1/2. For each such index i′,
we have P(i′ ∈ Hj) = 1/r and we get E[|Hj |] ≤ 2ε−1/r =

2tk/(c lg(1/δ)) = 2k/(c lg(1/δ))+O(
√
k/c) = O(

√
k/c). Set-

ting c high enough, this is no more than
√
k/32. It follows

from a Chernoff bound that P(EerrH) = exp(−Ω(
√
k)).

For analysing P(EerrL), observe that

E[
∑
i′∈Lj

|vi′ |] ≤ ‖v‖1/r

= ε‖v‖1tk/(c lg(1/δ))
= O(ε‖v‖1

√
k/c).

For large enough c, this is bounded by ε‖v‖1
√
k/32 and thus

EerrL is an event in which
∑

i′∈Lj
|vi′ | exceeds its expecta-

tion by at least a factor 2. Since all i′ considered have |vi′ | ≤
ε‖v‖1/2, it follows that the probability of EerrL is maximized
when the mass (of ‖v‖1) is distributed evenly on 2ε−1 coor-

dinates. Thus EerrL becomes the event that at least
√
k/8

of these coordinates fall in Lj . By the arguments we used

to bound P(EerrH), we conclude P(EerrL) = exp(−Ω(
√
k)).

Combining the pieces, we conclude P(Eerr) = exp(−Ω(
√
k)).

Finally observe that for the median estimate to be incor-
rect, the event Eerr must happen for Ω(t) rows and the hash
functions for these rows are independent. It finally follows
by a Chernoff bound that the error probability is bounded
by exp(−Ω(t

√
k)) ≤ δ. By our choice of parameters, this

gives optimal space of O(ε−1 lg(1/δ)) words, update time

O(t
√
k) = O(

√
k + lg(1/δ)) = O(lg(1/δ)) and query time

O(t) = O(1 + lg(1/δ)/
√
k) which is bounded by

O

(
1 + ε lg(1/δ) +

lg(1/δ)√
lg n

·
√

lg lg n+ lg(1/ε)

)

This strictly outperforms the CountMin sketch for any ε and
δ satisfying 1/no(1) ≤ ε ≤ o(1) and δ = o(1).

Discussion.
In addition to the true randomness, the median compu-

tation also prevents the above algorithm from being effi-
ciently implemented in word RAM. If one finds an efficient
way of extracting the relevant

√
k approximations from each

Aj [hj(i)], one can most likely use the standard randomized
median selection algorithm [11] to find the median efficiently
using word-level parallelism (basically running an external
memory model [1] median selection algorithm).
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ABSTRACT
Many times river floods have resulted in huge catastrophes.
To reduce the negative outcome of such floods, it is impor-
tant to predict their extent before they happen. For this
reason, scientists nowadays use algorithms that model river
floods on digital terrains. Yet, all existing algorithms of this
kind have a major drawback; they cannot efficiently process
massive terrain datasets, which have become widely avail-
able during the last years.

In this paper, we describe two algorithms that provide
high-quality river flood modelling and, unlike any previ-
ous approach, efficiently handle massive terrain data. More
specifically, given a raster terrain and a subset of its cells
representing a river network, we describe two algorithms
that for each cell in the raster estimate the height that the
river should rise for the cell to get flooded. One of the pro-
posed algorithms is a redesign of a European Union approved
method that is used by authorities in Denmark for modelling
river floods. We show how this algorithm can be adapted
to efficiently handle massive terrain data. The other al-
gorithm is a novel method that we introduce for modelling
river floods. For an input raster that consists of N cells, and
which is so large that it can only be stored in the hard disk
of a computer, each of the proposed algorithms can produce
its output with only O(sort(N)) transfers of data blocks be-
tween the disk and the main memory. Here sort(N) denotes
the minimum number of data transfers that are needed for
sorting a set of N elements stored on disk. We have imple-
mented both algorithms, and compared their output with
data that were acquired from a real flood event. We show
that both algorithms produce an output that models the

∗Center for Massive Data Algorithmics, a Center of the Dan-
ish National Research Foundation.

actual event quite accurately. In fact, the new algorithm
that we introduce produces more accurate results than the
existing popular method. We evaluated the efficiency of our
algorithms in practice by conducting experiments on mas-
sive datasets. We show that the two algorithms perform
efficiently even for datasets of approximatelly 268 GB size.

1. INTRODUCTION
Throughout history, river floods have caused large disas-

ters. Usually induced by heavy rainfall, such floods can lead
to casualties and huge financial damage for the local com-
munities. A recent example is the catastrophic flood of the
Indus river in Pakistan that took place in 2010 [6]. This
flood claimed approximatelly two thousand lives, and about
one fifth of the total area of the country ended up covered
by water. Society wants to predict such floods, so that mea-
sures can be taken in advance to reduce the harm done.
Therefore, it is important for people to know which regions
around a river have the highest risk of getting flooded when
the level of the river rises.

Today, hydrologists use computers to model river floods;
they use specialised software to simulate flood events based
on digital representations of terrains and rivers. Such ter-
rain representations are widely known as Digital Elevation
Models (DEMs). The most popular type of DEMs is the so-
called grid or raster DEMs. In a raster DEM the domain
of the terrain is divided into square cells of equal size, and
each cell is associated with an elevation value.

One method for modelling river floods on DEMs is the
method introduced by Berg Sonne [11]; let G be a raster
terrain and let R(G) be the set of cells in G that represents
the region covered by a river network in this terrain. Also,
let x be a positive real. Given G, R(G) and x, the method



estimates which cells in G will get flooded if the level of the
river R(G) rises uniformly by x meters. Of course, a flood
is a very complex phenomenon and is influenced by many
factors, some of which are difficult to determine. Therefore,
we cannot expect that a flood can be modelled precisely
by the output of any method, no matter how involved this
method is. However, the method proposed by Berg Sonne
is today considered a quite accurate tool for modelling river
floods. Hence, after approval by the European Union it is
used by the state authorities of Denmark [11].

However, Berg Sonne’s method has a major drawback; it
cannot process massive DEMs. Recent advances in Lidar
technology have made it possible to produce detailed and
huge DEM datasets. In many cases, such a dataset is so
large that it cannot fit in the main memory of a standard
computer. Hence, the dataset has to be stored mainly on
disk. Since the computer’s processor can only handle data
that appear in the main memory, blocks of data have to
be transfered between the disk and the memory in order to
process the dataset. We call a transfer of a single block of
data between the disk and the memory an I/O-operation,
or an I/O for short. The problem here is that a single I/O
is an extremely slow operation; it can take about the same
time as a million CPU operations. Therefore, when it comes
to processing huge amounts of data, it is important to pro-
cess the dataset in a way that we minimize the number of
data transfers between the disk and the memory. Otherwise,
the whole process becomes practically infeasible. To handle
this issue, Aggarwal and Vitter introduced the so called I/O-
model, which takes into account the number of I/Os between
the disk and the main memory [3]. The performance of an
algorithm in the I/O-model is measured as the number of
I/Os that take place during its execution. This measure
of performance is called the I/O-efficiency of the algorithm.
To describe the I/O-efficiency we need three parameters; the
size N of the input data, the size of the internal memory M ,
and the size B of a single block of data that can be trans-
fered from and to the disk. Two basic processes that take
place during the execution of most algorithms is scanning
and sorting. We can scan a set of N elements stored in the
disk with O(scan(N)) I/Os, where scan(N) = N/B. We can
also sort a set of N records in an I/O-efficient manner with
O(sort(N)) I/Os, where sort(N) = N/B logM/B N/B [3].

Standard algorithms are often designed based on the as-
sumption that all input data fit in the main memory. Hence,
usually they cannot handle massive datasets. This is also the
case for algorithms that are used to model river floods; to
the best of our knowledge, there does not exist any I/O-
efficient algorithm for this problem. Therefore, the users
of up-to-date hydrological software are forced to choose be-
tween two approaches. In the first approach, the resolution
of the input DEM is reduced (so it fits entirely in the main
memory). Thus, a large amount of detail in terrain data
is thrown away. Important features on the landscape, such
as ditches and levees, may not be depicted anymore on the
resulting terrain. When it comes to modelling a river flood,
this results in wrong estimations. In the other approach,
users divide the massive DEM into smaller tiles and each
tile is processed independently; in this way, when process-
ing a single tile, we do not take into account how the rest
of the landscape affects the flood in that region. Therefore,
there is a need for developing algorithms that, on one hand
model river floods accuratelly, and on the other hand handle

massive terrain datasets efficiently.

Our Results.
Inspired by the above, we designed two I/O-efficient algo-

rithms that can be used for modelling river floods. The first
algorithm is an adaptation of Berg Sonne’s method that can
handle massive raster terrains. The second algorithm is a
novel method that we introduce for modelling river floods.
For each of these algorithms, the input is a raster G, and a
subset R(G) of cells in G representing the area covered by
a river network. Each of our algorithms returns for each
cell c ∈ G a value f(c), indicating the minimum number of
meters the river level should rise before c gets flooded. We
call this value the resistance value of c. Given the resistance
values f(c) for every c ∈ G, and a positive integer x, we can
then easily extract the part of the terrain that is flooded if
the river level rises uniformly by x meters. Each of the algo-
rithms that we propose uses different criteria for computing
resistance values, hence they produce different outputs. In
the algorithm by Berg Sonne, the resistance value of each
cell is computed in two stages; in the first stage, for each
cell c the elevation difference is computed between c and its
closest river cell (in the xy-plane). We call this elevation
difference the obstruction value of c. In the second stage,
the resistance value of c is computed based on the obstruc-
tion values of the cells that appear on any path connecting
c with the river network. In our new algorithm, we compute
the resistance values by taking into account how water flows
on the terrain surface. In particular, we consider a model
according to which water can flow from a cell to potentially
more than one of its neighbours. Based on this model, we
compute the resistance value of each cell c ∈ G as the ele-
vation difference between c and the highest river cell where
water from c can reach.
We have designed both of our algorithms using the I/O-

model of Agarwal and Vitter [3]. To compute the resistance
values on a raster that has N cells, each of our algorithms
require O(sort(N)) I/Os in the worst case. We have im-
plemented both algorithms and measured their efficiency in
practice. We show that the two algorithms perform effi-
ciently even for raster datasets of approximatelly 268 giga-
bytes size; to process a dataset of this size on a standard
workstation, our adaptation for Berg Sonne’s method re-
quired roughly 24 hours, and our new algorithm roughly
31 hours. We also conducted experiments to evaluate that
our algorithms can model adequately real flood events. To
do this, we worked as follows; we used as reference a vec-
tor dataset which outlines the river flood that took place in
Pakistan in 2010 [6]. We also used each of our algorithms to
compute the resistance values on a grid that models the ter-
rain in Pakistan. Then we selected a large number of pairs
of cells from this grid; each pair was selected such that one
cell in the pair is covered by the flooded region in the vector
dataset, and the other cell falls outside this region. On the
output of each algorithm, we measured the percentage of
pairs where the flooded cell of the pair scores a lower resis-
tance value than the non-flooded cell. This percentage was
87% for Berg Sonne’s method and 92% for our algorithm.
We repeated the same measurements many times, each time
sampling cell pairs within a different small region overlap-
ping with the flooded area. We observed that the percentage
scored by each method depends on the size of the sampling
region, and the topographic heterogeneity within this region.



The lowest percentages were observed for the sampling re-
gions of the smallest size that we considered; these regions
were squares of 20 km dimension. For such regions, the
mean percentage measured for Berg Sonne’s method is 61%,
and the mean percentage for our algorithm is 71%. For all
region sizes that we used, our algorithm provided on aver-
age more accurate results than Berg Sonne’s method. To
understand the reasons behind this difference in the out-
put quality, we used both algorithms to model river floods
on a massive raster that represents the terrain in Denmark.
Among other artefacts, the method by Berg Sonne produced
flooded regions that had larger size than the ones calculated
by our algorithm. As we explain, one reason for this is that
Berg Sonne’s method produces very small resistance values
for areas along the entire coastline of the terrain.

2. PROBLEM DEFINITION AND NOTATION
Let G be a grid terrain that consists of N cells. For ev-

ery cell c ∈ G we use h(c) to indicate the elevation of the
terrain at this cell. We denote the cell that appears at the
i-th row and j-th column of G by G(i, j). We assume with-
out loss of generality that the center of grid cell G(i, j) has
xy-coordinates (j, i). For any cell c ∈ G, we denote this
center point by p(c). We call the xy-distance, or simply the
distance, between two cells in G the 2D Euclidean distance
between their cell centers on the xy-domain of G. Let C be
a set of cells in G and let c be a cell that belongs to this set.
We say that c is the closest cell in C to another cell c′ if
c has the smallest xy-distance to c′ compared to any other
cell in C.
We use R(G) to denote a subset of the cells in G that

belong to a river network of the terrain. We call these cells
the river cells of G. The cells in R(G) represent the river
network in G when there is no flood. This implies that the
elevation value of each cell in R(G) approximates the average
height of the river level at this location when no flood occurs.
For the algorithms that we present, we assume that R(G) is
provided as part of the input.

Let hrise be a positive real. We say that there is a river
rise of hrise meters, or that the river rises by hrise meters,
when for each cell c ∈ R(G) the river level rises to eleva-
tion h(c) + hrise. We call hrise the rise value. Thus, when
a river rise takes place we assume that the level of the river
increases by the same amount at all river cells.
We study the following problem. Given a terrain G and

its river network R(G), we want to compute for every cell
c ∈ G a value f(c) that estimates the minimum value hrise

such that c gets flooded when the river rises by hrise meters.
We call this value the resistance value of c. Each of the
two algorithms that we present in this paper defines these
resistance values in a different way; hence, for the same in-
put grid the output between the two algorithms may differ
substantially. For each algorithm. we provide a detailed
definition for the resistance of a grid cell in the description
of the algorithm. For both algorithms, it is assumed that
all river cells are flooded by default. Therefore, for both
approaches we imply that the resistance value of every river
cell is set to zero.

3. DESCRIPTION OF THE ALGORITHMS

3.1 Adaptation of Berg Sonne’s Method

The first algorithm that we describe is based on the flood
modelling method introduced by Berg Sonne [11]. Origi-
nally, this method was designed to solve a more simple prob-
lem than the one that we examine. In particular, the input
of the original method is a raster G, the river network R(G),
and a rise value hrise. Instead of computing flood resistance
values, the method outputs the cells in G that are consid-
ered to get flooded when R(G) rises by hrise meters. We call
this version of the method ProximityF lood. Below, we first
explain how ProximityF lood calculates the flooded cells in
G for a given rise value hrise. Then, we show how we can
use this method to design an I/O-efficient algorithm that
computes a flood resistance value for each input cell1.
ProximityF lood consists of two steps. In the first step,

every cell c ∈ G\R(G) gets associated with a single river cell
in R(G); this is the river cell from which we consider that c
can potentially get flooded. We call this cell the source cell of
c, and we denote this by source(c). The source cell for every
c ∈ G\R(G) is defined as the river cell c′ ∈ R(G) that has the
smallest xy-distance from c. After calculating source(c) for
every non-river cell c, the height difference between source(c)
and c is computed and stored together with c. We call this
value the obstruction value obst(c) of c.
In the second step, we extract the cells in G that are con-

sidered to get flooded when the river rises by hrise meters.
More specifically, we extract any cell c that a) has an ob-
struction value obst[c] � hrise and b) there exists a path of
cells between c and a river cell cR such that any non-river
cell c′ in this path has an obstruction value obst(c′) � hrise.
Notice that, in this way, not all cells with obstruction � hrise

are flooded.
Method ProximityF lood can be used to model a single

flood event at a time. On the other hand, if we want to
study which regions get flooded for different rise values then
we have to run this method many times, once for each dis-
tinct rise value hrise. To avoid this, we instead choose to
compute for each cell c the minimum rise value hrise for
which c gets flooded according to method ProximityF lood.
Below we describe our new I/O-efficient algorithm that does
this, which we call ProximityResistance.
As with ProximityF lood, the new algorithm consists of

two main steps. In the first step, we compute for each
cell c ∈ G \ R(G) the source cell source(c) and the ob-
struction obst(c). In the second step, we calculate the flood
resistance values of all cells in G \R(G).

Computing the source cells and obstruction values.
For the first step, the main task is to compute the source

cell for each non-river cell c; given this cell, it is straight-
forward to compute the obstruction obst(c). Calculating
the source cells in G is similar to computing a Voronoi di-

1Some implementations of ProximityF lood include an ex-
tra preprocessing step where the heights of the river cells
are adjusted to make it consistent with the rest of the ter-
rain data. This is useful when the river dataset is acquired
from a different source than the terrain raster. In that case,
projecting the river data on the raster may create artefacts
(such as rivers that flow upstream). In the description that
we provide for ProximityF lood we do not include this pre-
processing step; we consider that this step has to do more
with configuring the datasets rather than with the method
itself. Yet, the preprocessing step can be also handled in
an I/O-efficient manner, given a realistic assumption on the
memory size.



agram on the xy-domain of G; the sites of the Voronoi di-
agram are the center-points of the river cells in G and for
any cell c ∈ G \ R(G) it holds that source(c) = c′ if
the center of c falls in the Voronoi region of p(c′). Com-
puting the Voronoi diagram of the river cells can be done
in O(sort(N)) I/Os [10, 2]. Then, we sweep simultaneously
the diagram and grid G. During the sweep, we maintain the
diagram edges that intersect the sweep line, sorted accord-
ing to the x-coordinate of their intersection point with this
line. For every row of G that we encounter, we scan the
edges that intersect the sweep line to determine the Voronoi
region (and therefore the corresponding source cell) where
each cell in the row belongs to. Notice that the number
of edges in the sweep line cannot be more than two times
the number of cells in a row. This is because there can-
not be more than two river cells on a single column whose
Voronoi regions intersect the same horizontal line. There-
fore, scanning the raster and updating the sweep line can
be done efficiently in O(sort(N)) I/Os in total. From this
we conclude that computing the source cells on the raster
can be performed in O(sort(N)) I/Os. But we can do this
more efficiently; in the appendix we present an algorithm
that computes the source cells using O(scan(N)) I/Os.

Computing the flood resistance values.
In the second step of method ProximityResistance we

compute for each cell c ∈ G its flood resistance f(c). Re-
call that for every cell c this resistance value is equal to the
minimum rise value hrise such that obst(c) � hrise and c
is connected to the river by a path of cells with obstruction
� hrise. Based on this definition, we can reduce the compu-
tation of the flood resistance values to the problem of com-
puting the raise elevations on a terrain, that was described
by Arge et al. as part of their partial flooding algorithm [8].
This problem is defined as follows; let G be a raster and
let ζ1, . . . , ζk be a set of cells in G that we call sinks. For
any path of cells path in G the height of path is defined as
the height of the highest cell on this path. The raise eleva-
tion of a cell c ∈ G is the minimum height among all paths
that connect c to ζi for any 1 � i � k. Arge et al. provide
an algorithm that computes the raise elevations for all the
cells on the terrain in O(sort(N)) I/Os [8].
We can reduce the problem of computing the flood re-

sistance values of the cells in G to an instance of the raise
elevation problem as follows; we create a raster G′ that has
the same number of rows and columns as G. For any river
cell G(i, j) ∈ R(G) we let the corresponding cell G′(i, j) to
be a sink. For any non-river cell G(i, j) we let cell G′(i, j)
have elevation equal to the obstruction value of G(i, j). It
is know easy to see that the raise value of any cell G′(i, j)
is equal to the flood resistance value that we want to com-
pute for G(i, j). By applying the I/O-efficient algorithm of
Arge et al. on G′ we can compute the described flood resis-
tance values in O(sort(N)) I/Os.

Theorem 3.1. Let G be a raster terrain that consists
of N cells, and let R(G) be the set of all river cells in this
raster. ProximityResistance computes the flood resistance
values of all cells in G using O(sort(N)) I/Os.

3.2 Our New Method
In ProximityResistance, a cell c can only get flooded

from the closest river cell source(c) in the xy-plane. In-
tuitively, this is very unnatural since the flow of water on

the terrain is obviously influenced by the terrain topogra-
phy. Therefore, we introduce a novel method which instead
chooses source(c) based on a model that represents how wa-
ter flows on the terrain. We refer to this new method as
UpstreamResistance. Below, we first describe how source(c)
is chosen in UpstreamResistance, and then we show how we
can compute this I/O-efficiently.
For a raster G let F(G) = (V,E) be the graph such that for

each cell c ∈ G there exists exactly one vertex v(c) in V , and
there exists a directed edge in E from v(c) to v(c′) if cells
c, c′ ∈ G are adjacent and h(c) > h(c′). We call this graph
the flow graph of G. For now let us assume that no adjacent
cells in G have the same elevation value. Hence, there exists
exactly one directed edge in F(G) for each pair of adjacent
cells in G, and F(G) is a DAG. The concept of the flow graph
was introduced in previous works to model how water flows
between cells on a DEM. It is naturally assumed that water
on a cell can flow only to neighbour cells with lower height;
that is modelled with a directed edge in the flow graph.
For any cell c ∈ G water from c may flow following dif-

ferent routes on the raster until reaching one or more cells on
the boundary of riverR(G). In methodUpstreamResistance
we choose source(c) to be one of these cells on the river
boundary, that is, the river cells where the water from c
reaches. More formally, let c be a cell in G. Consider a
path in F(G) that starts from vertex v(c) and ends at a ver-
tex v(c′) where c′ is a river cell, such that the path does not
contain a vertex corresponding to any other river cell. We
call such a path a downstream path of c. Let DC(c) denote
the set of all river cells that belong to some downstream
path of c. In method UpstreamResistance, source(c) is
the cell in DC(c) with the highest elevation value. The
flood resistance of c is then defined as the height differ-
ence h(c)− h(source(c)).
When it comes to implementingUpstreamResistance I/O-

efficiently, the two key tasks for computing the flood re-
sistances are constructing the flow graph F(G), and com-
puting the source cell for every cell in G. If no flat ar-
eas exist on G, we can construct F(G) straightforwardly
in O(scan(N)) I/Os. As for computing the source cells, ob-
serve that for any cell c it holds that source(c) = source(c′)
for some c′ such that there exists an edge in F(G) from v(c)
to v(c′). Therefore, we can compute source(c) by first com-
puting the source cells for those neighbours of c that appear
downstream in F(G), and then use these to infer source(c).
Arge et al. describe an I/O-efficient algorithm that com-
putes the number of upstream cells for every cell on a raster
in O(sort(N)) I/Os [4]. Their algorithm can be easily mod-
ified for computing the source cells in G. Therefore, we can
perform this computation in O(sort(N)) I/Os.

Handling flat areas.
Terrain datasets often contain large connected regions of

cells that have exactly the same elevation. Given raster G
that contains such flat areas, we have to perform two extra
steps; first, we have to outline all distinct flat areas in G, and
then we have to model how water flows on each such area.
For the second step, we will have to modify the definition
of the flow graph so as to represent flow between cells in a
flat area. To outline the flat areas in G we have to com-
pute the connected components of cells in the raster that
have the same elevation. This can be done I/O-efficiently
in O(sort(N)) I/Os. Let A ⊆ G be a flat area in G, and



let c be a cell on the boundary of A. We say that c is a
spill point of A if c is adjacent to at least one cell that has
elevation lower than h(c). When modelling water flow on A
the goal is to route flow so that every cell in A drains to at
least one spill point of this area (if such a spill point exists).
Let A be a flat area that has at least one spill point. Ev-
ery cell c ∈ A can be routed to all the spill points in A.
Therefore, all cells in A should have exactly the same source
cell and also the same flood resistance. To represent this
appropriatelly, we modify slightly the way we construct the
flow graph such that instead of representing each cell in A
by exactly one vertex, we use a single vertex to represent
the entire flat area. We denote this vertex by v(A). The
in-edges of v(A) connect this vertex with all vertices v(c)
such that c is a cell adjacent to A, and c has a higher ele-
vation than A. Similarly, the out-edges of v(A) connect to
all lower elevation vertices in the graph representing cells
adjacent to A.
After building the flow graph in this manner, we proceed

with the computation of the resistance values. We process-
ing a vertex that represents a flat region A, we distinguish
two cases depending on whether A contains river cells or
not. In the case that A does not contain any river cell, we
find the highest river cell c that appears on a downstream
path from v(A), and for every cell in A we set the flood re-
sistance to the elevation difference between A and c. In the
case that A contains river cells, we consider that all cells in
this area are flooded by default. Hence, for every cell in A
we set the flood resistance value to zero. In that case, ver-
tex v(A) is treated in the flow graph in the same way as a
vertex that represents a single river cell; for each cell c such
that v(A) appears in a downstream path from c we use the
elevation of A to determine the flood resistance of c, as if A
was a single river cell.

Note that not all flat areas have a spill point. In that
case, a flat area is a region of locally minimum elevation
in G. Let A be such an area in G. If A does not contain any
river cell then we consider that A corresponds to a spurious
pit. We remove all such pits by raising the elevation of the
terrain within and around this region. The removal of the
spurious pits can be done as a preprocessing step before
constructing the actual flow graph on G. We can do this
I/O-efficiently in O(sort(N)) I/Os, using the partial flooding
algorithm described by Danner et al. [8]. On the other hand,
if A contains river cells, then we process this area in the same
way as we did with flat areas that contain both river cells
and spill points; the flood resistance of all cells in A are
set to zero, and the entire area is represented by a single
vertex v(A) in the flow graph.

From the above description, we conclude that construct-
ing the flow graph for a raster G boils down to computing
the connected components of flat regions in G, and then
adding in the described way the graph edges between the
vertices of the flat regions and the adjacent cells. We can
compute the connected components of flat regions on G us-
ing the batched union-find algorithm of Agarwal et al. [1]
which uses O(sort(N)) I/Os. Constructing the modified flow
graph, and processing the vertices that represent flat areas
can be done straightforwardly in O(sort(N)) I/Os.

Theorem 3.2. Let G be a raster terrain that consists of
N cells, and let R(G) be the set of river cells in this raster.
UpstreamResistance computes the flood resistance values
of all cells in G using O(sort(N)) I/Os.

4.IMPLEMENTATIONS AND EXPERIMENTS
We implemented both algorithms described in Section 3

in order to evaluate how fast they perform in practice, as
well as how good they model real flood events.

4.1 Description of Implementations
We implemented both algorithms in C++, using the open

source library TPIE that provides I/O-efficient algorithms
for sorting and scanning data [13]. We used the GNU g++
compiler (version 4.8.2), and the experiments were ran on a
Linux Ubuntu operating system (release 14.04).
When implementing ProximityResistance we made two

modifications compared to the description in Section 3. First,
when computing the source cells on G using a sweepline ap-
proach, we used the O(scan(N)) approach (described in the
appendix) and we made the practically realistic assumption
that a constant number of rows in G can fit in main memory.
Thus, instead of performing an external scan of each row and
maintaining an I/O-efficient stack during the sweep, we sim-
ply store the two last rows that we swept in memory and per-
form all computations internally. Second, when computing
the raise elevations we did not use the O(sort(N)) batched
union-find algorithm by Agarwal et al. [1] (that is quite in-
volved), but instead a much simpler O(sort(N) log(N/M))
algorithm also proposed by Agarwal et al.. Agarwal et al. [1]
and Danner et al. [8] have showed that this simple union-find
algorithm performs very well in practice.
When implementing UpstreamResistance we accurately

followed the description in Section 3. The only difference
was that we again used the practical union-find algorithm of
Agarwal et al. (that requires O(sort(N) log(N/M)) I/Os),
this time for computing the connected components of flat
areas in G, and for removing flat areas that correspond to
spurious pits.

4.2 Measuring I/O-Efficiency in Practice
To measure the practical efficiency of each method, we ran

our implementations on a massive raster dataset that repre-
sents the terrain surface of the entire country of Denmark.
Publicly available through the website of the Danish Min-
istry of Environment [7], this raster consists of roughly 66.4
billion cells, arranged in 287500 rows and 231250 columns.
Each cell represents a region of 1.6×1.6 meters on the terrain
and is assigned an elevation value which is a 4-byte floating
point number. The total size of the uncompressed dataset
is 268 gigabytes. We refer to this dataset as denmark.
Raster denmark does not include any river data, and there-

fore we had to extract the river cells before conducting the
experiments. To do so, we first preprocessed the raster by
removing all shallow pits. Then, we selected the river cells
based on the size of their upstream area. For this reason,
we computed the flow graph of denmark as described in Sec-
tion 3 except that for each cell c we included at most one
outgoing edge. This outgoing edge points to the vertex v(c′)
such that c′ is a neighbour of c and the vector from p(c)
to p(c′) has the steepest downward slope. Then, we com-
puted for each cell c the size of its upstream area; this is
the area that is covered by all cells c′ such that there exists
a path from v(c′) to v(c) in the flow graph. We extracted
the river cells by selecting all cells whose upstream area was
larger than 12.5 km2. We picked this threshold since the
resulting river network resembles better the actual shape of
the rivers in Denmark, according to available orthophotos.



We ran both of our algorithms on the denmark raster and
the extracted cells, using a workstation that has a Xeon
CPU (W3565), a four-core processor with 3.2GHz per core.
The workstation had 48 Gigabytes of main memory, and a
raid (redundant array of independent disks) that consists
of nineteen disks, with 3 Terrabytes capacity in total. The
maximum amount of main memory that was available at
any point during the execution of our implementations was
22 Gigabytes. The total time taken by the implementa-
tion of ProximityResistance was roughly 24.2 hours; only
2.4 hours was used for computing the source cell for each
non-river cell, and the rest 21.8 hours were spent on com-
puting the resistance values. For the implementation of
UpstreamResistance, the total execution time was approxi-
matelly 31.1 hours. The first stage of this method, where the
flow graph of the input raster is computed, took 12.5 hours.
The rest 18.6 hours were spent for delineating the flat areas
on the terrain, and computing the resistance values.

From the above, it is clear that the implementations of
both methods have a very good performance even for an
enormous dataset such as denmark. Each method took less
than one and a half day to process this dataset, using an
amount of main memory which corresponds to roughly 8%
of the datasets total size.

4.3 Evaluating the Quality of Flood Modelling
In the second set of experiments we used an actual flood

event to evaluate the quality of the output produced by the
two methods, namely the catastrophic flood of the Indus
river that took place in Pakistan in 2010 [6].

For the experiments we used a raster terrain extracted
from the SRTM grid, a DEM that represents the earth sur-
face from 60◦ North to 56◦ South [12]. The extracted raster
covers a square region of approximately 2160×2160 kilome-
ters and includes the entire Indus river basin–see Fig. 1. The
raster consists of 24,000×24,000 cells, and the dimension of
each square cell is approximately 90 meters. We refer to this
dataset as indus.

Since the indus DEM does not contain any river data,
we extracted the river cells based on the upstream area of
each cell, in the same way as we did for the denmark dataset
in Section 4.2. In this case we used an upstream area of
300 km2 since it produces a visual result that matches the
shape of the local river network, as it appears in orthophotos
acquired when there was no flood in the region.

To evaluate the ability of our algorithms to accurately
model floods, we used a vector dataset that shows the actual
flooded regions around the river during the Indus river flood.
This dataset was released by the Dartmouth Flood Obser-
vatory, and contains data acquired with MODIS (Moderate-
resolution Imaging Spectroradiometer) technology [9]. We
refer to this dataset as flood. The flood dataset was con-
structed based on several satellite photos of the Indus region,
acquired during the period from the 1st to the 5th of August
of 2010. It represents with polygons all the regions that were
flooded in at least one day during this period. The bounding
box of flood covers a rectangular region that spans approx-
imatelly 1118 and 911 kilometers on the langitudinal and
the longitudinal axes respectively. It contains 4294 poly-
gons, and the total area covered by these polygons is ap-
proximatelly 30483 km2. Refer to Fig. 1.
We ran the implementations of ProximityResistance and

UpstreamResistance algorithms on the indus DEM and

the extracted river cells, and we evaluated the output of each
algorithm using a method that resembles the Area-Under-
the-Curve (also known as AUC) measure, which is one of
the most popular measures for model testing [5]. In par-
ticular, we overlayed flood with indus and extracted the
cells in indus whose centers lie in the interior of a poly-
gon in flood. We refer to these cells as the flooded cells
of indus. In total, we identified 4045544 flooded cells. Next
we selected at random a large set of pairs of cells. Each pair
was selected so that it consists of one flooded cell and one
non-flooded cell. We denote this set of pairs by P. For each
of our methods, we determined for each pair pr ∈ P if
the flooded cell in pr scores a higher resistance value than
the non-flooded cell, and calculated the percentage of the
pairs in P for which this condition holds. We call this per-
centage the output quality of the method. The value of the
output quality is an estimation of the AUC measure; the
output quality value is equal to the AUC if P consists of
all possible pairs of flooded/non-flooded cells in the region
of interest. For our study, we chose 105 pairs, consider-
ing that this is a sufficient number for estimating the value
of the AUC. For method ProximityResistance the output
quality is 87%, while for UpstreamResistance the output
quality is 92%. This shows clearly that both of the methods
produce flood resistances that are highly consistent with the
actual event.
To measure how the two methods perform on a more lo-

cal scale, we calculated their output quality within several
smaller regions. More specifically, within the xy-region cov-
ered by flood we extracted three sets of square windows,
each set consisting of windows of certain size. In the first
set each window is a square with dimension 20 km, in the
second set each window has dimension 40 km, and the third
set consists of windows of 80 km dimension. The windows of
each set were picked in the following way. Within the region
covered by flood we extracted at random 500 windows of
the same size. Then we used a greedy algorithm to select a
subset of these windows, so that there is no pair of windows
in the subset that overlap with each other, and so that each
window contains at least 500 flooded and at least 500 non-
flooded cells. Thus, we ended up with a subset of 119 win-
dows for the first set, and forty-five and twenty-two windows
for the second and third set respectively. From each window,
we selected 105 cell pairs, again so that each pair contains
one flooded and one non-flooded cell. We then calculated the
output quality of our methods for each window. Figure 4.3
shows the results for the windows of 20 km dimension, where
the mean output quality was 61% for ProximityResistance
and 71% for UpstreamResistance. For windows of 40 km di-
mension, ProximityResistance attained mean output qual-
ity 69% and UpstreamResistancemean output quality 81%.
For the third set of windows, the values were 76% and 85%,
respectively.
Therefore, for each window size UpstreamResistance has

higher mean output quality than ProximityResistance. For
both methods the output quality increases as the window
size becomes larger. Yet, we observed that for all examined
window sizes, there exist windows were at least one of the
methods has an output quality value of less than 50%.
To examine the above further, we investigated if there is

a correlation between the output quality values and the two
following factors: heterogeneity of the terrain (variability
of elevation values) and the number of flooded cells inside



Figure 1: (a) An illustration of the indus DEM together with the flood vector dataset. The cells of the DEM
appear in grayscale colours, shaded according to their elevation values; cells of higher elevation are indicated
by lighter shades. The polygons of the flood dataset appear in red colour. (b) A closer view of the flooded
regions.

Figure 2: The locations for the selected windows of 20 km dimension. In each subfigure, a window is
represented by a colored box. Each box is colored according to the output quality value achieved by one of
the methods for the corresponding window. The relative size of the boxes in the figure is larger than the
size of the original windows. We did this to make the color of each box more visible. The xy-regions of the
original windows do not overlap with each other. Left: boxes colored based on the output quality values for
ProximityResistance. Right: boxes colored according to the output quality values of UpstreamResistance.

each window. To measure the heterogeneity of the terrain
within each window w, we computed the logarithm of the
standard deviation for the elevations of the cells in w. We
call this value the topographic heterogeneity of w. In order
to examine visually the relation between the output qual-
ity and the topographic heterogeneity among the different
windows, we created a scatter plot for each method. Each

scatter plot contains a 2-dimensional point p(w) for every
window w; the horizontal coordinate of p(w) is equal to the
topographic heterogeneity of w, and the vertical coordinate
of this point is equal to the output quality of the method for
w. Figure 4.4 shows the scatter plots that we produced for
windows of 20 km dimension. In a similar way, we created
a scatter plot for each method where the horizontal coor-



dinates of the presented points are equal to the number of
flooded cells in the windows that we examine. These scat-
ter plots appear also in Figure 4.4. It becomes evident that
both of the methods score higher output quality values for
windows of intermediate topographic heterogeneity. Most of
the low output quality values appear on windows of small
heterogeneity. Regions that consist mainly of flat areas be-
long to this category. Also, there does not appear to be any
relation between the output quality of the methods and the
number of flooded cells within each window. The visualisa-
tions that we produced for the windows of larger size showed
similar patterns.

4.4 Comparing the Output of the Methods
To gain more insight about ProximityResistance and

UpstreamResistance, we visually examined the output that
the two methods produced for the denmark dataset. During
this examination, for various rise values ρ we extracted the
regions in the output of each method which consisted of all
cells with flood resistance � ρ. The first observation we
made was that for the same rise value the size of the flooded
area that appears in the output of ProximityResistance is
larger than in the output produced by UpstreamResistance.
Refer to Figure 4(a) and Figure 4(b). One of the reasons
that contributes to this difference is how the two meth-
ods estimate river floods around coastlines; in the output
of ProximityResistance, almost the entire coastline of the
terrain appears flooded even for very small rise values. Refer
to Figure 4(c). We can explain this as follows. Recall that
with ProximityResistance a cell c gets flooded for a rise
value ρ if a) this cell has a height difference � ρ from the
closest river cell on the xy-domain (the obstruction value),
and b) if there is a path from c to any river cell such that
the obstruction values of all cells in the path is � ρ. The
terrain cells which appear close to the coastline have low
height values, since they lie almost on the sea level. There-
fore, for each such cell the height difference from the closest
river cell is either very small or negative, which means that
the coastline constitutes a path of cells that connects to the
river and all cells in this path have very low obstruction val-
ues. As a consequence, even for small rise values all cells in
this path are flooded when using ProximityResistance. On
the other hand, in the output of the UpstreamResistance
method, coastlines do not appear flooded even for large rise
values. The reason is that for a coastline cell there is usually
no flow path that connects this cell with a river cell. Hence,
cell c can not get flooded whichever the river-rise value. We
also observed one more artefact in the output of method
ProximityResistance; in some cases, this method produces
flooded regions with long linear boundaries that do not cor-
respond to actual obstacles on the elevation profile of the
terrain. Refer to Figure 4(d). These artefacts are the re-
sult of assigning obstruction values to non-river cells based
on the Voronoi diagram of the river cells on the xy-domain
of the terrain. In an area that extends between two differ-
ent river streams, this step may produce two regions of cells
that have a large difference in their obstruction values. The
boundary between these two regions follows the boundaries
between Voronoi regions of river cells that belong to differ-
ent streams. As a consequence, for certain rise values there
appear flooded areas in the output whose boundary follows
the boundary between the Voronoi regions of the river cells.
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Figure 3: Scatter plots that show the relation between the output quality of each method and two features of
the examined windows. Each point corresponds to a window of 20 km dimension. Top: The relation between
output quality and topographic heterogeneity. Bottom: The relation between output quality and the number
of flooded cells in each window.



(a) (b)

(c) (d)

Figure 4: An illustration of the outputs of ProximityResistance and UpstreamResistance for the denmark dataset.
Flooded regions are indicated by dark blue color. (a) The output of the ProximityResistance around Hadsund
town (north-east Jutland) for a rise value of half a meter. (b) The output of UpstreamResistance for the same
region and rise value. (c) The output of ProximityResistance close to Vejle city with a rise value of just one
milimeter. The entire coast appears flooded, with wide flooded areas at certain places. (d) The output of
the ProximityResistance on a region with several river streams, for a rise value of 2.8 meters.



APPENDIX
In Section 3.1 we claimed that, given a grid G and the set of
river cells R(G) on this grid, we can compute for every cell
c ∈ G its source cell using only O(scan(N)) I/Os. Recall that
the source cell of c is the cell in R(G) that has the closest
xy-distance to c. Next we describe in detail how we can do
this computation while achieving the claimed performance
bound.

Instead of computing explicitly the Voronoi diagram of
centers of the cells in R(G), we use a simpler approach. For
every cell c = G(i, j) we compute three cells: The closest
river cell G(k, l) such that k < i, the closest river cell G(k′, l′)
such that k′ > i, and the closest river cell G(k′′, l′′) such that
k′′ = i. We indicate these cells by source<(c), source>(c),
and source=(c), respectively. Obviously, one of these three
cells is the source cell of c; given those cells we can de-
termine source(c) by simply comparing their xy-distances
from c. We can calculate these three cells for every cell in G
in O(scan(N)) I/Os using a sweep-line technique. Next we
show how we can do this for source<(c) and source=(c); the
process for computing source>(c) is quite similar to the one
for source<(c).
Let row(i) denote the i-th row in G, where row(1) is the

bottom row in the raster. Let VD(i) indicate the Voronoi
diagram on the xy-domain of G where the sites are the
centers of all river cells G(k, l) such that k < i. For ev-
ery cell c ∈ row(i), the cell source<(c) corresponds to the
site in VD(i) whose Voronoi region contains the center of c.
Based on this observation, to compute source<(c) for every
cell c ∈ G we scan G row by row, starting from the bot-
tom row of the raster. During this process, we maintain a
sweepline ls parallel to the y-axis. When we process row(i),
we consider that the sweepline has the same y-coordinate
as the centers of the cells of this row. We use ls(i) to indi-
cate the sweepline at that moment. Line ls(i) intersects the
Voronoi regions of certain sites in VD(i) and is thus subdived
into horizontal segments, each contained in a different re-
gion. To represent this we compute a list of points Li; these
are the intersection points between ls(i) and the voronoi
boundaries of the sites that appear below ls(i). With every
point p ∈ Li we also store at most two river cells rcleft(p)
and rcright(p). Cell rcleft(p) is the river cell whose Voronoi
region intersects ls to the left of p, while rcright(p) is the
river cell whose Voronoi region intersects ls to the right of
this point. The points in Li are stored in order of increasing
x-coordinate. Given the list Li, it is easy to compute the
source cells for every cell c in row(i); we scan this row and
Li simultaneously, while keeping track of the cell centers in
row(i) that fall inside the Voronoi region delimited by two
consecutive points in Li.

Computing Li for each row is a bit more involved. We
can do this efficiently as follows; to calculate the elements
in Li we look at the list Li−1 that we computed for the
previous row. First, we construct an intermediate list Ltemp

that has a structure similar to Li except that it stores the
intersections points between ls(i) and the Voronoi regions
in VD(i − 1). Then, we update this intermediate list so
that also the regions of the sites in row(i− 1) are taken into
account.

To construct Ltemp we need to find where the boundaries
of the Voronoi regions of VD(i− 1) intersect ls(i). To do so
for every region boundary that intersects ls(i− 1) we could
simply compute where this boundary intersects ls(i). How-

ever, not all region boundaries in VD(i − 1) that intersect
ls(i− 1) intersect also ls(i); this is the case when there exist
regions in VD(i− 1) whose y-span ends somewhere between
ls(i) and ls(i − 1). This can be handled in the following
way; we scan list Li−1 and we maintain an I/O-efficient
stack ST that stores are the bisectors between Voronoi sites
in VD(i− 1) whose regions potentially intersect ls(i). More
specifically, let pcurr be the element that is currently scanned
in Li−1. We maintain the invariant that ST stores the bisec-
tors for only those sites in VD(i− 1) whose Voronoi regions:
a) intersect ls(i− 1) to the left of pcurr, and b) would inter-
sect ls(i) if we did not consider the sites in VD(i− 1) whose
regions intersect ls(i−1) to the right of p. We also maintain
that for any two lines l1 and l2 in the stack, line l1 is stored
below l2 if and ony if l1 crosses ls(i) to the left of l2. With
each line l that we store in ST we also maintain the two sites
rcleft(l) and rcright(l) for which l is the bisector. Initially ST
is empty. Recall that pcurr is the intersection point between
the sweepline ls(i−1) and the bisector line of two neighbour-
ing sites rcleft(p) and rcright(p). Let lbisect be this line for
pcurr, the element currently processed in Li−1. Let top(ST )
indicate the bisector currently stored at the top of the stack
ST . We compute the intersection point between lbisect and
top(ST ); if this point has a y-coordinate that falls above
ls(i), or below ls(i − 1) we push lbisect into the stack and
we continue with the next element in Li−1. Otherwise, we
compute the bisector between rcleft(top(ST )) and rcright(p)
and we set lbisect to represent this line. Then, we remove
the line at the top of the stack and compute the intersection
point between the current lbisect and the line that is now
stored top(ST ). We repeat this process until either lbisect
and top(ST ) intersect at a point above ls(i) or below ls(i−1),
or ST becomes empty. It is easy to prove that after process-
ing all the elements in Li−1, stack ST stores the support
lines of exactly those Voronoi boundaries in VD(i− 1) that
intersect ls(i).

Given the data stored in ST we can easily construct the
intermediate list Ltemp; recall that this is the list that stores
the intersection points between ls(i) and the bisectors of the
Voronoi regions in VD(i − 1). To construct Li, we then
process Ltemp together with the river cells in row(i − 1).
First, we compute the Voronoi diagram of the river cells in
row(i− 1); this diagram is trivial to compute since all sites
have the same y-coordinate, and the bisectors between the
Voronoi regions are lines parallel to the y-axis. For each river
cell c in row(i−1) we compute the interval which corresponds
to the x-span of the Voronoi region of c in this diagram. We
store each such interval together with corresponding cell in
a list Lint, in increasing order of the x-coordinates of their
endpoints. Next, we use the intervals in Lint and the infor-
mation stored in Ltemp in order to compute the elements of
Li, the intersection points between the river cells in VD(i)
and ls(i). For this, we need to partition ls(i) into intervals,
such that each interval corresponds to the intersection of
ls(i) with a Voronoi region in VD(i). Each such interval is
either a subset of an interval in Lint, or a subset of an interval
represented by two consecutive elements in Ltemp. There-
fore, we can compute Li by simultaneously scanning Ltemp

and Lint, and substituting, inserting, or deleting points from
Ltemp using the information stored in Lint.

Let k be the number of cells in a single row of G. From the
above description, we conclude that constructing each list Li

requires O(scan(k)) I/Os since we need to scan row(i − 1),



list Li−1, and Ltemp a constant number of times. We also
have to insert and extract at most O(k) elements to and
from the I/O-efficient stack ST . We can insert or extract
a single element from such a stack in O(1/B) I/Os, which
sums up to O(scan(k)) I/Os for processing all cells in a row.

Processing Li to determine the values source< also re-
quires one scan, which adds up in total to O(scan(N)) I/Os
for handling the corresponding lists for all rows in G.
Computing source=(c) is a simple task; let c be any cell in

G, and let r be the row in G which contains c. Cell source=(c)
is either the closest river cell on r that appears on the left
side of c, or the closest river cell from the right side of c.
Therefore, to determine source=(c) we scan each row of G
independently, and for each cell that we are currently scan-
ning we keep track of the nearest river cell from each side on
this row. Hence, we can compute cell source=(c) for every
cell c ∈ G in O(scan(N)) I/Os. From the above description,
we conclude that we can compute source>(c), source<(c),
source=(c), and therefore the source cell source(c) for every
cell c ∈ G \R(G) in O(scan(N)) I/Os.



The Influence of Late Quaternary
Climate-Change Velocity on
Species Endemism
B. Sandel,1,2* L. Arge,2 B. Dalsgaard,3 R. G. Davies,4 K. J. Gaston,5 W. J. Sutherland,3 J.-C. Svenning1

The effects of climate change on biodiversity should depend in part on climate displacement
rate (climate-change velocity) and its interaction with species’ capacity to migrate. We estimated
Late Quaternary glacial-interglacial climate-change velocity by integrating macroclimatic shifts since
the Last Glacial Maximum with topoclimatic gradients. Globally, areas with high velocities were
associated with marked absences of small-ranged amphibians, mammals, and birds. The association
between endemism and velocity was weakest in the highly vagile birds and strongest in the weakly
dispersing amphibians, linking dispersal ability to extinction risk due to climate change. High velocity
was also associated with low endemism at regional scales, especially in wet and aseasonal regions.
Overall, we show that low-velocity areas are essential refuges for Earth’s many small-ranged species.

Anthropogenic climate change is a major
threat to Earth’s biodiversity and the eco-
system services it provides (1). As cli-

mate changes, the conditions suitable for local
persistence of a particular species move across
the surface of the Earth, driving species responses
both to recent warming (2–4) and to long-term
natural climate cycles (5–8). Species with strong
dispersal abilities inhabiting relatively stable cli-
mates may track climate fairly closely. Converse-
ly, species with weak dispersal abilities relative
to the rate of climate change may fail fully to oc-

cupy climatically suitable areas (9–14) and may
even go extinct, despite appropriate habitat being
present elsewhere (15–17).

Climate-change velocity is a measure of the
local rate of displacement of climatic conditions
over Earth’s surface (18). It integrates macrocli-
matic shifts with local spatial topoclimate gra-
dients and is calculated by dividing the rate of
climate change through time by the local rate of
climate change across space, yielding a local in-
stantaneous velocity measure. By describing the
local rate at which species must migrate to track

changing climate, climate-change velocity is more
biologically relevant than are traditional macro-
climatic anomalies (13, 16, 19, 20). Furthermore,
because climate-change velocity incorporates fine-
scale topoclimate gradients it captures the impor-
tant buffering effect of topographic heterogeneity
on climate change (21). For example, a given tem-
perature change should have very different bio-
logical consequences depending on topographic
context: In flat areas, considerable movement is
required to track a 1°C increase in temperature,
whereas a short shift uphill could be sufficient in
mountains. Thus, species distributed in topograph-
ically homogenous landscapes will experience
higher climate-change velocities and therefore re-
quire stronger dispersal abilities to track climate
change than those of species in heterogeneous
landscapes.

High climate-change velocities are likely to
be associated with incomplete range filling and
species extinctions (22). Not all species, however,
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Fig. 1. Global maps of (A) climate-change velocity
since the Last Glacial Maximum (21,000 years ago);
proportional endemism of (B) amphibians, (C) mam-
mals, and (D) birds; and (E) relationships of past
and predicted future climate-change velocity. Ve-
locity is highest in northeastern North America and
north-central Eurasia; these same areas display low
or no endemism (the black line delimits areas that
were glaciated at LGM). Mountain ranges and other
low-velocity regions exhibit higher endemic richness of
amphibians, mammals, and birds. Rank-transformed
velocity since the LGM and rank-transformed veloc-
ities until 2080 show similar spatial patterns, but there
are areas of importantmismatch. Orange areas, where
velocities in the past have been low but predicted fu-
ture velocities are expected to be high, are a particular
conservation concern.
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are at equal risk from high velocity (20). Strong
dispersers should be most able to maintain dis-
tributional equilibrium with climate conditions
and are therefore likely to occupy more of their
potential range and avoid extinction. Species with
small ranges are at particular risk of extinction
(20); they often have small population sizes and
densities (23) and are less likely to occupy ref-
uges that remain suitable during climate oscil-
lations (15, 16, 24). Range size may also reflect
other species characteristics that influence resil-
ience to climate fluctuation, with widespread spe-
cies tending to have broad climatic tolerances
(25), generalist strategies (23), and strong disper-
sal capabilities (23). Hence, high-velocity regions
should have fewer small-ranged species and fewer
species with poor dispersal ability (16).

To test these hypotheses, we used reconstruc-
tions of mean annual temperature at the Last
Glacial Maximum (LGM; 21,000 years ago) to
calculate a global map of climate-change veloc-
ity from the LGM to the present (26) and tested
the effects of velocity on patterns of range size
and species richness of amphibians, mammals,
and birds (27). The difference between the LGM
and the present is one of the strongest climatic
shifts in all of the Quaternary (28), and its spatial
pattern is probably similar to the spatial patterns
of earlier climate cycles (16). Our analysis re-
vealed that the LGM-to-present climate-change
velocity exhibits marked geographic variation,
with peaks in northeastern North America and

north-central Eurasia (Fig. 1A). Velocities tended
to be lower in the Southern Hemisphere and in
mountainous areas.

Globally, small-ranged (<250,000 km2; here-
after termed “endemic”) amphibians, mammals,
and birds are concentrated where climate-change
velocity is low (Fig. 1, B to D) [results were not
sensitive to the particular definition of small
ranges (27)]. In high-velocity northeastern North
America and north-central Eurasia, endemic spe-
cies are nearly absent, whereas low-velocity areas
often harbor highly endemic faunas. For all spe-
cies groups, low-velocity sites are more likely to
harbor endemic species than are high-velocity
sites (Fig. 2, insets; logistic regression with spa-
tial filters: n = 2000 grid cells, all P < 0.0001). In
addition, among regions (10° × 10° equivalents)
containing at least one endemic species, velocity
is strongly and negatively related to the proportion
of amphibian [bivariate regression; n = 188 re-
gions, coefficient of determination (r2) = 0.283,
P < 0.001], mammal (n = 231 regions, r2 =
0.328, P < 0.001), and bird (n = 240 regions, r2 =
0.385,P < 0.001) species that are endemic (Fig. 2).
We excluded glaciated areas (Fig. 1A) from this
analysis, but investigations showed that results
were not sensitive to this decision.

It is widely accepted that modern climate in-
fluences species distributions and diversity, where-
as the role of historical determinants is less clear
(23). We therefore examined models that incor-
porated descriptions of modern climate, the spa-

tial pattern of modern climate conditions, and
climate-change velocity. The spatial pattern of mod-
ern climate conditions was summarized by calcu-
lating, for each grid cell, the total area of land
within a 1000-km radius that had a mean annual
temperature (MAT) within 1°C and mean annual
precipitation (MAP) within 100 mm of that focal
cell (24). The extent of analogous modern cli-
mate exerted strong influences on endemism, re-
flecting the fact that regionally rare climates are
likely to contain small-ranged species (Table 1)
(24). Endemism of all three groups was nega-
tively related to productivity and to twomeasures
of seasonality. In models that considered all var-
iables together while controlling for spatial auto-
correlation [simultaneous autoregressive models
(SARs)], velocity was a highly significant nega-
tive predictor of endemism for all groups, and for
the amphibians was second in importance only to
the extent of analogous climate.We examined the
effect of adding terms to this model to describe
the interaction of velocity and modern climate
descriptors. Including these terms generally had
small effects on other coefficient estimates, and
only one such interaction was significant (veloc-
ity × precipitation seasonality for amphibians),
so these interactions were not considered further.
We examined all subsets of the full SAR models
and compared them using Akaike’s Information
Criterion (AIC). For all groups, models incor-
porating velocity were always strongly preferred
over equivalent models without velocity (mean
AIC improvement: amphibians, 29.6; mammals,
38.5; and birds, 39.0). Across the full model set
with and without climate-change velocity, there
was high support for velocity as part of the best
model (summed Akaike weights for velocity >
0.989 for all groups). These results show that
past climate-change velocity and modern climate
act together to determine global patterns of
endemism.

Because velocity incorporates fine-scale topo-
graphic effects on climate stability, it should also
contribute to within-region variation in endemism.
To test this, we divided the world into regions
(10° × 10° equivalents) and asked whether ve-
locity was correlated with endemismwithin these
regions. For all three species groups, high-velocity
areas within regions were associated with low
endemism (global means of within-region corre-
lation coefficients: amphibians, r = –0.160; mam-
mals, r = –0.157; and birds, r = –0.091, all P <
0.01) (Fig. 3). This overall pattern is consistent with
the loss of small-ranged species in high-velocity
regions, but the local importance of velocity showed
strong geographic variation. Velocity should have
the strongest impact where the climate is some-
times highly suitable for a given group, potentially
favoring the generation and maintenance of en-
demic diversity (29). In contrast, regions charac-
terized by generally unfavorable conditions are
expected to contain few endemics, whether or not
velocity is low. In addition, the ability of species
to cope with temperature fluctuations is thought
to vary spatially, with species in highly seasonal

Fig. 2. The relationship between climate-change
velocity and proportional endemism for (A) amphib-
ians, (B) mammals, and (C) birds at a global scale
within 10° × 10° regions, considering only ungla-
ciated areas. Relationships are shown separately for
the Northern (red) and Southern Hemispheres (blue)
and for the global relationship (black line). Insets
depict the relationship between velocity and the
presence or absence of any small-ranged species.
For each of 25 velocity quantiles, the blue bars in-
dicate the proportion of locations with that velocity
where small-ranged species occur. The black line
displays a logistic regression fit to the relationship.
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areas tolerating a wider temperature range (30).We
tested these hypotheses by identifying the modern
climatic variables that most strongly control the
within-region correlation of velocity and endemism
patterns (table S9). For all three species groups,
the models with the lowest AIC scores contained
a single significant predictor and were consistent
with the above predictions; velocity was particu-
larly important for amphibians and mammals
where precipitation was high [amphibians, n =
125 regions, standardized regression coefficient
(b) = –0.185, P = 0.0465; mammals, n = 149 re-
gions, b = –0.259, P = 0.0018) and for birds
where temperature seasonality was low (n = 135
regions, b = 0.334, P = 0.0102) (Fig. 3).

Although a comprehensive test has thus far
been lacking, the importance of climate-change
velocity for a group should depend on the dis-
persal abilities of its species. Hence, of the taxa
analyzed, birds should be best at tracking high-
velocity changes, whereas amphibians should be
worst (9). Indeed, the importance of velocity in
determining global patterns of endemism decreased
from amphibians (standardized b = –0.288) to
mammals (standardized b = –0.216) to birds
(standardized b = –0.183) (Table 1). Furthermore,
velocity was most tightly correlated with patterns
of within-region endemism for amphibians and
least correlated for birds. Lending additional sup-
port to the importance of dispersal ability, veloc-
ity was also more tightly associated with patterns
of nonvolant mammal endemism (standardized
global b = –0.166, P = 0.0058, mean local r =
–0.165) than with bat endemism (standardized
global b = –0.135, P = 0.0670, mean local r =
–0.034). Global patterns of endemismwere well-
correlated among the three groups, suggesting that
overall they respond to similar drivers. However,
regions with low amphibian endemism relative to
avian endemism (which are correlated, r = 0.681)
tended to have high velocity, indicating that am-
phibians respond more strongly than do birds to
climate change (multiple regression of amphibian
endemism against velocity and avian endemism,
n = 183 regions, standardized bvelocity = –0.281,
P = 0.0010). Similar results were obtained for am-
phibian endemism relative to mammalian ende-
mism (r=0.693, n=185 regions, bvelocity = –0.283,
P = 0.0010) and mammalian endemism relative
to avian endemism (r = 0.819, n = 212 regions,
bvelocity = –0.175, P = 0.0028). Richness of the
lowest three range-size quartiles in amphibians
is low relative to the equivalent avian richness
(n = 175 regions, bvelocity = –0.247, P = 0.0031)
and mammal richness (n = 173 regions, bvelocity =
–0.333, P < 0.0001) in high-velocity regions. As
expected given their low dispersal ability, am-
phibian assemblages in high-velocity regionswere
thus particularly depauperate of endemic species
relative to bird and mammal assemblages.

The focal relationship between velocity and
endemism is corroborated by other patterns in the
distributions of all three groups. At both global
and regional spatial scales, high velocity was as-
sociated with larger median range sizes, lower

variation in range size within assemblages, re-
duced richness of species with range size below
the median, and weaker, inconsistent, and some-
times positive relationships for richness of spe-
cies with larger range sizes (figs. S1 to S6 and
tables S1 to S6 and S9).

High velocities have been proposed to be as-
sociated with incomplete range filling and spe-
cies extinctions (10, 17, 22). Although we found
no evidence for reduced range sizes with higher
velocities, the decline in endemism and inferred
importance of dispersal ability are consistent with
the extinctions hypothesis. However, it may be
that velocity per se is not driving endemism but
simply correlates with other variables that do have
a direct mechanistic link. Alternatively, a direct
mechanistic link between velocity and endemism
may not require species extinctions. We consid-
ered several such alternative hypotheses and show
that none are consistent with the data.

High-velocity areas may coincide with those
where analogous climate conditions have most
expanded since the LGM; low endemism in these
areas may occur because species in such areas
have expanded their range size accordingly. Cli-
mate expansion since the LGM was highly cor-
related with the extent of modern analogous
conditions (r = 0.794) but was a weaker predictor
of endemism in all cases (compare Table 1 with
table S12). Furthermore, the range expansion hy-
pothesis predicts that the groups with strongest
dispersal ability (birds) should have expanded
their ranges most and therefore should show the
strongest relationships to velocity, which is con-
trary to our results. It is also possible that velocity
appears to be an important predictor, not because
of a mechanistic link but only because it is de-
rived from another variable that does have a di-
rect link. However, climate-change velocity was
a better predictor than either of its components

Table 1. Relationships of seven predictor variables to global patterns of proportional endemism for
amphibians, mammals, and birds. GVI, generalized vegetation index; MAT, mean annual temperature;
MAP, mean annual precipitation; TS, temperature seasonality; PS, precipitation seasonality; Extent, the
regional extent of analogous climate; and Velocity, Late Quaternary climate-change velocity. Five com-
parative measures were used: the coefficient of determination from bivariate regressions (r2), standardized
regression coefficients estimated from ordinary least-squares multiple regression (OLS), simultaneous
autoregressive models using all predictors (SAR), the reduced SAR model with the lowest AIC score
(SARreduced), and Akaike weights based on SAR models. Blank cells indicate variables that were not
included in the reduced model. Figures in text are based on the full SAR models, which were most
consistently successful at removing residual spatial autocorrelation. The effect of the change in MAT
between LGM and present (Anomaly) and topographic heterogeneity (TH) were tested by replacing
velocity in all models with each of these variables. *P < 0.05, **P < 0.01, ***P < 0.001.

r2 OLS SAR SARreduced WeightAIC

Amphibians
GVI 0.227*** –0.185** –0.196** –0.198** 0.989
MAT 0.002 0.010 0.008 0.294
MAP 0.090*** –0.125 –0.115 –0.11 0.460
TS 0.068*** –0.018 0.001 0.312
PS 0.073*** –0.233*** –0.244*** –0.241*** 0.997
Extent 0.415*** –0.439*** –0.414*** –0.411*** 1.000
Velocity 0.283*** –0.252*** –0.288*** –0.289*** 1.000

Anomaly 0.082*** –0.203** –0.213** –0.207*** 0.979
TH 0.134*** 0.230** 0.260*** 0.285*** 0.998

Mammals
GVI 0.253*** –0.169*** –0.160*** –0.160*** 0.993
MAT 0.158*** 0.228** 0.216* 0.216* 0.882
MAP 0.203*** –0.215** –0.190* –0.190* 0.736
TS 0.313*** –0.180 –0.182 –0.182 0.597
PS 0.039** –0.194*** –0.173*** –0.173*** 0.929
Extent 0.538*** –0.490*** –0.467*** –0.467*** 1.000
Velocity 0.328*** –0.199*** –0.216*** –0.216*** 0.998

Anomaly 0.187*** –0.155** –0.158** –0.158** 0.975
TH 0.023* 0.092 0.106* 0.106* 0.646

Birds
GVI 0.297*** –0.237*** –0.212*** –0.213*** 1.000
MAT 0.102*** 0.065 0.021 0.284
MAP 0.137*** –0.317*** –0.303*** –0.302*** 0.999
TS 0.348*** –0.500*** –0.549*** –0.565*** 1.000
PS 0.036** –0.183*** –0.120* –0.114* 0.838
Extent 0.446*** –0.369*** –0.323*** –0.320*** 1.000
Velocity 0.385*** –0.194*** –0.183*** –0.180*** 0.989

Anomaly 0.222*** –0.148*** –0.121* –0.119* 0.733
TH 0.015 0.074 0.086* 0.081* 0.726

4 NOVEMBER 2011 VOL 334 SCIENCE www.sciencemag.org662

REPORTS

 o
n 

M
ay

 2
4,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 



(topographic heterogeneity and macroclimate
anomaly) and was the only one with consistent
predictive power across scales (Table 1), which
suggests that topographic heterogeneity and
anomaly both contain important and comple-
mentary information. High endemism and low
velocity occur not only in mountains but also in
macroclimatically stable, relatively flat regions
(such as portions of the Amazon basin and cen-
tral Africa). At the same time, high-velocitymoun-
tain areas harbor low endemism (such as the
Altai mountains of northern Mongolia and some
mountains in the western United States).

Does a direct role of velocity depend on ex-
tinctions, and are alternatives consistent with the
data? Dynesius and Jansson (15) proposed three
interrelated mechanisms linking climate stability
and patterns of richness and range size: (i) In-
stability may select for increased dispersal ability
and generalism, leading to large ranges; (ii) grad-
ual speciation rates may be reduced in unstable
areas, producing a lack of young, small-ranged
species; and (iii) small-ranged species may have
gone extinct in unstable areas. Underlying all of
these hypotheses is the process of lineage extinc-
tion across a range of evolutionary scales, from
selection acting on within-species lineages to the
extinction of newly diverging or full species (31).
In principal, reduced speciation rates [explana-

tion (ii)] might instead be due to high rates of
gene flow among populations in unstable, shifting
climates. However, this mixing should be most
pronounced for strongly dispersing species. In con-
trast, lineage extinctions at all levels should have
the strongest effects on weak dispersers, which is
consistent with our results. Thus, elevated extinc-
tion rates—likely across a range of evolutionary
scales (31)—appear to best explain the association
of low endemism with high velocity (17, 22).

Our results have important implications for
conservation in a world that is increasingly ex-
periencing elevated climate-change velocities (18).
Areas that have experienced high velocities in the
past are on average also expected to experience
high velocities over the next century (Fig. 1E and
fig. S7). As we have shown, these areas are al-
ready missing small-ranged species, suggesting
that most of the remaining species may cope well
with future changes. However, there are impor-
tant mismatches between the spatial patterns of
past and future climate change; areas with low
velocities in the past, high concentrations of en-
demic species, and high velocities into the future
are a particular conservation concern. These areas
include western Amazonia, where concentrations
of endemic species that have experienced rela-
tively low-velocity changes in the past may be
faced with rapid climate shifts in the near future.

Taken together, these results indicate that past
climate changes have left important legacies in
contemporary range size and species richness pat-
terns, supplemented by the influences of modern
climate and its spatial pattern. Small-ranged spe-
cies constitute most of Earth’s species diversity
(23); our findings show that these species, espe-
cially those from less vagile groups, are sensitive
to climate movements and are concentrated in
areas where possibilities for tracking past climate
changes have been greatest. This conclusion also
suggests that small-ranged, weakly dispersing
species in previously stable regions experiencing
high future climate-change velocities will be at
greatest extinction risk from anthropogenic cli-
mate change.
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Long-Term Change in the Nitrogen
Cycle of Tropical Forests
Peter Hietz,1* Benjamin L. Turner,2 Wolfgang Wanek,3 Andreas Richter,4

Charles A. Nock,5 S. Joseph Wright2

Deposition of reactive nitrogen (N) from human activities has large effects on temperate forests
where low natural N availability limits productivity but is not known to affect tropical forests
where natural N availability is often much greater. Leaf N and the ratio of N isotopes (d15N)
increased substantially in a moist forest in Panama between ~1968 and 2007, as did tree-ring
d15N in a dry forest in Thailand over the past century. A decade of fertilization of a nearby
Panamanian forest with N caused similar increases in leaf N and d15N. Therefore, our results
indicate regional increases in N availability due to anthropogenic N deposition. Atmospheric
nitrogen dioxide measurements and increased emissions of anthropogenic reactive N over
tropical land areas suggest that these changes are widespread in tropical forests.

Anthropogenic N fixation has approxi-
mately doubled atmospheric deposition
of reactive N in terrestrial ecosystems

globally, with regional variation resulting from
differences in the intensity of agriculture, the
burning of fossil fuels, and biomass burning (1).
Many temperate and boreal ecosystems are N
limited; in these regions, atmospheric N deposi-
tion has caused the acidification of soils and
waters, loss of soil cations, a switch from N to P
limitation, a decline in the diversity of plant com-
munities adapted to low N availability, and in-
creases in carbon uptake and storage (2, 3). Natural
N availability is much greater in many tropical
forests than in most temperate forests due to high
rates of N fixation by heterotrophic soil microbes

and rhizobia associated with legumes, which are
abundant in many tropical forests (4). Nitrogen
deposition is increasing in the tropics, and this
region may see the most dramatic increases in the
coming decades (1). It has been hypothesized
that this will acidify soils, deplete soil nutrients,
reduce tree growth and carbon storage, and neg-
atively affect biodiversity in tropical forests (5, 6).
Yet despite extensive speculation, there remains
no direct evidence for changes in the N cycle in
tropical forests.

The ratio of stable N isotopes (d15N) reflects
the nature of the N cycle in ecosystems, with
higher values indicating greater N availability
and a more open N cycle (7, 8). In temperate
ecosystems where N deposition is low, leaf N
concentrations and the d15N of leaves and wood
decreased during the 20th century, indicating
progressive N limitation in response to changes
in land use (9) and increasing atmospheric CO2

concentrations (10). In contrast, wood d15N val-
ues have increased in temperate forests with high
rates of N deposition or a history of recent dis-
turbance, suggesting more open N cycles under
such conditions (11, 12).

We compared leaves from herbarium spec-
imens (158 species) collected ~40 years ago
(~1968) from a tropical moist forest on Barro

Colorado Island (BCI), Republic of Panama,
with sun and shade leaves (340 species) collected
in 2007. Over four decades, leaf d15N increases
averaged 1.4 T 0.16 per mil (‰) (SEM) and 2.6 T
0.1‰ when comparing 1960s leaves to con-
specific 2007 shade and sun leaves, respectively.
Based on their leaf mass per area, 1960s leaves
included a mixture of both sun and shade leaves
(13). The increase in leaf d15N occurred in both
legumes (Fabaceae) and nonlegumes (Fig. 1, A
and B). Foliar N concentrations in nonlegumes
increased by 7.7 T 1.9% and 15.2 T 2.5% when
comparing 1960s leaves to 2007 sun and shade
leaves, respectively (Fig. 1C). Legumes had sub-
stantially greater foliar N concentrations than non-
legumes, and there was no overall change in their
foliar N concentration between the 1960s and
2007 (Fig. 1D).

To assess whether the changes detected on
BCI are representative of tropical forests more
broadly, we determined d15N in tree rings from
three nonleguminous tree species in the Huai Kha
KhaengReserve, a remotemonsoon forest near the
Thailand-Myanmar border. Significant increases
in d15N during the past century were detected in
all three species (Fig. 2). Similar changes were
reported previously for tree rings in two Amazo-
nian rainforest tree species (14).

A forest N addition experiment conducted
1 km from BCI provides perspective on the
changes in foliar N composition (15). Foliar d15N
increased by 0.3 to 1.5‰ in four tree species and
by ~0.5 to 1.2‰ in fine litter (15), and the N
concentration in litterfall increased by 7% (16)
after 8 to 9 years of fertilization with 125 kg N
ha−1year−1. The observed increase in leaf d15N
did not reflect the signal of the N fertilizer, which
had a lower d15N (–2.2‰) than leaves of non-
fertilized trees in control plots (15) and therefore
should have resulted in a decline rather than an
increase in foliar d15N. Nitrogen fertilization also
increased NO3 leaching (from 0.01 to 0.93 mg
N liter−1),NO flux (from70 to 196mgNm−2 day−1),
and N2O flux (from 448 to 1498 mg N m−2 day−1)
(15), confirming that the increase in leaf d15N
after N fertilization was associated with a more
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Succincter

Mihai Pǎtraşcu∗

MIT

Abstract

We can represent an array of n values from {0, 1, 2} us-
ing �n log2 3	 bits (arithmetic coding), but then we cannot
retrieve a single element efficiently. Instead, we can encode
every block of t elements using �t log2 3	 bits, and bound
the retrieval time by t. This gives a linear trade-off between
the redundancy of the representation and the query time.

In fact, this type of linear trade-off is ubiquitous in
known succinct data structures, and in data compression.
The folk wisdom is that if we want to waste one bit per block,
the encoding is so constrained that it cannot help the query
in any way. Thus, the only thing a query can do is to read
the entire block and unpack it.

We break this limitation and show how to use recursion
to improve redundancy. It turns out that if a block is en-
coded with two (!) bits of redundancy, we can decode a
single element, and answer many other interesting queries,
in time logarithmic in the block size.

Our technique allows us to revisit classic problems in
succinct data structures, and give surprising new upper
bounds. We also construct a locally-decodable version of
arithmetic coding.

1 Introduction

1.1 Motivation

Can we represent data close to the information-theoretic

minimum space, and still answer interesting queries effi-

ciently? Two basic examples can showcase the antagonistic

nature of compression and fast queries:

1. Suppose we want to store a bit-vector A[1 . . n], and

answer partial sums queries: RANK(k), which asks for∑k
i=1 A[i]; and SELECT(k), which asks for the index of

the k-th one in the array.

One the one hand, we must store some summaries

(e.g. partial sums at various points) to support fast queries.

∗Supported by a Google Research Award and by MADALGO - Center

for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.

On the other hand, a summary is, almost by definition, re-

dundant. If we store a summary for every block of t bits,

it would appear that the query needs to spend time propor-

tional to t, because no guiding information is available in-

side the block.

2. Suppose we want to represent an array A[1 . . n] of

“trits” (A[i] ∈ {0, 1, 2}), supporting fast access to single

elements A[i]. We can encode the entire array as a number

in {0, . . . , 3n − 1}, but the information about every trit is

“smeared” around, and we cannot decode one trit without

decoding the whole array.

Generalizing trits to symbols drawn independently from

a distribution with entropy H , we can use arithmetic coding

to achieve n · H + 1 bits on average, but information about

each element is spread around in the encoding. At the other

extreme, we can use Huffman coding to achieve n · (H +
O(1)

)
bits1 of storage, which represents every element in

“its own” memory bits, using a prefix-free code.

The natural solutions to these problems gravitate towards

a linear trade-off between redundancy and query time. We

can store a summary for every block of t elements (in prob-

lem 1.), or we can “round up” the entropy of every block

of t symbols to an integral number of bits (in problem 2.).

In both cases, we are introducing redundancy of roughly n
t ,

and the query time will be proportional to t.
It is not hard to convince oneself that a linear trade-off is

the best possible. If we store t elements with at most O(1)
bits of redundancy, we need a super-efficient encoding that

is essentially fixed due the entropy constraint. Because the

encoding is so constrained, it would appear that it cannot be

useful beyond representing the data itself. Then, the only

way to work with such a super-efficient encoding is to de-

code it entirely, forcing query time proportional to t.
In this paper, we show that this intuition is false: we can

use recursion even inside a super-efficient encoding (if we

are allowed two bits of redundancy). Instead of decoding t
elements to get to one trit, local decoding can be supported

in logarithmic time. This extends to storing an entire aug-

mented tree succinctly, so we can solve RANK/SELECT in

1More precisely, Gallager [11] showed that the redundancy is at most

pmax + 0.086 bits per element, where pmax is the maximum probability

of an element.
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logarithmic time. At every node of the tree, we can achieve

something nontrivial (store the sum of its subtree), while

introducing just 1
t bits of redundancy.

1.2 Succinct(er) Data Structures

In the field of succinct data structures, the goal is to con-

struct data structures that use space equal to the information

theoretic minimum plus some redundancy R, while sup-

porting various types of queries. The field has been expand-

ing at a remarkable rate in the past decade, exploring a wide

variety of problems and queries.

All of these structures, however, exhibit a linear trade-off

between redundancy and query time. Typically the results

are stated for constant query time, and achieve a fixed re-

dundancy close to linear, most often around O( n
lg n ). At a

high enough level of abstraction, this comes from storing

ε lg n elements by an optimal encoding, and using a pre-

computed lookup table of size O(nε) to decode them in

constant time. It can be seen that for any constant query

time, the redundancy will not improve asymptotically (we

can only look at a constant number of blocks).

For many natural problems in the field, our technique can

achieve redundancy O(n/poly log n) with constant running

times, for any desired poly log. This suggests we have to re-

think our expectations and approaches when designing suc-

cinct data structures.

Surprisingly, our constructions are often easier than the

fixed-redundancy data structures they are replacing. It is

not uncommon for succinct data structures to group ele-

ments into chunks, group chucks in superchunks, and finally

group superchunks in megachunks. Each level has different

lookup tables, and different details in the implementation.

By having to do recursion for an unbounded number of lev-

els, we are forced to discover a clean and uniform way to

do it.

The following are a few results that follow from our tech-

nique. We believe however that the main value of this paper

is to demonstrate that redundancy can be improved through

recursion. These particular results are illustrations.

Locally decodable arithmetic codes. Our toy problem of

storing ternary values can be generalized to representing an

array of n elements with zeroth-order entropy H . Matching

zeroth-order entropy is needed at the bottom of almost any

technique attempting to match higher order entropy (includ-

ing, for example, LZ77, the Burrows-Wheeler transform,

JPEG, and MP3). Arithmetic coding can have a notable

advantage over Huffman coding at low rates. For exam-

ple, Shannon estimated the entropy of English to be 1.3
bits/letter, a rate at which a constant redundancy per letter

can increase the encoding size by a significant percentage.

Mitzenmacher [17] uses arithmetic coding to compress

Bloom filters, an application that critically requires local

decodability. He asks for “a compression scheme that also

provided random access,” noting that “achieving random

access, efficiency, and good compression simultaneously is

generally difficult.”

Our results give a version of locally-decodable arith-

metic codes, in which the trade-off between local access

time and redundancy is exponential:

Theorem 1. Consider an array of n elements from an al-
phabet Σ, and let fσ > 0 be the number of occurrences of
letter σ in the array. On a RAM with cells of Ω(lg n) bits,
we can represent the array with:

O(|Σ| lg n) +
∑
σ∈Σ

fσ log2

n

fσ
+ n

/( lg n

t

)t

+ Õ(n3/4)

bits of memory, supporting single-element access in O(t)
time.

Observe that
∑

fσ log2
n
fσ

is the empirical entropy of

the array. Thus, if the elements are generated by a memo-

ryless process with entropy H , the expected space is n · H ,

plus redundancy decreasing exponentially in t, plus O(|Σ|)
words needed to represent the distribution.

Bit-vectors with RANK/ SELECT. The problem of sup-

porting RANK and SELECT on bit vectors is the bread-and-

butter of succinct data structures, finding use in most other

data structures (for representing trees, graphs, suffix trees

/ suffix arrays etc). Thus, the redundancy needed for this

problem has come under quite a bit of attention.

The seminal papers of Jacobson [15] from FOCS’89,

and Clark and Munro [5] from SODA’96 gave the first data

structures using space n + o(n) and constant query time.

These results were later improved [19, 21, 26].

In several applications, the set of ones is not dense in the

array. Thus, the problem was generalized to storing an array

A[1 . . u], containing n ones and u − n zeros. The optimal

space is B = lg
(

u
n

)
. Note that the problem can solve pre-

decessor search, by running SELECT(RANK(i)). From the

lower bounds of [25], it follows that constant running times

are only possible when the universe is not too much larger

than n, in particular, u = n ·poly log n. Thus, succinct data

structures have focused on this regime of parameters.

Pagh [23] achieved space B + O(n · (lg lg n)2

lg n ) for this

sparse problem. Recently, Golynski et al. [13] achieved B+
O(n · lg lg u

lg2 n
). Finally, Golynski et al. [14] have achieved

space B + O(n · lg lg n·lg(u/n)
lg2 n

). That paper conjectures that

their redundancy is the best possible in constant time.

Here, we disprove their conjecture, and show that any

redundancy O(n/poly log n) is achievable.
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Theorem 2. On a RAM with cells of Ω(lg u) bits, we can
represent an array A[1 . . u] with n ones and u − n zeros
using log2

(
u
n

)
+ u

(lg u /t)t + Õ(u3/4) bits of memory,
supporting RANK and SELECT queries in O(t) time.

The RANK/SELECT problem has also seen a lot of work

in lower bounds [10, 16, 14, 12], particularly bounds apply-

ing to “systematic encodings.” In this model, the bit vec-

tor is stored separately in plain form, and the succinct data

structure consists of a sublinear size index on the side. Un-

der this requirement, the best achievable redundancy with

query time t is n
t·poly lg n , i.e. the linear trade-off between

redundancy and query time is the best possible. Our re-

sults demonstrate the significant power of not storing data

in plain form.

Dictionaries. The dictionary problem is to store a set S
of n elements from a universe u, and answer membership

queries (is x ∈ S?) efficiently. Improving space has long

been a primary goal in the study of dictionaries. For ex-

ample, classic works put a lot of effort into analyzing linear

probing when the table is close to capacity (if a 1−ε fraction

of the cells are used, how does the “constant” running time

degrade with ε?). Another trend is to study weaker versions

of dictionaries, in the hope of saving space. Examples in-

clude the well known Bloom filters [1, 3, 22], and dictionar-

ies that support retrieval only, sometimes called “Bloomier

filters” [6, 4, 18].

The famous FKS dictionaries [8] were the first to solve

the dictionary problem in linear space, in the sense of using

O(n) cells of size lg u, while supporting queries in O(1)
time in the worst-case. Many data structures with simi-

lar performance have been suggested; in particular, cuckoo

hashing [24] uses (2 + ε)n memory words.

Brodnik and Munro [2] were the first to approach the en-

tropy bound, B = lg
(

u
n

)
. Their data structure used space

B+O(B/ lg lg lg u), and they suggested that getting signifi-

cantly more sublinear bounds might not be possible without

“a more powerful machine model.”

Pagh [23] gave the best known bound, achieving B +
O(n (lg lg n)2

lg n ). In fact, his algorithm is reduction to the

RANK problem in vectors of size u = n · poly log n. Thus,

our results immediately imply dictionaries with redundancy

B + O(n/ lgc n), for any constant c.

Balanced parentheses. Our techniques imply results

identical to RANK/SELECT for the problem of storing a

string of 2n balanced parentheses, and answering two

queries:

MATCH(k) : find the parenthesis that matches the one on

position k.

ENCLOSING(k) : find the open parenthesis that encloses

most tightly the one on position k.

The optimal space is given by the Catalan number:

lg
(

1
n+1

(
2n
n

))
= 2n − O(lg n). Due to the natural asso-

ciation between tree structures and balanced parentheses,

this problem has been the crucial building block in most

succinct tree representations.

A generic transformation. In fact, all of our results are

shown via a generic transformation, converting a broad

class of data structures based on augmented search trees into

succinct data structures. It seems likely that such a broad re-

sult will have applications beyond the ones explored in this

paper.

The reader is referred to §4 for formal details about the

class of augmented search trees handled by our transforma-

tion.

1.3 Technical Discussion

Our goal is to improve redundancy through recursion, as

opposed to a linear scan. A naı̈ve view for how recursion

might work for the trits problem is the following. We take

w trits, which have entropy w log2 3, and “extract” some

M bits of information (e.g. M = �w log2 3�), which we

store. Then, the remaining δ = w log2 3 − M bits of in-

formation are passed to the second level of the recursion.

At the second level, we aggregate w blocks, for which we

must store wδ bits of information. We store some M ′ bits

(e.g. M ′ = �wδ�), and pass δ′ = wδ−M ′ bits to the second

level, etc.

Since we are not willing to waste a bit of redundancy

per block, δ may not be an integer. Unfortunately, “passing

some fractional bits of information” is an intuition that does

not render itself to any obvious implementation.

Our solution for passing a fractional number of entropy

bits is elegant and, in hindsight, quite natural. We will ap-

proximate δ by log2 K, where K is an integer. This means

that passing δ bits of information is almost the same as pass-

ing a number in {0, . . . , K − 1}. This approach introduces

redundancy (“unused entropy”) of log2 K − δ bits, a quan-

tity that depends on how close δ is to a logarithm of an inte-

ger. Note however, that if K is the best approximation, δ is

sandwiched between log2(K − 1) and log2 K. Thus, if we

choose δ large enough, there is always some K that gives a

good approximation.

At the second level of recursion, the problem will be to

represent an array of n/w values from {0, . . . , K−1}. This

is just a generalization of the ternary problem to an arbitrary

universe, so the same ideas apply recursively.

It should be noted that the basic technique of storing a

certain number of bits and passing the “spill” to be stored

separately, is not new. It was originally introduced by

Munro et al. [20], and is the basis of the logarithmic im-

provement in redundancy of Golynski et al. [13] (see the
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“informative encodings” of that paper). Unfortunately, the

techniques in these papers do no allow recursive composi-

tion, which is the key to our results.

In §2, we formally define the concept of spill-over repre-
sentations, and uses it to prove Theorem 4 for representing

an array of trits.

For less trivial applications, we need to compose

variable-length representations without losing entropy. For

example, we may want to store the sum of n numbers, and

then the numbers themselves, by an efficient encoding that

doesn’t store the sum redundantly. With the right view, we

can give a very usable lemma performing this composition;

see §3. Finally, §4 uses this lemma to derive our main re-

sults in succinct data structures.

2 Spill-Over Representations

Assume we want to represent a value from a set X . Any

representation in a sequence of memory bits will use at least

�log2 |X |	 bits in the worst case, so it will have a redun-

dancy of almost one bit if |X | is not close to a power of

two. To achieve a redundancy much smaller than one for

any value of |X |, we must first define a model of “represen-

tation” where this is possible.

A spill-over representation consists of M memory bits

(stored in our random-access memory), plus a number in

{0, . . . , K − 1} that is stored by some outside entity. This

number is called the spill, and K is called the spill uni-
verse. Observe that the spill-over representation is ca-

pable of representing K · 2M distinct values. When us-

ing such a representation to store an element in X , with

|X | < K · 2M , we define the redundancy of the representa-

tion to be log2(K ·2M )−log2 |X | = M+log2 K−log2 |X |.
We can think of this as entropy wasted by the representation.

When talking about algorithms that access a spill-over

representation, we assume the spill is provided by the out-

side entity for free, and the algorithm may access the mem-

ory bits by random access in the word memory.

As the most fundamental example of a spill-over repre-

sentation, we have the following:

Lemma 3. Consider an arbitrary set X , and fix r ≤ |X |.
We can represent an element of X by a spill-over encod-
ing with a spill universe K satisfying r ≤ K ≤ 2r, and
redundancy at most 2

r bits.

Proof. We must choose M and K carefully to achieve our

redundancy bound. Specifically, we choose M to satisfy

2M · r ≤ |X | ≤ 2M+1 · r. This fixes the spill universe to be

K =
⌈ |X |

2M

⌉
; observe that r < K ≤ 2r.

Any injective map of X into {0, 1}M × {0, . . . , K −1}
defines a spill-over scheme. For example, we can divide an

index in X by 2M , store the remainder as M memory bits,

and pass the quotient as the spill. This is decodable by O(1)
arithmetic operations.

Our spill-over scheme is capable of representing 2M ·
K different values, as opposed to the |X | values required.

Thus, we have a redundancy of:

log2

(
K·2M

|X |
)

= log2

(� |X|
2M 	·2M

|X |

)
≤ log2

(
( |X|

2M +1)·2M

|X |

)
= log2

(
1 + 2M

|X |
)

≤ log2

(
1 + 1

r

) ≤ 2
r

2.1 Application: Storing Trits

We now show how to compose spill-over representations

from Lemma 3 recursively, yielding the following bounds

for our toy problem of storing n ternary values:

Theorem 4. On a RAM with w-bit cells, we can rep-
resent an array A[1 . . n] with A[i] ∈ {0, 1, 2} using
�n log2 3	 + n

(w/t)t + poly log n bits of memory, while
supporting single-element accesses in O(t) time.

Proof. We first group elements into blocks of w. A block

takes values in a set of size 3w. We apply Lemma 3 with

some parameter r to be determined, and store each block

as M0 memory bits and a spill in a universe K0 ∈ [r, 2r].
Given the spill, we can read the O(w) memory bits and de-

code in constant time:

• first assemble the spill and the memory bits, multiply-

ing the spill by 2M0 , and adding them together.

• now extract the ith trit, dividing by 3i, and taking the

number modulo 3.

In practice, we want to avoid division by precomputing a

table with the multiplicative inverses of 3i. Note that we do

not need explicit pointers to each block, since the offset at

which the memory bits of a block are stored is equal to M0

times the block index.

Now let B = Θ( w
lg r ), with B ≥ 2. At the second level

of recursion, we store the spills of B consecutive blocks.

There are KB
0 ≤ (2r)B = 2O(w) choices for the bottom-

level spills. Using Lemma 3, we can represent this data as

M1 ≤ log2(KB
0 ) = O(w) memory bits, and a spill in uni-

verse K1 ∈ [r, 2r]. Note that the assumption r ≤ |X | made

by the lemma is indeed satisfied, because |X | = KB
0 ≥ r2.

Since Lemma 3 is applied in identical conditions, K1 and

M1 will be identical for all level-1 blocks.

We can continue to apply this scheme recursively, storing

B spills in universe K1, generating a spill in universe K2 ∈
[r, 2r], etc. We do this for t levels, supporting access queries

in O(t) word probes. At the end of the recursion, we store

each of the final spills with �log2 Kt	 bits, paying one bit of

redundancy per spill. Note that the size of the final scheme
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is a telescoping sum of the sizes at intermediate levels of

recursion, i.e. the final redundancy is simply the sum of the

redundancies introduced at each step. This gives:

R = O

(
n/w

r
+

n/(Bw)
r

+ · · · + n/(Btw)
r

+
n

Btw

)
= O

( n

wr
+

n

w · Bt

)
To balance the two terms (the redundancy of the spill-

over representations, versus the final redundancy of one

bits per spill), let r = Bt. By our choice of B, we have

B = O( w
lg r ) = O( w

t lg B ) = O( w/t
lg(w/t) ). We thus have

r = Bt =
(

w
t

)Ω(t)
. Adjusting constants, we have a redun-

dancy of R ≤ n
(w/t)t , and query time O(t).

As a header of the data structure, we need to store the

values Ki and Mi for every level of the recursion, which are

needed to navigate the data structure. This adds O(lg2 n)
bits to the redundancy.

3 Composing Variable-Length Encodings

As we have just seen, spill-over encodings of fixed length

can be composed easily in a recursive fashion. However, in

less trivial applications, we need to compose variable-length

encodings without losing entropy. For an illustration of the

concept, assume we want to store an array A[1 . . n] of bits,

such that we can query both any element A[i], and the sum

of the entire array: X =
∑n

j=1 A[j]. If we choose the trivial

encoding as n bits, querying the sum will take linear time.

Conceptually, we must first store the sum, followed by

the array itself, represented by an efficient encoding that

uses knowledge of the sum (i.e. does not contain any re-

dundant information about the sum). This should not lose

entropy, since H(X) + H(A|X) = n.

The trouble is that the bound H(X) can only be achieved

in expectation, by some kind of arithmetic code. Further-

more, since H(A|X) is a function of X , the parameters of

a spill-over representation must also vary with X . Thus, we

need to piece together some kind of arithmetic code for X ,

with a variable-length spill-over representation of A whose

size depends on X . In the end, however, we should obtain

a fixed-length encoding, since the overall entropy is n bits.

The following lemma formalizes this intuition, in a state-

ment that has been crafted carefully for ease of use in appli-

cations:

Lemma 5. Assume we have to represent a variable x ∈
X , and a pair (yM , yK) ∈ {0, 1}M(x) × {

0, . . . , K(x) −
1
}

. Let p(x) be a probability density function on X , and
K(·), M(·) be non-negative functions on X satisfying:

(∀)x ∈ X : log2

1
p(x)

+ M(x) + log2 K(x) ≤ H (1)

We can design a spill-over representation for x, yM and yK

with the following parameters:

• the spill universe is K� with K� ≤ 2r, and the memory
usage is M� bits.

• the redundancy is at most 4
r bits, i.e. M� + log2 K� ≤

H + 4
r .

• if the word size is w = Ω
(
lg |X |+lg r+lg max K(x)

)
,

x and yK can be decoded with O(1) word probes. The
input bits yM can be read directly from memory, but
only after yK is retrieved.

• given a precomputed table of O(|X |) words that only
depends on the input functions K, M and p, decoding
x and yK takes constant time on the word RAM.

In §3.1, we describe the main details of the construction. To

make the construction implementable, we need to tweak the

distribution p(·) to avoid pathologically rare events; this is

detailed in §3.2. Finally, in §3.3 we describe the constant-

time decoding procedure, which relies on a cute algorithmic

trick. Note that a table of size O(|X |) is optimal, since the

lemma is instantiated for three arbitrary functions on X .

3.1 The Basic Construction

The design of our data structure is remarkably simple.

First, let Mmin = minx∈X M(x). We can decrease each

M(x) to Mmin, by encoding M(x)−Mmin bits of memory

into the spill. This has the technical effect that we may not

access yM prior to decoding yK , as stated in the lemma.

From now on, we assume yM always has Mmin bits, and

yK comes from a universe of K ′(x) = K(x) ·2M(x)−Mmin .

Now let Z be the set of possible pairs (x, yK).

Claim 6. We have log2 |Z| + Mmin ≤ H .

Proof. We will show |Z| ≤ maxx∈X
K′(x)
p(x) . Since

log2
1

p(x) + log2 K ′(x) + Mmin ≤ H for all x, it follows

that log2 |Z| + Mmin ≤ H .

Suppose for contradiction that |Z| > K′(x)
p(x) for all x ∈

X . Then, K ′(x) < |Z| · p(x), for all x. We have |Z| =∑
x∈X K ′(x) <

∑
x∈X

(|Z| · p(x)
)

= |Z|, which gives a

contradiction.

Though the proof of this lemma looks like a technical-

ity, the intuition behind it is quite strong. The space of

encodings Z is partitioned into equivalence classes (x, �),
giving each element x a fraction equal to K(x)/|Z|. But

log2
1

p(x) + log2 K(x) ≈ H − Mmin, so K(x)/p(x) is

roughly fixed. Thus, the fraction of space assigned to x is

roughly p(x), which is exactly how arithmetic coding oper-

ates (partitioning the real interval [0, 1]).
To complete the representation, we apply Lemma 3 to

the set Z. The resulting spill is passed along as the spill of
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our data structure, and the memory bits are stored at the be-

ginning of the data structure, followed by the Mmin bits of

yM . The only redundancy introduced is by this application

of Lemma 3, i.e. 2
r bits.

For this construction to be efficiently decodable, we must

at the very least be able to manipulate a value of Z in con-

stant time, i.e. have a word size of w = Ω(lg |Z|). To

understand this requirement, we bound log2 |Z| ≤ H −
min M(x). For every x, we are free to increase M(x),
padding with zero bits, up to the maximum integer satis-

fying M(x) ≤ H − log2 K(x)− log2
1

p(x) . Thus, M(x) >

H − log2
K(x)
p(x) − 1. This implies the bound log2 |Z| ≤

log2
max K(x)
min p(x) + 1, i.e. |Z| = O

(max K(x)
min p(x)

)
. The statement

of the lemma already assumes w = Ω(lg max K(x)), since

K(x) is the universe of the input spill. Thus, it remains to

ensure that w = Ω(lg 1
min p(x) ).

3.2 Handling Rare Events

Unfortunately, some values x ∈ X can be arbitrar-

ily rare, and in fact, min p(x) is prohibitively small even

for natural applications. Remember our example of rep-

resenting an array A[1 . . n] of bits, together with its sum

x =
∑n

j=1 A[i]. We have min p(x) = p(n) = 2−n, which

means our algorithm wants to manipulate spills of Ω(n)
bits. A word size of Θ(n) bits is an unrealistic assumption.

Our strategy will be to tweak the distribution p(·)
slightly, increasing min p(x) towards 1

|X | , while not losing

too much entropy if we code according to this false distribu-

tion. (In information-theoretic terms, the Kullback-Leibler

divergence between the distributions must be small.)

Formally, we tweak the distribution by adding 1
|X|·r to

every probability, and then normalizing:

p′(x) =
(
p(x) +

1
|X| · r

)/(
1 +

1
r

)
Observe that

∑
x∈X p′(x) =

( ∑
x∈X p(x) + |X| ·

1
|X|·r

)/(
1 + 1

r

)
= 1, so p′(·) indeed defines a distribution.

We now have min p′(x) ≥ 1
|X |·r

/
(1 + 1

r ) ≥ 1
2r·|X | .

This requires the word size to be w = Ω(lg r + lg |X |), a

reasonable assumption made by the lemma. (In our example

with an n-bit array, |X | = n+1, so we require w = Ω(lg r+
lg n), instead of Ω(n) are before.)

Finally, we must show that the entropy bound in (1) is

not hurt too much if we code according to p′(·) instead of

p(·). Note that:

log2
1

p′(x) ≤ log2
1

p(x)/(1+1/r)

= log2
1

p(x) + log2

(
1 + 1

r

) ≤ log2
1

p(x) + 2
r

We can replace (1) with the following weaker guarantee:

M(x) + log2 K(x) + log2
1

p′(x)

≤ M(x) + log2 K(x) + log2
1

p(x) + 2
r ≤ H + 2

r

Combining with the construction from §3.1, which intro-

duced another 2
r bits of redundancy, we have lost 4

r bits of

redundancy overall.

3.3 Algorithmic Decoding

The heart of the decoding problem lies in recovering x
and yK based on an index in Z (output by Lemma 3). We

could do this with a lookup in a precomputed table of size

|Z|. Remember that we bounded |Z| = O(max K(x)
min p(x) ) =

O(|X | · r ·max K(x)), which is not a strong enough bound

for some applications. We now show how to use a table of

size just O(|X |).
From the point of view of x, the space Z is partitioned

into pieces of cardinality K(x), and the query is to find the

piece containing a given codeword. We are free to design

the partition to make decoding efficient. First, we assign to

each x a contiguous interval of Z. Let zx be the left bound-

ary of the interval assigned to x. Decoding x is equivalent to

a predecessor search, locating the codeword among the val-

ues {z1, . . . , z|X |}. Decoding yK simply subtracts zx from

the codeword.

Unfortunately, the optimal bounds for predecessor

search [25] are superconstant in the worst case. To achieve

constant time, we must leverage our ability to choose the

encoding: we must arrange the intervals in an order that

makes predecessor search easy! While this sounds mys-

terious, it turns out that sorting the intervals by increasing

length suffices.

Claim 7. If intervals are sorted by length, i.e. zi+1 − zi ≥
zi − zi−1, predecessor search among the zi’s can be sup-
ported in constant time by a data structure of O(|X |) words.

Proof. Let f(τ) be the smallest interval of length τ ,

i.e. f(τ) = min{i | zi+1 − zi ≥ τ}. Consider the set

of zf(τ), for every τ a power of two. This set has O(w)
values, so we can store it in a fusion tree [9], and support

predecessor search in constant time.

Say we have located the query between zf(τ) and zf(2τ).

All intervals in this range have width between τ and 2τ ,

i.e. we have constant spread. In this case, predecessor

search can be solved easily in constant time [7]: break the

universe into buckets of size τ , which ensures at most one

value per bucket, and at most three buckets to inspect until

the predecessor is found.
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4 Applications to Succinct Data Structures

4.1 Augmented Trees

As mentioned already, our results are based on a generic

transformation of augmented B-trees to succinct data struc-

tures. For some B ≥ 2, we define a class of data structures,

aB-trees, as follows:

• The data structure represents an array A[1 . . n] of el-

ements from some alphabet Σ, where n is a power of

B. The data structure is a B-ary tree with the elements

of A in the leaves.

• Every node is augmented with a value from some al-

phabet Φ. The value of a leaf is a function of its array

element, and the value of an internal node is a function

A of the values of its B children, and the size of the

subtree.

• The query algorithm examines the values of the root’s

children, decides which child to recurse to, examines

all values of that node’s children, recurses to one of

them, etc. When a leaf is examined, the algorithm out-

puts the query answer. We assume the query algorithm

spends constant time per node, if all values of the chil-

dren are given packed in a word.

For instance, the RANK/SELECT problem has a stan-

dard solution through an aB-tree. The alphabet Σ is simply

{0, 1}. Every internal node counts the sum of the leaves

in its subtree (equivalently, the sum of its children), so

Φ = {0, . . . , n}. The queries can be solved in constant

time per node if the values of all children are given packed

in a word. This uses very standard ideas from word-level

parallelism that we omit.

We aim to compress an aB-tree. A natural goal for the

space an aB-tree should use is given by N (n, ϕ), defined as

the number of instances of A[1 . . n] such that the root is la-

beled with ϕ ∈ Φ. Observe that we can write the following

recursion for N (B · n, ϕ):

N (B · n, ϕ) =
∑

ϕ1,...,ϕB :A(ϕ1,...,ϕB ,n)=ϕ

N (n, ϕ1) · · · N (n, ϕB)

Indeed, any instance for the first half is valid, as long as

its aggregate value combines properly with the aggregate of

the second half.

To develop intuition for N , observe that in the

RANK/SELECT example, N (n, ϕ) =
(

n
ϕ

)
, because ϕ was

just the number of ones in the array. Our recursion becomes

the following obvious identity:

N (B · n, ϕ) =
∑

ϕ1+···+ϕB=ϕ

N (n, ϕ1) · · · N (n, ϕB)

We will show the following general result:

Theorem 8. Let B = O( w
lg(n+|Φ|) ). We can store an aB-

tree of size n with root value ϕ using log2 N (n, ϕ)+2 bits.
The query time is O(logB n), assuming precomputed look-
up tables of O(|Σ|+ |Φ|B+1 +B · |Φ|B) words, which only
depend on n, B and the aB-tree algorithm.

Essentially, this result compresses the entire aB-tree with

only two 2 bits of redundancy. The additional space of the

look-up tables will not matter too much, since we construct

many data structures that share them.

Application to RANK/SELECT. Say we want to solve

RANK and SELECT in time O(t), for an array of size U with

N ones. As mentioned already, RANK and SELECT queries

can be supported by an aB-tree, so Theorem 8 applies. If

the aB-tree has size r, we have |Σ| = 2 and |Φ| = r + 1.

Choose B ≥ 2 such that B lg B = ε lg U
t , and let r =

Bt =
(

lg U
t

)Θ(t)
. We break the array into buckets of size r,

rounding up the size of the last bucket. Each bucket is stored

as a succinct aB-tree. Supporting RANK and SELECT inside

such an aB-tree requires time O(logB r) = O(t).
For each bucket, we store the the index in memory of the

bucket’s memory bits. Let N1, N2, . . . be number of ones in

each subarray. We store a partial sums vector for these val-

ues (to aid RANK), and a predecessor structure on the partial

sums (to aid SELECT). We have at most U/r values from

a universe of U , so the predecessor structure can support

query time O(t) using space U
r ·rΩ(1/t) ≤ U

r ·B = U/Bt−1

words; see [25]. A query begins by examining these aux-

iliary structures, and then performing a query in the right

aB-tree.

The components of the memory consumption are:

1. a pointer to each bucket, and the partial sums for

the array N1, N2, . . . . These occupy O(U
r lg U) =

O
(

U lg U
Bt

)
bits.

2. the predecessor structure, occupying O(U/Bt−1)
words. This dominates item 1., and is U/BΘ(t) bits.

3. the succinct aB-trees, which occupy:∑
i

[
log2

(
r

Ni

)
+ 2

] ≤ log2

∏
i

(
r

Ni

)
+ O

(
U
r

)
≤ log2

(
U+r−1

N

)
+ O

(
U
r

) ≤ log2

(
U
N

)
+ O

(
r + U

r

)
bits. The redundancy can be rewritten as r + U

r =
O(max{U

r ,
√

U}).
4. the look-up tables, of size O((r + 1)B+1 + (r + 1)B ·

B) = 2O(tB lg B) = 2O(ε lg U) = UO(ε). Setting ε
a small enough constant, this contributes negligibly

to the redundancy. The only limitation is B ≥ 2,

so we cannot reduce the lookup tables below O(r3)
words. A redundancy of U

r + O(r3) can be written as

max{U
r , U3/4}.
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To summarize, we obtain a redundancy of U/BΘ(t) +
O(U3/4). Readjusting constants in t, the redundancy is

U/
(

lg U
t

)t + O(U3/4).

Application to arithmetic coding. In this application, Σ
is the alphabet that we wish to encode. Intuitively, a letter

σ ∈ Σ has log2
n
fσ

bits of entropy. We round these values

up to multiples of 1
r , which only adds redundancy n

r over

all symbols.

We construct an aB-tree, in which internal nodes are aug-

mented to store the entropy of the symbols in their subtree.

If the aB-tree has size at most r, the total entropy is at most

O(r lg n), so |Φ| = O(lg r + lg lg n). The query algorithm

is trivial: it just traverses the tree down to the leaf that it

wants to retrieve, ignoring all nodes along the way.

By this definition, N (n, ϕ) is the number of n-letter se-

quences with total entropy exactly ϕ. But there are at most

2ϕ such sequences, by an immediate packing argument.

Thus, an aB-tree of size r having value ϕ at the root can

be compressed to space ϕ + 2. We now proceed as in the

previous example, breaking the array into n/r buckets of

size r, and performing the same calculations for the space

occupied by auxiliary structures.

4.2 Proof of Theorem 8

The proof is by induction on powers of B, aggregating B
spill-over representations for aB-trees of size n/B into one

for an aB-tree of size n. Let K(n, ϕ) be the spill universe

used for a data structure of size n and root label ϕ. Let

M(n, ϕ) be the memory bits used by such a representation.

Let r to be determined. We guarantee inductively that:

K(n, ϕ) ≤ 2r; (2)

M(n, ϕ) + log2 K(n, ϕ) ≤ log2 N (n, ϕ) + 4
2n − 1

r
. (3)

Consider the base case, n = 1. The alphabet Σ is parti-

tioned into sets Σϕ of array elements for which the leaf is la-

beled with ϕ. We have N (1, ϕ) = |Σϕ|. We use a spill-over

encoding as in Lemma 3 to store an index into Σϕ. The en-

coding will use a spill universe K(1, ϕ) ≤ 2r and M(1, ϕ)
bits of memory, such that M(1, ϕ) + log2 K(1, ϕ) ≤
log2 |Σϕ| + 2

r . We store a look-up table that determines

the array value based on the value ϕ and the index into Σϕ.

These look-up tables (for all ϕ) require space O(|Φ|+ |Σ|).
For the induction step, we break the array into B subar-

rays of size n/B. Let ϕ̃ = (ϕ1, . . . , ϕB) denote the values

at the root of each of the B subtrees. We recursively rep-

resent each subarray using M( n
B , ϕi) bits of memory and

spill universe K( n
B , ϕi).

Then, all memory bits from the children are concate-

nated into a bit vector of size M ′ =
∑

i M( n
B , ϕi), and the

spills are combined into a superspill from the universe K ′ =

∏
i K( n

B , ϕi). Since lg K ′ ≤ lg
(
(2r)B

)
= O(B lg r), we

require that B = O(w/ lg r), so that this superspill fits in

a constant number of words. For every possible ϕ̃, we pre-

compute the partial sums of M( n
B , ϕi), so that we know

where the ith child begins in constant time. We also pre-

compute the constant needed to extract the ith spill from

the superspill. These tables require O(B · |Φ|B) words.

Summing the recursive guarantee (3) of every child, we

have:

log2 K ′ + M ′ ≤ log2

∏
i

N
( n

B
, ϕi

)
+ 4 · 2n − B

r

Let ϕ = A(ϕ1, . . . , ϕi, n) be the value at the root. Let p(·)
be the distribution of ϕ̃ given this value of ϕ, that is:

p(ϕ̃) =
∏

i

N
( n

B
, ϕi

) /
N (n, ϕ)

But then:

log2 K ′ + M ′ ≤ log2 N (n, ϕ)− log2

1
p(ϕ̃)

+ 4 · 2n − B

r

This satisfies the entropy condition (1) of Lemma 5. We ap-

ply the lemma to represent ϕ̃, the superspill, and the mem-

ory bits of the subarrays. We obtain a representation with

spill universe K� ≤ 2r and M� memory bits, such that:

M� + log2 K� ≤ log2 N (n, ϕ) + 4
2n − B

r
+

4
r

≤ log2 N (n, ϕ) + 4 · 2n − 1
r

The precomputed table required by Lemma 5 is linear in

the support of p(·), which is |Φ|B . Such a table is stored

for every distinct ϕ, giving space |Φ|B+1. We must have

B = O( w
lg |Φ| ).

This completes the induction step. To prove Theorem 8,

we construct the above representation for the required size

n, using the value r = 1
8n . Note that this requires B ≤

O
(

w
lg max{|Φ|,r}

)
.

At the root, the final spill is stored explicitly at the be-

ginning of the data structure. Thus, the space is:

�log2 K(n, ϕ)	 + M(n, ϕ) ≤ log2 N (n, ϕ) + 2

The queries are easy to support. First, we read the final

spill at the root. Then, we decode ϕ̃ and the superspill from

the representation of Lemma 5. The aB-tree query algo-

rithm decides which child to follow recursively based on ϕ̃.

We extract the spill of that child from the superspill, and

recurse. The constants needed to extract the spill and the

position in memory of the child were stored in look-up ta-

bles.
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5 Open Problems
It is an important open problem to establish whether our

exponential trade-off between redundancy and query time

is optimal. We conjecture that it is. Unfortunately, prov-

ing this seems beyond the scope of current techniques. The

only lower bound for succinct data structures (without the

systematic assumption) is via a rather simple idea of Gál

and Miltersen [10], which requires that the data structure

have an intrinsic error-correcting property. Such a property

is not characteristic of our problems.

Even if the exponential trade-off cannot be improved, it

would be interesting to establish where this trade-off “bot-

toms.” Due to our need for large precomputed tables, the

smallest redundancy that we can achieve is some O(nα)
bits, where α is a constant close to one (for instance, α =
3/4 for RANK/SELECT). Can this redundancy be reduced

to, say, O(
√

n), or hopefully even O(nε)?
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ABSTRACT
We present the first pointer-based heap implementation with
time bounds matching those of Fibonacci heaps in the worst
case. We support make-heap, insert, find-min, meld and
decrease-key in worst-case O(1) time, and delete and delete-
min in worst-case O(lg n) time, where n is the size of the
heap. The data structure uses linear space.
A previous, very complicated, solution achieving the same

time bounds in the RAM model made essential use of arrays
and extensive use of redundant counter schemes to maintain
balance. Our solution uses neither. Our key simplification
is to discard the structure of the smaller heap when doing
a meld. We use the pigeonhole principle in place of the
redundant counter mechanism.
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E.1 [Data Structures]: Trees; F.2.2 [Theory of Compu-
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1. INTRODUCTION
Williams in 1964 introduced binary heaps [25]. Since then

the design and analysis of heaps has been thoroughly inves-
tigated. The most common operations supported by the
heaps in the literature are those listed below. We assume
that each item stored contains an associated key. No item
can be in more than one heap at a time.

makeheap() Create a new, empty heap and return a ref-
erence to it.

insert(H, i) Insert item i, not currently in a heap, into
heap H, and return a reference to where i is stored
in H.

meld(H1, H2) Return a reference to a new heap containing
all items in the two heaps H1 and H2 (H1 and H2

cannot be accessed after meld).

find-min(H) Return a reference to where the item with
minimum key is stored in the heap H.

delete-min(H) Delete the item with minimum key from
the heap H.

delete(H, e) Delete an item from the heap H given a ref-
erence e to where it is stored.

decrease-key(H, e, k) Decrease the key of the item given
by the reference e in heap H to the new key k.

There are many heap implementations in the literature,
with a variety of characteristics. We can divide them into
two main categories, depending on whether the time bounds
are worst case or amortized. Most of the heaps in the lit-
erature are based on heap-ordered trees, i.e. tree structures
where the item stored in a node has a key not smaller than
the key of the item stored in its parent. Heap-ordered trees
give heap implementations that achieve logarithmic time for
all the operations. Early examples are the implicit binary
heaps of Williams [25], the leftist heaps of Crane [5] as modi-
fied by Knuth [20], and the binomial heaps of Vuillemin [24].

The introduction of Fibonacci heaps [15] by Fredman and
Tarjan was a breakthrough since they achieved O(1) amor-
tized time for all the operations above except for delete and
delete-min, which require O(lg n) amortized time, where n
is the number of items in the heap and lg the base-two log-
arithm. The drawback of Fibonacci heaps is that they are
complicated compared to existing solutions and not as ef-
ficient in practice as other, theoretically less efficient solu-
tions. Thus, Fibonacci heaps opened the way for further
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progress on the problem of heaps, and many solutions based
on the amortized approach have been presented since then,
trying to match the time complexities of Fibonacci heaps
while being at the same time simpler and more efficient in
practice.
Self adjusting data structures provided a framework to-

wards this direction. A self-adjusting data structure is a
structure that does not maintain structural information (like
size or height) within its nodes, but still can adjust itself
to perform efficiently. Within this framework, Sleator and
Tarjan introduced the skew heap [23], which was an amor-
tized version of the leftist heap. They matched the com-
plexity of Fibonacci heaps on all the operations except for
decrease-key, which takes O(lg n) amortized time. The pair-
ing heap, introduced by Fredman, Sedgewick, Sleator and
Tarjan [14], was the amortized version of the binomial heap,
and it achieved the same time complexity as Fibonacci heaps
except again for the decrease-key, the time complexity of
which remained unknown for many years. In 1999, Fred-
man [13] proved that the lower bound for the decrease-key
operation on pairing heaps is Ω(lg lg n); thus the amortized
performance of pairing heaps does not match the amor-
tized performance of Fibonacci heaps. In 2005, Pettie [22]
proved that the time complexity of the decrease-key oper-

ation is 2O(
√
lg lgn). Later, Elmasry [9] gave a variant of

pairing heaps that needs only O(lg lg n) amortized time for
decrease-key.
Heaps having amortized performance matching the amor-

tized time complexities of Fibonacci heaps have also been
presented. In particular, Driscoll, Gabow, Shrairman and
Tarjan [6] proposed rank-relaxed heaps, Kaplan and Tar-
jan [19] presented thin heaps, Chan [4] introduced quake
heaps, Haeupler, Sen and Tarjan introduced rank-pairing
heaps [16], and Elmasry introduced violation heaps [10]. El-
masry improved the number of comparisons of Fibonacci
heaps by a constant factor [7] and also examined versions
of pairing heaps, skew heaps, and skew-pairing heaps [8].
Some researchers, aiming to match the amortized bounds
of Fibonacci heaps in a simpler way, followed different di-
rections. Peterson [21] presented a structure based on AVL
trees and Høyer [17] presented several structures, including
ones based on red-black trees, AVL trees, and (a, b)-trees.
Let us now review the progress on this problem, based

on the worst-case approach. The goal of worst-case efficient
heaps is to eliminate the unpredictability of amortized ones,
since this unpredictability is not desired in e.g. real time
applications.
The targets for the worst case approach were given by

Fibonacci heaps, i.e. the time bounds of Fibonacci heaps
should ideally be matched in the worst case. The next im-
provement after binomial heaps came with the the implicit
heaps of Carlsson, Munro and Poblete [3] supporting worst-
case O(1) time insertions and O(lg n) time deletions on a
single heap stored in an array. Run-relaxed heaps [6] achieve
the amortized bounds given by Fibonacci heaps in the worst
case, with the exception of the meld operation, which is sup-
ported in O(lg n) time in the worst case. The same result
was later also achieved by Kaplan and Tarjan [18] with fat
heaps. Fat heaps without meld can be implemented on a
pointer machine, but to support meld in O(lg n) time arrays
are required. The meld operation was the next target for
achieving constant time in the worst case framework, in or-
der to match the time complexities of Fibonacci heaps. Bro-

dal [1] achieved O(1) worst case time for the meld operation
on a pointer machine, but not for the decrease-key opera-
tion. It then became obvious that although the decrease-key
and the meld operation can be achieved in O(1) worst case
time separately, it is very difficult to achieve constant time
for both operations in the same data structure. Brodal [2]
managed to solve this problem, but his solution is very com-
plicated and requires the use of (extendable) arrays. For
the pointer machine model of computation, the problem of
matching the time bounds of Fibonacci heaps remained open
until now, and progress within the worst case framework has
been accomplished only in other directions. In particular,
Elmasry, Jensen and Katajainen presented two-tier relaxed
heaps [12] in which the number of key comparisons is re-
duced to lg n + 3 lg lg n + O(1) per delete operation. They
also presented [11] a new idea (which we adapt in this paper)
for handling decrease-key operations by introducing struc-
tural violations instead of heap order violations.

1.1 Our contribution
In this paper we present the first heap implementation

that matches the time bounds of Fibonacci heaps in the
worst case on a pointer machine, i.e. we achieve a linear
space data structure supporting make-heap, insert, find-min,
meld and decrease-key in worst-case O(1) time, and delete
and delete-min in worst-case O(lg n) time. This adds the
final step after the previous step made by Brodal [2] and
answers the long standing open problem of whether such a
heap is possible.

Much of the previous work, including [1, 2, 3, 11, 12, 18],
used redundant binary counting schemes to keep the struc-
tural violations logarithmically bounded during operations.
For the heaps described in this paper we use the simpler
approach of applying the pigeonhole principle. Our heaps
are essentially heap ordered trees, where the structural vio-
lations are subtrees being cut off (and attached to the root),
as in Fibonacci heaps. The crucial new idea is that when
melding two heaps, the data structures maintained for the
smaller tree are discarded by marking all these nodes as be-
ing passive. We mark all (active) nodes in the smaller tree
passive in O(1) time using an indirectly accessed shared flag.

In Sections 2-4 we describe our data structure, ignoring
the pointer-level representation, and analyze it in Section 5.
The pointer-level representation is given in Section 6. In
Section 7 we give some concluding remarks and discuss pos-
sible variations.

2. DATA STRUCTURE AND INVARIANTS
In this section we describe our data structure on an ab-

stract level. The representation at the pointer level is given
in Section 6.

A heap storing n items is represented by a single ordered
tree with n nodes. Each node stores one item. The size of a
tree is the number of nodes it contains. The degree of a node
is the number of children of the node. We assume that all
keys are distinct; if not, we break ties by item identifier. We
let x.key denote the key of the item stored in node x. The
items satisfy heap order, i.e. if x is a child of y then x.key >
y.key. Heap order implies that the item with minimum key
is stored in the root.

The basic idea of our construction is to ensure that all
nodes have logarithmic degree, that a meld operation makes
the root with the larger key a child of the root with the
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smaller key, and that a decrease-key operation on a node
detaches the subtree rooted at the node and reattaches it as
a subtree of the root. To guide the necessary restructuring,
we need the following concepts and invariants.
Each node is marked either active or passive. An active

node with a passive parent is called an active root. The
rank of an active node is the number of active children.
Each active node is assigned a non-negative integer loss.
The total loss of a heap is the sum of the loss over all
active nodes. A passive node is linkable if all its children
are passive.
In order to keep the node degrees logarithmic during dele-

tions, we maintain all nodes of a heap except for the root in
a queue Q. A non-root node has position p if it is the p-th
node on the queue Q.

Invariants
Let R = 2 lg n+6. Note that R is not necessarily an integer.
We later show that R is a bound on the rank of active nodes
(Corollary 1). The value of R is only needed for the analysis
— it is not maintained by the algorithms.

I1 (Structure) For all nodes the active children are to the
left of the passive children. The root is passive and the
linkable passive children of the root are the rightmost
children. For an active node, the i-th rightmost active
child has rank+loss at least i − 1. An active root has
loss zero.

I2 (Active roots) The total number of active roots is at
most R+ 1.

I3 (Loss) The total loss is at most R+ 1.

I4 (Degrees) The maximum degree of the root is R + 3.
Let x be a non-root node, and let p denote its posi-
tion in Q. If x is a passive node or an active node
with positive loss its degree is at most 2 lg(2n−p)+9;
otherwise, x is an active node with loss zero and is
allowed to have degree one higher, i.e. degree at most
2 lg(2n− p) + 10.

Note that I4 implies that all nodes have degree at most
2 lg n+12. The above invariants imply a bound on the max-
imum rank an active node can have. The following lemma
captures how the maximum rank depends on the value of R,
for arbitrary values of R.

Lemma 1. If I1 is satisfied and the total loss is L, then
the maximum rank is at most lg n+

√
2L+ 2.

Proof. Assume x is an active node of maximum rank
r ≥ k + 1 + lg n, where k is the minimum integer such that
k(k + 1)/2 ≥ L. We will prove the contradiction that the
subtree rooted at x contains at least n + 1 nodes. Let Tx

be the subtree rooted at x. We prune from Tx all subtrees
rooted at passive nodes. If y is a child of x, z is a child of y,
and there is a node with positive loss in the subtree rooted
at z, then we prune the subtree rooted at z and increase
the loss of y by one (so that I1 remains satisfied). This re-
moves the positive loss contributed by the subtree rooted at
z, and only increases the loss of y by one, i.e. the total loss
is still bounded by L. Now only the children of x can have a
positive loss. We reduce the rank+loss of the i-th rightmost
child of x to i− 1, by lowering the loss and possibly pruning

grandchildren. Finally, for all nodes v �= x we repeatedly
prune grandchildren such that the i-th rightmost child of v
has degree exactly i − 1. The remaining subtrees Tv are
binomial trees of size 2degree(v). The minimum size of such
a Tx is achieved by starting with a binomial tree of size 2r,
and repeating the following step L times: prune a grand-
child of the root with maximum degree. Since the maximum
grandchild degree of a binomial tree of size 2r is r − 2, and
generally there are j grandchildren of degree r− j−1, there
are

∑k
j=1 j = k(k+1)/2 grandchildren of degree ≥ r−k−1.

Since k(k + 1)/2 ≥ L, no grandchild of degree ≤ r − k − 2
is pruned, i.e. the (r − k)-th rightmost child w of x has de-
gree r − k − 1 and loss zero. By the assumption on r, the
degree of w is ≥ lg n and Tw has size ≥ n. It follows that Tx

has size at least n + 1, which is a contradiction. This gives
r < k+1+ lg n ≤ √

2L+2+ lg n, since (k− 1)k/2 < L.

By I3 we have L ≤ R+1. Since lg n+
√

2(R+ 1)+2 ≤ R
for R = 2 lg n+ 6, we have the following corollary:

Corollary 1. All nodes have rank ≤ R.

The corollary implies a bound on the maximal rank be-
fore a heap operation. If we violate I2 or I3 temporarily
during a heap operation, then the pigeonhole principle guar-
antees that we can apply the transformations described in
Section 3. If the total loss is > R+1, then there exists either
a node with loss at least two, or there exist two nodes with
equal rank each with loss exactly one. Similarly if there are
> R+1 active roots, then at least two active roots have the
same rank. Finally, if I1-I3 are satisfied but the root violates
I4, then the root has at least three passive linkable children,
since the root has at most R + 1 children or grandchildren
that can be active roots, i.e. at most R + 1 children of the
root are active roots or passive non-linkable nodes.

3. TRANSFORMATIONS
The basic transformation is to link a node x and its sub-

tree below another node y, by removing x from the child list
of its current parent and making x a child of y. If x is active
it is made the leftmost child of y; if x is passive it is made
the rightmost child of y.

The following transformations use link to reestablish the
invariants I2-I4 when they get violated. The transformations
are illustrated in Figure 1 and the main properties of the
transformations are captured by Table 1.

Active root reduction Let x and y be active roots of
equal rank r. Compare x.key and y.key. Assume w.l.o.g.
x.key < y.key. Link y to x and increase the rank of x
by one. If the rightmost child z of x is passive make z a
child of the root. In this transform the number of active
roots is decreased by one and the degree of the root possibly
increased by one.

Root degree reduction Let x, y, z be the three rightmost
passive linkable children of the root. Using three compar-
isons, sort x, y, z by key. Assume w.l.o.g. x.key < y.key <
z.key. Mark x and y as active. Link z to y, and link y
to x. Make x the leftmost child of the root. Assign both x
and y loss zero, and rank one and zero respectively. In this
transform both x and y change from being passive to active
with loss zero, both get one more child, and x becomes a
new active root. The degree of the root decreases by two
and the number of active roots increases by one.
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(c) One-node loss reduction (� ≥ 2) (d) Two-node loss reduction

Figure 1: Transformations to reduce the root degree, the number of active roots, and the total loss.
Black/white nodes are passive/active nodes. For an active node r/� shows rank/loss.

Loss reduction To reduce the total loss we have two
different transformations. The one-node loss reduction
applies when there exists an active node x with loss ≥ 2.
Let y be the parent of x. In this case x is linked to the
root and made an active root with loss zero, and the rank
of y is decreased by one. If y is not an active root, the loss
of y is increased by one. Since the loss of x decreases by at
least two, the total loss is decreased by at least one. The
second transformation, two-node loss reduction, applies
when two active nodes x and y with rank r both have a loss
of exactly one. Compare x.key and y.key. Assume w.l.o.g.
x.key < y.key. Let z be the parent of y. Link y to x, in-
crease the rank of x, and set the loss of x and y to zero.
The degree and rank of z is decreased by one. If z is not an
active root, the loss of z is increased by one.
Certain combinations of active root reductions and root

degree reductions have only beneficial effects (see Table 1).
When doing such combinations, we do the reductions“to the
extent possible”: we do them in any order, stopping only
when all reductions are done or when no undone reduction
can be done. An active root reduction and a root degree
reduction decrease the root degree by at least one. Two
active root reductions and a root degree reduction decrease
the number of active roots by one without increasing the root
degree. Three active root reductions and two root degree
reductions decrease both the number of active roots and the
root degree by at least one.
It should be noted that the distinct key assumption to-

gether with the heap order invariant ensures that no cycles
are created in the tree when an active root reduction or
two-node loss reduction is performed.

4. IMPLEMENTATION OF THE HEAP OP-
ERATIONS

The various heap operations are implemented as follows.
To find the minimum in a heap, return the item in the root.
To make an empty heap, return an empty tree. To insert an
item into a heap, create a new one-node tree with a passive
root containing the item, and meld this with the existing

heap. To delete an arbitrary item, decrease its key to minus
infinity and do a minimum deletion.

To decrease the key of the item in node x, in the tree with
root z, begin by decreasing the key of the item. If x is the
root we are done. Otherwise, if x.key < z.key, swap the
items in x and z (actually we assume each node only stores
a pointer to the item that is stored externally with a pointer
to the node of the item). Let y be the parent of x. Make
x a child of the root. If x was an active node but not an
active root, then x becomes an active root with loss zero and
the rank of y is decreased by one. If y is active but not an
active root, then the loss of y is increased by one. Do a loss
reduction if possible. Finally, do six active root reductions
and four root degree reductions to the extent possible.

To delete the minimum in the tree with root z, first find
the node x of minimum key among the children of the root.
If x is active then make x passive and all active children
of x become active roots. Make each of the other children
of z a child of x. Make the passive linkable children of x
the rightmost children of x. Remove x from Q. Destroy z.
Repeat twice: move the front node y on Q to the back; link
the two rightmost children of y to x, if they are passive. Do
a loss reduction if possible. Do active root reductions and
root degree reductions in any order until none of either is
possible.

To meld two heaps with roots x and y, rename x and y if
necessary so that the tree rooted at x has size at most the
size of the tree rooted at y. Make all nodes in the tree rooted
at x passive. (Do this implicitly, as described in Section 6, so
that it takes O(1) time.) Let u be the root of smaller key and
v the other root. Make v a child of u. Set Q = Qx&[v]&Qy,
where“&”denotes catenation and Qx and Qy are the queues
of the heaps with root x and y respectively. Do an active
root reduction and a root degree reduction to the extent
possible.

This method of melding “forgets” the structure of the tree
of smaller size, which eliminates the need to combine com-
plicated data structures during melding. This is the main
novelty in the presented data structure.
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Table 1: Effect of the different transformations
Root Total Active Key
degree loss roots comparisons

Active root reduction (A) ≤ +1 0 −1 +1
Root degree reduction (R) −2 0 +1 +3
Loss reduction ≤ +1 ≤ −1 ≤ +1 ≤ +1
– one-node +1 ≤ −1 +1 0
– two-node 0 −1 0 +1
(A) + (R) ≤ −1 0 0 +4
2×(A) + (R) ≤ 0 0 −1 +5
3×(A) + 2×(R) ≤ −1 0 −1 +9

Table 2: The changes caused by the different heap operations
Root degree Total loss Active roots

decrease-key ≤ 1 + 1 + 6− 8 ≤ 1− 1 + 0 + 0 ≤ 1 + 1− 6 + 4
meld ≤ 1 + 0 + 1− 2 ≤ 0 + 0 + 0 + 0 ≤ 0 + 0− 1 + 1
delete-min ≤ (2 lg n+ 12 + 4) + 1 ≤ 0− 1 ≤ R+ 1

5. CORRECTNESS
In the following we verify that each operation preserves

the invariants I1-I4.
For I1 the interesting property to verify is that the i-th ac-

tive child of an active node has rank+loss ≥ i− 1. All other
properties in I1 are straightforward to verify. We start by ob-
serving that if an active child x is detached from its parent y
satisfying I1, then I1 is also satisfied for y after the detach-
ment. This follows since the i-th rightmost active child z
after the detachment was either the i-th or (i+ 1)-st active
child before the detachment, i.e. for z the new rank+loss is
at least i − 1. An active node only gets a new active child
as a result of an active root reduction, two-node loss reduc-
tion, or root degree reduction. In the first two cases a new
(r + 1)-st rightmost active child is added with rank r (and
loss zero), and in the later case I1 holds by construction for
the two new active nodes.
For invariants I2 and I3, Table 2 captures the change to

the degree of the root, the total loss, and the number of
active roots when performing the operations decrease-key,
meld, and delete-min, respectively. Each entry is a sum of
four terms stating the change caused by the initial trans-
formations performed by the operations, and by the loss
reduction transformations, active root reductions, and root
degree reductions. Each entry is an upper bound on the
change, except for the cases where no reduction is possible
(e.g. the loss increases, but is still ≤ R + 1). For meld the
root degree is the change to the old root that becomes the
new root, whereas total loss and number of active roots is
compared to the heap that is not made passive. For delete-
min the bounds are stated before the repeated active root
and root degree transformations are applied.
Observe that for both decrease-key and meld all sums are

zero, and that R increases during a meld, i.e. invariants I2
and I3 remain valid for each of these operations. Delete-min
reduces the size of the heap by one, reducing R = 2 lg n+ 6
by at most one, if n ≥ 4 before the delete-min operation (if
n ≤ 3 before the delete-min operation, I2 and I3 are triv-
ially true after). The reduction in loss by one ensures that
I3 is valid after delete-min. Since active root reductions are
performed until they are not possible, I2 trivially holds —

provided that the repeated application of active root reduc-
tions and root degree reductions terminate. Termination
immediately follows from the facts that both reductions re-
duce the measure

2 · root degree + 3 ·#active roots

by one, and that the initial value of this measure is O(log n).
This immediately also implies the claimed time bounds for
our heap.

To prove the validity of I4, we first observe that for the
degree of the root we can use the same argument as above
using Table 2.

During the transformations a non-root node can only in-
crease its degree in three cases. During an active root reduc-
tion there is no passive right-child to detach. In this case all
children of the node are active, and the degree bound fol-
lows from Corollary 1. During a two-node loss reduction the
degree of the node x increases by one, but this is okay by I4
since the loss of the node decreases from one to zero. Dur-
ing a root degree transformation two passive nodes become
active, both getting loss zero and degree increased by one.
Again this is okay by I4. During a meld one root becomes a
non-root, but since R+3 ≤ 2 lg(2n−p)+9 for all possible p,
again I4 holds. The interesting case is when we perform a
delete-min operation. I4 holds for the root trivially, since
we repeatedly perform root degree reductions until none are
possible. For non-root nodes we observe that their invariant
is strengthened since R decreases. The role of Q is to deal
with this case. By removing the two first nodes in the queue,
all nodes get their position in Q decreased by two or three
(depending if they were in front of the deleted node in the
queue). By observing that 2n − p does not increase in this
case, it follows that the invariant for non-root nodes is not
strengthened and I4 remains valid. For the two nodes moved
to the end of the queue the term 2 lg(2n − p) decreases by
two, implying that their degree constraint is strengthened
by two. Since we detach two passive nodes from these nodes
I4 remains valid for these nodes also. During meld all ele-
ments in the smaller heap become passive, and their degree
constraint goes from the “+10” to the “+9” case. But since
they remain in their position in the queue, and the result-
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ing queue is at least twice the size, we have that 2n − p
increases by a factor two, and I4 remains valid for the ele-
ments in the smaller heap. For the elements in the larger of
the two heaps, they keep their active status. Both n and p
increase for these elements by the size of the smaller queue.
Therefore 2n− p is non-decreasing and I4 remains valid.
A note on the loss: In the previous description the loss of a

node is assumed to be a non-negative integer. Even though
the loss plays an essential role in invariant I1, only values 0,
1, and ′′ ≥ 2′′ are relevant for the algorithm. As soon as the
loss is ≥ 2, then the loss can only decrease when it is set to
zero by a one-node loss transformation. Since the algorithm
only tests if the loss is zero, one or ≥ 2, it is sufficient for
the algorithm to keep track of these three states. It follows
that we can store the loss using only two bits.

6. REPRESENTATION DETAILS
To represent a heap we have the following types of records,

also illustrated in Figures 2 and 3. Each node is represented
by a node record. To mark if a node is active or passive
we will not store the flag directly in the node but indirectly
in an active record. In particular all active nodes of a tree
point to the same active record. This allows all nodes of
a tree to be made passive in O(1) time by only changing
a single flag. The entry point to a heap is a pointer to a
heap record, that has a pointer to the root of the tree and
additional information required for accessing the relevant
nodes for performing the operations described in Section 4.
We call a rank active-root transformable, if there are

at least two active roots of that rank. We call a rank loss
transformable, if the total loss of the nodes of that rank is
at least two. For each rank we maintain a node, and all such
nodes belong to the rank-list. The rightmost node corre-
sponds to rank zero, and the node that corresponds to rank
k is the left sibling of the one that corresponds to k−1. (see
Figure 3). We maintain all active nodes that potentially
could participate in one of the transformations from Sec-
tion 3 (i.e. active roots and active nodes with positive loss)
in a list called the fix-list. Each node with rank k on the fix-
list points to node k of the rank-list. The fix-list is divided
left-to-right into four parts (1-4), where Parts 1-2 contain
active roots and Parts 3-4 contain nodes with positive loss.
Part 1 contains the active roots of active-root transformable
ranks. All the active roots of the same rank are adjacent,
and one of the nodes has a pointer from the corresponding
node of the rank-list. Part 2 contains the remaining active
roots. Each node has a pointer from the corresponding node
of the rank-list. Part 3 contains active nodes with loss one
and a rank that is not loss-transformable. Each node of
this part has a pointer from the corresponding node of the
rank-list. Finally, Part 4 contains all the active nodes of loss
transformable rank. As in Part 1, all nodes of equal rank
are adjacent and one of the nodes is pointed to by the corre-
sponding node of the rank-list. Observe that for some ranks
there may exist only one node in Part 1 (because if the loss
of a node is at least two, its rank is loss-transformable).
From the above description it follows that we can always

perform an active root reduction as long as Part 1 of the fix-
list is nonempty, and we can always perform a loss reduction
transformation as long as Part 4 is nonempty. We maintain
a pointer (in the heap record) indicating the boundary be-
tween Parts 2 and 3. The above construction and pointers
(see Figure 3 for more details) allow us to take the following

ref-countactive

...

left

rightparent

flag

active record

x

left-child

Q-next

Q-prev

rank

Figure 2: The fields of a node record x and an active
record. The fields of x not shown are the item and
the loss.

actions: In order to perform a loss reduction transformation,
we go to the right-end of the fix-list and perform a one-node
loss reduction (if we access a node of multiple loss) or a two-
node loss reduction (if the two rightmost nodes of the fix-list
have loss one). Otherwise Part 4 is empty. After a loss re-
duction transformation on a rank k, we may have to transfer
one node of rank k into Part 3, if its loss is one and it is the
last node in Part 3 with this rank. Whenever the loss of a
node that has a loss-transformable rank increases, we insert
it into (the appropriate group of) Part 4. If its rank is not
loss transformable, we insert it into Part 3, unless there is
another node of the same rank there, in which case we move
both nodes into Part 4 at the right end of the fix-list.

In order to perform an active root reduction, we go to the
left end of the fix-list and link the two leftmost active roots,
if they have the same rank (otherwise, Part 1 is empty). If
after the reduction, the two leftmost nodes in the fix-list are
not active roots of equal degree, we transfer the leftmost
node into Part 2. When an active node of rank k becomes
an active root and there is no other active root of the same
rank, we insert the new active root into Part 2. Otherwise,
we insert it adjacent to the active roots of that rank, unless
only one active root has this rank (i.e. it is located in Part 2),
in which case we transfer the existing active root of rank k
with the new one into Part 1 (at the left end of the fix-
list). When the rank of a node that belongs to the fix-list
changes, we can easily perform the necessary updates to the
fix-list so that all parts of the list are consistent with the
above description. The details are straightforward and thus
omitted.

The details of the fields of the individual records are as
follows (see also Figures 2 and 3).

Node record

item A pointer to the item (including its associated key).
left, right, parent, left-child Pointers to the node re-

cords for the the left and right sibling of the node (the
left and right pointers form a cyclic linked list), the
parent node, and the leftmost child. The later two are
NULL if the nodes do not exist.

active Pointer to an active record, indicating if the node is
active or passive.

Q-prev, Q-next Pointers to the node records for the previ-
ous and the next node on the queue Q, which is main-
tained as a cyclic linked list.
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singles

active-record

root

size

non-linkable-child

Q-head

heap record

3 3 3 31 4 0 0

1 023

1 4 0 2 1

4

fix-list

fix-list

left right

(2)(1) transformable

nodes with postive lossactive roots

node

loss

inc dec

(3)

rank
maximum

active-roots

rank-listrank-list

pointers from active nodes with rank 1
with active parent and no loss

(4) transformable

rank

Figure 3: The heap-record, rank-list, and fix-list. The ref-count field in the records of the rank-list is not
shown. Only pointers for nodes with rank equal to one are shown. The numbers in the nodes in the rank-list
and fix-list are the ranks of the active nodes pointing to these nodes; these numbers are not stored.

loss Non-negative integer equal to the loss of the node. Un-
defined if the node is passive.

rank If the node is passive, the value of the pointer is not
defined (it points to some old node that has been re-
leased for garbage collection). If the node is an active
root or an active node with positive loss (i.e. it is on
the fix-list), rank points to the corresponding record in
the fix-list. Otherwise rank points to the record in the
rank-list corresponding to the rank of the node. (The
cases can be distinguished using the active field of the
node and the parent together with the loss field).

Active record

flag A Boolean value. Nodes pointing to this record are
active if and only if the flag is true.

ref-count The number of nodes pointing to the record. If
flag is false and ref-count = 0, then the node is released
for garbage collection.

Heap record

size An integer equal to the number of items in the heap.
root A pointer to the node record of the root (NULL if and

only if the heap is empty).
active-record A pointer to the active record shared by all

active nodes in the heap (one distinct active record for
each heap).

non-linkable-child A pointer to the node record of the
leftmost passive non-linkable child of the root. If all
passive children of the root are linkable the pointer is
to the rightmost active child of the root. Otherwise it
is NULL.

Q-head A pointer to the node record for the node that is
the head of the queue Q.

rank-list A pointer to the rightmost record in the rank-list.
fix-list A pointer to the rightmost node in the fix-list.
singles A pointer to the leftmost node in the fix-list with

a positive loss, if such a node exists. Otherwise it is
NULL.

Rank-list record (representing rank r)

inc, dec Pointers to the records on the rank-list for rank
r + 1 and r − 1, if they exist. Otherwise they are
NULL.

loss A pointer to a record in the fix-list for an active node
with rank r and positive loss. NULL if no such node
exists.

active-roots A pointer to a record in the fix-list for an
active root with rank r. NULL if no such node exists.

ref-count The number of node records and fix-list records
pointing to this record. If the leftmost record on the
rank-list gets a ref-count = 0, then the record is deleted
from the rank-list and is released for garbage collec-
tion.

Fix-list record

node A pointer to the node record for the node.
left, right Pointers to the left and right siblings on the fix-

list, that is maintained as a cyclic linked list.
rank A pointer to the record in the rank-list corresponding

to the rank of this node.

A detail concerning garbage collection: When performing
a meld operation on two heaps, all nodes in one heap are
first made passive by clearing the flag in the active record
given by the heap record. The heap record, the rank-list,
and the fix-list for this heap are released for incremental
garbage collection.

We now bound the space required by our structure. For
each item we have one node record and possibly one fix-list
record. The number of active records is bounded by the
number of nodes, since in the worst case each active record
has a ref-count = 1. Finally for each heap we have one
heap-record and a number of rank-list records bounded by
one plus the maximum rank of a node, i.e. logarithmic in the
size of the heap. It follows that the total space for a heap is
linear in the number of stored items.
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7. CONCLUSION
We have described the first pointer-based heap implemen-

tation achieving the performance of Fibonacci heaps in the
worst-case. What we presented is just one possible imple-
mentation. Based on the active/passive node idea we have
considered many alternative implementations. One option
is to allow a third explicit marking “active root” (instead of
an active root being a function of the active/passive marks),
such that a child of an active node can also be an active root.
This eliminates the distinction between passive linkable and
non-linkable nodes. Another option is to allow the root to
be active also. This simplifies the decrease-key operation,
since then the node getting a smaller key can also be made
the root, without ever swapping items in the nodes. A third
option is to adopt redundant counters instead of the pigeon-
hole principle to bound the number of active roots and holes
created by cutting of subtrees. Further alternatives are to
consider ternary linking instead of binary linking, and us-
ing a different “inactivation” criterion during meld, e.g. size
plus number of active nodes. All these variations can be
combined, each solution implying different bounds on the
maximum degrees, constants in the time bounds, and com-
plexity in the reduction transformations. In the presented
solution we aimed at reducing the complexity in the descrip-
tion, whereas the constants in the solution were of secondary
interest.
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ABSTRACT

In this paper we develop a new technique for proving lower
bounds on the update time and query time of dynamic data
structures in the cell probe model. With this technique,
we prove the highest lower bound to date for any explicit
problem, namely a lower bound of tq = Ω((lg n/ lg(wtu))

2).
Here n is the number of update operations, w the cell size, tq
the query time and tu the update time. In the most natural
setting of cell size w = Θ(lgn), this gives a lower bound
of tq = Ω((lgn/ lg lg n)2) for any polylogarithmic update
time. This bound is almost a quadratic improvement over
the highest previous lower bound of Ω(lg n), due to Pǎtraşcu
and Demaine [SICOMP’06].

We prove our lower bound for the fundamental problem
of weighted orthogonal range counting. In this problem, we
are to support insertions of two-dimensional points, each as-
signed a Θ(lgn)-bit integer weight. A query to this problem
is specified by a point q = (x, y), and the goal is to report
the sum of the weights assigned to the points dominated by
q, where a point (x′, y′) is dominated by q if x′ ≤ x and
y′ ≤ y. In addition to being the highest cell probe lower
bound to date, our lower bound is also tight for data struc-
tures with update time tu = Ω(lg2+ε n), where ε > 0 is an
arbitrarily small constant.
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1. INTRODUCTION
Proving lower bounds on the operational time of data

structures has been an active line of research for decades.
During these years, numerous models of computation have
been proposed, including the cell probe model of Yao [12].
The cell probe model is one of the least restrictive lower
bound models, thus lower bounds proved in the cell probe
model apply to essentially every imaginable data structure,
including those developed in the popular upper boundmodel,
the word RAM. Unfortunately this generality comes at a
cost: The highest lower bound that has been proved for any
explicit data structure problem is Ω(lg n), both for static
and even dynamic data structures1.

In this paper, we break this barrier by introducing a new
technique for proving dynamic cell probe lower bounds. Us-
ing our technique, we obtain a query time lower bound of
Ω((lg n/ lg lg n)2) for any polylogarithmic update time. We
prove the bound for the fundamental problem of dynamic
weighted orthogonal range counting in two-dimensional space.
In dynamic weighted orthogonal range counting (in 2-d), the
goal is to maintain a set of (2-d) points under insertions,
where each point is assigned an integer weight. In addi-
tion to supporting insertions, a data structure must support
answering queries. A query is specified by a query point
q = (x, y), and the data structure must return the sum of
the weights assigned to the points dominated by q. Here we
say that a point (x′, y′) is dominated by q if x′ ≤ x and
y′ ≤ y.

1.1 The Cell Probe Model
A dynamic data structure in the cell probe model con-

sists of a set of memory cells, each storing w bits. Each
cell of the data structure is identified by an integer ad-
dress, which is assumed to fit in w bits, i.e. each address
is amongst [2w] = {0, . . . , 2w − 1}. We will make the ad-
ditional standard assumption that a cell also has enough
bits to address any update operation performed on it, i.e.
we assume w = Ω(lg n) when analysing a data structures
performance on a sequence of n updates.

When presented with an update operation, a data struc-
ture reads and updates a number of the stored cells to reflect
the changes. We refer to the reading or writing of a cell as
probing the cell, hence the name cell probe model. The up-
date time of a data structure is the number of cells probed
when processing an update operation.

To answer a query, a data structure similarly probes a

1This is true under the most natural assumption of cell size
Θ(lgn).
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number of cells from the data structure, and from the con-
tents of the probed cells, the data structure must return the
correct answer to the query. We similarly define the query
time of a data structure as the number of cells probed when
answering a query.

Previous Results.
In the following, we give a brief overview of the most im-

portant techniques that have been introduced for proving
cell probe lower bounds for dynamic data structures. We
also review the previous cell probe lower bounds obtained
for orthogonal range counting and related problems. In Sec-
tion 2 we then give a more thorough review of the previous
techniques most relevant to our work, followed by a descrip-
tion of the key ideas in our new technique.

In their seminal paper [2], Fredman and Saks introduced
the celebrated chronogram technique. They applied their
technique to the partial sums problem and obtained a lower
bound stating that tq = Ω(lg n/ lg(wtu)), where tq is the
query time and tu the update time. In the partial sums
problem, we are to maintain an array of n O(w)-bit integers
under updates of the entries. A query to the problem con-
sists of two indices i and j, and the goal is to compute the
sum of the integers in the subarray from index i to j. The
lower bound of Fredman and Saks holds even when the data
structure is allowed amortization and randomization.

The bounds of Fredman and Saks remained the highest
achieved until the breakthrough results of Pǎtraşcu and De-
maine [9]. In their paper, they extended upon the ideas of
Fredman and Saks to give a tight lower bound for the partial
sums problem. Their results state that tq lg(tu/tq) = Ω(lg n)
and tu lg(tq/tu) = Ω(lg n) when the integers have Ω(w) bits,
which in particular implies max{tq, tu} = Ω(lg n). We note
that they also obtain tight lower bounds in the regime of
smaller integers. Again, the bounds hold even when allowed
amortization and randomization. For the most natural cell
size of w = Θ(lgn), this remains until today the highest
achieved lower bound.

The two above techniques both lead to smooth tradeoff
curves between update time and query time. While this
behaviour is correct for the partial sums problem, there are
many examples where this is certainly not the case. Pǎtraşcu
and Thorup [10] recently presented a new extension of the
chronogram technique, which can prove strong threshold
lower bounds. In particular they showed that any data struc-
ture for maintaining the connectivity of a graph under edge
insertions and deletions, must either have amortized update
time Ω(lg n) or the query time explodes to n1−o(1).

In the search for super-logarithmic lower bounds, Pǎtraşcu
introduced a dynamic set-disjointness problem named the
multiphase problem [8]. Based on a widely believed conjec-
ture about the hardness of 3-SUM, Pǎtraşcu first reduced
3-SUM to the multiphase problem and then gave a series
of reductions to different dynamic data structure problems,
implying polynomial lower bounds under the 3-SUM conjec-
ture.

Finally, we mention that Pǎtraşcu [6] presented a tech-
nique capable of proving a query time lower bound of tq =
Ω((lg n/ lg(wtu))

2) for dynamic weighted orthogonal range

counting, but only when the weights are lg2+Ω(1) n-bit in-
tegers. Thus the magnitude of the lower bound compared
to the number of bits, δ, needed to describe an update op-
eration or a query, remains below Ω(δ). This bound holds

when tu is the worst case update time and tq the expected
average2 query time of a data structure.

The particular problem of orthogonal range counting has
received much attention from a lower bound perspective.
In the static case, Pǎtraşcu [6] first proved a lower bound
of t = Ω(lg n/ lg(Sw/n)) where t is the expected average
query time and S the space of the data structure in number
of cells. This lower bound holds for regular counting (with-
out weights), and even when just the parity of the number
of points in the range is to be returned. In [7] he reproved
this bound using an elegant reduction from the communica-
tion game known as lop-sided set disjointness. Subsequently
Jørgensen and Larsen [3] proved a matching bound for the
strongly related problems of range selection and range me-
dian. Finally, as mentioned earlier, Pǎtraşcu [6] proved a
tq = Ω((lg n/ lg(wtu))

2) lower bound for dynamic weighted

orthogonal range counting when the weights are lg2+Ω(1) n-
bit integers. In the concluding remarks of that paper, he
posed it as an interesting open problem to prove the same
lower bound for regular counting.

Our Results.
In this paper we introduce a new technique for proving

dynamic cell probe lower bounds. Using this technique, we
obtain a lower bound of tq = Ω((lgn/ lg(wtu))

2), where tu
is the worst case update time and tq is the expected average
query time of the data structure. Our lower bound holds
for any cell size w = Ω(lg n), and is the highest achieved
to date in the most natural setting of cell size w = Θ(lgn).
For polylogarithmic tu and logarithmic cell size, this bound
is tq = Ω((lg n/ lg lgn)2), i.e. almost a quadratic improve-
ment over the highest previous lower bound of Pǎtraşcu and
Demaine.

We prove our lower bound for dynamic weighted orthog-
onal range counting in two-dimensional space, where the
weights are Θ(lgn)-bit integers. This gives a partial an-
swer to the open problem posed by Pǎtraşcu by reducing
the requirement of the magnitude of weights from lg2+Ω(1) n
to just logarithmic. Finally, our lower bound is also tight
for update time tu = lg2+Ω(1) n, hence deepening our un-
derstanding of one of the most fundamental range searching
problems.

Overview.
In Section 2 we discuss the two previous techniques most

related to ours, i.e. that of Fredman and Saks [2] and of
Pǎtraşcu [6]. Following this discussion we give a description
of the key ideas behind our new technique. Having intro-
duced our technique, we proceed to the lower bound proof
in Section 3 and finally we conclude in Section 5 with a dis-
cussion of the limitations of our technique and the intriguing
open problems these limitations pose.

2. TECHNIQUES
In this section, we first review the two previous techniques

most important to our work, and then present our new tech-
nique.

2i.e. for any data structure with a possibly randomized
query algorithm, there exists a sequence of updates U , such
that the expected cost of answering a uniform random query
after the updates U is tq .
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Fredman and Saks [2].
This technique is known as the chronogram technique.

The basic idea is to consider batches, or epochs, of updates
to a data structure problem. More formally, one defines an
epoch i for each i = 1, . . . , lgβ n, where β > 1 is a parameter.

The i’th epoch consists of performing βi carefully chosen up-
dates to a data structure. The epochs occur in time from
largest to smallest epoch, and at the end of epoch 1, every
cell of the constructed data structure is associated to the
epoch in which it was last updated. The goal is to argue
that to answer a query after epoch 1, the query algorithm
has to probe one cell associated to each epoch. Since a cell
is only associated to one epoch, this gives a total query time
lower bound of Ω(lgβ n).

Arguing that the query algorithm must probe one cell as-
sociated to each epoch is typically done by setting β some-
what larger than the worst case update time tu. Since cells
associated to an epoch j cannot contain useful information
about an epoch i < j (the updates of epoch j where per-
formed before knowing what the updates of epoch i was),
one can ignore cells associated to previous epochs when
analysing the probes to an epoch i. Similarly, since all
epochs following epoch i (future updates) writes a total of
O(βi−1tu) = o(βi) cells, these cells do not contain enough
information about the βi updates of epoch i to be of any use.
Thus if the answer to a query depends on an update of epoch
i, then the query algorithm must probe a cell associated to
epoch i to answer the query.

We note that Fredman and Saks also defined the notion of
epochs over a sequence of intermixed updates and queries.
Here the epochs are defined relative to each query, and from
this approach they obtain their amortized bounds.

Pǎtraşcu [6].
This technique uses the same setup as the chronogram

technique, i.e. one considers epochs i = 1, . . . , lgβ n of up-
dates, followed by one query. The idea is to use a static
Ω(lgβ n) lower bound proof to argue that the query algo-
rithm must probe Ω(lgβ n) cells from each epoch, and not
just one. Summing over all epochs, this gives a lower bound
of Ω(lg2β n). In the following, we give a coarse overview of
the general framework for doing so.

One first proves a lower bound on the amount of commu-
nication in the following (static) communication game (for
every epoch i): Bob receives all epochs of updates to the
dynamic data structure problem and Alice receives a set of
queries and all updates of the epochs preceding epoch i. The
goal for them is to compute the answer to Alice’s queries af-
ter all the epochs of updates.

When such a lower bound has been established, one con-
siders each epoch i in turn and uses the dynamic data struc-
ture to obtain an efficient protocol for the above commu-
nication game between Alice and Bob. The key idea is to
let Alice simulate the query algorithm of the dynamic data
structure on each of her queries, and whenever a cell associ-
ated to epoch i is requested, she asks Bob for the contents.
Bob replies and she continues the simulation. Clearly the
amount of communication is proportional to the number
of probes to cells associated to epoch i, and thus a lower
bound follows from the communication game lower bound.
The main difficulty in implementing this protocol is that
Alice must somehow recover the contents of the cells not
associated to epoch i without asking Bob for it. This is ac-

complished by first letting Bob send all cells associated to
epochs j < i to Alice. For sufficiently large β, this does not
break the communication lower bound. Now Alice can ex-
ecute the updates of the epochs preceding epoch i (epochs
j > i) herself, and she knows the cells associated to epochs
j < i, thus all she needs to realize the protocol is a way to
recognize whether a cell requested belongs to epoch i or not.
If not, she has the contents herself, and if it does, she asks
Bob for the contents. This last step is solved by changing
to a non-deterministic communication game and letting an
all-powerful prover send a Bloom filter to Alice, specifying
the cells that Alice will probe from epoch i. This last step
is expensive, costing at least one bit for each of the tq cells
probed by each of Alice’s queries. This is the reason why the
lower bound of Pǎtraşcu requires large weights assigned to
the input points (by having larger weights, the lower bound
on the communication game increases since knowing the an-
swer to a query reveals more information).

Our Technique.
Our new technique elegantly circumvents the limitations

of Pǎtraşcu’s technique by exploiting recent ideas by Pani-
grahy et al. [5] for proving static lower bounds. The basic
setup is the same, i.e. we consider epochs i = 1, . . . , lgβ n,

where the i’th epoch consists of βi updates. As with the
two previous techniques, we associate a cell to the epoch
in which it was last updates. Lower bounds now follow by
showing that any data structure must probe Ω(lgβ n) cells
associated to each epoch i when answering a query at the
end of epoch 1. Summing over all lgβ n epochs, this gives us

a lower bound of Ω(lg2β n).
To show that Ω(lgβ n) probes to cells associated to an

epoch i are required, we assume for contradiction that a data
structure probing o(lgβ n) cells associated to epoch i exists.
Using this data structure, we then consider a game between
an encoder and a decoder. The encoder receives as input the
updates of all epochs, and must from this send a message to
the decoder. The decoder then sees this message and all up-
dates preceding epoch i and must from this uniquely recover
the updates of epoch i. If the message is smaller than the
entropy of the updates of epoch i (conditioned on preceding
epochs), this gives an information theoretic contradiction.
The trick is to find a way for the encoder to exploit the
small number of probed cells to send a short message.

As mentioned, we use the ideas in [5] to exploit the small
number of probes. In [5] it was observed that if S is a set of
cells, and if the query algorithm of a data structure probes
o(lgβ n) cells from S on average over all queries (for large

enough β), then there is a subset of cells S′ ⊆ S which
resolves a large number of queries. Here we say that a subset
of cells S′ ⊆ S resolves a query, if the query algorithm probes
no cells in S \ S′ when answering that query. What this
observation gives us compared to the approach of Pǎtraşcu,
is that we can find a large set of queries that are all resolved
by the same small subset of cells associated to an epoch i.
Thus when amortizing over all the queries resolved by the
set S′, we no longer have to use tq bits per query just to
specify the cells it probes.

With this observation in mind, the encoder proceeds as
follows: First he executes all the updates of all epochs on
the claimed data structure. He then sends all cells associ-
ated to epochs j < i. For large enough β, this message is
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smaller than the entropy of the βi updates of epoch i. Let-
ting Si denote the cells associated to epoch i, the decoder
then finds a subset of cells S′

i ⊆ Si, such that a large number
of queries are resolved by S′

i. He then sends a description of
those cells and proceeds by finding a subset Q of the queries
resolved by S′

i, such that knowing the answer to all queries
in Q reduces the entropy of the updates of epoch i by more
than the number of bits needed to describe S′

i, Q and the
cells associated to epochs j < i. He then sends a description
of Q followed by an encoding of the updates of epoch i, con-
ditioned on the answers to queries in Q. Since the entropy
of the updates of epoch i is reduced by more bits than was
already send, this gives our contradiction (if the decoder can
recover the updates from the above messages).

To recover the updates of epoch i, the decoder first exe-
cutes the updates preceding epoch i. His goal is to simulate
the query algorithm for every query in Q to recover all the
answers. He achieves this in the following way: For each cell
c requested when answering a query q ∈ Q, he examines the
cells associated to epochs j < i (those cells were send by the
encoder), and if c is contained in one of those he immediately
recovers the contents. If not, he proceeds by examining the
set S′

i. If c is included in this set, he has again recovered
the contents and can continue the simulation. Finally, if c is
not in S′

i, then c must be associated to an epoch preceding
epoch i (since queries in Q probe no cells in Si\S

′
i), thus the

decoder recovers the contents of c from the updates that he
executed initially. In this manner, the decoder can recover
the answer to every query in Q, and from the last part of
the message he recovers the updates of epoch i.

The main technical challenge in using our technique lies
in arguing that if o(lgβ n) cells are probed amongst the cells

associated to epoch i, then the claimed cell set S′
i and query

set Q exists. In the next section, we demonstrate the tech-
nique on a concrete problem by proving our lower bound for
dynamic weighted orthogonal range counting.

3. DYNAMIC LOWER BOUND
In this section we prove our main result, which we have

formulated in the following theorem:

Theorem 1. Any data structure for dynamic weighted
orthogonal range counting in the cell probe model, must sat-
isfy tq = Ω((lgn/ lg(wtu))

2). Here tq is the expected av-
erage query time and tu the worst case update time. This
lower bound holds when the weights of the inserted points are
Θ(lg n)-bit integers.

We prove Theorem 1 by devising a hard distribution over
updates, followed by one uniform random query. We then
lower bound the expected cost (over the distribution) of
answering the query for any deterministic data structure
with worst case update time tu. By Yao’s principle [11],
this translates into a lower bound on the expected average
query time of a possibly randomized data structure. In our
proof we assume the weights are 4 lg n-bit integers and note
that our lower bound applies to any ε lgn-bit weights, where
ε > 0 is an arbitrarily small constant, simply because a data
structure for ε lgn-bit integer weights can be used to solve
the problem for any O(lg n)-bit integer weights with a con-
stant factor overhead by dividing the bits of the weights into
�δ/(ε lg n)� = O(1) chunks and maintaining a data structure
for each chunk. We begin our proof by presenting our hard
distribution over updates and queries.

Hard Distribution.
Our updates arrive in batches, or epochs, of exponentially

decreasing size. For i = 1, . . . , lgβ n we define epoch i as a

sequence of βi updates, for a parameter β > 1 to be fixed
later. The epochs occur in time from biggest to smallest
epoch, and at the end of epoch 1 we execute a uniform ran-
dom query in [n]× [n].

What remains is to specify which updates are performed in
each epoch i. The updates of epoch i are chosen tomimic the
hard input distribution for static orthogonal range counting
on a set of βi points. We first define the following point set
known as the Fibonacci lattice:

Definition 1 ([4]). The Fibonacci lattice Fm is the set
of m two-dimensional points defined by Fm = {(i, ifk−1

mod m) | i = 0, . . . , m − 1}, where m = fk is the k’th
Fibonacci number.

The βi updates of epoch i now consists of inserting each
point of the Fibonacci lattice Fβi , but scaled to fit the input
region [n] × [n], i.e. the j’th update of epoch i inserts the
point with coordinates (n/βi · j, n/βi · (jfki−1 mod βi)),
for j = 0, . . . , βi. The weight of each inserted point is a
uniform random integer amongst [Δ], where Δ is the largest
prime number smaller than 24 lgn = n4. This concludes the
description of our hard distribution.

The Fibonacci lattice has the desirable property that it
is very uniform. This plays an important role in our lower
bound proof, and we have formulated this property in the
following lemma:

Lemma 1 ([1]). For the Fibonacci lattice Fβi , where the

coordinates of each point have been multiplied by n/βi, and
for α > 0, any axis-aligned rectangle in [0, n−n/βi]× [0, n−
n/βi] with area αn2/βi contains between �α/a1� and �α/a2�
points, where a1 ≈ 1.9 and a2 ≈ 0.45.

Note that we assume each βi to be a Fibonacci number
(denoted fki

), and that each βi divides n. These assump-
tions can easily be removed by fiddling with the constants,
but this would only clutter the exposition.

For the remainder of the paper, we let Ui denote the ran-
dom variable giving the sequence of updates in epoch i, and
we let U = Ulgβ n · · ·U1 denote the random variable giv-
ing all updates of all lgβ n epochs. Finally, we let q be the
random variable giving the query.

A Chronogram Approach.
Having defined our hard distribution over updates and

queries, we now give a high-level proof of our lower bound.
Assume a deterministic data structure solution exists with
worst case update time tu. From this data structure and a
sequence of updates U = Ulgβ n, . . . , U1, where each Uj is a
possible outcome of Uj , we define S(U) to be the set of cells
stored in the data structure after executing the updates U .
Now associate each cell in S(U) to the last epoch in which
its contents were updated, and let Si(U) denote the subset
of S(U) associated to epoch i for i = 1, . . . , lgβ n. Also
let ti(U, q) denote the number of cells in Si(U) probed by
the query algorithm of the data structure when answering
the query q ∈ [n] × [n] after the sequence of updates U .
Finally, let ti(U) denote the average cost of answering a
query q ∈ [n] × [n] after the sequence of updates U , i.e. let
ti(U) =

∑
q∈[n]×[n] ti(U, q)/n

2. Then the following holds:
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Lemma 2. If β = (wtu)
9, then E[ti(U, q)] = Ω(lgβ n) for

all i ≥ 15
16

lgβ n.

Before giving the proof of Lemma 2, we show that it im-
plies Theorem 1: Let β be as in Lemma 2. Since the cell sets
Slgβ n(U), . . . , S1(U) are disjoint, we get that the number of
cells probed when answering the query q is

∑
i ti(U,q). It

now follows immediately from linearity of expectation that
the expected number of cells probed when answering q is
Ω(lgβ n · lgβ n) = Ω((lg n/ lg(wtu))

2), which completes the
proof of Theorem 1.

The hard part thus lies in proving Lemma 2, i.e. in show-
ing that the random query must probe a lot of cells associ-
ated to each of the epochs i = 15

16
lgβ n, . . . , lgβ n. This will

be the focus of the next section.

3.1 Bounding the Probes to Epoch i

As also pointed out in Section 2, we prove Lemma 2 us-
ing an encoding argument. Assume for contradiction that
there exists a data structure solution such that under our
hard distribution, with β = (wtu)

9, there exists an epoch
i∗ ≥ 15

16
lgβ n, such that the claimed data structure satisfies

E[ti∗(U,q)] = o(lgβ n).
First observe that Ui∗ is independent of Ulgβ n · · ·Ui∗+1,

i.e. H(Ui∗ | Ulgβ n · · ·Ui∗+1) = H(Ui∗ ), where H(·) de-
notes binary entropy. Furthermore, we have H(Ui∗) =

βi∗ lg Δ, since the updates of epoch i∗ consists of insert-
ing βi∗ fixed points, each with a uniform random weight
amongst the integers [Δ]. Our goal is to show that, con-
ditioned on Ulgβ n · · ·Ui∗+1, we can use the claimed data
structure solution to encode Ui∗ in less than H(Ui∗) bits
in expectation, i.e. a contradiction. We view this encoding
step as a game between an encoder and a decoder. The
encoder receives as input the sequence of updates U =
Ulgβ n, . . . ,U1. The encoder now examines these updates
and from them sends a message to the decoder (an en-
coding). The decoder now sees this message, as well as
Ulgβ n, . . . ,Ui∗+1 (we conditioned on these variables), and
must from this uniquely recover Ui∗ . If we can design a
procedure for constructing and decoding the encoder’s mes-
sage, such that the expected size of the message is less than
H(Ui∗ ) = βi∗ lgΔ bits, then we have reached our contra-
diction.

Before presenting our encoding and decoding procedures,
we show exactly what breaks down if the claimed data struc-
ture probes too few cells from epoch i∗. For this, we first
introduce some terminology. For a query point q = (x, y) ∈
[n] × [n], we define for every epoch i = 1, . . . , lgβ n the in-

cidence vector χi(q), as a vector in {0, 1}β
i

. The j’th coor-
dinate of χi(q) is 1 if the j’th point inserted in epoch i is
dominated by q, and 0 otherwise. More formally, for a query
q = (x, y), the j’th coordinate χi(q)j is given by:

χi(q)j =

{
1 if jn/βi ≤ x ∧ (jfki−1 mod βi)n/βi ≤ y
0 otherwise

Similarly, we define for a fixed sequence of updates Ui,
where Ui is a possible outcome of Ui, the βi-dimensional
vector ui for which the j’th coordinate equals the weight as-
signed to the j’th inserted point in Ui. We note that Ui and
ui uniquely specify each other, since all possible outcomes
of Ui inserts the same fixed points, only the weights vary.

Finally observe that the answer to a query q after a fixed

sequence of updates Ulgβ n, . . . , U1 is
∑lgβ n

i=1 〈χi(q), ui〉, where

〈·, ·〉 denotes the standard inner product. With these defini-
tions, we now present the main result forcing a data struc-
ture to probe many cells from each epoch:

Lemma 3. Let i ≥ 15
16

lgβ n be an epoch, and let U =
Ulgβ n, . . . , U1 be a fixed sequence of updates, where each Uj

is a possible outcome of Uj . If ti(U) = o(lgβ n), then there
exists a subset of cells Ci ⊆ Si(U) and a set of query points
Q ⊆ [n]× [n] such that:

1. |Ci| = O(βi−1w).

2. |Q| = Ω(βi−3/4).

3. The set of incidence vectors χi(Q) = {χi(q) | q ∈ Q}

is a linearly independent set of vectors in [Δ]β
i

.

4. The query algorithm of the data structure solution probes
no cells in Si(U) \ Ci when answering a query q ∈ Q
after the sequence of updates U .

The contradiction that this lemma intuitively gives us, is
that the queries in Q reveal more information about Ui than
the bits in Ci can describe. We note that Lemma 3 essen-
tially is a generalization of the results proved in the static
range counting papers [6, 3], simply phrased in terms of cell
subsets answering many queries instead of communication
complexity. Since the proof contains only few new ideas,
we have deferred it to Section 4 and instead move on to
show how we use this lemma in our encoding and decoding
procedures.

Encoding.
Let U = Ulgβ n, . . . , U1 be a fixed sequence of updates

given as input to the encoder, where each Uj is a possible
outcome of Uj . Also let i∗ ≥ 15

16
lgβ n be the epoch for

which E[ti∗(U,q)] = o(lgβ n). We construct the message of
the encoder by the following procedure:

1. First the encoder executes the sequence of updates U
on the claimed data structure, and from this obtains
the sets Slgβ n(U), . . . , S1(U). He then simulates the
query algorithm on the data structure for every query
q ∈ [n] × [n]. From this, the encoder computes ti∗(U)
(just the average number of cells in Si∗(U) that are
probed).

2. If ti∗(U) > 2E[ti∗(U,q)], then the encoder writes a

1-bit, followed by �βi∗ lg Δ� = H(Ui∗) + O(1) bits,
simply specifying each weight assigned to a point in
Ui∗ (this can be done in the claimed amount of bits by

interpreting the weights as one big integer in [Δβi∗

]).
This is the complete message send to the decoder when
ti∗(U) > 2E[ti∗(U,q)].

3. If ti∗(U) ≤ 2E[ti∗(U,q)], then the encoder first writes
a 0-bit. Now since ti∗(U) ≤ 2E[ti∗(U,q)] = o(lgβ n),
we get from Lemma 3 that there must exist a set of
cells Ci∗ ⊆ Si∗(U) and a set of queries Q ⊆ [n] × [n]
satisfying 1-4 in Lemma 3. The encoder finds such
sets Ci∗ and Q simply by trying all possible sets in
some arbitrary but fixed order (given two candidate
sets C′

i∗ and Q′ it is straight forward to verify whether
they satisfy properties 1-4 of Lemma 3). The encoder
now writes down these two sets, including addresses
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and contents of the cells in Ci∗ , for a total of at most

O(w) + 2|Ci∗ |w + lg
(
n2

|Q|

)
bits (the O(w) bits specifies

|Ci∗ | and |Q|).

4. The encoder now constructs a set X, such that X =
χi∗(Q) initially. Then he iterates through all vectors

in {0, 1}β
i∗

, in some arbitrary but fixed order, and for
each such vector x, checks whether x is in span(X). If
not, the encoder adds x to X. This process continues
until dim(span(X)) = βi∗ , at which point the encoder
computes and writes down (〈x, ui∗〉 mod Δ) for each
x that was added to X. Since dim(span(χi∗(Q))) =
|Q| (by point 3 in Lemma 3), this adds a total of

�(βi∗ − |Q|) lg Δ� bits to the message (by interpreting

the values as one big integer in [Δβi∗−|Q|]).

5. Finally, the encoder writes down all of the cell sets
Si∗−1(U), . . . , S1(U), including addresses and contents,
plus all of the vectors ui∗−1, . . . , u1. This takes atmost∑i∗−1

j=1 (2|Sj(U)|w + βj lg Δ + O(w)) bits. When this
is done, the encoder sends the constructed message to
the decoder.

Before analysing the expected size of the encoding, we
present the decoding procedure.

Decoding.
In the following, we describe our decoding procedure. The

decoder receives as input the updates Ulgβ n, . . . , Ui∗+1 and
the message from the encoder. The decoder now recovers
Ui∗ by the following procedure:

1. The decoder examines the first bit of the message. If
this bit is 1, then the decoder immediately recovers
Ui∗ from the encoding (step 2 in the encoding proce-
dure). If not, the decoder instead executes the updates
Ulgβ n · · ·Ui∗+1 on the claimed data structure solution

and obtains the cells sets Si∗+1
lgβ n(U), . . . , Si∗+1

i∗+1(U) where

Si∗+1
j (U) contains the cells that were last updated dur-

ing epoch j when executing updates Ulgβ n, . . . , Ui∗+1

(and not the entire sequence of updates Ulgβ n, . . . , U1).

2. The decoder now recovers Q,Ci∗ , Si∗−1(U), . . . , S1(U)
and ui∗−1, . . . , u1 from the encoding. For each query
q ∈ Q, the decoder then computes the answer to q as
if all updates Ulgβ n, . . . , U1 had been performed. The
decoder accomplishes this by simulating the query al-
gorithm on q, and for each cell requested, the decoder
recovers the contents of that cell as it would have been
if all updates Ulgβ n, . . . , U1 had been performed. This
is done in the following way: When the query algo-
rithm requests a cell c, the decoder first determines
whether c is in one of the sets Si∗−1(U), . . . , S1(U).
If so, the correct contents of c (the contents after the
updates U = Ulgβ n, . . . , U1) is directly recovered. If c
is not amongst these cells, the decoder checks whether
c is in Ci∗ . If so, we have again recovered the con-
tents. Finally, if c is not in Ci∗ , then from point 4
of Lemma 3, we get that c is not in Si∗(U). Since
c is not in any of Si∗(U), . . . , S1(U), this means that
the contents of c has not changed during the updates
Ui∗ , . . . , U1, and thus the decoder finally recovers the

contents of c from Si∗+1
lgβ n(U), . . . , Si∗+1

i∗+1(U). The de-

coder can therefore recover the answer to each query
q in Q if it had been executed after the sequence of
updates Ulgβ n, . . . , U1, i.e. for all q ∈ Q, he knows∑lgβ n

i=1 〈χi(q), ui〉.

3. The next decoding step consists of computing for each
query q in Q, the value 〈χi∗(q), ui∗〉. For each q ∈ Q,

the decoder already knows the value
∑lgβ n

i=1 〈χi(q), ui〉
from the above. From the encoding of ui∗−1, . . . , u1,

the decoder can compute the value
∑i∗−1

i=1 〈χi(q), ui〉
and finally from Ulgβ n, . . . , Ui∗+1 the decoder com-

putes
∑lgβ n

i=i∗+1〈χi(q), ui〉. The decoder can now re-
cover the value 〈χi∗(q), ui∗〉 simply by observing that

〈χi∗(q), ui∗〉 =
∑lgβ n

i=1 〈χi(q), ui〉 −
∑

i�=i∗〈χi(q), ui〉.

4. Now from the query set Q, the decoder construct the
set of vectors X = χi∗(Q), and then iterates through

all vectors in {0, 1}β
i∗

, in the same fixed order as the
encoder. For each such vector x, the decoder again ver-
ifies whether x is in span(X), and if not, adds x to X
and recovers 〈x, ui∗〉 mod Δ from the encoding. The

decoder now constructs the βi∗ × βi∗ matrix A, hav-
ing the vectors in X as rows. Similarly, he construct
the vector z having one coordinate for each row of A.
The coordinate of z corresponding to a row vector x,
has the value 〈x, ui∗〉 mod Δ. Note that this value is
already known to the decoder, regardless of whether
x is also in χi∗(Q) (simply taking modulo Δ on the
value 〈χi∗(x), ui∗ 〉 computed above for each vector in
χi∗(Q)), or was added later. Since A has full rank,
and since the set [Δ] endowed with integer addition
and multiplication modulo Δ is a finite field, it fol-
lows that the system of equations A ⊗ y = z has a

unique solution y ∈ [Δ]β
i∗

(here ⊗ denotes matrix-

vector multiplication modulo Δ). But ui∗ ∈ [Δ]β
i∗

and A ⊗ ui∗ = z, thus the decoder now solves the
linear system of equations A⊗ y = z and uniquely re-
covers ui∗ , and therefore also Ui∗ . This completes the
decoding procedure.

Analysis.
We now analyse the expected size of the encoding of Ui∗ .

We first analyse the size of the encoding when ti∗(U) ≤
2E[ti∗(U,q)]. In this case, the encoder sends a message of

2|Ci∗ |w + lg

(
n2

|Q|

)
+ (βi∗ − |Q|) lgΔ

+O(w lgβ n) +
i∗−1∑
j=1

(2|Sj(U)|w + βj lgΔ)

bits. Since βi∗ lg Δ = H(Ui∗) and |Ci∗ |w = o(|Q|), the
above is upper bounded by

H(Ui∗)−|Q| lg(Δ/n2)+o(|Q|)+
i∗−1∑
j=1

(2|Sj(U)|w+βj lgΔ).

Since β ≥ 2, we also have
∑i∗−1

j=1 βj lg Δ < 2βi∗−1 lgΔ =

o(|Q| lg Δ). Similarly, we have |Sj(U)| ≤ βjtu, which gives
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us
∑i∗−1

j=1 2|Sj(U)|w < 4βi∗−1wtu = o(|Q|). From standard
results on prime numbers, we have that the largest prime
number smaller than n4 is at least n3 for infinitely many
n, i.e. we can assume lg(Δ/n2) = Ω(lgΔ). Therefore, the
above is again upper bounded by

H(Ui∗)− Ω(|Q| lg Δ) = H(Ui∗ )− Ω(βi∗−3/4 lg Δ).

This part thus contributes at most

Pr[ti∗(U) ≤ 2E[ti∗ (U,q)]] · (H(Ui∗)− Ω(βi∗−3/4 lg Δ))

bits to the expected size of the encoding. The case where
ti∗(U) > 2E[ti∗ (U,q)] similarly contributes Pr[ti∗(U) >
2E[ti∗ (U,q)]] · (H(Ui∗) +O(1)) bits to the expected size of
the encoding. Now since q is uniform, we have E[ti∗(U)] =
E[ti∗(U,q)], we therefore get from Markov’s inequality that
Pr[ti∗(U) > 2E[ti∗(U,q)]] < 1

2
. Therefore the expected size

of our encoding is upper bounded by O(1) + 1
2
H(Ui∗) +

1
2
(H(Ui∗) − Ω(βi∗−3/4 lg Δ)) < H(Ui∗) finally leading to

our contradiction and completing the proof of Lemma 2.

4. THE STATIC SETUP
Finally, in this section we prove Lemma 3, the last piece

in our lower bound proof. As already mentioned, we prove
the lemma by extending on previous ideas for proving lower
bounds on static range counting. We note that we have
chosen a more geometric (and we believe more intuitive)
approach to the proof than the previous papers.

For the remainder of the section, we let U = Ulgβ n, . . . , U1

be a fixed sequence of updates, where each Uj is a possible
outcome of Uj , and i ≥ 15

16
lgβ n an epoch. Furthermore,

we assume that the claimed data structure satisfies ti(U) =
o(lgβ n), and our task is to show that the claimed cell set Ci

and query set Q exists.
Our first step is to find a geometric property of a set of

queries Q, such that χi(Q) is a linearly independent set of
vectors. One property that ensures this, is that the queries
in Q are sufficiently well spread. To make this more formal,
we introduce the following terminology:

A grid G with width μ ≥ 1 and height γ ≥ 1, is the
collection of grid cells [jμ, (j + 1)μ) × [hγ, (h + 1)γ) such
that 0 ≤ j < n/μ and 0 ≤ h < n/γ. We say that a query
point q = (x, y) ∈ [n] × [n] hits a grid cell [jμ, (j + 1)μ) ×
[hγ, (h + 1)γ) of G, if the point (x, y) lies within that grid
cell, i.e. if jμ ≤ x < (j+1)μ and hγ ≤ y < (h+1)γ. Finally,
we define the hitting number of a set of queries Q′ on a grid
G, as the number of distinct grid cells in G that is hit by a
query in Q′.

With this terminology, we have the following lemma:

Lemma 4. Let Q′ be a set of queries and G a grid with
width μ and height n2/βiμ for some parameter n/βi ≤ μ ≤
n. Let h denote the hitting number of Q′ on G. Then there
is a subset of queries Q ⊆ Q′, such that |Q| = Ω(h−6n/μ−
6μβi/n) and χi(Q) is a linearly independent set of vectors

in [Δ]β
i

.

We defer the proof of Lemma 4 to Section 4.1, and instead
continue our proof of Lemma 3.

In light of Lemma 4, we set out to find a set of cells Ci ⊆
Si(U) and a grid G, such that the set of queries QCi

that
probe no cells in Si(U) \Ci, hit a large number of grid cells
in G. For this, first define the grids G2, . . . , G2i−2 where Gj

has width n/βi−j/2 and height n/βj/2. The existence of Ci

is guaranteed by the following lemma:

Lemma 5. Let i ≥ 15
16

lgβ n be an epoch and Ulgβ n, . . . , U1

a fixed sequence of updates, where each Uj is a possible out-
come of Uj . Assume furthermore that the claimed data
structure satisfies ti(U) = o(lgβ n). Then there exists a set
of cells Ci ⊆ Si(U) and an index j ∈ {2, . . . , 2i − 2}, such

that |Ci| = O(βi−1w) and QCi
has hitting number Ω(βi−3/4)

on the grid Gj.

To not remove focus from our proof of Lemma 3 we have
moved the proof of this lemma to Section 4.2. We thus move
on to show that Lemma 4 and Lemma 5 implies Lemma 3.
By assumption we have ti(U) = o(lgβ n). Combining this
with Lemma 5, we get that there exists a set of cells Ci ⊆
Si(U) and an index j ∈ {2, . . . , 2i − 2}, such that |Ci| =
O(βi−1w) and the set of queries QCi

has hitting number

Ω(βi−3/4) on the grid Gj . Furthermore, we have that grid
Gj is a grid of the form required by Lemma 4, with μ =
n/βi−j/2. Thus by Lemma 4 there is a subset Q ⊆ QCi

such

that |Q| = Ω(βi−3/4 − 12βi−1) = Ω(βi−3/4) and χi(Q) is a

linearly independent set of vectors in [Δ]β
i

. This completes
the proof of Lemma 3.

4.1 Proof of Lemma 4
We prove the lemma by giving an explicit construction of

the set Q.
First initialize Q to contain one query point from Q′ from

each cell of G that is hit by Q′. We will now repeatedly
eliminate queries from Q until the remaining set is linearly
independent. We do this by crossing out rows and columns
of G. By crossing out a row (column) of G, we mean deleting
all queries in Q that hits a cell in that row (column). Our
procedure for crossing out rows and columns is as follows:

First cross out the bottom two rows and leftmost two
columns. Amongst the remaining columns, cross out either
the even or odd columns, whichever of the two contains the
fewest remaining points in Q. Repeat this once again for
the columns, with even and odd redefined over the remain-
ing columns. Finally, do the same for the rows. We claim
that the remaining set of queries are linearly independent.
To see this, order the remaining queries in increasing order
of column index (leftmost column has lowest index), and sec-
ondarily in increasing order of row index (bottom row has
lowest index). Let q1, . . . , q|Q| denote the resulting sequence
of queries. For this sequence, it holds that for every query
qj , there exists a coordinate χi(qj)h, such that χi(qj)h = 1,
and at the same time χi(qk)h = 0 for all k < j. Clearly
this implies linear independence. To prove that the remain-
ing vectors have this property, we must show that for each
query qj , there is some point in the scaled Fibonacci lattice
Fβi that is dominated by qj , but not by any of q1, . . . , qj−1:
Associate each remaining query qj to the two-by-two crossed
out grid cells to the bottom-left of the grid cell hit by qj .
These four grid cells have area 4n2/βi and are contained
within the rectangle [0, n− n/βi]× [0, n− n/βi], thus from
Lemma 1 it follows that at least one point of the scaled Fi-
bonacci lattice Fβi is contained therein, and thus dominated
by qj . But all qk, where k < j, either hit a grid cell in a
column with index at least three less than that hit by qj
(we crossed out the two columns preceding that hit by qj),
or they hit a grid cell in the same column as qj but with
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a row index that is at least three lower than that hit by qj
(we crossed out the two rows preceding that hit by qj). In
either case, such a query cannot dominate the point inside
the cells associated to qj .

What remains is to bound the size of Q. Initially, we have
|Q| = h. The bottom two rows have a total area of 2n3/βiμ,
thus by Lemma 1 they contain at most 6n/μ points. The
leftmost two columns have area 2nμ and thus contain at
most 6μβi/n points. After crossing out these rows and col-
umn we are therefore left with |Q| ≥ h−6n/μ−6μβi/n. Fi-
nally, when crossing out even or odd rows we always choose
the one eliminating fewest points, thus the remaining steps
at most reduce the size of Q by a factor 16. This completes
the proof of Lemma 4.

4.2 Proof of Lemma 5
We prove the lemma using another encoding argument.

However, this time we do not encode the update sequence,
but instead we define a distribution over query sets, such
that if Lemma 5 is not true, then we can encode such a
query set in too few bits.

Let U = Ulgβ n, . . . , U1 be a fixed sequence of updates,
where each Uj is a possible outcome of Uj . Furthermore,
assume for contradiction that the claimed data structure
satisfies both ti(U) = o(lgβ n) and for all cell sets C ⊆ Si(U)

of size |C| = O(βi−1w) and every index j ∈ {2, . . . , 2i−2}, it

holds that the hitting number of QC on grid Gj is o(βi−3/4).
Here QC denotes the set of all queries q in [n]× [n] such that
the query algorithm of the claimed data structure probes no
cells in Si(U) \ C when answering q after the sequence of
updates U . Under these assumptions we will construct an
impossible encoder. As mentioned, we will encode a set of
queries:

Hard Distribution.
Let Q denote a random set of queries, constructed by

drawing one uniform random query (with integer coordi-
nates) from each of the βi−1 vertical slabs of the form

[hn/βi−1 , (h+ 1)n/βi−1)× [0, n),

where h ∈ [βi−1]. Our goal is to encode Q in less than
H(Q) = βi−1 lg(n2/βi−1) bits in expectation. Before giv-
ing our encoding and decoding procedures, we prove some
simple properties of Q:

Define a query q in a query set Q′ to be well-separated if
for all other queries q′ ∈ Q′, where q �= q′, q and q′ do not lie
within an axis-aligned rectangle of area n2/βi−1/2. Finally,
define a query set Q′ to be well-separated if at least 1

2
|Q′|

queries in Q′ are well-separated. We then have:

Lemma 6. The query set Q is well-separated with proba-
bility at least 3/4.

Proof. Let qh denote the random query in Q lying in
the h’th vertical slab. The probability that qh lies within a

distance of at most n/βi−3/4 from the x-border of the h’th

slab is precisely (2n/βi−3/4)/(n/βi−1) = 2/β1/4. If this is
not the case, then for another query qk in Q, we know that
the x-coordinates of qh and qk differ by at least (|k − h| −

1)n/βi−1 + n/βi−3/4. This implies that qh and qk can only

be within an axis-aligned rectangle of area n2/βi−1/2 if their

y-coordinates differ by at most n/((|k− h| − 1)β1/2 + β1/4).

This happens with probability at most 2/((|k−h|−1)β1/2+

β1/4). The probability that a query qh in Q is not well-
separated is therefore bounded by

2

β1/4
+ (1−

2

β1/4
)
∑
k �=j

2

(|k − h| − 1)β1/2 + β1/4

≤
10

β1/4
+

∑
k �=j

2

|k − h|β1/2
= O

(
1

β1/4
+

lgn

β1/2

)
.

Since β = (wtu)
9 = ω(lg2 n) this probability is o(1), and

the result now follows from linearity of expectation and
Markov’s inequality.

Now let Si(Q,U) ⊆ Si(U) denote the subset of cells in
Si(U) probed by the query algorithm of the claimed data
structure when answering all queries in a set of queries Q
after the sequence of updates U (i.e. the union of the cells
probed for each query in Q). Since a uniform random query
from Q is uniform in [n]× [n], we get by linearity of expec-
tation that E[|Si(Q, U)|] = βi−1ti(U). From this, Lemma 6,
Markov’s inequality and a union bound, we conclude

Lemma 7. The query set Q is both well-separated and
|Si(Q, U)| ≤ 4βi−1ti(U) with probability at least 1/2.

With this established, we are now ready to give our impos-
sible encoding of Q.

Encoding.
In the following we describe the encoding procedure. The

encoder receives as input a set of queries Q, where Q is a
possible outcome of Q. He then executes the below proce-
dure to encode Q:

1. The encoder first executes the fixed sequence of up-
dates U on the claimed data structure, and from this
obtains the sets Slgβ n(U), . . . , S1(U). He then runs
the query algorithm for every query q ∈ Q and collects
the set Si(Q,U).

2. IfQ is not well-separated or if |Si(Q,U)| > 4βi−1ti(U),
then the encoder sends a 1-bit followed by a straight
forward encoding of Q using H(Q)+O(1) bits in total.
This is the complete encoding procedure when either
Q is not well-separated or |Si(Q,U)| > 4βi−1ti(U).

3. IfQ is both well-separated and |Si(Q,U)| ≤ 4βi−1ti(U),
then the encoder first writes a 0-bit and then executes
the remaining four steps.

4. The encoder examines Q and finds the at most 1
2
|Q|

queries that are not well-separated. Denote this set Q′.
The encoder now writes down Q′ by first specifying
|Q′|, then which vertical slabs contain the queries in
Q′ and finally what the coordinates of each query in
Q′ is within its slab. This takes O(w) + lg

(
|Q|
|Q′|

)
+

|Q′| lg(n2/βi−1) = O(w) +O(βi−1) + |Q′| lg(n2/βi−1)
bits.

5. The encoder now writes down the cell set Si(Q,U),
including only the addresses and not the contents.
This takes o(H(Q)) bits since

lg

(
|Si(U)|

|Si(Q,U)|

)
= O(βi−1ti(U) lg(βtu))

= o(βi−1 lg(n2/βi−1)),
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where in the first line we used that |Si(U)| ≤ βitu and
|Si(Q,U)| ≤ 4βi−1ti(U). The second line follows from
the fact that ti(U) = o(lgβ n) = o(lg(n2/βi−1)/ lg(βtu))
since β = ω(tu).

6. Next we encode the x-coordinates of the well-separated
queries in Q. Since we have already encoded which
vertical slabs contain well-separated queries (we re-
ally encoded the slabs containing queries that are not
well-separated, but this is equivalent), we do this by
specifying only the offset within each slab. This takes
(|Q|−|Q′|) lg(n/βi−1)+O(1) bits. Following that, the
encoder considers the last grid G2i−2, and for each
well-separated query q, he writes down the y-offset
of q within the grid cell of G2i−2 hit by q. Since
the grid cells of G2i−2 have height n/βi−1, this takes
(|Q|−|Q′|) lg(n/βi−1)+O(1) bits. Combined with the
encoding of the x-coordinates, this step adds a total of
(|Q| − |Q′|) lg(n2/β2i−2) +O(1) bits to the size of the
encoding.

7. In the last step of the encoding procedure, the en-
coder simulates the query algorithm for every query
in [n] × [n] and from this obtains the set QSi(Q,U),
i.e. the set of all those queries that probe no cells
in Si(U) \ Si(Q,U). Observe that Q ⊆ QSi(Q,U).
The encoder now considers each of the grids Gj , for
j = 2, . . . , 2i − 2, and determines both the set of grid

cells G
QSi(Q,U)

j ⊆ Gj hit by a query in QSi(Q,U), and

the set of grid cells GQ
j ⊆ G

QSi(Q,U)

j ⊆ Gj hit by a well-
separated query in Q. The last step of the encoding
consists of specifying GQ

j . This is done by encoding

which subset of G
QSi(Q,U)

j corresponds to GQ
j . This

takes lg
(|GQSi(Q,U)

j
|

|G
Q
j
|

)
bits for each j = 2, . . . , 2i− 2.

Since |Si(Q,U)| = o(βi−1 lgβ n) = o(βi−1w) we get
from our contradictory assumption that the hitting
number of QSi(Q,U) on each grid Gj is o(βi−3/4), thus

|G
QSi(Q,U)

j | = o(βi−3/4). Therefore the above amount
of bits is at most

(|Q| − |Q′|) lg(βi−3/4e/(|Q| − |Q′|))(2i− 3) ≤

(|Q| − |Q′|) lg(β1/4)2i+O(βi−1i) ≤

(|Q| − |Q′|) 1
4
lg(β)2 lgβ n+O(βi−1 lgβ n) ≤

(|Q| − |Q′|) 1
2
lg n+ o(H(Q))

This completes the encoding procedure, and the en-
coder finishes by sending the constructed message to
the decoder.

Before analysing the size of the encoding, we show that
the decoder can recover Q from the encoding.

Decoding.
In this paragraph we describe the decoding procedure.

The decoder only knows the fixed sequence U = Ulgβ n, . . . , U1

and the message received from the encoder. The goal is to
recover Q, which is done by the following steps:

1. The decoder examines the first bit of the message. If
this is a 1-bit, the decoder immediately recovers Q
from the remaining part of the encoding.

2. If the first bit is 0, the decoder proceeds with this step
and all of the below steps. The decoder executes the
updates U on the claimed data structure and obtains
the sets Slgβ n(U), . . . , S1(U). From step 4 of the en-

coding procedure, the decoder also recovers Q′.

3. From step 5 of the encoding procedure, the decoder
now recovers the addresses of the cells in Si(Q,U).
Since the decoder has the data structure, he already
knows the contents. Following this, the decoder now
simulates every query in [n] × [n], and from this and
Si(Q,U) recovers the set QSi(Q,U).

4. From step 6 of the encoding procedure, the decoder
now recovers the x-coordinates of every well-separated
query in Q (the offsets are enough since the decoder
knows which vertical slabs contain queries in Q′, and
thus also those that contain well-separated queries).
Following that, the decoder also recovers the y-offset
of each well-separated query q ∈ Q within the grid cell
of G2i−2 hit by q (note that the decoder does not know
what grid cell it is, he only knows the offset).

5. From the set QSi(Q,U) the decoder now recovers the set

G
QSi(Q,U)

j for each j = 2, . . . , 2i− 2. This information

is immediate from the set QSi(Q,U). From G
QSi(Q,U)

j

and step 7 of the encoding procedure, the decoder now
recovers GQ

j for each j. In grid G2, we know that Q
has only one query in every column, thus the decoder
can determine uniquely from GQ

2 which grid cell of G2

is hit by each well-separated query in Q. Now ob-
serve that the axis-aligned rectangle enclosing all β1/2

grid cells in Gj+1 that intersects a fixed grid cell in
Gj has area n2/βi−1/2. Since we are considering well-
separated queries, i.e. queries where no two lie within
an axis-aligned rectangle of area n2/βi−1/2, this means

thatGQ
j+1 contains atmost one grid cell in such a group

of β1/2 grid cells. Thus if q is a well-separated query in
Q, we can determine uniquely which grid cell of Gj+1

that is hit by q, directly from GQ
j+1 and the grid cell

in Gj hit by q. But we already know this informa-
tion for grid G2, thus we can recover this information
for grid G3, G4, . . . , G2i−2. Thus we know for each
well-separated query in Q which grid cell of G2i−2 it
hits. From the encoding of the x-coordinates and the
y-offsets, the decoder have thus recovered Q.

Analysis.
Finally we analyse the size of the encoding. First consider

the case where Q is both well-separated and |Si(Q, U)| ≤
4βi−1ti(U). In this setting, the size of themessage is bounded
by

|Q′| lg(n2/βi−1)+(|Q|−|Q′|)(lg(n2/β2i−2)+ 1
2
lgn)+o(H(Q))

bits. This equals

|Q| lg(n2+1/2/β2i−2) + |Q′| lg(βi−1/n1/2) + o(H(Q))

bits. Since we are considering an epoch i ≥ 15
16

lgβ n, we

have lg(n2+1/2/β2i−2) ≤ lg(n5/8β2), thus the above amount
of bits is upper bounded by

|Q| lg(n5/8β2) + |Q′| lg(n1/2) + o(H(Q)).
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Since |Q′| ≤ 1
2
|Q|, this is again bounded by

|Q| lg(n7/8β2) + o(H(Q))

bits. ButH(Q) = |Q| lg(n2/βi) ≥ |Q| lgn, i.e. our encoding
uses less than 15

16
H(Q) bits.

Finally, let E denote the event that Q is well-separated
and at the same time |Si(Q, U)| ≤ 4βi−1ti(U), then the ex-
pected number of bits used by the entire encoding is bounded
by

O(1) + Pr[E](1− Ω(1))H(Q) + (1− Pr[E])H(Q)

The contradiction is now reached by invoking Lemma 7 to
conclude that Pr[E] ≥ 1/2.

5. CONCLUDING REMARKS
In this paper we presented a new technique for proving

dynamic cell probe lower bounds. With this technique we
proved the highest dynamic cell probe lower bound to date
under the most natural setting of cell size w = Θ(lgn),
namely a lower bound of tq = Ω((lg n/ lg(wtu))

2).
While our results have taken the field of cell probe lower

bounds one step further, there is still a long way to go.
Amongst the results that seems within grasp, we find it
a very intriguing open problem to prove an ω(lgn) lower
bound for a problem where the queries have a one bit out-
put. Our technique crucially relies on the output having
more bits than it takes to describe a query, since otherwise
the encoder cannot afford to tell the decoder which queries
to simulate. Since many interesting data structure problems
have a one bit output size, finding a technique for handling
this case would allow us to attack many more fundamental
data structure problems.

Applying our technique to other problems is also an im-
portant task, however such problems must again have a log-
arithmic number of bits in the output of queries.
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