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Abstract

In 2008 an alleged pseudonym “Satoshi Nakamoto” published a white paper entitled
“Bitcoin: A Peer-to-Peer Electronic Cash System”. The white paper is credited with
kickstarting the blockchain industry, and the ideas presented there revolutionized the
design and practice of byzantine fault-tolerant protocols for state machine replication.
This dissertation comprises three publications and one manuscript addressing research
questions relevant to the period following the release of the white paper, with a partic-
ular focus on message dissemination.

Our first contribution is to generalize and modify the Bitcoin protocol to obtain
a protocol with improved throughput under favorable network conditions. We do so
by deriving a framework for proving the generalized protocol’s security and show how
the original Bitcoin protocol instantiates this framework. We then use our framework
to propose a new protocol with all Bitcoin’s worst-case properties. Still, additionally,
under favorable conditions, our new protocol has a throughput proportional to the
actual latency of the underlying message dissemination protocol instead of the worst-
case latency (as Bitcoin).

Next, we present a formal model that quantifies the delay from an adaptive adversary
decides to corrupt a party until the adversary effectively gains control over them. Using
this model, we provide the first message dissemination protocol that is secure against a
“slightly” delayed adaptive adversary instead of a static adversary. We prove that our
protocol ensures that each party must only communicate with a logarithmic number of
parties to provide a logarithmic delivery latency.

Thereafter, we present a new message dissemination protocol that relies only on
the assumption that a fraction of resources remains honest. This deviates from the
standard assumption for such protocols, i.e., that a certain fraction of parties in a
protocol for secure message dissemination remains honest. However, it aligns with the
trust assumption commonly used for state-of-the-art state machine replication protocols.
Our new protocol, therefore, allows to reduce the trust assumptions of a combined
system significantly. The protocol has an efficiency similar to state-of-the-art protocols
for the setting where a fraction of parties remains honest.

Finally, we present a new protocol for disseminating messages with asymptotically
optimal per-party communication. In this protocol, to spread a message, each party
only needs to forward a number of bits linearly proportional to the actual length of
the message to ensure a logarithmic delivery latency. We also show how to generically
transform some message dissemination protocols to rely only on a fraction of honest
resources, thereby making our new protocol apply to the blockchain setting.
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Resumé

I 2008 offentliggjorde det formodede pseudonym “Satoshi Nakamoto” en rapport med
titlen “Bitcoin: A Peer-to-Peer Electronic Cash System”. Rapporten blev startskuddet
til blockchain-industrien, og ideerne i den har revolutioneret b̊ade design og brug af
fejltolerante protokoller for tilstandsreplikation. Denne afhandling best̊ar af tre pub-
likationer og et manuskript, der hver adresserer problemstillinger relevante for perioden
efter offentliggørelsen af rapporten med et særligt fokus p̊a protokoller for spredning af
beskeder.

Først modificerer vi Bitcoin-protokollen og forbedrer dermed effektiviteten af denne.
Vi opn̊ar dette ved at lave en abstraktion af Bitcoin-protokollen og bruger denne ab-
straktion til at udlede præcise krav til en sikker protokol. Hernæst instantierer vi vores
abstraktion med Bitcoin-protokollen og beviser sikkerheden af denne. Endelig bruger
vi vores abstraktion til at udlede en ny protokol, der i tillæg til de originale egen-
skaber under gunstige forhold har en effektivitet, der er proportional til de faktiske
netværksforhold. Dette er modsat Bitcoin-protokollen, der har en effektivitet der altid
er proportional til de værst tænkelige netværksforhold.

Herefter præsenterer vi en model, der tillader at kvantificere forsinkelsen, fra en
modstander begynder at overtage en part, til at modstanderen rent faktisk opn̊ar kontrol
over denne. Vi bruger modellen til at præsentere en protokol for udbredelse af beskeder
og beviser sikkerheden af denne over for en adaptiv modstander, der kun er “lettere”
forsinket ved overtagelse af parter. Vores protokol sikrer, at alle parter kun behøver at
kommunikere med et logaritmisk antal andre parter, for at garantere at tiden, det tager
at sprede en besked, maksimalt er logaritmisk i antallet af parter.

Derp̊a præsenterer vi en ny protokol for udbredelse af beskeder, der kun beror p̊a
en antagelse om, at en konstant andel af ressourcer er kontrollerede af ærlige parter.
Dette er i modsætning til den almindelige antagelse for s̊adanne protokoller, der er at
en bestemt andel af parterne forbliver ærlige. Til gengæld er antagelsen vores protokol
beror p̊a i overensstemmelse med standard antagelser for blockchains. Ved brug af vores
nye protokol er det derfor muligt at opn̊a en sikker kombineret protokol, der kun beror
p̊a en ærlighedsantagelse. Effektiviteten af vores protokol er p̊a niveau med tilsvarende
protokoller, der beror p̊a antagelsen om, at en andel af deltagerne forbliver ærlige.

Endeligt præsenterer vi en ny protokol for udbredelse af beskeder med en asymptotisk
optimal besked kompleksitet. For at sprede en besked skal hver enkelt part kun sende
et antal bits der er lineært proportionalt til antallet af bits i selve beskeden. Ydermere
viser vi, at man kan transformere en s̊adan protokol til at bero p̊a en antagelse om, at
en andel af ressourcer er under kontrol af ærlige parter. Derved bliver resultatet ogs̊a
relevant for blockchains.
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1 Introduction

This chapter serves as an introduction to the rest of the dissertation. In Section 1.1, we
will provide a high-level introduction to the context of this dissertation. In Section 1.2,
we will provide an overview of the publications and manuscripts in this dissertation, and
finally, in Section 1.3, we will introduce general notation used throughout the remainder
of the dissertation.

1.1 Background

The aim of this section is to give a non-technical overview of the background and
context in which this dissertation is written and thereby motivate and clarify the research
problems addressed in the later chapters. First, we will introduce the “Nakamoto era”
and provide an overview of some of the many research directions that have emerged
during this period. Thereafter, we will briefly examine techniques for dissemination of
messages related to the results presented in this dissertation.

1.1.1 The Nakamoto Era

The Byzantine Generals Problem first described by Lamport, Shostak, and Pease
[LSP82], is a thought experiment that illustrates the challenges of achieving consen-
sus in a distributed system. In the problem, a group of generals is encamped around a
city, each with their armies which they command. The generals must decide whether
to attack the city or retreat, but they can only communicate with each other via a
messenger. However, it may be that some of the generals are traitorous and may send
false messages in an attempt to deceive the others.

The problem is to devise a protocol that allows the generals to reach a agreement on
whether or not to attack, despite the possibility of some generals being dishonest. The
challenge is that honest generals cannot distinguish between which generals are honest
and which are not, so they must come up with a way to reach a decision based on the
messages they receive.

This problem sparked the development of byzantine fault tolerant (BFT) protocols,
designed to function correctly even when a subset of the participants act maliciously.
In other words, these systems can withstand the “byzantine” behavior of some of their
components. The property of being able to deal with such arbitrary faults also tran-
scended to the important area of state machine replication (SMR) (originally introduced
by Lamport [Lam78]), where a group of machines is to maintain consistent states. The
idea is that if one machine fails, the others can take over and continue providing the
service without interruption.
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Background 2

A common approach to achieving such state machine replication is ensuring that
all machines agree on a sequence of instructions that each party can execute locally
to update their state. Suppose the parties that participate in the protocol agree on
the sequence of instructions, and the instructions are deterministic. In that case, this
approach ensures that all machines will have consistent states. We refer to the sequence
of instructions agreed upon as being totally ordered and any instruction in the total
order as being final.

Numerous research papers have studied how to achieve consensus on a total order
of instructions. Among them is Nakamoto’s white paper [Nak08], which introduced the
Bitcoin protocol and revolutionized the field. At the core, Nakamoto’s protocol is so
simple that it can be described in just two sentences:

1. At all times each party attempts to solve “puzzles”1 that contain unexecuted
instructions and are irrevocably linked to the longest sequence of solved puzzles
known to the party.

2. When a party finds a solution to a puzzle, they distribute it to all participants of
the protocol.

A solution to a puzzle containing a set of instructions is commonly referred to as a
block, the process of solving a puzzle as mining, a sequence of linked blocks as a chain,
and the act of distributing a message to all other parties as multicasting. A solution
to a puzzle can be considered proof that the party has invested a certain amount of
computing power. Therefore this security mechanism is referred to as Proof-of-Work
(PoW). Using this terminology, the protocol can be summarized in just one sentence as
follows: Each party continuously mines to extend their best chain and multicasts any
newly minted block.

Nakamoto’s protocol ensures that if all participants can multicast blocks with a
known latency, and less than 50% of the computing power in the protocol is malicious,
any prefix of the longest chain known to an honest participant and that is at least Ω(κ)
blocks deep (where κ is a security parameter) will be a fixed prefix of the total order
of the protocol. Therefore, the instructions contained in any such prefix of the longest
chain are final and can be safely executed.

Despite its simplicity, the protocol made several novel improvements to key areas of
BFT-SMR:2

Scalability: Nakamoto’s protocol is extremely scalable. To ensure that a specific in-
struction becomes final, only Θ(κ) blocks need to be appended to it (for a security
parameter κ), and therefore only Θ(κ) multicasts needs to be processed. Further-
more, each block itself also contains instructions, and so the amortized multicast
complexity to finalize a block becomes just O(1)!

1For the purpose of this discussion, it is not relevant how these puzzles concretely are instantiated,
but Nakamoto’s original instantiation was to let each party group a set of transactions and append
different nonces (numbers only used once) to this set of transactions, and the hashed value of the
previous puzzle. A solution to the puzzle would then be a set of transactions, a nonce, and a hash of
the previous puzzle, which, when hashed, has a value below some predefined threshold.

2Many of the ideas in the protocol were not new but combining them in this way was unique. For
a historical account of where the ideas originally arose from, we refer to [NC17]
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Permissionless: Rather than relying on a fraction of the parties participating in the
protocol behaving honestly, Nakamoto’s protocol instead depends on a fraction
of the computing power following the protocol. That is, there is no trust placed
in the identities of parties which is very difficult to establish since a single user
may control several Sybils. Thereby, the protocol does not need to impose any
restrictions on whom is allowed to participate in the protocol, and as such, it can
be open for everyone to participate! In fact, the protocol does not even require
all participants to know each other as long as it is possible to multicast messages
among all parties.

Robustness: Not only is Nakamoto’s protocol able to withstand up to 50% percent of
the computing power behaving maliciously, but there is also no requirement that
the set of honest parties is static. In fact, as no private state needs to be preserved
between consecutive mining attempts, the protocol can withstand an adversary
that can adaptively choose which machines they control (as long as less than
50% of the computing power remains honest throughout the protocol). The only
requirement on this adaptivity from the adversary is that the adversary cannot
prevent a multicast that has been initialized from succeeding. This makes the
protocol extremely robust towards Denial-of-Service attacks, which have become
increasingly common in recent years.

With these properties, the protocol gave birth to the cryptocurrency industry, which
has since evolved into a multi-billion dollar industry. The technology that underpins
this industry is known as “blockchains”, and we will refer to the period following the
release of this white paper, as the Nakamoto era.

1.1.2 Research Directions in the Nakamoto Era

With its groundbreaking ideas, Nakamoto’s original article sparked an abundance of
research in the area of BFT systems. Below we provide a selective overview of some
of the directions that have been pursued since Nakamoto’s original paper, focusing on
provable security using the cryptographic methodology. Note that the overview is not
intended to be exhaustive but merely to highlight some important directions to help
contextualize this dissertation.

Security of the Bitcoin protocol. In Nakamoto’s original white paper, no precise prop-
erties of the protocol were defined, nor was the protocol’s security proven. Since then a
significant line of research has addressed this shortcoming [Bad+17; Dem+20; GKL20;
GKL15; GKL17; GRR22; Niu+19; PSS17; Ren19]. Garay, Kiayias, and Leonardos
[GKL15] introduced and proved the properties of chain growth, chain quality, and com-
mon prefix, which together ensures both safety and liveness of the induced SMR pro-
tocol. Since then, have analyses of the protocol been extended to cover more difficult
network conditions and varying participation [GKL20; GKL17; PSS17], and other work
has presented alternative analyses that aim to be simple [Dem+20; Niu+19; Ren19],
the security of the protocol has been proven in a composable model [Bad+17], and also
practical bound on the time it takes to make a block final has been established [GRR22].
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Energy efficiency. The security of Nakamoto’s original protocol crucially relies on the
fact that a block is only valid if it is an actual solution to a puzzle and that honest
parties create more such solutions to puzzles than dishonest parties. The security,
therefore, increases the more honest computing power that is spent solving such puzzles.
A significant drawback of this security mechanism is that constantly solving puzzles is
very costly energy-wise.

To address this issue while retaining the permissionless property and the robustness
of Nakamoto’s protocol, various trust assumptions have been proposed [Ate+14; CM19;
DPS19; Dav+18; Dzi+15; Kia+17]. The most popular alternative has become proof of
stake (PoS) protocols, where each party participates in the protocol weighted by their
current holding of stake on their account [CM19; DPS19; Dav+18; Kia+17]. Another
alternative is proof of space where the underlying resource that parties participate in a
protocol is the amount of storage available to them [Ate+14; Dzi+15]. These approaches
reduce the energy consumption to only a fraction of PoW protocols.

Instruction throughput and time to finality. Independently of which underlying resource
assumption is used, Nakamoto’s original protocol design has two limitations:

1. The security of Nakamoto’s protocol relies on the fact that a chain produced
only by honest parties must be able to outgrow a chain made only by dishonest
parties. Therefore, it is crucial for the protocol’s security that honest parties can
propagate previous blocks before a new block can be produced, as honest blocks
otherwise might not contribute to growing a long chain. Consequently, an essential
parameter of the protocol is the block production rate.3 If the block production rate
is set to high compared to the actual time it takes to multicast a block, then the
safety of the protocol may be violated. Furthermore, if the number of instructions
in a block is increased, it may take longer to multicast such a block. Therefore, it
is inherently limited how many instructions can be totally ordered in Nakamoto’s
protocol. For example, the Bitcoin protocol has an average block production rate
of 10 minutes, whereas Ethereum’s block production rate is roughly 12 seconds
pr. block. We will refer to the number of instructions that can be put in a total
order as the instruction throughput of a protocol.

2. It is not only the instruction throughput that is affected by this limit on the block
production rate. Because an instruction needs to be buried by Ω(κ) blocks before
it becomes final, the time it takes from an instruction makes it into a block until
it becomes final will be Ω(κ/R) if the protocol has a block production rate of R.
That is, the confirmation time of the protocol is also inherently limited.

A plethora of research has gone into addressing these two issues and below we will
mention a selection of it.

Some projects have tried to preserve Nakamoto’s protocol’s overall “style” while
increasing the throughput [Eya+16; LSZ15; PS17a; SZ15].4 Eyal, Gencer, Sirer, and

3In practice, the block production rate is controlled by how the difficulty of the puzzles that are to
be solved is set.

4The motivation for some of these works is also to mitigate rational attacks (one that the protocol
incentives participants to do) on Nakamoto’s protocol known as selfish mining [Eya+16; PS17a]. As
this is out of the scope of this dissertation, it will not be discussed further.
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Renesse [Eya+16] proposes a new protocol, Bitcoin-NG, where they let the miner of
the last block append additional instructions to this block until a new block arises.
Thereby, the overall throughput of the protocol is increased because the period between
the blocks’ production is no longer unused. Sompolinsky and Zohar [SZ15] introduces
the GHOST-rule (Greedy Heaviest-Observed Sub-Tree), which instead of simply letting
all parties prefer the longest chain, also takes into account the blocks that does not make
it into the main chain when selecting the preferred chain. Lewenberg, Sompolinsky, and
Zohar [LSZ15] and Pass and Shi [PS17a] obtain a higher throughput of instructions by
ordering instructions that do not appear on the main chain in a DAG. In Chapter 2,
we will present a new NSB that under certain optimistic conditions will have increased
throughput.

A completely different approach than Nakamoto’s probabilistic approach was taken
in original effective solutions to the BFT-SMR problem [CL99]. The idea of Castro
and Liskov [CL99] was to let a leader propose instructions that a committee of parties
then validates. Once a party has heard from sufficiently many such validators, they will
accept the instruction as final. Since then, the scalability and throughput of this protocol
type have been vastly improved [Abr+20; Kot+07; Mil+16; Yin+19]. Contrary to
Nakamoto’s protocol, this type of protocol does, however, require trust in the identities
of the participating parties. Therefore the protocols are necessarily permisioned to stay
secure and require the parties to stay honest for more extended periods of time.

A breakthrough for this type of protocol was recently made by Gilad, Hemo, Micali,
Vlachos, and Zeldovich [Gil+17] with the introduction of the Algorand protocol. The
protocol is a committee-based BFT-SMR, but instead of letting the same parties stay in
the committee, each activity in the protocol is abstracted into a “role”, and then these
are occupied using PoS as a resource together with a VRF (verifiable random function)
to select a party at random but weighted according to the fraction of stake they own.
Because parties can take over from each other, the authors define this as a protocol
being player-replaceable. This approach has three advantages:

1. Instead of having all parties be a part of the committee, it is sufficient to let the
committees be of size O(κ) because then the ratio between adversarial and honest
players in the committee will be roughly equal to the balance between honest and
adversarial stake. The smaller committee size drastically reduces the number of
multicasts to finalize a block to be just O(κ) making the protocol scalable.

2. Because the protocol utilizes PoS as a resource, no trust is needed to be placed
on the identities of the respective parties, and thereby the protocol becomes per-
misionless.

Finally, it should be mentioned that there has also been research in combining the ro-
bustness of NSBs with the fast confirmation time of committee-based approaches using
hybrid approaches [PS18a] and “finality layers” [BG17; Din+20; Kam+22; SK20]. Pass
and Shi [PS18a] introduces a hybrid approach where a NSB is run, but additionally, a
leader is selected that interacts with a committee. If this party is honest, they achieve
a speedup in terms of both throughput and finality time. [BG17; Din+20; SK20] in-
troduces an additional layer on top of NSB finality where a committee tries to detect
the prefix of a chain that honest parties already agree upon and agree on an irrevocable
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certificate such that this prefix becomes final immediately.

All of the protocols referenced above that obtain a superset of Nakamoto’s original
protocols properties has one thing in common: To deliver on their promise of scalability,
robustness, and being permissionless, they rely on a multicast network! In particular, if
the underlying multicast network does not have these properties, neither will a protocol
build on top. The focus of Chapters 3 to 5 will be to design multicast networks with
such properties and prove them secure.

Next, we introduce multicasting more carefully and review the state-of-the-art solu-
tions for this problem.

1.1.3 Multicast

For the purpose of this dissertation, multicasting is the act of disseminating a message
known by a single party to the complete set of parties participating in a protocol.5 To
devise such a protocol, some network topology of point-to-point channels between parties
needs to be assumed. In this dissertation, the focus will be on complete topologies where
each pair of parties can communicate. The motivation for this is that the protocols we
are interested in are intended to run on the public internet, and as such, it is possible
for all notes to communicate.

If such a complete topology is assumed, a straightforward way of performing a mul-
ticast is to let the party that knows the message send it to all other parties in the
protocol. This elementary protocol achieves the optimal message complexity (the num-
ber of messages sent to deliver a single message) of just n− 1 (for n parties). However,
its simplicity also imposes an immense workload on the initial party knowing the mes-
sage that is obliged to send it to all other parties. In a decentralized setting, parties’
bandwidth and computational power are often limited; therefore, this approach is not
feasible. To deem whether a particular multicast protocol is appropriate for a specific
use-case, it is necessary to consider the number of neighbors each party needs to com-
municate with, the per-party communication, and the delivery latency of such protocol.

Since the origin of computer science, there has been extensive research in devising
such efficient multicast protocols. There are two main approaches to implementing
multicast: deterministic and probabilistic.

A deterministic multicast approach uses a pre-defined and fixed graph, such as a
spanning tree, to deliver messages. This approach is predictable and provides guaranteed
delivery of multicast packets to all participants if all parties behave honestly. However,
with its predictability, it is, unfortunately, not very robust against failures and, in
particular, very vulnerable to a byzantine adaptive adversary.

On the other hand, a probabilistic multicast approach uses a randomized algorithm
to let each party select to whom to forward the message. When receiving a message,
a party will typically forward it to another random selection of peers. If the protocols
increase the redundancy and are high entropy, they can be way more robust w.r.t. byzan-
tine failures and still be effective w.r.t. both per-party communication and latency. Due

5This act is also referred to as broadcasting or flooding a message. However, in the literature,
broadcast often refers to a primitive where parties must agree on which message they received from
a sender. Therefore to avoid further confusion, we will use either multicasting or flooding in this
dissertation.
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to such protocols’ resemblance with how a rumor spreads, this type of protocol is often
referred to as gossip protocols. This type of protocol will be the main focus of this
dissertation due to its robustness properties. Next, we provide a small selective review
of research on gossiping protocols.

Gossiping. The first to consider gossip protocols for forwarding messages in a replicated
database was Demers, Greene, Hauser, Irish, Larson, Shenker, Sturgis, Swinehart, and
Terry [Dem+87].6 In this work, the authors considered a model where servers periodi-
cally check for updates. In this model, they devise two protocols: The “anti-entropy”
protocol, wherein each period, the server pushes an update to a random neighbor, and
the “rumor-mongering” protocol, where parties keep pushing a “hot rumor” to new
neighbors until a certain number of people have told them they already have heard
about this rumor. Both protocols were implemented and deployed on Xerox’s servers
and showed to perform very well in practice.

Feige, Peleg, Raghavan, and Upfal [Fei+90] showed that if in each period a rumor
is sent to a random party, then it takes only O(log(n)) periods until all n parties have
learned about this rumor. Thereby, the message complexity of the protocol will be
O(n · log(n)). Karp, Schindelhauer, Shenker, and Vöcking [Kar+00] showed that by
letting parties that have not learned the message additionally pull for news, then only
O(n · log log(n)) messages have to be sent. This was even further improved by Doerr and
Fouz [DF11], who showed that by steering the randomness based upon whether or not
the last party had already received the message, then only O(n) messages have to be
sent to spread a rumor in only O(log(n)) periods. We note protocols that are reactive in
the sense that parties choose to forward a message depending on which messages they
receive (such as the protocols in [DF11; Kar+00], makes them inherently difficult to
apply in a byzantine setting where parties may send wrong information.

In the seminal work of Kermarrec, Massoulié, and Ganesh [KMG03], a protocol
where each party forwards a message to each other party with a certain independent
probability is considered.7 Due to the similarity with Erdős–Rényi graphs [ER60],
where each edge appears with equal independent probability, we will refer to this as
Erdős–Rényi-style gossiping. They show that for n → ∞, each party needs to connect
to log(n) parties in this way to ensure that a message reaches everybody with over-
whelming probability. Additionally, it is shown that this protocol is resilient to removal
of random nodes.

Gossip techniques have been applied in many more areas of computer science. It
has also been considered how to ensure that a message is either spread to very few
or almost all parties [Bir+99; HHL06] known as “bimodal” gossip and how to take
into account spatial distance when gossiping [KKD04], how aggregated values can be
computed using gossip-based communication [KDG03], and how gossiping can be done
in mobile ad-hoc networks where the topologies considered are often incomplete [Cri+09;
Gut+15; Hu+12; SCS03].

However, to the author’s best knowledge, none of these directions aim to ensure
a multicast network that is secure against deliberate attacks, and therefore as such,
not applicable if one wants robustness properties compatible with BFT-SMR protocols

6For a historical overview of early research on the topic, we refer to [HHL88].
7This protocol is also used in Chapters 3 to 5.
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of the Nakamoto era. Next, we give an overview of gossiping techniques applied in
the byzantine setting and finally provide an overview of the very little research on
multicasting specifically for blockchains in the Nakamoto era.

Gossiping techniques in the BFT setting. Gossiping techniques have also been used in
the BFT context to reduce the message complexity and robustness of these. One line
of work [MMR99; MPS01; MS03] considers how to efficiently propagate an update that
is initially known by more processes than those that may fail to all nodes in a system.
The ideas do however only have limited transferability to the multicast setting, where
it may be that only a single party knows the initial message.

Chandran, Chongchitmate, Garay, Goldwasser, Ostrovsky, and Zikas [Cha+15] used
gossiping techniques to improve the communication locality (the number of parties each
party needs to communicate with) of secure multi-party computation. Concretely, they
let parties connect in a Erdős–Rényi pattern and show how this can be used to achieve
reliable message transfer, which they use to run MPC protocol. By assuming that
communication is hidden and parties can instantly erase memory such that an adversary
does not learn the communication pattern of a party even if this party is corrupted, they
prove their protocol secure against an adaptive adversary.

Guerraoui, Kuznetsov, Monti, Pavlovic, and Seredinschi [Gue+19] used gossiping in
Erdős–Rényi style and subset sampling to obtain a protocol with reduced communica-
tion cost for reliable broadcast in the setting where less than one-third of parties are
controlled by an adversary. This work considered only a static adversary that corrupted
a fixed set of parties. Tsimos, Loss, and Papamanthou [TLP22] used Erdős–Rényi style
gossiping to reduce the complexity to improve efficiency for both reliable broadcast
and reliable parallel broadcast by cleverly aggregating information along the gossip-
ing. Noticeably, they manage to make their parallel broadcast algorithm secure even
for adaptive adversaries by hiding the communication pattern using only encryption,
making it impossible to eclipse an honest party with noticeable probability. They can
do so without increasing the communication complexity because the parallel broadcast
problem inherently requires all-to-all communication.

Multicasting for blockchains. Compared to the immense amount of work focused on
proving security and improving the efficiency of BFT-SMR in the Nakamoto era, secure
and efficient multicast for blockchains has received very little attention.

A recent line of work [Lon+21; Mao+20; RT19; RT21; Sal+22; VT19; Vyz+20;
Wan+22] seeks to optimize the efficiency and security of the multicast protocols partic-
ular for the blockchain setting. However, these works mainly optimize for efficiency and
only apply heuristics to prevent specific attacks. In particular: none of them is provable
secure, and they are, as such incomparable to the works presented in this dissertation,
even though the end goal is similar.

Another line of work has focused on attacking the underlying multicast network
of blockchains currently deployed [AZV17; Hei+15; MHG18; Tra+20]. This serves as
additional motivation for investigating provably secure solutions for multicasting in the
blockchain area that are secure using the same assumptions as the blockchain protocols
themself (see Chapters 4 and 5).
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Concurrently with and independently of this dissertation, Coretti, Kiayias, Moore,
and Russell [Cor+22] proposed a message dissemination protocol for the Ouroboros
Praos [Dav+18]. They show how selectively propagating updates can be used to avoid a
known denial of service attack on the protocol, where the network is spammed with many
blocks. Assuming only that a majority of the stake in the system behaves correctly, they
show that with overwhelming probability, all but a small fraction of the stake receive the
necessary updates. They additionally show that this weakened functionality is sufficient
for the Ouroboros Praos protocol to achieve a weakened version of SMR.

1.2 Overview

This dissertation taps into the cryptographic tradition of carefully stating and proving
properties within a well-defined model. We apply this methodology to address chal-
lenges in the Nakamoto era with a particular focus on message dissemination. The
remainder of this thesis is divided into four chapters.

In Chapter 2, we make a tweak to Nakamoto’s original protocol by generalizing what
parties consider the best chain. Our generalization of the protocol allows it to achieve
additional properties and, under favourable circumstances, improves the throughput
and finality time compared to the Bitcoin protocol.

In Chapter 3, we introduce the first precise model that quantifies the adaptivity of
an adversary and show how to construct an efficient multicast protocol that is secure
against certain adaptive adversaries within this model. This allows the robustness of
blockchains w.r.t. an adaptive adversary to be stated precisely without assuming a
multicast functionality.

In Chapter 4, we devise the first multicast protocol that is provably secure under
similar resource assumptions as SMR protocols in the Nakamoto era and thereby lay
the ground for a genuinely permissionless combined construction.

In Chapter 5, we introduce a multicast protocol that is asymptotically optimal and
additionally shows how the techniques of the previous chapter extend to work in a
black-box manner. With our black-box transformation, our optimal multicast protocol
can be used directly as a foundation for a SMR protocol in the Nakamoto era without
introducing additional trust assumptions.

Chapters 2 to 4 are based on existing peer-reviewed publications, whereas Chapter 5
is based on a manuscript that at the time of writing is being reviewed. The author of
this dissertation has been a part of all aspects of these research projects. In particular,
the author has contributed to idea generation, proving technical results, evaluations,
and writing the articles.

Below is an overview of the individual chapters and their relation to each other.
Each chapter will additionally come with a separate introduction and related work and
can be read as a separate entity. Throughout the rest of this dissertation, “we” refers
to the authors of the individual publications and the manuscript, while “I” refers to the
author of this dissertation.
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1.2.1 Chapter 2: Weight-Based Nakamoto-Style Blockchains

The chapter is based almost verbatim on [Kam+20], which is the full version of the
publication [Kam+21].

[Kam+20]: Simon Holmgaard Kamp, Bernardo Magri, Christian Matt, Jesper Buus
Nielsen, Søren Eller Thomsen, and Daniel Tschudi. Weight-Based Nakamoto-Style
Blockchains. Cryptology ePrint Archive, Paper 2020/328. 2020. url: https:

//eprint.iacr.org/2020/328.

[Kam+21]: Simon Holmgaard Kamp, Bernardo Magri, Christian Matt, Jesper Buus
Nielsen, Søren Eller Thomsen, and Daniel Tschudi. “Weight-Based Nakamoto-Style
Blockchains”. In: LATINCRYPT. vol. 12912. Lecture Notes in Computer Science.
Springer, 2021, pp. 299–319.

Below I will explain the motivation for the project, provide a high-level summary of its
contributions, and place it in its immediate context.

Motivation. As explained in Section 1.1, it is crucial for the security of both Nakamoto’s
original protocol and subsequent protocols in a similar style that they are instantiated
with a correct block production rate w.r.t. the latency of the multicast network. Hence,
this block production rate must be instantiated conservatively to accommodate the
worst-case latency that the network may experience throughout the entire lifetime of
the protocol. The latency of a multicast network may, however, greatly depend on
the conditions of the underlying point-to-point channels, which, if realized by the public
internet, again varies depending on the amount of network traffic at the time. Therefore
there may be a big gap between the worst-case performance of multicast networks and
the normal-case performance. Current, NSBs are not able to utilize the actual latency
of the network (which may be way better than worst-case latency) because the block
production rate has to be fixed once and for all when the protocol is deployed. The
motivation for this work is to improve upon this state of affairs.

Contributions. In this work, we make a small change to the design of NSBs to try to
utilize this wasted potential. We do so by modifying the “longest-chain-rule”, which
says that parties should try to extend the longest chain they know of, to instead assign
a weight to each block based on the hash of the block and let parties extend the heaviest
chain they know. At an intuitive level, we remove the requirement that a block needs
to be a strict solution to a puzzle for it to be valid but instead introduce a judgment of
“how good a solution to a puzzle” a block is.

In more detail, we introduce an abstract function referred to as weight function,
and prove that Nakamoto’s protocol with our modifications has both chain growth,
chain quality, and common prefix when the used weight function has specific properties.
Together with generic bounds on the production of weight for certain classes of weight
functions, this constitutes a framework that allows easy exploration of different weight
functions. We show the applicability of our framework by applying it to two examples
of weight functions:

1. We cast Nakamoto’s original longest chain rule as a 0/1-weight function within
our framework. That is, we assign a weight of 0 to all blocks with a hash above

https://eprint.iacr.org/2020/328
https://eprint.iacr.org/2020/328
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the threshold that determines if a block is valid in Nakamoto’s protocol and a
weight of 1 to blocks with a hash below. For this function, we use our framework
to derive settlement bounds similar to state-of-art analyses.

2. We instantiate our framework with a “capped exponential weight function” and
show that this, in addition to achieving worst-case guarantees similar to the Bit-
coin protocol, also achieves a weak form of optimistic responsiveness (explanation
follows below).

The capped exponential weight function is a function that increases exponentially in
the hash value until it is capped at a certain threshold. The intuition for this type of
function is that the threshold should be set such that the production rate of the blocks
above the threshold enables a secure protocol during the worst-case latency periods of
the network. Blocks with hashes lower than this threshold do not weigh enough to
harm the worst-case settlement guarantees. Still, they allow the parties to extend the
total order at a rate that depends on the actual network latency if no parties behave
maliciously (referred to as being weakly optimistic responsive). While this may seem
like a fragile property (as it is not clear when parties are malicious and when they are
not), we envision that combining our protocol with a finality layer [BG17; Din+20;
Kam+22; SK20] that detects what honest parties agree on and issues certificates on
this, could be a compelling combination.

Closely related work. This research project fits into the line of research making tweaks
to Nakamoto’s original protocol [Eya+16; LSZ15; PS17a; SZ15]. Even though these
previous protocols manage to increase the throughput of Nakamoto’s protocol, they do
not improve upon the finality time. Under favorable conditions, our suggested protocol
does both.

The Thunderella protocol by Pass and Shi [PS18b] achieves a more robust version of
optimistic responsiveness by running a committee on top of a NSB. With this approach,
they achieve a speedup w.r.t. both throughput and finality time when the leader of
their committee is honest, and less than 25% of the parties in the committee behave
maliciously. By needing to appoint a leader, their protocol is more vulnerable to denial-
of-service attacks, as this leader must stay “alive” for a more extended time to gain the
speedup.

In the context of the remainder of the dissertation, the chapter mainly serves as a
concrete illustration of why and how the security of NSBs inherently depends on the
underlying multicast network.

Differences to original work. The differences between the chapter appearing in this dis-
sertation and the full version of the publication [Kam+20] are:

• An appendix that provided a “weighted” version of the chain-quality theorem is
blended into the chapter instead of appearing as an appendix.

• A brief outline of the chapter has been added.

• An appendix that contained additional bounds for the production of weight for
weight functions different from the ones appearing in this work is left out.
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• Minor phrasings have been changed to improve readability, and typos have been
corrected.

• A section that concluded on the work has been removed as the contributions have
already been summarized earlier.

1.2.2 Chapter 3 Formalizing Delayed Adaptive Corruptions and the Security of Flood-
ing Networks

This chapter is based almost verbatim on [MNT22a], which is the full version of the
publication [MNT22b].

[MNT22a]: Christian Matt, Jesper Buus Nielsen, and Søren Eller Thomsen. Formal-
izing Delayed Adaptive Corruptions and the Security of Flooding Networks. Cryp-
tology ePrint Archive, Paper 2022/010. 2022. url: https://eprint.iacr.org/

2022/010.

[MNT22b]: Christian Matt, Jesper Buus Nielsen, and Søren Eller Thomsen. “For-
malizing Delayed Adaptive Corruptions and the Security of Flooding Networks”.
In: CRYPTO (2). Vol. 13508. Lecture Notes in Computer Science. Springer, 2022,
pp. 400–430.

Below I will explain the motivation for the project, provide a high-level summary of its
contributions, and place it in its immediate context.

Motivation. One of the main selling points and key innovations of NSBs in comparison
to previous work is their robustness (as mentioned in Section 1.1) against an adaptive
adversary. A significant line of research has shown that if just each honest party in
the protocol stays honest long enough to be able to multicast a single message within
a known bounded time, and at all times less than 50% of the underlying resources are
under the control of the adversary, then this type of protocol is both safe and live. If
multicast is implemented by letting the sender simply forward a message to all parties
and atomicity of this is assumed, then this is guaranteed even against an adaptive
adversary. On the other hand, any protocol where an initial sender sends to fewer
parties than those that can be adaptively corrupted can not guarantee delivery because
the neighbors of the initial sender may be corrupted. In practice, efficient multicast
networks are implemented using gossiping techniques, and by the above argument, this
implies that no guarantees can be given against an adaptive adversary for these systems.
Phrased differently: No security guarantees can be given against an adaptive adversary
against currently running NSBs. However, intuitively it seems that gossip protocols
should be resistant to a slightly weaker notion of adaptivity, which excludes the type
of attack mentioned above. This research project aims to redeem provably security for
gossip protocols in such a slightly weaker adversary’s presence.

Contributions. We formalize the notion of δ-delayed adaptive adversaries within the
UC framework [Can20] that is considered the gold standard for cryptographic security.
These are adaptive adversaries for whom it takes δ time from they initiate the process
of corrupting a party until they control the party. In this model, we prove the security

https://eprint.iacr.org/2022/010
https://eprint.iacr.org/2022/010
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of a very simple protocol where each party uses an independent coin for each party to
decide whether or not to forward a particular message to them. This protocol is secure
against an adversary that is delayed just for the time it takes to send a message over
a point-to-point channel plus the time it takes to resend a message. In a setting with
n parties, point-to-point channels with a maximum delivery latency of ∆, an adversary
able to corrupt any constant known fraction of the parties in, and a security parameter
κ, we prove it secure for two different sets of parameters: 1) if each party resends each
message to Θ(κ + log(n)) parties, then this will ensure a maximum delivery latency of
O(log(n) ·∆) with a probability overwhelming in κ, and 2) if each party resends each
message to Θ

(√
(κ+ log(n)) · n

)
parties then this ensures a maximum delivery latency

of just 2 ·∆ with a probability overwhelming in κ.
As a sanity check for our modeling, we also prove the intuitive result that secu-

rity against a “fast” adversary implies security against a “slow” adversary and that
our formalization of adaptive adversaries is compatible with the standard modeling of
adaptive adversaries in UC. That is, we prove that a 0-delayed adversary corresponds
to a standard adaptive adversary. Together, these two results allow using the UC com-
position theorem to achieve security when instantiating protocols that rely on a mix of
constructions proved secure against a standard adaptive adversary, and others proved
secure against a delayed adversary.

Closely related work. Pass and Shi [PS17b] introduced the notion of δ-agile adversaries
that are conceptually identical to our δ-delayed adversaries, which they used to define
adaptive security for their committee-based consensus mechanism (if an adversary can
corrupt the committee, their protocol is insecure and therefore their protocol is only
secure against an adversary that is delayed until the next committee is selected). Con-
trary to our work, they did not provide precise execution semantics for their notion of
delayed adversaries.

Chandran, Chongchitmate, Garay, Goldwasser, Ostrovsky, and Zikas [Cha+15] con-
sidered a model where an adversary does not learn which channels are used for commu-
nicating between honest parties. Within this model, they constructed an MPC protocol
where each party only talks to a polylogarithmic number of parties. They proved the
security of their protocol against a fully adaptive adversary by additionally assuming
that each party can securely erase their memory such that by a subsequent corruption,
the adversary would not learn information about with whom they communicated.

Kermarrec, Massoulié, and Ganesh [KMG03] considered the same protocol as us
and proved that it has a connectivity threshold with a logarithmic number of neighbors.
They additionally proved that the protocol remains connected when a fraction of the
nodes are removed (and the parameters are adjusted accordingly). However, contrary
to our work, they did not consider any form of adaptive adversaries.

Differences to original work. Apart from minor differences (such as rephrasings and
correction of typos) between this dissertation’s chapter and [MNT22a], the only change
are:

1. To make the results easy to compare to the results in Chapters 4 and 5, a simplifi-
cation on the asymptotic number of neighbors, possible within the UC framework,
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has not been applied to the presentation of the results. A remark on this has been
added (Remark 3.6.1).

2. An appendix is left out. In this appendix, a proof from [Cha+15] that showed the
Erdős–Rényi graphs had a logarithmic diameter when each node is connected to an
expected poly-logarithmic number of neighbors was replicated to obtain concrete
bounds.

3. A section that concluded on the work has been removed as the contributions have
already been summarized earlier.

1.2.3 Chapter 4 Practical Provably Secure Flooding for Blockchains

This chapter is based almost verbatim on [Liu+22a], which is the full version of the
publication [Liu+22b].

[Liu+22a]: Chen-Da Liu-Zhang, Christian Matt, Ueli Maurer, Guilherme Rito, and
Søren Eller Thomsen. Practical Provably Secure Flooding for Blockchains. Cryp-
tology ePrint Archive, Paper 2022/608. 2022. url: https://eprint.iacr.org/

2022/608.

[Liu+22b]: Chen-Da Liu-Zhang, Christian Matt, Ueli Maurer, Guilherme Rito, and
Søren Eller Thomsen. “Practical Provably Secure Flooding for Blockchains”. In:
ASIACRYPT. vol. 13791. Lecture Notes in Computer Science. Springer, 2022,
pp. 774–805.

Below I will explain the motivation for the project, provide a high-level summary of its
contributions and place it in its immediate context.

Motivation. A key innovation of the Nakamoto era was to design protocols such that no
fraction of parties needed to be trusted but instead relied on a fraction of some underly-
ing resource behaving honestly. However, as summarized in Section 1.1, most protocols
in this era rely on trust in some underlying resources and a functioning multicast net-
work. Until this work, there have been no multicast networks that have been designed
to work based on a resource assumption different from the fraction of parties, and as
a consequence, currently deployed blockchains de facto rely on both an assumption on
the amount of honest stake or computing power and an assumption on a fraction of
parties behaving honestly. The latter is an overly optimistic assumption on the public
internet, as Sybil attacks are cheap and straightforward to deploy. Furthermore, widely
used blockchains have been shown to be vulnerable to such attacks in practice [AZV17;
Hei+15; MHG18; Tra+20].

This work is motivated by remedying this state of affairs such that the security
of blockchains can be guaranteed, assuming only a constant fraction of the resources
behave honestly.

Contributions. In a model where there are n parties, and each party p is assigned a
public fraction of weight α, we propose a new multicast protocol: For some parameter
k, we let each party p forward a received message to k · ⌈αp · n⌉ distinct parties chosen

https://eprint.iacr.org/2022/608
https://eprint.iacr.org/2022/608
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using weighted sampling without replacement and where each party p′ again is weighted
by ⌈αp′ · n⌉.

Despite the protocols simplicity, we prove that it ensures delivery to all parties by
letting k = log(n)+κ

γ by only assuming that a constant fraction γ of the total weight
remains honest. If the delivery latency of the underlying point-to-point channels is
bounded ∆, then the delivery latency of the protocol will be just O(∆ · log(n)) and the
total message complexity will be just O(n · (log(n) + κ)). Additionally, we prove that it
is inherent that “heavy” parties necessarily have to send to many parties, and for this
particular type of protocol, it is necessary to send to at least log(n) neighbors.

As a final contribution, we do probabilistic simulations of our protocol under var-
ious adversarial strategies and weight distributions. Our simulations confirm that our
protocol’s parameters can be instantiated within the practical range for all such config-
urations.

Closely related work. The protocol presented in this work achieves an asymptotic
efficiency similar to [MNT22b]. The main difference between the work is that this work
does not rely on a constant fraction of the parties being honest but instead on a constant
fraction of weight being honest. This work is, however, only proven secure against a
static adversary. We conjecture that the techniques from [MNT22b] can be applied to
achieve such delayed adaptive security, but due to these techniques’ technical overhead,
this has not been done.

Concurrent with and independent of this work, Coretti, Kiayias, Moore, and Russell
[Cor+22] presented a message dissemination protocol tailored for the Ouroboros Praos
protocol [Dav+18], which relies on a constant fraction of the stake to behave honestly.
There is an overlap of ideas between their protocol and ours as they also choose several
connections weighted by the amount of stake each party has. However, instead of
ensuring the delivery of messages to all parties, they allow a small fraction of the stake
to be eclipsed and not receive updates. Because of this, they do custom proofs for the
security of the Ouroboros Praos protocol when deployed together with their protocol.

Differences to the original work. Apart from minor differences (such as rephrasings and
correction of typos) between this dissertation’s chapter and the full version of the pub-
lication [Liu+22a] is that the appendix in [Liu+22a] is blended into the main body and
now refers directly to a lemma in Chapter 3 instead of [MNT22b].

1.2.4 Chapter 5 Asymptotically Optimal Message Dissemination with Applications
to Blockchains

This chapter is based almost verbatim on [LMT22]. This is a full version of an article
that, at the time of writing, is submitted for peer review.

[LMT22]: Chen-Da Liu-Zhang, Christian Matt, and Søren Eller Thomsen. Asymp-
totically Optimal Message Dissemination with Applications to Blockchains. Cryp-
tology ePrint Archive, Paper 2022/1723. 2022. url: https://eprint.iacr.org/
2022/1723.

Below I will explain the motivation for the project, provide a high-level summary of its
contributions, and place it in its immediate academic context.

https://eprint.iacr.org/2022/1723
https://eprint.iacr.org/2022/1723
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Motivation. Because Blockchains protocols rely on multicast networks, any improve-
ment in the delivery latency of a multicast network will directly affect the throughput
of a blockchain built on top. For parties with limited bandwidth, the delivery latency
in a multicast protocol is not only affected by the number of neighbors and the dis-
tance to the party furthest away but also by the actual number of bits that needs to
be transmitted. Chapters 3 and 4 present secure multicast protocols that send a total
of Θ(l · n · (κ + log(n))) when a message of length l is disseminated among n parties
with a security parameter κ. Compared to an optimal message dissemination proto-
col where each party only receives a message once, this means there is an overhead of
Θ(l · (κ+ log(n)) for each party. We seek to reduce this overhead.

Contributions. We present an asymptotically optimal multicast protocol. For n parties
with security parameter κ, and a message of length l = Ω((log(n) + κ) · (log(log(n) +
κ))), each party only needs to communicate transmit just Θ(l) bits. Still, the number
of parties each party needs to communicate with is only Θ(κ + log(n)) (similar to
previous work). We achieve this (optimal) per-party communication and communication
complexity by using erasure-correcting codes to lower the variance of previous multicast
protocols. Using erasure-correcting codes opens the possibility for an adversary to try
to prevent honest parties from reconstructing the original message. We prevent this by
using a cryptographic accumulator for each message.

We do probabilistic simulations of our protocol that show that this is not only a
theoretical improvement over previous protocols but our protocol can cut the total
communication in half compared to the protocol presented in Chapter 4. Additionally,
we show how the techniques from Chapter 4 can be leveraged to, in a black-box fashion,
transform any multicast protocol secure assuming any constant fraction of parties honest
to a protocol secure assuming a constant fraction of the public weights. Using this
transformation, our protocol also applies to the blockchain setting.

Closely related work. Doerr and Fouz [DF11] also seeks to optimize the communication
complexity of “rumor spreading” and achieves asymptotic optimality within their model,
which is slightly different than ours as it proceeds in predefined rounds instead of at the
speed of the underlying network as ours. Contrary to our protocol, the correctness of
their protocol crucially relies on correct feedback from parties on whether or not they
already received the message, which makes it inapplicable to a setting with byzantine
faults.

Rohrer and Tschorsch [RT19] uses similar techniques to ours to design a multicast
network for blockchains. In particular, they also rely on error-correcting codes to in-
crease the robustness of the network. However, contrary to our protocol, their protocol
relies on disseminating the message over a tree structure with less redundancy, which
makes it more vulnerable to adversarial behavior. Additionally, are no proof of the
security of their protocol provided.

Differences to the original work. Apart from minor differences (such as rephrasings and
correction of typos) between this dissertation’s chapter and [LMT22] are:

1. The flooding skeleton for a flooding protocol is not recapped since it appears in
Chapter 4.
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2. A brief outline of the chapter has been added.

3. A section that concluded on the work has been removed as the contributions have
already been summarized earlier.

1.2.5 Other Contributions

Throughout my PhD, I co-authored the following publications/manuscripts that are not
a part of this dissertation.

[GTA19]: Simon Oddershede Gregersen, Søren Eller Thomsen, and Aslan Askarov.
“A Dependently Typed Library for Static Information-Flow Control in Idris”. In:
POST. vol. 11426. Lecture Notes in Computer Science. Springer, 2019, pp. 51–75.

[TS21]: Søren Eller Thomsen and Bas Spitters. “Formalizing Nakamoto-Style Proof
of Stake”. In: Computer Security Foundations. IEEE, 2021, pp. 1–15.

[Kam+22]: Simon Holmgaard Kamp, Jesper Buus Nielsen, Søren Eller Thomsen,
and Daniel Tschudi. Enig: Player Replaceable Finality Layers with Optimal Validity.
Cryptology ePrint Archive, Paper 2022/201. 2022. url: https://eprint.iacr.

org/2022/201.

1.3 General Preliminaries

The individual chapters of the thesis will introduce specific notation used within the
respective chapters. However, this section introduces some basic notation and bounds
used in several parts of the thesis.

Notation. We use the infix notation “:=” for assigning a variable a (new) value, the
infix notation “≜” to emphasize that a concept is being defined formally for the first
time, the infix notation “==” to denote an equality test returning a boolean value, and
the infix notation “::” to denote list-extension. The set of natural numbers is denoted by
N ≜ {0, 1, 2, . . .}, the set of real numbers is represented by R, and the set of non-negative
real numbers is denoted R≥0. We denote the probability of an event E by Pr[E] and

the expected value of a random variable X by E[X]. We will write A
$← D to sample

the value A from the distribution D and use the infix notation ∼ to denote that two
random variables are distributed identically. We will let B(n, ρ) denote the binomial
distribution with parameters n and ρ, and U(A) denote the uniform distribution on a
set A. We denote by log x the natural logarithm of x. In our proofs, we will use the
acronyms LHS and RHS to refer to the left-hand and right-hand sides of an (in)equality.

Negligible and overwhelming functions. When referring to a probability as being negli-
gible in a specific parameter (often the security parameter), we use the standard math-
ematical definition of negligibility. That is, a function f(κ) is negligible in κ if for any
d ∈ N there exists an κ0 s.t. for all κ ≥ κ0 it holds that f(κ) ≤ κ−d. If an expression
contains free variables (such as the number of parties in a protocol), we require the above
to hold independently of these. A function f(κ) is overwhelming in the κ if 1− f(κ) is
negligible in κ.

https://eprint.iacr.org/2022/201
https://eprint.iacr.org/2022/201
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Tail bounds. We record the Chernoff bound, which states that the sum of independent
random variables concentrates around their mean. This bound will be used extensively
throughout the remainder of the dissertation.

Lemma 1.3.1 (Chernoff bound). Let X1, . . . , Xn be independent random variables with
Xi ∈ {0, 1} for all i, and let µ := E

[∑n
i=1Xi

]
. We then have for all δ ∈ [0, 1],

Pr

[
n∑

i=1

Xi ≤ (1− δ)µ

]
≤ e−

δ2µ
2 and Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤ e−

δ2µ
3 .
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2 Weight-Based Nakamoto-Style Blockchains

2.1 Introduction

In classical blockchains such as Nakamoto’s Bitcoin [Nak08], the parties run a distributed
“lottery” to decide who can append the next block to the existing chain. When there
is a lottery winner, a block is produced and disseminated to the other parties, which
will perform a series of checks to guarantee that the block is valid and that the party
that created the block actually won the lottery. If all the checks are correct, the parties
append the new block to their local view of the chain. Classical blockchains (also called
Nakamoto-style, or NSB for short) usually assume the majority of the resources (e.g.,
computational power or stake) to be trusted, from which they can achieve a totally
ordered broadcast.

Bitcoin is an NSB based on proof-of-work (PoW) where a block is only considered
valid and allowed to be appended to the chain if its hash value is below some threshold
value T . The probability of this is proportional to T . The value T is computed in
real-time by the network such that a single valid block is created, on average, every 10
minutes. In a period where T is fixed1 the “best-chain” rule for Bitcoin is determined by
how many blocks are on the chain. Previous analyses of the Bitcoin protocol [GKL15;
GKL17; Niu+19; PSS17; Ren19] show that under certain network assumptions, Bitcoin
satisfies the properties of chain growth, chain quality and common prefix (introduced
by [GKL15]) for some choice of parameters.

The block time of an NSB is the average time between blocks. Existing analyses
use at their core the fact that the block time is longer than the average network delay.
This allows for honest block winners to typically have seen all previous honest blocks
when they add a new block. This allows the longest chain to grow by one block when
there is an honest winner. On the other hand, if blocks are produced faster than they
propagate, then all “bets are off”. Therefore the block time of existing NSB needs
to be set conservatively to some worst-case value. At a conceptual level, our study is
motivated by the simple observation that on existing NSBs, whenever the block time
is fixed to a constant, the protocols do not respond with higher throughput when the
network is, in fact, much faster than the worst case assumed.

At a technical level, our study departs from the observation that not all types of
blocks are equal. For example, in Bitcoin, there are two types of blocks, those above the
threshold T , which do not count at all, and those below T , which count as one block.
However, blocks with a hash below T/m for some integer m have an average block time
about m times as long as blocks with a hash below T . Therefore, one could, for instance,

1 For simplicity, in this work, we only consider the case of fixed participation. We leave the case of
adaptive T as future work.
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consider counting blocks with a hash below T/m with “weight” m or “weight” 2m. That
is, we can consider different weight functions assigning weights to blocks based on their
hash values. This raises the following question:

Can we get better guarantees for NSBs if we assign different weights to the
blocks?

In that vein, we provide a general framework to analyze PoW protocols under differ-
ent weight functions. The main goal of the framework is to provide useful tools where
one can easily explore and analyze the impact of varying weight functions applied to
a Bitcoin-like protocol. As a sanity check, we first instantiate the (standard) Bitcoin
weight function in our framework (Section 2.4.2.1) and show similar bounds as previous
work.

As evidence of the usefulness of our framework in exploring different weight functions,
we show that a large class of weight functions achieves a weak form of “optimistic
responsiveness” (c.f. [PS18b]). In a nutshell, we show that in periods without corruption,
the time it takes for blocks to be in a common prefix only depends on the actual network
delay instead of a known upper bound.

2.1.1 Overview of Our Results

Our contributions are twofold: (1) We provide a general framework for easy exploration
and design of protocols with different weight functions, and (2) we show that there
are weight functions that are strictly better than the traditional longest chain rule of
Bitcoin. We detail our contributions next:

Generic framework. Our framework constitutes the backbone of a PoW blockchain
where its valid block predicate and best-chain rule rely on a weight function that estab-
lishes a numerical value (i.e., weight) to each individual block in the chain. The best
chain at any given time is the chain with more accumulated weight over all its blocks.
We provide general lemmas for several bounds on the produced weight of a PoW pro-
tocol instantiated with any weight function. Furthermore, we derive for any weight
function the concrete bounds needed for the main blockchain properties of growth,
quality, and common prefix to be guaranteed and calculate how these bounds translate
into guarantees for the protocol. The main goal of our generic framework is that any
weight function can be “plugged” into the framework, and the parameters needed for
the desired levels of guarantees can be obtained almost directly. This enables an easy
exploration and design of protocols without needing to redo a series of complex and
potentially error-prone proofs.

Weakly optimistically responsive protocol. We introduce in Section 2.4 the class of T -
capped weight functions, which are monotonically increasing weight functions that are
constant if the input is larger than a threshold T . We show that a PoW blockchain
that employs a particular weight function from such a class achieves chain growth,
chain quality, and common prefix parameters similar to the ones achieved by Bitcoin in
previous works [GKL15; GKL17]. We also note that instantiating a PoW protocol with
a particular T -capped weight function can make it weakly optimistically responsive, i.e.,
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under no corruption, we show common prefix guarantees for the protocol that are based
on the actual network delay, and not on the known upper bound.

Intuitively, a weight function needs to satisfy two properties: First, blocks produced
at a suitable frequency with respect to the actual network delay should get enough
weight to cancel out the weight of blocks produced too fast. Secondly, it should be
difficult for the adversary to create extremely heavy blocks, as these can be used to
cause massive rollbacks and violate common prefix. To satisfy both conditions, we let
the weight functions grow exponentially until they reach a threshold determined by
the known upper bound ∆̂Net on the network delay; above the threshold, the weight
remains constant. The cap ensures the adversary cannot cause rollbacks longer than
this upper bound with a single block. Growing exponentially below the threshold gives
us responsiveness in the all-honest setting: Assume the actual network delay ∆Net is
much lower than the known upper bound ∆̂Net. Blocks produced at the right frequency
with respect to ∆Net are weighted much heavier than more frequent blocks. Thus, the
honest parties essentially build a chain just with these blocks, and the lighter ones are
negligible in comparison. It is not necessary to wait for even heavier blocks up to the
threshold to get the desired properties. Note that this only provides responsiveness
if there are no corrupted parties: A single dishonest party can, with non-negligible
probability, produce a block with maximal possible weight and thus cause a rollback of
honest blocks produced in ∆̂Net time.

While this may seem not particularly useful, the responsiveness can still signif-
icantly improve the throughput of the chain when the protocol is combined with a
finality layer such as Casper the Friendly Finality Gadget [BG17], GRANDPA [SK20],
or Afgjort [Din+20], where blocks are declared as final (and cannot be rolled back) as
soon as they are in the common-prefix of honest users. In that case, the time it takes
for blocks to be in the common prefix in periods without corruption only depends on
the actual network delay, and finalization ensures that all users know which blocks to
trust. We leave it as interesting future work to analyze the feasibility of responsiveness
in the face of active corruption.

Outline of the chapter. In the remainder of this section, we will review some closely
related work. In Section 2.2, we will describe our model, introduce our protocol and
notation for it, and provide bounds on the amount of produced weight. Next, in Sec-
tion 2.2, we provide general lemmas that show for weight functions satisfying certain
bounds; our protocol has both chain growth, chain quality, and the common prefix
property. Finally, in Section 2.4, we instantiate our framework with the class of capped
weight functions and show how Bitcoin is an instance of this class.

2.1.2 Related Work

The first formal analysis of NSB blockchains was given in the seminal paper [GKL15] for
a fixed threshold T , which was later extended to a variable threshold in [GKL17], and to
a different setting with more variable message delivery times, adaptive corruption, and
spawning of new players in [PSS17]. Ren [Ren19] gives a more straightforward analysis
of the standard Bitcoin protocol under the assumption that mining on Bitcoin can be
modeled as a Poisson process.
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Responsiveness was defined by Pass and Shi [PS17b] as the property of a blockchain
that achieves a liveness parameter expressed in terms of the actual network delay, in-
dependent of the conservative upper bound on the network delay used to instantiate
the protocol. They show that a protocol tolerating up to a 1

3 corruption can achieve
responsiveness and that this bound is tight. They later show in [PS18b] that assuming
only an honest majority (and a delay for the corruption of parties), it is possible to
obtain the weaker property of optimistic responsiveness, i.e., responsiveness under some
additional “goodness” condition, while still providing security in the worst case. In par-
ticular, they show responsiveness in the case of more than 3

4 honest computing power
and an additional assumption of an honest accelerator. In [Shr+20], a lower bound is
given for the latency in the optimistic setting of [PS18b] alongside a protocol achieving
this within a constant factor of the actual network delay.

Since [PS18b] and [Shr+20] both require a committee and an accelerator, their
results only hold, assuming considerably delayed corruption, allowing the accelerator to
make progress. On the other hand, our generic weighted protocol can tolerate immediate
adaptive corruptions, as desired in the permissionless setting. However, our result is
weaker with respect to the “goodness” condition since we only achieve responsiveness
in the case of no corruption. Whether one can get responsiveness with non-zero fully
adaptive corruption in the permissionless setting remains an open problem.

The concept of assigning different weights to blocks based on their hash value has
already been considered in the context of proofs of proof of work [KLS16; KMZ17].
However, the purpose there, and consequently the analysis, was completely different:
Heavy blocks are used to link to older blocks in addition to the direct parents to allow
for faster verification of recent transactions without verifying the whole chain.

2.2 Our Generic Framework for Weight-Based Analysis

In this section, we formally describe our generic framework and introduce the concept
of weight functions for PoW blockchains. In Sections 2.2.3 and 2.2.5, we provide generic
definitions and tools that we will use to show the properties of chain growth, chain
quality, and common prefix for PoW blockchains that leverage weight functions (in
Section 2.3). Our analysis builds upon the ideas of previous work [GKL15; Ren19] and
extends those to the more general setting of weighted blocks. We start by describing
the blockchain model that we consider for our framework.

2.2.1 Blockchain Model

Network and time. We assume that time is divided into rounds, which correspond to
the smallest unit of time of interest. We consider a network with bounded delay pa-
rameterized by an upper bound ∆Net on the network delivery time. It allows parties
to multicast messages. That is, any message sent by an honest party in round r is
guaranteed to arrive at all honest parties until round r+∆Net. As in, e.g., [PSS17], we
assume a gossip network, which ensures that all messages (sent by a dishonest sender
and) received by an honest party in round r are received by all honest parties until
round r +∆Net. The adversary can set the actual delay of messages (per message and
party) (within ∆Net). The delay ∆Net is not known to the honest parties. However, we
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assume that honest parties know a rough upper bound ∆̂Net, potentially much larger
than ∆Net, on the network delay.

In Chapters 3 to 5, we discuss how such a network can be efficiently and securely
realized from underlying point-to-point channels. The results in these chapters are
proven assuming only an upper bound on the underlying point-to-point channels, and
therefore only upper bounds are derived for the message propagation delay. However,
the analysis holds for an upper bound on the point-to-point channels throughout the
time it takes to propagate a single message (as the protocols do not depend on timing),
and therefore these realizations of multicast networks will be responsive.

Random oracle. Following [PSS17], we assume every “party” can make at most one
query to a random oracle in each round. The idea is that one round corresponds to the
time it takes to evaluate the hash function on one CPU and is the smallest unit of time
of interest. To model real-world parties with different amounts of computing power, one
can assume that they control different amounts of these “one-query-per-round” parties.
As in [Bad+17; GKL15; PSS17], we allow the corrupted parties to make their queries
sequentially, while honest parties have to make the queries in parallel. We assume the
range of the random oracle to be H := {1, . . . , 2k}.

In the remainder of the chapter, we let q ∈ N denote the number of parties in the
protocol. As each party has one query, this is also the maximum amount of queries that
can be made to the oracle in each round.

Corruptions. We allow the adversary to adaptively corrupt up to a β < 1
2 fraction

of all parties before each round. Newly corrupted parties are then entirely under the
adversary’s control from that round on. We denote by α := 1− β the minimal fraction
of participating parties that are honest at any time. Note that by our definition of
the random oracle, there can be at most qβ random-oracle queries by corrupted parties
in each round, and there are at least qα queries by honest parties in each round (since
honest parties in our protocol query the random oracle in each round, c.f. Section 2.2.2).
We will thus, for most of the chapter, only consider these upper and lower bounds on
the numbers of dishonest and honest queries and not explicitly map these to parties.

2.2.2 Blockchain Protocol

Our protocol is similar to Bitcoin [Nak08], and the following description assumes at
least some basic prior knowledge of the Bitcoin protocol. However, we deviate from
the original Bitcoin protocol in two crucial aspects; we change the best chain rule and
the valid block predicate. While the valid block predicate is used to decide what blocks
should be considered valid, the best chain rule decides where parties need to append
new blocks. Our notation follows the one from [GKL15] closely.

Mining. As in Bitcoin, miners in our protocol continuously take what they currently
consider the best chain and try to extend it with a new block. The proof of work aspect
corresponds to miners finding an input to a hash function with certain properties. In the
Bitcoin protocol, a valid block must satisfy (among other things) that its hash is smaller
than some threshold T . The challenge of finding a nonce that makes the block hash small
enough is what makes Bitcoin a proof-of-work blockchain. Therefore, the threshold T is
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adjusted such that the block-production rate is approximately constant. The constant
is chosen as a trade-off between performance and security. The block validity predicate
of Bitcoin thus consists of checking the block hash along with some (for our purposes
unimportant) syntactic well-formedness conditions on the block and its contents. In our
protocol, blocks are considered valid independent of their hash value. Instead, the hash
of a block determines how much the block weighs when selecting the best chain. To
avoid having many low-weight blocks swarm the network, we can use a cutoff. However,
since it does not impact the protocol’s security but is merely a parameter that can be
optimized for throughput, we will ignore it in this work.

We define the round in which a block was mined to be the round in which the
corresponding query to the random oracle was made.

Best chain. In Bitcoin (with fixed difficulty), the length of the chain is what decides
how “good” a chain is [GKL15; Nak08]. Thus, in Bitcoin, chains with more blocks are
considered better.2 In our protocol, we use a best chain rule based on the accumulated
weight of the blocks in a chain, i.e., the heavier a chain is, the better, as in bitcoin with
variable difficulty [GKL17].

No insertions, copies, and predictions. To simplify our analysis and following [GKL15],
we assume throughout the chapter that it never happens that a new block is added
between two existing blocks (insertion), the same block occurs in two different positions
(copy), or a block extends a block that is mined in a later round (prediction). As shown
in [GKL15], insertions and copies can only occur if there is a collision in the random
oracle linking blocks together, which has a negligible probability, and the probability of
guessing a block is negligible as well.

2.2.3 Basic Definitions

In this section, we first present some basic definitions for the weight of a chain and the
weight of a block. Then we present a categorization for certain good events which are
essential for the analysis, and finally, we introduce the notation for upper and lower
bounds on the weight produced.

2.2.3.1 Weight

We define the chain of a block B denoted Chain(B) to be the list of all blocks one gets
by following the pointers in the chain from B up to the genesis block. We next define
the concept of weight for blocks and chains.

Definition 2.2.1 (Weight functions, weight of blocks and chains). We define a weight
function as a function of type H → R≥0. Let w be a weight function. We then define
the weight of a block B to be Weightw(B) ≜ w(Hash(B)), and the weight of a chain C
to be Weightw(C) ≜

∑
B∈C Weightw(B) .

Next, we define the weight range, which is analogous to the depth of a block in
Bitcoin.

2The actual best-chain rule is augmented with (for security, an insignificant) tie-breaking rule.
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Definition 2.2.2 (Weight range). Given a weight function w, we define the start weight
of a block B to be

StartWeightw(B) ≜ Weightw(Chain(B))−Weightw(B)

and the end weight to be

EndWeightw(B) ≜ Weightw(Chain(B)).

We also define the weight range of a block B to be

WeightRangew(B) ≜ (StartWeightw(B),EndWeightw(B)].

Consequently,
|WeightRangew(B)| = Weightw(B).

2.2.3.2 Good Events

Previous analyses [GKL15; Niu+19; PSS17; Ren19] are based on the fact that in a
certain amount of rounds, a block is produced that has enough time to propagate to
all honest parties before a new block is mined. Ren [Ren19] takes a slightly different
approach and defines this in terms of blocks rather than rounds. More concretely, he
defines a “non-tailgater” as an honest block mined at time t such that no other honest
block is mined between time t−∆Net and t. We believe this is closer to the intuition for
the proof, namely that once in a while, an honest party mines a block that has enough
time to propagate. In his analysis, mining is assumed to be a Poisson process; therefore,
no mining events occur simultaneously with positive probability. In our model, however,
several blocks can be mined in the same round. If several blocks are mined in a round
after ∆Net empty rounds, we can count one of them as a “good” block.

To leverage this in the analysis, we introduce an order in the mined blocks that we
call “proof-order”. With the order fixed, one can choose, e.g., the first of these blocks
as the “good” block.3 More formally, we introduce an arbitrary but fixed total order
on all blocks produced in the protocol. We order blocks lexicographically first based
on the production round (i.e., the round the block was created) and secondly on the
party that made the query to the random oracle. Note that the production time of a
block is well-defined, even for adversarial blocks, as they also need to query the random
oracle in some rounds. We stress that this enumeration and induced order of blocks is
completely unrelated to the total order of blocks that the protocol achieves and is only
needed as an artifact of our proofs. We will refer to the above as the proof-order to
avoid confusion.

We now use this order on blocks to precisely categorize certain “good” events (blocks
mined with sufficient time between them). We further generalize previous notions to
our setting with different weights, i.e., instead of requiring that no blocks are mined
within a propagation period, we only need that no blocks above a certain threshold are
mined within this period.

3The proof-order could be defined to take the block with maximal weight in each round instead of
ordering them by the parties. This would give a slightly tighter analysis as there would be slightly more
“good” weight. For simplicity, we have chosen not to take this approach.
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Definition 2.2.3 (h-(left-)isolation). Let h ∈ H, and let B be a block mined in
round r ∈ N. We say B is h-left-isolated if B is honest, Hash(B) > h, and there is
no block left of B in the proof-order with hash above h mined in rounds [r−∆Net, r]. If
B is honest, Hash(B) > h, and no other blocks with hash above h are mined in rounds
[r −∆Net, r +∆Net], we say B is h-isolated.

Note that we define h-(left-)isolation with respect to the unknown upper bound
∆Net on the network delay, not on the known bound ∆̂Net.

Remark 2.2.1. Similar notions have been defined in previous work [GKL15; Niu+19;
PSS17; Ren19]. We deviate from these definitions by defining (resp. left-) isolation to
require that no blocks are mined on either side (resp. to the left) of a block, whereas ear-
lier work had the requirement that no other honest block was mined within that period.
We use the stricter definition because it simplifies some of the arguments (especially
with respect to adaptive corruptions). Only considering honest blocks may potentially
allow proving tighter bounds, though. Note that we define the round in which a block
was mined to be the round in which the corresponding query to the random oracle was
made, so this is also well-defined for corrupted parties, who may send their block in a
later round.

Left-isolated blocks are called “non-tailgaters” and isolated blocks are called “lon-
ers” by Ren [Ren19]. Analogous notions to that of a round with a left-isolated block
have in previous work been called an “effective-round” [Niu+19] and “isolated successful
round” [GKL15]. The event of an isolated block has in previous work been called “con-
vergence opportunity” [PSS17], “uniquely effective round” [Niu+19] and an “uniquely
isolated successful round” [GKL15]. We chose the terms “left-isolated” and “isolated”
as we believe them to be more intuitive.

2.2.4 Bounds on Produced Weight

We now introduce definitions for weight functions describing different bounds on the
weight that can be produced with a specific weight function. We start with the upper
bounds on how much weight a certain number of queries can produce. We will later use
this fact to reason about how much weight any adversary can produce.

We say a weight function is
(
Ŵg, p̂g

)
-upper-bounding for some parameter g ≤ q if the

weight of all blocks mined in r rounds (for all r ∈ N) with at most g queries (honest or
dishonest) per round is at most Ŵg(r), except with probability p̂g(r). Similarly, we intro-
duce

(
Ŵ≤h0

g , p̂≤h0
g

)
-below-threshold-upper-bounding to bound the weight produced by

blocks with hash value at most h0, and
(
Ŵ>h0

g , p̂>h0
g

)
-above-threshold-upper-bounding

to bound the weight produced by blocks with hash value more than h0.

Definition 2.2.4. Let w be a weight function, let g ∈ N, h0 ∈ H, let Ŵg,Ŵ
≤h0
g ,

Ŵ>h0
g : N→ R, and let p̂g, p̂

≤h0
g , p̂>h0

g : N→ [0, 1] be monotonically decreasing. Further,
let Wg,r for r ∈ N be the random variable corresponding to the total weight of all blocks
weighted with w mined in r consecutive rounds with at most g queries in each round,
and similarly, W≤h0

g,r (W>h0
g,r ) for r ∈ N be the random variable corresponding to the

total weight of all blocks with hash value at most h0 (more than h0) weighted with
w mined in r consecutive rounds with at most g queries in each round. We say w is
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(
Ŵg, p̂g

)
-upper-bounding if for all r ∈ N,

Pr
[
Wg,r ≥ Ŵg(r)

]
≤ p̂g(r),

w is
(
Ŵ≤h0

g , p̂≤h0
g

)
-below-threshold-upper-bounding if for all r ∈ N,

Pr
[
W≤h0

g,r ≥ Ŵ≤h0
g (r)

]
≤ p̂≤h0

g (r),

and w is
(
Ŵ>h0

g , p̂>h0
g

)
-above-threshold-upper-bounding if for all r ∈ N,

Pr
[
W>h0

g,r ≥ Ŵ>h0
g (r)

]
≤ p̂>h0

g (r).

Next, we introduce the definition for lower bounds on the amount of (left-) isolated
weight, i.e., on how much weight is produced by honest parties with sufficient time
in between. By our definition of (left-)isolated blocks, only honest blocks can be left-
isolated. We, therefore, do not use a parameter g here but always consider q queries in
each round in total, with at least qα queries from honest parties. We introduce the no-

tion of a
(
W̌Isoh , p̌Isoh

)
-isolated-lower-bounding weight function. It means that the total

weight of all h-isolated blocks mined in r consecutive rounds is at least W̌Isoh(r), ex-
cept with probability p̌Isoh(r). Left-isolated-lower-bounding weight functions are defined
analogously.

Definition 2.2.5. Let w be a weight function, and let h0 ∈ H, W̌Isoh0 , W̌LeftIsoh0 : N→
R, and let p̌Isoh0 , p̌LeftIsoh0 : N→ [0, 1] be monotonically decreasing. Further let Wr,Isoh0

for r ∈ N be the random variable corresponding to the total weight of all h-isolated
blocks weighted with w mined in r consecutive rounds, and let Wr,LeftIsoh0 for r ∈ N
be the random variable corresponding to the total weight of all h-left-isolated blocks

weighted with w mined in r consecutive rounds. We say w is
(
W̌Isoh0 , p̌Isoh0

)
-isolated-

lower-bounding if for all r ∈ N,

Pr
[
Wr,Isoh0 ≤ W̌Isoh0 (r)

]
≤ p̌Isoh0 (r),

and w is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding if for all r ∈ N,

Pr
[
Wr,LeftIsoh0 ≤ W̌LeftIsoh0 (r)

]
≤ p̌LeftIsoh0 (r).

2.2.5 Proving Bounds from Properties of the Weight Functions

In this section, we show how to derive some of the thresholds defined in Section 2.2.4.

Notation. In the remainder of the chapter we define p≤h0
:= h0

2k
to be the

probability that a single random oracle query returns a value at most h0, and
wmax≤h0

:= maxh∈{1,...,h0} w(h), wmax>h0
:= maxh∈{h0+1,...,2k} w(h), and wmin>h0

:=
minh∈{h0+1,...,2k} w(h) (for the weight function that is clear from the context).

First, we provide a simple upper-bound for the total weight above and below a
threshold.
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Lemma 2.2.6 (Weight above and below a threshold). Let w be a weight function, let
g ∈ N, and h0 ∈ H. Then, for all δ ∈ (0, 1), w is

(i)
(
Ŵ≤h0

g , p̂≤h0
g

)
-below-threshold-upper-bounding with

Ŵ≤h0
g = wmax≤h0 · (1 + δ) · g · r · p≤h0 , p̂≤h0

g = e−
δ2·g·r·p≤h0

3 ,

(ii) and
(
Ŵ>h0

g , p̂>h0
g

)
-above-threshold-upper-bounding with

Ŵ>h
g (r) = wmax>h0 · (1 + δ) · g · r · (1− p≤h0), p̂>h

g (r) = e−
δ2·g·r·(1−p≤h0

)

3 .

Proof. The probability to get a block below a threshold in just one query is p≤h0 and
above a threshold is 1 − p≤h0 . The amount of blocks below/above a threshold can be
upper bounded with Chernoff (Lemma 1.3.1). Each block below contributes with weight
at most wmax≤h0 , and blocks above with weight at most wmax>h0 .

We next prove bounds on the number of (left-)isolated blocks and afterward use this
for a simple bound on the amount of (left-)isolated weight. The proof follows some ideas
from Ren [Ren19]. At a very high level, we proceed by first applying the Chernoff bound
to obtain a bound on the number of blocks with hash above h0, and then using Chernoff
again to bound how many of these blocks are (left-)isolated. The main difficulty lies in
proving the independence of the involved variables as needed for the Chernoff bound.

Lemma 2.2.7 (Amount of (left-)isolated blocks). Let r be a number of consecutive
rounds, let h0 ∈ H, let Nr,LeftIsoh0 denote the number of h0-left-isolated blocks produced,
and let Nr,Isoh0 denote the number of h0-isolated blocks produced during these r rounds.
We then have for any δ ∈ (0, 1),

Pr
[
Nr,LeftIsoh0 ≤ (1− δ) · αqr · (1− p≤h0) · p

q∆Net

≤h0

]
≤ 2e−

δ2·αqr·(1−p≤h0)·p
q∆Net
≤h0

16 , (2.1)

Pr
[
Nr,Isoh0 ≤ (1− δ) · αqr · (1− p≤h0) · p

2·q∆Net

≤h0

]
≤ 3e−

δ2·αqr·(1−p≤h0)·p
2q∆Net
≤h0

108 . (2.2)

Proof. To prove the lemma, we start by lower-bounding the amount of left-isolated
blocks within any sequence of consecutive honest blocks. For any n, we look at the first
(according to the proof-order) n honest blocks with a hash above h0 produced since
the start of the r considered rounds. The probability that block i is left-isolated is
given by the probability that all of the blocks in ∆Net time before and to the left (with
respect to the proof-order) of the block in the same round do not result in a winning
event with hardness above h0. In the worst case, the considered block is the last one
in its round, i.e., there are q − 1 to the left of block i in that round. Hence, there are
at most q · (∆Net − 1) + (q − 1) queries to be considered. Note that if the corrupted
parties make fewer queries, this can only increase the probability of left-isolated blocks.
The probability that block i is left-isolated is thus at least the probability that all these
queries result in a hash value at most h0. We define Yi = 1 if the ith honest block is
h0-left-isolated. Then,

Pr[Yi = 1] ≥ p
q·(∆Net−1)+(q−1)
≤h0

≥ pq∆Net

≤h0
. (2.3)
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We further define NLeftIsoh0 (n) :=
∑n

i=1 Yi, i.e., the number of left isolated blocks of the
n honest blocks above h0. The above implies

E
[
NLeftIsoh0 (n)

]
≥ n · pq∆Net

≤h0
. (2.4)

Note that Yi = 1 if and only if the inter-arrival time between the (i− 1)th and the ith
honest block with hash above h0 is at least q ·(∆Net−1)+(q−1).4 Since the inter-arrival
times of independent Bernoulli trials are independent, the Yi are also independent. We
can therefore use the Chernoff bound (Lemma 1.3.1) for δ1 ∈ (0, 1) to obtain

Pr
[
NLeftIsoh0 (n) ≤ (1− δ1) · n · pq∆Net

≤h0

]
≤ e−

δ21 ·n·p
q∆Net
≤h0
2 . (2.5)

We now bound the number of honest blocks with hash above h0 produced during the
R considered rounds. Let Xi = 1 if the i’th honest query results in a hash above h0. We
note that Pr[Xi = 1] = 1− p≤h0 . Let Nαqr,>h0

:=
∑αqr

i=1Xi and note that E[Nαqr,>h0 ] ≥
αqr · (1− p≤h0) as αqr is a lower bound on the amount of honest queries. The Chernoff
bound (Lemma 1.3.1) for δ2 ∈ (0, 1) then implies

Pr
[
Nαqr,>h0 ≤ (1− δ2) · αqr · (1− p≤h0)

]
≤ e−

δ22αqr·(1−p≤h0)
2 . (2.6)

Note that Nr,LeftIsoh0 = NLeftIsoh0 (Nαqr,>h0). We set δ1 := δ2 := δ
2 . We then have

δ1, δ2 ∈ (0, 1) and (1 − δ1)(1 − δ2) ≥ (1 − δ). Together with Equations (2.5) and (2.6),
and using that Nαqr,>h0 ∈ N, we can conclude that

Pr
[
Nr,LeftIsoh0 ≤ (1− δ) · αqr · (1− p≤h0) · p

q∆Net

≤h0

]
≤ e−

δ2·αqr·(1−p≤h0)
8 + e−

δ2·(1−δ2)·αqr·(1−p≤h0)·p
q∆Net
≤h0

8

≤ 2e−
δ2·αqr·(1−p≤h0)·p

q∆Net
≤h0

16 ,

(2.7)

where we used 1 − δ2 = 1 − δ
2 ≥

1
2 in the last step. This concludes the proof of

Equation (2.1).
To prove Equation (2.2), we again first bound how many isolated blocks we get

within a sequence of n blocks. As above, we use the proof order to enumerate the first n
honest blocks since the start of the R considered rounds with hash above h0. We define
Zi = 1 if the ith block is h0-isolated, and Zi = 0 otherwise. We note that Zi = Yi · Yi+1

as i+1 is the winning event that happened the shortest time after i, and there are more
than ∆Net rounds between these if and only if the latter is left-isolated. Since Yi and
Yi+1 are independent, we have

Pr[Zi = 1] = Pr[Yi = 1 ∧ Yi+1 = 1] = Pr[Yi = 1] · Pr[Yi+1 = 1] ≥ p2·q∆Net

≤h0
. (2.8)

Note that Zi and Zi+1 are not independent since they both depend on Yi+1, but
Zi and Zi+2 are independent. We therefore write NIsoh0 (n) =

∑
i∈{1,...,n}∧Odd(i) Zi +

4We are slightly abusing notation since for i = 1, the (i− 1)th block is not part of the n considered
blocks, but last the honest block with hash above h0 before Y1. Note that if such (i − 1)th block does
not exist in the chain, Yi = 1 with probability 1, and therefore Yi and the other Yj are independent.
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∑
i∈{1,...,n}∧Even(i) Zi. Let NOdd(n) be the number of odd i ∈ {1, . . . , n}, and let NEven(n)

be the number of even i ∈ {1, . . . , n}. Since E
[∑

i∈{1,...,n}∧Odd(i) Zi

]
≥ NOdd · p2·q∆Net

≤h0
,

we can apply the Chernoff bound (Lemma 1.3.1) for δ3 ∈ (0, 1) to obtain

Pr

 ∑
i∈{1,...,n}∧Odd(i)

Zi ≤ (1− δ3)NOdd(n) · p2·q∆Net

≤h0

 ≤ e−
δ23 ·NOdd(n)·p

2·q∆Net
≤h0

2 .

We can also apply the Chernoff bound for δ4 ∈ (0, 1) to the even case and together with
the above obtain

Pr
[
NIsoh0 (n) ≤ ((1− δ3)NOdd(n) + (1− δ4)NEven(n)) · p2·q∆Net

≤h0

]
≤ e−

δ23 ·NOdd(n)·p
2·q∆Net
≤h0

2 + e−
δ24 ·NEven(n)·p

2·q∆Net
≤h0

2 . (2.9)

Let δ4 = δ3 and note that if n is even then NOdd(n) = NEven(n) =
n
2 and we obtain

Pr
[
NIsoh0 (n) ≤ (1− δ3) · n · p2·q∆Net

≤h0

]
≤ 2e−

δ23 ·n·p
2·q∆Net
≤h0
4 . (2.10)

Note that Nr,Isoh0 = NIsoh0 (Nαqr,>h0), and by Equation (2.6), we have Nαqr,>h0 >

(1 − δ2) · αqr · (1 − p≤h0) except with small probability. There exists δ2 ∈
(
δ
3 ,

2δ
3

)
such

that (1− δ2) · αqr · (1− p≤h0) is even if(
1− δ

3

)
· αqr · (1− p≤h0)−

(
1− 2δ

3

)
· αqr · (1− p≤h0) > 2

⇐⇒ δ

3
· αqr · (1− p≤h0) > 2

⇐⇒ αqr >
6

δ · (1− p≤h0)
. (2.11)

First assume that Equation (2.11) is satisfied. We then pick δ2 ∈
(
δ
3 ,

2δ
3

)
accordingly

and δ3 := δ − δ2. We have

(1− δ2) · (1− δ3) = 1− δ + δ2δ − δ22 ≥ 1− δ. (2.12)

Note that we further have δ3 ∈
(
δ
3 ,

2δ
3

)
. Together with Equations (2.6) and (2.10) and

using that 1− δ2 ≥ 1
3 and δ22 , δ

2
3 ≥ δ2

9 , we can conclude that

Pr
[
Nr,Isoh0 ≤ (1− δ) · αqr · (1− p≤h0) · p

2·q∆Net

≤h0

]
≤ e−

δ22αqr·(1−p≤h0)
2 + 2e−

δ23 ·(1−δ2)·αqr·(1−p≤h0)·p
2·q∆Net
≤h0

4

≤ 3e−
δ2·αqr·(1−p≤h0)·p

2·q∆Net
≤h0

108 .

(2.13)

We finally consider the case where Equation (2.11) is not satisfied. Then αqr ≤
6

δ·(1−p≤h0
) , which implies that

3e−
δ2·αqr·(1−p≤h0)·p

2·q∆Net
≤h0

108 ≥ 3

e
≥ 1. (2.14)

In this case, Equation (2.2) is therefore trivially satisfied.
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Lemma 2.2.8. Let w be a weight function and h0 ∈ H. Then, for all δ ∈ (0, 1),

(i) w is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding with

W̌LeftIsoh(r) = wmin>h0 · (1− δ) · αqr · (1− p≤h0) · (p≤h0)
q∆Net ,

p̌LeftIsoh(r) = 2e−
δ2·αqr·(1−p≤h0

)·(p≤h0
)q∆Net

16 ,

(ii) and w is
(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding with

W̌Isoh(r) = wmin>h0 · (1− δ) · αqr · (1− p≤h0) · (p≤h0)
2q∆Net ,

p̌Isoh(r) = 3 · e−
δ2·αqr·(1−p≤h0

)·(p≤h0
)2q∆Net

108 .

Proof. Each (left-)isolated block contributes at least wmin>h0 weight. Hence, the bounds
on the amount of (left-)isolated blocks from Lemma 2.2.7 directly imply the lower bounds
on (left-)isolated weight.

2.3 Proving Chain Properties

In this section, we prove the standard properties of chain growth, chain quality, and
common prefix for our generic framework by only assuming bounds on the produced
weight, as introduced in Section 2.2. We consider a fixed weight function w for the
entire section, so we leave it out of the notations.

We warm up with some fundamental lemmas that will be used as building blocks
when proving the more complex theorems of the chain properties. The following lemma
is a generalization of Lemma 5 (i) in [Ren19]. It intuitively says that if we only consider
blocks above a specific hash, and enough time has passed since an honest block was
mined, then a new honest block will have a different position in the chain than the
previous block.

Lemma 2.3.1. Let h ∈ H and let B ̸= B′ be h-left-isolated blocks. Then, B and B′

have disjoint weight ranges.

Proof. Without loss of generality, we assume that B is mined first. The party P ′

who mines B′ receives B within ∆Net rounds, which is by definition of h-left-isolation
before B′ is mined. After receiving B, P ′ only extends chains with weight at least
EndWeight(B). Hence, EndWeight(B) ≤ StartWeight(B′), and thus, WeightRange(B) ∩
WeightRange(B′) = ∅.

The following lemma is a generalization of Lemma 5 (ii) in [Ren19]. The lemma
says that if we only consider honest blocks above a specific hash, then if such a block
has had enough time to propagate before the next block is produced and no other block
was mined in a period before, then this block will not share a position in the chain with
any other block.

Lemma 2.3.2. Let h ∈ H and let B be a h-isolated block. Further let B′ ̸= B be an
honest block with Hash(B′) > h. Then, B and B′ have disjoint weight ranges.
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Proof. Let B0 ∈ {B,B′} be the block that is mined first. By definition of h-isolation,
the other block is mined more than ∆Net rounds later. As in the proof of Lemma 2.3.1,
we can thus conclude that the party mining the second block knows B0 beforehand and
thus extends a chain with weight at least EndWeight(B0). Hence, WeightRange(B) ∩
WeightRange(B′) = ∅.

2.3.1 Chain Growth

The chain growth property intuitively says that a chain will increase its weight by at
least a fixed bound at every round. We give a formal definition of our weight-based
chain growth property next.

Definition 2.3.3 (Chain Growth). Let w be a weight function. The chain growth
property with parameters ρ ∈ N and τ ∈ R, states that for any honest party P that has
a chain C1, it holds that after any ρ consecutive rounds P adopts a chain C2 such that
Weight(C2) ≥Weight(C1) + (ρ · τ) for τ > 0.

Next, we show that the accumulated weight of the chain grows at least by the
accumulated weight of the left-isolated blocks at each round and therefore satisfies the
property of Definition 2.3.3. We show a slightly more general version of chain growth,
which is helpful for later proving chain quality.

Theorem 2.3.4 (Chain Growth). Let C1 be the best chain of P1 in round r1 and let C2

be the best chain of P2 in round r2, where r1 ≤ r2 − 2∆Net + 1. For any h0 ∈ H such

that the weight function is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding, we have

Pr
[
Weight(C2) < Weight(C1) + W̌LeftIsoh0 (r2 − r1 − 2∆Net + 1)

]
≤ p̌LeftIsoh0 (r2 − r1 − 2∆Net + 1).

Proof. Let Bh0
li be the set of all h0-left-isolated blocks mined in [r1 +∆Net, r2 −∆Net].

Any block seen by P1 in round r1, will be seen by any honest party until round r1+∆Net.
This is specifically true for all blocks in C1 and thus, StartWeight(B) ≥ EndWeight(C1)
for all B ∈ Bh0

li . Moreover, all blocks in Bh0
li have disjoint weight ranges by Lemma 2.3.1.

As all these blocks had enough time to propagate to P2 in round r2, P2 will have at
least one chain C ′

2 with Weight(C ′
2) ≥ Weight(C1) +

∑
B∈Bh0

li

Weight(B). Note that

Weight(C2) ≥Weight(C ′
2) as C2 is P2’s best chain in round r2 and

∑
B∈Bh0

li

Weight(B) ≥
W̌LeftIsoh0 (r2−r1−2∆Net+1) except with probability p̌LeftIsoh0 (r2−r1−2∆Net+1).

When this theorem is instantiated with P1 = P2, we obtain chain growth for ρ >

2∆Net and τ =
W̌

LeftIsoh0
(ρ−2∆Net)

ρ except with probability p̌LeftIsoh0 (ρ− 2∆Net).

2.3.2 Chain Quality

The chain quality property intuitively says that within any consecutive chunk of blocks
of an honest party’s chain, at least a ratio of the blocks was produced by honest parties.
We give a formal definition next.
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Definition 2.3.5 (Chain Quality). The chain quality property with parameters Λ ∈ R
and µ ∈ R states that for any honest party P that has a chain C as their best chain, it
holds that for any sequence of consecutive blocks with a weight range of size at least Λ
in C, it holds that the ratio of honest weight is at least µ.

We believe it is more intuitive to reason about the chain quality property in terms
of elapsed time instead of weight. Hence, we present our results for a “timed” version of
the chain quality property,5 which intuitively ensures that a fraction of honest weight
is contained in a sequence of blocks mined within some period.

Theorem 2.3.6 (Chain quality). Let P be an honest party with best chain C =
B1B2 . . . Bn and let R = Bi . . . Bj be any consecutive list of blocks in C with 1 ≤ i <
j ≤ n where block Bi was mined in round ri, Bj in round rj, and rj − ri ≥ 2∆Net.

Further let h0 ∈ H and X ∈ R such that the weight function is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-

left-isolated-lower-bounding and
(
Ŵqβ, p̂qβ

)
-upper-bounding such that for any ρ ≥ rj−ri,

we have W̌LeftIsoh0 (ρ− 2∆Net+1) ≥ Ŵqβ(ρ)+X. Finally let pbad be the probability that
the fraction of honest weight in R is less than X

Weight(R) . Then,

pbad ≤ p̌LeftIsoh0 (rj − ri − 2∆Net + 1) + p̂qβ(rj − ri).

Proof. Let ı̂ be the largest value such that ı̂ ≤ i and Bı̂ was mined by an honest party6.
This is well defined as the genesis block B1 is honest by definition. Let ȷ̂ be the smallest
value such that ȷ̂ ≥ j and there exists a round such that an honest player had that
B1 . . . Bȷ̂ was his best chain. Now let rı̂ be the round that Bı̂ was created and let rȷ̂
be the first round that an honest player had B1 . . . Bȷ̂ as his best chain. This is well
defined as Bn is actually the head of the best chain of an honest party.

Note that in round rı̂ was B1 . . . Bı̂ actually the best chain of the honest party who
baked this block. By Theorem 2.3.4 do we thus know that

Pr
[
Weightw(Bı̂ . . . Bȷ̂) < W̌LeftIsoh0 (rȷ̂ − rı̂ − 2∆Net + 1)

]
≤

p̌LeftIsoh0 (rȷ̂ − ri − 2∆Net + 1),
(2.15)

as B1 . . . Bȷ̂ could otherwise not be the best chain of any honest party in round rȷ̂. On
the other hand is the probability that the adversary him self have been able to generate
more than Ŵqβ(rȷ̂ − rı̂) weight less than p̂qβ(rȷ̂ − rı̂). As ı̂ < i and ȷ̂ < j implies that
Bı̂+1 . . . Bi and Bj . . . Bı̂ are all dishonest blocks, does this imply that at least X honest
weight will be in R unless with probability p̌LeftIsoh0 (rȷ̂−rı̂−2∆Net+1)+p̂qβ(rȷ̂−rı̂). The
statement now follows from the fact that the probability functions are monotonically
decreasing and that rȷ̂ − rı̂ ≥ rj − ri.

Next, we state the weighted chain quality theorem. We use Theorem 2.3.6 together
with the fact that the amount of weight produced during a period is bounded; moreover,
we use the collective mining rate to do this mapping, which is by no means a tight bound.

5We omit the formal definition here as it can be easily derived from Definition 2.3.5.
6Note that instead of defining ı̂ such that Bı̂ is an honest block it could also have been defined as

the largest index less than i such that there existed an honest party that had Bı̂ as the head of his best
chain. Even though that this does gives an ı̂ “closer” to i, this does not increase our bounds.
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Corollary 2.3.7 (Weighted chain quality). Let P be an honest party, let R be any
consecutive list of blocks from the best chain of this party, and let ρ ∈ N, ρ ≥ 2∆Net

be the largest value such that Ŵq(ρ) ≤ Weight(R). Further, let h0 ∈ H and X ∈ R
such that the weight function is

(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding and(

Ŵqβ, p̂qβ
)
-upper-bounding such that for any ρ′ ≥ ρ, we have W̌LeftIsoh0 (ρ

′−2∆Net+1) ≥
Ŵqβ(ρ

′) +X. Let pbad be the probability that the fraction of honest weight in R is less
than X

Weight(R) . Then,

pbad ≤ p̌LeftIsoh0 (ρ− 2∆Net + 1) + p̂qβ(ρ) + p̂q(ρ).

Proof. By our assumption on the weight function, it took at least ρ rounds to produce
R, except with probability p̂q(ρ). We can thus apply Theorem 2.3.6 to conclude the
proof of the theorem.

2.3.3 Common Prefix

The common prefix property is arguably the most important property of blockchains.
It informally says that the chains of honest parties are always a common prefix of each
other after removing some blocks on the chain. Next, we define our two variants of the
common prefix property. The first variant is with respect to the absolute number of
rounds, which states that for any pair of honest parties that adopted chains at different
rounds, the oldest chain is a prefix of the most recent chain. The second variant is
analogous but concerning the accumulated weight.

Definition 2.3.8 (Pruning). Let C be a chain, w ∈ R be a weight, and let r ∈ N be

a round. We define C
W⌈w to be the longest prefix of C such that Weight

(
C

W⌈w) ≤
Weight(C)−w, i.e., blocks with total weight at least w are removed from the end of C.

We further define C
R>⌈r to be the chain containing all blocks from C that were mined

until round r, i.e., all blocks mined after round r are removed from C.

Definition 2.3.9 (Common Prefix). For parameter ρ ∈ N, let C1 be the best chain of
honest party P1 in round r1, and let C2 be the best chain of honest party P2 in round r2
for r1 ≤ r2. The common-prefix property says that C1

R>⌈r1−ρ ⪯ C2.

Definition 2.3.10 (Weighted Common Prefix). For parameter ω ∈ R, let C1 be the
best chain of honest party P1 in round r1, and let C2 be the best chain of honest party
P2 in round r2 for r1 ≤ r2. Then, C1

W⌈ω ⪯ C2.

Similarly to [GKL15], we prove our common prefix property in two steps. First, in
Lemma 2.3.11, we show a weaker version of the property that says that the best chain
of any pair of honest players at the same round must be a prefix of each other. Then,
in Theorem 2.3.12, we prove Definition 2.3.9 by extending the proof to capture the case
where the honest parties might be at different rounds.

Lemma 2.3.11 (Common-prefix lemma). Let r be some round and let P1 be some
honest party with best chain C1 in round r. Let pbad be the probability that there is
some chain C2 such that all blocks on C2 have been mined until round r, Weight(C2) ≥
Weight(C1), and the deepest honest common block B̂0 in C1 and C2 is mined in some
round r0 ≤ r − 2∆Net + 1. We then have the following two properties.
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(i) For all h0 ∈ H such that the weight function is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-

lower-bounding and
(
Ŵq, p̂q

)
-upper-bounding with

2 · W̌LeftIsoh0 (r − r0 − 2∆Net + 1) ≥ Ŵq(r − r0),

we have
pbad ≤ p̌LeftIsoh0 (r − r0 − 2∆Net + 1) + p̂q(r − r0).

(ii) For all h0 ∈ H such that the weight function is
(
Ŵ≤h0

q , p̂≤h0
q

)
-below-threshold-

upper-bounding,
(
Ŵ>h0

qβ , p̂>h0
qβ

)
-upper-bounding, and

(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-

bounding with

W̌Isoh0 (r − r0 − 2∆Net + 1) ≥ Ŵ≤h0
q (r − r0) + Ŵ>h0

qβ (r − r0),

we have

pbad ≤ p̌Isoh0 (r − r0 − 2∆Net + 1) + p̂≤h0
q (r − r0) + p̂>h0

qβ (r − r0).

Proof. Assume a chain C2 as described exists and let B0 be the deepest common block
in C1 and C2

7. Let Bh0
li and Bh0

iso be the set of all h0-left-isolated blocks and the
set of all h0-isolated blocks mined in some round in [r0 + ∆Net, r − ∆Net], respec-
tively. Further let Bh0

nli, B
≤h0

hon , and Bdis be the sets of all non-(∆Net, h0)-left-isolated
blocks, all honest blocks with hash value at most h0, and all dishonest blocks mined
in some round in (r0, r], respectively. We define W h0

li :=
⋃

B∈Bh0
li

WeightRange(B),

W h0
iso :=

⋃
B∈Bh0

iso

WeightRange(B), W h0
nli :=

⋃
B∈Bh0

nli

WeightRange(B), W≤h0

hon :=⋃
B∈B≤h0

hon

WeightRange(B), and Wdis :=
⋃

B∈Bdis
WeightRange(B) to be the sets of all

weight depths in the weight ranges of the corresponding blocks.
We claim that

W h0
li ⊆W h0

nli , (2.16)

W h0
iso ⊆W≤h0

hon ∪Wdis. (2.17)

To prove these claims, we first show that

W h0
li ,W h0

iso ⊆
(
EndWeight(B̂0),EndWeight(C1)

]
. (2.18)

All honest parties mining blocks in round r0 + ∆Net or later know about B̂0 and will
therefore only extend chains with weight at least EndWeight(B̂0). Likewise, if some
honest block with weight depth more than EndWeight(C1) were mined until round r −
∆Net, no honest party would consider C1 the best chain in round r.

We next show that descendants of B̂0 on C1 or C2 are mined in some round in (r0, r].
Since B̂0 is honest, it is unknown to any party before r0. All descendants of B̂0 are thus

7Note that if B0 is honest, we have B̂0 = B0. The reason for considering B̂0 in addition to B0 is that
only honest parties are guaranteed to broadcast blocks they mine immediately. Hence, for an honest
B̂0, we know that other honest parties will know that block at most ∆Net rounds after it was mined.
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mined after round r0.
8 Furthermore, honest parties only adopt chains containing blocks

they know, which means all blocks on C1 are mined until round r. The same holds
for C2 by assumption. We finally prove Equations (2.16) and (2.17). To this end, let
w ∈W h0

li or w ∈W h0
iso . We consider the following cases:

w ∈
(
EndWeight(B̂0),EndWeight(B0)

]
: There is a block on the chain from B̂0 to B0

(excluding B̂0) whose weight range includes w. Since all these blocks are dishonest,
they are, in particular non-h0-left-isolated. Furthermore, they are descendants
of B̂0 and are on C1 and are thus mined in some round in (r0, r]. Hence, w ∈
Wdis ⊆W h0

nli .

w ∈
(
EndWeight(B0),EndWeight(C1)

]
: There are blocks both on C1 and on C2 (and

potentially more) that cover w. If w ∈ W h0
li , Lemma 2.3.1 implies that there

is a non-h0-left-isolated block B′ covering w on at least one of these chains. If
w ∈ W h0

iso , Lemma 2.3.2 implies that there is a block B′ on one of these chains
that is not both honest and has a hash value above h0. Since B′ in both cases is
a descendant of B̂0 and on C1 or C2, it was mined in some round in (r0, r]. We
can therefore conclude that w ∈ W h0

nli in the first case, and w ∈ W≤h0

hon ∪Wdis in
the latter case.

All cases together imply Equations (2.16) and (2.17).
We now prove Item (i) of the lemma. Since left-isolated blocks have disjoint weight

ranges by Lemma 2.3.1, Equation (2.16) implies

wli :=
∑

B∈Bh0
li

Weight(B) ≤
∑

B∈Bh0
nli

Weight(B) =: wnli. (2.19)

Let w be the total weight of all blocks mined in some round in (r0, r]. Recall that
Bh0
li are all h0-left-isolated blocks mined in some round in [r0 + ∆Net, r − ∆Net], and

Bh0
nli are all non-(∆Net, h0)-left-isolated blocks mined in some round in (r0, r]. Since

[r0 +∆Net, r −∆Net] ⊆ (r0, r], we have wnli ≤ w − wli. Hence,

2wli ≤ w. (2.20)

By assumption on the weight function, wli > W̌LeftIsoh0 (r − r0 − 2∆Net + 1) and w <

Ŵq(r − r0), except with probability p̌LeftIso∆Neth0(r − r0 − 2∆Net + 1) + p̂q(r − r0). We
can thus conclude by our assumptions on these quantities that the inequality 2wli ≤ w
can only hold with at most this probability, which concludes the proof of Item (i).

We finally prove Item (ii). By Lemma 2.3.2, isolated blocks have disjoint weight
ranges. Hence, Equation (2.17) implies

wiso ≤ w≤h0

hon + wdis, (2.21)

for wiso :=
∑

B∈Bh0
iso

Weight(B), w≤h0

hon :=
∑

B∈B≤h0
hon

Weight(B), and wdis :=∑
B∈Bdis

Weight(B).

8Assuming there are no collisions in the random oracle, as otherwise, a dishonest party could extend
B̂0 before it is mined by an honest party.
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The dishonest blocks can be split up into the dishonest blocks with a hash be-
low h0 which we denote B≤h0

dis and the blocks above which we denote B>h0
dis . We let

w≤h0

dis :=
∑

B∈B≤h0
dis

Weight(B) and w>h0
dis :=

∑
B∈B>h0

dis

Weight(B), which gives us that

wdis = w≤h0

dis + w>h0
dis . We note that w≤h0

hon + w≤h0

dis is upper-bounded by Ŵ≤h0
q except

with probability p̂≤h0
q . Together with the assumptions on W̌Isoh0 , and Ŵ>h0

qβ , Item (ii)
follows.

Theorem 2.3.12 (Common prefix). Let ρ ≥ 2∆Net − 1, let P1, P2 be (not necessarily
different) honest parties, let r1 ≤ r2 be rounds, and let C1 be the best chain of P1 in
round r1. Further let pbad be the probability that P2 has a best chain C2 in round r2 with
C1

R>⌈r1−ρ ̸⪯ C2. We have

(i) For all h0 ∈ H such that the weight function is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-

lower-bounding and
(
Ŵq, p̂q

)
-upper-bounding, and for all ρ′ ≥ ρ

2 · W̌LeftIsoh0 (ρ
′ − 2∆Net + 1) ≥ Ŵq(ρ

′),

we have
pbad ≤ 2p̌LeftIsoh0 (ρ− 2∆Net + 1) + 2p̂q(ρ).

(ii) For all h0 ∈ H such that the weight function is
(
Ŵ≤h0

q , p̂≤h0
q

)
-below-threshold-

upper-bounding,
(
Ŵ>h0

qβ , p̂>h0
qβ

)
-upper-bounding, and

(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-

bounding, and for all ρ′ ≥ ρ

W̌Isoh0 (ρ
′ − 2∆Net + 1) ≥ Ŵ≤h0

q (ρ′) + Ŵ>h0
qβ (ρ′),

we have
pbad ≤ 2p̌Isoh0 (ρ− 2∆Net + 1) + 2p̂≤h0

q (ρ) + 2p̂>h0
qβ (ρ).

Proof. Assume the best chain C2 of P2 in round r2 is such that C1
R>⌈r1−ρ ̸⪯ C2, and

let r ≤ r2 be the first round with r ≥ r1 in which some honest party P ′
2 (not necessarily

P1 or P2) adopted a chain C ′
2 with C1

R>⌈r1−ρ ̸⪯ C ′
2. We distinguish two cases:

Case 1: r = r1. In this case, all blocks on C ′
2 have been mined until round r1. Let r0

be the round in which the deepest honest common block in C1 and C ′
2 has been

mined. Since C1
R>⌈r1−ρ ̸⪯ C ′

2, we have r0 ≤ r1 − ρ ≤ r1 − 2∆Net + 1. Now let
C⋆
1 ∈ {C1, C

′
2} be the chain with the smaller or equal EndWeight, and let C⋆

2 be
the other one. Note that C⋆

1 is the best chain of some honest party in round r, and
all blocks on C⋆

2 have been mined until round r. We can thus apply Lemma 2.3.11
to obtain that the probability of this case for Item (i) is at most

p̌LeftIsoh0 (r−r0−2∆Net+1)+ p̂q(r−r0) ≤ p̌LeftIsoh0 (ρ−2∆Net+1)+ p̂q(ρ), (2.22)

and for Item (ii)

p̌Isoh0 (r − r0 − 2∆Net + 1) + p̂≤h0
q (r − r0) + p̂>h0

qβ (r − r0)

≤ p̌Isoh0 (ρ− 2∆Net + 1) + p̂≤h0
q (ρ) + p̂>h0

qβ (ρ), (2.23)

where we used r − r0 ≥ ρ and the monotonicity of the probabilities.
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Case 2: r > r1. Let C ′
1 be the best chain of P ′

2 in round r − 1 ≥ r1. We then have

C1
R>⌈r1−ρ ⪯ C ′

1. This implies that C ′
2 cannot result from extending C ′

1, and
therefore, C ′

2 must have been sent to P ′
2 from another party. Hence, all blocks

in C ′
2 have been mined until round r − 1. Since P ′

2 adopts C ′
2, we further have

Weight(C ′
2) > Weight(C ′

1). We claim that C ′
1

R>⌈r1−ρ ̸⪯ C ′
2. If this was not the case,

C ′
1 and C ′

2 would agree on all blocks mined until round r1− ρ. Since C1
R>⌈r1−ρ ⪯

C ′
1, C

′
1 also agrees with C1 on all such blocks. That would imply C1

R>⌈r1−ρ ⪯ C ′
2,

contradicting the definition of C ′
2. We therefore have C ′

1

R>⌈r1−ρ ̸⪯ C ′
2. Let r0 be

the round in which the deepest honest common block in C ′
1 and C ′

2 was mined.
We have r0 ≤ r1−ρ ≤ (r− 1)− 2∆Net+1. We can therefore apply Lemma 2.3.11
with chains C ′

1 and C ′
2 in round r − 1. For Item (i), we obtain that the given

situation can only occur with probability at most

p̌LeftIsoh0 (r − 1− r0 − 2∆Net + 1) + p̂q(r − 1− r0). (2.24)

Using (r − 1) − r0 ≥ r1 − r0 ≥ r1 − (r1 − ρ) = ρ and the monotonicity of the
probabilities, this probability can be upper bounded by p̌LeftIsoh0 (ρ−2∆Net+1)+
p̂q(ρ).

For Item (ii), we obtain that the given situation can only occur with probability
at most

p̌Isoh0 (r − 1− r0 − 2∆Net + 1) + p̂≤h0
q (r − 1− r0) + p̂>h0

qβ (r − 1− r0)

≤ p̌Isoh0 (ρ− 2∆Net + 1) + p̂≤h0
q (ρ) + p̂>h0

qβ (ρ). (2.25)

We can conclude that the probability that case 1 or case 2 occurs is at most the sum
of the two probabilities derived in these cases.

Since the produced weight per round is bounded, this directly implies a common-
prefix property for pruning blocks with a certain amount of weight. We formalize this
fact in the following corollary that proves the weighted common prefix property (Defi-
nition 2.3.10).

Corollary 2.3.13 (Weighted common prefix). Let ω ∈ R, and let ρ ∈ N be the largest
value such that Ŵq(ρ) ≤ ω and ρ ≥ 2∆Net − 1. Further let h0 ∈ H such that

the weight function is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding and

(
Ŵq, p̂q

)
-

upper-bounding, and for all ρ′ ≥ ρ, we have 2 · W̌LeftIsoh0 (ρ
′ − 2∆Net + 1) ≥ Ŵq(ρ

′). Let
P1, P2 be (not necessarily different) honest parties, let r1 ≤ r2 be rounds, and let C1 be
the best chain of P1 in round r1. Then, the probability that P2 has a best chain C2 in
round r2 with C1

W⌈ω ̸⪯ C2 is at most

2p̌LeftIsoh0 (ρ− 2∆Net + 1) + 2p̂q(ρ).

Proof. By our assumption on the weight function, there is at most Ŵq(ρ) < ω weight

produced in ρ rounds, except with probability p̂q(ρ). In this case, all blocks on C1
W⌈ω are

mined before round r1−ρ, i.e., C1
W⌈ω ⪯ C1

R>⌈r1−ρ. Therefore, we have C1
R>⌈r1−ρ ̸⪯ C2.

We can thus apply Theorem 2.3.12 to conclude the proof of the theorem.
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2.4 Applying the Framework to Capped Weight Functions

Our framework allows the exploration of infinitely many different weight functions. In-
tuitively, good weight functions should ensure that a majority of the weight is produced
by honest parties that have a nearly complete view of all other honest blocks, i.e., the
winning events that produce most of the weight should, on average, occur so rarely that
they have enough time to propagate before the next time such a rare event occurs. On
the other hand, the weight difference between such winning events should not be too
large as this increases the variance and thus gives worse bounds on the probabilities.

These considerations led us to focus on a particular class of functions we call capped
weight functions that we use our framework to analyze in this section. We first prove
general conditions that ensure common prefix for this class of functions using only very
loose bounds. Next, we derive a condition that such functions should satisfy to provide
a weak form of optimistic responsiveness. We then discuss how to pick such functions
and how combining such a function with a finality layer provides very fast confirmation.
Finally, we show how previous analyses of Bitcoin are subsumed by our framework and
present a weight function that is strictly better than the Bitcoin function with respect
to the properties presented in this work.

2.4.1 Definitions and General Results

To derive concrete equations for the bounds the weight functions should satisfy, we
instantiate Theorem 2.3.12 with the loose bounds from Section 2.2.5. The specific
conditions we achieve for any weight function are captured by the lemma below.

Lemma 2.4.1. Let w be a weight-function. Further let h0 ∈ H. We assume that
wmin>h0 > 0. Let δ ∈ (0, 1) and ρ > 2∆Net − 1 such that

α · (1− δ) · (1− p≤h0) · (p≤h0)
2q∆Net

≥ ρ

ρ− 2∆Net + 1

(
wmax≤h0

wmin>h0

· p≤h0 +
wmax>h0

wmin>h0

· β · (1− p≤h0)

)
.

Let P1, P2 be (not necessarily different) honest parties, let r1 ≤ r2 be rounds, and let
C1 be the best chain of P1 in round r1. Finally let pbad be the probability that P2 has a
best chain C2 in round r2 with C1

R>⌈r1−ρ ̸⪯ C2. We then have

(i) for any β

pbad ≤ 10e−
δ2·qβ·(ρ−2∆Net+1)·(1−p≤h0

)·(p≤h0
)2q∆Net

432 ,

(ii) and for β = 0

pbad ≤ 8e−
δ2·q·(ρ−2∆Net+1)·(1−p≤h0

)·(p≤h0
)2q∆Net

432 .

Proof. We want to use Theorem 2.3.12 (ii), and to this end, we show that the weight
function satisfies

W̌Isoh0 (ρ− 2∆Net + 1) ≥ Ŵ≤h0
q (ρ) + Ŵ>h0

qβ (ρ). (2.26)
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Let δ′ := δ
2 . Lemma 2.2.8 (ii) implies that w is

(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding

with

W̌Isoh0 (ρ− 2∆Net + 1)

= wmin>h0 · (1− δ′) · qα · (ρ− 2∆Net + 1) · (1− p≤h0) · (p≤h)
2q∆Net ,

p̌Isoh0 (ρ− 2∆Net + 1) = 3 · e−
(δ′)2·qα·(ρ−2∆Net+1)·(1−p≤h0

)·(p≤h0
)2q∆Net

108 .

(2.27)

Lemma 2.2.6 (i) yields using α + β = 1 and α > β, that w is
(
Ŵ≤h0

q , p̂≤h0
q

)
-below-

threshold-upper-bounding with

Ŵ≤h0
q = wmax≤h0 · (1 + δ′) · q · ρ · p≤h0

p̂≤h0
q (ρ) = e−

(δ′)2·q·ρ·p≤h0
3 ≤ e−

(δ′)2·βq·ρ·p≤h0
3

(2.28)

Finally, Lemma 2.2.6 (ii) implies that w is
(
Ŵ>h0

qβ , p̂>h0
qβ

)
-above-threshold-upper-bounding

with

Ŵ>h0
qβ (ρ) = wmax>h0 · (1 + δ′) · qβ · ρ · (1− p≤h0),

p̂>h0
qβ (ρ) = e−

(δ′)2·qβ·ρ·(1−p≤h0
)

3 .
(2.29)

We can conclude that Equation (2.26) is satisfied if

wmin>h0 · (1− δ′) · qα · (ρ− 2∆Net + 1) · (1− p≤h0) · (p≤h)
2q∆Net

≥ wmax≤h0 · (1 + δ′) · q · ρ · p≤h0 + wmax>h0 · (1 + δ′) · qβ · ρ · (1− p≤h0). (2.30)

This is equivalent to

1− δ′

1 + δ′
· α · (1− p≤h0) · (p≤h0)

2q∆Net

≥ ρ

ρ− 2∆Net + 1

(
wmax≤h0

wmin>h0

· p≤h0 +
wmax>h0

wmin>h0

· β · (1− p≤h0)

)
.

(2.31)

Note that 1−δ′

1+δ′ ≥ 1− δ because δ′ = δ
2 . Hence this condition is satisfied by the assump-

tion in the lemma statement. Further note that ρ
ρ−2∆Net+1 is monotonically decreasing

in ρ, and thus the condition is also satisfied for all ρ′ ≥ ρ. We can therefore apply
Theorem 2.3.12 (ii) to obtain

pbad ≤ 6e−
(δ′)2·qα·(ρ−2∆Net+1)·(1−p≤h0

)·(p≤h0
)2q∆Net

108 + 2e−
(δ′)2·qβ·ρ·p≤h0

3

+ 2e−
(δ′)2·qβ·ρ·(1−p≤h0

)

3

= 6e−
δ2·qα·(ρ−2∆Net+1)·(1−p≤h0

)·(p≤h0
)2q∆Net

432 + 2e−
δ2·qβ·ρ·p≤h0

12 + 2e−
δ2·qβ·ρ·(1−p≤h0

)

12

≤ 10e−
δ2·qβ·(ρ−2∆Net+1)·(1−p≤h0

)·(p≤h0
)2q∆Net

432 .

(2.32)
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This concludes the proof of Item (i).
For Item (ii), note that if β = 0 and α = 1, then Ŵ>h0

qβ (ρ) = 0, and thus p̂>h0
qβ (ρ)

does not contribute to the probabilities. Hence, we obtain in this case

pbad ≤ 6e−
δ2·q·(ρ−2∆Net+1)·(1−p≤h0

)·(p≤h0
)2q∆Net

432 + 2e−
δ2·q·ρ·p≤h0

12

≤ 8e−
δ2·q·(ρ−2∆Net+1)·(1−p≤h0

)·(p≤h0
)2q∆Net

432 .

(2.33)

We now introduce the notion of a capped-weight-function to encapsulate the intuition
for the properties a useful weight function should have.

Definition 2.4.2 (Capped weight functions). Let w be a weight function, and T ∈ H.
We say that w is T -capped if for all h, h′ ∈ H, with h, h′ > T , we have w(h) = w(h′).

Using this definition, we consider two special cases of the general common-prefix
property: What should be satisfied to ensure a common prefix under the worst-case
conditions, and how fast do we achieve a common prefix in the best case where the
adversary only controls the network delay?

We next show one way to pick T such that the common-prefix property holds for the
particular case where w is T -capped weight function. To this end, we use Lemma 2.4.1
with h0 = T . The specific conditions we achieve are captured by the lemma below.

Lemma 2.4.3. Let P1, P2 be (not necessarily different) honest parties, let r1 ≤ r2 be
rounds, let ϵc := α − β > 0, let δ ∈ (0, 1), and let C1 be the best chain of P1 in
round r1. Finally let pbad be the probability that P2 has a best chain C2 in round r2 with
C1

R>⌈r1−ρ ̸⪯ C2. If ρ > 2∆̂Net − 1 and w is a T -capped-weight-function that satisfies

T ≥

(
β · ρ(

β + ϵc
2

)
(1− δ)(ρ− 2∆̂Net + 1)

) 1
2q∆̂Net

· 2k, (2.34)

and
1

2∆̂Net

· (1− δ) · ϵc
2
· (1− p≤T ) · (p≤T )

2q∆̂Net−1 ≥ wmax≤T

wmin>T
, (2.35)

then

pbad ≤ 10e
−

δ2·qβ2·ρ·(1−p≤T )

432(β+ ϵc
2 )(1−δ) . (2.36)

Furthermore, if ρ > 2∆Net − 1, α = 1, β = 0, and for all h0 ≤ T

1

2∆̂Net

· (1− δ)

e · 2q∆̂Net

≥ wmax≤h0

wmin>h0

, (2.37)

then

pbad ≤ 8e
− δ2·q·(ρ−2∆Net+1)

432·e·(2q∆Net+1) . (2.38)
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Proof. We note that the condition in Lemma 2.4.1 is implied by the following two
conditions:

(1− δ) · ϵc
2
· (1− p≤T ) · (p≤T )

2q∆Net ≥ ρ

ρ− 2∆Net + 1
· wmax≤T

wmin>T
· p≤T

⇐⇒ ρ− 2∆Net + 1

ρ
· (1− δ) · ϵc

2
· (1− p≤T ) · (p≤T )

2q∆Net−1 ≥ wmax≤T

wmin>T
(2.39)

and

(1− δ) · (β +
ϵc
2
) · (1− p≤T ) · (p≤T )

2q∆Net ≥ ρ

ρ− 2∆Net + 1
· wmax>T

wmin>T
· β · (1− p≤T )

⇐⇒ (1− δ) · (β +
ϵc
2
) · (p≤T )

2q∆Net ≥ ρ

ρ− 2∆Net + 1
· wmax>T

wmin>T
· β. (2.40)

It is enough to show Equation (2.39) for the upper bound on the network delay ∆̂Net,

and ρ = 2∆̂Net as
ρ−2∆̂Net+1

ρ is monotonously increasing in ρ.
For any T -capped weight function w, we have

min
h∈{T+1,...,2k}

w(h) = max
h∈{T+1,...,2k}

w(h). (2.41)

Combining this with Equation (2.40) and inserting the upper bound on the network
delay derives the following two conditions:

1

2∆̂Net

· (1− δ) · ϵc
2
· (1− p≤T ) · (p≤T )

2q∆̂Net−1 ≥ wmax≤T

wmin>T
, (2.42)

and
ρ− 2∆̂Net + 1

ρ
· (1− δ) · (p≤T )

2q∆̂Net ≥ β

β + ϵc
2

. (2.43)

Fulfilling these two equations will give us common prefix except with the probability
stated in Lemma 2.4.1. One way to satisfy Equation (2.43) is to derive a condition for
picking T . Recall that p≤T = T

2k
. Hence, the condition is satisfied for

T ≥

(
β · ρ(

β + ϵc
2

)
(1− δ)(ρ− 2∆̂Net + 1)

) 1
2q∆̂Net

· 2k. (2.44)

If a T -capped-weight-function satisfies these two conditions it provides common prefix
except with the probability given by Lemma 2.4.1 (i). Using Equation (2.43), this can
be simplified to

pbad ≤ 10e
−

δ2·qβ2·ρ·(1−p≤T )

432(β+ ϵc
2 )(1−δ) , (2.45)

for any sufficiently large ρ.
We now consider the case when all parties are honest and analyze what conditions

need to be satisfied for getting common prefix. Let w be a weight-function. The condi-
tion in Lemma 2.4.1, when instantiated with α = 1 and β = 0, becomes

(1− δ) · (1− p≤h0) · (p≤h0)
2q∆Net−1 ≥ ρ

ρ− 2∆Net + 1
· wmax≤h0

wmin>h0
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⇐⇒
ρ− 2∆Net + 1

ρ
· (1− δ) · (1− p≤h0) · (p≤h0)

2q∆Net−1 ≥ wmax≤h0

wmin>h0

. (2.46)

Let ξ := 2q∆Net. We pick h0 such that (1− p≤h0) · (p≤h0)
ξ is maximized (as this occurs

in the probability pbad of Lemma 2.4.1 (ii)), which is the case for

p≤h0 =
ξ

ξ + 1
=

2q∆Net

2q∆Net + 1
⇐⇒ h0 = 2k

(
2q∆Net

2q∆Net + 1

)
.9 (2.47)

For this particular choice of h0 we note that

(1− p≤h0) · (p≤h0)
2q∆Net =

(
ξ

ξ+1

)ξ
ξ + 1

=

1(
1+ 1

ξ

)ξ

ξ + 1
≥ 1

(ξ + 1) · e
. (2.48)

Hence, Equation (2.46) is satisfied if

ρ− 2∆Net + 1

ρ
· (1− δ)

(ξ + 1)e · p≤h0

=
ρ− 2∆Net + 1

ρ
· (1− δ)

e · ξ
≥ wmax≤h0

wmin>h0

. (2.49)

Note that ρ−2∆Net+1
ρ and 1

e·ξ are monotonously decreasing in ∆Net ≤ ∆̂Net, and
ρ−2∆Net+1

ρ is monotonously increasing in ρ ≥ 2∆Net. This implies that it is sufficient to

satisfy this equation for ∆Net = ∆̂Net and ρ = 2∆̂Net:

1

2∆̂Net

· (1− δ)

e · 2q∆̂Net

≥ wmax≤h0

wmin>h0

. (2.50)

This condition can be satisfied by again making the weight function grow fast enough
such that

wmax≤h0
wmin>h0

is sufficiently small for all h0 ≤ T . If Equation (2.50) is satisfied

then we obtain by Lemma 2.4.1 (ii) and using Equation (2.48) that the probability of a
common-prefix violation is at most

pbad ≤ 8e−
δ2·q·(ρ−2∆Net+1)·(1−p≤h0

)·(p≤h0
)2q∆Net

432 ≤ 8e
− δ2·q·(ρ−2∆Net+1)

432·e·(2q∆Net+1) . (2.51)

2.4.1.1 Choosing a Weight Function

We suggest the following approach to instantiate a T -capped weight function. First,
pick T such that it satisfies Equation (2.34) for a sufficiently large ρ. Next, select
the function such that it additionally ensures the condition from Equation (2.35). For
monotone functions, this can be done by increasing the growth of the function such that
wmax≤T

wmin>T
is sufficiently small. When a T -capped weight function is instantiated like this,

it provides a common prefix except with the probability given by Equation (2.36). To

9As h0 needs to be in H, it can most likely not be set to exactly this value. Instead one can choose

it as h0 =
⌈
2k ξ

ξ+1

⌉
, which ensures that ξ

ξ+1
≤ p≤h0 ≤ ξ

ξ+1
+ 1

2k
. This does not influence the conclusion

and we ignore this for ease of presentation.
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further satisfy Equation (2.37), one can additionally increase the growth of the function
until it is true for all h0 ≤ T .10

Waiting time for common prefix. To ensure that parties are on a common prefix except
with negligible probability, one has to wait until pbad is negligible. If κ is the security
parameter, this means that one has to wait for ρ rounds such that ρ ·q(1−p≤T ) = Ω(κ).
Note that q(1− p≤T ) is the expected number of blocks with hash above the threshold T
produced in each round. This means one needs to wait for Ω(κ) blocks above the
threshold. This matches the bounds derived for the plain Bitcoin backbone, e.g., in
[GKL15].

In the case without corruption, one has to wait ρ rounds such that ρ · 1
∆Net

= Ω(κ).

Note that this only depends on ∆Net, not on ∆̂Net. Hence, the protocol is responsive in
this case!

Chain growth and chain quality. Note that this approach automatically ensures some
chain growth and chain quality as the preconditions for Theorem 2.3.4 and Theo-
rem 2.3.6 are weaker than the precondition for Theorem 2.3.12. One can also obtain
tighter bounds by optimizing for this, but we leave that for future work.

Finality layers. A practical issue of the responsiveness provided by Lemma 2.4.3 is that it
is hard to know whether there are actively corrupted nodes. This means that even in the
good case without corruption, where all parties quickly agree on blocks, parties typically
do not know for sure that there is no corruption and thus cannot confirm transactions
rapidly. As a solution to this issue, we propose to use a finality layer, such as Casper the
Friendly Finality Gadget [BG17], GRANDPA [SK20], or Afgjort [Din+20]. These act
as an additional layer on top of an NSB, where a committee votes on blocks to become
final, and finalized blocks are never rolled back by adjusting the chain-selection rule to
prefer chains with more finalized blocks. In such finality layers, a block can be declared
final as soon as enough committee members vote for that block. In the optimistic case,
this happens as fast as the actual network conditions allow in our responsive blockchain,
as all honest parties will, in fact, have the same common prefix and thus vote for the
same. And given the decision from the finalization committee, one can immediately
trust these finalized blocks, yielding a high overall efficiency.

2.4.2 Examples of Capped Weight Functions

In this section, we provide two concrete instantiations of weight functions using our
framework. For means of comparison, we first instantiate the standard Bitcoin weight
function and afterward a capped-exponential weight function, which we compare to the
Bitcoin protocol. See Figure 2.1 for plots of the considered weight functions.

10In our analysis, we need to set
wmax≤h0
wmin>h0

sufficiently small to satisfy both Equations (2.35) and (2.37).

Note that no condition places a lower bound on this fraction. This means the weight function can be
chosen to grow arbitrarily fast.

The trade-off hidden in our analysis is that faster-growing functions lead to less responsiveness if
there is some corruption. That is because it becomes easier to produce very heavy blocks that can roll
back many lighter blocks. The growth of the function should thus not be set higher than necessary. We
leave exploring this trade-off for future work.
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Figure 2.1: Plots of wBC
T and wEXP

c,T normalized with the maximal weight for k = 10,

T = 3
4 · 2

k, and different values of c. The values are chosen very small for illustrative
purposes. Note that the larger c is, the closer the form of wEXP

c,T is to wBC
T . This plot

depicts the intuition that c can be picked so large that there is no security degradation
by choosing wEXP

c,T over wBC
T , even though an adversary can potentially control the honest

weight produced below T through network delays.

2.4.2.1 Bitcoin Weight

The Bitcoin protocol originally considered the best chain to be the one that is the
longest. Each block added to a chain can therefore be considered incrementing the
chain’s weight with 1. If a block is invalid, it does not change the weight of a chain,
and it can thus be thought of as having weight 0. With this interpretation, the Bitcoin
weight function with threshold T can be defined as11

wBC
T (h) ≜

{
0, if h ≤ T,

1, else.
(2.52)

This is clearly an instance of a T -capped-weight-function. Thus, the approach from
Section 2.4.1 can be applied for picking T , i.e., set T such that Equation (2.34) is an
equality.

For w = wBC
T , we have wmin>T = 1 and wmax≤T = 0. Hence, Equation (2.35)

is trivially satisfied, and Equation (2.36) thus provides the probability bound for the
common prefix violations. This matches known bounds as explained in Section 2.4.1.

There only exists a single h0 such that Equation (2.37) is satisfied, namely h0 = T .
This matches well with the intuition: Bitcoin is not reactive as T needs to be set based
on the worst case network delay to ensure security.

2.4.2.2 Capped Exponential Weight

We now provide an example weight function that can be instantiated to obtain an
optimistically responsive protocol. For some parameter c ∈ R and a threshold T ∈ H,

11To adapt to our framework, we negate the condition on the valid block predicate. Note that this
is without loss of generality.
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we define

wEXP
c,T (h) ≜

{
ehc, if h ≤ T,

e(T+1)c, else.
(2.53)

Let h ∈ H, h ≤ T . We then have for w = wEXP
c,T ,

wmax≤h

wmin>h
=

wEXP
c,T (h)

wEXP
c,T (h+ 1)

=
ehc

e(h+1)c
= e−c. (2.54)

Again we pick T such that Equation (2.34) is an equality. We now pick c such that both
Equations (2.35) and (2.37) are satisfied for all h0. In other words, we pick c such that
both

e−c =
wmax≤T

wmin>T
≤ 1

2∆̂Net

· (1− δ) · ϵc
2
· (1− p≤T ) · (p≤T )

2q∆̂Net−1, (2.55)

and

e−c =
wmax≤h0

wmin>h0

≤ 1

2∆̂Net

· (1− δ)

e · 2q∆̂Net

, (2.56)

are satisfied. Such a c exists as both right-hand sides are constant and e−c drops
exponentially in c. Instantiating w in this way provides a protocol that, under worst-
case conditions, performs as the Bitcoin protocol but, in good conditions, is perfectly
responsive to the actual network delay.



3 Formalizing Delayed Adaptive Corruptions and the
Security of Flooding Networks

3.1 Introduction

3.1.1 Motivation

In Nakamoto-style blockchains (NSBs) such as Bitcoin [Nak08], several parties continu-
ously try to solve cryptographic puzzles. The first party solving the puzzle “wins” the
right to create a new block extending the previously longest chain. This block is then
distributed to all other parties, who continue solving puzzles to create the next block.
Extensive research has shown for different variations of NSBs that security can be guar-
anteed if honest parties solve a majority of the puzzles and if blocks can be propagated
fast enough to ensure with a high probability that the next winner has learned about
the previous block before creating a new block [GKL15; GKL17; PSS17; Ren19].

Since future block creators are unpredictable, these protocols have a high resilience
against adaptive corruptions. Intuitively, the only chance to exploit the adaptivity of
corruptions is to corrupt a party after learning that it has solved a puzzle and sub-
sequently prevent this party from distributing the created block. An adversary with
the power to stop messages from being delivered (or changing the message) by cor-
rupting the sender after sending but before the message is delivered is often referred
to as strongly adaptive [Abr+19]. On the other hand, if messages from honest senders
are guaranteed to be delivered regardless of whether the sender gets corrupted before
delivery, the adversary is only weakly adaptive, or equivalently, atomic message send
(AMS) [Gar+11] is assumed.

Indeed, several papers [GKL15; GKL17; PSS17] have proven the security of Bit-
coin’s consensus against adaptive corruptions, and Ouroboros Praos [Dav+18] has been
developed as a proof-of-stake blockchain with resilience against fully adaptive corrup-
tions as one of the main selling points. To achieve this, these papers have to assume
atomic message dissemination. In reality, however, NSBs typically use complex peer-to-
peer networks to disseminate blocks, in which each party propagates messages to only
a small set of other parties (referred to as their neighbors), who will then propagate it
to their neighbors and so forth. Even if the point-to-point channels between neighbors
allow atomic sends, the overall network will not provide this guarantee because an adap-
tive adversary can simply corrupt all neighbors of the sender and thereby stop the block
from being propagated. Hence, when considering the full protocol, which combines a
NSB with a peer-to-peer flooding network, security against fully adaptive corruptions
can no longer be guaranteed.

48
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Formalizing delayed adaptive corruptions. To provide meaningful guarantees to blockchain
protocols, including their peer-to-peer network, we observe that intuitively, one needs
to restrict the corruption speed of an adversary such that parties in the peer-to-peer
network have enough time to pass on the block they receive before being corrupted.
Based on this observation, we introduce a precise model for δ-delayed adversaries in the
Universal Composability framework [Can20]. Using this model, one can quantify the
minimum amount of time δ it takes from when an adversary targets and starts attack-
ing a specific party until this party is actually under adversarial control and prove the
security of protocols against such corruptions. This allows us to precisely describe what
kind of adversaries different P2P networks and protocols built on top can withstand.

Note that the corruption speed of an adaptive adversary also has a natural trans-
lation to reality. For an attacker to succeed in attacking some physical machine, it
necessarily takes some time from targeting the device to actually hack into the network
(by either physical or digital means) and take over the computer. Denial-of-service at-
tacks are arguably faster to mount, but it still takes nonzero time to target a specific
machine.

While unstructured peer-to-peer networks for message dissemination are the main
focus of this chapter, delayed adversaries have much broader applications and were, in
fact, already used in other works with varying degrees of formality. For example, the
original Ouroboros [Kia+17], in contrast to its successor Ouroboros Praos [Dav+18],
which only requires AMS, needs that corruptions are sufficiently delayed. The same is
true for Snow White [DPS19], another early proof-of-stake blockchain. Another example
is Hybrid Consensus [PS17b], which periodically elects committees using a blockchain
and remains secure if corruptions are delayed until the next committee is selected. The
same applies to blockchain sharding proposals [Kok+18; Luu+16; ZMR18] in which the
members of shards are periodically chosen.

Concrete analysis of flooding networks. As mentioned above, the security of NSBs cru-
cially relies on the assumption that blocks are, with high probability, propagated to
other parties before the next winner creates another new block. If an upper bound
on the propagation time is known, the difficulty of the puzzles can be set accordingly
to provide this guarantee. On the other hand, setting the difficulty based on a too
optimistic assumption about the delay jeopardizes the system’s security, and setting it
based on a too loose upper bound degrades efficiency. Knowing a tight bound on the
propagation delay is thus crucial for the security and efficiency of an NSB.

Even more critical for the security of NSBs are so-called eclipse attacks that prevent
some parties from receiving blocks [Hei+15; MHG18]. Furthermore, for large-scale
distributed systems, the number of neighbors has a significant impact on the required
communication. In particular, it is infeasible to send the message directly to everybody.
In this work, we provide constructions for flooding networks with provable security
against eclipse attacks in a well-defined adversarial model and show different trade-offs
between the propagation time and neighborhood sizes.

Terminology. In the literature, different terminology has been used for the process
of disseminating a message to all parties. Common terminology includes “broadcast”,
“flood” and “multicast”. We will use the terminology “flood” for this process. Contrary
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to byzantine broadcast, there is no agreement requirement for a flooding network if the
sender of a message is dishonest.

3.1.2 Contributions and Results

Our contributions are twofold:

1. We give precise semantics to δ-delayed corruptions (introduced in [PS17b] as δ-
agile corruptions) within the UC framework [Can20]. We define the semantics via
corruption shells which allows us to prove how these corruptions relate to standard
adaptive corruptions.

2. We define a functionality for disseminating information, Flood, that can be used
to implement a secure NSB, and that we implement using a flooding protocol
against a slightly delayed adversary. Importantly, we quantify precisely how much
is meant by “slightly” in terms of guarantees provided by the underlying point-
to-point channels. We provide two instantiations of our protocol with different
efficiency trade-offs.

Below we lay out the specifics of the individual contributions and state our results
in more detail.

Precise model for δ-delayed adversaries. We define a δ-delayed adversary as an adversary
who uses at least δ time to perform a corruption. We define this notion precisely within
the UC framework using the notion of time from [Bau+21]. We do so by elaborating
on the notion of corruption shells from [Can20].

Using the idea of corruption shells, we give semantics to both “normal” byzantine
adaptive corruption and δ-delayed corruptions. We capture the semantics of byzantine
adaptive corruptions in a corruption shell, BReal, for protocols and in a corruption shell,
BIdeal, for ideal functionalities. Similarly, we capture the semantics of δ-delayed adver-
saries in a corruption-shell, Dδ

Real, for protocols and in a corruption-shell, Dδ
Ideal, for ideal

functionalities.
Dδ

Real and Dδ
Ideal accepts two inputs: Precorrupt and Corrupt (both indexed by a specific

party). Both shells ensure that at least δ time has passed after receiving Precorrupt before
reacting upon Corrupt. Any Corrupt input that is sent prematurely is ignored.

Having defined the semantics for both standard adaptive corruptions and δ-delayed
corruptions using corruption shells, we state basic results relating the two models. We
show that a protocol is secure against a standard adaptive adversary iff it is secure
against a 0-delayed adversary (Theorem 3.3.2). Furthermore, we show that if a protocol
is secure against a “fast” adversary, it implies that it is also secure against a “slow”
adversary (Theorem 3.3.3). Together these results allow constructions proven secure
in the standard model of adaptive adversaries to be reused when constructing new
protocols secure against a δ-delayed adversary and to compose protocols that are secure
against adversaries with different delays.

Flooding networks. We define a functionality for flooding messages, F∆
Flood. It ensures

that all parties learn messages that an honest party has sent or has received within
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∆ time and is thereby similar to the flooding functionality assumed in many consensus
protocols. We realize our flooding functionality with a naive protocol, ΠNaiveFlood, where
everybody sends to everybody, and a more advanced protocol, ΠERFlood(ρ), where all
parties choose to send to other parties with probability ρ.

To realize the flooding functionality, we introduce a functionality for a point-to-
point channel Fσ,∆

MessageTransfer. This functionality is also parameterized by a bound for
the delivery time ∆ and additionally has a parameter σ describing the time an honest
party needs to stay honest after starting to send the message for the delivery guarantee to
apply. If σ = 0, this corresponds to assuming AMS. On the other hand, if σ ≥ δ and we
consider δ-delayed adversaries, then this corresponds to not assuming AMS. However,
having the time quantified allows us to relate this time to the delay we can tolerate
when building more advanced constructions. In particular, we show that ΠERFlood using
Fσ,∆
MessageTransfer implements F∆′

Flood against a (σ +∆)-delayed adversary.
In this setting, we provide two different ways to instantiate the probability parameter

ρ of ΠERFlood, each presenting a different efficiency trade-off. Concretely, let h denote
the minimum number of parties that will stay honest throughout the execution of the
protocol, let n denote the total number of parties, and let κ be the security parameter.
We provide the following two instantiations:

Instantiation 1: Guaranteed delivery within ∆′ := 2 ·∆ for ρ :=

√
κ+log(n)

h .

Instantiation 2: Guaranteed delivery within ∆′ := ∆ ·
(
5 log

(
n
2κ

)
+ 2
)
for ρ := κ+log(n)

h .

Both instantiations ensure that the statistical distance between the ideal and the real
executions of ΠERFlood and F∆′

Flood is negligible in the security parameter. We provide
concrete bounds for the statistical distance in Corollary 3.6.3. Furthermore, standard
probability bounds ensure that each instantiation has a neighborhood of O(n · ρ) with
high probability.

Outline of the chapter. In the remainder of this section, we review some selected related
work and provide a high-level overview of the techniques used to prove our technical
results. In Section 3.2, we recap some basic definitions for random graphs, provide
a brief overview of the elements from UC used in this work, and introduce some ba-
sic notation. In Section 3.3, we introduce our new model for δ-delayed adversaries,
in Section 3.4 we prove concrete bounds for the diameter of Erdős–Rényi graphs, and
in Section 3.5 present our ideal functionalities. Finally, in Section 3.6, we present our
two implementations of the flooding functionality.

Acknowledgements. We thank Ran Canetti for explaining a subtle detail of the UC
framework, Sabine Oechsner for discussions in the initial phase of the project, and the
anonymous reviewers of Eurocrypt and Crypto for their feedback.

3.1.3 Techniques

An Erdős–Rényi graph [ER60] is a graph where each edge appears with an equal and
independent probability. Our flooding protocol ΠERFlood is strongly inspired by this
type of graph. Our main technical contributions are thus concerned with transporting
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bounds for Erdős–Rényi graphs to the cryptographic setting, especially in the presence
of adaptive adversaries.

Concrete bounds for Erdős–Rényi graphs. The asymptotic behavior of Erdős–Rényi
graphs has been thoroughly studied in the literature (for a comprehensive overview,
see [Bol01]).

However, bounds about a graph’s behavior when the amount of nodes goes toward
infinity are of little use for protocols that are supposed to be run by a finite number of
parties. For a protocol imitating the behavior of such graphs, we need concrete bounds
when a security parameter is increased. As a technical contribution, we prove such
concrete upper bounds for the diameter of Erdős–Rényi graphs. The upper bounds can
be found in Section 3.4.

Applying Erdős–Rényi graph results in the presence of adaptive adversaries. For a flooding
protocol as ΠERFlood, it is straightforward to apply bounds about the diameter of an
Erdős–Rényi to also bound the probability that a message is not delivered in the protocol
in the presence of a static adversary. However, for an adaptive adversary capable of
preventing certain nodes from connecting to their neighbors, it is by no means this
easy. Our main technical contribution is to transfer the bounds on the diameter of an
Erdős–Rényi graph to our flooding protocol in the presence of an adaptive adversary.
We achieve this by relating the protocol execution to 7 random experiments.

First, we relate the protocol execution to a well-defined game between an adversary
and an oracle, which returns a graph. The game’s rules are that an adversary can query
the oracle to reveal the edges of a node and query the oracle to remove a node from the
graph. However, once either an incoming or outgoing edge to a node has been revealed,
the adversary can no longer remove this node. This game mimics the powers of a slightly
delayed adaptive adversary in the real protocol.

We relate this game to a similar game with undirected edges and do a couple of simple
game hops where we show that an adversary does not gain any additional advantage
w.r.t. increasing the diameter by stopping this game at an early point nor injecting any
extra edges.

As the adversary can only remove nodes for which no information has been revealed,
one might be led to believe that the Erdős–Rényi graph results apply to this game. How-
ever, the adversary can still dynamically control the size of the graph that is returned.
At first, this may seem innocent, but it is not. Deciding whether or not more nodes are
to be included in the graph can amplify the probability that the returned graph has a
high diameter.

Therefore, we relate this game to a new one similar to the other, except that the
oracle, now at random, fixes the graph size beforehand. The oracle fixes the size of the
graph by making a uniform guess in the range of possible sizes. In case of a correct
guess (a guess identical to what the adversary anyway would end up with), the adversary
is only left with the choice of which parties to include in the random graph. Finally,
we show that this game is equally distributed to a game that explicitly embeds an
Erdős–Rényi graph of the fixed size. This allows us to apply the results bounding
diameter of Erdős–Rényi graphs to the probability that a message is not delivered timely.



Introduction 53

3.1.4 Related Work

Hybrid consensus. Hybrid Consensus [PS17b] is a recent consensus protocol that uses
a blockchain to periodically select committees as subsets of the parties participating in
the blockchain protocol, who can subsequently produce blocks more efficiently. Once a
committee has been chosen, a fully adaptive adversary can corrupt the majority of its
members to break the protocol’s security. Hence, the protocol is only secure against
corruptions that are delayed until the next committee gets selected.

To prove the security of hybrid consensus, that paper introduces τ -agile corruptions,
which correspond to the capabilities of our τ -delayed adversaries. While that paper also
uses the UC framework, the definitions for the corruption model mostly remain at a
high level. For example, their definitions assume there is some notion of time, which
does not exist in the original UC formalism. There are also no clear definitions of how
the delayed corruptions are precisely embedded in the UC execution model.

In contrast, our work provides a precise embedding of the corruption model in the
standard UC framework. This allows us to compose protocols formulated in standard
UC with protocols proven secure against δ-delayed adversaries. It is thus fair to say that
the hybrid consensus paper has introduced the delayed corruption model at an intuitive,
semi-formal level, while our work fills in several missing technical details to provide a
precise formalization within the UC framework.

Time in UC. There have been several suggestions for modeling time in UC.[Kat+13]
models time using a clock functionality that is local to each protocol. This functionality
synchronizes the parties by only allowing the adversary to advance the time when all
parties have reported that they have been activated. As this is a local functionality,
other ideal functionalities have no access to it and therefore need to provide their own
notion of time, which can clutter the final guarantees from the functionality.

[KZZ16] takes a similar approach to Katz et al. but changes the clock to be a global
functionality in GUC [Can+07]. This enables several different protocols to rely on the
same notion of time when composed and also solves the problem of time not being
available to ideal functionalities. Both functionalities and parties can query the global
clock for the current time and thus inherently makes any protocol modeled with this a
synchronous protocol.

A different approach is taken in [Bau+21]. They take the standpoint that parties
should be oblivious to the passing of time. To allow this, they introduce a global
functionality, dubbed a ticker (written ḠTicker), which exposes an interface to learn about
the passing of time to functionalities only. In particular honest parties are oblivious to
the passing of time. This allows time to be modeled without having synchrony as an
inherent assumption. The specific timing assumptions can then be captured by adding
an extra ideal functionality that exposes relevant information to the parties.

Contrary to [Bau+21; Kat+13; KZZ16], [Can+17] focuses on modeling and making
real time available to parties in GUC and use this to model the expiration of certificates
in a public-key infrastructure. In their modeling, the environment can advance a global
clock without restrictions. In this work, our protocols do not rely on real-time but
rather on an abstract notion of time used to state assumptions and guarantees about
the delivery time of channels and protocols. For the guarantees to be upheld, we rely
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on restrictions about how time is advanced (namely that all parties must be activated
once each abstract time step) by the environment.

We chose to rely on the modeling of time from [Bau+21]. This allows us to model
general timing assumptions on the adversary’s capabilities without tying our modeling
to a particular assumption on synchrony for actual protocols.

Epidemic and gossip protocols. Epidemic algorithms or gossip protocols were first con-
sidered for data dissemination by Demers et al. [Dem+87], and have been studied ex-
tensively since then, see, e.g., [Bir+99; Cri+09; HHL06; Hu+12; Kar+00; KMG03]. In
this line of work, many different protocols have been considered. Some are very closely
related to our flooding protocol, where parties forward to a random set of parties, and
some are more advanced, letting parties keep sending to new random peers until a cer-
tain number of recipients reply that they already knew the message. However, this
line of work considers only random failures [KMG03] or incomplete network topolo-
gies [Cri+09; Hu+12] and not adaptive corruptions of a malicious adversary. Hence,
while some of the protocols apply to our setting, their analysis is not. Among other
results, [KMG03] showed how random node failures affect the success probability of a
flooding process similar to ours. For this setting, they derive connectivity bounds similar
to the bounds for logarithmic diameter we present in this work, but only for n→∞.

Kadcast. Kadcast [RT19] is a structured peer-to-peer network for blockchains. The
paper claims that unstructured networks are inherently inefficient because many super-
fluous messages are sent to parties who have already received the message from other
peers. They instead propose a structured network based on Kademlia [MM02], in which
every node has O(log n) neighbors, and the diameter of the graph is also O(log n).
Additionally, their protocol includes a parameter for controlling the redundancy and,
thus, the resistance to attacks. Due to its structured nature, the suggested network is,
however, not secure against adaptive corruption of any kind.

The hidden graph model. Chandran et al. [Cha+15] consider communication locality of
multi-party computation (MPC) protocols, which corresponds to the maximal number
of parties each honest party needs to interact with. They construct an MPC protocol
with a poly-logarithmic communication locality that is secure against adaptive corrup-
tions and that runs in a poly-logarithmic number of rounds. Their protocol uses a
random communication graph, similar to our flooding protocols. However, to be se-
cure against adaptive corruptions, they need to assume that the communication graph
between honest parties remains hidden, i.e., they allow honest parties to communicate
securely without an adversary learning who is communicating with whom. Furthermore,
they only lose bounds on the locality and diameter of the obtained graph by showing
that both are poly-logarithmic.

Message dissemination relying on resource assumptions. Recently, the problem of dis-
seminating messages assuming a constant fraction of honest resources (computational
power, stake, etc.) instead of assuming a constant fraction of honest parties (as assumed
in this work) has received attention. Extending on results from this work, [Liu+22b]
provides an efficient flooding protocol relying on a constant fraction of the resources
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behaving honestly. Their protocols achieve an asymptotic efficiency similar to the pro-
tocol presented in this work. [Cor+22] presents a block dissemination protocol for the
Ouroboros Praos protocol [Dav+18] that also relies on the majority of honest stake
assumption. By using long-lived connections between parties, they prevent a specific
denial-of-service attack possible in the protocol. However, this comes at the cost of
allowing a small fraction of honest parties to be eclipsed.

3.2 Preliminaries

3.2.1 Notation

When describing functionalities, we let P be a set of unique party identifiers (PIDs) and
will leave out session identifiers for clarity of presentation.

As a convention, we use the variable t ∈ N to denote the maximal number of parties
an adversary can corrupt, use the variable n := |P| to represent the total number of
parties in a protocol (except when we state and prove general results about graphs) and
h := n− t to denote the minimal number of honest parties. Whenever we refer to honest
parties, we will refer to parties that have not received any precorrupt or corrupt tokens.

3.2.2 Graphs

In this section, we briefly recap basic graph concepts and derive several concrete bounds
for the diameter of Erdős–Rényi graphs.

3.2.2.1 Basic Definitions

We start by defining undirected graphs, a node’s neighborhood, reachables, and degree.

Definition 3.2.1 (Undirected graph). An undirected graph consists of a set of vertices
V and a set of edges E ⊆ V ×V. For two vertices v, u ∈ V , we interpret the edge {v, u}
as an undirected edge from v to u. For a G which consist of the nodes V and the edges
E we write G = (V, E).

Definition 3.2.2 (Neighbors, reachables and degrees). For a graph G = (V, E) we
define the neighborhood of a node v ∈ V to be

Γ(v) ≜ {u | {v, u} ∈ E} ∪ {v}.

We overload the notation to also work with any subset of vertices S ⊆ V and write

Γ(S) ≜
⋃
v∈S

Γ(v).

Applying the function Γ i times yields Γi, the set of vertices that can be reached from v
in at most i steps,

Γ0(v) ≜ {v} and Γi+1(v) ≜ Γ(Γi(v)).

We further define the set of nodes that can be reached from a node v ∈ V in exactly i
steps recursively as

θ(v, 0) ≜ {v}
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θ(v, i+ 1) ≜ Γi+1(v) \ Γi(v).

We finally define the degree v ∈ V as

deg(v) ≜ |Γ(v)| − 1.

Remark 3.2.1. Note that Γt(v) =
⋃t

i=0 θ(v, i).

We also define some of the notions for directed graphs.

Definition 3.2.3 (Directed graph). A directed graph (digraph) consists of a set of
vertices V and a set of edges E ⊆ V × V. For two vertices v, u ∈ V, we interpret the
edge (v, u) as a directed edge from v to u. For a digraph G with nodes V and edges E
we write G = (V, E).

We will use the same symbol Γ to denote the neighbors of a node or a subset of
nodes for both directed and undirected graphs. When we use the function, it will be
clear from the context if the graph is directed or undirected.

Definition 3.2.4 (Neighbors for directed graphs). For a digraph G = (V, E) we define
the outgoing neighborhood of a node v ∈ V to be

Γ(v) ≜ {u | (v, u) ∈ E} ∪ {v}.

We overload the notation to also work with any subset of vertices S ⊆ V similarly to
how it is done for undirected graphs.

Furthermore, we define the distance between two nodes for both directed and di-
rected graphs.

Definition 3.2.5 (Distance between nodes). Let G = (V, E) be a directed or undirected
graph and let v1, v2 ∈ V. We define the distance from v1 to v2, dist(v1, v2) as the
minimum λ such that v2 ∈ Γλ(v1). If no such λ exists, we define dist(v1, v2) to be ∞.

Finally, we define two properties of graphs which we will use extensively to prove
our results.

Definition 3.2.6 (Distance from node). Let G be a directed or undirected graph, v be
a node in the graph, and λ ∈ N be a distance. The property ϕDist(v,G, d) decides if all
nodes in G are within distance d of v. Formally,

ϕDist(v,G, λ) ≜ ∀v′ ∈ G, dist(v, v′) ≤ λ.

Definition 3.2.7 (Diameter). Let G = (V, E) be a graph. We define the diameter of
a graph to be the smallest λ ∈ N s.t. ∀v1, v2 ∈ V we have that dist(v1, v2) ≤ λ. We
define the property that a graph has a diameter at most λ as

ϕDiam(G,λ) ≜ ∀v ∈ V, ϕDist(v,G, λ).
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3.2.2.2 Erdős–Rényi Graphs

A particular type of random graphs where the edges are chosen from a uniform distri-
bution is called Erdős–Rényi graphs.

Definition 3.2.8 (Erdős–Rényi graphs). An Erdős–Rényi graph is an undirected graph
G = (V, E) where all possible edges are present with probability ρ. That is for any
v, u ∈ V, we have Pr[{v, u} ∈ E] = ρ. When G is such a graph and |V| = n, we write

G
$← G(n, ρ).

Remark 3.2.2 (Expected degree). If G = (V, E)
$← G(n, p) and p = d

n , then the expected
degree of each node is d, i.e., for all v ∈ V,

E[deg(v)] = d. (3.1)

Following from Chernoff Lemma 1.3.1, the degree of all nodes in Erdős–Rényi graphs
concentrates around the expected value.

Lemma 3.2.9 (Maximum degree of Erdős–Rényi Graph). Let n, d ∈ N, ρ := d
n , G =

(V, E)
$← G(n, p). For any δ ∈ [0, 1] we have

Pr[max
v∈V

deg(v) ≥ (1 + δ)d] ≤ n · e−
δ2d
3 . (3.2)

Proof. Let us look at a particular node v ∈ V. For each u ∈ V we introduce a random
variable Xv,u indicating if there is {v, u} ∈ E. We have that

E[Xv,u] = ρ, (3.3)

which again implies that

E[deg(v)] =
∑
u∈V

E[Xv,u] = n · ϕ = d. (3.4)

Chernoff (Lemma 1.3.1) now implies that

Pr[deg(v) ≥ (1 + δ)d] ≤ e−
δ2d
3 . (3.5)

By a union bound, we get that

Pr[max
v∈V

deg(v) ≥ (1 + δ)d] ≤
∑
v∈V

Pr[deg(v) ≥ (1 + δ)d] ≤ ne−
δ2d
3 . (3.6)

3.2.3 Universally Composable Security

The UC framework is a general framework for describing and proving cryptographic
protocols secure. Its main selling point is that protocols can be described and proven
secure in a modular manner while ensuring that the protocol in question remains secure
independently of how one may compose the protocol in question with other protocols.
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We build upon the journal version of UC [Can20] and refer to this for details about the
framework.

In this section, we first provide a brief overview of the security notion of UC.1 Next,
we recap two peculiarities of the framework that are important for our modeling of
delayed adversaries (Section 3.3).

3.2.3.1 Security Definition

A protocol is a collection of programs that is to be executed in a distributed setting. In
UC, the ideal behavior of a protocol is described via. another program dubbed an ideal
functionality. Contrary to a protocol, an ideal functionality is intended to be executed
on just a single machine with which multiple different parties interact. Intuitively, a
protocol is secure if, for any adversary that performs an attack against the protocol,
there exists another adversary attacking the ideal functionality such that the observable
behavior of the protocol and the functionality are indistinguishable.

To make the notion of “observable behavior” precise, the UC framework introduces
an environment Z, which is to provide inputs to the protocol/ideal functionality when
it executes and finally outputs a bit which can be interpreted as a guess upon whether
or not the environment is interacting with the real protocol or the ideal functionality.
For the detailed execution semantics, we refer the reader to [Can20].

Definition 3.2.10 (Execution of protocols (informal)). Let Π be a protocol, A an
adversary and Z an environment. The random variable EXEC(Z,A,Π) is defined as the
binary output that Z gives when executing Π against A.

A functionality can also be viewed as protocol. This definition, therefore, allows one
to formally define what it means for a protocol to implement a functionality.

Definition 3.2.11 (UC emulation). Let Π be a protocol, F an ideal functionality, and
≈ mean that the statistical distance is negligible in the security parameter. The protocol
Π emulates F if

∀A ∃S ∀Z, EXEC(Z,A,Π) ≈ EXEC(Z,S,F).

Protocols are allowed to call ideal functionalities within their implementation. The
UC framework comes with a universal composition theorem which ensures that if a
protocol Π1 UC-emulates an ideal functionality F1 using an ideal functionality F2, then
exchanging all calls to F2 within Π1 with calls a protocol Π2 that UC-emulates F2

preserves the security.
Below we will refer to a protocol that calls an ideal functionality as being in the

“hybrid world” and independent ideal functionalities as being in the “ideal world”.

3.2.3.2 Corruptions

The UC framework has no built-in semantics for the corruption of parties in a protocol.
Instead, it is up to each individual protocol description to describe the semantics of
corruptions whenever the adversary signals that a specific party should be corrupted.

1We do not aim to provide an exhaustive presentation of the framework and all of its subtleties
but merely wish to present just enough intuition such that this chapter can be understood. For details,
please consult the original work [Can20].
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Having no built-in corruption model in UC makes the composition theorem independent
of a particular corruption model. This allows several different corruption models to
be captured within the framework. Some machinery is, however, standard for many
different types of corruptions.

The corruption aggregation ITI. The intuition behind UC security is to translate an
attack on the protocol to an attack on the specification (the ideal functionality) and
thereby show that an adversary does not gain any capabilities interacting with an imple-
mentation that another adversary did not have interacting with the ideal functionality.
That is to show that any attack is not really an attack as it was already allowed by the
specification. This translation between attacks is what is known as a simulator.

For this intuition to make sense when active corruptions are possible, the transla-
tion between attacks on the protocol and the specification must necessarily be corruption
preserving. That is, it should not require more corruptions to attack the ideal function-
ality than it takes to attack the real protocol. To ensure this, an additional Interactive
Turing Machine Instance (ITI) called the corruption aggregation ITI is run aside the
parties in the protocol. Whenever a party is corrupted, it registers as corrupted by the
corruption aggregation ITI. The environment can then query the corruption aggregation
ITI to get an overview of who is currently corrupted. Similarly, the ideal functionality
makes information about who is corrupted available to the environment. Note that the
corruption aggregation ITI is only present for modeling purposes and thus not present
when deploying a protocol. In that way, if the simulator corrupts differently than the
adversary, the environment can immediately distinguish. A depiction of the flow of
information about corruptions can be found in Figure 3.1.

Identity masking function and PIDs. The UC framework allows for very fine-grained
control over what knowledge about corruptions is leaked to the environment by param-
eterizing the corruptions using an identity-masking-function, which parties will apply
to the information that they send to the corruption aggregation ITI. This can allow an
adversary to corrupt only sub-protocols of a party instead of an entire party. We leave
this out of the definitions below for clarity as we will always consider corruptions of
entire parties (known as PID-wise corruptions within the framework).

Standard corruption models within UC. Canetti presents, among others, how adaptive
corruptions and static corruptions can be modeled within UC. A brief recap of this
modeling is provided below.

Instant adaptive corruptions: When an adversary inputs Corrupt on the backdoor tape of a
party, this party is immediately overtaken by the adversary, and the environment
is notified via the corruption aggregation ITI

Static corruptions: If a party receives Corrupt on the backdoor tape as the first message,
this party is immediately overtaken by the adversary, and the environment is
notified via the corruption aggregation ITI. If a Corrupt is received later, it is
ignored.
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Figure 3.1: A depiction of how corruptions are propagated in both the hybrid world and
the ideal world. Corruption requests are passed along the red arrows, and corruption
information is propagated along the blue arrows. In the hybrid world, the adversary
can corrupt either a party (p1, . . . , pn) or a part of the sub-functionality G. If the
adversary corrupts a party pi by sending a message on the backdoor tape of this party,
the party directly informs the corruption aggregation ITI, CAggregation, which makes this
information available to the environment. If the adversary corrupts a sub-part of the
functionality G, this information is recorded in G. Furthermore, when the corruption
aggregation ITI, CAggregation, is queried for information by the environment, it firsts
queries G for its corruption status and merges this information with its own information,
before responding the environment with the aggregated information. For this behavior
to be mimicked in the ideal world, the simulator S needs to make corruption requests
to the functionality F s.t. the information that F makes available to the environment
matches the information the environment obtains by queering CAggregation in the hybrid
world. Furthermore, the simulator needs to make corruption information available to
the environment that corresponds to the information available from the functionality G
in the hybrid world.

3.2.3.3 Time

There is no built-in notion of time in UC. However, the framework’s flexibility allows
for modeling a notion of time using an ideal functionality. In this work, we adopt the
notion of time presented in TARDIS [Bau+21].

In TARDIS, time is modeled via a global functionality dubbed a ticker (written
ḠTicker). The ticker’s job is to keep track of time and enforce that any party has enough
time to perform the actions it wishes to perform between any two time steps. It does
so by allowing parties to register by the functionality and only allows the environment
to progress time once it has heard that this is okay from all registered parties.

Functionalities can query the ticker and get an answer as to whether or not time has
passed since the last time they asked the ticker. Importantly, this query can only be
made by functionalities and not parties. That is, this modeling of time does not tie the
protocols to be designed under a specific synchrony assumption, as parties are oblivious
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to time. The only way that they can observe the passing of time is by asking functional-
ities. This parallels the real world: we do not have raw access to time, only clocks. The
level of information functionalities provided to parties about time determines possible
assumptions about synchrony.

The ticker functionality, as described in TARDIS, is referenced below for complete-
ness.

Functionality ḠTicker

The functionality keeps track of a set of registered parties P, a set of registered
functionalities F , a set of activated parties LP and a set of functionalities LF that
have been informed about the current tick. Initially, P = F = LP = LF := ∅.

Party registration: Upon receiving (Register) from honest party pi add pi to P and
send (Registered) to pi.

Functionality registration: Upon receiving (Register) from functionality F , add F to
F and send (Registered) to F .

Tick: Upon receiving (Tick) from the environment, do the following: If P == LP ,
reset LP := ∅ and LF := ∅ and send (Ticked) to the adversary. Else send
(NotTicked) to the environment.

Ticked request: Upon receiving (Ticked?) from F ∈ F if F ∈ LF , send (NotTicked) to
F , else add F to LF and send (Ticked) to F .

Record party activation: Upon receiving (Activated) from party pi ∈ P, add pi ∈ LP

and send (Recorded) to pi.

Ticked?-convention. In the remainder of this chapter, we adopt the convention (also used
in [Bau+21]) that when describing ideal functionalities, we omit Ticked? queries to ḠTicker

from the description. Functionalities are instead assumed to make this query whenever
they are activated and, in case of a positive answer, perform whatever action described
by Tick. We adopt the convention that, for brevity, we leave out the registration of
functionalities and parties by the global ticker. All of the functionalities and protocols
we consider will, upon initialization as the first thing registered by the global ticker.

How to prevent fast-forwarding? A thing to note about the ticker is that it does not
notify ideal functionalities when time progresses. Instead, it is up to functionalities to
query the ticker to determine whether or not time has passed. Nor does the ticker wait
to hear from functionalities before progressing time.

One could worry that this allows the environment to fast-forward time by activat-
ing the parties without activating ideal functionalities, thereby preventing them from
enforcing timing-based properties. How would a time-bounded channel enforce that
messages are delivered timely if it is not activated often enough to notice that time
passes?

This kind of “attack” is prevented separately in the real and ideal world:
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Real world: In the real world, it is up to the protocol designer to ensure that the attack
cannot happen. This can be done by ensuring parties activate the respective
functionalities before passing (Activated) to the ticker. Intuitively, this corresponds
to the fact that if a protocol is expected to work correctly, then sub-protocols
that depend upon a time should be activated regularly such that they can check
whether or not time has passed.

Ideal world: This attack is particularly troublesome in the ideal world. Here, the envi-
ronment can tell dummy parties to pass on time, and there is no mechanism to
prevent this. Note, however, that when the ticker progresses time, it notifies the
adversary about this. In the ideal world, the adversary is a simulator and is there-
fore programmed when proving the protocol secure. The simulator can, therefore,
ensure to activate functionalities correspondingly to their activation pattern in the
real protocol. Intuitively, if one thinks of the simulator as a translation of attacks
on the real world to the ideal world, then it is a part of the translation of an attack
to ensure that activations are provided in a similar pattern in the ideal world.

Global functionalities within plain UC. TARDIS’ ticker functionality is technically de-
fined within the GUC framework [Can+07]. However, as pointed out in [Bad+20], the
GUC framework has not been updated since its introduction, even though it relies on
the UC framework, which has been revised and updated several times. Furthermore,
[Bad+20] points out that several technical subtleties of the composition theorem of GUC
are under-specified, which, at best, leaves its correctness unproven. The compatibility
with the latest version of UC, which we use in this work, is thus unclear.

However, [Bad+20] introduces machinery to handle “global subroutines”, which can
be used to model similar global setup assumptions to global functionalities, and extends
the composition theorem of UC to cover such “global subroutines” directly within the
version of UC also adapted for this work. They also show examples of global functionali-
ties that can instead be modeled as global subroutines. One of their examples [Bad+20,
Section 4.3] of such a transformation is that they show that [Bad+17] that implements
a transaction ledger using a global clock (similar to the one from [Kat+13]), instead
could have been done directly within UC, by modeling the clock as a global subroutine
instead of a global functionality. We note that ḠTicker is regular (informally, it does not
spawn new ITIs) and as all of the protocols considered in this work are ḠTicker-subroutine
respecting (informally, all subroutines except ḠTicker only communicate with ITIs within
the session). Therefore, we can use the same approach as [Bad+20, Section 4.3] (in
particular, can adopt the same identity bound for the environment to ensure that the
ticker works as expected) to keep our modeling within plain UC.

3.3 Delayed Adversaries within UC

In this section, we describe the semantics of delayed corruptions within the UC frame-
work. First, we introduce the semantics for δ-delayed corruptions via corruption shells.
Next, we revisit the standard adaptive corruptions using corruption shells. Finally, we
relate the standard notion of adaptive corruptions to a 0-delayed adversary.
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We define the notion of a delayed adversary precisely within the UC-model via what
we call δ-delayed corruptions or a δ-delayed adversary. For such an adversary, executing
a corruption takes at least δ time. The delay can be thought of as either the time it
takes to hack into the system or the time it takes to physically orchestrate an attack on
the specific property that hosts the system. To capture this within UC, we introduce
an additional token that an adversary has to use when wanting to corrupt a party. The
two corruption tokens that can be passed to a party are the Precorrupt token and the
Corrupt token. When receiving a Precorrupt token, the party notes the time it received
this token, t, and ignores all Corrupt tokens received before t + δ. When a Corrupt token
is received at or after time t+ δ, the party becomes corrupted in the usual manner.

Below we give a more detailed description of how this corruption model can be
captured within the UC framework.

3.3.1 The δ-delay Shell

Including code that models corruption behavior in each protocol and ideal functionality,
description is tedious and error-prone. Therefore, we separate the concern of describing
corruption behaviors from describing the protocol by introducing protocol transformers,
dubbed shells, which extend a protocol that does not handle corruption tokens into one
that obeys a particular corruption behavior. In particular, we provide the following two
shells for δ-delayed corruptions:

Dδ
Real: This a wrapper around a protocol Π. It ensures that the protocol respects δ-

delayed corruptions. The wrapper preserves the functionality of Π but additionally
ensures that corruptions are executed as expected.

Dδ
Ideal: This is a wrapper around an ideal functionality F . It ensures that the func-

tionality respects δ-delayed corruptions and preserves the functionality of F but
additionally ensures that corruptions are executed as expected.

Both shells intuitively work in the same way: They track when Precorrupt tokens are
delivered and only accept corruption tokens for a particular party δ time later. Having
two different shells is necessary as the protocol shell needs to wrap the individual ITMs
executing the protocol, whereas the ideal shell needs to wrap only the ITM running the
ideal functionality.

Additionally, both shells allow the first message sent to a specific party to initialize
the precorruption time. The delay shells for real parties ensure to use this initialization
option when an inner protocol sends a message to a sub-routine for the first time. This
ensures that the time of precorruption is inherited when new sub-routines are spawned
and thereby induces the natural behavior for PID-wise corruptions, i.e., that any sub-
routine can be corrupted no later than the routine that spawned it. The initialized
precorruption time is allowed to be negative. This allows the environment to start the
protocol in a state where some parties are precorrupted in the past and hence be able
to immediately corrupt these parties at the start of the protocol (similar to letting some
parties be statically corrupted).

The shells that wrap the individual party’s ITMs do not have access to query the
ticker for the time, whereas the ideal shells can do this freely. We solve this by letting the
DReal spawn a corruption-clock (written FCorruptionClock) which precisely allows the shells
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to access time. Importantly, this does not reintroduce a global synchrony assumption,
as our shells prevent the inner protocols from communicating with the corruption clock.
Therefore, the corruption clock is only an artifact of our modeling and will not appear
when running the protocol.

Functionality FCorruptionClock

The functionality maintains a counter Time. Initially, Time := 0.

Time?: When receiving (Time?) from a party pi ∈ P it returns (Time, Time) to pi.

Tick: It updates Time := Time+ 1.

When describing DReal, we will leave out calls to FCorruptionClock for brevity, but
these happen each time the shell uses any notion of time.

We amend the corruption aggregation ITI presented in [Can20] also to make infor-
mation about the precorruptions an adversary has used available to the environment
(and, similarly, the ideal functionalities). This prevents a simulator from using more
precorruption tokens or corrupting faster than the real adversary.

Aside from ensuring the protocol corruption delays are respected, the DIdeal addition-
ally propagates both precorruption and corruption-tokens to the “inner functionality”
(the functionality that the shell is a wrapper around). This is done to ensure that the
simulator appended to the ideal functionalities can gain functionality-specific powers
when performing a corruption. For example, it might be that a channel does not need
to respect delivery guarantees when the sender gets corrupted (for an example of this,
see Section 3.5.1).

Below we provide formal descriptions of both shells.

Function Dδ
Real(Π)

The shell wraps each party pi ∈ P in a small wrapper that maintains a variable
PrecorruptionTimei. Initially, PrecorruptionTimei := ⊥. When receiving pre-
corruptions and corruptions, the wrapper has the behavior described below. The
wrapper also filters out any communication with FCorruptionClock, and on all other
inputs, it simply forwards the inputs/outputs to/from the original protocol.

Initialization: If pi receives (Initialize, τ) as the first message, then the party updates
PrecorruptionTimei := τ and if τ ̸= ⊥ then also notifies the corruption-
aggregation ITI.

Precorruption: If pi ∈ P receives Precorrupt at time τ , then the party first notifies the
corruption-aggregation ITI by sending (Precorrupt, pi) to this machine. It then
updates PrecorruptionTimei := τ .

Corruption: When pi receives Corrupt at time τ , then pi checks if
PrecorruptionTimei + δ ≤ τ . If that is not the case, the request is
ignored. Otherwise, the party first notifies the corruption-aggregation ITI by
sending (Corrupt, pi) to this machine, and then it corrupts pi by forwarding



Delayed Adversaries within UC 65

Corrupt to Π. Each time pi is activated after this, it sends its entire local
state of the inner protocol to the adversary and forwards all messages m
(assuming that m includes both content and recipient) that are written on
the backdoor tape of pi.

Whenever the shell of pi detects that the inner protocol sends a message to a
new sub-routine for the first time, it sends (Initialize, PrecorruptionTimei) to the
subroutine before forwarding the message of the inner protocol.
Furthermore, the shell starts a separate corruption aggregation ITI. It maintains
two lists, Precorrupted, and Corrupted, that initially are both empty. The cor-
ruption aggregation ITI has the following behavior:

Precorruption Registration: When receiving a (Precorrupt, p) from a party p it sets
Precorrupted := p :: Precorrupted.

Corruption Registration: When receiving a (Corrupt, p) from a party p it sets
Corrupted := p :: Corrupted.

Corruption Status: When receiving CorruptionStatus from the environment it queries
all sub-functionalities of the protocol for their corruption status and up-
dates the Precorrupted and Corrupted-lists accordingly. Finally, it sends
(Precorrupted, Corrupted) back to the environment.

Function Dδ
Ideal(F)

The shell wraps the functionality in a wrapper that maintains two lists
Precorrupted and Corrupted that initially are both empty. Furthermore, it has
a map PrecorruptionTimeMap : P → Time and a counter to keep track of time
Time, which is initially instantiated as 0. When receiving precorruptions, corrup-
tions, and corruption-status requests, it has the following behavior, and on all other
inputs/outputs, it forwards the inputs to/from F .

Initialization: If the functionality receives (Initialize, τ) at the port belong-
ing to p as the first message for this party, then the party updates
PrecorruptionTimeMap[p] := τ . If τ ̸= ⊥, then it also updates
Precorrupted := p :: Precorrupted, and forwards (Initialize, τ) to the in-
ner functionality.

Precorruption: When receiving (Precorrupt, p) and p is a valid PID of a dummy party,
then it adds the current time, Time, to PrecorruptionTimeMap[p] := Time

and updates Precorrupted := p :: Precorrupted. Furthermore, it propa-
gates (Precorrupt, p) to F .

Corruption: When receiving (Corrupt, p) where p is a valid PID of a dummy party,
then the functionality checks if PrecorruptionTimeMap[p] + δ ≤ Time. If
that is the case, it updates Corrupted := p :: Corrupted and returns to the
adversary all the values received from p and output to p so far. From now on,
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Figure 3.2: A depiction of the security statement for a protocol that implements an
ideal functionality F using the functionality G against a δ-delayed adversary.

inputs from p are ignored but are given via the adversary’s backdoor tape.
Furthermore, it propagates (Corrupt, p) to F .
If the request is sent too early, it is ignored.

Inputs: If the functionality receives (Input, p, v) from the adversary and p ∈
Corrupted, then v is forwarded to F as if it was directly input by p to F .

Corruption Status: When receiving CorruptionStatus from the environment it sends
(Precorrupted, Corrupted) back to the environment.

Tick: The functionality updates Time := Time+ 1.

The additional (Input, p, v) command accepted by the ideal shell allows an adversary
to input a message v on behalf of party p if p is corrupted. This follows how standard
byzantine corruptions are treated and modeled in the UC framework.

We next formally define what it means for a protocol to securely implement a func-
tionality against a δ-delayed adversary, see also Figure 3.2 for a graphical depiction.

Definition 3.3.1 (UC-security against delayed adversaries). Let δ ∈ N. We say that a
protocol Π securely implements an ideal functionality F against a δ-delayed adversary
when Dδ

Real(Π) securely implements Dδ
Ideal(F) in the usual UC sense [Can20], i.e., if

∀A ∃S ∀Z, EXEC(Z,A,Dδ
Real(Π)) ≈ EXEC(Z,S,Dδ

Ideal(F)).

Note that security against a delayed adversary is defined both for functionalities
that have special behavior defined for receiving precorruptions and functionalities that
do not have any such behavior defined, as the default for protocols/functionalities is to
ignore unrecognized inputs.
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3.3.2 Relating Corruption Models

In this section, we relate the notion of a 0-delayed adversary to the standard notion
of an adaptive adversary in UC. We further show that any protocol secure against
a fast adversary is also secure against a slower adversary. These results allow us to
reuse cryptographic constructions, which are already proven secure modularly when
implementing larger constructions.

Byzantine corruptions and 0-delayed corruptions. To showcase the generality of the δ-
delayed corruption model, we relate this model to the standard model of adaptive
Byzantine corruptions defined in UC. To quantify how these notions relate, we intro-
duce two Byzantine shells similar to the delay shells. The byzantine shells are meant to
precisely encapsulate the corruption model as presented in [Can20]. We believe these
are of independent interest as by using these, it can be avoided to clutter the protocol
and functionality description with a specific corruption model.

Function BReal(Π)

The shell adds the following behavior to each party pi ∈ P. If any other inputs are
received than the ones below, it is the original code of the party that is executed.

Corruption: If pi ∈ P receives Corrupt then the party first notifies the corruption-
aggregation ITI by sending (Corrupt, pi) to this machine.

Each time pi is activated after this, it sends its entire local state of the inner
protocol to the adversary and forwards all messages m (assuming that m
includes both content and recipient) that are written on the backdoor tape
of pi.

Furthermore, the shell runs a separate corruption-aggregation ITI. It maintains a
list Corrupted, which initially is set to be the empty list and has the following
behavior:

Registration: When receiving a (Corrupt, p) from a party p it sets Corrupted := p ::
Corrupted.

Corruption Status: When receiving CorruptionStatus from the environment it queries
all sub-functionalities of the protocol for their corruption status and updates
the Corrupted-list accordingly. Finally, it sends Corrupted back to the en-
vironment.

Function BIdeal(F)

The functionality maintains a list of corrupted parties, Corrupted, initially set to
be the empty list. Upon receiving the following

Corruption: If the functionality receives (Corrupt, p) from the adversary and p is a
valid PID of the dummy parties, it updates Corrupted := p :: Corrupted and
returns to the adversary all the values received from p and output to p so far.
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From now on, inputs from p are ignored but are given via the adversary’s
backdoor tape. Furthermore it propagates (Corrupt, p) to F .

Inputs: If the functionality receives (Input, p, v) from the adversary and p ∈
Corrupted then v is forwarded to F as if it was directly input by p to F .

Corruption Status: When receiving CorruptionStatus from the environment it sends
Corrupted back to the environment.

Security against 0-delayed adversary implies security in the standard model and vice
versa if the implemented functionality ignores precorruption and initialization tokens.
We encapsulate this intuition in the theorem below.

Theorem 3.3.2. Let Π be a protocol and F an ideal functionality that ignores pre-
corruptions and initializations. BReal(Π) securely implements BIdeal(F) if and only if
D0

Real(Π) securely implements D0
Ideal(F).

Formally,

∀A ∃S ∀Z, EXEC(Z,A,BReal(Π)) ≈ EXEC(Z,S,BIdeal(F))
⇐⇒ ∀A′ ∃S ′∀Z ′, EXEC(Z ′,A′,D0

Real(Π)) ≈ EXEC(Z ′,S ′,D0
Ideal(F)).

(3.7)

Proof Sketch. We prove the two directions of the implication individually.

“=⇒”: We let A′ be any adversary and construct an adversary A by wrapping the
original adversary A′ with a shell that forwards all inputs/outputs except precor-
ruptions to/from A′. Whenever A receives a Precorrupt directed to pi from A′ it
forwards (Precorrupt, pi) to the environment instead. We now use the LHS of Equa-
tion (3.7) to obtain a simulator S s.t.

∀Z, EXEC(Z,A,BReal(Π)) ≈ EXEC(Z,S,BIdeal(F)). (3.8)

Given S we construct S ′ by running S inside S ′. Each time S outputs (Precorrupt, pi)
to the environment then S ′ outputs (Precorrupt, pi) to D0

Ideal(F). All other inputs
and outputs are directly forwarded to and from S. Note that precorruptions are
ignored by F , and therefore F does not change its behavior based upon these.

Let us now, for the sake of contradiction, assume that there exists some environ-
ment Z ′ that can distinguish against A′ and S ′, i.e.,

EXEC(Z ′,A′,D0
Real(Π)) ̸≈ EXEC(Z ′,S ′,D0

Ideal(F)) (3.9)

Let us now show how to construct an environment, Z, that can distinguish for the
byzantine setting and thereby contradict Equation (3.8).

We build Z by running Z ′ inside and forwarding all inputs and outputs to Z ′. Z
only deviates from Z ′ in the two cases below:

• Whenever a CorruptionStatus command is issued by Z ′ to the corruption ag-
gregation ITI, we amend the answer with an additional list of precorruptions
we have received from A so far.
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• Whenever a (Initialize, τ) command is sent to some party, it is not forwarded by
Z but instead recorded as a precorruption of this party. This does not change
the protocol’s behavior nor the ideal functionality, as these are ignored.

In particular, Z forwards the guess on which world it is placed in from Z ′.

We observe that

EXEC(Z,S,BIdeal(F)) ≈ EXEC(Z ′,S ′,D0
Ideal(F)), (3.10)

and
EXEC(Z,A,BReal(Π)) ≈ EXEC(Z ′,A′,D0

Real(Π)). (3.11)

Together with Equation (3.9), this contradicts Equation (3.8) and thus concludes
the case.

“⇐=”: The proof of this case mirrors the other case. We are now given A and con-
struct A′ by sending Precorrupt-tokens just before Corrupt-tokens. From the RHS of
Theorem 3.3.2, we get a simulator S ′ which we use to construct S by forwarding
everything except Precorrupt-tokens. Finally, we assume for the sake of contradic-
tion that there exists a Z that can distinguish, build an environment Z ′ using this
(removing Precorrupt-tokens and initializations), and derive a contradiction similar
to the other case.

Note that the above theorem allows reusing constructions that are proven secure
against a standard adaptive adversary when building complex systems that are to be
secure against a 0-delayed adversary.

Lifting security to weaker adversaries. If protocols that are proven secure within different
corruption models are composed, it gets hard to identify the final security guarantee
provided by the composed construction. Intuitively, one would presume that a protocol
that is proven secure against an adversary able to do “fast” corruptions is also secure
against an adversary only able to do “slow” corruptions. Using precise shells to quantify
corruption speed lets us capture this intuition in the lemma below.

Theorem 3.3.3 (Lifting Security to Slower Corruptions). Let δ, δ′ ∈ N, s.t. δ ≤ δ′, let
Π be a protocol, and let F be an ideal functionality. If Dδ

Real(Π) securely implements
Dδ

Ideal(F), then Dδ′
Real(Π) securely implements Dδ′

Ideal(F).
Formally,

∀A,∃S, ∀Z, EXEC(Z,A,Dδ
Real(Π)) ≈ EXEC(Z,S,Dδ

Ideal(F))

=⇒ ∀A′, ∃S ′,∀Z ′, EXEC(Z ′,A′,Dδ′
Real(Π)) ≈ EXEC(Z ′,S ′,Dδ′

Ideal(F)).
(3.12)

Proof. LetH be the hypothesis (LHS of the implication), and letA′ be an adversary. We
define Filter(A, δ) as a wrapper around an adversary that filters out corruption requests
that are too early w.r.t. δ.

Using H, we know that there exists a simulator S s.t.

∀Z, EXEC(Z,Filter(A′, δ′),Dδ
Real(Π)) ≈ EXEC(Z,S,Dδ

Ideal(F)). (3.13)
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Let us now show,

∀Z, EXEC(Z,Filter(A′, δ′),Dδ
Real(Π)) ≈ EXEC(Z,S,Dδ′

Ideal(F)). (3.14)

Assume for the sake of contradiction that there exists an environment Z that can distin-
guish in Equation (3.14). We use this to build an environment Z ′ which can distinguish
in Equation (3.13) with at least as big an advantage. Z ′ works by forwarding everything
to and from Z. Except if, at any point in time, there is a Precorrupt-token followed by a
Corrupt send with strictly less than δ′ between them, then Z ′ immediately guesses that
it is in the ideal case.

Every time this happens, the environment is correct, and every time this does not
occur, the execution is precisely similar to that of Equation (3.13) this implies Equa-
tion (3.14).

We now define S ′ ≜ S and let Z ′ be any environment. We specialize Equation (3.14)
with Z ′ and obtain

EXEC(Z ′,Filter(A′, δ′),Dδ
Real(Π)) ≈ EXEC(Z ′,S,Dδ′

Ideal(F)). (3.15)

Furthermore,

EXEC(Z ′,Filter(A′, δ′),Dδ
Real(Π)) ≈ EXEC(Z ′,Filter(A′, δ′),Dδ′

Real(Π)) (3.16)

≈ EXEC(Z ′,A′,Dδ′
Real(Π)). (3.17)

Equation (3.16) holds as if early corruptions are ignored, then Dδ
Real(Π) and Dδ′

Real(Π) are
identically distributed. Equation (3.17) holds as it is not observable by the environment
if the filter or the shell ignores the corruption. Together Equations (3.15) and (3.17)
finishes the proof.

Note that if one considered a simpler model with just one corruption token and
a subsequent automatic effectuation of the corruption a certain time after such token
was input (instead of a model like ours with separate tokens for precorruptions and
corruptions), then Theorem 3.3.3 would not hold. The reason is that in such a model,
a fast adversary would not be able to imitate a slow adversary. Hence, in such a model,
a fast adversary would not be strictly “stronger” than a slow adversary.

Theorems 3.3.2 and 3.3.3 together imply that any protocol that is secure against a
standard adaptive adversary in UC is also secure against any δ-delayed adversary.

3.4 Concrete Bounds for Diameters of Erdős–Rényi Graphs

The proofs in this section are inspired by proofs in [BHK20].

3.4.1 Logarithmic Diameter

This section is dedicated to proving that an Erdős–Rényi graph with a constant average
degree d has a logarithmic diameter except with a probability negligible in the degree
d.
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Lemma 3.4.1 (Erdős–Rényi graphs with logarithmic diameter). Let n ∈ N, d ∈ R,
γ, δ1, δ2 ∈ [0, 1], and ρ := d

n . Furthermore, let α ∈ R, let G = (V, E)
$← G(n, ρ), and let

t0 :=
log

(
γn

(1−δ1)d

)
log((1−δ2)α)

+ 1. If

e−dγ +
γα

1− γ
≤ 1 and (1− δ2) · α > 1, (3.18)

then

Pr[¬ϕDiam(G, t0 + 1)] ≤ n

(
e−

δ21d

2 + t0e
− δ22α(1−δ1)d

2

)
+ e−n·(dγ2−2). (3.19)

Proof. First, we bound the probability that a single node cannot reach a constant frac-
tion of all nodes within a logarithmic number of steps. For v ∈ V let Dv := (|Γt0(v)| <
γ · n) i.e., the event that v does not reach at least a γ-fraction of the nodes within t0
steps. Our goal is now to bound Pr[Dv]. Let

A0 := (deg(v) > (1− δ1)d) (3.20)

i.e., the event that v’s degree is less than (1− δ1)d, and let

Bi := (|θ(v, i+ 1)| > (1− δ2)α|θ(v, i)|) , Ci :=
(
|Γi(v)| > γn

)
, and Ai := Bi ∨ Ci,

(3.21)
for i = 1, . . . , t0 − 1. We note that

t0 =
log
(

γn
(1−δ1)·d

)
log((1− δ2)α)

+ 1 ⇐⇒ (1− δ1)d((1− δ2)α)
t0−1 = γn. (3.22)

Therefore, if A0 and B1, . . . , Bt0−1 holds, then

|Γt0(v)| =
t0∑
i=0

|θ(v, i)|

= 1 +

t0∑
i=1

|θ(v, i)|

= 1 +

t0−1∑
i=0

|θ(v, i+ 1)|

≥ 1 +

t0−1∑
i=0

((1− δ2)α)
i|θ(v, 1)|

≥ 1 + (1− δ1)d

t0−1∑
i=0

((1− δ2)α)
i

≥ (1− δ1)d((1− δ2)α)
t0−1

= γn.

(3.23)

Similarly, if just some Ci holds then we get that |Γt0(v)| > γn. Therefore, by contrapo-
sition, we have that(

t0−1∧
i=0

Ai =⇒ ¬Dv

)
⇐⇒

(
Dv =⇒

t0−1∨
i=0

¬Ai

)
. (3.24)
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Hence, we get the following:

Pr[Dv] ≤ Pr

[
t0−1⋃
i=0

¬Ai

]

≤
t0−1∑
i=0

Pr

¬Ai |
⋂
j<i

Aj


= Pr[¬A0] +

t0−1∑
i=1

Pr

¬Ai |
⋂
j<i

Aj


= Pr[¬A0] +

t0−1∑
i=1

Pr

¬Bi ∩ ¬Ci |
⋂
j<i

Aj


= Pr[¬A0] +

t0−1∑
i=1

Pr

¬Bi |
⋂
j<i

Aj ∩ ¬Ci

 · Pr
¬Ci |

⋂
j<i

Aj


≤ Pr[¬A0] +

t0−1∑
i=1

Pr

¬Bi |
⋂
j<i

Aj ∩ ¬Ci


= Pr[¬A0] +

t0−1∑
i=1

Pr

¬Bi |
⋂

1≤j<i

Bj ∩ ¬Ci ∩A0

 .

(3.25)

We now state and prove a bound on the individual probabilities inside the sum.

Claim 3.4.2 (Fast expansion to small fraction). For any i ∈ {1, . . . , t0 − 1} we have

Pr

¬Bi |
⋂

1≤j<i

Bj ∩ ¬Ci ∩A0

 ≤ e−
δ22α(1−δ1)d

2 . (3.26)

Proof. We look at the probability space where
⋂

1≤j<iBj ∩ ¬Ci ∩ A0 holds. Let r :=

|θ(v, i)| and let U := V \ Γi(v). For each u ∈ U , we introduce a random variable Xu

which describes if u is in θ(v, i + 1). As the probability that there is an edge between
any two nodes is independent of other edges,

Pr[Xu = 1] = 1− (1− ρ)r ≥ 1− e−ρr. (3.27)

The size of θ(v, i+ 1) is the sum of these independent variables, i.e.,

|θ(v, i+ 1)| =
∑
u∈U

Xu. (3.28)

As we are looking at the case where ¬Ci, we have |U | ≥ (1− γ)n which by linearity of
expectations gives us that

E[|θ(v, i+ 1)|] ≥ n(1− γ)
(
1− e−ρr

)
. (3.29)
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For α ∈ N, we subtract α · r on each side of the inequality above and get

E[|θ(v, i+ 1)|]− αr ≥ n(1− γ)

(
1− e−ρr − αr

n(1− γ)

)
= n(1− γ)

(
1− e−d r

n − αr

n(1− γ)

)
.

(3.30)

We let x = r
n and set f(x) = 1 − e−dx − x α

(1−γ) . We differentiate this twice and find

f ′′(x) = −d2e−dx ≤ 0, which implies that f is concave, which again means that the
minimum values are at one of the endpoints of the function. As x ∈ [0, γ] it is enough
to check that f(0) ≥ 0 and f(γ) ≥ 0 which will imply that E[|θ(v, i+ 1)|] ≥ α · |θ(v, i)|.

f(0) = 1− e−d·0 − 0 = 0. (3.31)

f(γ) = 1− e−dγ − γα

1− γ
≥ 0 ⇐⇒ e−dγ +

γα

1− γ
≤ 1. (3.32)

We now use Chernoff (Lemma 1.3.1) to bound the probability that this is not the case
which means that for any δ2 ∈ [0, 1], we get that

Pr[|θ(v, i+ 1)| ≤ (1− δ2)α|θ(v, i)|] ≤ e−
δ22α|θ(v,i)|

2 . (3.33)

However,
⋂

j<iBj ∩A0 and (1− δ2) · α ≥ 1 ensures that

|θ(v, i)| ≥ ((1− δ2)α)
i · (1− δ1)d

≥ (1− δ1)d.
(3.34)

Hence, within the probability space where
⋂

1≤j<iBj ∩ ¬Ci ∩A0 holds we have that

Pr[|θ(v, i+ 1)| ≤ (1− δ2)α|θ(v, i)|] ≤ e−
δ22α(1−δ1)d

2 . (3.35)

Using Claim 3.4.2. and Chernoff (Lemma 1.3.1) to bound A0 we get that

Pr[Dv] ≤ e−
δ21d

2 +

t0−1∑
i=1

e−
δ22α(1−δ1)d

2

≤ e−
δ21d

2 + t0e
− δ22α(1−δ1)d

2 .

(3.36)

Furthermore, by the union-bound, we get that

Pr[exists v ∈ V s.t. Dv] = Pr

[⋃
v∈V

Dv

]
≤
∑
v∈V

Pr [Dv]

≤ n ·
(
e−

δ21d

2 + t0e
− δ22α(1−δ1)d

2

)
.

(3.37)
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We now continue to show that for any two non-overlapping sets S, S′ ⊆ V where |S| ≥ γn
and |S′| ≥ γn, we have with very high probability that there is an edge between S and
S′.

Pr[No edges from S to S′] ≤ ((1− ρ)γn)γn

=

((
1− d

n

)n)γ2n

≤ e−d·nγ2

(3.38)

We now bound the probability that there exist any two such sets of size γn with no
edges between them. There are less than 22n such pairs of sets. Hence, by the union
bound, we get that

Pr[exist two non-overlapping sets of size ≥ γn that are not connected]

≤ 22ne−d·nγ2

≤ e−n·(dγ2−2).

(3.39)

A final union-bound on the probabilities for all of the bad events concludes the proof,
which shows that such a graph has diameter t0+1 except with negligible probability.

3.4.2 Diameter 2

Below we show that an Erdős–Rényi graph can achieve a constant diameter (a diameter
of just 2 to be precise) by selecting a square root number of neighbors.

Lemma 3.4.3 (Erdős–Rényi graphs with diameter 2). Let n ∈ N, k ∈ R, and ρ :=
√

k
n .

For G = (V, E)
$← G(n, ρ) then

Pr[¬ϕDiam(G, 2)] ≤ n2 · e−k· (n−2)
n . (3.40)

Proof. We look at a pair of vertices v, u ∈ V and let Xv,u indicate if u is not reachable
from v in two steps. Let w ∈ V be an intermediary node. We have Pr[{v, w} ∈ E] = ρ
and Pr[{w, u} ∈ E] = ρ and thus the probability that either of these is missing is 1−ρ2.
As there are n − 2 possible intermediary nodes, we get by the exponential inequality
that

Pr[Xv,u = 1] = (1− ρ2)n−2

≤ e−ρ2·(n−2)

= e−k· (n−2)
n .

(3.41)

There are
(
n
2

)
such pairs of nodes which by the union bound gives that:

Pr[exists v, u ∈ V s.t.Xv,u = 1] ≤
∑
v,u∈V

Pr[Xv,u = 1]

=

(
n

2

)
· e−ρ2·(n−2)

≤ n2 · e−k· (n−2)
n

(3.42)

If there are no such pairs, then all vertices can be reached from all vertices in at most
2 steps.
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3.5 Functionalities

In this section, we define a time-bounded channel between parties and a flooding func-
tionality. The functionalities that we present are:

MessageTransfer: This functionality allows one party to send messages to another. This
is modeling a point-to-point channel.

Flood: This functionality allows all honest parties to disseminate to all other parties.

Conventions for ideal functionalities. Our functionalities need to maintain a counter
which is incremented each time a tick happens (similarly to what DIdeal does). For
clarity of presentation, we describe our functionalities without explicitly mentioning
this but instead describe them as having direct access to time. Furthermore, we define
the functionalities without specifying the corruption model as we will use the shells
described in Section 3.3 to make the corruption-model explicit when implementing the
functionalities.

Additionally, the behavior of both our functionalities depends on which parties
are precorrupted and which are corrupted. Therefore they both maintain two sets:
Precorrupted and Corrupted, which are initially empty. These are updated by the
following activation rules, which we do not make explicit in the functionalities below for
clarity of presentation.

Precorrupt: Upon receiving (Precorrupt, pi) or an initialization that changes party pi’s
status to precorrupted, it sets Precorrupted := Precorrupted ∪ {pi}.

Corrupt: Upon receiving (Corrupt, pi) it sets Corrupted := Corrupted ∪ {pi}.

Furthermore, both of our ideal functionalities are parameterized by a message that
can be propagated, which we denote Messages.

3.5.1 MessageTransfer

In this section, we present a basic functionality that allows a party to send messages
to other parties. This is similar to the point-to-point channel presented in [Bau+21],
but instead of hardcoding whether we assume AMS (as done in [Bau+21]) or not, we
introduce an additional parameter which is the time an honest party needs to stay
honest for ensuring delivery of the message.

Functionality Fσ,∆
MessageTransfer(ps, pr)

The functionality is parameterized by two parties ps (the sender) and pr (the re-
ceiver), and a time σ which parties need to stay honest for the delivery guarantee
∆ to apply. It maintains a mailbox for pr, Mailbox : Messages.

Initialize: Initially, Mailbox := ∅.

Send: After receiving (Send,m) from ps it leaks (Leak, ps,m) to the adversary.

Get Messages: After receiving (GetMessages) from pr it outputs Mailbox to party pr.
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Set Message: After receiving (SetMessage,m) from the adversary, the functionality
sets Mailbox := Mailbox ∪ {m}.

At any time, the functionality automatically enforces the following property:

1. Let m be a message that is input for the first time by an honest party ps ̸∈
Corrupted at some time τ . If ps ̸∈ Corrupted at time τ + σ, then by time
τ +∆ it is ensured that m ∈ Mailbox.

The property is ensured by the functionality automatically making the minimal
possible additional calls with SetMessage.

Note that building a construction using F0,∆
MessageTransfer exactly corresponds to as-

suming AMS whereas assuming Fσ,∆
MessageTransfer against a δ-delayed adversary with δ < σ

corresponds to not assuming AMS.

3.5.2 Flood

The ideal functionality that we present here provides the guarantees of a flooding net-
work, i.e., that all information some honest party knows is disseminated to all other
parties within a bounded time.

Functionality F∆
Flood

The functionality is parameterized by a set of parties P and a delivery guarantee ∆.

Furthermore, it keeps track of a set of messages for each party Mailbox : P →
Messages. These sets contain the messages that each party will receive after
fetching.

Initialize: Initially, Corrupted := ∅ and Mailbox[pi] := ∅ for all pi ∈ P.

Send: After receiving (Send,m) from pi it leaks (Leak, pi,m) to the adversary.

Get Messages: After receiving (GetMessages) from pi it outputs Mailbox[pi] to party
pi.

Set Message: After receiving (SetMessage,m, pi) from the adversary, the functionality
sets Mailbox[pi] := Mailbox[pi] ∪ {m}.

At any time after all parties have been initialized, the functionality automatically
enforces the following two properties:

1. Let m be a message that is input for the first time to an honest party pi ̸∈
Precorrupted∪ Corrupted at some time τ . By time τ +∆ it is ensured that
∀pj ∈ P \ (Corrupted ∪ Precorrupted) it holds that m ∈ Mailbox[pj ].

2. Let m be a message at some time τ is in the mailbox of an honest party
pi ̸∈ Precorrupted ∪ Corrupted i.e., m ∈ Mailbox[pi]. By the time τ +∆ it
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is distributed to all honest mailboxes, i.e., for any party pj ∈ P\(Corrupted∪
Precorrupted) it holds that m ∈ Mailbox[pj ].

The functionality automatically ensures the properties, making the minimal possi-
ble additional calls with SetMessage.

3.6 Implementations of Flood

In this section we will present the following protocols that implement Flood:

ΠNaiveFlood: Everybody simply sends to everybody.

ΠERFlood: Everybody sends to each other party with some fixed probability ρ.

We provide two types of implementations for Flood. A naive approach where ev-
erybody sends to everybody and a more efficient one where each party sends to their
neighbors with probability ρ. The latter construction allows us to reuse the theoretic
foundation of Erdős–Rényi graphs in the distributed systems setting and achieve a va-
riety of properties.

3.6.1 Naive Flood

We present here a protocol that implements Flood with a message complexity that is
quadratic in the number of messages input to the system.

The protocol ΠNaiveFlood works straightforwardly by a peer sending and relaying any
non-relayed message to all other parties. As everybody sends to everybody, the protocol
achieves a minimal diameter and resilience against relatively fast adaptive adversaries
at the cost of significant communication overhead and neighborhood.

Protocol ΠNaiveFlood

Each pair of parties pi, pj ∈ P has access to a channel Fσ,∆
MessageTransfer(pi, pj). Each

party pi ∈ P keeps track of a set of relayed messages Relayedi.

Initialize: Initially, all parties initialize their channel between them and set
Relayedi := ∅.

Send: When pi receives (Send,m) they now forward inputs (Send,m) to
Fσ,∆
MessageTransfer(pi, pj) for all pj ∈ P and set Relayedi := Relayedi ∪ {m}.

Get Messages: When pi receives (GetMessages) they let M be the union of the mes-

sages they achieve by calling (GetMessages) to Fσ,∆
MessageTransfer(pi, pj) for all

pj ∈ P, and outputs M .

Furthermore, once in every activation each honest pi let M be the union of the
messages they achieve by calling (GetMessages) to Fσ,∆

MessageTransfer(pi, pj). For any

m ∈ M \ Relayedi, pi inputs (Send,m) to Fσ,∆
MessageTransfer(pi, pj) for all pj ∈ P, and

sets Relayedi := Relayedi ∪ {m}.
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An obvious attack on this protocol an adversary might try to perform is to try to
corrupt the sender between the time τ that a message is sent and time τ + σ where
the delivery guarantee from the underlying Fσ,∆

MessageTransfer applies. An adversary that

succeeds with this can violate both Properties 1 and 2 of F∆
Flood. However, σ-delayed

adversaries do not have sufficient time to succeed with this as the properties only need
to be upheld for parties that are neither corrupted nor precorrupted when they try to
send the message. Below we explicitly2 prove that against such adversaries, the naive
protocol realizes F∆

Flood.

Lemma 3.6.1. Let σ,∆ ∈ N. The protocol ΠNaiveFlood perfectly realizes F∆
Flood in the

Fσ,∆
MessageTransfer-hybrid model against a σ-delayed adversary.

Proof. We construct a simulator S.

1. S simulates all parties pi ∈ P inside it self.

2. When receiving (Leak, pi,m) from F∆
Flood the simulator inputs (Send,m) to pi (run-

ning inside S).

3. When receiving (SetMessage,m) from the adversary on the port belonging to func-

tionality Fσ,∆
MessageTransfer(pi, pj), S forwards (SetMessage,m, pj) to F∆

Flood.

4. Whenever A corrupts some pi ∈ P, S corrupts pi and sends the simulated internal
state to A. From then on the simulated pi (inside S) follows A’s instructions.

5. Whenever the ḠTicker notifies S about the passing of time, S ensures to activate
F∆
Flood.

As protocol, functionality, and simulator are all deterministic, it is enough to argue
that the I/O behavior of A interacting with ΠNaiveFlood is equal to the I/O behavior of
S interacting with F∆

Flood to argue perfect indistinguishability. The send command is
invoked at the exact same times in the real execution, and in the execution inside S,
this produces the same behavior. Furthermore, for any send command that is invoked
at time τ by an honest party (neither precorrupted nor corrupted), there will be a
set-message command within τ + ∆ for all honest parties in the real protocol as a σ-
delayed adversary does not have time to violate the delivery property of the underlying
Fσ,∆
MessageTransfer(pi, pj), and therefore Property 1 is upheld. Similarly, the relaying of

messages in the real protocol ensures that messages will be delivered by the adversary
according to the properties of F∆

Flood in the real protocol (inside S and therefore also in
the ideal) which ensures Property 2.

3.6.2 Efficient Flood

We now present a more efficient version of Flood. The idea is simple: Instead of re-
laying messages to all parties, each party flips a coin for each neighbor that decides

2In [Nie03, Chapter 3, p. 111], it is shown that it is enough to argue correct realization to achieve
secure realization for any protocol which leaks all I/O behavior to the adversary. One may be led
to believe that this result directly applies to ΠNaiveFlood, but as (GetMessages) inputs (and corresponding
outputs) are hidden from the adversary, this is not the case.
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if a particular message should be forwarded to this party. Compared to the naive im-
plementation of Flood presented in the previous section, the protocol presented here
will have significantly smaller neighborhoods at the cost of a larger diameter in the
communication graph (the parameter ∆ of Flood). Furthermore, the construction can
only tolerate adversaries slightly more delayed than those the naive protocol can tolerate.

The protocol ΠERFlood works by letting all parties relay and send messages to a
different random subset of parties for each message to be sent/relayed. By letting the
random subset be large enough, we ensure that we establish a connected graph with
a low diameter for all messages. As the subset of parties each party chooses to send
to is random, the protocol achieves quite some robustness against adaptive adversaries,
as a slightly delayed adversary cannot predict whom to corrupt to eclipse some specific
parties.

Protocol ΠERFlood(ρ)

Each pair of parties pi, pj ∈ P has access to a channel Fσ,∆
MessageTransfer(pi, pj). Each

party pi ∈ P keeps track of a set of relayed messages Relayedi : Messages.

Initialize: Initially, all parties initialize their channel between them and set
Relayedi := ∅.

Send: When pi receives (Send,m), they input (Send,m) to Fσ,∆
MessageTransfer(pi, pj) with

probability ρ for each party pj ∈ P. Finally they set Relayedi := Relayedi ∪
{m}.

Get Messages: When pi receives (GetMessages) they let M be the union of the mes-

sages they achieve by calling (GetMessages) to Fσ,∆
MessageTransfer(pi, pj) for all

pj ∈ P, and outputs M .

Furthermore, once in each activation each honest pi let M be the union of the
messages they achieve by calling (GetMessages) to Fσ,∆

MessageTransfer(pi, pj) for all pj ∈
P. For any m ∈ M \ Relayedi, pi inputs (Send,m) to Fσ,∆

MessageTransfer(pi, pj) with
probability ρ for all pj ∈ P, and sets Relayedi := Relayedi ∪ {m}.

Depending on the parameter ρ, the protocol ΠERFlood can achieve various properties.
We provide two different instantiations that use the channel Fσ,∆

MessageTransfer and all works
against a (σ +∆)-delayed adversary. Before going into detail with the actual proof, we
provide some intuition for why the protocol is secure against exactly a (σ+∆)-delayed
adversary. The central intuition is that such an adversary cannot influence how the
communication graph between the honest parties is created. If a party decides to send
a message at some time τ , then the set of parties that receives this message will have
completed forwarding the message at time τ +σ+∆, which is the earliest point on this
party can be corrupted based upon this party’s role in the specific communication graph.
Therefore an adversary cannot use the adaptive corruptions to disrupt the propagation
of a message.
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Each of the instantiations presented below provides a trade-off between the graph’s
diameter, the neighborhood’s average size, and the probability that the graph has these
properties. Instantiation 1 ensures a diameter of 2 with a neighborhood of just Ω (

√
nκ)

and Instantiation 2 ensures a logarithmic diameter with a neighborhood of average size
Ω (κ).

Theorem 3.6.2. Let ∆ ∈ N be any delay, let σ ∈ N, let t < n be the maximum
number of parties an adversary can corrupt, and let d ∈ R. The protocol ΠERFlood(ρ)
securely implements F∆′

Flood against a (σ + ∆)-delayed adversary using Fσ,∆
MessageTransfer.

More precisely, when r is an upper bound on the number of different messages input
(either via Send or via SetMessage), the statistical distance between the real and ideal
executions is bounded by the probability pbad for either of the following instantiations:

1. Let ρ :=
√

d
h and let ∆′ := 2∆ then

pbad ≤ r · (t+ 1) · n2 · e−d· (h−2)
h . (3.43)

2. Let α ∈ R, γ, δ1, δ2 ∈ [0, 1], and ρ := d
h . Furthermore, let t0 :=

log
(

γn
(1−δ1)d

)
log((1−δ2)α)

+1 and

∆′ := ∆ · (t0 + 1). If

e−dγ +
γα

1− γ
≤ 1,

γn

(1− δ1)d
> 1, and (1− δ2) · α > 1, (3.44)

then

pbad ≤ r · (t+ 1) ·
(
n ·
(
e−

δ21d

2 + t0e
− δ22α(1−δ1)d

2

)
+ e−h·(dγ2−2)

)
. (3.45)

Proof Sketch. For an adversary, we construct a simulator similar to how it is done in
the proof of Lemma 3.6.1. The only times this is not a perfect simulation is when one
of the properties of F∆′

Flood are violated in ΠERFlood, which will never happen when the
environment interacts with F∆′

Flood. The main idea of the proof is to argue about the
probability that a messagem, that is input via either Send or SetMessage, is not propagated
to all parties within ∆′ time. We will argue about this via seven random experiments:

FloodToER1: An experiment where an adversary interacts with an oracle to learn edges
in a directed graph. Only nodes that have an edge to them can have their edges
revealed to the adversary, but the adversary can inject additional edges to be able
to reveal more nodes. The adversary can remove up to t nodes, but at the point of
removal, the adversary cannot have learned any edges connecting to the removed
node. If there is a cut in the graph at any point, the adversary can stop the game.

FloodToER2: An experiment similar to FloodToER1 except now the edges are undirected.

FloodToER3: An experiment similar to FloodToER2 except the adversary cannot stop
the game before all parties have been revealed.

FloodToER4: An experiment similar to FloodToER3 except the adversary cannot inject
edges between parties.
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FloodToER5: An experiment similar to FloodToER4 except that the oracle secretly and
uniformly predetermines the size of the returned graph, s ∈ {h, . . . , n}. The
adversary can, however, still decide whether or not to remove a particular node,
given that it does not violate the size that the oracle has determined.

FloodToER6: An experiment similar to FloodToER5 except now the oracle also prede-
termines a Erdős–Rényi graph of the predetermined size and embeds this into the
final graph that is returned.

Erdős–Rényi: An experiment that chooses a graph of a certain size and includes each
edge independently with probability ρ.

Let λ := ∆′

∆ . We now argue via the following steps:

1. If there is an adversary that prevents timely delivery of m in the real world with
some probability, then there exists an adversary that can make FloodToER1 return
a graph where the distance from the sender to some node is larger than λ with at
least as high a probability.

2. If any adversary can make FloodToER1 return a graph with a diameter larger than
λ with probability p, then there exists some adversary that can make FloodToER2

return a graph where the distance from the sender to some node is larger than λ
with at least as high a probability.

3. If any adversary can make FloodToER2 return a graph with a diameter larger than
λ with probability p, then there exists some adversary that can make FloodToER3

return a graph where the distance from the sender to some node is larger than λ
with at least as high a probability.

4. If any adversary can make FloodToER3 return a graph with a diameter larger than
λ with probability p, then there exists some adversary that can make FloodToER4

return a graph with a diameter larger than λ with at least as high a probability.

5. If any adversary can make the FloodToER4 game return a graph with a diameter
larger than λ with probability p, then the same adversary can make FloodToER5

return a graph with a diameter larger than λ with probability at least p · (t+ 1).

6. The experiments FloodToER5 and FloodToER6 are distributed identically.

7. The probability that FloodToER6 returns a graph with larger diameter than λ
must be less than the probability that an Erdős–Rényi graph with the worst size
has a larger diameter than λ.

8. We can now use the Erdős–Rényi graph results from Section 3.2.2 (in partic-
ular Lemmas 3.4.1 and 3.4.3) to bound the probability that an adversary can
prevent the delivery of m in the real world.

We finally do a union bound over the number of different messages input to the func-
tionality. The detailed proof can be found in Section 3.6.3.
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As the results in Theorem 3.6.2 are hard to interpret we additionally provide the
following corollary which instantiates some of the many constants and makes some
simplifying but non-optimal estimates. We emphasize that if one wants to optimize
for a particular use-case (i.e., small diameter or very small failure probability) then
Theorem 3.6.2 can be used to obtain tighter bounds.

As the results, in Theorem 3.6.2 are hard to interpret, we additionally provide the
following corollary, which instantiates some of the many constants and makes some
simplifying but non-optimal estimates. We emphasize that if one wants to optimize for
a particular use-case (i.e., small diameter or tiny failure probability), then Theorem 3.6.2
can be used to obtain tighter bounds.

Corollary 3.6.3. Let ∆ ∈ N be any delay, let σ ∈ N, let t < n be the maximum number
of parties an adversary can corrupt, and let d ∈ R be the security parameter. The pro-
tocol ΠERFlood(ρ) securely implements F∆′

Flood against a (σ +∆)-delayed adversary using

Fσ,∆
MessageTransfer. More precisely, when r is an upper bound on the number of different

messages input (either via Send or via SetMessage), the statistical distance between the
real and ideal executions is bounded by the probability pbad for either of the following
instantiations:

1. Let ρ :=
√

d
h and let ∆′ := 2∆ then

pbad ≤ r · (t+ 1) · n2 · e−d· (h−2)
h . (3.46)

2. Let ρ := d
h , and ∆′ := ∆ · (5 log

(
n
2d

)
+ 2), if n

2d > 1 then

pbad ≤ r · (t+ 1) ·
(
7n log

( n

2d

)
e−

d
18 + e−

h(d−18)
9

)
. (3.47)

Proof. Instantiation 1 immediately follows from Theorem 3.6.2 (Instantiation 1). To
derive instantiation Instantiation 2 we again use Theorem 3.6.2 (Instantiation 2) and
select

δ1 := δ2 := γ :=
1

3
and α :=

7

4
.

With these parameters, we see that Equation (3.44) is fulfilled when d ≥ 1. Furthermore,
we see that

pbad ≤ r · (t+ 1) ·
(
n ·
(
e−

d
18 +

(
5 log

( n

2d

)
+ 1
)
e−

7d
108

)
+ e−

h(d−18)
9

)
≤ r · (t+ 1) ·

(
7n log

( n

2d

)
e−

d
18 + e−

h(d−18)
9

)
.

(3.48)

In Section 3.2.2.2 we provided Lemma 3.2.9, which shows that the number of neigh-
bors any party will need to send to when they send/relay a message in ΠERFlood(ρ)
concentrates around n ·ρ. This follows from Chernoff and the union bound. Concretely,
for Instantiation 1, to make the distinguishing probability negligible in a security pa-
rameter κ independent of the number of parties, we get that the number of neighbors

needed is upper-bounded by O
(√

(κ+ log(n)) · n
)
. For Instantiation 2, the number of

necessary neighbors is upper-bounded by O(κ+ log(n)).
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Remark 3.6.1. Within the UC framework, it is required that the number of parties is a
polynomial of the security parameter. Therefore, using this, the above bounds on the
number of parties could be simplified to just O

(√
κ · n

)
and O(κ) respectively. However,

to make the dependency on n explicit, we have left this simplification out.

A note on changing from TCP to UDP. Results about Erdős–Rényi graphs can be trans-
ferred to a setting without reliable message transmission. Let us, instead of reliable
transmission, assume that there is an independent failure probability β for each mes-
sage that is sent via FMessageTransfer and ρ is an instantiation of ΠERFlood(ρ) that ensures
a specific diameter assuming reliable transfer. If we let ρ′ := ρ

1−β then ΠERFlood(ρ
′) with

the unreliable transfer is ensured to have the same diameter as ΠERFlood(ρ) with the
reliable transfer. This is because the probability for a successful propagation from party
pi to pj will then be ρ′ · (1− β) = ρ, which ensures that we in this more difficult setting
inherent the original results for ΠERFlood(ρ).

3.6.3 Reducing from ΠERFlood to Erdős–Rényi Graphs

In this section, we prove Theorem 3.6.2. Our goal is to show that the probability
that a message from ΠERFlood is not delivered timely is only a tiny factor off from the
probability that an Erdős–Rényi graph has a large diameter. This allows us to prove
bounds on the delivery time for a message by porting results about the diameter of a
Erdős–Rényi-graph, and we, therefore, believe that this is a technique of general interest.

We will show this by relating a series of random experiments via simulations. Our
methodology for going from one game to the next is to construct a new adversary (using
the old adversary), which has as good a probability of attacking the game as the old
one has. A depiction of this approach can be found in Figure 3.3.

Output

Figure 3.3: A depiction of the proof methodology for bounding that “something bad”
happens when Ai interacts with the oracle Oi by the probability that there exists an Aj

which can make “something bad” when interacting with Oj . The idea is that Aj runs
Ai inside itself while interacting with a simulated Oi which outputs are correlated with
the outputs from the oracle Oj .

In Table 3.1, we provide an overview of the different experiments we consider and
which properties are bounded in the game.
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Game Description Bounded Property

ΠGossip The real protocol. Everybody receives a message no
later than ∆′ after it was sent.

FloodToER1 Directed graph with variable size,
inject of edges, a specific sender,
and early stopping.

Maximum distance from sender
to any node is less than ∆′

∆ .

FloodToER2 Undirected graph with variable
size, inject of edges, a specific
sender, and early stopping.

Maximum distance from sender
to any node is less than ∆′

∆ .

FloodToER3 Undirected graph with variable
size, inject of edges, and a spe-
cific sender.

Maximum distance from sender
to any node is less than ∆′

∆ .

FloodToER3 Undirected graph with variable
size, inject of edges, and a spe-
cific sender.

Diameter of graph is less than ∆′

∆ .

FloodToER4 Undirected graph with variable
size.

Any property.

FloodToER5 Undirected graph with a fixed
size.

Monotone property.

FloodToER6 Undirected graph with a fixed
size that explicitly embeds an
Erdős–Rényi graph.

Any property.

Erdős–Rényi Undirected Erdős–Rényi graph. Monotone property that is pre-
served under renaming.

Table 3.1: Overview of the different games in our reduction to bound the statistical
difference between the protocol ΠERFlood(ρ) and the ideal functionality F∆′

Flood against a

(σ + ∆)-delayed adversary using Fσ,∆
MessageTransfer. FloodToER3 appears twice as we, in

separate lemmas, bound the distance from a particular sender by the graph’s diameter.

3.6.3.1 Relating Games

We now present the games and prove several lemmas about how the different games
relate. The first game we consider directly reflects an adversary’s capabilities when a
message has been input for the first time to a particular sender ps in the protocol ΠGossip.

Game FloodToER1(P, ρ,A, ps)

The game is parameterized by a set of parties P, an edge probability ρ, an adversary
A, and a node that is the original sender ps. The adversary plays a game against
an oracle, O1, which we define below.
O1 maintains five sets: a set of nodes that can be removed by the adversary
Killables, a set of nodes that had their edge set revealed Revealed, a set of
nodes that cannot be removed but have not yet had their edges revealed Pending,
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a set of removed nodes Killed, and a set of directed edges Edges.
Initially, Revealed := ∅, Pending := {ps}, Killables := P \ {ps}, Killed := ∅,
and Edges := ∅. The oracle accepts the following inputs from the adversary:

Reveal: On input (Reveal, pi) the oracle checks if pi ∈ Pending and otherwise ignores
the input. The oracle now continues by adding pi to Revealed and removing
pi from Pending. Furthermore, it adds an edge (pi, pj) with probability ρ to
Edges for all pj ∈ Pending ∪ Killables ∪ Revealed. Additionally, for any
pj ∈ Killables it checks if (pi, pj) ∈ Edges and if so moves pj to Pending.

Finally, the set of edges is returned to the adversary.

Kill: On input (Kill, pi), the oracle checks if pi ∈ Killables and if |Killed| < t.
The oracle then removes pi from Killables and sets Killed := Killed∪{pi}.
If not, the input is ignored.

Inject: On input (Inject, pi, pj) the oracle checks if pi ∈ Revealed and pj ∈
Killables. If that is the case it adds an edge (pi, pj) to Edges and pj is
moved to Pending. If not, the input is ignored.

Stop: When receiving (Stop) the oracle checks if Pending == ∅. If that is the case,
the oracle stops the game and returns G = (Revealed ∪ Killables, Edges).
If not, the input is ignored.

Next, we relate this game to the execution of the actual protocol, ΠGossip.

Lemma 3.6.4. Let ∆,∆′, σ ∈ N, and ρ ∈ [0, 1]. Let A be a (σ+∆)-delayed adversary,
Z an environment, m a message that is input (either by the send command or by letting
it be sent from some dishonest party) to some honest party Ps for the first time at time
τ in the protocol ΠGossip(ρ) using Fσ,∆

MessageTransfer against A and Z.
Let pbad be the probability that some party at time τ +∆′ is honest and has not yet

received m. Furthermore let λ := ∆′

∆ . There exists an adversary A′ s.t. if GFloodToER1

$←
FloodToER1(P, ρ,A′, ps) then

pbad ≤ Pr[¬ϕDist(ps, GFloodToER1 , λ)]. (3.49)

Proof. The adversary A′ simulates the execution of ΠGossip(ρ) against A, and Z inside
its head and monitors the execution. A′ maintains the same sets as O1 and updates
them according to the outputs of O1.

• Initially, A′ inputs (Kill, pi) for all corrupted or precorrupted parties to the oracle.

• Whenever A inputs Precorrupt to some party pi at time τ ′ then A′ checks if m is
guaranteed to be delivered to pi before time τ ′ +∆. If that is not the case, then
A′ inputs (Kill, pi) to the oracle.

• Whenever a party pi which has not previously been removed from the graph is
activated the first time after the message is delivered in one of their inboxes, then
A′ runs the following two ordered checks:



Implementations of Flood 86

1. If pi ∈ Killables then A′ finds the party pj in Revealed that is furthest
away from the sender ps. It then inputs (Inject, pj , pi).

2. If pi ∈ Pending then A′ inputs (Reveal, pi) to the oracle and receives a set of
edges E. A′ now makes pi input (Send,m) to Fσ,∆

MessageTransfer(pi, pj) for any
party pj for which there is an edge in (pi, pj) ∈ E. Additionally, for any party

pj ∈ Killed, (Send,m) is input to Fσ,∆
MessageTransfer(pi, pj) with probability ρ.

• If at any point Pending == ∅ then A′ inputs Stop to the oracle.

• At the time τ +∆′ + 1, the adversary A′ tries to finish the game by revealing all
pending nodes continuously until the set of pending nodes is empty, and then it
inputs Stop to the oracle.

Let GFloodToER1 = (V, E)
$← FloodToER1(P, ρ,A′, ps) and let the set of nodes that are

honest at time τ +∆′ be denoted H.
First, we observe that all inputs A obtained from A′ are distributed identically to

those the adversary would see in a real execution of the protocol. It is, therefore, enough
to argue that if there exists an honest party that has not received the message at time
τ +∆′ then ¬ϕDist(ps, GFloodToER1 , λ).

We first observe the following invariant.

Claim 3.6.5. Let pi be a party that is added to Pending at time τ ′ then party pi will
at the latest be in Revealed at time τ ′ +∆.

Proof. Let us look at how pi was added to Pending.
If pi = ps then the claim is trivially true as the game must have started at τ ′ and

the time won’t progress before ps is activated. Therefore A′ will also input (Reveal, ps)
at time τ ′.

Otherwise, pi can only be added to Pending when an edge from a party pj in the
graph has been added to the set of edges. Let us make a case distinction on how this
edge was added.

(Reveal, pj): When an edge is added by a reveal command, this makes pj input (Send,m)

to Fσ,∆
MessageTransfer(pi, pj) at time τ ′. However, any party that has not been removed

from the graph is not precorrupted early enough to prevent the party from for-
warding the message to their neighbors, as A is (σ +∆′)-delayed. Therefore, it is
ensured that pi at the latest will have m in its inbox at time τ ′+∆ which ensures
that a (Reveal, pi) will be input and pi moved to Revealed.

(Inject, pj , pi): This command only happens when pi is immediately afterwards revealed.

We now make the following claim and prove it.

Claim 3.6.6. For any r ∈ N it holds that

A) if a party pj ∈ Γr(ps) then it has at the latest been revealed at time τ + r ·∆;
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B) and if the game has not stopped at time τ ′ := τ +r ·∆ then there exists some party
pj which has been revealed before or at τ ′ and is at least r distance away from the
sender, i.e., pj ̸∈ Γr−1(ps).

3

Proof. We prove this by induction in r. For r = 0 we have that Γ0(ps) = {ps}, and that
ps is revealed at time τ by definition which ensures both Claim A) and B).

Let us now assume that the claim holds for r and let us prove that it also holds for
r + 1. Let us first prove Claim B).. By the induction hypothesis, we know that there
exists a party pi that has been revealed before or at time τ+r ·∆ and pi ̸∈ Γr−1(ps). The
induction hypothesis also shows that all parties in Γr(ps) have been revealed before or at
time τ+r·∆. Therefore any party that is revealed in the time-span (τ+r·∆; τ+(r+1)·∆]
cannot be in Γr(ps), and it suffices to show that some party is revealed in the time-span.
Assume for the sake of contradiction that no party has been revealed in the time-span
(τ + r ·∆; τ +(r+1) ·∆], this implies that either Pending = ∅ for the time-span which
would make A′ stop the game and we are done, or there is some party pj ∈ Pending at
time τ + r ·∆. However, Claim 3.6.5. guarantees that this party is revealed before or
at time τ + (r + 1) ·∆, which proves the claim.

We now turn our attention to prove Claim A). for the induction case. Let pi ∈
Γr+1(ps) and let us consider two cases:

pi ∈ Γr(ps): For this case the induction hypothesis gives us that pi was revealed before
τ + r ·∆. As this is undoubtedly also before τ + (r + 1) ·∆, we are done.

pi ∈ Γr+1(ps) \ Γr(ps): There must exist some party pj ∈ Γr s.t. (pj , pi) ∈ E. This edge
may have been added by A′ having issued one of the following two commands:

(Reveal, pj): As pj ∈ Γr the induction hypothesis ensures that this command is
issued before or at time τ + r · ∆. Moreover, note that this implies that
pi ∈ Pending at time τ + r · ∆. Claim 3.6.5. therefore ensures that pi is
revealed not later than τ + (r + 1) ·∆.

(Inject, pj , pi): As A′ always follows an inject up with a reveal, we are done if the
inject happens before or at τ + (r + 1) ·∆. If the inject happens after that
time, then Claim B).4 ensures that there exists some party pv that has been
revealed and is not in Γr−1(ps). However, A′ only issues (Inject, pj , pi) when pj
is the party furthest away from the sender. Therefore we can also conclude
that pj ̸∈ Γr−1(ps) and therefore party pi cannot be in Γr(ps) which is a
contradiction to our original assumption.

Let pi be an honest party that has not received the message at time τ + ∆′ in the
simulated execution. First, we observe that H ⊆ V, as only precorrupted nodes are
ever killed. Hence, pi ∈ V. It therefore suffices to show that pi ̸∈ Γλ(ps) to show
¬ϕDist(ps, GFloodToER1 , λ). We now make a case distinction on whether or not pi has
been revealed by A′.

pi ̸∈ Revealed: It must be that pi ∈ Killables when A′ gave the input Stop to the ora-
cle. Furthermore, only parties that have no incoming edges can be in Killables,

3We define Γ−1(pi) := ∅ for any pi.
4Note that the argument is not cyclic as the proof of Claim B). does not rely on Claim A)..
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as whenever an edge is added to a killable party, this party will be moved to
Pending by the oracle. Therefore pi ̸∈ Γλ(ps).

pi ∈ Revealed: The time that pi was revealed must be τ +∆′ + 1. The reason is that
before this time, parties are only revealed by A′ when they got m in their inbox in
the protocol, which would contradict the assumption that the delivery guarantee
was violated for pi. However, Claim 3.6.6. A) ensures that any party in Γλ(ps)
must have been revealed before time τ + λ · ∆. To show that pi ̸∈ Γλ(ps) it is
therefore suffices to show that ∆′ + 1 ≥ λ ·∆. However, λ ·∆ = ∆′

∆ ·∆ = ∆′ and
the inequality is therefore trivially satisfied by definition of λ.

Next, we present an undirected version of the same game but where edges are only
added to all parties that have not been revealed before. Furthermore, an adversary can
reveal any node and not just those with an edge to them in this game.

Game FloodToER2(P, ρ,A, ps)

The game is parameterized by a set of parties P, an edge probability ρ, an adversary
A, and a node that is the original sender ps. The adversary plays a game against
an oracle, O2, which we define below.
O2 maintains five sets: a set of nodes that can be removed by the adversary
Killables, a set of nodes that had their edge set revealed Revealed, a set of
nodes that cannot be removed but have not yet had their edges revealed Pending,
a set of removed nodes Killed, and a set of undirected edges Edges.
Initially, Revealed := ∅, Pending := {ps}, Killables := P \ {ps}, Killed := ∅,
and Edges := ∅. The oracle accepts the following inputs from the adversary:

Reveal: On input (Reveal, pi) the oracle checks if pi ∈ Pending∪Killables and oth-
erwise ignores the input. The oracle now continues by adding pi to Revealed

and removes pi from Pending or Killables (depending on where it originally
was). Furthermore, it adds an edge {pi, pj} with probability ρ to Edges for
all pj ∈ Pending∪Killables. Additionally, for any pj ∈ Killables it checks
if {pi, pj} ∈ Edges and if so moves pj to Pending.

Finally, the set of edges is returned to the adversary.

Kill: On input (Kill, pi), the oracle checks if pi ∈ Killables and if |Killed| ≤ t.
The oracle then removes pi from Killables and sets Killed := Killed∪{pi}.
If not, the input is ignored.

Inject: On input (Inject, pi, pj) the oracle checks if pi ∈ Revealed and pj ∈
Killables. If that is the case adds an edge {pi, pj} to Edges and then pj is
moved to Pending. If not, the input is ignored.

Stop: When receiving (Stop) the oracle checks if Pending == ∅. If that is the case,
the oracle stops the game and returns G = (Revealed ∪ Killables, Edges).
If not, the input is ignored.

Using a simulation argument, we now relate FloodToER1 to FloodToER2.
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Lemma 3.6.7. Let A be an adversary, ps ∈ P, λ ∈ N and ρ ∈ [0, 1]. Further-

more let GFloodToER1

$← FloodToER1(P, ρ,A, ps). There exists an adversary A′ s.t. if

GFloodToER2

$← FloodToER2(P, ρ,A′, ps) then

Pr[¬ϕDist(ps, GFloodToER1 , λ)] ≤ Pr[¬ϕDist(ps, GFloodToER2 , λ)]. (3.50)

Proof. Again we define A′ in terms of A by letting A′ play the role of an oracle when
interacting with A. We let Revealed2, Pending2, Killables2, Killed2 and Edges2 be
the sets maintained by O2, and let A′ maintain similar sets indexed with 1 which will
be presented to A similar to the sets the oracle O1 in FloodToER1 presents to A.

The adversary additionally maintains a set HiddenEdges which will be a set of
edges that have been constructed in the game FloodToER2 but not yet revealed to
A, and a map, Flipped : P × P → B, that keeps track of which edges that have
already been added with probability ρ. Initially, Revealed1 := ∅, Pending1 := {ps},
Killables1 := P \{ps}, Killed1 := ∅, HiddenEdges = ∅ and Flipped the empty map.
Furthermore, we let Γ1 be the neighborhood function for GFloodToER1 , and let Γ2 be the
neighborhood function for GFloodToER2 . Similarly, we subscript the distance function
with either 1 or 2 to indicate which graph the function calculates the distance on.

• On input (Reveal, pi) from A the adversary makes a set ETmp := ∅ and does the
following:

1. For pj ∈ Pending the adversary checks if the distance dist2(ps, pi) changes
if the edge {pi, pj} was added to Edges2. If so it sets Flipped(pj , pi) := ⊤
and otherwise Flipped(pj , pi) := ⊥.

2. For pj ∈ Pending, if Flipped(pj , pi) the adversary A′ sets ETmp := ETmp ∪
{(pi, pj)} with probability ρ.

3. A′ forwards (Reveal, pi) to the oracle of FloodToER2. Let E be the set of
edges returned on that request. Now, for every new edge, {pi, pj} ∈ E, the
adversary does the following:

– If Flipped(pj , pi) then HiddenEdges := HiddenEdges ∪ {(pj , pi)}.
– Else the adversary adds an edge (pi, pj) to ETmp.

4. The adversary A′ assigns a new variable ETmp := ETmp ∪ {(pi, pj) | pj ∈
P ∧ (pi, pj) ∈ HiddenEdges}.

5. Now, for all pj ∈ Revealed where ¬Flipped(pi, pj) an edge (pi, pj) is added
to ETmp with probability ρ.

6. Finally, Edges1 := Edges1 ∪ ETmp, the sets maintained by A′ are updated
similarly to how the oracle in FloodToER1 would have updated them, and
the set Edges1 is returned to A.

• On input (Inject, pi, pj) the adversary forwards the request to the oracle. If the
oracle adds an edge {pi, pj} to Edges2, then the adversary A′ adds an edge (pi, pj)
to Edges1.

• All other inputs are forwarded directly to the oracle, and A′ updates the sets
accordingly.
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Let us first prove that all inputs A obtained from A′ are distributed identically to
those the adversary would see when interacting with the oracle from game FloodToER1.
We state this in the claim below.

Claim 3.6.8. Let c be the number of commands executed by A′ and let any set with
superscript c denote the set after executing the c’th command. For any c ∈ N we have
that Revealedc1 = Revealedc2, Pending

c
1 = Pendingc2, Killables

c
1 = Killablesc2, and

Killedc1 = Killedc2. Moreover, the output A receives after inputting the c’th command
to A′ is identically distributed to the output A would have received when inputting the
same c commands to FloodToER1.

Proof. We prove this by induction in the number of commands. For the base case c = 0
we see that Pending01 = Pending02 = {ps}, Killables01 = Killables02 = P \ {ps}, and
all other sets are empty.

Let us now assume that the statement holds after having executed c′ commands and
show that it also holds after having executed c = c′ + 1 commands. We make a case
distinction based on the command given by A:

(Reveal, pi): The adversary, A expects that for any pj ∈ Revealedc
′
1 ∪ Pendingc

′
1 ∪

Killablesc
′
1 the probability to see (pi, pj) should be ρ. We again analyse this

case-wise based upon which set pj was in just before command number c was
executed:

pj ∈ Killablesc
′
1 : As sets are synchronized we have that pj ∈ Killablesc

′
2 . The

oracle therefore returns an edge {pi, pj} with probability ρ. If the oracle
returns such an edge, the edge never changes the distance to party pj as
this is the first edge ever added to it, and therefore A′ directly adds an edge
(pi, pj) to Edges1.

pj ∈ Pendingc
′
1 : Let us calculate the probability to see (pi, pj) ∈ ETmp just before

Edges1 is returned to A. By the law of total probabilities for conditional
events, we have that

Pr[(pi, pj) ∈ ETmp]

=Pr[(pi, pj) ∈ ETmp | Flipped(pj , pi)] · Pr[Flipped(pj , pi)]
+ Pr[(pi, pj) ∈ ETmp | ¬Flipped(pj , pi)] · Pr[¬Flipped(pj , pi)].

(3.51)

Let E be the edges returned by the oracle in FloodToER2. For any pj ∈
Pending with Flipped(pj , pi) the adversary A′ adds an edge (pi, pj) to ETmp

with probability ρ. If ¬Flipped(pj , pi) then (pi, pj) ∈ ETmp if and only if E.
Therefore we have that

Pr[(pi, pj) ∈ ETmp | Flipped(pj , pi)]
= Pr[(pi, pj) ∈ ETmp | ¬Flipped(pj , pi)]
= Pr[(pi, pj) ∈ E]

= ρ.

(3.52)

Furthermore, as Pr[Flipped(pj , pi)] + Pr[¬Flipped(pj , pi)] = 1 we can con-
clude that the probability to see (pi, pj) in the outputted edges is ρ.
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pj ∈ Revealedc
′
1 : This implies that there previously has been a reveal command

(Reveal, pj) that was input by A. When this command was input was, the
only time Flipped(pj , pi) was changed. Let us calculate the probability to
see (pi, pj) ∈ ETmp just before Edges1 is returned to A. By the law of total
probabilities for conditional events, we have that

Pr[(pi, pj) ∈ ETmp]

=Pr[(pi, pj) ∈ ETmp | Flipped(pj , pi)] · Pr[Flipped(pj , pi)]
+ Pr[(pi, pj) ∈ ETmp | ¬Flipped(pj , pi)] · Pr[¬Flipped(pj , pi)].

(3.53)

If Flipped(pj , pi) then an edge (pi, pj) was added to HiddenEdges with prob-
ability ρ when (Reveal, pj) was given as input. Such an edge always ends in
ETmp. On the other hand, if ¬Flipped(pj , pi) then an edge (pi, pj) is directly
added to ETmp with probability ρ by A′. Hence,

Pr[(pi, pj) ∈ ETmp | Flipped(pj , pi)]
= Pr[(pi, pj) ∈ ETmp | ¬Flipped(pj , pi)]
= ρ.

(3.54)

Furthermore, as Pr[Flipped(pj , pi)] + Pr[¬Flipped(pj , pi)] = 1 we can con-
clude that the probability to see (pi, pj) in the outputted edges is ρ.

(Kill, pi): As the sets are in synchrony for c′ commands any kill command that would
be valid in FloodToER1 is also valid in FloodToER2. Therefore the sets stay syn-
chronized.

(Inject, pi, pj): As the sets are in synchrony for c′ commands any inject command that
would be valid in FloodToER1 is also valid in FloodToER2. Therefore the sets stay
synchronized.

(Stop): This command doesn’t change any of the involved sets.

Given the above claim it suffices to show that ¬ϕDist(ps, GFloodToER1 , λ) implies
¬ϕDist(ps, GFloodToER2 , λ). To show this we let GFloodToER1 = (V1, E1) and let
GFloodToER2 = (V2, E2).

Now, let pi ∈ V1 s.t. pi ̸∈ Γλ
1(ps) and let us show that pi ∈ V2 and pi ̸∈ Γλ

2(ps). First,
we observe that V1 = V2 as we at all times have that all sets are kept synchronized.
This ensures that Pi ∈ V2. What is left is thus only to show that pi ̸∈ Γλ

2(ps). We show
the lemma below.

Claim 3.6.9. For any k ∈ N we have that Γk
2(ps) ⊆ Γk

1(ps).

Proof. We proceed by induction in k. For the base case, k = 0, we have that Γ0
1(ps) =

Γ0
2(ps) = {ps}. For the induction case, k = k′ + 1, let pi be party in Γk

2(ps). We make a
case distinction:

pi ∈ Γk−1
2 (ps): By the induction hypothesis we have that pi ∈ Γk−1

1 . By definition we
furthermore have Γk−1

1 ⊆ Γk
1 which concludes the case.
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pi ∈ Γk
2(ps) \ Γ

k−1
2 (ps): There must exists some party pj ∈ Γk−1

2 (ps) where {pj , pi} ∈
Edges2 was the first edge that made pi ∈ Γk

2(ps). Now note that by the induction
hypothesis we have pj ∈ Γk−1

1 (ps). Let us distinguish how this edge was added to
Edges2:

(Reveal, pi): We note that if {pj , pi} was added to Edges2 with this command, then
pj ∈ Pending2 when the command was executed. We note that if {pi, pj}
changes the distance from the sender to pi, then it is saved in HiddenEdges

as the directed edge (pj , pi). Later, when pj is revealed (which it must nec-
essarily be at some point before the game is stopped), then we get that
(pj , pi) ∈ Edges1 and therefore that pj ∈ Γk

1(ps).

(Reveal, pj): If this command added the edge, then as it was the first edge that
made pi ∈ Γk

2(ps) this cannot have changed the distance of pj , and therefore
it must be that ¬Flipped(pi, pj). Therefore the edge (pj , pi) is also added to
Edges1 and again we get that pj ∈ Γk

1(ps) by the induction hypothesis.

(Inject, pj , pi): This implies that A′ adds (pj , pi) to Edges1, which by the induction
hypothesis implies that pj ∈ Γk

1(ps).

(Inject, pi, pj): This command is only valid if pj is in Killables2. However, any
party that is killable has no edges going to it. Therefore this contradicts that
this is the first edge that was revealed that made pi ∈ Γk

2(ps).

Now assume for the sake of contradiction that pi ∈ Γλ
2(ps). Claim 3.6.9. implies

that pi ∈ Γλ
1(ps) which contradicts with the original assumption which was that pi ̸∈

Γλ
1(ps).

Next, we present a version of the game that cannot be stopped before all notes are
either revealed or killed.

Game FloodToER3(P, ρ,A, ps)

The game is identical to FloodToER2(P, ρ,A, ps) except that the oracle in this game
ignores any (Stop) inputs from the adversary. All other inputs are treated identically
to how the oracle from FloodToER2(P, ρ,A, ps) treats them.
When Killables ∪ Pending = ∅ the game ends by the oracle returning G =
(Revealed, Edges).

Lemma 3.6.10. Let A be an adversary, ps ∈ P, λ ∈ N and ρ ∈ [0, 1]. Further-

more let GFloodToER2

$← FloodToER2(P, ρ,A, ps). There exists an adversary A′ s.t. if

GFloodToER3

$← FloodToER3(P, ρ,A′, ps) then

Pr[¬ϕDist(ps, GFloodToER2 , λ)] ≤ Pr[¬ϕDist(ps, GFloodToER3 , λ)]. (3.55)

Proof. We defineA′ in terms ofA by lettingA′ play the role of an oracle when interacting
with A.
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• On input (Stop), A′ checks if this stop command would make the oracle from
FloodToER2(P, ρ,A, ps) end the game (i.e., if Pending == ∅). If that is the case,
the adversary inputs (Reveal, pi) for any party pi that was in Killables at that
time. Otherwise, the input is ignored.

• All other inputs and responses are forwarded directly between A and the oracle.

First, we observe that all inputs A receives from A′ are distributed identically to those
that the adversary would expect to see from the oracle in FloodToER2(P, ρ,A, ps). It
therefore suffices to show that ¬ϕDist(ps, GFloodToER2 , λ) implies ¬ϕDist(ps, GFloodToER3 , λ).
We make a case distinction based on if there has been any (Stop) input from A that is
not ignored by A′ before FloodToER3(P, ρ,A, ps) ends. If no such input is given, we
have that GFloodToER2 = GFloodToER3 , and we are done.

If there is a (Stop) input from A that is not ignored by A′ before
FloodToER3(P, ρ,A, ps) ends, then there must have been a point in time, τ , where
Pending = ∅ and Killables ̸= ∅. Let Revealedτ denote the set of revealed parties at
this time, and Killablesτ denote the set of killable nodes at the time. There will not
be any edges between any pi ∈ Revealedτ and any party pj ∈ Killablesτ as the oracle
does not add edges to parties that have already been revealed. As Killablesτ ̸= ∅
there exists some party pi ∈ Killablesτ which will be a party of the final graph. The
party ps must however be in Revealedτ as it is initially pending and Pendingτ = ∅.
This allows us to conclude that dist(ps, pk) =∞, which completes the proof.

That the distance from a specific node is less than some distance, λ, is a strictly
weaker property than the diameter of a graph being less than λ. The below lemma
follows immediately.

Lemma 3.6.11. Let A be an adversary, ps ∈ P, λ ∈ N, ρ ∈ [0, 1], and let GFloodToER3

$←
FloodToER3(P, ρ,A, ps). We have that

Pr[¬ϕDist(ps, GFloodToER3 , λ)] ≤ Pr[¬ϕDiam(GFloodToER3 , λ)]. (3.56)

Next, we present a version of the game where no specific node starts being pending,
and the adversary can no longer inject additional edges into the graph.

Game FloodToER4(P, ρ,A)

The game is identical to FloodToER3 except two things:

• Initially, Pending := ∅ and Killables := P.

• The oracle ignores any (Inject, pi, pj) inputs from the adversary.

All other inputs are treated identically to how the oracle from FloodToER3 treats
them.

Before relating FloodToER4(P, ρ,A) to FloodToER3(P, ρ,A, ps) we define a special
kind of graph properties called monotone properties.
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Definition 3.6.12 (Monotone graph property). Let G = (V, E) be a graph and ϕ
be a property. We say that a property is monotone if for any additional set of edges
A ⊆ V × V we have that

ϕ(G) =⇒ ϕ(V, E ∪A).

Lemma 3.6.13. Let A be an adversary, ps ∈ P, λ ∈ N, ρ ∈ [0, 1], and let ϕ be

a monotone graph property. Furthermore let GFloodToER3

$← FloodToER3(P, ρ,A, ps).
There exists an adversary A′ s.t. if GFloodToER4

$← FloodToER4(P, ρ,A′) then

Pr[¬ϕ(GFloodToER3)] ≤ Pr[¬ϕ(GFloodToER4)]. (3.57)

Proof. We defineA′ in terms ofA by lettingA′ play the role of an oracle when interacting
with A. We let Revealed4, Pending4, Killables4, Killed4 and Edges4 be the sets
maintained by the oracle in game FloodToER4, and let A′ maintain similar sets indexed
with 3 which will be presented to A similar to the sets the oracle in FloodToER3 presents
to A. Initially Pending3 := {ps} and Killables3 = P \ {ps}.

• On input (Inject, pi, pj), A′ checks if pi ∈ Revealed3 and pj ∈ Killables3. If
that is the case the adversary adds {pi, pj} to Edges3 and moves pj to Pending3.
Otherwise, the input is ignored.

• All other inputs are checked if they should be ignored with the sets indexed by 3
that are maintained by A′ (using the rules the oracle uses in FloodToER3). If these
rules should not ignore them, then inputs and responses are forwarded directly
between A and the oracle.

We observe that all inputsA receives fromA′ are distributed identically to those that the
adversary would expect to see from the oracle in FloodToER3(P, ρ,A, ps). We have this
because, at any time during the execution, we have that Killables3 ⊆ Killables4 and
therefore, any input that passes the check from the A′ is a valid input to FloodToER4.

Moreover, we have that Edges4 ⊆ Edges3. Therefore if ϕ(GFloodToER4) then, as ϕ is
monotone, ϕ(GFloodToER3).

The game FloodToER4(P, ρ,A) has the property that the probability that any two
nodes will have an edge between them given that they are in the final graph returned
by the game is more than or equal to ρ. This is, however, not sufficient to be able
to reduce the game to the Erdős–Rényi setting. The reason is that the adversary can
dynamically choose the size of the graph. A hypothetical example of this being useful
is when all but two nodes have been revealed, and the remaining two nodes are killable.
If the adversary’s goal is to obtain a graph with an isolated node, it is better to kill one
and reveal the other than reveal/kill both.

To bound this advantage, we define an additional random experiment, which fixes
the size of the random graph a priori and in particular without the adversary’s influence.

Game FloodToER5(P, ρ,A)

The game is identical to FloodToER4 except two things:

• Initially, the oracle makes a uniform guess on the size of the final graph,
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s
$← U({h, . . . , n})a.

• If at any point in time either |Revealed| + |Pending| > s or n −
|Killed| < s, then the oracle sets Revealed := {p1, . . . , ps} and Edges :=
Revealed × Revealed before immediately ending the game by outputting
G = (Revealed, Edges).b

All other behavior is identical to the oracle from FloodToER4.

aU(S) denotes the uniform distribution on a set S.
bIf the game ends by this rule we say that the game ended by quick quit.

In this game, it is worth noticing that the game can only terminate by quick quit
if the guess the oracle did on the size was incorrect. If the guess on the final size of
the graph was, too low quick quit can be activated by the adversary directly revealing
a node or by revealing a node which creates edges to a node that should be in the final
kill set and cannot be moved away from there. If the guess on the final size of the graph
was too high quick quit happens by the adversary trying to kill a party that cannot be
swapped with any party in the final kill set.

Lemma 3.6.14. Let ϕ be a graph property. For any adversary A, let GFloodToER4

$←
FloodToER4(P, ρ,A), and let GFloodToER5

$← FloodToER5(P, ρ,A). We have that

Pr[ϕ(GFloodToER4)] ≤ Pr[ϕ(GFloodToER5)] · (t+ 1). (3.58)

Proof. Let O4 and O5 be the oracles from the respective games.
The core idea of the proof is now to observe that given that O5 by luck made

a good guess on the final size of the kill set, then the random experiments have equal
distributions and that the adversary cannot influence whether or not the guess is correct.

Formally, we let GG (abbreviating “good guess”) be the event that O5 did not ter-
minate by quick quit (corresponding to that the guess on the final size of the graph was
“correct”). By the law of total probabilities, we have

Pr[ϕ(GFloodToER5)] = Pr[ϕ(GFloodToER5) | GG] · Pr[GG] + Pr[ϕ(GFloodToER5) | ¬GG] · Pr[¬GG]
≥ Pr[ϕ(GFloodToER5) | GG] · Pr[GG].

(3.59)

We now note that the adversary cannot influence the probability that a guess is correct,
as the behavior of O5 is precisely equal to the behavior of O4 until the game terminates.
When this happens, it is too late for the adversary to influence. Therefore, as O5’s guess
on the size of the final kill set is picked uniformly at random, the probability of seeing
GG is

Pr[GG] = (t+ 1)−1. (3.60)

By Equations (3.59) and (3.60) it is sufficient to show that

Pr[ϕ(GFloodToER5) | GG] = Pr[ϕ(GFloodToER4)]. (3.61)
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Now, note that if GG then the outputs that O5 provides to A are distributed exactly
as the outputs of O4. Therefore the adversary’s inputs must be identically distributed
as well.

Game FloodToER6(P, ρ,A)

The game is parameterized by a set of parties P, an edge probability ρ, and an
adversary A. The adversary plays a game against an oracle which we define below.
The oracle maintains five sets: a set of nodes that can be removed by the adversary
Killables, a set of nodes that had their edge set revealed Revealed, a set of nodes
that cannot be removed but have not yet had their edges revealed Pending, a set
of removed nodes Killed, and a set of undirected edges Edges.
Before the game starts, the oracle makes a uniform guess on the size of the final

graph, s
$← U({h, . . . , n}), and then samples a graph Gs = (V, E)

$← G(s, ρ).
Initially, Revealed := ∅, Pending := ∅, Killables := P, Killed := ∅, Edges :=
∅. Additionally, the oracle maintains a map Naming : P → {1, . . . , s} and a
set of available names AvailableNames. The map starts out being empty and
AvailableNames := {1, . . . , s}.
The oracle accepts the following inputs from the adversary:

Reveal: On input (Reveal, pi) the oracle checks if pi ∈ Pending ∪ Killables and
otherwise ignores the input. If pi ∈ Pending ∪ Killables then the oracle
does the following:

1. If pi ∈ Killables then the oracle samples η
$← U(AvailableNames), sets

Naming[pi] := η, and sets AvailableNames := AvailableNames \ {η}.
2. The oracle now continues by adding pi to Revealed and removes pi from

Pending or Killables (depending on where it originally was).

3. Now, for any e ∈ {{Naming[pi], j} ∈ E | j ∈ {1, . . . , s}} let e =
{Naming[pi], j} for some j and do the following:

a) If Naming−1[j] == ⊥ then the oracle samples p
$← U(Killables),

sets Naming[p] := j, and sets AvailableNames := AvailableNames\
{j}, and moves p from Killables to Pending.

b) Set Edges := Edges ∪ {{pi, Naming−1[j]}}.
4. Now for each {1, . . . , n−s−|Killed|}, the oracle flips a coin that comes

out head with probability ρ. If head, then the oracle samples a party

p
$← U(Killables) and a name η

$← U(AvailableNames), removes η
from AvailableNames, updates the naming Naming[p] := η, moves p
from Killables to Pending and adds an edge {pi, p} to Edges.

5. Finally, the set of edges is returned to the adversary.

Kill: On input (Kill, pi), the oracle checks if pi ∈ Killables and if |Killed| ≤ t.
The oracle then removes pi from Killables and sets Killed := Killed∪{pi}.
If not, the input is ignored.
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If at any point in time, either |Revealed|+ |Pending| > s or n−|Killed| < s or the
oracle tries to make a draw from an empty set, then the oracle sets Revealed :=
{p1, . . . , ps} and Edges := Revealed × Revealed before immediately ending the
game by outputting G = (Revealed, Edges).
When Killables ∪ Pending = ∅ the game ends by the oracle returning G =
(Revealed, Edges).

Lemma 3.6.15. Let ρ ∈ [0, 1]. For any adversary A,

FloodToER5(P, ρ,A) ≈ FloodToER6(P, ρ,A). (3.62)

Proof. Let O5 be the oracle from FloodToER5 and let O6 be the oracle from FloodToER6.
We let Revealed5, Pending5, Killables5, Killed5 and Edges5 be the sets maintained
by the O5, and let similarly named sets indexed with 6 be the one maintained by O6.
Moreover, let G = (V, E) be the Erdős–Rényi graph that O6 holds. Let c be the number
of commands input by A and let any set with superscript c denote the set after executing
the c’th command.

We now state and prove two claims needed for the main result.

Claim 3.6.16. For any c ∈ N if O6 did not stop early we have that ∀pi ∈ Pendingc6 ∪
Revealedc6, Naming

c[pi] ∈ V.

Proof. The claim follows by induction in c as each time a party is moved from Killables6
to Revealed6 a name is assigned to the party, and each time a party is moved from
Killables to Pending it is also assigned a name.

Claim 3.6.17. For any c ∈ N if O6 did not stop early we have that |AvailableNamesc| =
s− (|Pendingc6|+ |Revealedc6|).

Proof. We do induction in c. For the base case c = 0, we have that

|AvailableNames0| = |{1, . . . , s}| = s. (3.63)

We now argue about the induction case c = c′ +1. As (Kill, pi) inputs don’t change any
of the sets, it is sufficient to argue about the case where the c’th command is of the
form (Reveal, pi). If pi ̸∈ Pendingc

′
6 ∪ Killablesc

′
6 , the command is ignored, and none of

the sets changes. We make a case distinction on the remaining two possibilities:

pi ∈ Pendingc
′
6 : First pi is moved from pending parties to revealed parties which does

not change the invariant. Afterward, for each party, pj that is moved from killable
parties to pending parties, a name is also removed from the available names and
thus maintains the invariant.

pi ∈ Killablesc
′
6 : First pi is assigned a name (which decreases the number of available

names), and next it is moved from killables to revealed parties. This maintains
the invariant. The remaining operations are similar to the case pi ∈ Pendingc

′
6 .



Implementations of Flood 98

Claim 3.6.18. For any c ∈ N we have that if neither O5 nor O6 stopped early, then
Revealedc1 = Revealedc2, Pendingc1 = Pendingc2, Killablesc1 = Killablesc2, and
Killedc1 = Killedc2. Moreover, the output A receives in the two games is identically
distributed.

Proof. We do induction in the number of commands. For the base case, c = 0, the claim
is trivially true as all sets are initialized to be the same. Let us now assume the claim
holds for c′ ∈ N and let us show that it holds for c = c′ + 1. If the command input is
(Kill, pi), then the claim follows by the induction hypothesis. It is, therefore, sufficient to
look at the case when (Reveal, pi) is input. Furthermore, as sets are updated identically
based on the output of the command for both oracles, it is sufficient to argue about the
output distribution of the edges. We make a case distinction based upon where pi is
located before the command is executed:

pi ∈ Revealedc
′
5 : By the induction hypothesis we have that pi ∈ Revealedc

′
6 and there-

fore O5 and O6 both ignore the command.

pi ∈ Pendingc
′
5 : By the induction hypothesis we have that pi ∈ Pendingc

′
6 . O5 adds

an edge with probability ρ to all parties in Pendingc
′
5 ∪ Killablesc

′
5 \ {pi} and

moves all parties that had an edge added to it to Pendingc5. Let us now argue
that O6 does the same. We let pj ∈ Pendingc

′
5 ∪ Killablesc

′
5 \ {pi} and do a case

distinction to show that Pr[{pi, pj} ∈ Edgesc6] = ρ.

pj ∈ Pendingc
′
5 : By the induction hypothesis we have that pj ∈ Pendingc

′
6 . Fur-

thermore, Claim 3.6.16. ensures that Naming[pj ] ∈ V. AsG is an Erdős–Rényi
graph there is a probability of ρ that {Naming[pi], Naming[pj ]} ∈ E and if it
is the case it then {pi, pj} will be added to Edgesc6.

pj ∈ Killablesc
′
5 : By the induction hypothesis we have that pj ∈ Killablesc

′
6 .

There are two different possibilities for an edge {pi, pj} to be added to Edges.
It can either be added based upon the edges from the underlying Erdős–Rényi
graph that goes to a node that has not yet had assigned an edge, or the
additional flips can add it afterward. For any node v ∈ AvailableNames

(which is precisely those that have not yet have a name assigned), we see that
there is a probability of Pr[Naming[pi], v] = ρ. If this edge exists v is uniformly
assigned to a node from Killablesc

′
6 and Killables6 is updated. With the

additional n−s−|Killedc′6 | coin flips for extra edges that are mapped in the
same way afterward, we have in total |AvailableNames|+(n−s−|Killedc′6 |)
such random variables that might result in an edge {pi, pj}. By Claim 3.6.17.
we have that

|AvailableNames|+ (n− s− |Killedc′6 |)

= s− (|Revealedc′6 + |Pendingc′6 ||) + n+ s− |Killedc′6 |

= n− |Revealedc′6 | − |Pendingc
′

6 | − |Killedc
′
6 |

= |Killablesc′6 |.

(3.64)

As there are exactly |Killablesc′6 | such random draws and for any outcome
of the draws, a uniform bijective mapping is constructed into Killablesc

′
6

we can conclude that Pr[{pi, pj} ∈ Edgesc6] = ρ.
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pi ∈ Killablesc
′
5 : Follows by a similar argument to the case pi ∈ Pendingc

′
5 .

pi ∈ Killedc
′
5 : By the induction hypothesis we have that pi ∈ Killedc

′
6 and therefore

O5 and O6 both ignore the command.

Claim 3.6.18. ensures that the outputs of the two oracles are synchronized until
one of them stops early. If neither stops, we are done. It is, therefore, sufficient to
argue that O5 only stops early if and only if O6 stops early. However, as the sets are
synchronized until one stops (Claim 3.6.18.) and O6 rules for early stopping is a superset
of the rules O5 has for early stopping, it is sufficient to argue that if O6 stops by any of
the additional stopping rules then it would anyway stop by one of the other rules (and
thereby O5 would also stop).

By Claim 3.6.17., the set of available names is only empty when |Revealed6| +
|Pending6| = s, and therefore O6 only tries to draw a name from the empty set if it
would anyway right after having that |Revealed6|+ |Pending6| > s.

Let us now argue that O6 only makes a draw from an empty set of killable if n −
|Killed6| < s. Let us assume that Killables = ∅ and n − |Killed6| ≥ s. We have
that:

n− |Killed6|
= |Revealed6|+ |Pending6|+ |Killables6|+ |Killed6| − |Killed6|
= |Revealed6|+ |Pending6|.

(3.65)

However, as Naming is injective, we have by Claim 3.6.16. that |Revealed6|+|Pending6| ≤
s which combined with our assumption gives us that |Revealed6| + |Pending6| = s.
Moreover, as Naming is injective there cannot be any nodes j ∈ V for which Naming−1 ==
⊥ and therefore there are no draws from Killables when O6 samples edges from E.
Finally, we have that n − s − |Killed| = 0, so the oracle does not flip any additional
coins, which ensures that there are no draws from Killables6.

Let us now relate the probability that an adversary can produce a graph with
an undesirable property in the FloodToErdosSix game to the probability that an
Erdős–Rényi graph has the property. However, this is only true for a restricted class of
properties we define below.

Definition 3.6.19 (Properties preserved under renaming of nodes). Let G = (V, E)
be a graph. We say that ϕ is preserved under renaming of nodes if for any injective
function, r : V → V ′, we have that

ϕ(G) =⇒ ϕ(({r(v) | v ∈ V}, {{r(v), r(u)} | {v, u} ∈ E})).

Lemma 3.6.20. Let ϕ be a monotone graph property preserved under renaming and let

Gs
$← G(s, ρ) for any s ∈ N. For any adversary A let GFloodToER6

$← FloodToER6(P, ρ,A)
then

Pr[¬ϕ(GFloodToER6)] ≤ max
s∈{h,...,n}

Pr[¬ϕ(Gs)]. (3.66)
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Proof. Let G = (V, E)
$← FloodToER6(P, ρ,A). By the law of total probabilities, we

have

Pr[¬ϕ(G)] =
n∑

s=h

Pr[¬ϕ(G) | s = |G|] · Pr[s = |G|]

≤
(

max
s∈{h,...,n}

Pr[¬ϕ(G) | s = |G|]
)
·

n∑
s=h

Pr[s = |G|]

= max
s∈{h,...,n}

Pr[¬ϕ(G) | s = |G|].

(3.67)

Let s0 := argmaxs∈{h,...,n} Pr[¬ϕ(G) | s = |G|]. As

max
s∈{h,...,n}

Pr[¬ϕ(Gs)] ≥ Pr[¬ϕ(Gs0)], (3.68)

it suffices to show that

Pr[¬ϕ(Gs0)] ≥ Pr[¬ϕ(G) | s0 = |G|]. (3.69)

As Pr[¬ϕ(Gs0)] = 1− Pr[ϕ(Gs0)] and Pr[¬ϕ(G) | s0 = |G|] = 1− Pr[ϕ(G) | s0 = |G|] it
suffices to show:

Pr[ϕ(Gs0)] ≤ Pr[ϕ(G) | s0 = |G|]. (3.70)

Let G′ = (V ′, E′) be the Erdős–Rényi graph maintained internally by the oracle in
FloodToER6. Clearly, Pr[ϕ(Gs0)] = Pr[ϕ(G′) | s0 = |G|], as then Gs0 are actually drawn
from the same distribution. It is, therefore, sufficient to show that ϕ(G′) =⇒ ϕ(G).

WLOG assume that there is some graph of size s0 that has the property (other-
wise Equation (3.70) is trivially fulfilled as both sides are equal to 0). Therefore, if the
game ended early, then ϕ(G) as the entire graph is returned. Otherwise, if the game did
not end early, then let G′′ = (V ′′, E′′) = (Naming−1(V), Naming−1(E)). As ϕ is preserved
under renaming, we have that ϕ(G′′). Furthermore, V ′′ = V and E′′ ⊆ E, which ensures
ϕ(G) (as ϕ is monotone).

3.6.3.2 Proving ΠGossip Secure

We are now finally ready to prove our main result.

Theorem 3.6.2. Let ∆ ∈ N be any delay, let σ ∈ N, let t < n be the maximum
number of parties an adversary can corrupt, and let d ∈ R. The protocol ΠERFlood(ρ)
securely implements F∆′

Flood against a (σ + ∆)-delayed adversary using Fσ,∆
MessageTransfer.

More precisely, when r is an upper bound on the number of different messages input
(either via Send or via SetMessage), the statistical distance between the real and ideal
executions is bounded by the probability pbad for either of the following instantiations:

1. Let ρ :=
√

d
h and let ∆′ := 2∆ then

pbad ≤ r · (t+ 1) · n2 · e−d· (h−2)
h . (3.43)
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2. Let α ∈ R, γ, δ1, δ2 ∈ [0, 1], and ρ := d
h . Furthermore, let t0 :=

log
(

γn
(1−δ1)d

)
log((1−δ2)α)

+1 and

∆′ := ∆ · (t0 + 1). If

e−dγ +
γα

1− γ
≤ 1,

γn

(1− δ1)d
> 1, and (1− δ2) · α > 1, (3.44)

then

pbad ≤ r · (t+ 1) ·
(
n ·
(
e−

δ21d

2 + t0e
− δ22α(1−δ1)d

2

)
+ e−h·(dγ2−2)

)
. (3.45)

Proof. We let A be an adversary and construct a simulator S similar to how the simu-
lator is constructed in the proof of Lemma 3.6.1.

1. S simulates all parties pi ∈ P running the protocl ΠERFlood(ρ) inside itself.

2. When receiving (Leak, pi,m) from F∆′
Flood the simulator inputs (Send,m) to pi (run-

ning inside S).

3. When receiving (SetMessage,m) from the adversary on the port belonging to func-

tionality Fσ,∆
MessageTransfer(pi, pj), S forwards (SetMessage,m, pj) to F∆′

Flood.

4. Whenever A corrupts some pi ∈ P, S corrupts pi and sends the simulated internal
state to A. From then on, the simulated pi follows A’s instructions.

We note that the only time this is not a perfect simulation is when one of the properties
of the ideal functionality is violated in ΠERFlood(ρ). In this case, the ideal functionality
will enforce the properties itself, whereas the real protocol will not, and it will be trivial
for an environment to distinguish.

To bound the probability that a property is violated, we let M be the set of messages
that are sent throughout the execution of the protocol (either via Send or via SetMessage).
For any message m ∈M that was input at time τ for the first time (either by the send
command or by letting it be sent from some dishonest party) to some honest party, we
let NoDelivery(m) be the event that m was not delivered at time τ +∆′. By a union
bound, we have that

pbad ≤ Pr

[ ⋃
m∈M

NoDelivery(m)

]
≤
∑
m∈M

Pr [NoDelivery(m)] .

(3.71)

Now let us look at any message m ∈M that is input at time τ for the first time (either
by the send command or by letting it be sent from some dishonest party) to some honest
party ps. Now, for λ := ∆′

∆ , Lemma 3.6.4 ensures that there exists an adversary A1 s.t. if

GFloodToER1

$← FloodToER1(P, ρ,A1, ps) then

Pr[NoDelivery(m)] ≤ Pr[¬ϕDist(ps, GFloodToER1 , λ)]. (3.72)

Lemma 3.6.7 ensures that there exists an adversary A2 s.t. if GFloodToER2

$←
FloodToER2(P, ρ,A2, ps), then
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Pr[¬ϕDist(ps, GFloodToER1 , λ)] ≤ Pr[¬ϕDist(ps, GFloodToER2 , λ)]. (3.73)

Lemmas 3.6.10 and 3.6.11 ensures that there exists an adversary A3 s.t. if GFloodToER3

$←
FloodToER3(P, ρ,A3, ps) then

Pr[¬ϕDist(ps, GFloodToER2 , λ)] ≤ Pr[¬ϕDist(ps, GFloodToER3 , λ)]

≤ Pr[¬ϕDiam(GFloodToER3 , λ)].
(3.74)

As ϕDist is monotone, Lemma 3.6.13 ensures that there exists an adversary A4 s.t. if

GFloodToER4

$← FloodToER4(P, ρ,A4) then

Pr[¬ϕDiam(GFloodToER3 , λ)] ≤ Pr[¬ϕDiam(GFloodToER4 , λ)]. (3.75)

Lemma 3.6.14 ensures that if GFloodToER5

$← FloodToER5(P, ρ,A4) then

Pr[¬ϕDiam(GFloodToER4 , λ)] ≤ Pr[¬ϕDiam(GFloodToER5 , λ)] · (t+ 1). (3.76)

Furthermore, as ϕDiam is also preserved under renaming, Lemmas 3.6.15 and 3.6.20

ensures that if Gs
$← G(s, ρ) then

Pr[¬ϕDiam(GFloodToER5 , λ)] ≤ max
s∈{h,...,n}

Pr[¬ϕDiam(Gs, λ)]. (3.77)

Combining Equations (3.71) to (3.77) and using that |M | = r we get that

pbad ≤ r · (t+ 1) · max
s∈{h,...,n}

Pr[¬ϕDiam(Gs, λ)]. (3.78)

We now look at the individual instantiations to bound maxs∈{h,...,n} Pr[¬ϕDiam(Gs)].
For Instantiation 1 we obtain Equation (3.43) using Lemma 3.4.3. For Instantiation 2
we obtain Equation (3.45) using Lemma 3.4.1.



4 Practical Provably Secure Flooding for Blockchains

4.1 Introduction

4.1.1 Motivation

Since Nakamoto proposed the first decentralized permissionless blockchain protocol
[Nak08], a significant line of work has been done. In such protocols, one considers
a setting where different parties are weighted according to how much of a resource they
own (mining power, stake, space, etc.), and security relies on the fact that a certain
fraction of the total weight (typically more than the majority, or two thirds) is owned
by the honest parties.

Current blockchain protocols typically are proven secure assuming the availability
of a multicast network, which allows each party to distribute a value among the par-
ties within some delivery time ∆ (see e.g., [Abr+20; CM19; DPS19; Dav+18; Din+20;
GKL15; PS17a; PS18b]). However, very little attention has been devoted to the con-
struction of provably secure multicast networks themselves.

In practice, the multicast network is typically implemented via a message-diffusion
mechanism, where in order for a party P to distribute a message, P sends the message
to a subset of its neighbors, who then forward the message to their neighbors and so on.
The idea is that if the graph induced by the honest parties is connected, the message
will reach all the honest parties, and if the graph has a low diameter, it will reach all
honest parties after only a few iterations. Indeed, there have been works that study how
to randomly select the neighbors so that the induced graph remains connected with a
small diameter after removing corrupted nodes (see, e.g., [KMG03; MNT22b; RT19]).

Unfortunately, to the best of our knowledge, currently analyzed diffusion mecha-
nisms do not consider weighted parties and, therefore, can only be proven secure when
a certain constant fraction of the parties are honest (in particular, it is not enough
to assume a fraction of the total weight is owned by honest parties). This means
that when such a message diffusion mechanism is used to build a blockchain, the over-
all protocol relies on both the constant-honest-fraction-of-weight assumption and the
constant-honest-fraction-of-parties assumption.

Note that for a fixed weight distribution, a bound on the corrupted weight also im-
plies a bound on the number of parties that can be corrupted, where this maximum is
achieved by greedily corrupting parties with the least weight first. Hence, current multi-
cast protocols could, in principle, also be used, assuming only a bound on the corrupted
weight. However, the message complexity of such protocols is inversely proportional to
the guaranteed honesty ratio. That is, to still guarantee security under more corrupted
parties, the remaining parties must send to more neighbors. In particular, this means

103
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Figure 4.1: Comparison of our WFF protocol with a weight oblivious protocol WOF that
chooses a fixed number of random neighbors independently of their weight. The simu-
lations are for n = 1024 parties with exponential weight distributions Exp(r) where the
heaviest party’s weight is r times the lightest party’s weight. Note that for Exp(1), WFF
and WOF are identical. For each setting, we consider a 50% corruption threshold and
a greedy corruption strategy where lighter parties are corrupted first. Each simulation
was repeated 10 000 times, and the success rate measures how often all parties received
a single sent message.

that in many of the current weight distributions where there are very few people owning
a large fraction of the total weight but thousands of parties holding a tiny little fraction
of the weight, the incurred concrete message complexity to achieve security significantly
blows up (see an example in Figure 4.1, where even for large sizes of neighborhood sizes,
the protocol fails).

The need for a practically efficient multicast network secure solely relying on the
constant-honest-fraction-of-weight assumption is therefore apparent.

4.1.2 Our Contributions

In this work, we investigate provably secure protocols that implement a multicast net-
work for the weighted setting, relying solely on the constant-honest-fraction-of-weight
assumption. Additionally, we are interested in protocols that are concretely efficient. In
short, we explore the following natural questions:

Is there a provably secure multicast protocol in the weighted setting, assuming
only a constant fraction of honest weight? And if so, is there a practically
efficient one?

We answer both of these questions in the affirmative by presenting the first multicast
protocol WFF (weighted fan-out flooding) that relies solely on the constant-honest-
fraction-of-weight assumption and evaluate its practical efficiency by performing various
simulations. More concretely, we prove the following theorem:

Theorem 4.1.1 (Informal). Let κ be a security parameter, n be the number of parties,
and γ ∈ [0, 1] be the fraction of the total weight that is guaranteed to belong to honest
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parties. Further, let δChannel be an upper bound on the delays of the underlying point-
to-point channels. Then, WFF is a secure flooding protocol with maximal delay ∆ :=(
7 · log

(
6n

log(n)+κ

)
+ 2
)
· δChannel and message complexity 2n · log(n)+κ

γ .

Note that the maximum delay and the message complexity in the theorem are inde-
pendent of the weight distribution. By naturally assigning the weights to corresponding
stake quantities, the achieved guarantees match those required in previous proof-of-stake
blockchain protocols (see, e.g., [CM19; Dav+18; Din+20]). Therefore our protocol can
be used to build a blockchain protocol from point-to-point channels without the need for
any additional assumptions apart from those needed in the blockchain protocol itself.

Asymptotic optimality and practicality. Our protocol has the property that 1) parties
accumulating large amounts of weight need to send to more parties, and 2) the number
of parties each sends to increase logarithmically in the total number of parties. We
prove that both properties are inherent for secure flooding protocols, meaning that
Theorem 4.1.1 is asymptotically optimal. Concretely, for the first point, if a small set S
(say, of constant size) accumulates more than a γ-fraction of the weight, then this set
necessarily needs to send at least to a linear number Θ(n) of parties.

This means it is undesirable to have parties with small weights and also to have
parties with massive weights. A simple way to mitigate this in practice is to exclude
parties with less than Wmin weight and cap the maximal weight to Wmax. This means
if we use the flooding for a proof-of-stake blockchain, parties with a huge amount of
stake need to split their stake over several nodes such that none has more than Wmax

weight. Parties with tiny weights can still obtain data from other nodes by requesting
data from them periodically. We discuss this further below.

Simulations. We use simulations to evaluate the practicality of our provably secure pro-
tocol. The simulations confirm our theoretical results and also show that our protocol
is practical: Messages are diffused quickly to all parties with high success probability
even when weights are unevenly distributed. On the other hand, as our simulations
also show, prior protocols—oblivious of the parties’ weights—fail completely for neigh-
borhood sizes for which our provably secure protocol succeeds (see Figure 4.1). In par-
ticular, this means that our protocol achieves the necessary security guarantees using
considerably fewer messages than current (weight-oblivious) protocols.

Outline of the chapter. In the remainder of this section, we will discuss our model and
assumptions, provide a technical overview, and discuss related work. In Section 4.2,
we introduce the model for which our results hold, as well as the notation and basic
graph definitions used in the remainder of the chapter. In Section 4.3, we present our
practical flooding protocol and prove it secure based on the constant-honest-fraction-
of-weight assumption. In Section 4.4, we present theoretical lower bounds showing that
our protocol is asymptotically optimal and discuss the practical implications of these
bounds. In Section 4.5, we present two solutions for obtaining delivery to parties with
zero weight. Finally, in Section 4.6, we evaluate the performance of our protocol using
simulations.
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4.1.3 Model and Assumptions

Network and corruption model. We assume all parties have access to an underlying
network that allows them to establish point-to-point channels with other parties. We
further assume each party p is publicly assigned a weight Wp > 0 and an adversary
can corrupt parties accumulating at most a constant fraction 1− γ of the total weight.
For simplicity, we consider static corruptions in our proofs but using the techniques
from [MNT22b], all our results can be extended to security against delayed adaptive
adversaries (adversaries for which there is a delay from the time they decide to corrupt
a party until the adversary effectively controls the party). Intuitively, if corruption
takes longer than the duration from the earliest point in time an adversary can learn the
neighbors of a party till the neighbors are guaranteed to have resent the message to other
parties, then adaptivity does not help the adversary prevent delivery of any messages.
However, significant overhead is involved in proving this because the adversary can still
dynamically decide how many parties are left to guarantee delivery for (as evidenced
in Chapter 3). This is why we only present proofs for a static adversary and refer to
[MNT22b] for techniques for proving such a statement.

Realising public weights from resource assumptions. Proof-of-stake blockchains rely on a
constant fraction of the stake being honest (typically more than 1/2 [DPS19; Dav+18]
or more than 2/3 [CM19]). Furthermore, a blockchain itself provides a ledger accessible
by all parties describing how much stake each party owns. Hence, it is immediate how
to assign weights to parties by simply accessing the ledger to instantiate the weights for
our protocols.

To achieve a weight distribution for blockchain protocols that rely on a constant
fraction of the computational resources being honest [GKL15; PS17a; PS17b; PS18b],
one can make use of the techniques for committee selection for such setting [PS17b;
PS18b]. The idea behind this is that for long fragments of a chain with high chain quality,
the distribution of block creators is similar to the distribution of computational resources
among parties. Hence, this distribution translates directly to publicly available weight
distribution to all parties. For techniques to achieve a high chain quality, see [PS17a].

Delivery to zero-weight parties. While we assume that all parties have positive weight
and parties with zero weight cannot contribute to the security of the protocol, it is still
desirable in practice to allow such parties to obtain the state of the system. This can be
achieved, e.g., by letting such parties fetch missing data from other nodes. We discuss
some options in Section 4.5.

Static versus dynamic weight. For simplicity, we consider for this work the static-weight
setting, in which the weight of all parties remains fixed. This might appear unrealistic
when weight is instantiated with the stake in a proof-of-stake. However, this is not a
real limitation of our protocol when combined with such a blockchain. For example,
in [Dav+18], to prove their protocol secure for a dynamic stake, the authors divide
time into epochs where the stake used for producing blocks remains unchanged and
additionally make assumptions on the speed that stake can move between epochs. In
their proofs, they note that all parties agree on the stake distribution in a previous
epoch. We note that our proofs only rely on static weight for the propagation of a single
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message, and the time it takes to propagate a message is minimal compared to such
epochs.

Practicality of complete network. We note that the assumption that any two parties can
establish a point-to-point connection with each other is a reasonable assumption, e.g.,
in the proof-of-stake setting: Parties who want to participate in the protocol first need
to register their node, see, e.g., [Bad+18]. This registration process can include the
node’s IP address and further required information that allows other nodes to establish
a connection with that node.

4.1.4 Technical Overview

Flooding protocol skeleton. Our protocol follows the basic structure of previous flooding
protocols: When a party p receives a message m for the first time, p samples a set of
neighbors N from the party set P, according to some probability distribution Np. The
party then forwards the message m to all parties in N . The crucial variable of this
protocol is the distribution Np, i.e., how parties select their peers.

Remark 4.1.1. In most practical blockchain implementations, parties do not resample
their peers for every message but keep the connections over an extended period of
time [Hei+15; MHG18]. We note that our protocol can also be used in such a fashion,
and all our results can be translated to such a setting. The reason for resampling
peers often is that against a delayed adaptive adversary [MNT22b], security can only be
guaranteed if the corruption delay is longer than the time peers keep their connections.
Hence, resampling more often provides better security guarantees.

Dependency of neighborhood selection on weight distribution. It is clear that to achieve
efficient results, one must use the overall weight distribution to decide whether a party
pi forwards the message to party pj . What is perhaps less clear is what the required
amount of dependency is. We here argue intuitively that the neighborhood selection
must depend (at least) on both the weights of pi and pj : Consider a weight distribution
where pi’s weight is overwhelming, and there are many parties with very little weight
(including pj). In this case, the adversary has a corruption budget to corrupt all parties
except for pi and pj . Therefore, to guarantee that an honest pj receives the message, pi
must send it to that party with probability 1. Consequently, the neighborhood selection
distribution Npi must depend on pi’s weight. It follows via an analogous argument that
pi must send to pj if the latter’s weight is overwhelming. Hence, the probability of
choosing pj in Np must also depend on pj ’s weight.

A simple inefficient solution. From the above observations, we see that the neighborhood
distribution must depend on both the weights Wi of pi and Wj of pj . A simple idea is to
let each party pi internally emulate Wpi parties and then run a traditional unweighted
flooding protocol among W =

∑
pWp nodes, where two nodes are connected with some

probability ρ. By properties of Erdős–Rényi graphs, this leads to a secure flooding
protocol [MNT22b]. Note that the probability that a node from pi is connected to a
node from pj depends on both weights Wpi and Wpj , namely 1− (1− ρ)Wpi ·Wpj .
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However, the resulting protocol is highly inefficient since it has a message complexity
that depends on the total sum of the weights W rather than the number of parties. Note
that in current proof-of-stake systems, the total stake is in the order of billions, so any
dependency on the total weight is highly undesirable.

Scaling invariance. The simple protocol from above is not only inefficient if the total
weight is large, but it also has the undesirable property that the efficiency depends on
the “unit” of the weight: If we multiply everybody’s weight by 100, the overall number
of messages increases substantially, even though this scaling does not affect the possible
corruptions. We thus postulate that practical protocols should be invariant under such
weight scalings.

A simple fix seems to be to normalize the weight distribution by dividing every
party’s weight by the weight of the lightest party. This, however, introduces two issues:
First, since the number of internally emulated nodes must be an integer, this division
leads to rounding issues, with implications for the security argument. Secondly, intro-
ducing an additional extremely light party now has a massive impact on efficiency, even
though this additional party does not substantially change the possible corruptions.

A first theoretical protocol. Our first technical contribution is a new simple way to choose
the neighbors in the flooding protocol. More precisely, we generalize the approach above
and show that it is actually enough to emulate a number of nodes that is proportional
to the total number of parties (rather than the total weight).

For that, we introduce the notion of an emulation-function E : P → N \ {0}. Ac-
cording to the emulation function, we let each party p internally emulate E(p) ≥ 1
different nodes in a graph consisting of nE :=

∑
p E(p) nodes. As explained above, the

basic idea is to create an Erdős–Rényi graph on the emulated graph with nE nodes and
edge-probability ρ. Then, we say that a party pi forwards the message to pj if any of
the emulated nodes from pi is connected to any of the emulated nodes from pj . This
means that the probability that pi forwards the message to pj is 1− (1− ρ)E(pi)·E(pj).

We then consider the emulation function E(p) = ⌈αp · n⌉, where αp is p’s fraction
of the total weight. That is, we let each party emulate a number of nodes proportional
to the number of parties scaled by the party’s relative weight. Note that the ceiling
ensures that each party emulates at least one node. We then prove that by choosing ρ
appropriately such that the unweighted subgraph emulated by honest parties remains
connected with low diameter, we obtain a flooding protocol with message complexity
O((log(n) + κ) · n · γ−1) and time complexity O(log(n) · δChannel).

A practical protocol. Although the method described above is intuitive and gives us
asymptotically good complexities, it is very far from practical. In particular, the protocol
requires every party to locally flip Ω(n) coins for each message. Similar to current
protocols deployed in practice, we would like to have a protocol that instead chooses a
fixed set of neighbors (possibly dependent on the weight distribution, but nothing else)
and provide provable security for it.

We propose a protocol where each party p chooses to send to K = k · E(p) =
k ·⌈αp ·n⌉ distinct parties (for a parameter k), according to a weighted sampling without
replacement [BPS18]. More precisely, p chooses K parties, where the probability of
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choosing a certain tuple1 of parties (q1, . . . , qK) (among the set of parties P \ {p}) is

Pr[(q1, . . . , qK)] =
K∏
i=1

E(qi)

nE − E(p)− E(q1)− · · · − E(qi−1)
. (4.1)

We show that this practical protocol has the same asymptotic guarantees as the first
protocol above.

Importance of emulation function. Even though this protocol is so simple that it can be
described in a few lines, it is by no means trivial. In fact, it is crucial for the correctness
of the protocol that the emulation function is used to determine both the number of
neighbors and the distribution of these neighbors.

To see that it is crucial to use the emulation function to decide how many neighbors
each party should choose, consider a slight change to the protocol, namely, send to
K = k · αp · n parties (instead of K = k · E(p)). Now, consider a sender p with a small
fraction of the total weight αp, and let us estimate the parameter k to ensure that this
p sends to at least one honest party. As any party potentially could be corrupt, it must
be that p sends to more than just one neighbor. Hence, it must be that k > 1

αp·n , just
to ensure this very minimal requirement. A rough bound on the message complexity of
such protocol would be

∑
p′ k · αp′ · n > 1

αp
, which is impractical if αp is small.

To see that it is crucial to weigh the selection of neighbors with the emulation
function, we consider another small change to the protocol, namely to select parties
weighted by their weight instead of the emulation function. Now, consider a weight
distribution where just one party p has a tiny fraction of the total weight, and all others
have roughly equal weight. Note that for any party choosing less than n neighbors, the
probability that p is selected as a neighbor becomes arbitrarily small for a decreasing αp.
Hence, ensuring that p receives a message would induce a quadratic message complexity
which is impractical.

Security proof. Proving the security of such a protocol in the weighted setting directly
is non-trivial for two reasons: First, the choices of whether to send to a neighbor or
not are not independent. Secondly, the fact that the choices are according to an arbi-
trary weight distribution makes the analysis considerably harder than traditional graph-
theoretic results that consider the non-weighted setting. Instead of providing a direct
graph-theoretic analysis, we give a security proof via a sequence of intermediate pro-
tocols, essentially relating the success probability of the first protocol above based on
Erdős–Rényi graphs to the practical protocol. This leads to Theorem 4.1.1.

4.1.5 Current State of the Art and Related Work

Flooding networks in a Byzantine setting. [KMG03] was the first to relate probabilistic
gossiping to the connectivity of the induced graph. They considered (1− γ) · n out of n
parties failing and showed that each party needs to forward a message with probability
ρ > log(n)+κ

γ·n to any other party to ensure that messages are delivered to all non-failing
parties with a probability overwhelming in κ.

1The probability to choose the unordered neighborhood set N = {q1, . . . , qK} is the sum over the
probabilities of all permuted tuples.
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[MNT22b] observed that against an adversary capable of adaptively corrupting up
to t parties, any flooding network where each party sends to less than t neighbors
is inherently insecure (an adversary can corrupt all neighbors of a sender). To miti-
gate this problem and achieve a protocol secure against a Byzantine adaptive adver-
sary, [MNT22b] formalized the notion of a delayed adversary (informally introduced
by [PS17b]) for which there is a delay from the time the adversary decides to corrupt
a party until the adversary effectively controls the party. In this setting, they showed
that against an adversary delayed for the time it takes to send a message plus the time
it takes to resend a message, it is sufficient to, on average, send to Ω((log(n) + κ) · γ−1)
neighbors to achieve a flooding protocol that with an overwhelming probability in κ has
O(log(n)) round complexity for n parties with at most (1 − γ) · n of the parties being
corrupted. In this work, we match the theoretical performance of their flooding protocol
with a practical protocol that only relies on a γ fraction of the weight remaining honest,
which is more relevant in the blockchain setting.

Kadcast [RT19] is a recent flooding protocol designed explicitly for blockchains.
Interestingly, they claim that structured networks are inherently more efficient than
unstructured networks and propose a structured protocol with O(log n) neighbors and
O(log n) steps to propagate a message, which is similar to what we achieve using an
unstructured network. It is unclear how their protocol performs under Byzantine fail-
ures. Further, we note that structured networks are inherently vulnerable to attacks by
adaptive adversaries.

A different line of work [MMR99; MPS01; MS03] considers how to propagate updates
in a database using gossip where at most t of the processors may be corrupted. The
setting is different from ours as they assume that at least t honest parties get the update
as input initially, and only updates input to some honest processor can be accepted by
the other processors.

Probabilistic communication has also been used to improve the communication
complexity for both multi-party-computation (MPC) [Cha+15] and Byzantine broad-
cast [TLP22]. In [Cha+15], communication between honest parties are assumed to be
hidden from the adversary. This is exploited by constructing a random communica-
tion network with an average polylogarithmic degree based on Erdős–Rényi graphs.
They thereby achieve a MPC protocol with a low communication locality that is secure
against a fully adaptive adversary. [TLP22] combines the classic broadcast protocol
by Dolev and Strong [DS83] with gossiping based upon Erdős–Rényi-graphs to obtain
the first broadcast algorithm with a sub-cubic communication complexity for a dishon-
est majority. Using similar techniques and assuming a trusted setup, they achieve an
asymptotically optimal communication complexity for parallel broadcast.

A different line of work considers the problems of MPC and Agreement on incom-
plete communication networks [CGO10; CGO15; Dwo+88; GO08; JRV20; Kin+06;
Upf94]. To circumvent complexity bounds for fully adaptive adversaries, the seminal
work of [Dwo+88] introduced the problem of almost-everywhere agreement as a re-
laxation of agreement where not all nodes are required to be consistent, but a small
number of nodes are allowed to be inconsistent. Since then, the relaxation has also
been extended to MPC [GO08], and different solutions to this problem have been con-
tinuously improved [CGO10; CGO15; JRV20; Kin+06; Upf94]. Notably, [Kin+06] used
probabilistic communication to increase the number of consistent parties, and [CGO15]
used Erdős–Rényi graphs with a diameter of 2 to obtain a construction secure not only
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against adaptive corruptions but also an adversary allowed to remove some communi-
cation links adaptively. In our work, nodes are also of a bounded degree, but contrary
to this line of work, we work in a slightly weaker adversarial model, which allows us to
ensure correctness for all parties.

Attacks on the network layers of blockchains. Attacks on network layers of blockchains
are not only a theoretical concern. In fact, several works [AZV17; Hei+15; MHG18;
Tra+20] have shown that it has been possible to launch eclipsing attacks2 against nodes
in the Bitcoin network and the Ethereum network.

Bitcoin’s peer-to-peer network lets each node maintain 8 outgoing connections and
up to 117 incoming connections. This is clearly insecure when considering a resource-
constrained adversary instead of a traditional adversary (as the probability of only
connecting to adversarial nodes can be arbitrarily high). In addition to this inherent
insecurity, [Hei+15] showed how to eclipse a node that is already a part of an existing
honest network by exploiting a bias in how a peer selects its outgoing connections. They
launched such an attack with only 4600 bots and achieved 85% success probability to
eclipse a targeted node.

By default, a node in the Ethereum peer-to-peer network selects 13 outgoing con-
nections contrary to the 8 that is the default in Bitcoin. Hence, one might be led to
believe that it is more challenging to eclipse an Ethereum node than a Bitcoin node.
However, in Ethereum, neighbors are selected using a distance measure based on nodes’
public keys. Exploiting that in a prior version of the Ethereum client, a single computer
was allowed to run several nodes, [MHG18] showed that just a single computer could
be used to mount an attack by creating multiple carefully selected public keys.

[AZV17] showed that BGP-Hijacking could also be used to eclipse Bitcoin nodes.
However, we note that such an attack is immediately observable as an adversary must
publicly announce a false BGP prefix. In [Tra+20], it was shown that a stealthier
version of such an attack could also be launched against a Bitcoin node by additionally
influencing how a bitcoin node selects its outgoing connections. We note that such
attacks are attacks on the internet’s infrastructure and therefore fall outside the scope
of our model.

We note that the attacks presented in [Hei+15; MHG18; Tra+20] all rely on ex-
ploiting the heuristics used to select outgoing connections for nodes in the peer-to-peer
network. Hence, such attacks would not have been possible if a provably secure protocol
(such as the one presented in this work) had been deployed instead of heuristics.

Detecting eclipse attacks. To mitigate attacks on the network layer, a line of work
considers the possibility of detecting eclipse attacks [Ala+21; Xu+20; ZTA21]. [Xu+20]
provide a method for using supervised learning to detect eclipsing attacks based on the
metadata in packages. We note that this method is only as good as its data set for
training and hence cannot be used to detect attacks in general. A different approach is
to try to detect eclipse attacks based on the absence of new blocks [Ala+21; ZTA21].
However, this method has the drawback that it becomes arbitrarily slow as the fraction
of resources controlled by an adversary approaches 50%, and even for small values, it

2An attack where an adversary tricks an honest party into talking only with adversarial parties. It
is thereby possible for the adversary to manipulate the honest node in various ways.
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takes upwards of 3 hours to detect. Finally, it has been considered to detect eclipse
attacks using an additional overlay gossip protocol [Ala+21]. However, contrary to this
work, this is not proven to work but instead demonstrated to work empirically.

Consequences of eclipse attacks. If a party is eclipsed, it is immediate that security
proofs that rely on guaranteed message delivery no longer apply. Several works have
shown that eclipse attacks not only invalidate the security proofs but actually invalidate
the security of blockchain protocols [Hei+15; Nay+16; ZL19]. Eclipsing can be used
to invalidate the total order that blockchain provides and thereby allow double-spend
attacks [Hei+15], amplify the rewards from selfish mining [Nay+16], and dramatically
speed up ”stake-bleeding”-attacks [ZL19].

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols [Cor+22]. Concurrent
with and independent of our work, [Cor+22] considered the problem of designing a mes-
sage diffusion mechanism based on the majority of honest stake assumption. The main
focus of that paper is to design a network protocol specifically for the Ouroboros Praos
consensus protocol [Dav+18]. To mitigate a specific denial-of-service attack possible in
that protocol (and related proof-of-stake protocols), the authors propose a mechanism
that relies on long-lived connections between parties to synchronize chains instead of
generically diffusing messages. A consequence of these long-lived connections between
parties is that an adaptive adversary can eclipse a set of honest parties. Because their
ideal functionality allows such eclipsing, the functionality is different from the assumed
functionality of [Dav+18] (and thereby the functionality implemented in this work),
and the authors argue in [Cor+22] that security of [Dav+18] can be proven using this
new functionality. In contrast, our work focuses on realizing the flooding functionality
without eclipsing, which is assumed by most existing blockchain protocols. Hence, while
some techniques are similar, the results of [Cor+22] are mostly orthogonal to our work.

4.2 Preliminaries and Model

4.2.1 Preliminaries

We will use κ to denote the security parameter of our protocols.

Graphs. We use standard notation for graphs and let G = (V, E) be a graph with nodes
V and edges E. An edge can be either directed, in which case we will write (v, z) to
denote the edge from v to z, or undirected, in which case we will write {v, z} to denote
the edge between the two nodes. We write dist(v, z) to denote the shortest distance
between two nodes v and z. Further, we use the shorthand notation MaxDist(G, v) ≜
maxz∈V dist(v, z) for the maximum distance from v to any node in a graph G = (V, E),
and the following notation Diam(G) ≜ maxv∈V MaxDist(G, v) for the diameter of a graph
G.

We also define Erdős–Rényi graphs and digraphs.

Definition 4.2.1 (Erdős–Rényi (di)graphs). An Erdős–Rényi (di)graph is a (di)graph
G = (V, E) where all possible edges are present with an independent probability ρ.
That is for any v, z ∈ V, we have Pr[{v, z} ∈ E] = ρ for Erdős–Rényi graphs and
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Pr[(v, z) ∈ E] = ρ for digraphs. To sample such a graph G with |V| = η, we write

G
$← GER(η, ρ) and for the directed case G

$← G →
ER

(η, ρ).

Basic equalities and inequalities. For completeness, we restate some fundamental equal-
ities and inequalities which we will use in our proofs.

Lemma 4.2.2 (Binomial formula). For x, y ∈ R and n ∈ N

(x+ y)n =
n∑

k=0

xn−k · yk.

Lemma 4.2.3 (Bernoulli’s inequality). For r ∈ R \ (0, 1) and x ≥ −1

1 + r · x ≤ (1 + x)r .

Lemma 4.2.4 (Exponential inequality). For y ≥ 1 and |x| ≤ 1(
1 +

x

y

)y

≤ ex.

4.2.2 Parties, Weight, Adversary and Communication Network

We let P denote the static set of parties for which our protocols will work. For conve-
nience, we let n := |P| and let H ⊆ P be the set of honest parties.

We assume that a public weight is assigned to each party. We let Wp denote the

weight assigned to party p, and let αp :=
Wp∑

p∈P Wp
i.e., the fraction of the total weight

assigned to party p.
We allow an adversary to corrupt any subset of the parties such that the remaining

set of honest parties together constitutes more than a γ ∈ (0, 1] fraction of the total
weight. Formally, we assume that ∑

p∈H
αp ≥ γ, (4.2)

and that all parties have a non-zero positive weight, i.e., ∀p ∈ P,Wp > 0.3 We will
refer to this assumption as the honest weight assumption. For simplicity, we consider
a static adversary, although our results also hold against a so-called delayed-adaptive
adversary [MNT22b], where the corruptions can be adaptively chosen but only happen
after a certain amount of time.

Parties P have access to a complete network of point-to-point authenticated channels
that guarantee delivery within a bounded delay. Concretely, we assume that all channels
ensure delivery within δChannel time.

3For a discussion of the necessity of the zero-weight requirement see Section 4.4 and for methods to
anyway achieve delivery to such zero-weight parties see Section 4.5. .
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4.3 Weighted Flooding

In this section, we present a practical and provably secure flooding protocol WFF
(weighted fan-out flooding) that only relies on the honest weight assumption. Before
doing so, we first present our definition of a flooding protocol in Section 4.3.1. Then,
in Section 4.3.2, we present a generic skeleton for flooding protocols that is parameter-
ized by the way parties select their neighbors, instantiate this skeleton to obtain our
practical protocol (WFF), and prove that it is sufficient to consider the way neighbors
are selected to derive security of a protocol. We use this skeleton to define our theo-
retical flooding protocol that is secure based upon each party emulating a number of
nodes proportional to their weight in an Erdős–Rényi graph (Section 4.3.3). Finally,
in Section 4.3.4, we use two intermediary protocols to derive the security of WFF from
our theoretical protocol.

4.3.1 Properties of Flooding Protocols

Below we give our property-based definition of a flooding protocol.4

Definition 4.3.1. Let Π be a protocol executed by parties P, where each party p ∈ P
can input a message at any time, and as a consequence, all parties get a message as
output. We say that Π is a ∆-flooding protocol if the two properties hold with a
probability overwhelming in the security parameter κ for each message m:

1) If m is input by an honest party for the first time at time τ , then by time τ +∆
it is ensured that all other honest parties output m.

2) If m is output by an honest party at time τ , then by time τ +∆ it is ensured that
all honest parties output m.

Note that this definition subsumes the assumptions that many blockchain protocols
rely on [CM19; Dav+18; Din+20; GKL15; PS17a; PS18b]. To the best of our knowledge
only [Din+20] relies on both Properties 1) and 2), whereas the other works only rely
solely on Property 1). However, as Property 2) essentially comes for free for the type of
protocols we consider (each party will forward everything they receive and thereby act
as if they themselves send the message), we have chosen to include it in our definition.
Furthermore, because of this structure of our protocols, it is sufficient to bound the
probability of Property 1) to show that our protocols are, in fact, flooding protocols
according to the definition. For our proofs and lemma statements, it is, therefore, useful
to define notation for the predicate that a message input to an honest party for the first
time is delivered respecting the delivery bound for a flooding protocol, which is what
we encapsulate in the predicate below.

Definition 4.3.2 (Timely delivery). For a message m that is input for the first time at
an honest party at time τ , we say that m is ∆-timely-delivered if all honest parties have
output m no later than time τ +∆. We let Timelym(∆) denote the induced predicate.

4Note that for protocols with no secrecy (each event is leaked to the adversary) and for functionalities
that give the adversary complete control while respecting these properties, a simulation-based security
notion is directly implied by the property-based definition. For flooding networks, this technique is used
in the proofs in [MNT22b, proof of Lemma 3.6.1].
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Similarly, for a message m that is input for the first time at an honest party, we
define the message complexity as the number of messages sent by honest parties until all
honest parties output m. Looking ahead, since our protocols only consist of forwarding
the initial message m, the total message complexity is |m| times the message complexity.

Mitigating denial-of-service attacks. It is immediate that any protocol that lives up to
the definition of a flooding protocol, as given above, is open to denial-of-service attacks.
An adversary can simply flood arbitrary messages until the bandwidth is exceeded.
This is possible because the definition requires all messages to be forwarded. It is
natural to consider a notion of validity to prevent such attacks and only require the
delivery guarantees to apply for “valid” messages. Concretely, one could let each party
p ∈ P have an updatable local predicate Validp and only require that messages that are
considered valid by all parties for ∆ after being input/output for the first time should
be propagated.

We have left this out of our definition and protocols for clarity of presentation.
However, we note that it is easy to accommodate our protocols to such a notion by
letting each party check if a message is valid before propagating it. We note that with
such modification, all our proofs and lemmas still hold for messages considered valid by
all parties for at least ∆ after input/output.

4.3.2 A Skeleton For Flooding Protocols

We now present a skeleton for our flooding algorithm. The structure of the protocol
is very similar to the protocols proposed in [MNT22b, Section 3.6.2], but contrary to
their protocols, our protocol takes an additional parameter N , which is an algorithm
that allows each party to sample a set of neighbors. We refer to this parameter as the
neighborhood selection algorithm.

The protocol accepts two commands: One for sending and one for checking which
messages have been received. Once a send command is issued to a party, the party will
forward the message to a set of neighbors determined using the neighborhood selection
algorithm. Furthermore, once a message is received on a point-to-point channel, the
receiver checks if it has already been relayed, and if not, it forwards the message to a
set of neighbors that is again selected using the neighborhood selection algorithm.

Protocol ΠFlood(N )

We use Np to denote the neighborhood distribution of party p. Each party pi ∈ P
keeps track of a set of relayed messages Relayedi which will also be used to keep
track of which messages party pi has received.

Initialize: Initially, each party pi sets Relayedi := ∅.

Send: When pi receives (Send,m), they sample a set of neighbors N
$← Np and

forwards the message to all parties in N . Finally, they set Relayedi :=
Relayedi ∪ {m}.

Get Messages: When pi receives (GetMessages) they return Relayedi.
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When party pi receives messagem on a point-to-point channel wherem ̸∈ Relayedi,
pi continues as if they had received (Send,m). Otherwise, m is ignored.

Looking ahead and as an example of a neighborhood selection algorithm, we present
our practical and provably secure algorithm next.

4.3.2.1 A Practical Neighborhood Selection Algorithm

Our algorithm WFS(E, k) (abbreviation for “Weighted Fan-out Selection”) takes two
parameters: a function E : P → N that allows taking stake into account when deciding
how many neighbors each party should select and a parameter k that scales this number.

The idea of the algorithm is that each party p chooses K := k ·E(p) number of neigh-
bors (excluding themselves). The neighbors are chosen according to weighted sampling
without replacement [BPS18] where each party is again weighted with E. More precisely,
party p chooses K neighbors from P \ {p}, and the probability to choose the tuple of
neighbors (q1, . . . , qK) is defined as:

Pr [(q1, . . . , qK)] =

K∏
i=1

E(qi)∑
q∈P\{p,q1,...,qi−1} E(q)

. (4.3)

The probability of choosing a particular neighborhood set {q1, . . . , qK} is the sum of
the probabilities over all the permuted tuples. We denote by W(K, E, p) the resulting
distribution.

Algorithm WFSp(E, k)

1: Let N := ∅.
2: Set K := k · E(p).
3: Sample N

$←W(K, E, p).
4: return N .

Our final protocol is the protocol obtained by instantiating the flooding skeleton
ΠFlood with the neighborhood selection algorithm WFS that again is to be instantiated
with the function E(p) := ⌈αp · n⌉. We name this protocol the weighted fan-out flooding
protocol and use the abbreviation WFF(k) := ΠFlood(WFS(E, k)) for E(p) := ⌈αp · n⌉.
In Sections 4.3.3 and 4.3.4, it will become apparent why this exact choice of function
is advantageous and ensures a secure protocol, but for now, we only state our final
theorem, which states that WFF is, in fact, a flooding protocol with a logarithmic round
complexity and a low message complexity.

Theorem 4.3.3. Let ∆ :=
(
7 · log

(
6n

log(n)+κ

)
+ 2
)
· δChannel. Then WFF

(
log(n)+κ

γ

)
is a

∆-flooding protocol with message complexity less than 2n · log(n)+κ
γ .

4.3.2.2 The Honest Sending Process

To prove the security of WFF, we will relate the security of WFF to a series of other
protocols, which will all take the structure of ΠFlood but use different neighborhood
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selection algorithms. Hence, we would like to be able to relate the security of the overall
flooding protocol to just the neighborhood selection algorithm used. To do so, we first
define a random process for creating a graph where each honest party is a node, given
a family of neighborhood selection algorithms N , a starting party p, and a distance λ.
The intuition is that this process mimics the worst-case behavior of the adversary during
a sending process starting from party p. However, separating this into a process without
adversarial influence allows us to relate probabilistic experiments without considering
the choices of an adversary, which could have a strategy that depends on parts of the
outcome of the experiments.

Definition 4.3.4. Let N be a family of neighborhood selection algorithms, let p ∈ H,
and let λ ∈ N be a distance. We let the honest sending process, HSP(p,N , λ), be
a random process that returns a directed graph G = (V, E) defined by the following
random procedure:

1. Initially, E := ∅. Furthermore, we keep track of set Flipped := ∅ that consists of
nodes that have already had their outgoing edges decided, and a first-in-first-out
queue ToBeFlipped := {(p, 0)} of nodes and their distance from p that are to have
their edges decided.

2. The process proceeds with the following until ToBeFlipped == ∅.

a) Take out the first element of ToBeFlipped and let it be denoted by (p′, i).

b) Let N
$← Np′ and set N := N ∩H.

c) Update the set of edges E := E ∪ {(p′, p′′) | p′′ ∈ N} and let Flipped :=
Flipped ∪ {p′}.

d) If i+ 1 < λ, for all p′′ ∈ N \ Flipped add (p′′, i+ 1) to ToBeFlipped.

3. Finally, return G = (H, E).

Next, we are interested in bounding the probability that a message is delivered
within the time guaranteed by the flooding algorithm in terms of the probability that
there is a low distance for all parties from the sender. We show that the probability that
ΠFlood ensures timely delivery for a message is lower-bounded by the probability that
the honest sending process results in a graph where the sender can reach all other honest
nodes within a certain number of steps. The basic idea of the proof is to construct a
random graph by letting each party be a node and include a directed edge from one
party to another if a message is sent and delivered before time λ · δChannel. We then
show how the randomness from this experiment can be used to define HSP and relate
the two graphs.

Lemma 4.3.5. Let N be a family of neighborhood selection algorithms, let p ∈ H, and
let λ ∈ N be a distance. Further, let m be a message input to p for the first time during

the execution of ΠFlood(N ) and let G
$← HSP(p,N , λ). Then,

Pr[MaxDist(G, p) ≤ λ] ≤ Pr[Timelym(λ · δChannel)]. (4.4)
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Proof. To see this we consider a another graph G′ = (V ′, E′) where each honest party
is a node (i.e., V ′ = H) and there is an edge (pi, pj) ∈ E′ from party pi to pj if and
only if pj received the message m from pi before time τ + λ · δChannel. In this graph,
it is clear that the delivery guarantee is satisfied for any node with an incoming edge.
In particular if MaxDist(G′, p) ≤ λ then Timelym(λ · δChannel). It is hence sufficient to
argue that MaxDist(G′, p) ≤ λ stochastically dominates MaxDist(G, p) ≤ λ. We show
this via a direct coupling between the two graphs via a graph G̃ = (H, Ẽ), namely by
first constructing G′ and then constructing G̃ by duplicating the edges from E′ for all
parties within distance λ− 1 of p to also appear in Ẽ. It is clear that the Ẽ ⊆ E′ and
hence that MaxDist(G̃, p) ≤ λ =⇒ MaxDist(G′, p) ≤ λ. Therefore, what is left is only
to argue that G ∼ G̃. Observe that any node that receives the message at the latest at
τ +(λ−1) · δChannel is ensured to have edges added corresponding to N in G′ and hence
also to G̃. Furthermore, for any d ∈ N at time τ + d · δChannel, any node at a distance
d from the sender will get the message delivered and thereby select their neighbors.
Therefore all nodes at a distance λ − 1 will have all their edges added to the graph G̃
and hence G ∼ G̃.

Lemma 4.3.5 ensures that it is sufficient to consider neighborhood selection algo-
rithms and prove that graphs constructed via the honest sending process have a low
distance from the sender to all other parties.

4.3.3 A Theoretical Protocol: Emulating Nodes in Erdős–Rényi Graphs

Our central idea for achieving a flooding network that relies on the honest weight as-
sumption is to let each party emulate a number of nodes proportional to their weight
in a hypothetical Erdős–Rényi graph. We will refer to this hypothetical graph as the
emulated graph. Now, our idea is that if there is an edge between an emulated node v
and another emulated node z corresponds to that the party emulating node v should
forward the message to the party emulating z. Our goal is now to ensure each honest
party emulates at least one node and that the emulated graph has a low diameter, as
this will result in all parties receiving the message quickly.

Concretely, we introduce a function E : P → N\{0}, which for each party determines
how many nodes this party should act as in the emulated graph. We refer to this
function as the emulation function.5 For such emulation function, we define notation
for the number of emulated nodes nE and the number of honest nodes that are emulated
hE:

nE ≜
∑
p∈P

E(p) and hE ≜
∑
p∈H

E(p).

Before looking at how to choose an emulation function, let us present how the idea
leads to a straightforward algorithm for selecting neighbors by letting the emulated
graph take the form of an Erdős–Rényi graph. We let ρ denote the probability that
there should be an edge between any two nodes in the emulated graph. The probability

5For a function to be an emulation function, we require that all parties should emulate at least 1
node, which is why the codomain of the function is defined to be N \ {0}.
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that party pi should forward a message to party pj is:

Pr[pi should forward a message to pj ]

:= Pr[exists edge from any of pi’s emulated nodes to any of pj ’s]

= 1− Pr[there are no edges between any of pi and pj ’s emulated nodes]

= 1− (1− Pr[there is an edge between any two emulated nodes)E(pi)·E(pj)

= 1− (1− ρ)E(pi)·E(pj).

(4.5)

This gives rise to the following family of neighbor selection algorithms indexed by a
party p ∈ P and parameterized by an emulation function E and an edge probability ρ.

Algorithm ER-Emulationp(E, ρ)

1: Let N := ∅.
2: Let P := P \ p.
3: while P ̸= ∅ do
4: Pick r ∈ P .

5: Sample c
$← U([0, 1]).

6: if c ≤ 1− (1− ρ)E(p)·E(r)) then
7: Update N := N ∪ {r}.
8: Update P := P \ {r}.
9: return N .

Relating Erdős–Rényi graphs and the honest sending process. We now formalize the in-
tuition that given that an emulated graph is “well connected”, then the graph from the
honest sending process is also “well connected”. In particular, we relate the probability
that the distance in a directed Erdős–Rényi graph is large to the probability that the
distance from the sender is large in the honest sending process. The basic idea of the
proof is to use Equation (4.5) and a mapping between the nodes of Erdős–Rényi graph
and the honest parties to define both graph distributions in terms of the same random
experiment. We then observe that the edges relevant for the distance in Erdős–Rényi
graphs are also included in the graph arising from the honest sending process.

Lemma 4.3.6. Let ρ ∈ [0, 1], let λ ∈ N, let p ∈ H, and let E : P → N \ {0} be

an emulation function. Further, let G1
$← HSP(p,ER-Emulation(E, ρ), λ) and let G2

$←
G →
ER

(hE, ρ). Then for any node v ∈ V we have,

Pr[MaxDist(G2, v) ≤ λ] ≤ Pr[MaxDist(G1, p) ≤ λ]. (4.6)

Proof. Let v ∈ V. We define a simple coupling between the two graphs, G1 and G2 =
(V, E2), via a new graph G̃1 = (H, Ẽ1).

Before defining the coupling itself, we define some additional notation. We define
a mapping m : H → 2V that maps each honest party to a set of nodes via the emula-
tion function. That is, for each party p′ ∈ H, we define m(p′) to be a set of parties{
zp′1 , . . . , zp′E(p′)

}
such that for any two parties pi, pj ∈ H we have that their sets of
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emulated nodes are non-overlapping, i.e., m(pi) ∩ m(pj) = ∅. Further, we define it such
that v ∈ m(p). Note that

⋃
p′∈H m(p′) = V. Similarly, we will use m−1 : V → H to find the

party that “emulates” a particular node. We now define our coupling via the following
random process that closely mimics the honest sending process.

1. Initially, sample G2 = (V, E2)
$← G →

ER
(hE, ρ) and let Ẽ1 := ∅. Furthermore, we

keep track of set Flipped := ∅ that consists of nodes that have already had their
outgoing edges decided, and a first-in-first-out queue ToBeFlipped := {(p, 0)} of
nodes and their distance from p that are to have their edges decided.

2. The process proceeds with the following until ToBeFlipped == ∅.

a) Take out the first element of ToBeFlipped and let it be denoted by (p′, i).

b) We now update the neighborhood of p′ by looking at the edges from the
emulated nodes of party p′, i.e., we assign a fresh variable N to be N :={(

p′, m−1(z)
)
| w ∈ m(p′) ∧ (w, z) ∈ E2

}
\ {(p′, p′)}.

c) Now, update the set of edges E := E∪{(p′, p′′) | p′′ ∈ N} and let Flipped :=
Flipped ∪ {p′}.

d) Furthermore, if i + 1 < λ then for all p′′ ∈ N \ Flipped add (p′′, i + 1) to
ToBeFlipped.

3. Finally, return G̃1 = (H, Ẽ1).

That G1 ∼ G̃1 follows from Equation (4.5). It is thus left to show that MaxDist(G2, v) ≤
λ =⇒ MaxDist(G̃1, p) ≤ λ. We prove this by proving the contrapositive statement,

MaxDist(G̃1, p) > λ =⇒ MaxDist(G2, v) > λ. Assuming the LHS of the implication, we
get that some party p′ ∈ H is not within distance λ of p. Now let z ∈ m(p′) be a node that
is emulated by p′ (we know that such exists by the definition of the emulation function),
and let us show that z is not within distance of v. For the sake of contradiction, assume
that z is within distance λ of v. However, any path in G2 of length at most λ from
v induces a path in the G̃1 by applying m−1 to the path. When pruned for duplicate
nodes, this path in G̃1 is at most as long as the path in G2, and hence we have a
contradiction.

Next, we show that the probability that a particular node can reach all other nodes
within a certain distance in a directed Erdős–Rényi graph is lower-bounded by the
probability that an undirected Erdős–Rényi graph has a high diameter. The idea of the
proof is to define a coupling between the two graphs such that the edges that are relevant
for the distance from the particular node in the directed are ensured to have undirected
counterparts included in the undirected graph. It follows that any path starting from
this node in the directed graph translates to a similar path in the undirected graph.

Lemma 4.3.7. Let ρ ∈ [0, 1], let λ ∈ N and let η ∈ N. Further, let G1 = (V1, E1)
$←

G →
ER

(η, ρ) and let G2 = (V2, E2)
$← GER(η, ρ). Then for any node v ∈ V1 we have,

Pr[Diam(G2) ≤ λ] ≤ Pr[MaxDist(G1, v) ≤ λ]. (4.7)



Weighted Flooding 121

Proof. We observe that V1 = V2 and will from now on just use V. Let v ∈ V. It is now
sufficient to show that MaxDist(G1, v) ≤ λ stochastically dominates Diam(G2) ≤ λ. We

show this by defining a coupling of the two graphs G̃1 = (V, Ẽ1) and G̃2 = (V, Ẽ2) and

show that if Diam(G̃2) ≤ λ holds then also MaxDist(G̃1, v) ≤ λ holds. The idea behind
the coupling is to start an edge-selection process by selecting the edges of v and now
select nodes from the next node to pick edges by taking the one that is “closest” to v.
In more detail, we define the coupling via the following random process.

1. Initially, Ẽ1 := Ẽ2 := ∅. Furthermore, we keep track of set Flipped := ∅ that
consists of nodes that have already had their outgoing edges decided, and a first-in-
first-out queue ToBeFlipped := {v} of nodes that are to have their edges decided.

2. The process proceeds with the following loop until Flipped == V.

a) Take out the first of ToBeFlipped and call it z. If no such node exists, let z
be an arbitrary element in V \ Flipped.

b) Now for all nodes w ∈ V\{z} flip a coin that comes out head with probability

ρ, and if heads let Ẽ1 := Ẽ1 ∪ {(z, w)}. Further, if the coin comes out heads

and w ̸∈ Flipped then let Ẽ2 := Ẽ2 ∪ {{z, w}}.
c) Finally, let Flipped := Flipped ∪ {z}.

The above process ensures that E1 ∼ Ẽ1 as for any potential edge (z, w) an independent
coin is flipped for whether or not to add an edge exactly once. Similarly, it also holds
that E2 ∼ Ẽ2 as there is exactly one independent coin flip for each potential edge {z, w}.

What is left is thus to show that Diam(G̃2) ≤ λ =⇒ MaxDist(G̃1, v) ≤ λ. To see this
let z ∈ V, and let dist

G̃1
and dist

G̃2
denote the distance functions for the respective

graphs. We now assume the LHS of the implication and prove the RHS. The LHS
ensures that

dist
G̃2

(v, z) ≤ λ. (4.8)

This implies that there is a path of nodes with edges between them w1, . . . , wλ′−1, wλ′

for some λ′ ≤ λ that connects v to z in G̃2 and where z = wλ′ . We now observe that any
node in this path wi is also at distance i from v in graph G̃2. To see this, observe that
edges are added to Ẽ1 in an ordered fashion such that they do not change the distance
to any nodes that already had their edges selected. This implies that any such node in
this path, wi, selected its edges before node wi+1. Now, as edges being added to Ẽ2 are
only added to nodes that have not yet had their edges selected, this implies that this
path also exists in G̃1 which concludes the proof.

Choosing a good emulation function. Let us now consider how to select a good emula-
tion function. Before considering a concrete function, let us consider what properties
constitute a good emulation function. The only property of the emulation function we
have used so far is that all parties should emulate at least 1 node.6 However, there are
additional things that we want from a useful emulation function:

1. It should ensure a low distance from any sender in the graph resulting from the
honest sending process.

6This property was used in the proof of Lemma 4.3.6.
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2. The message complexity of the protocol should be as small as possible.

Lemmas 4.3.6 and 4.3.7 bounds the probability that the honest sending process
results in a graph with some nodes not reachable within the sender in terms of the
probability that an Erdős–Rényi graph (of size identical to the number of honest em-
ulated nodes) has a large diameter. Furthermore, looking ahead, we will instantiate

ρ ≈ log(hE)+κ
hE

to obtain an Erdős–Rényi graph that has a diameter logarithmic in hE
unless with a probability that is negligible in κ. Unfortunately, hE will not be known at
the time of instantiation, so we will have to instantiate ρ with a lower bound on hE in the
denominator and, similarly, an upper bound in the denominator. For this discussion,
let us use nE as an upper bound.

The expected number of neighbors for a party is linear in ρ. To see this let

N
$← ER-Emulationp(E, ρ) and let us estimate the expected size of N using Bernoulli’s

inequality (Lemma 4.2.3):

E[|N |] =
∑

r∈P\{p}

1− (1− ρ)E(p)·E(r)

≤
∑

r∈P\{p}

ρ · E(p) · E(r)

≤ ρ · E(p) · nE.

(4.9)

Hence, for ρ chosen according to the above, a bound on the expected message complexity
will be

O

(
(log(nE) + κ) · n

2
E

hE

)
. (4.10)

Our approach for finding a good emulation function has thus been to search for an
emulation function that makes this value as small as possible. As a result of this
approach, we choose the emulation function to be

E(p) := ⌈αp · n⌉. (4.11)

For this emulation function above we can derive the following bounds using only the
honest weight assumption:

hE =
∑
p∈H

E(p) ≥
∑
p∈H

αp · n ≥ γ · n, (4.12)

and
nE =

∑
p∈P

E(p) ≤
∑
p∈P

(αp · n+ 1) = 2 · n. (4.13)

By plugging the bounds from Equations (4.12) and (4.13) into Equation (4.10), we

acquire an expected message complexity that is upper bounded by O
(
(log(n) + κ) · nγ

)
when parameters are instantiated to obtain a logarithmic diameter of the graph. If we
instead of assuming a constant fraction of honest weight, assumed a constant fraction
of honest parties, we could let E(p) := 1, which would result in nE := 1 and thereby a
protocol identical to the one proposed in [MNT22b, Section 3.6.2]. By using the same
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analysis as above, we would then be able to bound the expected message complexity

by O
(
(log(n) + κ) · nγ

)
. Interestingly, the bound on the message complexity for the

weighted section would only be a factor of ≈ 4 larger than the corresponding bound for
the non-weighted setting.

Proving security of our theoretical flooding protocol. Before stating and proving that the
probability that ΠFlood(ER-Emulation(E, ρ)) protocol does not ensure timely delivery
is negligible for certain choices of E and ρ, we specialize a bound on the diameter of
undirected Erdős–Rényi graphs from [MNT22b, Section 3.4.1].

Corollary 4.3.8. Let η ∈ N, d ∈ [7,∞], let ρ := d
η , and let G

$← GER(η, ρ). Then

Pr
[
Diam(G) > 7 · log

( η

2 · d

)
+ 2
]

≤ η ·
(
e−

d
18 +

(
6 · log

( η

2 · d

)
+ 1
)
· e−

7·d
108

)
+ e−η·( d

9
−2).

(4.14)

Proof. We set

δ1 := δ2 := µ :=
1

3
and ν :=

7

4
.

The bound now follows from Lemma 3.4.1 (Chapter 3) as the precondition of this lemma
is fulfilled.

We now bound the probability that the distance of the honest sending process using
the neighborhood selection algorithm ER-Emulation(E, ρ) has a large distance from the
sender. The idea of the proof is to use Equations (4.12) and (4.13) to bound the size of
the emulated graph in the honest sending process and apply Lemmas 4.3.6 and 4.3.7 to
reduce the probability to the probability that an Erdős–Rényi graph has a low diameter.
The bound then follows from Corollary 4.3.8.

Lemma 4.3.9. Let E(p) := ⌈αp · n⌉, let d ∈ [7,∞], and let ρ := d
γ·n . Further, let p ∈ H

and G
$← HSP(p,ER-Emulation(E, ρ), (

(
7 · log

(
n
d

)
+ 2
)
). Then

Pr
[
MaxDist(G, p) ≤

(
7 · log

(n
d

)
+ 2
)]

≥ 1−
(
2 · n ·

(
e−

d
18 +

(
6 · log

(n
d

)
+ 1
)
· e−

7·d
108

)
+ e−γ·n·( d

9
−2)
)
.

(4.15)

Proof. As hE ≤ nE, Equations (4.12) and (4.13) ensures that hE ∈ [γ · n, 2 · n]. Corol-

lary 4.3.8 ensures that for G′ $← GER
(
hE,

d
hE

)
we have

Pr

[
Diam(G′) ≤ 7 · log

(
hE
2 · d

)
+ 2

]
≥ 1−

(
hE ·

(
e−

d
18 +

(
6 · log

(
hE
2 · d

)
+ 1

)
· e−

7·d
108

)
+ e−hE·( d

9
−2)
)
.

(4.16)

The probability that Diam(G′) ≤ 7 · log
(
hE
2·d
)
+2 holds monotonously increases when the

edge probability increases and hence this probability also holds for G′ $← GER
(
hE,

d
γ·n

)
.
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Further for any graph G and natural numbers a, b ∈ N such that a ≤ b we have that

Diam(G′) ≤ a⇒ Diam(G′) ≤ b. Hence, we have that G′ $← GER
(
hE,

d
γ·n

)
satisfies

Pr

[
max

h∈[γ·n,2·n]
Diam(G) ≤ 7 · log

(
h

2 · d

)
+ 2

]
≥ 1− max

h∈[γ·n,2·n]

(
h ·
(
e−

d
18 +

(
6 · log

(
h

2 · d

)
+ 1

)
· e−

7·d
108

)
+ e−h·( d

9
−2)
)
.

(4.17)

Now, applying Lemmas 4.3.6 and 4.3.7 as well as inserting bounds for the maximum
value for the expressions we obtain Equation (4.15).

A direct corollary of Lemmas 4.3.5 and 4.3.9 is that the probability that the protocol
ΠFlood(ER-Emulation(E, ρ)) ensures timely delivery is lower bounded by Equation (4.15)
when choosing E and ρ as discussed above.

Corollary 4.3.10. Let E(p) := ⌈αp · n⌉, let d ∈ [7,∞], and let ρ := d
γ·n . If m is a

message that is input to some honest party in either ΠFlood(ER-Emulation(E, ρ)), then

Pr
[
Timelym

((
7 · log

(n
d

)
+ 2
)
· δChannel

)]
≥ 1−

(
2 · n ·

(
e−

d
18 +

(
6 · log

(n
d

)
+ 1
)
· e−

7·d
108

)
+ e−γ·n·( d

9
−2)
)
.

(4.18)

4.3.4 Security of WFF

In the previous section, we proved that ER-Emulation induces a secure protocol. Unfortu-
nately, it is not a practical neighborhood selection algorithm, as it requires each party to
do n coin-flips per message sent and forwarded. In this section, we introduce two inter-
mediate algorithms to proveWFF secure (Fast-ER-Emulation and Practical-ER-Emulation)
by doing gradual changes to ER-Emulation, until we finally arrive at the algorithm WFS
which is both practical, simple, and similar to algorithms deployed in practice (except
that this algorithm maintains its complexity even for weighted corruptions).

4.3.4.1 Intermediary Neighborhood Selection Algorithms

We first introduce the algorithm Fast-ER-Emulation, which is distributed identically to
ER-Emulation but is more practical. The algorithm exploits that another way of creating
an Erdős–Rényi graph is first to decide how many edges each node should have using
the binomial distribution and then select these neighbors at random.

Below we will abuse notation slightly and write E(P ) to denote the set of emulated
nodes for a set of parties P ⊆ P and an emulation function E,

E(P ) ≜ {pi | p ∈ P ∧ i ∈ {1, 2, . . . , E(p)}} .7 (4.19)

7This set may be different from the actual set of nodes that will be emulated in an execution of the
protocol, as dishonest parties might choose to deviate from the protocol. However, it is still useful to
define the set to define honest behavior.
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Algorithm Fast-ER-Emulationp(E, ρ)

1: Let N := ∅.
2: for i := 0; i < E(p); i++ do

3: Sample k
$← B (|E(P \ {p})|, ρ).

4: Let A be k nodes sampled from E(P \ {p}) without replacement.

5: Set N := N ∪
{
p′ | p′j ∈ A ∧ j ∈ N

}
.

6: return N .

We now show Fast-ER-Emulation and ER-Emulation are identically distributed. The
proof idea is to show that the respective neighborhood selection algorithms are dis-
tributed identically. This is shown by showing that for both distributions, each edge
between emulated nodes appears with independent probability ρ.

Lemma 4.3.11. Let ρ ∈ [0, 1], let λ ∈ N, let p ∈ H, and let E : P → N \
{0} be an emulation function. If G1

$← HSP(p,ER-Emulation(E, ρ), λ) and G2
$←

HSP(p,Fast-ER-Emulation(E, ρ), λ), then G1 ∼ G2.

Proof. It is sufficient to prove that for any p′ we have that for N1
$← ER-Emulationp′(E, ρ)

and N2
$← Fast-ER-Emulationp′(E, ρ) then N1 ∼ N2. Both neighborhood selection algo-

rithms work by letting a party be included in the neighborhood with the same probability
as if there would have been an edge between any of the emulated nodes of the two par-
ties. By Equation (4.5) edges appear with ρ for N1. It is hence sufficient to look at the
probability that any of the emulated nodes of p′ select a node not belonging to p′ with
mutually independent probability ρ.

Let us look at a node v ∈ E({p′}) and calculate the probability that there are edges
to a specific set of other nodes U ⊆ E(P \ {p′}) from v. Let A be the set of nodes v
chooses. We now want to show that:

Pr [U ⊆ A] = ρ|U |. (4.20)

We let η := |E(P \ {p′})| and now apply the law of total probabilities for conditional
events to obtain

Pr[U ⊆ A] =

η∑
i=0

Pr[U ⊆ A | |A| = i] · Pr[|A| = i]

=

η∑
i=|U |

Pr[U ⊆ A | |A| = i] · Pr[|A| = i]

(4.21)

For any i ≥ |U |, we have that A is chosen uniformly among sets of size i. Of those sets

exactly
(η−|U |
i−|U |

)
includes U . Hence,

Pr[U ⊆ A | |A| = i] =

(η−|U |
i−|U |

)(
η
i

) . (4.22)

Inserting this, we obtain
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Pr[U ⊆ A] =

η∑
i=|U |

(η−|U |
i−|U |

)(
η
i

) (
η

i

)
· ρi · (1− ρ)η−i

=

η∑
i=|U |

(
η − |U |
i− |U |

)
· ρi · (1− ρ)η−i.

(4.23)

We now change the variable letting r := i + |U |, factor out ρ|U |, and use the binomial
formula (Lemma 4.2.2) to obtain

Pr[U ⊆ A] =

η−|U |∑
r=0

(
η − |U |

r

)
· ρr+|U | · (1− ρ)η−(r+|U |)

= ρ|U | ·
η−|U |∑
r=0

(
η − |U |

r

)
· ρr+|U | · (1− ρ)η−|U |−r

= ρ|U | · (ρ+ (1− ρ))η−|U |

= ρ|U |.

(4.24)

Therefore we can conclude that all edges between emulated nodes appear with a mutu-
ally independent probability ρ and hence G1 ∼ G2.

A problem of Fast-ER-Emulation is that each party p needs to make E(p) number of
draws from the binomial distribution. One way to avoid this is to make a single random
draw for the number of nodes all emulated nodes should send to and then afterward
choose this number of nodes uniformly without replacement. Below we present the
algorithm Practical-ER-Emulation, which does precisely that.

Algorithm Practical-ER-Emulationp(E, ρ)

1: Let N := ∅.

2: Sample k
$← B (E(p) · |E(P \ {p})|, ρ).

3: Let A be k nodes sampled from E(P \ {p}) without replacement.
4: Set N := {p | pi ∈ A ∧ i ∈ N}.
5: return N .

Practical-ER-Emulation is not distributed identically to Fast-ER-Emulation, as there
is a smaller expected overlap between the selected emulated nodes. However, it still holds
that the graph resulting from the honest sending process based upon Practical-ER-Emulation
has a higher chance of having a low distance from the sender than the graph resulting
from the honest sending process based upon Fast-ER-Emulation. We make this intuition
formal in the lemma below. The basic idea of the proof is to define a coupling between
the two graphs by defining a coupling between the respective neighborhood selection
algorithms while ensuring that the set of neighbors sampled by Practical-ER-Emulation
is a superset of the neighbors of those sampled by Fast-ER-Emulation. We define the
coupling using rejection sampling and ensure that any neighbor that is rejected when
sampling neighbors for Fast-ER-Emulation will also be rejected when sampling neighbors
for Practical-ER-Emulation.
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Lemma 4.3.12. Let ρ ∈ [0, 1], let λ ∈ N, let p ∈ H, and let E : P → N \ {0}
be an emulation function. If G1

$← HSP(p,Fast-ER-Emulation(E, ρ), λ) and G2
$←

HSP(p,Practical-ER-Emulation(E, ρ), λ) then

Pr[MaxDist(G1, p) ≤ λ] ≤ Pr[MaxDist(G2, p) ≤ λ]. (4.25)

Proof. Let G1 = (H, E1) and G2 = (H, E2). To show the lemma we define a coupling

G̃1 = (H, Ẽ1) and G̃2 = (H, Ẽ2) such that G1 ∼ G̃1 and G2 ∼ G̃2 and MaxDist(G̃1, p) ≤
λ =⇒ MaxDist(G̃2, p) ≤ λ. To show the implication it is sufficient to show that Ẽ1 ⊆ Ẽ2.

We define the coupling by sampling G̃1 and G̃2 in parallel with a defined coupling

between the neighborhood selection algorithms for any party p′ ∈ H. We let N1
$←

Fast-ER-Emulationp′(E, ρ) and N2
$← Practical-ER-Emulationp′(E, ρ). Again we define a

coupling Ñ1 ∼ N1 and Ñ2 ∼ N2 and show that Ñ1 ⊆ Ñ2. This is sufficient to ensure
that Ẽ1 ⊆ Ẽ2 because this ensures that all parties that select their neighbors when
constructing G̃1 also gets to choose their neighbors in the construction of G̃2.

We define Ñ1 and Ñ2 via the following process.

1. Initially, let Ñ1 = Ñ2 := ∅.

2. Initialize variables similar to the variables in Line 3 of Fast-ER-Emulationp′(E, ρ) by

sampling k̃11
$← B (|E(P \ {p})|, ρ) , . . . , k̃E(p

′)
1

$← B (|E(P \ {p})|, ρ), and a variable

k̃2 :=
∑E(p′)

i=1 k̃i1 similar to the k in Line 2 of Practical-ER-Emulationp′(E, ρ)

3. Additionally, we initialize Ã1
1 := ∅, . . . , Ã

E(p′)
1 := ∅ that corresponds to the variable

A in Line 4 of Fast-ER-Emulationp′(E, ρ) and Ã2 := ∅ that corresponds to the
variable A in Line 3 of Practical-ER-Emulationp′(E, ρ).

4. Now for i ∈ {1, . . . , E(p′)} and for j ∈
{
1, . . . , k̃i1

}
do:

a) Set Accepted1 := ⊥ and Accepted2 := ⊥.
b) While ¬Accepted1 ∨ ¬Accepted2 do:

i. Sample v uniformly in E(P \ {p′}).
ii. If v ̸∈ Ã2 ∧ ¬Accepted2 set Ã2 := Ã2 ∪ {v} and Accepted2 := ⊤.

iii. If v ̸∈ Ãi
1 ∧ ¬Accepted1 set Ãi

1 := Ãi
1 ∪ {v} and Accepted1 := ⊤.

5. Finally, set Ã1 :=
⋃E(p′)

i=1 Ãi
1, Ñ1 :=

{
p | pi ∈ Ã1 ∧ i ∈ N

}
, and Ñ2 :={

p | pi ∈ Ã2 ∧ i ∈ N
}
.

Note at first that Ñ1 ∼ N1 as the procedure simply uses rejection sampling to sam-

ple k̃i1 elements from E(P \ {p′}) without repetition and adds these to Ã1, and hence
have the same distribution as Fast-ER-Emulationp′(E, ρ). Furthermore, note that the

procedure simply samples k̃2 =
∑E(p′)

i=1 k̃i1 elements from E(P \ {p′}) without repetition
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via rejection sampling and add these to Ã2. Because k̃2 is the sum of E(p′) inde-
pendent random variables that are each distributed as B (|E(P \ {p′})|, ρ) we get that

k̃2 ∼ B (E(p′) · |E(P \ {p′})|, ρ) and hence that Ñ2 ∼ N2.

Furthermore, the algorithm ensures that Ñ1 ⊆ Ñ2 because at any point in the

algorithm we have that Ã2 is a superset of any Ãi
1.

Note that Lemmas 4.3.5, 4.3.9, 4.3.11 and 4.3.12 together imply that the proba-
bility that ΠFlood(Fast-ER-Emulation(E, ρ)) and ΠFlood(Practical-ER-Emulation(E, ρ)) do
not ensure timely delivery is negligible for a certain choice of E and ρ.

Corollary 4.3.13. Let E(p) := ⌈αp · n⌉, let d ∈ [7,∞], and let ρ := d
γ·n . If m is a

message that is input to some honest party in either

• ΠFlood(Fast-ER-Emulation(E, ρ)),

• or ΠFlood(Practical-ER-Emulation(E, ρ))

then

Pr
[
Timelym

((
7 · log

(n
d

)
+ 2
)
· δChannel

)]
≥ 1−

(
2 · n ·

(
e−

d
18 +

(
6 · log

(n
d

)
+ 1
)
· e−

7·d
108

)
+ e−γ·n·( d

9
−2)
)
.

(4.26)

Note that Practical-ER-Emulation is very similar to WFS. The main difference is
that in Practical-ER-Emulation, the number of neighbors is sampled according to the
binomial distribution, whereas WFS chooses a fixed number of neighbors. We use this
observation to relate the probability that the graph constructed by the honest sending
process of Practical-ER-Emulation has a low distance from the sender to the probability
that the honest sending process of WFS has a low distance from the sender. Similarly
to the proof of Lemma 4.3.12, the proofs rely on a coupling between the two graphs
defined by a coupling between their neighborhood selection algorithms using rejection
sampling. However, in this coupling, the invariant that the edges sampled by WFS are
a superset of those of Practical-ER-Emulation is only maintained when no party samples
more than k neighbors in Practical-ER-Emulation. Hence, we bound this probability
using the Chernoff bound (Lemma 1.3.1).

Lemma 4.3.14. Let ρ ∈ [0, 1], let ϵ ∈ [0, 1] let λ ∈ N, let p ∈ H, let k ≥
⌈(1 + ϵ) · nE · ρ⌉, and let E : P → N \ {0} be an emulation function. If G1

$←
HSP(p,Practical-ER-Emulation(E, ρ), λ) and G2

$← HSP(p,WFS(E, k), λ) then

Pr[MaxDist(G1, p) ≤ λ]− |H| · e−
ϵ2·(n−1)·ρ

3 ≤ Pr[MaxDist(G2, p) ≤ λ]. (4.27)

Proof. Let G1 = (H, E1) and G2 = (H, E2). To show the lemma we define again a

coupling G̃1 = (H, Ẽ1) and G̃2 = (H, Ẽ2) such that G1 ∼ G̃1 and G2 ∼ G̃2. For
each party p′ ∈ H, we introduce a random variable Xp′ which denotes the number of

outgoing edges this party has in G̃1. We further define C to be the event
⋂

p′∈H(Xp′ ≤
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(1 + ϵ) · E(p′) · |E(P \ {p′})| · ρ) (this event can be thought of as that no party picks
“outrageously many neighbors”). We now wish to show two things:

MaxDist(G̃1, p) ≤ λ ∧ C =⇒ MaxDist(G̃2, p) ≤ λ, (4.28)

and

Pr[MaxDist(G̃1, p) ≤ λ ∧ C] ≥ Pr[MaxDist(G1, p) ≤ λ]− |H| · e−
ϵ2·(n−1)·ρ

3 . (4.29)

To show Equation (4.28) it is sufficient to show that C =⇒ Ẽ1 ⊆ Ẽ2. As in the proof

of Lemma 4.3.12, we define the coupling by sampling G̃1 and G̃2 in parallel with a
defined a coupling between the neighborhood selection algorithms for any party p′ ∈ H.
We let N1

$← Practical-ER-Emulationp′(E, ρ) and N2
$← WFSp′(E, k). Again we define a

coupling Ñ1 ∼ N1 and Ñ2 ∼ N2 and show that C =⇒ Ñ1 ⊆ Ñ2 which again will imply
that C =⇒ Ẽ1 ⊆ Ẽ2. Again we define a coupling Ñ1 ∼ N1 and Ñ2 ∼ N2 and show that
Ñ1 ⊆ Ñ2. This is sufficient to ensure that Ẽ1 ⊆ Ẽ2 because this ensures that all parties
that select their neighbors when constructing G̃1 also gets to choose their neighbors in
the construction of G̃2.

We define Ñ1 and Ñ2 via the following process.

1. Initially, let Ñ1 = Ñ2 := ∅.

2. We further initialize variables corresponding to the variables k andA used in Lines 2

and 3 of Practical-ER-Emulationp′(E, ρ) by sampling k̃1
$← B (E(p′) · |E(P \ {p′})|, ρ)

and set Ã1 := ∅. We also initialize a variable K̃2 := E(p′)·k identical to the variable
K in Line 2 of WFSp′(E, k).

3. Now for i ∈
{
1, . . . ,max(k̃1, K̃2)

}
do:

a) Set Accepted1 := i > k̃1 and Accepted2 := i > K̃2.

b) While ¬Accepted1 ∨ ¬Accepted2 do:

i. Sample pj uniformly in E(P \ {p′}).
ii. If p ̸∈ Ñ2 ∧ ¬Accepted2 set Ñ2 := Ñ2 ∪ {p} and Accepted2 := ⊤. 8

iii. If v ̸∈ Ã1 ∧ ¬Accepted1 set Ã1 := Ã1 ∪ {v} and Accepted1 := ⊤.

4. Finally, set Ñ1 :=
{
p | pi ∈ Ã1 ∧ i ∈ N

}
.

Note at first that Ñ1 ∼ N1 as the procedure simply uses rejection sampling to sample k̃1
elements from E(P \ {p′}) without repetition and adds these to Ã1, and hence have the

same distribution as Practical-ER-Emulationp′(E, ρ). Similarly, it is clear that Ñ2 ∼ N2

as once again rejection sampling is used to pick E(p′) ·k from P \{p′} weighted according

to E. It is also immediate to see that C =⇒ Ñ1 ⊆ Ñ2 as if C happens then surely the
max of k̃1 and K̃2 is K̃2, as nE > |E(P \ {p′})|. Hence all parties that will be added to

Ñ1 will also be added to Ñ2.

8Note that p in this step does not refer to the sender in the honest sending process but rather the
party that is supposed to emulate node pj .
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It is thus left to show Equation (4.29). We have that

Pr[MaxDist(G̃1, p) ≤ λ ∧ C] = Pr[MaxDist(G̃1, p) ≤ λ]− Pr[¬C]. (4.30)

As we have already argued that G1 ∼ G̃1 it is sufficient to show that

Pr[¬C] ≤ |H| · e−
ϵ2·(n−1)·ρ

3 . (4.31)

Further, using a union bound, we have that.

Pr[¬C] = Pr

 ⋃
p′∈H

(Xp′ > (1 + ϵ) · E(p′) · |E(P \
{
p′
}
)| · ρ)


≤
∑
p′∈H

Pr
[
Xp′ > (1 + ϵ) · E(p′) · |E(P \

{
p′
}
)| · ρ

]
.

(4.32)

Furthermore, for each party, it is clear that the number of neighbors selected is less than
the selected emulated neighbors. We let Yp′ denote this number of emulated neighbors.
Hence, it is sufficient to show that for any p′ ∈ H we have,

Pr
[
Yp′ > (1 + ϵ) · E(p′) · |E(P \

{
p′
}
)| · ρ

]
≤ e−

ϵ2·(n−1)·ρ
3 . (4.33)

Now, as for any p′′ ∈ P we have that E(p′′) ≥ 1 it follows that |E(P \ {p′})| ≥ n − 1.
This makes desired equation follow from the Chernoff bound (Lemma 1.3.1)

Pr
[
Yp′ > (1 + ϵ) · E(p′) · |E(P \

{
p′
}
)| · ρ

]
≤ e−

ϵ2·|E(P\{p′})|·E(p′)·ρ
3

≤ e−
ϵ2·(n−1)·ρ

3 .

(4.34)

We now provide a corollary that bounds the concrete probability that a message
input via WFF is delivered timely.

Corollary 4.3.15. Let k ∈ N such that k ≥ 42
γ . If m is a message that is input to some

honest party in WFF(k) then

Pr

[
Timelym

((
7 · log

(
n · 6
k · γ

)
+ 2

)
· δChannel

)]
≥ 1− n · e−

(n−1)·k
n·24 − e−γ·n·( k·γ

54
−2) −

(
2 · n ·

(
e−

k·γ
108 +

(
6 · log

(
n · 6
k · γ

)
+ 1

)
· e−

7·k·γ
648

))
.

(4.35)

Proof. Let E(p) := ⌈αp · n⌉. Lemma 4.3.5 ensures that is enough to reason about
the honest sending process with the neighborhood selection algorithm WFS(E, k). We
observe that

nE =
∑
p∈P
⌈αp · n⌉ ≤

∑
p∈P

αp · n+ 1 = 2 · n. (4.36)
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We let d := k·γ
6 , and note that the precondition for Lemma 4.3.14 is satisfied for ρ :=

d
γ·n so we instantiate this letting ϵ := 1

2 , and using the bound above on nE. Furthermore,
note that |H| ≤ n and hence it is sufficient to bound the probability that the honest
sending process of Practical-ER-Emulation(E, ρ) has a large distance from the sender.
Equation (4.35) now follows by Lemmas 4.3.9, 4.3.11 and 4.3.12.

As observed earlier, it is sufficient to bound the probability that a message is timely
delivered to bound the probability that any of the two properties of a flooding protocol
is achieved. Further, note that a party p sends at most k ·E(p) messages when a message
is forwarded. Hence, the message complexity is bounded by

∑
p∈H k · E(p) ≤ 2 · k · n.∑

p∈H
k · E(p) ≤ 2 · k · n. (4.37)

Therefore, the security of WFF (and thereby Theorem 4.3.3) follows directly from this
corollary.

4.4 Asymptotic Optimality and Practical Considerations

Our results from Section 4.3.2.1 show that the protocolWFF(k) provides provably secure
flooding. With respect to efficiency, the results show that there are two possible draw-
backs: First, the emulation function E(p) = ⌈αp ·n⌉ forces parties with very high weight
to send to many parties, which lead to bandwidth issues. Secondly, Theorem 4.3.3 shows
that in our protocol, the number of parties each node has to send to increases logarith-
mically in the total number of nodes. In this section, we show that both properties are
inherent to “flooding protocols”.

4.4.1 Workload of Heavy Parties

It is easy to see that in at least in extreme cases, very heavy parties have to send to a
lot of other parties: If there is a single party that has the majority of the total weight,
it could be that only this party and an additional one are honest. Since the heavy party
is the only one that can be relied upon for message delivery, it needs to send to all other
parties. The following lemma generalizes this idea to less extreme settings.

Lemma 4.4.1. For any protocol Π that guarantees delivery to all honest parties, and
for any subset S ⊆ P such that

∑
p∈S αp ≥ γ, we have with overwhelming probability

that ∑
p∈S

degreeΠ(p) ≥ |P \ S|. (4.38)

Proof. Let S be any such set. By the honesty assumption, it could be that there is
precisely one honest party in P \ S. To guarantee delivery to this party, some party
in S must send to it. Since it cannot be distinguished which party in P \ S is honest,
the parties in S must send to all parties in P \ S.

Another consequence of Lemma 4.4.1 is that having a huge number of nodes with
very little weight also increases the workload for all other nodes, as shown below.
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Corollary 4.4.2. Assume there is a large set T ⊆ P of parties with combined relative
weight ≤ 1− γ and |T | ≥ n− ϵ for some constant ϵ > 0, and define S := P \ T . Then,
the average degree of the parties in S must be at least n−ϵ

ϵ ∈ Ω(n) with overwhelming
probability.

Proof. Since
∑

p∈S αp = 1−
∑

p∈T αp ≥ γ, Lemma 4.4.1 implies that the average degree

of the parties in S is at least |P\S|
|S| with overwhelming probability. By assumption, we

have |P\S|
|S| = |T |

n−|T | ≥
n−ϵ
ϵ ∈ Ω(n).

Limiting the workload. As we have seen above, having very heavy or many very light
parties necessarily yields a large number of outgoing connections for some of the nodes.
This is not only undesirable but may also become prohibitive in practice due to limited
network bandwidth. If the flooding is deployed, say for a proof-of-stake blockchain,
this can be mitigated by putting a lower and an upper limit on the amount of stake
for actively participating nodes. This implies that people holding a lot of stake need
to split their stake over several nodes (which is anyway beneficial for decentralization
if they are run in different locations), and people with too little stake need to, e.g.,
delegate their stake to another node if supported by the blockchain. The latter can
still passively participate by fetching data from other nodes as discussed for zero-weight
parties in Section 4.5.2.

4.4.2 Logarithmic Growth of Message Complexity

It is well known that Erdős–Rényi graphs are connected with high probability if and
only if edges are included with probability larger than logn

n [Bol01, Theorem 7.3]. This
means the expected degree of a node must be larger than log n to obtain a connected
graph, even without considering corruptions. Since our proofs in Section 4.3 depart
from Erdős–Rényi graphs, one cannot hope to prove a better message complexity with
our proof techniques.

On the other hand, our final protocol WFF(k) does not choose neighbors in the way
Erdős–Rényi graphs are constructed but more closely corresponds to so-called directed k-
out graphs, which have also been considered in the literature. Those are directed graphs
where for each node v independently, k uniformly random other nodes are sampled,
and directed edges from v to the k sampled nodes are added. It is known that such
graphs are connected with probability approaching 1 for n → ∞ already for constant
k = 2 [FF82]. Hence, at least without corruptions, O(n) overall message complexity
should be enough for our protocol. When considering corruptions, however, a result by
Yagan and Makowski [YM13] implies that log n connections for each node are necessary,
as we show below. This shows that WFF(k) and Theorem 4.3.3 are asymptotically
optimal, at least for the particular case in which all parties have the same weight.

Lemma 4.4.3. For any flooding protocol in which all honest parties send to k uniformly
chosen nodes and delivery to all honest nodes is guaranteed with probability ≥ 1/2 where
up to a (1− γ) fraction of nodes can be corrupted, we have for sufficiently large n that

k ≥ log n

γ + 1/n− log(1− γ − 1/n)
.
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Proof. Yagan and Makowski [YM13] have considered the setting in which for each of
the n nodes pi, k distinct random other nodes are sampled and undirected edges between
pi and all k sampled nodes are added to a graph. They then consider the subgraph H
consisting of the first ⌊γ′n⌋ nodes for some constant γ′ ∈ (0, 1) and show in [YM13,
Theorem 3.2] that

k <
log n

γ′ − log(1− γ′)
=⇒ lim

n→∞
Pr[H contains isolated node] = 1. (4.39)

To translate this to our setting, first note that corrupting at most ⌊(1− γ)n⌋ nodes
from the end to leave the first ⌊γn + 1⌋ parties honest is a valid adversarial strategy.
To be compatible with the result above, we can set γ′ := γ + 1/n. Further note that a
node p being isolated in H has the same probability as an honest node not sending to
any other honest node and no honest node sending to that one in a flooding protocol.
In that case, if p is the sender in the flooding protocol, no honest node will receive the
message, and if some other node is the sender, p will not receive the message. Hence,
the flooding protocol will fail to deliver the message to all honest nodes in both cases.
This implies that, for sufficiently large n, flooding protocols with k < logn

γ+1/n−log(1−γ−1/n)
fail to deliver messages with high probability.

4.5 Delivery to Parties With Zero Weight

So far, we have excluded parties with zero weight from participating in our protocol.
While they are not relevant for the security of consensus protocols running on top of the
network, it is still important in practice to allow such passive nodes to obtain the data
from the blockchain, e.g., for connecting wallets. We discuss some options that allow
zero-weight parties to obtain data, each with their advantages and disadvantages.

4.5.1 Adjusting the Emulation Function

Recall from Section 4.3.3 that we use the emulation function

E(p) = ⌈αp · n⌉. (4.40)

This implies that parties with weight 0, i.e., αp = 0 emulate 0 parties and consequently
do not send anything and also do not receive anything. If we want to guarantee delivery
to parties with zero weight, we can instead use the emulation function

E′(p) := ⌊αp · n⌋+ 1. (4.41)

This ensures that all parties emulate at least one party. Furthermore, inequalities (4.12)
and (4.13) from Section 4.3.3 also hold for E′ and our results from that section follow
similarly as for E. Hence, using the emulation function E′ guarantees delivery to all
parties, including those with weight 0.

A downside of this approach is that considering parties with weight 0 opens up the
system for Sybil attacks: An attacker can easily add additional zero-weight nodes to the
system and thereby increase n arbitrarily without changing any αp. According to E′,
the work required from honest parties with non-zero weight thus increases linearly in n,
allowing the attacker to increase the workload of honest parties arbitrarily. Therefore,
such an approach is only practical if there is some mechanism for preventing Sybil
attacks.



Delivery to Parties With Zero Weight 134

4.5.2 Fetching Data

Since guaranteeing that all zero-weight parties receive all data in the flooding process can
substantially increase the workload for honest parties, we here provide an alternative.
The idea is to exclude zero-weight parties from the regular protocol as we do in our
main results and to allow those parties to obtain the state by querying other nodes. To
prevent Sybil attacks, parties with non-zero weight can refuse to answer if they receive
too many requests. This ensures that the flooding among parties with non-zero weight,
critical for consensus of the blockchain, cannot be negatively affected by zero-weight
parties; the worst outcome of Sybil attacks is that honest zero-weight parties cannot
obtain data from the blockchain.

We formalize this idea in the algorithm Fetch below.

Algorithm Fetch(k)

1: Let N := ∅.
2: Sample k parties p1, . . . , pk ∈ P weighted w.r.t. αpi and add these to N .
3: Request data from all N parties and return the union.

The probability that a party does not fetch some data that is already sufficiently
spread drops exponentially fast in k. We formalize this in the lemma below.

Lemma 4.5.1. [Fetching from Constant Number of Parties] Let k ∈ N and let β be the
fraction of weight assigned to honest parties and hold some piece of data. The probability
that the state returned by Fetch(k) does not include that data is at most

(1− β)k. (4.42)

Proof. Let D be the set of parties that are honest and hold the data and let Xi for
i ∈ {1, . . . , k} be the random variable denoting the ith party that is picked by Fetch(k).
Using the definition of conditional events, we have

Pr[no picked party is honest and has data] = Pr

[
k⋂

i=1

Xi /∈ D

]

=

k∏
i=1

Pr

[
Xi /∈ D

∣∣∣∣∣ ⋂
j<i

Xj /∈ D

]
.

(4.43)

Furthermore, we have for i ∈ {1, . . . k},

Pr

[
Xi /∈ D

∣∣∣∣∣ ⋂
j<i

Xj /∈ D

]
= 1− Pr

[
Xi ∈ D

∣∣∣∣∣ ⋂
j<i

Xj /∈ D

]

= 1−
∑
pz∈D

Pr

[
Xi = pz

∣∣∣∣∣ ⋂
j<i

Xj /∈ D

]
≤ 1−

∑
pz∈D

αz∑
pv∈P αv

= 1− β.

(4.44)
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Hence, we can conclude that

Pr[no picked party is honest and has data] ≤ (1− β)k . (4.45)

Since Fetch(k) returns the union of all obtained data, it is sufficient to pick a single
honest party that holds the data, which concludes the proof.

4.6 Performance Evaluation via Simulations

To show that our protocol WFF performs well in practice, we perform various bench-
marks with varying weight distributions and adversarial strategies. The source code,
and a description of how to run the benchmarks, can be found at https://github.

com/guilhermemtr/Weighted-Flooding-Simulator.9

4.6.1 Scope of Simulations

Weight distributions. We consider weight distributions covering scenarios where parties
have similar weights and scenarios with different weights. More concretely, we consider:

• The constant distribution (Const), characterized by the number of parties n. In
this distribution, all parties have equal weights and are, therefore, equivalent to
the non-weighted setting. This serves as a baseline for our simulations.

• The exponential distribution (Exp), characterized by the number of parties n
and the weight ratio r between the heaviest party and the lightest party. It
corresponds to the (perhaps more realistic) exponential weight distribution—
wherein the weights of parties form an exponential curve. More concretely, for
i ∈ {1, . . . , n− 1}, the weight of pi+1 is r−(n−1) times the weight of pi.

• The few heavy distribution (FH), characterized by the number of parties n, the
weight ratio r between the heaviest and lightest party, and the number of heavy
parties c. It corresponds to the distribution where n − c parties have constant
weight, and the other c parties have r times more weight. This weight distribution
is meant to capture extreme scenarios.

Sender. To ensure that our protocol performs well independently of the weight of the
sender, for the exponential distribution, we consider three choices for the sender: heav-
iest, lightest, and median-weight party, and for the few heavy weight distribution, we
consider both a heavy and a light party as the sender.

Corruption strategies. Given that parties in our protocol forward a message to their
neighbors, we consider the worst behavior that prevents message propagation, i.e., cor-
rupted parties simply do not send. We consider adversaries that can corrupt up to 50%
of the total weight. To ensure that our protocol performs well independently of how
adversaries spend their corruption budget, we consider adversaries that greedily corrupt
as many parties as possible, following one of the strategies below:

9All simulations presented in this section were performed on the ETH Zurich Euler cluster, but
there are no hindrances to running them on less powerful computers.

https://github.com/guilhermemtr/Weighted-Flooding-Simulator
https://github.com/guilhermemtr/Weighted-Flooding-Simulator
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• Random corruption (Rand) where the adversary corrupts parties uniformly at
random.

• Light-First corruption (Light) where the adversary corrupts parties by their weight
in increasing order, starting with the lighter ones.

• Heavy-First corruption (Heavy) where the adversary corrupts parties by their
weight in decreasing order, starting from the heavier ones.

One might note that the corruption strategy is irrelevant to the constant weight
distribution. For this reason, we only consider the random corruption strategy for the
constant weight distribution.

4.6.2 Methodology

To obtain statistical confidence, we make 10 000 runs for each parameter configuration
(e.g., weight distribution, adversary strategy, choice of the sender, number of parties,
etc.). All runs are executed independently.

In the evaluations, a run is considered successful if the sender’s message is delivered
to all (honest and dishonest) parties. As one might note, this contrasts with the timely
predicate (see Definition 4.3.2), which only requires a message to be delivered to all
honest parties. Thus, the success rate metric we consider for the evaluations is a lower
bound on the actual success rate of our protocol. The rationale behind this definition is
as follows: consider an adversary that corrupts a set C of parties; if the adversary would
alternatively pick some party p ∈ C, and corrupt C \ {p}, then the protocol would have
to guarantee that every honest party, including p, still gets the message. Since p is now
honest, it seems a harder requirement to make p now also receive the message. This
justifies our choice of making adversaries corrupt as many parties as possible.

We define the maximum latency as the highest number of hops (among successful
runs only) that a message took to be propagated; if none of the 10 000 runs was suc-
cessful, we do not plot the maximum latency. The latency unit in our plots is δChannel.
Note we do not require messages to be delivered within a fixed time-bound. As we have
observed from our simulations, the maximum latency for any configuration which suc-
ceeds reasonably often is within 9 ·δChannel, and hence we consider this practical (details
of the maximum latency can be found in Figures 4.2 to 4.4).

To ensure our protocol performs well independently of the sender’s weight, we take
the worst result among the sender choices (for each weight distribution).

Methodology details. For the exponential and few heavy weight distributions, where
there can be senders with different weights, we make 10 000 runs for each case. More
concretely, for the exponential weight distribution, we make 10 000 runs for the lightest
sender, 10 000 runs for the median weighted sender, and 10 000 runs for the heaviest
sender, whereas for the few heavy weight distribution, we make 10 000 runs for the
lightest sender, and 10 000 runs for the heaviest sender. The average success rate shown
in the plots is the least (10 000 run) average success rate among the different senders.
For latency, we take the maximum among all runs for all possible senders.

For a fixed set of parameters, in each of the 10 000 runs, a new corruption set is
chosen (independent of the ones picked in other runs). This means that for the random
corruption strategy, a fresh set of corrupted parties is selected for each run. On the other
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hand, since the light first and heavy first corruption strategies are deterministic, the set
of corrupted parties is always the same for each run. The sender, which is determined
by the set of parameters, cannot be corrupted.

4.6.3 Simulations and Results

Comparison against weight-oblivious protocols. To compare the performance of WFF
and a weight oblivious protocol, we measured the success rate for WFF(k) and a weight
oblivious protocol WOF := ΠFlood(WFS(E, k)) with E(p) := 1 for different exponential
weight distribution (with changing ratios between the heaviest and lightest party).10

The results can be found in Figure 4.1. The plot shows that our protocol (WFF) achieves
a 100% success rate at a much lower number of transmitted messages than the weight-
oblivious one (WOF). The only exception is when the weight ratio between the heaviest
and the lightest parties is 1, the exponential weight distribution is the same as the
constant weight distribution, and hence the protocols become identical. Note that while
the WFF protocol achieves practical security with low message complexity regardless of
the ratio between the heaviest and lightest party, the message complexity of WOF to
achieve a 100% success rate increases drastically as the ratio increases.

Performance for changing weight distributions. In Section 4.3.2.1, we bounded the mes-
sage complexity of WFF by 2·n·(log(n)+κ)

γ (see Theorem 4.3.3), and in Section 4.4.2 we
showed that this number of messages is inherent for the constant weight distribution
(see Lemma 4.4.3), implying that WFF is optimal up to a constant factor for this dis-
tribution. Although the obtained upper bound is independent of the weight, since it is
tight only for the constant weight distribution, it could be that WFF performs poorly
for other distributions. To show this is not the case, we measured the success rate (and
maximum latency) for sending a single message in WFF(k) as a function of the message
complexity (induced by adjusting k) for different weight distributions and corruption
strategies. See Figure 4.2.

Unsurprisingly, the adversarial strategy inducing the highest cost corrupts as many
light nodes as possible. This fits the intuition from Section 4.3.3: By corrupting as
many light nodes as possible, an adversary can get a slight advantage in terms of the
number of emulated nodes they control because the ceiling embedded in the emulation
function has a proportionally larger effect on such nodes. Furthermore, note that for the
constant weight distribution WFF(k), selects k neighbors uniformly at random and at
least ⌈γ · n⌉ of the parties remains honest. Hence, this corresponds to the performance
that can be expected by additionally assuming that a certain fraction of the parties
remains honest and use flooding protocols tailored to this setting. We emphasize that
our protocol only induces marginally larger (within a small constant factor) message
complexity for all the considered weight distributions and corruption strategies. This
aligns with Section 4.3.3, where our bound on the message complexity for the weighted
setting was only worse by a factor of 4 compared to the bound that relied on a constant
fraction of honest parties. Therefore, security for our protocol in the weighted setting
comes comparatively at a much lower cost.

10The protocol WOF := ΠFlood(WFS(E, k)) for E(p) := 1 corresponds to the protocol where each party
selects k parties uniformly at random as their neighbors without taking weight into account.
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Figure 4.2: Success rate and maximum latency of WFF protocol for different weight
distributions and corruption strategies, depending on the average number of messages
sent per party, for n = 1024 parties, a 50% corruption threshold, a ratio of 106 between
heaviest and lightest parties and c = 10 heavy parties for FH.

Note that for all successful runs, the latency is at most 8 · δChannel. Furthermore,
our protocol actually induces a lower latency when deployed with unevenly distributed
weights. This is because connectivity is concentrated around the heavy parties, which
have larger neighborhoods.

Scalability. A key feature of flooding protocols is their scalability. To benchmark the
scalability of our proposed protocol WFF, we measured, for different numbers of parties,
the success rate of the protocol depending on the average number of messages each party
sends (again induced by varying k). For simplicity, we chose only to include the constant
weight distribution (the performance for varying weight distributions is plotted in Fig-
ure 4.2). The results can be found in Figure 4.3. As one can observe, both the average
message complexity per party and the maximum latency only increase logarithmically
with the number of parties, confirming our theoretical expectations (see Section 4.3.4).

By the time of writing, there are around 12k running Bitcoin nodes [22a] and
roughly 8k nodes in the Ethereum network [22b]. Extrapolating from Figures 4.2
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Figure 4.3: Scalability of WFF protocol. We consider the constant weight distribution,
and the random corruption strategy, with a 50% corruption threshold.

and 4.3, it seems that independently of the stake distribution, WFF can realize a secure
flooding network with an average number of connections per message of just ∼55 for
such number of nodes. We conclude that this is within the realm of the number of
connections existing widely used implementations maintain by default. Note, however,
that the workload is not distributed evenly among nodes in WFF, as heavier nodes need
to maintain more connections. In Section 4.4, we showed that this is inherent for this
type of protocol in the weighted setting.

Estimating protocol parameters for practical security. As already mentioned, the number
of messages a party sends is given by its emulation function E(p) := ⌈αp · n⌉ multiplied
by the protocol parameter k. We now analyze what values one can set k to in order to
achieve security in practice. Figure 4.4 shows, for the different weight distributions and
corruption strategies how the success rate and the maximum latency vary depending on
the protocol parameter k.

It is worth mentioning that although, at first sight, our protocols may seem to
perform better for the exponential and few heavy weight distributions, this is actually
not the case: while it is true that the protocol achieves a higher success rate and a lower
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diameter for smaller values of k, for both these weight distributions (but not for the
constant weight distribution) the average number of messages sent per party grows by
a factor larger than 1 (see Figure 4.5).
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Figure 4.4: Success rate and maximum latency of WFF protocol for different weight
distributions and corruption strategies, depending on the protocol parameter k, for
n = 1024 parties, a 50% corruption threshold, a ratio of 106 between richest and poorest
parties and c = 10 heavy parties for FH.
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the protocol parameter k, for different weight distributions. In the plot, the exponential
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5 Asymptotically Optimal Message Dissemination
with Applications to Blockchains

5.1 Introduction

Current blockchain protocols rely on the availability of a multicast network that allows
any party to communicate with all other parties in the network, and therefore the
security and efficiency of the blockchain protocol are heavily influenced by its underlying
multicast network.

In typical blockchain protocols, including Bitcoin [Nak08] and Ethereum [Woo+14],
such multicast networks are efficiently implemented via a flooding protocol [KMG03;
Liu+22b; MNT22b], which lets the sender select a set of neighbors randomly and forward
the message to these parties, who will forward the messages to another randomly chosen
set of neighbors and so on. It was shown in [KMG03] that one needs an expected
neighborhood size of Ω(log(n)+κ), where n is the number of parties and κ is a security
parameter, for the message to reach all parties with overwhelming probability in κ.
As a consequence, current flooding protocols incur Ω(l · (log(n) + κ)) bits of per-party
communication (in total Ω(l ·n · (log(n)+κ)) bits), for an l-bit message. A trivial lower
bound on the total communication complexity is Ω(l·n) since all n parties need to receive
the message. This, in turn, implies that (the maximal) per-party communication must
be Ω(l) bits. This leaves a gap between the lower bounds and what current flooding
protocols achieve. For practical blockchain systems where messages contain large blocks
(e.g., around 1MB), the incurred communication constitutes one of the main bottlenecks.
We, therefore, ask the following question:

Is there a flooding protocol that incurs the optimal total communication of
O(l · n) bits, where each party communicates O(l) bits?

We answer this question in the affirmative by providing two highly robust flooding
protocols for n parties with a success rate overwhelming in the security parameter κ.
Our protocols require no setup and are practically efficient, even for a small number
of parties and message length. Moreover, we show how to extend our protocols to the
weighted setting, where each party is assigned a positive weight of a certain resource
(such as stake), and the adversary can corrupt any set of parties accumulating a constant
fraction of the total resource. More details follow below.

142
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5.1.1 Contributions

Warm up: Optimal flooding with a linear neighborhood and constant diameter. We first
present a simple protocol ECCast1, that requires each party to send messages to all other
parties, but it achieves a constant diameter of just 2. The protocol works by letting the
sender of a message divide their message into n (the number of parties) different shares
using an erasure-correcting code, and then send a unique share to each party. When
a party receives such a share, they will forward it to all other parties. Once a party
receives sufficiently many shares, they will be able to reconstruct the original message.

Theorem 5.1.1 (ECCast (informal)). For n parties, ECCast ensures asymptotically
optimal flooding with a diameter of 2 and an overwhelming success probability in κ, for
message of length at least Ω(n · (log(n) + κ)) and at least a constant fraction of the
parties remaining honest.

Even though this protocol requires each party to send messages to all other parties,
we believe that it has wide applications as it allows one to “balance” the incurred com-
munication among parties, at the cost of doubling the diameter (over the naive protocol
in which the sender directly sends the whole message to all parties). In fact, indepen-
dently and concurrently with our work, Kaklamanis, Yang and Alizadeh [KYA22] use
such techniques to speed up the Hotstuff consensus protocol [Yin+19].

Optimal flooding with a logarithmic neighborhood and diameter. We then present the
protocol ECFlood,2 which requires each party to connect to only O(log(n) + κ) other
parties and use only O(l) of per-party communication.

At a high level, the protocol works by letting the sender of a message divide their
message into a number of shares µ. Each of these shares will then be sent to each party
with an independent probability ρ. When a party receives such a share, they will then
again forward it to all other parties with the same independent probability ρ. Once
a party receives sufficiently many shares, they will be able to reconstruct the original
message.

Theorem 5.1.2 (ECFlood (informal)). For n parties and a security parameter κ, there
are µ = O(log(n)+κ) and ρ = O(n−1) such that ECFlood ensures asymptotically optimal
flooding with a logarithmic diameter and an overwhelming success probability in κ, for
messages of length at least Ω((log(n) + κ) · (log(log(n)) + κ)) and at least a constant
fraction of the parties remaining honest.

In particular, it is worth noting that ECFlood shaves a factor of log(n) + κ off both
the communication complexity and the per-party communication over previous best-
known constructions. This is done while keeping both the size of the neighborhood and
the diameter at the same level as these previously best-known constructions. We further
note that ECFlood requires no trusted setup but merely relies on a weak cryptographic
accumulation scheme, which can be realized efficiently from standard cryptographic
assumptions.

1ECCast from the use of Erasure-Correcting codes and each party multicasting messages to all
parties.

2ECFlood from the use of Erasure-Correcting codes in the flooding protocol.
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Table 5.1: Comparison of flooding for messages of length l among n parties where a
constant fraction of parties is honest.

Property Naive [Liu+22b; MNT22b] ECFlood (this work) ECCast (this work)

Min. message length 1 1 Ω((log n+ κ)(log log n+ κ)) Ω(n · (log(n) + κ))
Max. neighbors n− 1 O(log(n) + κ) O(log(n) + κ) n− 1
Max. per-party comm. l · (n− 1) O(l · (log(n) + κ)) O(l) O(l)
Total comm. l · (n− 1) O(l · n · (log(n) + κ)) O(l · n) O(l · n)
Diameter 1 O(log(n)) O(log(n)) 2

We summarize the properties of ECFlood and ECCast and compare them to other
flooding protocols with similar robustness in Table 5.1, where the “naive” protocol refers
to the protocol where the sender simply sends the message to all other parties. Note
that both protocols are secure for any message size (and achieve optimal communication
for sufficiently long messages).

Probabilistic simulations for ECFlood. While the theoretical analysis of ECFlood shows
that our protocol is asymptotically optimal, we use probabilistic simulations to evaluate
its practical efficiency. The main results of our simulations are shown in Figures 5.1
and 5.2. The parameter d corresponds to the expected number of parties each share is
sent to by every party, i.e., ρ = d/n. Figure 5.1 shows that increasing d also increases
the redundancy (i.e., the per-party communication complexity divided by the message
length l) and thus the communication complexity. On the other hand, Figure 5.2 shows
that increasing d decreases the latency. Since there are µ shares to be sent to d parties,
the total number of neighbors per party is µ ·d. Figure 5.1 further shows that increasing
the number of shares µ decreases the redundancy.

With these tradeoffs in mind, we can compare our results to the state-of-the-art
provably secure flooding protocol [Liu+22b]. The simulations in [Liu+22b, Figure 4.3]

100 200 300 400
8

11

14

17

20

Expected number of neighbors (µ · d)

R
ed

u
n
d
an

cy
( d β

) d = 5
d = 7
d = 9
d = 11
d = 13
d = 15

Figure 5.1: Results for simulations of ECFlood( dn) for different values of d, a fixed number
of parties n = 8192, and a variable number of shares µ. The graphs show the redundancy
of the protocol as a function of the expected number neighbors. The number of shares
is incremented in steps of 3.



Introduction 145

5 7 9 11 13 15
4

6

8

10

12

Internal parameter (d)

M
a
x
im

u
m

la
te
n
cy
( ∆
∆

N
e
t

) n = 1024
n = 2048
n = 4096
n = 8192
n = 16384
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for different values of d and n, but

with a fixed number of shares µ = 30. The graphs show the maximal latency before any
party has received enough shares to be able to reconstruct for different values of d.

show that to succeed 99% of the time for 8192 parties, one has to, in their protocol, let
each party forward the entire message to around 28 neighbors, resulting in a latency
of 6 network delays with redundancy 28. ECFlood for d = 15 achieves the same latency
with a redundancy below 20 for 200 neighbors per party. If a slightly larger diameter
is acceptable, ECFlood with d = 9 has a worst-case latency of 8 network delays and
redundancy of less than 14 for 200 neighbors per party. This means that even though
parties have to connect to more neighbors in ECFlood, the total amount of data sent is
less than half compared to the state-of-the-art for these parameters. We note that the
number of connections is also a limiting factor, but 200 is still practical; e.g., Bitcoin
clients, by default, have up to 125 connections [Ger+15].

Flooding in the weighted setting. We leverage the idea of emulation from [Liu+22b]
to make a general transformation from a flooding protocol that is secure, assuming a
constant fraction of the parties behaves honestly, to a secure flooding protocol, assuming
that a constant fraction of publicly assigned weights behaves honestly. We do so by
introducing the protocol Flood2WeightedFlood that reduces the task of finding a secure
flooding protocol among an actual set of parties to a secure flooding protocol for an
emulated set of parties. In more detail, let αp denote the fraction of total weight
assigned to a party p, let there be n parties in total, and let the total fraction of weight
given to honest parties be given by γ̃. We observe that by letting each party p emulate
⌈αp ·n⌉ parties, the fraction of these emulated parties that will behave honestly is lower
bounded by γ̃ · 2−1. Hence, if we assume a constant fraction of honest weight, there
will also be a constant fraction of honest emulated parties. This implies that we can
translate our protocols ECFlood and ECCast (as they will work for any constant fraction
of parties), using Flood2WeightedFlood, also to work assuming only a constant fraction of
honest weight. This happens while only increasing the total communication complexity
by a factor of at most 4. The per-party communication will, however, in this case, be
proportional to the amount of weight each party is assigned. We note that in [Liu+22b,
Corollary 4.4.2], it was shown that it is inherent for the weighted setting that parties
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with a large fraction of weight must send more messages.

Outline of the chapter. In this section, we proceed with a technical overview, discuss
our model, and review related work. In Section 5.2, we define our model and the
primitives our protocols build upon. Next, in Section 5.3, as a warm-up, we present the
ECCast protocol and prove it secure. In Section 5.4, we present the ECFlood protocol
and prove it secure. In Section 5.5, we present our protocol for transforming any flooding
protocol to one that works in the weighted setting. Finally, in Section 5.6, we estimate
practical parameters for our protocol using probabilistic simulations.

5.1.2 Technical Overview

As discussed above, prior works that let each party forward a message to a random sub-
set of neighbors (see, e.g., [KMG03; Liu+22b; MNT22b]) need each party to connect
to Ω(log(n) + κ) parties to ensure that the message is propagated to all parties with
overwhelming probability in the security parameter κ. Intuitively, the term κ is needed
to make the probability that an individual party has no honest neighbors negligible.
Further, to ensure that the probability that no party is unlucky is negligible, the addi-
tional log(n) neighbors are needed. It is, therefore, impossible to decrease the number
of needed connections of such flooding protocols.

To further improve the communication complexity, we focus instead on reducing the
number of bits sent to each of these neighbors. For that, we deviate from the above
approach and design our flooding protocol in two steps. First, we consider a weak
flooding protocol that ensures that with a constant probability, a constant fraction of
the parties receives the message. Secondly, we introduce a compiler that lifts a weak
flooding protocol to a complete flooding protocol that guarantees delivery to all parties
with overwhelming probability.

Flooding amplification. The protocol compiler WeakFlood2Flood splits a message into
a number of shares µ using erasure-correcting codes and makes use of a weak flooding
protocol to distribute each of these shares. Since the shares are created using erasure-
correcting codes, each party doesn’t need to receive all shares to reconstruct the original
message.

An apparent attack on such protocol would be for an adversary to try to inject “fake”
shares into the set of shares honest parties try to reconstruct the message from. We
prevent this by using a cryptographic accumulation scheme to prove that a particular
share is part of the original shares. A such accumulator can be implemented efficiently,
e.g., using Merkle trees or signature schemes.

More concretely, let the reconstruction threshold be τ = ξ · µ, for some constant
ξ. Using standard erasure-correcting codes (e.g., Reed-Solomon codes), this can be
obtained with a share size of O(l · τ−1). To achieve a flooding protocol with optimal
communication, we need to ensure that 1) each party receives τ shares and 2) each
instance of weak flooding only incurs constant overhead with respect to the size of each
share (i.e., O(l · τ−1) bits) of per-party communication.

Using the Chernoff bound, one can show that if there is a constant independent
probability for each party to receive each sent share, then all parties receive a constant
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fraction of the shares with overwhelming probability when at least log(n)+κ shares are
sent.

Hence, the task of finding an asymptotically optimal flooding protocol is reduced
to finding a weak flooding protocol that ensures delivery with a constant independent
probability for each input message and sends each input message to only a constant
number of parties.

A weak flooding protocol. Our candidate for a weak flooding protocol is the protocol
ERFlood(ρ) that lets each party forward each message to each party with an independent
probability ρ.

Previous works [KMG03] showed that the probability that there is an isolated party

for n→∞ when ρ = log(n)+c+o(1)
n for some constant c is given by 1− e−ec . This means

that one needs to set ρ = Ω(log(n) · n−1) to have a constant success probability for all
parties to receive the message. Consequently, the expected size of each neighborhood
would be Ω(log(n)), which is too much communication.

To overcome this, we observe that we only need that the probability that any fixed
party receives the message is constant. Using a novel analysis of the protocol, we prove
that by sending the message to only a constant number of neighbors, there is a constant
probability that the message reaches a constant fraction of all parties.

5.1.3 Model

Our results are proven for a static set of parties connected by unauthenticated point-to-
point channels that immediately leak any message sent to the adversary. Our analysis
additionally uses an upper bound on the time it takes to send a message through each
channel, but this is not required to be known before our protocols are deployed.

On composable security. We prove that our protocols implement a property-based
definition of flooding. It is, therefore, not automatically guaranteed that our results
compose with other constructions as it would have been if they were proven within a
composable security framework such as UC [Can20]. However, note that none of our
protocols has any secrecy, i.e., all inputs given to any honest party are immediately
leaked to the adversary. As used in [MNT22b, proof of Lemma 3.6.1], it is therefore
straightforward to simulate such protocols because the simulator can run the original
flooding protocol with full knowledge of all inputs. Based upon this, we believe it is
straightforward to show that our flooding protocols UC-realize a flooding functionality
as the one provided in Chapter 3.

On security against adaptive adversaries. Our results are proven for all adversaries that
can statically corrupt all but a constant fraction of the parties (except for the proto-
col Flood2WeightedFlood, where we naturally require a constant fraction of the weight
remains honest). However, even stronger results hold. The protocol ECCast is secure
against an adaptive adversary if we assume that the adversary cannot retract messages
that are already sent (often referred to as the atomic message send model). Unfor-
tunately, as observed by Matt et al. [MNT22b], this is not sufficient for any protocol
with a sublinear neighborhood because an adversary can then simply corrupt the entire
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neighborhood of the sender and thereby prevent delivery of the message. This rules out
that ECFlood can be proven secure using only this assumption.

To circumvent this apparent impossibility of security against adaptive adversaries
for flooding protocols, Matt et al. [MNT22b] introduced the model of δ-delayed adaptive
adversaries, where it takes a certain time from when an adversary decides to corrupt
a party until the adversary gains control of this party. All of our proofs for ECFlood
go through if it is assumed that an adversary is delayed for the entire delivery time of
the protocol, as then the set of parties controlled by an adversary will be independent
of the neighborhoods chosen for the delivery of a particular message. The setting will,
thereby, essentially be static for each specific message.

We note that it may not be practically feasible to require each peer to resample
their neighbors for each message, as suggested by our protocol ECFlood. If one is willing
to assume an adversary delayed for an extended period of time, then our protocol
can be run securely without resampling neighbors for each message but instead only
resampling neighbors at specific time intervals of length at least the corruption delay of
the adversary.

On the weighted model. Our protocol Flood2WeightedFlood compiles any protocol
secure assuming a constant fraction of parties to one that is secure assuming only a
constant fraction of publicly assigned weights remains under honest control. This as-
sumption can be realized for Proof-of-Stake based protocols [CM19; DPS19; Dav+18]
where the protocol relies on a constant fraction of the stake behaving honestly. As the
stake is publicly available in the maintained ledger of such protocols, it is immediate
that it can be used directly as public weights.

As noted by [Liu+22b], committee selection techniques [PS17b; PS18b] can be used
to instantiate weights from other resource assumptions such as computational power.

5.1.4 Related Work

Flooding protocols. Flooding protocols are used to implement so-called multicast net-
works, which allow a party to distribute a message among a set of parties within some
prescribed time. Current flooding protocols (as in Bitcoin [Nak08], Ethereum [Woo+14],
etc.) are typically implemented via a forwarding mechanism, where for a party to dis-
tribute a message, the party selects a random subset of neighbors, who then forward
the message to their neighbors and so on.

The security of such a protocol relies on the fact that the graph induced by the
neighbor selection procedure among honest parties is connected. Kermarrec, Massoulié,
and Ganesh [KMG03] showed that when choosing each neighbor with probability ρ in a
setting with up to t = (1− γ) · n corruptions (out of n parties), it is necessary that ρ >
log(n)+κ

γ·n to ensure that messages are delivered to all honest parties with overwhelming
probability in κ.

Matt, Nielsen, and Thomsen [MNT22b] formally proved the security of such a flood-
ing protocol against a so-called delayed adaptive adversary (where it takes a certain
delay for the adversary to gain control over a party) corrupting any fraction of the total
number of parties. In a follow-up work [Liu+22b], Liu-Zhang, Matt, Maurer, Rito, and
Thomsen gave the first protocol that remains secure in the setting where all parties are
publicly assigned a positive weight and the adversary can corrupt parties accumulating
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up to a constant fraction of the total weight. We adapt the techniques from Liu-Zhang,
Matt, Maurer, Rito, and Thomsen and provide a general procedure for obtaining a
flooding protocol for the weighted setting from one secure in the none weighted setting.
In particular, this allows our protocols to be used in the weighted setting.

The protocols of [KMG03; Liu+22b; MNT22b] incur a total communication of O(l ·
n · (log(n) + κ)) bits, for a message of size l. In contrast, our protocols incur the
(asymptotically) optimal total communication of O(l · n).

Coretti, Kiayias, Moore, and Russell [Cor+22] considered the problem of designing a
message diffusion mechanism based on the majority of honest stake assumption explicitly
tailored for the Ouroboros Praos consensus protocol [Dav+18]. However, their flooding
protocol achieves a weaker guarantee because it allows a certain set of honest parties to
be eclipsed. In contrast, our work focuses on flooding protocols that guarantee delivery
to all honest parties.

Another line of work seeks to improve the efficiency of flooding protocols tailored
for blockchains by applying structured approaches and heuristics [RT19; SOA16; VT19].
However, the behavior of these protocols under byzantine corruptions is not documented,
and our focus is on provably secure protocols. We do, therefore, not comment on this
line of work further.

Agreement primitives for long messages. A significant line of work is dedicated to build-
ing broadcast and Byzantine agreement primitives for long messages for different thresh-
olds, setups, and assumptions, starting from the work of Turpin and Coan [TC84].
Many subsequent works achieve communication complexity O(l · n + poly(n, κ)) (see,
e.g., [Bha+22; FH06; GP16; Nay+20]). We note that techniques similar to those we use
for our ECCast protocol were used within agreement protocols in [Nay+20].

In all these works, parties communicate to all other parties (so the neighborhood
size is n− 1). In contrast, we provide ECFlood where each party communicates to only
O(log(n) + κ) neighbors.

5.2 Model and Preliminaries

In this section, we define the model, in which we prove our results, specify the primi-
tives our constructions rely on and give suggestions for how to instantiate these primi-
tives. Additionally, we define notation and fundamental bounds that we will use for our
proofs.

5.2.1 Parties, Adversary and Communication Network

We consider a set of n parties P = {p1, p2, . . . , pn}. For simplicity, we assume an
adversary that can statically corrupt a set of parties such that only a subset H ⊆ P will
behave honestly.3 We will use h to denote a bound on the size of H. For the remainder
of the chapter, we will assume that |H| ≥ h. We will use γ := h

n to denote the fraction
of parties guaranteed to be honest and assume this to be a constant.

3One can extend our protocols to handle so-called delayed adaptive adversaries, using techniques
presented in [MNT22b].
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We assume that all parties are connected pairwise through unauthenticated point-
to-point channels and let ∆Net denote an upper bound on the delivery time for the
underlying point-to-point channels.

5.2.2 Primitives

Erasure correcting codes. In our protocols, we use a particular type of weak error-
correcting code that can only tolerate a certain number of erasures. We refer to these
as erasure-correcting codes.

Definition 5.2.1 (Erasure Correcting Code Scheme). Let µ ∈ N be the number of
shares, and let e ∈ N be the number of erasures to be tolerated. A pair of algorithms
ζ is a (µ, e)-erasure-correcting-code-scheme (abbreviated (µ, e)-ECCS) if it consists of
two algorithms:

• ζ.Enc: An encoding algorithm that takes a message m ∈ {0, 1}∗ and produces a
sequence of shares s1, . . . , sµ.

• ζ.Dec: A decoding algorithm that if a sequence of shares s′1, . . . , s
′
µ s.t. it holds

for at least µ− e of them that s′i = si and for the remaining s′i = ⊥ is input, then
the original message is m is returned.

We will use the notation ζ.ShareSize(l) for a function that bounds the size of each
share when a message of length l is encoded.

Standard Reed-Solomon codes[RS60] can be used to instantiate a (µ, e)-ECCS in a
straightforward manner. That is, for a messagem with length l (where l ≥ µ−e), let each
share be an element in a Galois Field of order 2a for a =

⌈
max

(
log(µ− 1), log

(
l

µ−e

))⌉
.

If ζ is such a scheme, we will have for a message where a =
⌈
log
(

l
µ−e

)⌉
that

ζ.ShareSize(l) = O
( l

µ− e

)
. (5.1)

This implies that the total bitlength of the shares will be O
(
l · µ

µ−e

)
. We note that it

has been shown that the encoding and decoding of such codes be done in O(2a · a2)
time [Did09].

Weak cryptographic accumulators. We will, in this work, make use of a weak version of
a static positive accumulator. Weak refers to that we only require collision-freeness and
correctness to hold for honestly generated accumulators, static refers to that we do not
need the set of accumulated values to be dynamically extendable, and positive means
that we only need to prove membership of an accumulator (in particular we do not need
to prove that an element is not a part of the accumulator). We define this below.

Definition 5.2.2 (Weak Static Cryptographic Accumulation Scheme). A pair of algo-
rithms α is a weak static cryptographic accumulation scheme (abbreviated WSCAS) if
it consists of two algorithms:

• α.Accumulate({m1, . . . ,mη}) : An algorithm for accumulating a set of input val-
ues {m1, . . . ,mη}. It returns an accumulated value z and a sequence of proofs
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π1, . . . , πη where πi can be used to prove that mi is in the accumulated value z
where each mi ∈ {0, 1}∗.

• α.Verify(m,π, z): A function that checks if a proof π proves that a message m was
in the set of elements used to create the accumulated value z.

With the following properties:

Completeness: All honestly generated proofs are accepted by α.Verify.

Collision-freeness: No polynomial-time adversary can find a set of values M :=
{m1, . . . ,mη}, a value m′ /∈ M , and a proof π such that the accumulator veri-
fies α.Verify(m′, π, z) = ⊤ for z ← α.Accumulate(M).

See [BP97] for the original formal definition of collision-freeness, and [Özç+21] for
an overview of accumulator constructions.

We use the notation α.AccSize for a bound on the size of the accumulated value
and α.ProofSize(η) for a function that bounds the size of each proof as a function of
the number of messages accumulated η.

Because we only require collision-freeness for honestly generated accumulators, a
WSCAS scheme can be efficiently instantiated using a regular signature scheme by
letting the accumulated value z be the public verification key and a proof for a message
be a signature of that message. For suitable signature schemes this yields

α.AccSize = O(κ) and α.ProofSize(η) = O(κ). (5.2)

The same complexity can be achieved by basing α on RSA accumulators [BM93] or
bilinear accumulators [Ngu05]. To avoid generating keys or a setup assumption, one
can also use Merkle Trees [Mer89] as accumulators, at the cost of slightly increasing the
proof size to α.ProofSize(η) = O(log(η) · κ).

Flooding. A flooding protocol allows a set of parties to send messages to each other
subject to certain delivery guarantees. Our definition is based on the one presented
in [Liu+22b, Section 4.3.1] with only minor differences. Informally, we want each mes-
sage input delivered to all parties with a probability that is overwhelming in the security
parameter.

Definition 5.2.3 (Flooding). Let Π be a protocol executed by parties P, where each
party p ∈ P can input a message at any time, and as a consequence, all parties get a
message as output. We say that Π is a strong ∆-flooding protocol if when a message
m is input to an honest party at time τ , then by time τ + ∆ there is a probability
overwhelming in the security parameter κ that all other honest parties output m.

In contrast to previous definitions, we do not require that flooding protocols guaran-
tee message relay (it is allowed that a message sent by the adversary is only received by a
subset of honest parties), as this definition suffices for most blockchain protocols [CM19;
Dav+18; GKL15; PS17a; PS18b; Yin+19], since they do not depend on relaying of re-
ceived messages at the flooding layer. To achieve message relay, one can let the honest
parties re-distribute the received messages.
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5.2.3 Additional Notation

We use the notation Γλ
ps(G) for the set of neighbors of a party (usually the sender) ps

at a distance at most λ in a graph G. When clear from the context, we omit both ps
and G for this set and merely write Γλ. For two random variables X and Y , we will
write X ⪯ Y if Y stochastically dominates X, i.e. Pr[Y ≥ k] ≥ Pr[X ≥ k] for all k.

5.2.4 Bounds

Lemma 5.2.4 (Convergence of Geometric Sum). Let c, a ∈ R and |a| < 1 then

∞∑
n=0

c · an =
c

1− a
.

Lemma 5.2.5. Let c, a ∈ R s.t. |a| < 1 and c ≥ 2 then

∞∑
n=1

a(c
n) ≤ a

1− a
. (5.3)

Proof. First, note that

∞∑
n=1

a(c
n) ≤

∞∑
n=0

a(c
n+1) =

∞∑
n=0

ac·(c
n). (5.4)

Now, note that for all n ∈ N we have that

1 + cn ≤ c · cn =⇒ ac·c
n ≤ a1+cn . (5.5)

Hence, by combining Equations (5.4) and (5.5) we get that

∞∑
n=1

a(c
n) ≤

∞∑
n=0

a · a(cn). (5.6)

Equation (5.3) follows by the convergence of the geometric sum (Lemma 5.2.4) and the
fact that for all n ∈ N we have that a(c

n) ≤ an.

5.3 Optimal Flooding With a Constant Diameter and Linear Neigh-
borhood

In this section, we warm up by presenting our protocol ECCast and show that it is a
flooding protocol with a maximum per-party communication of O(l), a total communi-
cation complexity of O(l · n), and a diameter of 2.

Our protocol ECCast is parameterized by an erasure correcting code scheme that
shares a message into n shares and a cryptographic accumulator. When a sender wishes
to send, they will share the message into n shares and send a unique share to each
party. When a party receives such a share, they will forward the share they receive to
all other parties. This will ensure that each party ends up receiving as least as many
shares as there are honest parties. Therefore, the only thing that can prevent honest
parties from reconstructing the original message is if they try to reconstruct from some
shares that the original sender did not send. To prevent this, we use the cryptographic
accumulator.
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Protocol ECCast(ζ, α)

The protocol is parameterized by, a (n, e)-ECCS ζ for some e ∈ N, and a crypto-
graphic accumulator α. Each party pi ∈ P keeps track of a set of shares received
for a particular accumulator z, ReceivedSharesi[z]. Additionally, each party pi
keeps track of a set of received messages Receivedi.

Initialize: Initially, each party pi sets ReceivedSharesi := ∅, and Receivedi := ∅.

Send: When pi receives (Send,m) they share the message m into shares
ζ.Enc(m) = s1, . . . , sn. Furthermore, they obtain an accumulated
value and proofs for each share and its share number z, π1, . . . , πn =
α.Accumulate({(sj , j) | 1 ≤ j ≤ n}). For 1 ≤ j ≤ n, the party now sends
(Forward, sj , j, πj , z) to party pj using the point-to-point channel between
them. Finally, they add m to Receivedi.

Get Messages: When pi receives (GetMessages) they return Receivedi.

When party pi receives a tuple (T, s, j, π, z) over a point-to-point channel where
α.Verify((s, j), π, z) = ⊤ they add (s, j) to ReceivedSharesi[z]. Furthermore, pi
does the two following checks:

• If |ReceivedSharesi[z]| ≥ n− e, then they

1. Obtain a sequence of shares s1, . . . , sn by letting sj = s if (s, j) ∈
ReceivedSharesi[z] and otherwise sets sj = ⊥ (i.e. if no such pair is
in ReceivedSharesi[z]).

2. Decode the shares and add the recovered message to the set of received
messages, Receivedi := Receivedi ∪ {ζ.Dec(s1, . . . , sn)}.

• If T = Forward, it is the first time they receive (T, s, j, π, z), and j = i, then
they send (Receive, s, j, π, z) to all parties over their respective point-to-point
channels.

We now prove the following theorem.

Theorem 5.3.1. Let e ≥ n · (1 − γ), let ζ be a (n, e)-ECCS, and let α be a WSCAS,
then the protocol ECCast(ζ, α) is a strong (2 ·∆Net)-flooding protocol.

Proof. Let m be a message input to some honest party s at time τ , and let the accu-
mulated value sent out be z. The delivery guarantees for the underlying point-to-point
channels ensures that at latest at time τ+∆Net any honest party pi will have received a
(Forward, si, i, r, πi, z) s.t. α.Verify((s, i), πi, z) = ⊤ (by correctness of the WSCAS). This
implies that this is the latest point any honest party will forward (Receive, si, i, π, z) to all
other parties. By the delivery guarantees of the point-to-point channels, these messages
will be delivered at the latest at time τ +2 ·∆Net. Hence, if pi is an honest party, then
the size of ReceivedSharesi[z] will be at least n · γ = n−n · (1− γ) ≥ n− e. Therefore
any honest party pi will be able to reconstruct the original message at the latest at time
τ +2 ·∆Net unless there are some tuple (sj , j) and π where α.Verify((s, j), π, z) = ⊤ and
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where sj is not equal to an original share sent out by the sender s. However, this does
not happen unless the adversary can break the collision-freeness of the WSCAS.

Communication complexity of ECCast. Let us now analyze the complexity of ECCast(ζ, α)
(for ζ and α instantiated as suggested by Theorem 5.3.1) when a message of length l
is input. The neighborhood of each party is n as all parties will talk to all other par-
ties. The per-party communication is given by the size of the neighborhood times the
size of the tuple sent over each point-to-point channel. As each tuple consists of a bit
(Forward or Receive), a share, a sequence number of the share, an accumulator proof, and
an accumulated value, we have that the communication for each party is given by

n · (1 + ζ.ShareSize+ log(n) + α.ProofSize+ α.AccSize). (5.7)

If we instantiate the ECCS with Reed-Solomon codes, we get that the size of each share
is bounded by O(l · (γ · n)−1). For a constant fraction of honest parties, we, therefore,
have that ζ.ShareSize = O(l ·n−1). And by using an efficient WSCAS α with the size of
accumulated value and proof O(κ) (see Equation (5.2)), we get that the communication
of each party is bounded by

O(l + n · (log(n) + κ)). (5.8)

As all parties use this communication, the total communication complexity is bounded
by

O(n · (l + n · (log(n) + κ))). (5.9)

This communication is optimal when l = Ω(n · (log(n) + κ)). We remark that the
constant multiplied to l is only γ−1 times the constant of the Reed-Solomon codes.

5.4 Optimal Flooding With Logarithmic Neighborhood and Diameter

In this section, we show how to obtain a flooding protocol with (asymptotically) optimal
communication complexity. We achieve this in two steps. First, we define a weaker
notion, denoted weak flooding, and propose an instantiation of it. Then we show how
to lift the security guarantees from a weak flooding protocol to achieve a full-fledged
flooding protocol.

5.4.1 Weak Flooding

Informally, a weak flooding protocol is a flooding protocol that, instead of being guar-
anteed to deliver all messages to all parties, only ensures that there is a lower bound on
the probability that each party receives a message. For the sake of simplicity, we first
give an informal definition of a weak flooding protocol below.

Definition 5.4.1 (Weak Flooding (informal)). Let Π be a protocol executed by parties
P, where each party p ∈ P can input a message at any time, and as a consequence,
parties may get a message as output. We say that Π is a weak (∆, ξ)-flooding protocol
if at any time τ when a message m is input to some honest party, then it must be that
for any pi ∈ H

Pr[pi receives m at latest at time τ +∆] ≥ ξ.
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The reason that this is only an informal definition is that the definition fails to
encapsulate what happens if multiple messages are sent in a protocol. For example,
if a sequence of messages is sent simultaneously, then a protocol satisfying the defini-
tion above could let all messages be delivered with probability ξ or deliver none with
probability (1 − ξ). Such a definition is, therefore, insufficient if one wishes to amplify
the delivery guarantees for multiple messages. Therefore, to get a definition where it is
reasonable to boost the delivery probability, it is necessary for us to describe how the
delivery of several messages relates.

To formally define this property, we first introduce random variables for each delivery
event to be able to precisely describe what kind of dependency is allowed between
delivery events.

Definition 5.4.2 (Timely delivery). We say that a message m input at time τ is ∆-
timely-delivered for a party pi if pi has output m at the latest at time τ + ∆. We let
Timelym,i(∆) denote the induced indicator variable equal to 1 if the predicate holds
and 0 otherwise.

Using this, we next define a weak flooding algorithm.

Definition 5.4.3 (Weak Flooding). Let Π be a protocol executed by parties P, where
each party p ∈ P can input a set of messages at any time, and as a consequence, parties
may get a set of messages as output. We say that Π is a weak (∆, ξ)-flooding protocol
if for any such set of messages {m1,m2, . . . ,mη} input to some honest party in the
execution of Π where each message has never been sent over any channel before, then
for any party pi ∈ H there exist independent binary random variables X1, . . . , Xη where
for all z ∈ {1, 2, . . . , η}, Pr[Xz = 1] ≥ ξ, and

η∑
j=1

Xj ⪯
η∑

j=1

Timelymj ,i
(∆).

Remark 5.4.1. Directly requiring the Timely random variables to be independent would
be a too strong requirement: An adversary can always ensure the delivery of a message
if some other message is delivered by simply “injecting” the message on all point-to-
point channels, thereby making the delivery events dependent. Note, however, that this
influence can only be exerted in a way that increases the probability for delivery events
to appear, which is what is captured in the definition above.

Protocol description. We now show that the protocol ERFlood4 from [MNT22b, Sec-
tion 3.6.2], actually is a weak flooding protocol by providing a new analysis for the
protocol. Concretely, we will make a different analysis and show that just a constant
expected degree ERFlood ensures that the probability that a party receives a message
that is input for the first time is also constant.

We first recap the protocol, which we phrase using the abstraction of neighborhood
selection algorithm as in [Liu+22b, Section 4.3.2] . This abstraction allows our inter-
mediate results to be used for different algorithms. However, unlike in their work, we

4The name ERFlood was given due to the relation to Erdős–Rényi-graphs.
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consider only one neighborhood selection algorithm for the entire protocol instead of
letting each party have a unique one.

When talking about a set of messages input to a party (as required by the definition
of a weak flooding protocol), we will interpret this as that the party which receives the set
of messages will send each of them immediately after the other using the send command.
The particular neighborhood selection algorithm we will concentrate on in this section
is the one where each party selects all other parties as their neighborhood with an
independent probability ρ. We denote this algorithm with ERS, which is shorthand for
Erdős–Rényi selection. Note that this neighborhood selection algorithm is equivalent to
ER-Emulationp(E, ρ) from Section 4.3.3 when E(p) := 1 for all p.

Algorithm ERS(ρ)

1: Let N := ∅.
2: Let P := P.
3: while P ̸= ∅ do
4: Pick r ∈ P .

5: Sample c
$← U([0, 1]).

6: if c ≤ ρ then
7: Update N := N ∪ {r}.
8: Update P := P \ {r}.
9: return N .

Remark 5.4.2. [Liu+22b, proof of Lemma 4.3.11] showed that this sampling can be
done more efficiently by first sampling a number k from the binomial distribution with
parameters n and ρ, and afterward, sample k parties from P without replacement.

Using this abstraction, we define the protocol ERFlood(ρ) := ΠFlood(ERS(ρ)) and
next state that this is a weak flooding protocol. We will prove this in Section 5.4.1.1.
Note that we, in theorem, explicitly quantify over the number of parties n after the exis-
tential quantification of the success probability bound, highlighting that the probability
is independent of the number of parties.

Theorem 5.4.4. There exists ξ ∈ (0, 1] s.t. for any n ≥ 11 · γ−1 there is a ρ = O(n−1)
and ∆ = O(log(n) ·∆Net) s.t. the protocol ERFlood(ρ) is a weak (∆, ξ)-flooding protocol.

Previous analysis [MNT22b, Corollary 3.6.3] of this protocol only showed the neces-
sary condition that ρ = Ω(log(n) ·n−1) so that the overall protocol delivers the message
to all parties with constant probability. Our analysis instead proves that ρ = O(n−1) is
enough to guarantee that with a constant probability of success, any fixed party receives
the message.

5.4.1.1 Security Analysis of ERFlood

To prove that ERFlood is a weak flooding protocol, we have to prove that for any party,
the probability that this party receives a specific message is constant. We do so by
re-using the idea of the honest sending process from [Liu+22b, Section 4.3.2.2] and the
probability of a timely delivery to the probability that a party has an incoming edge
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in this graph. The idea of the honest sending process, which we recap below, is to let
it mimic the sending of a particular message where only the honest parties participate
in the distribution of the message, and the adversary only delivers the message on the
point-to-point channels at the latest point in time possible. The definition of the honest
sending process can be found in Section 4.3.2.2.

Similarly to [Liu+22b], we relate the probability of an event in the honest sending
process (in our case that a party is in the neighborhood of the graph produced by the
honest sending process) to the probability of a timely delivery and use this to show that
ERFlood is a weak flooding protocol for specific parameters.

Lemma 5.4.5. Let λ ∈ N be a distance, let ρ ∈ [0, 1] and let ∆ := λ ·∆Net. Further, let

smin ∈ H and pmin ∈ H s.t. when G
$← HSP(smin,ERS(ρ), λ) then Pr[pmin ∈ Γλ

smin
(G)]

is minimized over all such s, p ∈ H. If

ξ ≤ Pr[pmin ∈ Γλ
smin

(G)],

then ERFlood(ρ) is a weak (∆, ξ)-flooding protocol.

Proof. Let m1,m2, . . . ,mη be the set of “fresh” (meaning that they have not been
sent over any channel before) messages input to some honest party s in the execu-

tion of ERFlood(ρ) at time τ , and let pi be an honest party. Now, we let G1
$←

HSP(s,ERS(ρ), λ), . . . , Gη
$← HSP(s,ERS(ρ), λ) and let T1, . . . , Tη be indicator variables

such that Tj indicates if the event pi ∈ Γλ
s (Gj) happened. It is clear that T1, . . . , Tη are

independent. Furthermore, we have for any Tj that

Pr[Tj = 1] = Pr[pi ∈ Γλ
s (Gj)] ≥ Pr[pmin ∈ Γλ

smin
(G)] ≥ ξ. (5.10)

To prove that ERFlood(ρ) is weak (∆, ξ)-flooding protocol it is thus left to show that

η∑
j=1

Tj ⪯
η∑

j=1

Timelymj ,i
. (5.11)

To do so, we follow the proof of [Liu+22b, Lemma 4.3.5] by coupling the execution
of ERFlood(ρ) to the creation of a graph from the honest sending process. However,
instead of creating just one graph, we observe the execution and create multiple graphs
G′

1, . . . , G
′
η. For all Gj , we let G′

j = (V ′j , E′
j) and let the set of nodes be all honest

parties (i.e., V ′j = H). We add an edge between to honest parties (pk, pz) to E′
j if and

only if pk sent the message mj to pz and pz receives it before time τ + λ ·∆Net. With
this definition it is clear that if pi has an incoming edge in G′

j then Timelymj ,i
= 1. We

now do a coupling between the graphs G′
1, . . . , G

′
η and G1, . . . Gη by first running the

execution of ERFlood(ρ) and then define a new graphs G̃1, . . . , G̃η where each graph G̃j

will be defined in terms of G′
j . We define G̃j = (Ṽj , Ẽj) by letting Ṽj = H and define

Ẽj by duplicating the edges from E′
j to Ẽj for all parties within distance λ − 1 of s in

G′
j .

Now, let T̃1, . . . , T̃η be indicator variables such that T̃j indicates if the event pi ∈
Γλ
s (G̃j) happened. Observe, that if a T̃j = 1 then party pi has an incoming edge in
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G̃j . This implies that party also has an edge in G′
j as Ẽj ⊆ E′

j which again (as argued
before) implies that Timelymj ,i

= 1. Therefore, it is clear that

η∑
j=1

T̃j ≤
η∑

j=1

Timelymj ,i
, (5.12)

which again implies that for any c ∈ R we have that

Pr

[ η∑
j=1

Timelymj ,i
≤ c

]
≤ Pr

[ η∑
j=1

T̃j ≤ c

]
. (5.13)

It is thus left to show that
∑η

j=1 Tj ∼
∑η

j=1 T̃j . We will do so by arguing that for

any Gj we have that Gj ∼ G̃j and that G̃j independent. Note that each honest party
selects their neighbors in ERFlood(ρ) using the same neighborhood selection used in the
honest sending process. Furthermore, each honest party makes independent draws of
neighbors for each different message. By assumption, each message is different, and this,
therefore, ensures that the distributions of the edges in G̃j are really independent. It
is, therefore, only left to argue that there will not be any parties within distance λ− 1
in any graph G′

j that have not had their edges selected. This follows directly by the
assumption that the delay on the point-to-point channels is at most ∆Net and therefore,
a party at a distance k in G′

j will at latest select their neighbors k ·∆Net time after a
message is input to the initial sender.

Lemma 5.4.6. Let δ1, δ2, α ∈ [0, 1]. Further, let ϕ ∈ R be an expected expansion factor,

d ∈ R be a constant, and let ρ := d
h , let λ :=

log
(

α·|H|
(1−δ1)·d

)
log((1−δ2)·ϕ) . Finally, let s ∈ H and let

G
$← HSP(s,ERS(ρ), λ). If

e−d·α +
α · ϕ
1− α

≤ 1 (5.14)

and
(1− δ2) · ϕ ≥ 2, (5.15)

then for any party p ∈ H

α · |H| − 1

|H|
·

(
1− e−

δ21 ·d
2 − e−

δ22 ·(1−δ1)·d
2

1− e−
δ22 ·(1−δ1)·d

2

)
≤ Pr[p ∈ Γλ

s (G)].

Proof. We let Γλ be the set of neighbors of the sender s at a distance at most λ in a
graph G. Using the law of total probability, we note that the probability that p is in the
close neighborhood of the sender is lower bounded by the probability that the sender
has a large honest neighborhood α · |H| ≤ |Γλ| for some α ∈ (0, 1] and the party p is in
fact in this neighborhood, i.e., p ∈ Γλ:

Pr
[
p ∈ Γλ

]
= Pr

[
p ∈ Γλ ∩ α · |H| ≤ |Γλ|

]
+ Pr

[
p ∈ Γλ ∩ α · |H| > |Γλ|

]
≥ Pr

[
p ∈ Γλ ∩ α · |H| ≤ |Γλ|

]
= Pr

[
p ∈ Γλ | α · |H| ≤ |Γλ|

]
· Pr

[
α · |H| ≤ |Γλ|

]
.

(5.16)
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We now bound these two probabilities individually.
Let us first bound the probability that party p is in the set of neighbors i.e., p ∈ Γλ

given the set of neighbors is “large”, α · |H| ≤ |Γλ|. For this, we use the that all honest
parties have an equal probability of appearing inside Γλ (except the sender, who is
always there) and the law of total probability.

Pr
[
p ∈ Γλ | α · |H| ≤ |Γλ|

]
=

|H|∑
a=1

Pr
[
p ∈ Γλ | α · |H| ≤ |Γλ| ∩ |Γλ| = a

]
· Pr

[
|Γλ| = a | α · |H| ≤ |Γλ|

]
=

|H|∑
a=α·|H|

Pr
[
p ∈ Γλ | |Γλ| = a

]
· Pr

[
|Γλ| = a | α · |H| ≤ |Γλ|

]

=

|H|∑
a=α·|H|

a− 1

|H|
· Pr

[
|Γλ| = a | α · |H| ≤ |Γλ|

]

≥ α · |H| − 1

|H|
·

|H|∑
a=α·|H|

Pr
[
|Γλ| = a | α · |H| ≤ |Γλ|

]
=

α · |H| − 1

|H|
.

(5.17)

Let us now bound the probability that the neighborhood of the sender is “large,”
i.e., the event α · |H| ≥ |Γλ|. To do so, we reuse parts of a proof by Matt, Nielsen, and
Thomsen [MNT22b, proof of Lemma 3.4.1] but look at a more specific setting where
and directly insert the parameters for this setting. Further, we only reuse parts of the
proof as we are only interested in bounding the neighborhood of the sender and not the
neighborhoods of all parties.

We define D := (|Γλ| < α · |H|), i.e., the event that the sender does not reach at
least a α-fraction of the minimum honest nodes within λ steps. We have that

Pr
[
α · |H| ≤ |Γλ|

]
= 1− Pr[D], (5.18)

and hence it is sufficient to bound Pr[D]. We let θν be the set of honest parties that are
at exactly distance ν from the sender, and define the parties at exactly distance 0 to be
the sender, θ0 ≜ {s}. We now define a series of events. First, we define the event that
the number of immediate neighbors of the sender deviates significantly from the mean

A0 :=
(
|θ1| > (1− δ1) · d

)
. (5.19)

Next, we define the events that the number of neighbors in ν + 1 is at least (1− δ2) · ϕ
times the number of neighbors at step ν

Bν :=
(
|θν+1| > (1− δ2) · ϕ · |θν |

)
. (5.20)

Finally, we define the event that the neighbors within distance ν is at least α · |H|

Cν := (|Γν | ≥ α · |H|) . (5.21)
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As convenient notation we let Aν := Bν ∨ Cν for ν = 1, . . . , λ− 1. Now, note that

λ =
log
(

α·|H|
(1−δ1)·d

)
log((1− δ2) · ϕ)

+ 1 ⇐⇒ (1− δ1) · d · ((1− δ2) · ϕ)λ−1 = α · |H|. (5.22)

Therefore, if A0 and B1, . . . , Bλ holds, then

|Γλ| =
λ∑

ν=0

|θν |

= 1 +
λ−1∑
ν=0

|θν+1|

≥ 1 +
λ−1∑
ν=0

((1− δ2) · ϕ)ν · |θ1|

≥ 1 + (1− δ1) · d ·
λ−1∑
ν=0

((1− δ2) · ϕ)ν

> (1− δ1) · d · ((1− δ2)ϕ)
λ−1

= α · |H|.

(5.23)

Similarly, if just some Cν holds then we get that |Γλ| ≥ α · |H|. Therefore, by contra-
position, we have that(

λ−1∧
ν=0

Aν =⇒ ¬D

)
⇐⇒

(
D =⇒

λ−1∨
ν=0

¬Aν

)
. (5.24)

Hence, we get the following:

Pr[D] ≤ Pr

[
λ−1⋃
i=0

¬Ai

]

≤
λ−1∑
i=0

Pr

¬Ai |
⋂
j<i

Aj


= Pr[¬A0] +

λ−1∑
i=1

Pr

¬Ai |
⋂
j<i

Aj


= Pr[¬A0] +

λ−1∑
i=1

Pr

¬Bi ∩ ¬Ci |
⋂
j<i

Aj


≤ Pr[¬A0] +

λ−1∑
i=1

Pr

¬Bi |
⋂
j<i

Aj ∩ ¬Ci


= Pr[¬A0] +

λ−1∑
i=1

Pr

¬Bi |
⋂

1≤j<i

Bj ∩ ¬Ci ∩A0

 .

(5.25)

We now state and prove a bound on the individual probabilities inside the sum.
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Claim 5.4.7 (Fast expansion to small fraction). For any i ∈ {1, . . . , λ− 1} we have

Pr

¬Bi |
⋂

1≤j<i

Bj ∩ ¬Ci ∩A0

 ≤ e−
δ22 ·((1−δ2)·ϕ)

ν ·(1−δ1)·d
2 .

Proof. We look at the probability space where
⋂

1≤j<iBj ∩ ¬Ci ∩ A0 holds. We define
the number of parties that are reachable at a distance ν to be r := |θν | and let the
number of honest parties that have not been reached so far by U := H \ Γν . For each
u ∈ U we introduce an indicator variable Xu which indicates if u is in θν+1. As the
probability that there is an edge between any two honest parties is independent of other
edges, we have

Pr[Xu = 1] = 1− (1− ρ)r ≥ 1− e−ρr. (5.26)

The size of θν+1 is the sum of these independent variables, i.e.,

|θν+1| =
∑
u∈U

Xu. (5.27)

As we are looking at the case where ¬Ci, we have |U | ≥ (1− α) · |H| which by linearity
of expectations gives us that

E[|θν+1|] ≥ |H| · (1− α) ·
(
1− e−ρr

)
. (5.28)

We now subtract ϕ · r on each side of the inequality above and insert ρ = d
h ≤

d
|H| , to

show that the expected value is larger than ϕ · r. We get

E[|θν+1|]− ϕ · r ≥ |H| · (1− α) ·
(
1− e−ρr − ϕ · r

|H| · (1− α)

)
= |H| · (1− α) ·

(
1− e

−d r
|H| − ϕ · r

|H| · (1− α)

)
.

(5.29)

We let x = r
|H| and set f(x) = 1 − e−dx − x ϕ

(1−α) . We differentiate this twice and find

f ′′(x) = −d2e−dx ≤ 0, which implies that f is concave, which again means that the
minimum values are at one of the endpoints of the function. As x ∈ [0, α] it is enough
to check that f(0) ≥ 0 and f(α) ≥ 0 which will imply that E[|θν+1|] ≥ ϕ · |θν |.

f(0) = 1− e−d·0 − 0 = 0.

f(α) = 1− e−d·α − α · ϕ
1− α

≥ 0 ⇐⇒ e−d·α +
α · ϕ
1− α

≤ 1.
(5.30)

We now use Chernoff (Lemma 1.3.1) to bound the probability that this is not the case
which means that for any δ2 ∈ [0, 1], we get that

Pr[|θν+1| ≤ (1− δ2) · ϕ · |θν |] ≤ e−
δ2·ϕ·|θν |

2 (5.31)

However,
⋂

j<iBj ∩A0 and (1− δ2) · ϕ ≥ 1 ensures that

|θν | ≥ ((1− δ2) · ϕ)ν · (1− δ1) · d. (5.32)

Hence, within the probability space where
⋂

1≤j<iBj ∩ ¬Ci ∩A0 holds we have that

Pr[|θν+1| ≤ (1− δ2) · ϕ · |θν |] ≤ e−
δ22 ·((1−δ2)·ϕ)

ν ·(1−δ1)·d
2 . (5.33)
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We apply Chernoff for bounding the probability of the event A0, the claim we have
just proven, and Lemma 5.2.5 to the bound we established in Equation (5.25) to obtain
a final bound for the probability of the event D

Pr[D] ≤ e−
δ21 ·d
2 +

λ−1∑
ν=1

e−
δ22 ·((1−δ2)·ϕ)

ν ·(1−δ1)·d
2

< e−
δ21 ·d
2 +

∞∑
ν=1

e−
δ22 ·((1−δ2)·ϕ)

ν ·(1−δ1)·d
2

= e−
δ21 ·d
2 +

∞∑
ν=1

(
e−

δ22 ·(1−δ1)·d
2

)(((1−δ2)·ϕ)ν)

≤ e−
δ21 ·d
2 +

e−
δ22 ·(1−δ1)·d

2

1− e−
δ22 ·(1−δ1)·d

2

.

(5.34)

Hence, it follows that

Pr
[
α · |H| ≤ |Γλ|

]
≥ 1− e−

δ21 ·d
2 − e−

δ22 ·(1−δ1)·d
2

1− e−
δ22 ·(1−δ1)·d

2

. (5.35)

The desired bound on the probability for late delivery now follows from Equations (5.16),
(5.17) and (5.35).

Using Lemmas 5.4.5 and 5.4.6, we are now ready to prove our main theorem for
ERFlood. For completeness, we restate it below.

Theorem 5.4.4. There exists ξ ∈ (0, 1] s.t. for any n ≥ 11 · γ−1 there is a ρ = O(n−1)
and ∆ = O(log(n) ·∆Net) s.t. the protocol ERFlood(ρ) is a weak (∆, ξ)-flooding protocol.

Proof. We let δ1 := δ2 := α := 1
10 and let ϕ := 20

9 . This ensures that Equation (5.15) is
always fulfilled and if we let

d ≥ −10 · ln
(61
81

)
(5.36)

then also Equation (5.14) is fulfilled. Hence, if we let ρ = d
h then Lemma 5.4.6 ensures

that for λ = O(log(n)) then for any sender s and receiver p (in particular also the

sender and receiver that minimizes the probability for the event below) then if G
$←

HSP(s,ERS(ρ), λ) then

h− 10

10 · h
·

(
1− e−

d
200 − e−

d
180

1− e−
d

180

)
≤ Pr[p ∈ Γλ

s (G)]. (5.37)

We note that n ≥ 11 · γ−1 =⇒ h ≥ 11 and therefore that

h− 10

10 · h
≥ 1

110
. (5.38)
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Hence, for large enough (but still constant) d then ξ := 1
110 ·

(
1−e−

d
200− e−

d
180

1−e−
d

180

)
∈ (0, 1]

is a constant independent of n. Lemma 5.4.5 implies that ERFlood(ρ) is a weak (∆, ξ)-
flooding protocol with ∆ = ∆Net · λ = O(log(n) ·∆Net). Further, note that this holds
when ρ = d

h = O(γ−1 ·n−1) = O(n−1), where the last equality follows because we assume
that a constant fraction of the parties are honest.

5.4.2 Flooding Amplification

We present a compiler that amplifies delivery guarantees of a weak flooding protocol to
full-fledge flooding. The protocol WeakFlood2Flood is parameterized by a weak flooding
protocol, an erasure correcting code scheme (ECCS), and a cryptographic accumulator.
The idea of the protocol is that when a sender wishes to send a message, they divide it
into multiple shares using the ECCS. The sender will then send these shares using the
weak flooding protocol. Each receiver will receive a set of shares and try to reconstruct
the original message from this. Intuitively, suppose everybody receives enough original
shares within the given time. In that case, the only thing that can prevent an honest
party from reconstructing the message sent by the sender is if an adversary manages to
inject some “false shares” into the set of shares an honest party tries to reconstruct their
message from. To prevent this from happening, the sender will create an accumulated
value of all shares, and then instead of sending out only the share, they will send
out the share, a proof, an accumulated value, and a proof that this share belongs to
this accumulated value. On the receiving end, honest parties will group shares by the
accumulated value they belong to and only try to reconstruct from shares that belong
to the same accumulated value. Hence, an adversary will have to break the collision-
freeness property of the accumulator scheme to inject such false shares.

Therefore, it is only left to ensure that all parties receive enough of the original
shares. We will ensure this by instantiating WeakFlood2Flood with a weak flooding
protocol ERFlood, which we will instantiate such that each party is guaranteed to receive
a constant fraction of the shares if a message is split into sufficiently many shares and
set the parameters of the ECCS accordingly.

The formal description of the protocol can be found below.

Protocol WeakFlood2Flood(Π, ζ, α)

The protocol is parameterized by a weak flooding protocol Π, a (µ, e)-ECCS ζ for
some µ, e ∈ N, and a cryptographic accumulator α.
Each party pi ∈ P keeps track of a set of shares received for a particular accumulator
z, ReceivedSharesi[z]. Additionally, each party pi keeps track of a set of received
messages Receivedi.

Initialize: Initially, each party pi sets ReceivedSharesi := ∅, and Receivedi := ∅.

Send: When pi receives (Send,m) they share the message m into shares ζ.Enc(m) =
s1, . . . , sµ. Furthermore, they obtain an accumulated value and proofs for each
share and its share number z, π1, . . . , πµ = α.Accumulate({(si, i) | 1 ≤ i ≤ µ}).
The party now draws a uniformly sampled random number r

$← U
(
{0, 1}κ

)
.
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Now, the party inputs the set of messages {(sj , j, r, πj , z) | 1 ≤ j ≤ µ} to Π.
Finally, they add m to Receivedi.

Get Messages: When pi receives (GetMessages) they return Receivedi.

When party pi receives a tuple (s, j, r, π, z) in Π where α.Verify((s, j), π, z) = ⊤ they
add (s, j) to ReceivedSharesi[z]. Furthermore, pi check if |ReceivedSharesi[z]| ≥
µ− e. If that is the case pi does the following:

1. Obtains a sequence of shares s1, . . . , sµ by letting sj = s if (s, j) ∈
ReceivedSharesi[z] and otherwise sets sj = ⊥ if no such pair is in
ReceivedSharesi[z].

2. Decode the shares and add the recovered message to the set of received mes-
sages, Receivedi := Receivedi ∪ {ζ.Dec(s1, . . . , sµ)}.

At first, it might seem strange that a sender samples a random number and attaches
this to each share. The reason for this is that the weak flooding protocol we will
instantiate WeakFlood2Flood with will only ensure that sufficiently many shares are
delivered if they are sent for the first time in the execution of the protocol. Hence, to
ensure that the probability that this happens is negligible in κ, we attach the random
number. We note that the birthday paradox bounds the probability that an adversary
manages to do so throughout the execution. For clarity of presentation, we will not
propagate this exact probability through our proofs but merely assume that an adversary
does not guess such a random number that an honest party will later attach to their
message. Similarly, we will also assume that the adversary that no collision happens for
the cryptographic accumulator.

Security ofWeakFlood2Flood. We now state and prove the security ofWeakFlood2Flood,
given that the protocol is instantiated with a weak flooding protocol.

Theorem 5.4.8. Let ξ ∈ (0, 1], let ∆ ∈ N, and let Π be a weak (∆, ξ)-flooding pro-
tocol. Further, let δ ∈ (0, 1], let µ ∈ N, let e ≥ µ · (1 − (1 − δ) · ξ), let ζ be a (µ, e)-
ECCS, and let α be a WSCAS. The probability that a message sent in the protocol
WeakFlood2Flood(Π, ζ, α) is not delivered within ∆ to all parties is less than

|H| · e−
δ2·ξ·µ

2 .

Proof. Let us look at a particular message sent by an honest sender s at time τ by
flooding the shares s1, . . . , sµ. We note that if a party p receives more than (1− δ) · ξ ·µ
number of shares, then by properties of the (µ, e)-ECCS, then p can reconstruct the
message unless p received some shares different from the original shares and tries to
reconstruct from these. However, if this happens, this means that an honest party
added a share and share number (s, i) to the set of shares for a particular accumulator,
where (s, i) was not a part of the original shares used to construct the accumulated value.
Hence, this only happens with the same probability as a collision in the accumulation
scheme. It is, therefore, sufficient to bound the probability that there exists a party
that does not receive (1− δ) · ξ · µ shares from the sender.
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For each honest party pi ∈ H, we introduce notation for random indicator variables
Si,1, Si,2, . . . , Si,µ where Si,j indicates whether or not party pi received share sj before
time τ +λ ·∆Net. Further, we introduce a variable that denotes how many shares party
pi receives from honest parties Si =

∑µ
j=1 Si,j at latest at time λ ·∆Net. Because Π is a

weak (ξ,∆)-flooding protocol and the shares are now input to Π as messages for the first
time, we know that there exists a sequence of independent variables S∗

i,1, S
∗
i,2, . . . , S

∗
i,µ

where Pr[S∗
i,j = 1] ≥ ξ. Furthermore, if we let their sum be given by S∗

i =
∑µ

j=1 S
∗
i,j

then we know that that Si stochastically dominates S∗
i . That is that for any k ∈ R we

have
Pr[Si ≤ k] ≤ Pr[S∗

i ≤ k]. (5.39)

Hence, it is sufficient to bound the probability for the event that S∗
i ≤ (1− δ) · ξ · µ to

bound the probability that party pi receives less than (1− δ) · ξ · µ shares before τ +∆.
By linearity of expectation, we have that

E[S∗
i ] ≥ ξ · µ. (5.40)

Chernoff (Lemma 1.3.1) gives us that for any δ ∈ [0, 1) we have

Pr
[
S∗
i ≤ (1− δ) · ξ · µ

]
≤ e−

δ23 ·ξ·µ
2 . (5.41)

Finally, we calculate the probability that there exists any honest party that does not
receive at least (1− δ) · ξ · µ shares using the union bound:

Pr
[
∃pi ∈ H, s.t. pi receives less than (1− δ) · ξ · µ shares

]
≤
∑
pi∈H

Pr
[
Si ≤ (1− δ) · ξ · µ

]
≤ |H| · e−

δ23 ·ξ·µ
2 .

(5.42)

It is noteworthy that WeakFlood2Flood inherits the delivery guarantee of the weak
flooding protocol that it is instantiated with. Next, we state that a direct corollary of
the above theorem, namely that for specific parameters, WeakFlood2Flood is a strong
flooding protocol.

Corollary 5.4.9. Let ξ ∈ (0, 1], let ∆ ∈ N, and let Π be a weak (∆, ξ)-flooding protocol.

Further, let µ ≥ log(n)+κ
ξ , let e ≥ µ ·

(
1 − ξ

2

)
, let ζ be a (µ, e)-ECCS, and let α be a

WSCAS. The protocol WeakFlood2Flood(Π, ζ, α) is a strong ∆-flooding protocol.

Proof. We note that |H| ≤ n and use Theorem 5.4.8 instantiated with δ := 1
2 .

5.4.3 Putting It All Together

We now consider the instantiation ECFlood (from “erasure coded flood”), defined as
ECFlood(ρ, ζ, α) := WeakFlood2Flood(ERFlood(ρ), ζ, α), where the protocol compiler
WeakFlood2Flood is instantiated with the weak flooding ERFlood(ρ) for ρ ∈ (0, 1], ζ
is a (µ, e)-ECCS and α is WSCAS scheme.
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Communication complexity analysis. Consider the case where a single message of length
l is input to an honest party, and let S denote the total number of messages sent by
honest parties. Then, the total communication complexity of ECFlood(ρ, ζ, α) is upper
bounded by S times the size of each of the messages sent for each share.

Each message consists of a share, the sequence number of the share, nonce of length
κ, an accumulator proof, and an accumulated value. Hence, the total communication
complexity will be upper bounded by

S · (ζ.ShareSize(l) + log(µ) + κ+ α.ProofSize(µ) + α.AccSize). (5.43)

Let us now bound the number of messages sent by honest parties S. For each share,
the expected size of the neighborhood for a party is given by the probability of selecting

each party as a neighbor times the number of parties. If we let N
$← ERS(ρ), then the

expected size is given by E[|N |] = ρ · n. The total number of messages sent is upper
bounded by the scenario where all parties are honest and forward a message for each
share exactly once. By linearity of expectation, we get that the expected number of
messages is given by

E[S] ≤ µ · ρ · n2. (5.44)

By Chernoff (Lemma 1.3.1), we have that for any δ ∈ [0, 1],

Pr
[
S ≥ (1 + δ) · µ · ρ · n2

]
≤ e−

δ2·µ·ρ·n2

3 . (5.45)

Hence, if µ ≥ κ and ρ = Ω
(
n−2

)
, then the probability that S = O(µ · ρ · n2) is

overwhelming in κ. Consequently, we have that the communication complexity is upper
bounded by

O(µ · ρ · n2 · (ζ.ShareSize(l) + log(µ) + κ+ α.ProofSize(µ) + α.AccSize)), (5.46)

with a probability that is overwhelming in κ. We further note that if additionally
ρ = Ω

(
n−1

)
, then the number of parties a single party has to connect with in the

protocol is also bounded by
O(ρ · n · µ), (5.47)

by Chernoff (Lemma 1.3.1), with a probability overwhelming in κ. Thereby, the com-
munication for each party will be upper bounded by:

O(µ · ρ · n · (ζ.ShareSize(l) + log(µ) + κ+ α.ProofSize(µ) + α.AccSize)), (5.48)

Below we state a simple corollary of Corollary 5.4.9 and Theorem 5.4.4 that bounds
the necessary parameters to instantiate WeakFlood2Flood securely with ERFlood.

Corollary 5.4.10. There exists ξ ∈ (0, 1] s.t. for any n ≥ 11 ·γ−1 there is a ρ = O(n−1)

and ∆ = O(log(n) ·∆Net) s.t. if µ ≥ log(n)+κ
ξ , e ≥ µ ·

(
1− ξ

2

)
, ζ is a (µ, e)-ECCS, and

α is a WSCAS, then the protocol ECFlood(ρ, ζ, α) is a strong ∆-flooding protocol.

Using Reed-Solomon codes and since e ≥ µ ·
(
1 − ξ

2

)
, we have that Equation (5.1)

implies that each share size is bounded by:

ζ.ShareSize = O

(
l

µ · ξ

)
= O

(
l

µ

)
. (5.49)
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Furthermore, using efficient accumulators (see Equation (5.2)) that have accumula-

tor and proof sizes of O(κ) bits, and setting µ = log(n)+κ
ξ , we obtain from Equation (5.46)

that the total communication complexity is bounded by

O(n · (l + (log(n) + κ) · (log(log(n)) + κ))). (5.50)

Note that this is optimal if

l = Ω
(
(log(n) + κ) · (log(log(n)) + κ)

)
. (5.51)

Similarly, by Equation (5.47) each party has at most O(log(n) + κ) neighbors and
by Equation (5.48) the per-party communication is bounded by O(l + (log(n) + κ) ·
(log(log(n)) + κ)).

5.5 Flooding in the Weighted Setting

So far, we considered the setting where a certain fraction of parties may behave adversar-
ially. However, blockchain systems are often based on the assumption that the adversary
controls a fraction of the total weight of a resource. Leveraging ideas from [Liu+22b],
we provide a general transformation for a flooding protocol in the equal-weights setting
to security in the weighted setting.

Model. Before describing the transformation, we briefly recap the model of public
weighted parties. We assume that a public weight is assigned to each party. We let Wp

denote the weight assigned to party p, and let αp :=
Wp∑

p∈P Wp
i.e., the fraction of the

total weight assigned to party p.
We allow an adversary to corrupt any subset of the parties such that the remaining

set of honest parties together constitutes more than a γ̃ ∈ (0, 1] fraction of the total
weight. Formally, we assume that, ∑

p∈H
αp ≥ γ̃, (5.52)

and that all parties have a non-zero positive weight i.e. ∀p ∈ P,Wp > 0.

Transformation. The main idea of our transformation is to let each party emulate a
number of parties in another flooding protocol. We use the same emulation function
as [Liu+22b] where each weighted party p ∈ P emulates ⌈αp · n⌉ non-weighted parties.
For each party p ∈ P, we define a set of parties that this party emulates as

E(p) := {pi | i ∈ N ∧ i ≤ ⌈αp · n⌉} . (5.53)

Note that because all parties have a non-zero weight, all parties emulate at least one
party, i.e., for any party p ∈ P we have E(p) ̸= ∅. For convenience, we introduce
notation for the set of emulated parties, PE =

⋃
p∈P E(p), the total number of emulated

parties nE = |PE|, the set of emulated parties that are emulated by honest players HE =
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⋃
p∈H E(p) and the number of honestly emulated parties hE = |HE|. Following [Liu+22b],

we note that
nE =

∑
p∈P
⌈αp · n⌉ ≤

∑
p∈P

αp · n+ 1 = 2 · n, (5.54)

and
hE =

∑
p∈H
⌈αp · n⌉ ≥ γ̃ · n. (5.55)

When defining a strong flooding protocol in Section 5.2.2, we were not explicit about
the set of parties a flooding protocol has to provide guarantees for, as all of our previous
flooding protocols have worked for the same set of assumed parties p. Below, this will
not be the case, as the flooding protocols we discuss will work for a different set of
parties. Hence, we will make these sets explicit by saying that “a protocol is a flooding
protocol for a set of parties”.

Protocol Flood2WeightedFlood(Π)

The protocol is parameterized by a protocol Π that is a flooding protocol for PE.
Each party p ∈ P starts a process for each of their emulated parties and lets these
processes participate in the protocol Π.

Initialize: Initially, each party p initialize all of their emulated parties E(p) in Π.

Send: When p receives (Send,m) they pick pi ∈ E(p) and forward (Send,m) to pi in
Π.

Get Messages: When p receives (GetMessages) they pick pi ∈ E(p) forward
(GetMessages) to pi in Π, and return the set of messages returned to pi.

Below we prove that if Flood2WeightedFlood is instantiated with a strong flooding
protocol for nE, then Flood2WeightedFlood will itself be a strong flooding protocol.

Theorem 5.5.1. Let ∆ ∈ N. If Π is a strong ∆-flooding protocol for PE under the
assumption that at least γ̃ ·n of them behaves honestly, then Flood2WeightedFlood(Π) is
a strong ∆-flooding protocol for P.

Proof. Let m be a message input to some honest party at time τ . Since all parties
emulate at least one party, this implies that the message will also be input to some
honest emulated party in Π at time τ . Because Π is a strong ∆-flooding protocol for PE
when γ̃ · n parties are honest (Equation (5.55) ensures that this is the case), then there
is an overwhelming probability in κ that all emulated parties receive m before τ + ∆.
As each honest party emulates at least one party, this implies that all honest parties
will also receive the message with an overwhelming probability in Π.

Realising a strong flooding protocol for PE. At first glance, it may seem like that Theo-
rem 5.5.1 allows us to translate the protocols presented in Section 5.4 to the weighted
setting without further work. However, even though the protocols in these sections work
for any set of parties, they make channels, which are only assumed for the actual set of
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parties P and not for the emulated set of parties PE. To use these protocols, blackbox in
the weighted setting, we need to show how to establish channels between the emulated
parties.

We note that channels for the emulated set of parties can easily be established from
channels between the original set of parties. One way to do this is by simply prepending
(pe, pe′) to any message that an emulated party pe wishes to send to another emulated
party p′. When a party receives such a message on a regular channel, they will take it
as an input on the emulated channel between the emulated parties pe and pe′ .

Communication complexity analysis. We note that the analysis of the communication
complexity presented in Section 5.4.3 also applies when the protocol is transformed to
work for the weighted setting because nE = O(n) (Equation (5.54)) and the fraction of
honest emulated parties hE

nE
= O(γ̃) (by Equations (5.54) and (5.55)). The only change

is that all messages will have identifiers for emulated parties prepended. The size of
such identifiers is bounded by O(log(n)). When this is threaded through the analysis
using the same parameters as in Section 5.4.3, we see that for a suitable ρ, ζ and α, the
communication complexity of the Flood2WeightedFlood(ECFlood(ρ, ζ, α)) is bounded by

O(n · (l + (log(n) + κ)2)). (5.56)

That is Flood2WeightedFlood(ECFlood(ρ, ζ, α)) has an optimal communication complex-
ity when l = Ω

(
(log(n) + κ)2

)
. It is, however, worth noting that for our particular

protocol, it is not necessary to keep the messages delivered to different emulated parties
separate. In particular, Flood2WeightedFlood(ECFlood(ρ, ζ, α)) would have the same
guarantees if any message sent from an emulated party of party pi to an emulated
party of pj is delivered to all emulated parties of pj . In that case, the communication
complexity of Flood2WeightedFlood(ECFlood(ρ, ζ, α)) would be optimal under the same
constraints as ECFlood(ρ, ζ, α).

5.6 Estimating Practical Parameters for ECFlood Using Probabilistic
Simulations

In Section 5.4.3, it was shown that parameters could be set such that ECFlood theo-
retically constitutes an asymptotically optimal flooding algorithm. To show this, we
instantiated many variables to constants required by our analysis, but these are most
likely not instantiated anywhere near optimally, nor are our analyses themselves opti-
mal. To provide a guideline for how to instantiate the parameters of our protocol for
practical performance, we made probabilistic simulations of the protocol executions that
explore how the message complexity of our protocols is affected by adjusting parameters.

5.6.1 Setup for Simulations

We implemented a probabilistic experiment among n nodes where n
2 of them behave

honestly and will actually forward any received message according to our protocol if they
receive a message. We consider not forwarding any messages as the worst-case behavior
of an adversary. Therefore, the remaining n

2 parties, which we consider corrupt, will
not participate in forwarding any messages sent to them. That is, an initial party will
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Figure 5.3: Results for simulations of ERFlood
(
d
n) for different values of d and n. The

delivery rate for a fixed party different from the sender is plotted as a function of
changing the expected degree d.

distribute several messages by selecting a set of neighbors using ERS
(
d
n) (for varying

values of d) for each message. These will then again forward each message to a random
set of neighbors. This continues until no honest party receives the message for the
first time. For simulations of ERFlood, a single message is initially input, whereas, for
ECFlood, several messages will be input corresponding to the number of shares a message
is divided into in the protocol.

We have repeated our simulations 1000 times for each set of parameters. Below, we
report on various statistics from these simulations.

5.6.2 Estimating Parameters for ERFlood

In Section 5.4.3 it was shown that the communication complexity of WeakFlood2Flood
instantiated with ERFlood

(
d
n

)
is directly proportional to d

ξ , if ERFlood constitutes a
weak (∆, ξ) flooding protocol for some ∆ and ξ.

Let’s first ignore how ∆ is affected by changing the expected degree d and focus
solely on finding estimates of d

ξ for different expected degrees. A simple way to estimate

the maximum ξ for which ERFlood
(
d
n

)
is a ξ-weak flooding algorithm is to select a party

different from the sender and count the rate with which this party receives a message
throughout many executions. The results of this approach for different values of n and
d can be found in Figure 5.3.

It is noteworthy that the graphs for different values of n are incredibly close. When
ERFlood

(
d
n

)
is executed, it is clear that d will be the expected size of the neighborhood

of each party. Hence, our simulations confirm that the delivery rate of ERFlood
(
d
n

)
(and

thereby how well it acts as a weak flooding algorithm) is genuinely independent of the
number of parties in the protocol n. In particular, this holds even for very small values
of d (and n).

It is striking that even for d = 3, where an honest party in expectation forwards the
message to just 1.5 other honest parties, the probability that a particular party receives
the message seems to be about ∼ 30%. To understand this behavior, we collected
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additional statistics on the fraction of parties reached in each execution of the protocol.
This data is presented in Figure 5.4.

Interestingly, it seems that for all the different degrees plotted; there is an initial
drop before the curves reach a plateau, where they stay for a while. Our interpretation of
this phenomenon is that there is quite a high probability that the initial sender or their
close neighbors talk only to dishonest parties, which stops the propagation. However,
once a critical mass of parties has been reached, it becomes very unlikely that they all
select only dishonest parties or parties that have already received the message as their
neighbors (which is what is required to make the propagation of the message stop). So
even for d = 3, where on average each party only talks to 1.5 honest parties, there is
more than 50% chance that the message will spread to more than 50% of the parties.
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Figure 5.4: Results for simulations of ERFlood
(
d
n) for different values of d and a fixed

n = 8192. The graphs show the percentages of the simulated executions (on the y-axis)
where at least a certain fraction of parties received the message (on the x-axis).

With estimates on ξ, we can also estimate the size of the factor d
ξ multiplied by

the message length in the communication complexity. In Figure 5.5, we plot this. Our
simulations indicate that the best value for d to get the lowest overall communication
complexity is ∼ 5 where d

ξ will be just above 6.

We now turn our attention to how the ∆ parameter of the weak flooding algorithm
ERFlood

(
d
ξ

)
is affected by varying the value d. To provide an upper bound on ∆, we

recorded the maximum number of hops from the sender to any other party that receives
the message in each execution. Note that the number of hops times the maximum delay
on the point-to-point channels directly translates to an upper bound on the delivery time
for a message in a real execution of the protocol. In Figure 5.6, we plot the maximum
number of hops across all the simulations (for a single set of parameters) for the various
number of parties n and expected degrees d. We include only those degrees of interest
w.r.t. an overall low communication complexity.

We note that during the execution, no message was delivered in more than 33 hops
for expected degrees at least 4. For degrees at least 5, this maximum number of observed
hops drops to 23, and for degrees larger than 10, no message is delivered in more than
10 hops.
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Figure 5.6: Results for simulations of ERFlood
(
d
n) for different values of d and n. The

graphs show the maximal latency from the sender to any party that receives the message
for different values of d.

5.6.3 Estimating Parameters for ECFlood

Even though we in the previous section established that ERFlood
(
d
n) delivers the “best”

weak flooding network when d is approximately 5, this does not necessarily translate
to the protocol WeakFlood2Flood instantiated with ERFlood

(
d
n). The reason is that

WeakFlood2Flood also needs to be instantiated with an (µ, e)-ECCS, and the redundancy
of the ECCS scheme is proportional to (µ− e)−1. For WeakFlood2Flood to be secure,
we need that all parties receive at least µ − e shares. In expectation, all parties will
receive ξ · µ when instantiated with a weak ξ-flooding protocol. However, for a secure
combined protocol, we need that the probability that some parties receive significantly
less than ξ · µ shares is small.

In this section, we provide guidelines for how to select d, µ, and e for a ζ that is
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(µ, e)-ECCS, such that ECFlood(d · n−1, ζ) is both secure and has a small overall factor
multiplied to n · l in the communication complexity. We will abuse notation slightly and
ignore the WSCAS scheme, which is also a parameter of ECFlood, as we will not do any
simulations w.r.t. the efficiency of such a scheme. Sometimes we will also leave out the
ECCS of the notation and treat the number of shares explicitly.

To estimate how to set e of the ECCS, we record the minimum fraction of shares
received by any party in any of the simulations (using the same parameters) and plot
how this minimum fraction of acquired shares across all simulations, β, is affected by a
varying number of shares µ and degrees d. The results of this can be found in Figure 5.7.

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of shares (µ)

M
in
.
fr
ac
ti
on

of
re
ce
iv
ed

sh
ar
es
(β

)

d = 5
d = 7
d = 9
d = 11
d = 13
d = 15

Figure 5.7: Results for simulations of ECFlood( dn) for different values of d, a fixed
number of parties n = 8192, and a variable number of shares µ. The graphs show the
minimum fraction of shares received by any party in the simulations for different number
of expected neighbors µ · d. The number of shares is incremented in steps of 3.

Note that if one had instantiated e such that µ − e = β · µ ⇐⇒ e = µ · (1 − β)
then all parties would have been able to reconstruct the message in all simulations. For
these parameters, the protocol would have a total communication complexity of roughly
β−1 · d · n · l. Therefore, we will refer to β−1 · d as the redundancy of the protocol.

In Figure 5.1, we plot the redundancy when letting e = µ · (1− β) as a function of
the expected size of the neighborhood µ ·d for a varying number of shares µ and degrees
d. We do not plot the redundancy for d = 3 and d = 4 as all considered values of µ will
be so high that it is of no interest. Note that even though the expected redundancy has
a minimum around d = 5 (according to Figure 5.5), it seems that the actual redundancy
of protocols instantiated securely for relatively small expected neighborhoods ≤ 100 is
as small for degree d = 7. This is because if ξ is higher (provided by a higher degree),
then it will concentrate more quickly around the mean (when µ increases) than when ξ
is relatively small. Suppose you are willing to accept having 120 outgoing connections.
In that case, d = 7 and µ = 20 will deliver a flooding protocol that in non of the
simulations fails and has a redundancy of just 15. If you are willing to have larger
neighborhoods, then we can instantiate our protocol such that redundancy goes below
10 (for example, with d = 5 and µ = 70).
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We note that in terms of redundancy, this is a significant improvement over the
protocol presented in [Liu+22b]. Simulations in [Liu+22b, Figure 4.3] showed that to
get a flooding protocol that succeeds 99% of the time for 8192 parties, one would, in
their protocol, have to let each party forward the entire message to around 28 neighbors.
This will also be their worst-case redundancy; hence, the protocol presented in this work
requires less than half the communication complexity for sufficiently long messages. We
conclude that ECFlood is not only asymptotically optimal but seems to have advantages
over existing byzantine fault-tolerant flooding protocols within the practical range of
parameters.

For a specific number of shares, µ = 20, we additionally record the percentages of
shares where all parties received at least a certain fraction of shares for different param-
eters d. The results are plotted in Figure 5.8. The maximum fraction of shares that all
parties in all simulations received in Figure 5.8 corresponds to β in Figure 5.7. From the
plot, it can be seen that if one is willing to accept a low rate of failing executions where
not all parties can reconstruct, then one can instantiate e slightly lower than µ · (1−β).
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Figure 5.8: Results for simulations of ECFlood( dn) for different values of d, a fixed
number of parties n = 8192, and a fixed number of shares µ = 20. The graphs show
the percentages of the simulated executions (on the y-axis) where all parties received at
least a certain percentage of all the shares sent out by the sender.

Finally, we count the maximum number of hops throughout the executions for any
party to have received the minimum fraction of shares (at which point all parties could
reconstruct the message if parameters were set accordingly). We plot this for a fixed
number of shares µ = 30 and a varying number of parties µ and internal parameter d
in Figure 5.2. The reason that this is plotted for a fixed number of shares is that we
observed that it does not change when increasing the shares. Therefore the results are
representative of latencies for all numbers of shares discussed previously.

Surprisingly, the latency for ECFlood is significantly lower than the latency of ERFlood
(Figure 5.6). We believe this is because it is a rare event that the maximum latency
of ERFlood will occur. Therefore it will become very unlikely that such rare events
coincide for shares sent to the same party that receives the minimum number of shares.
We note that by adjusting the parameter d, ECFlood can be tuned to achieve a similar
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latency to that of the protocol from [Liu+22b] while still maintaining a significantly
lower redundancy.

As noted in Section 5.3, the protocol ECCast, has a redundancy of only γ−1 (which
for the parameters of our simulations are only 2) and a latency of just 2. However, to
achieve this low redundancy and latency, ECCast requires each party to talk to 8191
neighbors, and the two protocols, therefore, present a tradeoff between low redundancy
and diameter and a low number of neighbors.



Bibliography

[Abr+19] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael
Pass, Ling Ren, and Elaine Shi. “Communication Complexity of Byzantine
Agreement, Revisited”. In: PODC. ACM, 2019, pp. 317–326 (cit. on p. 48).

[Abr+20] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin.
“Sync HotStuff: Simple and Practical Synchronous State Machine Replica-
tion”. In: IEEE Symposium on Security and Privacy. IEEE, 2020, pp. 106–
118 (cit. on pp. 5, 103).
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