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Abstract

Machine Learning is becoming increasingly relevant, with widespread impact across industries.
Today, a significant number of tools we use on a daily basis are powered by Machine Learning.
Tools such as an internet search engine, maps, and recommendation engines rely on large swathes
of data to attain the high accuracy that is expected of them. This has created an insatiable
appetite for data as companies now have an incentive to collect data from their users. As more
types of data are collected, the question of privacy becomes more important.

This thesis addresses some of the privacy concerns by proposing practically feasible protocols
for machine learning, with privacy as the main focus. Secure Multiparty Computation protocols
allow a set of parties to jointly compute on their data, without the parties having to exchange
their data. We propose specialised versions of these protocols, tailor-made and optimised for the
type of computations carried out in machine learning training and inference.

In the first work, we advance the field of secure inference by using a novel cryptographic
object called an extended daBit. Extended daBits are theoretically interesting, and also lead to
impressive gains in concrete applications. We give instantiations of highly efficient protocols for
truncation, secure comparison, and non-linear functions (such as a rectified linear unit). Applying
these techniques to applications such as biometric matching and convolutional neural networks
shows a significant gain over prior work, making the framework practical.

Multiparty computation protocols most often support a static unchanging set of parties, which
can be limiting for some applications. The second work, Le Mans, addresses this problem by
proposing an efficient protocol that allows parties to leave and rejoin the computation, based
on their resource availability. At the centre of this is what we call a universal preprocessing
phase, which allows for parties to generate correlated randomness in a way that involves minimal
communication in the online phase later. By taking advantage of pseudorandom correlation
generators, we improve upon the state-of-the-art frameworks in the static setting. Finally, our
online protocol demonstrates that supporting dynamic parties need not come at a huge cost in
efficiency.
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Resumé

Maskinlæring bliver mere og mere relevant med vidtrækkende indflydelse på tværs af industrier.
Mange af de værktøjer vi bruger i vores dagligdag, er bygget på maskinlæring.

Værktøjer så som søgemaskiner, kort og anbefalingsalgoritmer, er afhængige af massive
datamængder, for at opnå den høje præcision, som forventes af dem. Dette har skabt en stor
appetit for data iblandt firmaer, som nu har stærke incitamenter til at indsamle data fra deres
brugere. Spørgsmålet om privathed bliver vigtigere, som flere typer af data indsamles.

Denne afhandling afhjælper nogle privathedsudfordringer ved at præsentere praktisk anven-
delige protokoller for maskinlæring, med privathed i centrum. Sikker Flerparts Beregning, eller
MPC fra det engelske ”Secure Multiparty Computation”, tillader en gruppe parter at lave fælles
beregninger uden at skulle udveksle deres inputdata direkte.

Vi fremlægger specialiserede versioner af disse protokoller, der er skræddersyet og optimeret
efter typen af beregninger som er nødvendige under træning og brug af maskinlærings modeller.

I det første værk fremmer vi feltet af sikker inferens ved brug af et nyt kryptografisk objekt
kaldt en forlænget daBit. Forlængede daBits er interessante fra et teoretisk synspunkt, og
giver samtidigt også imponerende forbedringer i konkrete anvendelser. Vi giver instansieringer
af meget effektive protokoller for trunkering, sikker sammenligning og ikke-lineære funktioner.
Anvendelse af disse teknikker på biometrisk matchning of neurale netværk demonstrerer væsentlige
forbedringer over tidligere arbejde, hvilket gør vores system praktisk anvendeligt.

MPC-protokoller understøtter oftest kun en fastlagt statisk gruppe parter, hvilket kan værre
begrænsende i nogle sammenhæng. I det andet værk, kaldt Le Mans, imødekommer vi dette
problem ved at præsentere en effektiv protokol, som tillader at parter forlader og senere tilslutter
sig beregningen, baseret på ressourcerne de har tilgængelige. Kernen af denne protokol består
af en universel præprocesseringsfase, som tillader parterne at generere korreleret tilfældighed
ved brug af minimal kommunikation i en senere onlinefase. Ved at udnytte pesudo-tilfældige
korrelationsgeneratorer forbedrer vi på de bedste kendte konstruktioner fra den statiske kontekst.
Til sidst demonstrerer vores onlineprotokol at dynamiske parter kan understøttes uden den store
effektivitetsomkostning.
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Chapter 1

Introduction

Machine Learning is seeing widespread deployment in today’s world. In a lot of ways it has
become an indispensable tool. We are seeing it being used across a range of different industries.
Use cases of Machine Learning range from building models that play some video games better,
such as Go [SHM+16] or DotA [OB+19], and to more serious use cases such as cancer detection
and self-driving vehicles. All these things have two things in common – they require huge amounts
of data and computational power to train the models. DALL-E 2 [RDN+22], a model that can
create realistic images based on textual prompts, was trained using 250 million images. OpenAI
Five, the bot trained to play DotA, was trained using 128,000 CPUs.

Though some of the core ideas for Machine Learning have been around for a couple of decades,
it is only now that we are seeing the field take off with real world usage. One of the biggest
factors for this is the increase in availability of cheap computing power. Smartphones have become
immensely powerful. An iPhone today has over 100,000 times the computing power in its CPU
and more than 1 million times the RAM of the Apollo Guidance Computer onboard the Apollo
11. Such computing power readily available in the palms of our hands opens the door for things
that were not possible before, such as running Machine Learning models locally on our devices.
There are a number of on-device Machine Learning APIs available on iOS and Android for things
like image classification, speech recognition, and so on. These advances however, are not without
downsides.

There are new ways of tracking and collection of data from users available today, in part
because smartphones provide access to tap into a trove of data that was not accessible before.
This report [TW19] by the New York Times shows how prevalent location tracking is with
smartphones in the absence of proper protections. Even inside of the smartphone’s OS, there are
a lot of different ways users are tracked. Instagram and a host of other apps have recently been
caught abusing in-app browsers to record every single tap made by the users [Kra22]. Allowing
companies to collect and store this level of data creates new attack surfaces.

The type of data collected can range from something mundane and seemingly harmless, such
as a search engine recording a user’s search history or a keyboard on a smartphone recording
keystrokes to improve its autocorrect engine, to collecting more sensitive data such as a healthcare
provider recording a patient’s history. It gets even more dangerous and privacy-invasive if these
companies decide to share or combine their datasets, usually done under the pretext of improving
their services or the user experience. Collaborating by sending data across different entities
without any oversight opens the door for abuse. These entities could use the data for unintended
purposes, or rogue actors in the system could misuse the data. This has led to an uproar against
data abuse and gave rise to governmental regulations, such as the European Union General Data
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4 CHAPTER 1. INTRODUCTION

Protection Regulation (GDPR). These regulations in their current state completely prohibit data
sharing in certain contexts, thereby solving the problem of unfettered data sharing. But, there
are certain valid purposes for which the entities might want to combine parts of their datasets.
This could be something like hospitals collaborating on their datasets to train a new model for
cancer detection.

The desire to combine datasets across a wide range of sources is not just to have huge datasets,
it is beneficial that data used to train Machine Learning models has properties like variance in
the dataset. If we take an example of someone training a model for facial recognition, ensuring
that the dataset has a good representation of people around the world becomes paramount. We
have seen evidence of what happens when datasets do not have this property [Con17]. In other
words, a model trained on highly localised data usually does not perform very well when deployed
in new settings around the world.

Training Machine Learning models has always been an arduous task. Even though computing
power is getting cheaper, the computational cost of Machine Learning training is outpacing it.
Modern Machine Learning models, such as the ResNet-50 [HZRS15], can have tens of millions of
parameters and thousands of layers. Even with a lot of computing power, it can take days to
train. Naturally, due to the increasing difficulty of training large models, we are seeing a new
paradigm of Machine Learning training and prediction emerge that is referred to as Machine
Learning as a Service (MLaaS). This paradigm introduces a few different ways to train models,
by changing the traditional notion of the data owner also being the one that trains the model.

Outsourced Computation: In this variant, there is either a data owner that wants to train a
model, or there is a model owner that wants to offer its model for prediction. The entity chooses
resorts to hiring servers from cloud providers, such as Amazon AWS, Google Cloud, Microsoft
Azure to do the computations for them. Even if we assume that the governmental regulations
are a nonissue for the moment, which means the entity is allowed to store the data or the model
on external servers, this model comes at a cost of privacy. The server hired for this task now
becomes a single point of failure in the system, as anyone that gets access to the server gets
access to the data or the model stored on it. Institutions like banks, with sensitive data about its
customers, might not want to take such risks.

Community Outsourcing: Another model that has emerged due to data owners having
limited computing resources, is a community outsourcing model. This model works well when
there is a long, time-consuming computation to be carried out but the computation can be divided
in several chunks, each of which is not very computationally intensive in and of itself. A data
owner in this model, puts up these tasks on something like a public bulletin board, and anyone
with free computational resources can join the network and carry out the tasks. This could
be someone who leaves their laptop or smartphone plugged in overnight. The device joins the
network, works on the tasks until the moment it is unplugged. At that point, it communicates
the progress made back to the data owners, and leaves the network. The beauty of this model is
that is democratises massive tasks such as analysing protein sequences, finding Mersenne primes,
etc. Examples of this model include the Folding@home project, GPUGRID, Rosetta@home to
name a few. This model is however, comes with a tradeoff. There is a significant amount of
information leaked to the participants in the network, as the data corresponding to the task has
to be sent to the participants. This limits the model from being used in other contexts with
sensitive, personally identifiable information.
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There have been many approaches that try to add privacy to the models described above,
with different trade-offs. Differential privacy adds noise to the data such that even if one were to
look at the data, they would not be able to infer much about any single data point. However,
the trade-off here is that the result of the computation will have some error. Federated learning
is a new model where there is one central server holding the model, and a set of participants
with data. The server sends the model to all the participants, who then update the model by
retraining it on their data. After a while everyone synchronises by sending their updates to the
model to the central server. The server aggregates all the updates and sends the updated model
to the participants, so that they can continue improving it.

Another way to tackle these problems is to use cryptography. Cryptography allows us to
compute on our private data, without having to share the data itself. In this thesis, we will focus
on providing solutions from a subdomain of cryptography, called secure multiparty computation.
But given how multi-faceted the privacy problems are, we will see how there is no one-size-fits-all
type of solution.

1.1 Cryptography

Cryptography was born out of a fundamental need to secure communications. End-to-End
Encryption (E2EE) powers apps like Signal and WhatsApp, ensuring that no one except the
intended recipient can read our communication. Encryption is also used to secure data at rest on
hard drives, so that only having access to our devices does not give anyone access to the data
contained with them. Over the years, as our devices got more powerful and there was more kinds
of data being collected, there was a need to be able to compute on private data. Most widely
deployed cryptography, Advanced Encryption Standard (AES) for instance, do not allow for
computations on encrypted data out of the box. This led to new areas of cryptography, colloquially
referred to as Modern Cryptography, which includes tools like Homomorphic Encryption (HE),
Zero Knowledge Proofs (ZK), and Secure Multiparty Computation (MPC).

When data is encrypted, it is considered secure as no one can derive any meaningful information
from it without having access to a special decryption key. When we want to compute on this data,
we first have to decrypt it, perform the computation desired, and encrypt the data again. This
might be fine when the data is on a laptop and the owner of the laptop is computing something
locally on the data. If there is a service provider that stores the data of all its users, decrypting
this data might not be desirable because the computation might take a long time and having
the data decrypted for that long might be too much of a risk. Sometimes all we want to extract
from the data is a particular property, in which case decrypting the entire database is an overkill.
Homomorphic Encryption lets us avoid that by letting us compute on the encrypted data directly.
We will obtain the result of the computation in an encrypted format, and we can decrypt only
the result and not the entire database.

Despite being a solution to this problem on a technical level, homomorphic encryption is a long
way from being practically efficient for computationally intensive tasks such as Machine Learning
training. Currently it is orders of magnitude slower compared to computing on plaintext data
(data that is not encrypted), making it a tough sell. Another approach to problem of computing
on private data is secure multiparty computation, which will be the focus going forward.
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Secure Multiparty Computation

Imagine we live in a world where there are trusted entities available. If two parties had some data
that they wanted to compute on, but neither of them trusts the other one, they could send their
data to this trust entity and ask it to run the computation. The entity would relay the result
back to the parties, and delete their data from its storage. Sadly, we exist in the real world where
just like unicorns and pixies, such entities do not exist. The area of MPC tries to provide such a
functionality, given certain assumptions that we will get into.

More formally, MPC is a paradigm in cryptography that allows for multiple parties to compute
on their data together, in a “secure” and “private” way. We will see later in this section how
these terms are defined, and what security means in the context of MPC. At a fundamental
level, it means that parties do not have to share their private data with anyone else in order to
perform some computation. Parties only learn the final output of the computation, and nothing
in between. MPC was first introduced by Andrew Yao in 1982 [Yao], with a tool called Garbled
Circuits. Since then, research in MPC has been steadily growing. MPC protocols are typically
generic in nature, meaning they allow for parties to compute any function on their data. In recent
years however, there has been a tremendous amount of research in designing specialised protocols
in MPC for particular use cases. Designing protocols geared towards a specific function, or class
of functions, allows us to make certain design choices in the protocols that lead to much better
efficiency.

The Adversary

In MPC protocols, security is defined with respect to an adversary, denoted by A, in the system.
Assume that there are n parties in a protocol. An adversary is someone that controls a fraction
of the parties, referred to as corrupted parties, and tries to influence the protocol is some way.
Depending on the number of corrupt parties, denoted by t, and what A can do with these parties,
we have different types of adversaries.

Honest majority vs Dishonest majority: If A is allowed to corrupt up to a half of the
parties in the system, we say that the protocol is secure in the honest majority setting. If A can
corrupt all but one party in the system, that is referred to as a dishonest majority. A natural
question to ask is why anyone would choose to build protocols in the honest majority setting
as opposed to dishonest majority, since it is a weaker setting. Unsurprisingly though, honest
majority protocols are simpler to design and are much faster compared to dishonest majority ones.
Dishonest majority protocols are complicated and often have a lot of moving parts, so there is a
lot of scope for someone to make a mistake while implementing them. In certain situations, the
MPC protocol might only involve a few parties, which are well to known to everyone. Consider
Amazon, Google and Meta trying to run an MPC protocol for something. There is an argument
to be made that Amazon and Google would not collude to learn more about Meta’s data. If they
were to be caught, it will be irreparable damage to their reputation. So there are places where
honest majority protocols make sense.

Semi-Honest vs Malicious: A semi-honest (passive) adversary is one that follows the protocol
but tries to glean as much information from it as possible. A malicious (active) adversary on
the other hand, can deviate from the protocol in any arbitrary way at any given time. A could
choose to send a wrong message at any given step, it could choose to send no message at all, or it
could send different messages to different parties. This type of adversary is significantly harder
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to deal with. If we were to go for real world deployment, assuming that the adversary might
actively deviate from the protocol could be argued as a more realistic assumption in general. The
exceptions to this are when the entities involved in the protocol have some trust in each other,
but still cannot collaborate on their data directly due to reasons like regulations. The practicality
of a passive adversary can be illustrated by the following example. Imagine there is a company
that can collect data from its users, but is not allowed to because of regulatory reasons. One way
to get around that could be that the company places its servers in different jurisdictions, and
stores secret shares of the data on each of them. Since all the servers are owned by the same
entity, there is little reason to worry about an active adversary in the system.

Static vs Dynamic Participants

Most of MPC protocols inherently assume that the set of parties that starts the computation will
remain constant throughout. That is a reasonable assumption to make for most protocols, since
the parties that start the computation are the ones with the data and the only ones interested
in the output. Protocols usually also do not takes hours or days to run. However, for emerging
models such as the community outsourcing model described earlier, this type of protocols are
unfit.

In an MPC protocol designed for static participants, there is no fallback if one of them drops
out. A drop out might occur due to any number of reasons, such as their system crashing. In
such a situation, the protocols grinds to a halt because the remaining parties cannot proceed
forward. There have been a certain class of MPC protocols designed to handle drop outs, but as
we will see later, this is not enough for our use case. In our setting, we would like parties to be
able to textitjoin mid-computation, and drop out whenever they want. There are extremely few
MPC protocols that accommodate new parties joining midway through the protocol.

There have been folklore approaches to adding support for dynamic participants, mainly via
committee-based MPC [Bra85] protocols. The general idea is to have a subset of parties perform
the computation, that changes over the course of the computation. This however does not offer
the flexibility offered in the plaintext model of community outsourcing. More recently, due to the
advent of blockchains, dynamic protocols that offer more flexibility to participants are becoming
increasingly relevant with works such as [CGMV18, BGG+20, GHK+21] leading the way.

Secret Sharing

The inputs of MPC protocols and intermediate values typically existed in a secret shared format.
There are many different secret sharing schemes, the most common and relevant one for this
thesis being additive secret sharing. In additive secret sharing, each party holds an additive share
of the secret value, and the sum of all the parties’ shares reconstructs the secret. We use the
notation [x] to denote a secret value x that is additively shared.

These shares are defined over a finite field or a ring. Typical choices for this is either a field
Zp, where p is a prime, or Z2k . So, an additive secret sharing of a value, say x, between four
parties P1, . . . , P4 would look as follows. Each party Pi holds a share si, and the relation between
the shares would be s =

∑4
i=1 si, where s is the secret value.

Additive secret sharing is secure up to t = n − 1. That means even if n − 1 parties are
corrupted, they still cannot learn the secret. Additive secret sharing is in the class of Linear
Secret Sharing Schemes (LSSS). In these schemes, the addition operation comes for “free”. To add
two secret shared values, parties locally add the corresponding shares and get a secret sharing of
the result. Multiplication is considered a non-linear operation, which means that parties have to
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communicate with each other to exchange some information that lets them compute the product
of two secret shared values. Techniques to perform efficient multiplication of two secret shared
values is a challenging problem, and has spawned a number of results tackling the issue with
different trade-offs.

Authenticated Secret Sharing: In some situations, for instance when we are dealing with an
active adversary in dishonest majority, a simple additive secret sharing of the secret does not
suffice. Message authentication codes (MACs) are used to verify authenticity of the messages
sent in the protocol. Each message in the protocol is associated with a tag by the sender, and
the receiving parties use this tag to verify the integrity of the message. Consider the following
MAC scheme, first introduced in [BDOZ11]. This is a pairwise MAC scheme, which means for a
share that party Pi holds, it will also have a MAC with every other party Pj , denoted by M i

j . Pj

holds two values, a global key, denoted by ∆j and a local key Kj
i . These values are related by

the following equation:

M i
j = [x] ·∆j +Kj

i

The MACs are set up such that the global key and the local key are uniformly random,
meaning that Pj does not learn any additional information about Pi’s share. When parties want
to reconstruct the secret x, each party broadcasts its share of x as before. In addition, they will
send each of the pairwise MACs they hold to the corresponding party, who can verify that the
MAC relation holds. This check fails with probability 1/|F|, where F is the field over which the
MACs are defined. The proof for it is given in [BDOZ11].

The Preprocessing Paradigm

There are a lot of protocols that can take advantage of correlated randomness and result in a
very fast online phase, when we actually do the computation on secret inputs. Because correlated
randomness does not rely the secret inputs, we can split the MPC protocol into two phases –
the preprocessing phase and the online phase. The preprocessing phase is used to generate the
correlated randomness required for the protocol. Typically, generating correlated randomness is
computationally heavy as it uses techniques such as cut-and-choose. The amortisation for them
only kicks in when we generate a large amount of randomness, in the order of millions. Therefore,
generating such amounts of randomness on the fly during the online phase will make the protocol
expensive and slow.

One of the most popular choices for the type of correlated randomness used is called a
Beaver triple [Bea92]. A Beaver triple is a set of values (a, b, c) that are additively shared
among all the parties, related by the equation, c = a · b. If we have such triples available
in the protocol, we can obtain the product of [x], [y] by having parties reconstruct the values
x− a and y − b by broadcasting their shares. Then, using these values we can compute [z] as
(x− a) · (y − b) + (x− a) · [y] + (y − b) · [x] + [c]. So in only 1 round, parties are able to get an
additive secret sharing of the product, making this approach highly practical.

Efficiently generating triples has spawned a long line of results, [BLN+15, FKOS15, FLNW17]
to name a few, and continues to be an active area of research. The neat thing about Beaver
triples is that the triples themselves are completely independent of the data used in the MPC
computation. If we assume that we need triples in the order of say, one million, we could compute
additive sharings of these triples before we even receive the data to do the MPC computation.
Techniques mentioned above have communication cost that is linear in the number of triples to be
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generated. More recently, a new cryptographic object called pseudorandom correlation generators
(PCGs) [BCG+19b, BCGI18, BCG+20, WYKW21a] have been proposed. PCGs allow two parties
take short, correlated seeds, and expand them to generate a large amout of correlated randomness.
PCG based techniques for the preprocessing have shown to achieve sublinear complexity in the
communication, but also in storage, as parties only need to store a short seed until they start the
online phase. In this thesis, we will show an extension to the two party PCG techniques to the n
party case.

Simulated-based Security

For a few years after the first protocols in secure multiparty computation appeared, there was no
formal framework to analyse security in a way that gave rigorous guarantees. Formalisation of
security for MPC protocols came much later, in a few different flavours such as the stand-alone
model [Can00] and the UC framework [Can01]. The UC framework is the more relevant one for
the thesis, and the one we will be focusing on going forward.

The goal of the framework is to provide a formal way to prove that the adversary A does
not learn anything from the intermediate message exchanged in the protocol, beyond what it
already knows. In order to do this, we define an ideal world, and we will argue that the real
world protocol is indistinguishable from the ideal world protocol. In the ideal world, there is
an ideal functionality F, a trusted third party that the parties can send their inputs to. The
functionality computes the desired output and sends it to the parties. Defined as it is, the ideal
world and the real world are trivially distinguishable to an adversary because in the real world, it
will see messages exchanged between the parties whereas in the ideal world, parties only talk to
the functionality. The communication pattern is clearly distinguishable. Therefore, we need to
somehow simulate the real world protocol messages in the ideal world.

The simulator S sits in between the adversary and the ideal functionality in the ideal world.
The goal of the simulator will be to simulate the protocol messages, without having access to
the honest parties’ inputs. It receives the protocol messages from the adversary, and responds
on behalf of the honest parties. On the other side, the simulator talks to the functionality as if
it were the adversarial party. In practice this means if the functionality expects an input from
the adversary, the simulator extracts this from the adversary’s messages, and forwards it to the
functionality. The idea is that if the simulator is able to convince the adversary without relying
on the inputs of the honest parties, it means that the protocol messages do not leak anything
about the inputs.

There is one other entity that we have to worry about when doing the simulation, the
environment Z. The environment is trying to distinguish between the real world and the ideal
world. We have already defined an adversary trying to do this, but that is not enough in one
important way. If we only had the adversary from earlier, the simulator could employ a strategy
in which the honest parties in the real world and the ideal world receive different outputs. The
adversary does not have access to the honest parties’ outputs, so it would not be able to distinguish
between the two worlds in this case, even though it is not a perfect simulation. To address this
issue, we use the environment, which tells the parties what inputs to use, and receives the outputs
they receive in both worlds. In UC, we consider the environment and the adversary to be the
same entity. So, at the end we want that the transcripts in both worlds, including the inputs and
the outputs, follow the same distribution.

The reason UC is so powerful, is that it allows us to compose protocols together without
much difficulty. Imagine there is a protocol Π′, that internally runs a subprotocol Π. If Π, which
realises a functionality F, was proved secure in the UC framework, it means there is a simulator
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S for it. This makes it simple, in that we can use the functionality F when describing Π′. And
when doing the simulator for Π′, we can simply run the simulator S to simulate the messages of
Π.

Output Guarantees

Security in MPC is defined by comparing the real world and the ideal world. The guarantee that
the parties in the real world have is that, the protocol they are running is equivalent to send their
secret inputs to the ideal functionality, where only the output is revealed. However, when we say
the ideal functionality reveals only the output, that can happen is multiple ways.

Security with Abort: In this case, the adversary has the power to abort the protocol at any
given point, including in the output phase of the protocol. This means the adversary could wait
until it receives the output, and then cause all the honest parties in the system to abort. In some
cases, the adversary can choose a subset of the honest parties to receive the output and the rest
to abort. This variant is referred to as Security with Selective Abort.

Fairness: Fairness improves upon Security with Abort. The adversary in this system can still
cause aborts, but if the corrupt parties learn the output, we are guaranteed that all the honest
parties also learn the output.

Guaranteed Output Delivery (GOD): This property, sometimes also called Robustness, is
the strongest guarantee we have, which guarantees that no matter how the adversary deviates
from the protocol, the honest parties will learn the output of the protocol. Robustness is the
hardest property to realise and in some cases is not possible at all.

Identfiable Abort: Identifiable Abort is a relatively new notion of security, first appearing in
[CL17, IOZ14]. It is similar to abort in the sense that the adversary can abort the protocol at
any point, but with the caveat that the adversary must point to a party, or a set of parties, as
the corrupt ones before aborting. Although not as strong as GOD, such a notion might be useful
in settings where there are only a few parties controlled by the adversary. If the adversary cheats
and gets caught, these parties will be kicked out of the system and the remaining parties will
restart the computation.

These notions are more relevant in the case when the adversary is actively corrupt. Because if
the adversary is passive, we know that it will not deviate from the steps of the protocol, meaning
it will never cause an abort and the honest parties will always learn the output. So, we trivially
get GOD in the passive setting. However, for some corruption thresholds these guarantees are
shown to be impossible in [Cle86, GMW87, RB89].

Efficiency of MPC Protocols

There are a number of different ways to measure the efficiency of an MPC protocol. The two most
common metrics are the amount of communication and the number of rounds. Communication is
measured by counting the number of bits sent by each party throughout the course of the protocol.
Protocols optimised to minimise communication are referred to as high throughput protocols.
On the other side of the spectrum, we have low-latency, or round optimised protocols. These
protocols might incur more cost when it comes to bandwidth, but they minimise the number
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of rounds of communication between the parties. Such protocols make sense when the round
trip time (RTT) between parties is high, or the connection is unstable so we would prefer not
communicating over multiple rounds. There is also a measure of storage, which counts how much
data each party has to retain throughout the computation. Though storage is cheaper to come by
than bandwidth or low-latency, when it comes to running MPC protocols on Internet of Things
(IoT) devices which might be storage limited, it becomes an important to metric to optimise for.

There are couple of other choices to measure efficiency of protocols by, like run time and
monetary cost. Run time simply measures the clock time from the start of the protocol to the
end. Monetary cost is newer metric, that is gaining relevance as outsourcing servers is becoming
more popular. Monetary cost is how much it would cost to the protocol should one hire the
appropriate servers for it.

Run time and monetary cost are especially important for long running computations such as
machine learning. When one hires servers from cloud providers, they pay for it based on multiple
factors, such as bandwidth used, computational power of the servers, and the up time of the
server. If we were to take a communication efficient protocol that takes a long time to run, in an
attempt to reduce the bandwidth used, it would not help as the monetary cost would be high
because of the long uptime of the servers. Therefore, optimising for low monetary cost requires
striking a balance between all the metrics we described.

1.2 Private Machine Learning

Private Machine Learning involves techniques for performing secure machine learning training
and secure inference. A typical scenario for machine learning training is when there is a set of
parties, each with a dataset. They want to collaborate on their data to jointly train a model.
Even after the model has been trained, they do not want to reveal the entire model to any party.
The model should exist in some “secret” state, but should support for prediction queries from the
parties. When it comes to secure inference, imagine there is an entity that possesses a trained
model. It wants to open this model up for queries from clients, and charge them for query access.
The entity wants to hire an external server for this purpose. In this scenario, there are two kinds
of privacy concerns. On the model owner’s side, it does not want the hired server to learn the
model, because it is proprietary data. On the client’s side, it does not want to expose the query
to the server or the model owner, as it might contain sensitive information. The client wants to
receive the output of the prediction without the server learning any information about the query.
Both these tasks present challenges that are unique, and require designing protocols specific to
them.

The Problem with Floating Point Arithmetic: Data point and intermediate values in
machine learning are real values. While not a problem in the plaintext setting, it becomes a
significant roadblock in the MPC domain. As mentioned earlier, values in MPC are typically
defined over a finite field, where there is no natural way represent a fractional value. One approach
could be to drop the values after the decimal point and train using only the integer part. This
creates a drop in accuracy compared to the plaintext model trained on fractional values, that is
too high to tolerate.

The most popular approach, Fixed Point Arithmetic (FPA) to get around this issue has been
to allocate a set of lower order bits of a finite field to represent the fractional part of the values,
and use the higher order bits for the integer part. For instance, if we were operating with a 64-bit
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field, the lower 13 bits are typically reserved for the fractional part, 1 bit for the decimal point,
and the rest are used for the integer part.

Addition of two FPA numbers is straightforward, we can add the shares of these values
locally. Multiplication however, poses new problems. The product of two numbers in their
FPA representation moves the decimal point higher. Going by the example from above, the
product would now have 26 bits of precision. We need to truncate the product by 13 bits before
proceeding forward. There are multiple approaches to truncation, involving different trade-offs in
the accuracy. The most common and communication efficient approach is called probabilistic
truncation, which truncates the result but it might be off by a very small amount.

Mixed-Circuit Computation: As mentioned earlier, typical choice for the mode of computa-
tion in MPC is either a ring of the form Z2k or Fp, where p is a prime. A function we want to
compute over these domains is expressed as a “circuit” in MPC literature. A circuit is comprised
of the following types of gates: input gates, addition gates, multiplication gates, and output gates.
The input and output gates are used to plug in inputs to the circuit and receive the output,
respectively.

An arithmetic circuit defined over a field Fp, where p = 2, along with the operations XOR
and AND, is called a binary circuit. Arithmetic and binary circuits come with different trade-offs.
Arithmetic circuits are more efficient when it comes to operations like multiplication, which are
very expensive to do with binary circuit. On the other hand, binary circuits are more suitable for
operations like bit extraction, where we want to extract a bit from a given position of an l bit
value, or for secure comparison of two values.

Switching between different modes of computation mid-way through an MPC protocol can be
extremely useful in some cases. If there were a function where multiplications and comparisons
alternate, computing this function in either domain will not be particularly efficient. Functions
evaluated as part of machine learning, such as neural network, often resemble this structure.
Ideally, we would like to be able to perform the multiplications in the arithmetic domain, but
somehow translate these values from the given field Fp to F2. It would allow us to evaluate
operations like comparisons in the binary world, maintaining efficiency. This insight led to the
development of what are referred to as circuit conversion techniques. There has been a line of
works in the recent years that have developed highly efficient ways to switch between different
computational domains in different settings of MPC.

Non-Linear Functions: Most common operations in machine learning can be put into two
categories. The first contains operations such as matrix multiplications, convolutions, etc. We
refer to these as linear operations, and they can be realised in MPC using arithmetic circuits
without much difficulty. The second set of operations consists of Rectified Linear Unit (ReLU),
sigmoid, softmax etc. These activations functions are a common occurrence, and they are not
easy to realise in MPC. If we take the example of softmax, it is defined as follows for a vector of
values x of length K:

softmax(xi) =
exi∑K
j=1 e

xj

Computing the exponent in this equation, and the division are non-trivial in MPC. Due to
this, the most common approach towards realising such non-linear functions in MPC is to come
up with an MPC-friendly approximation for the functions. It is a common approach to use an
approximation or a simplified version of these functions, where the difficult operations are replaced
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with MPC-friendly alternatives, as shown in [MZ17, MR18, WGC19]. These approximations
come with different trade-offs. For example, [MZ17] replaces the exponentiations with ReLU
operations and uses a division circuit based on garbled circuits, making it more MPC-friendly.
They show that the accuracy drop for training MNIST with the approximation of softmax is
only about 1%. However, it was shown in [KS20] that there is a considerable drop in accuracy
when this technique is applied to multilayer perceptrons. As an improvement, [KS22] proposed a
different method of computing softmax, where the focus was on improving the accuracy. Their
approach involves an efficient algorithm for computing exponentiations in MPC, and they show
that they are within 0.2% in terms of accuracy delta compared to the plaintext model for an
MNIST classifier.





Chapter 2

Approaches to Private Machine
Learning

This chapter outlines works I have been a part of in the three years of my PhD. The works can
broadly be categorised under practical MPC protocols, with a focus on optimising for machine
learning operations. As we will see in this chapter, each of these works attacks the problems of
private machine learning in a unique way, bringing privacy-preserving machine learning closer to
reality.

• [EGK+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
Improved primitives for MPC over mixed arithmetic-binary circuits. In CRYPTO 2020,
Part II, LNCS. Springer, Heidelberg, August 2020

• [RS22] Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid MPC for dishonest
majority. In CRYPTO 2022, Part I, LNCS. Springer, Heidelberg, August 2022

2.1 edaBits: Mixed-Circuit Conversions for MPC

There has been a long line of works [DSZ15, MR18, MZ17, HKS+10, WGC19] in MPC proposing
conversions between the different domains of arithmetic, binary, and garbled/Yao circuits. Most
of these works are set in the honest majority setting. There have been few works in the dishonest
majority setting for more than two parties, with one of the most recent ones being [RW19]. This
work introduces a new cryptographic object called daBits (doubly-authenticated bits). A daBit is
a secret shared random bit, that is shared over both the arithmetic and binary domains. daBits
are extremely useful for conversions between the arithmetic and binary domains, and versatile,
which means that they could be used in any corruption setting. There are a few different ways
to generate daBits, with different trade-offs. Despite their versatility and usefulness, daBits are
limited when it comes to real world applications. Taking the example of Machine Learning, the
values we work with most of the time are not single bit integers, but integers over a much larger
domain. To convert an integer over this domain using daBits, we would have to use multiple
daBits. Due to the cost of generating daBits, the efficiency when converting a value secret shared
over a large domain comes out to a factor of three at best.

In this work, we introduce a new object called an extended daBit (edaBit), that can be used
to convert between different domains. An edaBit is a set of m random bits, r1, . . . , rm, secret
shared over the binary domain, and their corresponding value r =

∑m
i=1 ri · 2i shared over the

15
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arithmetic domain. A large part of the paper is dedicated to showing how to efficiently preprocess
edaBits in the dishonest majority setting with active security. Our starting point is the cut-and-
choose protocol, which was originally introduced to produce a large number of multiplication
triples at a low cost. Adapting the method to edaBits turns out to not be straightforward. The
cut-and-choose procedure involves taking a large batch of triples, and placing them in buckets of
a particular size. Within each bucket, one triple is selected and a check is performed with every
other triple. At the end, we are guaraanteed that this triple has not been tampered with, except
with negligible probability. Trying to follow the same template with edaBits poses a problem,
which is that the check that needs to be performed to check two edaBits is different from the
check with the triples in one important way. The triples have a linear relationship as opposed
to edaBits, meaning that we require additional tool(s) to check two edaBits. We need to use
TinyOT triples [NNOB12, FKOS15] to do the pairwise checks. The naive approach would be to
first run a cut-and-choose to produce secure TinyOT triples, using prior approaches, and use
them for the cut-and-choose for edaBits.

In an effort to optimise this further, we forgo generating secure authenticated TinyOT triples.
Instead we let the party that secret shares the triples, tamper with them. So we get authenticated
triples, but they are not checked for correctness. On the face of it, this seems like the adversary
gets too much power, and can cheat in the cut-and-choose procedure to make it output faulty
edaBits. For instance, if a tampered TinyOT triple was used for the check involving a good
edaBit and a tampered one, this might cause the check to pass, depending on how the triple and
the edaBit were tampered. We show that, if the circuit has what we call weak additive tamper
resilience, it significantly hampers the adversary’s ability to pass the checks.

Using edaBits, we provide protocols for several primitives such as probabilistic and determinis-
tic truncation, secure comparison, and equality test. In addition, we show that our constructions
work with both signed and unsigned data types. edaBits provide the most gain in the dishonest
majority setting with active security, where the improvement is up to a factor of 25 over daBits
for secure comparison. We also benchmark applications such as biometric matching against the
ABY [DSZ15] and HyCC [BDK+18] frameworks, and convolutional neural networks against the
state-of-the-art framework of [DEK20]. For neural network inference, we observe an improvement
of up to a factor of 6 in both communication and run time.

2.2 Le Mans: MPC for Dynamic Participants

MPC protocols are typically designed for a static set of participants. If there is a party that
wants to leave the computation for a brief period of time, even as brief as one round of the
computation, this is not allowed. The protocol will abort, and the remaining parties will restart
the computation. When the party comes back at a later point, it will also not have any way to
rejoin the computation. This is problematic for a host of reasons. If we are running a computation
that may take several days, there may be good reasons why a party might want to leave the
computation midway, before rejoining at a later point.

Committee-based MPC protocols [Bra85, GSY21, MZW+19] have existed for some time, but
the goal of these protocols is not to give parties the flexibility to leave and rejoin the computation.
One could try and bootstrap these protocols to allow for a dynamically evolving set of parties
in the computation, but the resulting protocols are messy and impractical. This work takes the
model of Fluid MPC [CGG+21], and adapts it for the dishonest majority setting with active
security.
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The main challenge in designing a fluid protocol for the dishonest majority is that most of
the efficient protocols in dishonest majority involve the use of correlated randomness, typically
multiplication triples. The Fluid MPC model does not have to use a preprocessing phase, since it
is designed for the honest majority case. Even if we make the concession of using a preprocessing
phase for the dishonest variant, there are still challenges in using triples.

There are efficient ways to preprocess multiplication triples [DPSZ12, DKL+13, FKOS15],
but they do not provide a good solution for fluid protocols. It is because a triple is an additively
secret shared set of values [a], [b], [c], where c = a · b. Imagine we designed the protocol by having
all the parties that might participate in the online phase of the protocol, join the preprocessing
to generate triples. This immediately restricts the online set of parties to everyone from the
preprocessing because if we remove even one party’s shares of the triples, the remaining shares do
not add up and maintain the same relation between the a, b, and c components.

To work around this problem, we introduce a universal preprocessing phase. The goal of the
universal preprocessing phase is to let n parties generate correlated randomness, such that any
subset of the parties can run the online phase, by simply ignoring values corresponding to the
missing parties. Instead of generating shares of the standard multiplication triples, the parties
generate partial triples. The a and b values in the triple are additively shared as before, but for
the c component, we only distribute shares of the cross terms ai · bj , to Pi, Pj , where ai is the
share held by Pi and bj is the share held by Pj . If Pj drops out of the computation, all the parties
ignore the shares corresponding to Pj and sum up the remaining shares to a fresh looking share
of c.

Using the universal preprocessing, we give two online phase protocols, for two different
scenarios. The first one is called Dynamic SPDZ, which is designed to tolerate one crash that
might occur after the preprocessing. In the traditional SPDZ protocol, if a party crashes after
the preprocessing, there is no way to proceed except for the remaining parties to redo the
preprocessing. Since this is usually computationally intensive and might take a long time, it
is not ideal to have to redo it. In Dynamic SPDZ, parties ignore the shares corresponding to
the missing party and proceed with the online phase. Dynamic SPDZ costs only 8 elements on
top of the traditional SDPZ protocols such as [DPSZ12, KPR18, KOS16]. In addition, universal
preprocessing is significantly cheaper than the traditional variant both in terms of communication
and storage complexity.

Designing a maximally fluid online protocol, where the expectation is that parties leave and
rejoin the protocol in every single round, has an additional challenge. When a party is leaving
the protocol after a given round, it reshares the shares it holds to parties that are going to
continue with the computation. This works for additively shared values, but does not work with
authenticated shares. An authenticated share has a MAC, and the MAC key is the sum of all
the keys of the parties in the protocol. So when a party leaves or joins the protocol, doing a
resharing of the MACs will not work as the MAC key of the parties of the subsequent round will
be different. We propose a very simple and efficient way to work around this problem, with a
protocol called Key-Switch. It allows for parties in a given round to reshare values such that the
MAC key is adjusted to match the MAC key of the parties in the subsequent round, with just
one set of messages.
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2.3 Additional Research - Actively Secure 4PC

Apart from these works, I have also been a part of some works which are summarised below.

• [RS19] Rahul Rachuri and Ajith Suresh. Trident: Efficient 4PC framework for privacy
preserving machine learning. Cryptology ePrint Archive, Report 2019/1315, 2019. https:
//eprint.iacr.org/2019/1315. Published in NDSS 2020.

• [KPRS21] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. Tetrad: Actively
secure 4PC for secure training and inference. Cryptology ePrint Archive, Report 2021/755,
2021. https://eprint.iacr.org/2021/755. Published in NDSS 2022.

MPC for a small number of parties has taken off in the recent years, with works such as
[AFL+16, FLNW17, MRZ15] proposing highly efficient protocols. These works deal with the
specific setting of four parties, with an honest majority and active security. The three parties and
one corruption setting has seen a lot of traction in the recent years [MR18, WGC19]. The thing
that is common between all these works is that the passively secure versions of the protocols
are much faster than the active ones. Although it is expected that the actively secure protocols
will be slower, the slowdown in these protocols is in particular due to the cost of operations
like truncation, dot product. The following works started out with the goal of finding out if
the performance delta between the three party and four party settings is big enough to justify
assuming the presence of an additional honest party.

Trident: Trident answered the question affirmatively, with up to 187x gain in the training
phase, and 158x gain in secure inference compared to ABY3 [MR18], which at the time was the
state-of-the-art framework for three parties. Trident is a four-party framework with actvie security,
and is optimised to provide a fast online phase by making use of a preprocessing phase. At the
heart of Trident is a variant of the replicated secret sharing scheme, that enables demarcation of
roles to the parties. The multiplication protocol of Trident improved upon the state-of-the-art
protocol of [GRW18], by trading off reducing the online cost by one element, in exchange for
increasing the preprocessing cost by one. Therefore, the online cost is 3 elements, 1 lower than
[GRW18]. We also showed how to increase the security level to fairness, without any additional
cost to the multiplication protocol.

Along with the multiplication protocol, Trident also has support for conversions between
different modes of computation. As a result of having one additional honest party, we were
able to eliminate the use of the Ripple Carry Adder circuit in a few but important places where
ABY3 required them, thus making it more efficient. For instance, our binary to arithmetic (B2A)
conversion protocol requires only 1 round, compared to the 1 + log l rounds of ABY3. When it
comes to activation functions like ReLU and Sigmoid, ABY3 requires rounds proportional to the
size of the underlying ring, whereas Trident has a constant cost of 4 and 5 rounds respectively.

One interesting feature of the design of Trident is that, it allows for one of the four parties to
be turned off for a majority of the online phase. The fourth party will only need to be online for
the input sharing and output reconstruction phases, saving in terms of monetary cost compared
to [GRW18].

Tetrad: Tetrad is similar to Trident in that it is a four-party framework also set in the
preprocessing paradigm, and the focus is on providing a fast online phase. Tetrad directly

https://eprint.iacr.org/2019/1315
https://eprint.iacr.org/2019/1315
https://eprint.iacr.org/2021/755
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improved upon Trident in many ways. To start with, Tetrad has a different variant of the four-
party replicated secret sharing scheme used in Trident. On the back of this secret sharing scheme,
the cost of the multiplication protocol is reduced from 6 ring elements to 5 in Tetrad. In addition,
we show how to obtain robustness for the same amortised cost over the fair multiplication protocol,
something that was not possible with Trident. The robust variant improves the communication
complexity compared to the state-of-the-art robust protocols of [KPPS21, DEK21].

Even though Tetrad is set in the preprocessing paradigm, it is not limited to it. Typically, if
we were to try and convert protocols that have a preprocessing phase to online-only protocols, we
would have no choice but to run the preprocessing and the online phases sequentially. However,
this is not the case with Tetrad. We can parallelise operations such that the round complexity
of the online-only version of Tetrad is exactly the same as that of the online phase from before,
adding to the versatility of the framework.

We show how to achieve dot product and probabilistic truncation without any additional
overhead over a multiplication for the first time with fairness and robustness. Given the prominence
of these operations in machine learning applications, this has a substantial impact on the
performance. It is also fairly common to have to multiply 3 or 4 inputs at once in these
applications. The standard approach is to use the tree-based technique, but this incurs an
additional round compared to the 2 input multiplication. Since the goal of Tetrad is to provide
an efficient online phase, we propose protocols for 3 and 4 input multiplications maintaining the
same round complexity as the 2 input one, at the cost of some additional communication in the
preprocessing.

We often want to convert to the garbled domain in machine learning applications only for
specific non-linear operations, and switch back to the arithmetic world after, as non-linear are
usually followed by a multiplication. In Tetrad, on top of improving techniques for conversions
compared to Trident, we also propose a new approach to them called end-to-end conversions.
An end-to-end conversion of the form A-G-A takes as input shares in the arithmetic domain,
evaluates the garbled circuit, and gives the final output shares in the arithmetic domain. To
facilitate end-to-end conversions, we use a garbled circuit protocol that is built specifically for
this purpose.

Monetary cost is also one of the tent-pole features of Tetrad. We take the idea of turning off
one of the parties of Trident a step further, by allowing two parties to be off for most of the online
phase. The impact of this is pronounced with long running computations, where we observe up
to a factor 6 improvement over the cost of Trident. In terms of absolute performance, Tetrad is
up to 4 times faster in runtime over Trident. The primary reason for the runtime improvement
comes from the reduction in the number of rounds required through the use of multi-input gates.
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Chapter 3

edaBits: Mixed-Circuit Conversions for
MPC

The contents of this chapter have been taken from the paper [EGK+20]. The only modifications
made are to move the appendix content into the main body for better readability.

3.1 Introduction

Secure multi-party computation, or MPC, allows a set of parties to compute some function f
on private data, in such a way that the parties do not learn anything about the actual inputs
to f , beyond what could be computed given the result. MPC can be used in a wide range of
applications, such as private statistical analysis, machine learning, secure auctions and more.

MPC protocols can vary widely depending on the adversary model that is considered. For
example, protocols in the honest majority setting are only secure as long as fewer than half of
the parties are corrupt and colluding, whilst protocols secure against a dishonest majority allow
all-but-one of the parties to be corrupt. Another important distinction is whether the adversary
is assumed to be semi-honest, that is, they will always follow the instructions of the protocol, or
malicious, and can deviate arbitrarily. [ZLWL21]

The mathematical structure underpinning secure computation usually requires to fix what we
call a computation domain. The most common examples of such domains are computation modulo
a large number (prime or power of two) or binary circuits (computation modulo two). In terms
of cost, the former is more favorable to integer computation such as addition and multiplication
while the latter is preferable for highly non-linear functions such as comparisons.

Applications often feature both linear and non-linear functionality. For example, convolution
layers in deep learning consist of dot products followed by a non-linear activation function. It is
therefore desirable to convert between an arithmetic computation domain and binary circuits.
This has led to a line of works exploring this possibility, starting with the ABY framework [DSZ15]
(Arithmetic-Boolean-Yao) in the two-party setting with semi-honest security. Other works have
extended this to the setting of three parties with an honest majority [MR18, ABF+18], dishonest
majority with malicious security [RW19], as well as creating compilers that automatically decide
which parts of a program should done in the binary or arithmetic domain [BDK+18, IMZ19,
CGR+19].

A particular technique that is relevant for us is so-called daBits [RW19] (doubly-authenticated
bits), which are random secret bits that are generated simultaneously in both the arithmetic
and binary domains. These can be used for binary/arithmetic conversions in MPC protocols

23
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with any corruption setting, and have in particular been used with the SPDZ protocol [DPSZ12],
which provides malicious security in the dishonest majority setting. Later works have given more
efficient ways of generating daBits [AOR+19, RST+19, BST20], both with SPDZ and in the
honest majority setting.

Another recent work uses function secret sharing [BGI15] for binary/arithmetic conversions
and other operations such as comparison [BGI19]. This approach leads to a fast online phase with
just one round of interaction and optimal communication complexity. However, it requires either
a trusted setup, or an expensive preprocessing phase which has not been shown to be practical
for malicious adversaries.

Limitations of daBits. Using daBits, it is relatively straightforward to convert between two
computation domains. However, we found that in application-oriented settings the benefit of daBits
alone is relatively limited. More concretely, if daBits are used to compute a comparison between
two numbers that are secret-shared in ZM , for large arithmetic modulus M , the improvement is a
factor of three at best. The reason for this is that the cost of creating the required daBits comes
quite close to computing the comparison entirely in ZM . This limitation seems to be inherent
with any approach based on daBits, since a daBit requires generating a random shared bit in ZM .
The only known way of doing this with malicious security require first performing a multiplication
(or squaring) in ZM on a secret value [DFK+06, DEF+19]. However, secret multiplication is an
expensive operation in MPC, and doing this for every daBit gets costly.

Our Contributions

In this paper, we present a new approach to converting between binary and arithmetic representa-
tions in MPC. Our method is general, and can be applied to a wide range of corruption settings,
but seems particularly well-suited to the case of dishonest majority with malicious security such
as SPDZ [DPSZ12, DKL+13], over the arithmetic domain Zp for large prime p, or the ring
Z2k [CDE+18]. Unlike previous works, we do not generate daBits, but instead create what we call
extended daBits (edaBits), which avoid the limitations above. These allow conversions between
arithmetic and binary domains, but can also be used directly for certain non-linear functions such
as truncations and comparisons. We found that, for two- and three-party computation, edaBits
allow to reduce the communication cost by up to two orders of magnitude and the wall clock
time by up to a factor of 50 while both the inputs as well as the output are secret-shared in an
arithmetic domain.

Below we highlight some more details of our contribution.

Extended daBits.

An edaBit consists of a set of m random bits (rm−1, . . . , r0), secret-shared in the binary domain,
together with the value r =

∑m−1
i=0 ri2

i shared in the arithmetic domain. We denote these sharings
by [rm−1]2, . . . , [r0]2 and [r]M , for arithmetic modulus M . Note that a daBit is simply an edaBit
of length m = 1, and m daBits can be easily converted into an edaBit with a linear combination
of the arithmetic shares. We show that this is wasteful, however, and edaBits can in general be
produced much more efficiently than m daBits, for values of m used in practice.
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Efficient malicious generation of edaBits.

Let us first consider a simple approach with semi-honest security. If there are n parties, we have
each party locally sample a value ri ∈ ZM , then secret-shares ri in the arithmetic domain, and
the bits of ri in the binary domain. We refer to these sharings as a private edaBit known to Pi.
The parties can combine these by computing

∑
i r

i in the arithmetic domain, and executing n− 1
protocols for addition in the binary domain, with a cost O(nm) AND gates. Compared with
using daBits, which costs O(m) secret multiplications in ZM , this is much cheaper if n is not too
large, by the simple fact that AND is a cheaper operation than multiplication in MPC.

To extend this naive approach to the malicious setting, we need a way to somehow verify
that a set of edaBits was generated correctly. Firstly, we extend the underlying secret-sharing
scheme to one that enforces correct computations on the underlying shares. This can be
done, for instance, using authenticated secret-sharing with information-theoretic MACs as in
SPDZ [DPSZ12]. Secondly, we use a cut-and-choose procedure to check that a large batch of
edaBits are correct. This method is inspired by previous techniques for checking multiplication
triples in MPC [BLN+15, FKOS15, FLNW17]. However, the case of edaBits is much more
challenging to do efficiently, due to the highly non-linear relation between sharings in different
domains, compared with the simple multiplicative property of triples (shares of (a, b, c) where
c = ab).

Cut-and-choose approach. Our cut-and-choose procedure begins as in the semi-honest
case, with each party Pi sampling and inputting a large batch of private edaBits of the form
(rim−1, . . . , r

i
0), r

i. We then run a verification step on Pi’s private edaBits, which begins by
randomly picking a small subset of the edaBits to be opened and checked for correctness. Then,
the remaining edaBits are shuffled and put into buckets of fixed size B. The first edaBit in each
bucket is paired off with every other edaBit in the bucket, and we run a checking procedure
on each of these pairs. To check a pair of edaBits r, s, the parties can compute r + s in both
the arithmetic and binary domains, and check these open to the same value. If all checks pass,
then the parties take the first private edaBit from every bucket, and add this to all the other
parties’ private edaBits, created in the same way, to obtain secret-shared edaBits. Note that to
pass a single check, the adversary must have corrupted both r and s so that they cancel each
other out; therefore, the only way to successfully cheat is if every bucket with a corrupted edaBit
contains only corrupted edaBits. By carefully choosing parameters, we can ensure that it is very
unlikely the adversary manages to do this. For example, with 40-bit statistical security, from the
analysis of [FLNW17], we could use bucket size B = 3 when generating more than a million sets
of edaBits.

While the above method works, it incurs considerable overhead compared with similar
cut-and-choose techniques used for multiplication triples. This is because in every pairwise
check within a bucket, the parties have to perform an addition of binary-shared values, which
requires a circuit with O(m) AND gates. Each of these AND gates consumes an authenticated
multiplication triple over Z2, and generating these triples themselves requires additional layers
of cut-and-choose and verification machinery, when using efficient protocols based on oblivious
transfer [NNOB12, FKOS15, WRK17b].

To reduce this cost, our first optimization is as follows. Recall that the check procedure
within each bucket is done on a pair of private values known to one party, and not secret-shares.
This means that when evaluating the addition circuit, it suffices to use private multiplication
triples, which are authenticated triples where the secret values are known to party Pi. These
are much cheaper to generate than fully-fledged secret-shared triples, although still require a
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verification procedure based on cut-and-choose. To further reduce costs, we propose a second,
more significant optimization.

Cut-and-choose with faulty check circuits. Instead of using private triples that have been
checked separately, we propose to use faulty private triples, that is, authenticated triples that
are not guaranteed to be correct. This immediately raises the question, how can the checking
procedure be useful, if the verification mechanism itself is faulty? The hope is that if we randomly
shuffle the set of triples, it may still be hard for an adversary who corrupts them to ensure that
any incorrect edaBits are canceled out in the right way by the faulty check circuit, whilst any
correct edaBits still pass unscathed. Proving this, however, is challenging. In fact, it seems to
inherently rely on the structure of the binary circuit that computes the check function. For
instance, if a faulty circuit can cause a check between a good and a bad edaBit to pass, and the
same circuit also causes a check between two good edaBits to pass, for some carefully chosen
inputs, then this type of cheating can help the adversary.

To rule this out, we consider circuits with a property we call weak additive tamper-resilience,
meaning that for any tampering that flips some subset of AND gate outputs, the tampered circuit
is either incorrect for every possible input, or it is correct for all inputs. This notion essentially
rules out input-dependent failures from faulty multiplication triples, which avoids the above
attack and allows us to simplify the analysis.

Weak additive tamper-resilience is implied by previous notions of circuits secure against
additive attacks [GIP+14], however, these constructions are not practical over F2. Fortunately,
we show that the standard ripple-carry adder circuit satisfies our notion, and suffices for creating
edaBits in Z2k . However, the circuit for binary addition modulo a prime, which requires an extra
conditional subtraction, does not satisfy this. Instead, we adapt the circuit over the integers to
use in our protocol modulo p, which allows us to generate length-m edaBits for any m < log p;
this turns out to be sufficient for most applications.

With this property, we can show that introducing faulty triples does not help an adversary to
pass the check, so we can choose the same cut-and-choose parameters as previous works on triple
generation, while saving significantly in the cost of generating our triples used in verification.
The bulk of our technical contribution is in analysing this cut-and-choose technique.

Silent OT-friendly.

Another benefit of our approach is that we can take advantage of recent advances in oblivious
transfer (OT) extension techniques, which allow to create a large number of random, or correlated,
OTs, with very little interaction [BCG+19b]. In practice, the communication cost when using
this “silent OT” method can be more than 100x less than OT extension based on previous
techniques [IKNP03], with a modest increase in computation [BCG+19a]. In settings where
bandwidth is expensive, this suits our protocol well, since we mainly use MPC operations in
F2 to create edaBits, and these are best done with OT-based techniques. This reduces the
communication of our edaBits protocol by an O(λ) factor, in practice cutting communication by
50–100x, although we have not yet implemented this optimization.

Note that it does not seem possible to exploit silent OT with previous daBit generation
methods such as by Aly et al. [AOR+19]. This is due to the limitation mentioned previously that
these require a large number of random bits shared in Zp, which we do not know how to create
efficiently using OT.
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Applications: improved conversions and primitives.

edaBits can be used in a natural way to convert between binary and arithmetic domains, where
each conversion of an m-bit value uses one edaBit of length m, and a single m-bit addition circuit.
(In the mod-p case, we also need one “classic” daBit per conversion, to handle a carry computation.)
However, for many primitives such as secure comparison, equality test and truncation, a better
approach is to exploit the edaBits to perform the operation without doing an explicit conversion.
In the Z2k case, a similar approach was used previously when combining the SPDZ2k protocol
with daBit-style conversions [DEF+19]. We adapt these techniques to work with edaBits, in both
Z2k and Zp. As an additional contribution, more at the engineering level, we take great care in
all our constructions to ensure they work for both signed and unsigned data types. This was
not done by previous truncation protocols in Z2k based on SPDZ [DEF+19, DEK19], which only
perform a logical shift, as opposed to the arithmetic shift that is needed to ensure correctness on
signed inputs.

Handling garbled circuits. Our conversion method can also be extended to convert binary
shares to garbled circuits, putting the ‘Y’ into ‘ABY’ and allowing constant round binary
computations. In this paper, we do not focus on this, since the technique is exactly the same as
described in [AOR+19]; when using binary shares based on TinyOT MACs, conversions between
binary and garbled circuit representation comes for free, based on the observation from Hazay et
al. [HSS17] that TinyOT sharings can be locally converted into shares of a multi-party garbled
circuit.

Performance evaluation.

We have implemented our protocol in all relevant security models and computation domains as
provided by MP-SPDZ [Kel20], and we found it reduces communication both in microbenchmarks
and application benchmarks when comparing to a purely arithmetic or a daBit-based implemen-
tation. More concretely, for secure comparisons the reduction in communication lies between a
factor of 2 and 60 going from purely arithmetic to edaBits, and between 2 and 25 from daBits to
edaBits. Improvements in throughput per second are slightly lower but still as high as a factor of
47. Generally, the improvements are higher for dishonest-majority computation and semi-honest
security when considering black-box approaches such as purely arithmetic computation or using
daBits. However, semi-honest computation allows for non-black-box approaches [MR18, DSZ15]
that are as fast as ours.

We have also compared our implementation with the most established software for mixed
circuits [BDK+18] and found that it still improves up to a factor of two for a basic benchmark in
semi-honest two-party computation. However, they maintain an advantage if the parties are far
apart (100 ms RTT) due to the usage of garbled circuits.

Finally, a comparison with a purely arithmetic implementation of deep-learning inference
shows an improvement of up to a factor six in terms of both communication and wall clock time.

3.2 Related Work

A (classic) daBit is defined as a pair ([b]M , [b]2), where b ∈ {0, 1} is a random bit. We make use
of these daBits to convert one single bit from the binary world to the arithmetic world. Classic
daBits can be preprocessed as described in [AOR+19, RW19, RST+19, DEF+19], for example.
First, we review at a very high level how these methods work. Then, in Section 3.2, we present
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the explicit protocols we use in our implementation for generating daBits, and their relation to
the works we mentioned above.

Marbled Circuits [RW19].

Each party proposes a set of daBits, whose consistency is checked via cut-and-choose techniques.
Then these bits are XORed together to output the final daBits. This method works for both
M = p and M = 2k with minor modifications.

Zaphod [AOR+19].

First arithmetic shares of random bits are produced. Then these are converted to binary shares
by observing that the overflow bits in the arithmetic world are rather predictable if the shares are
only between two parties. The resulting binary-shared bits may not be correct, so a consistency
check is put in place. This works by taking a linear random combination of the bits in both
worlds and checking its consistency (in the arithmetic world the LSB must be extracted, which
requires an extra sub-protocol). This method is suited for M = p.

Actively Secure Setup for SPDZ [RST+19].

This work considers a much more general concept of daBits in which bits can be shared modulo
many different primes. The layout of the protocol is similar to the one from Zaphod: Random
bits are generated modulo a large-enough prime, and these are converted locally to shares over
the integers. Then these are converted to shares modulo each desired prime, and their correctness
is checked via linear combinations. Since in [RST+19] the odd primes may be small, the authors
have to consider a variant of the subset sum problem to argue security. When instantiating
their method with 2 and our large prime p, we notice that their methods essentially lead to an
optimized version of Zaphod (in fact, when the odd primes are large enough one can avoid the
subset-sum assumption entirely by masking the upper bits as done in Zaphod).

SPDZ2k [DEF+19].

The tools presented in this work are enough to produce daBits, although the authors do not
consider this concept explicitly. In a nutshell, this approach would follow the exact same template
as in Zaphod, making use of the fact that in SPDZ2k, the parties can obtain binary additive
shares of an arithmetically-shared bit b by simply considering the LSB of their shares. Compare
this to the field case, where the overflow bit mod p must be predicted and corrected. Furthermore,
one can also observe that in SPDZ2k opening the LSB of an arithmetically shared value is also
efficient and does not require any overhead with respect to opening the full value (in fact, it is
more efficient), unlike the field case.

Our daBit Implementation

Our daBit generation over a prime p is similar to the one considered in Zaphod [AOR+19].
However, we modify the first step in which arithmetic shares of a random bit are produced.
Instead of using the random-bit generation from SPDZ, we let each party share an arithmetic bit
and then these will be added to produce the desired bit. This is presented in Fig. 3.1. The result
is trivially correct if all parties are honest. Furthermore, as the number of participants is larger
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Generation of faulty daBits

Pre:

• FABB

• Threshold t (maximal number of corrupted parties)

Post: supposed daBit ([b]M , [b]2)

1. t+ 1 parties (w.l.o.g P1, . . . , Pt+1) each input a bit bi into FABB both mod M and
mod 2, resulting in ([bi]M , [bi]2) for i = 1, . . . , t+ 1.

2. All parties compute ([b]M , [b]2) = ([
⊕t+1

i=1 bi]M , [
⊕t+1

i=1 bi]2). The first half can be
computed using the fact that a ⊕ b = a + b − 2ab for a, b ∈ {0, 1} ⊂ Z while the
second is straight-forward given that a⊕ b = a+ b for a, b ∈ Z2.

Figure 3.1: Protocol to generate supposed daBits in any domain

than the number of corrupted parties, the result is a random bit from the view of the adversary
in that case. The protocol costs t multiplications in FABB.

We also notice that if the arithmetic modulus is a power of two, it is easy to construct a daBit
from a random bit by having the parties input the least significant bit of their share to the binary
computation and then computing the XOR without communication. In other words, parties can
locally convert an additive secret sharing modulo 2k locally. Let bi denote an additive share of b
modulo 2k held by Pi. Then, bi mod 2 is a valid share of b modulo 2:∑

(bi mod 2) mod 2 =
(∑

bi mod 2k
)
mod 2 = b mod 2.

This is precisely how Zaphod converts from modulo p to modulo 2, but they do not consider the
modulo 2k case. We present this optimization in Fig. 3.2. Furthermore, as a bonus, we observe
that in the honest majority setting where no MAC are required this procedure can be made much
simpler, and we present this in Fig. 3.3

Note that our protocol for SPDZ2k is more general than the one proposed by Damgård et al.
[DEF+19] because theirs only works if the binary part of FABB is implemented by SPDZ2k for
k = 1, which has the disadvantage that computing an AND has cost quadratic in the security
parameter s whereas the protocol by Frederiksen et al. [FKOS15] for example has linear cost in
that regard while achieving the same security properties.

In our construction two things must be checked to prevent cheating from an active adversary.
First, as in Zaphod, parties may cause the final daBit to be inconsistent, in the sense that the
arithmetic and binary parts may contain different bits. Second, unlike the construction from
Zaphod, it is not guaranteed that the value each party inputs is indeed a bit.

To fix the first issue we simply resort to the same technique as in Zaphod of computing
s random linear combinations modulo two in both domains, after which s daBits have to be
discarded for privacy. This method has asymptotically no overhead in terms of daBits being
produced because the batch can be arbitrarily large. On the other hand, to fix the second issue,
we check that the arithmetic part of each of the final daBits contains indeed a bit, which can be
done by checking x(1− x) = 0 with x being the arithmetic share. This adds one multiplication
per daBit. Furthermore, we notice that we are checking that the final daBit contains a bit, rather
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SPDZ2k daBit generation

Pre:

1. FABB with the arithmetic part based on SPDZ2k

2. Total number of parties n

Post: supposed daBit ([b]2k , [b]2) where [b]2k is guaranteed to be in {0, 1}

1. The parties generate a random bit [b]2k as described by Damgård et al. [DEF+19].

2. Let bi denote the additive share of b held by Pi, that is b =
∑n

i=1 bi mod 2k. Pi

inputs bi mod 2 to the binary part of FABB.

3. The parties compute [b]2 =
⊕n

i=1[bi mod 2]2.

Figure 3.2: Protocol to generate supposed daBits with SPDZ2k

daBit generation modulo in Z2k without MAC

Pre: FABB where the arithmetic part is based on purely on additive or replicated secret
sharing and the binary part uses the same secret sharing scheme

Post: supposed daBit ([b]2k , [b]2) where [b]2k is guaranteed to be in {0, 1}

1. The parties generate a random bit [b]2k in the arithmetic part of FABB.

2. Let {b1i , . . . , bmi } denote the shares of b held by Pi. Pi computes {b1i mod
2, . . . , bmi mod 2} and uses them as shares for the binary part of FABB.

Figure 3.3: Protocol to generate supposed daBits in protocols module 2k without MAC

than checking that each of the original daBits input by each party contain a bit. This is more
efficient and it is also secure, as there is at least one honest party who inputs a bit, and therefore
the XOR operation becomes an oblivious selection between x or 1− x, where x is the XOR of
the arithmetic shares of the adversary. If the result is a bit, then x was a bit to begin with.

Fig. 3.4 shows our adapted checking protocol. Aly et al. argue that any incorrect daBit would
lead to a 1/2 probability of failure in step 1c, hence s independent repetitions would fail at least
once with overwhelming probability. They also argue that discarding s daBits after the checks
protects the secrecy of the remaining ones.

Paper Outline

We begin in Section 3.3 with some preliminaries. In Section 3.4, we introduce edaBits and show
how to instantiate them, given a source of private edaBits. We then present our protocol for
creating private edaBits in Section 3.5, based on the new cut-and-choose procedure. Then, in
Sections 3.5–3.5 we describe abstract cut-and-choose games that model the protocol, and carry out
a formal analysis. Then in Section 3.6 we show how to use edaBits for higher-level primitives like
comparison and truncation. Finally, in Section 3.8, we analyze the efficiency of our constructions
and present performance numbers from our implementation.
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daBit check

Pre: m supposed bits ([bi]M , [bi]2) in FABB where m > s for statistical security parameter
s

Post: m− s verified daBits

1. The parties do the following s times:

a) Generate m fresh public random bits ri

b) Compute [
⊕m

i=1 ri · bi]2 and open it.

c) Compute [r] := [
∑m

i=1 ri · bi]M .

• If M = 2k, call r′ = open([r · 2k−1]2k) and compute r′/2k−1 = (r · 2k−1 mod
2k)/(2k−1) = r mod 2.

• If M = p, call r′ = open([r]p + 2 ·
∑s+1

i=0 [ci]p · 2i) with random bits [ci]p and
compute r mod 2 = r′ mod 2.

Abort if r mod 2 does not match the bit from the previous step.

2. Discard ([bi]M , [bi]2) for i ∈ [m− s+ 1,m].

3. For i ∈ [1,m− s], compute and open [bi · (1− bi)]M . Abort if any value is not zero.a

aThis check may be omitted if M = 2k and the bit generation via SPDZ2k from Fig. 3.2 is used.

Figure 3.4: Protocol to check classic daBits

3.3 Preliminaries

In this work we consider three main algebraic structures: ZM for M = p where p is a large prime,
M = 2k where k is a large integer, and Z2.

Arithmetic Black-Box

We model MPC via the arithmetic black box model (ABB), which is an ideal functionality in the
universal composability framework [Can01]. This functionality allows a set of n parties P1, . . . , Pn

to input values, operate on them, and receive outputs after the operations have been performed.
Typically (see for example Rotaru and Wood [RW19]), this functionality is parameterized by a
positive integer M , and the values that can be processed by the functionality are in ZM , with
the native operations being addition and multiplication modulo M .

In this work, we build on the basic ABB to construct edaBits, which are used in our higher-level
applications. We therefore consider an extended version of the arithmetic black box model that
handles values in both binary and arithmetic domains. First, within one single instance of the
functionality we can have both binary and arithmetic computations, where the latter can be either
modulo p or modulo 2k. Furthermore, the functionality allows the parties to convert a single
binary share into an arithmetic share of the same bit (but not the other way round). We will use
this limited conversion capability to bootstrap to our fully-fledged edaBits, which can convert
larger ring elements in both directions, and with much greater efficiency. The details of the
functionality are presented in Fig. 3.5.
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Functionality FABB

Input: On input (Input, Pi, type, id, x) from Pi and (Input, Pi, type, id) from all other parties,
with id a fresh identifier, type ∈ {binary, arithmetic} and x ∈ Z2 or x ∈ ZM (depending
on type), store (type, id, x).

Linear Combination: On input (LinComb, type, id, (idj)
m
j=1, type, c, (cj)

m
j=1), where each

idj is stored in memory and c, cj ∈ Z2 if type = binary or c, cj ∈ ZM if type =
arithmetic, retrieve ((type, id1, x1), . . . , (type, idm, xm)), compute y = c +

∑
j xj · cj

modulo 2 if type = binary and modulo M if type = arithmetic, and store (type, id, y).

Multiply: On input (Mult, type, id, id1, id2) from all parties (where id1, id2 are present
in memory), retrieve (type, id1, x), (type, id2, y), compute z = x · y modulo 2 if
type = binary and modulo M if type = arithmetic, and store (id, z).

From Binary to Arithmetic: On input (ConvertB2A, id, id′) from all parties, retrieve
(binary, id′, x) and store (arithmetic, id, x).

Output: On input (Output, type, id) from all honest parties (where id is present in memory),
retrieve (type, id, y) and output it to the adversary. Wait for an input from the
adversary; if this is Deliver then output y to all parties, otherwise output Abort.

Figure 3.5: Ideal functionality for the MPC arithmetic black box modulo 2 and modulo M , where
M is either 2k or p.

Notation.

As shorthand, we write [x]2 to refer to a secret bit x that has been stored by the functionality
FABB, and similarly [x]M for a value x ∈ ZM with M ∈ {p, 2k}. We overload the operators +
and ·, writing for instance, [y]M = [x]M · [y]M + c to denote that the secret values x and y are
first multiplied using the Mult command, and then the public constant c is added using LinComb.

Instantiations.

There are several ways to instantiate the basic commands of this functionality, depending on
the adversarial setting. In the honest majority setting one can use for example Shamir secret-
sharing or replicated-secret sharing [DN07, BLW08], which can be either passively or actively
secure [FLNW17]. In the dishonest majority setting, additive secret-sharing is typically used.
For the case of active security, we can combine this with information-theoretic MACs to enforce
correct opening of shared values [DPSZ12, DKL+13, CDE+18, WRK17b]. Furthermore, the
conversions between the arithmetic bits and binary sharings can be implemented via daBits, as
shown in [AOR+19, RW19, RST+19]. We present the protocol for daBit generation in Fig. 3.1.

Since all of these are linear secret-sharing schemes, when secret values inside FABB represent
sharings under such a scheme, the LinComb command of FABB can be implemented by simply
computing the same linear combination on the shares. The Mult command is usually realized by
preprocessing multiplication triples, that is, shared values [a]M , [b]M , [c]M where a, b are uniformly
random in ZM and c = a · b. Given such a triple, two secret values [x]M , [y]M can be multiplied
by first opening x+ a and y + b, and then computing
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Functionality FedaBits

The functionality is parametrized by M ∈ {2k, p} and m ≤ logM . It has the same features
as FABB, together with the following command:

Create edaBits: On input (edabit, idM , id2) from all parties, sample (r0, . . . , rm−1) ∈ Zm
2

uniformly at random and store (binary, id2, rj) for j = 0, . . . ,m − 1, together with
(arithmetic, idM , r), where r =

∑m−1
j=0 rj2

j .

Figure 3.6: Ideal functionality for extended daBits.

[z]M = (x+ a)(y + b)− (x+ a)[b]M − (y + b)[a]M + [c]M

which can be computed as a linear operation in the secret values, producing z = xy.
We remark that preprocessing triples is often the most expensive part of the entire MPC

protocol, especially in the dishonest majority setting. In the arithmetic case, these can be produced
using linearly or somewhat homomorphic encryption [DPSZ12, KPR18], oblivious linear function
evaluation [DGN+17] or, with a higher communication cost, oblivious transfer [KOS16, CDE+18].
In the binary case with M = 2, techniques based on oblivious transfer are usually fastest, and
these are known as the TinyOT family of protocols [NNOB12, FKOS15, WRK17a, WRK17b].

3.4 Extended daBits

The main primitive of our work is the concept of extended daBits, or edaBits. Unlike a daBit,
which is a random bit b shared as ([b]M , [b]2), an edaBit is a collection of bits (rm−1, . . . , r0) such
that (1) each bit is secret-shared as [ri]2 and (2) the integer r =

∑m
i=0 ri2

i is secret-shared as
[r]M .

One edaBit of length m can be generated from m daBits, and in fact, this is typically the first
step when applying daBits to several non-linear primitives like truncation. Instead of following
this approach, we choose to generate the edaBits—which is what is needed for most applications
where daBits are used—directly, which leads to a much more efficient method and ultimately
leads to more efficient primitives for MPC protocols.

At a high level, our protocol for generating edaBits proceeds as follows. Let us think initially
of the passively secure setting. Each party Pi samples m random bits rii,0, . . . , r

i
i,m−1, and secret-

shares these bits towards the parties over Z2, as well as the integer ri =
∑m−1

j=0 ri,j2
j over ZM .

Since each edaBit is known by one party, these edaBits must be combined to get edaBits where no
party knows the underlying values. We refer to the former as private edaBits, and to the latter as
global edaBits. The parties combine the private edaBits by adding them together: the arithmetic
shares can be simply added locally as [r]M =

∑n
i=1[ri]M , and the binary shares can be added via

an n-input binary adder. Some complications arise, coming from the fact that the ri values may
overflow mod p. Dealing with this is highly non-trivial, and we will discuss this in detail in the
description of our protocol in Section 3.4. However, before we dive into our construction, we will
first present the functionality we aim at instantiating. This functionality is presented in Fig. 3.6.
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Functionality for Private Extended daBits

We also use a functionality FedaBitsPriv, which models a private set of edaBits that is known to
one party. This functionality is defined exactly as FedaBits, except that the bits r0, . . . , rm−1 are
given as output to one party; additionally, if that party is corrupt, the adversary may instead
choose these bits.

The heaviest part of our contribution lies on the instantiation of this functionality, which we
postpone to Section 3.5.

From Private to Global Extended daBits

As we discussed already at the beginning of this section, one can instantiate FedaBits using
FedaBitsPriv, by combining the different private edaBits to ensure no individual party knows the
underlying values. Small variations are required depending on whether M = 2k or M = p, for
reasons that will become clear in a moment.

Now, to provide an intuition on our protocol, assume that the ABB is storing ([ri]M , [ri,0]2, . . . , [ri,m−1]2)
for i = 1, . . . , n, where party Pi knows (ri,0, . . . , ri,m−1) and ri =

∑m−1
j=1 ri,j2

j . The parties can
add their arithmetic shares to get shares of r′ =

∑n
i=1 ri mod M , and they can also add their

binary shares using a binary n-input adder, which results in shares of the bits of r′, only without
modular reduction.

Since we want to output a random m-bit integer, the parties need to remove the bits of r′

beyond the m-th bit from the arithmetic shares. We have binary shares of these carry bits as part
of the output from the binary adder, so using log(n) calls to ConvertB2A of FABB, each of which
costs a (regular) daBit, we can convert these to the arithmetic world and perform the correction.
Notice that for the case of M = 2k, m = k, we can omit this conversion since the arithmetic
shares are already reduced.

Even without the correction above, the least significant m bits of r′ still correspond to
r0, . . . , rm−1. This turns out to be enough for some applications because it is easy to “delete” the
most significant bit in Z2k by multiplying with two. We call such an edaBit loose as apposed to a
strict one as defined in Fig. 3.6.

One must be careful with potential overflows modulo M . If M = 2k, then any overflow bits
beyond the k-th position can simply be discarded. On the other hand, if M = p, as long as
m < log p then we can still subtract the log n converted carries from the arithmetic shares to
correct for any overflow modulo p. The protocol is given in Fig. 3.7, and the security stated in
Theorem 3.1 below, whose proof follows in a straightforward manner from the correctness of the
additions in the protocol. In the protocol, nBitADD denotes an n-input binary adder on m-bit
inputs. This can be implemented naively in a circuit with < (m+ log n) · (n− 1) AND gates.

Theorem 3.1. Protocol ΠedaBits UC-realizes functionality FedaBits in the (FedaBitsPriv,FB2A)-hybrid
model.

3.5 Instantiating Private Extended daBits

Our protocol for producing private edaBits is fairly intuitive. The protocol begins with each
party inputting a set of edaBits to the ABB functionality. However, since a corrupt party may
input inconsistent edaBits (that is, the binary part may not correspond to the bit representation
of the arithmetic part), some extra checks must be set in place to ensure correctness. To this
end, the parties engage in a consistency check, where each party must prove that their private
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Protocol ΠedaBits

Pre:

• Access to FedaBitsPriv.

• If M = p, then 0 < m < log(p).

Post: The parties get ([r]M , [ri]2, . . . , [ri]2) where r =
∑m−1

j=1 ri2
j and the bits are uniform

to the adversary.

1. The parties call the functionality FedaBitsPriv to get random shares
([ri]M , [ri,0]2, . . . , [ri,m−1]2), for i = 1, . . . , n. Party Pi additionally learns ri,j
and ri =

∑m−1
j=1 ri,j2

j .

2. The parties invoke FABB to compute [r′]M =
∑n

i=1[ri]M .

3. The parties invoke FABB to compute nBitADD (([r1,j ]2)j , . . . , ([rn,j ]2)j), obtaining
m+ log n bits ([b0]2, . . . , [bm+log(n)−1]2).

4. Call ConvertB2A from FABB to convert [bj ]2 7→ [bj ]M for j = m, . . . ,m+ log(n)− 1.
If M = 2k, values bj for j > k do not need to be converted, and for the sake of
notation, we denote [bj ]2k := 0 for j > k.

5. Use FABB to compute [r]M = [r′]M − 2m
∑log(n)−1

j=0 [bj+m]M2j .

6. Output ([r]M , [b0]2, . . . , [bm−1]2).

Figure 3.7: Protocol for generating global edaBits from private edaBits.

edaBits were created correctly. We do this with a cut-and-choose procedure, where first a random
subset of a certain size of edaBits is opened, their correctness is checked, and then the remaining
edaBits are randomly placed into buckets. Within each bucket, all edaBits but the first one are
checked against the first edaBit by adding the two in both the binary and arithmetic domains,
and opening the result. With high probability, the first edaBit will be correct if all the checks
pass.

This method is based on a standard cut-and-choose technique for verifying multiplication
triples, used in several other works [FKOS15, FLNW17]. However, the main difference in our case
is that the checking procedure for verifying two edaBits within a bucket is much more expensive:
checking two multiplication triples consists of a simple linear combination and openeing, whereas
to check edaBits, we need to run a binary addition circuit on secret-shared values. This binary
addition itself requires O(m) multiplication triples to verify, and the protocol for producing these
triples typically requires further cut-and-choose steps to ensure correctness and security.

In this work, we take a different approach to reduce this overhead. First, we allow some of the
triples used to perform the check within each bucket to be incorrect, which saves in resources as a
triple verification step can be omitted. Furthermore, we observe that these multiplication triples
are intended to be used on inputs that are known to the party proposing the edaBits, and thus it
is acceptable if this party knows the bits of the underlying triples as well. As a result, we can
simplify the triple generation by letting this party sample the triples together with the edaBits,
which is much cheaper than letting the parties jointly sample (even incorrect) triples. Note that



36 CHAPTER 3. EDABITS: MIXED-CIRCUIT CONVERSIONS FOR MPC

Protocol ΠedaBitsPriv

Pre: FABB with modulus M , length parameter m ∈ Z with m ≤ log2M
Post: Batch of N shared edaBits {([rj ]M , [rj,0]2, . . . , [rj,m−1]2)}Nj=1, where party Pi knows
the underlying bits.

1. Pi samples rj,0, . . . , rj,m−1 ∈ Z2, for j = 1, . . . , NB + C, and inputs these to FABB

in Z2.

2. Pi computes rj =
∑m−1

i=0 rj,i2
i and inputs rj ∈ ZM to FABB.

3. Pi samples (N(B − 1) + C ′)m random bit triples and inputs these to FABB.

4. The parties run the CutNChoose procedure to check the consistency of these edaBits.
If the check passes, then the parties obtain N edaBits. Otherwise, they abort.

Figure 3.8: Protocol for producing private extended daBits.

even though the triples may be incorrect, they must still be authenticated (in practice, with
MACs) by the party who proposes them so that the errors cannot be changed after generating
the triples.

To model this, we extend the arithmetic black box model with the following commands, for
generating a private triple, and for faulty multiplication, which uses a previously stored triple to
do a multiplication.

Input Triple. On input (Triple, id, a, b, c) from Pi, where id is a fresh binary identifier and
a, b, c ∈ {0, 1}, store (Triple, i, id, a, b, c).

Faulty Multiplication. On input (FaultyMult, id, id1, id2, idT , i) from all parties (where id1, id2
are present in memory), retrieve (binary, id1, x), (binary, id2, y), (Triple, i, idT , a, b, c), compute
z = x · y ⊕ (c⊕ a · b), and store (id, z).

The triple command can be directly instantiated using Input from FABB, while FaultyMult
uses Beaver’s multiplication technique with one of these triples. Note that in Beaver-based binary
multiplication, it is easy to see that any additive error in a triple leads to exactly the same error
in the product.

Now we are ready to present our protocol to preprocess private edaBits, described in Fig. 3.8.
The party Pi locally samples a batch of edaBits and multiplication triples, then inputs these
into FABB. The parties then run the CutNChoose subprotocol, given in Fig. 3.9, to check that
the edaBits provided by Pi are consistent. The protocol outputs a batch of N edaBits, and is
parametrized by a bucket size B, and values C,C ′ which determine how many edaBits and triples
are opened, respectively. BitADDCarry denotes a two-input binary addition circuit with a carry
bit, which must satisfy the weakly additively tamper resilient property given in the next section.
As we will see later, this can be computed with m AND gates and depth m− 1.1

The cut-and-choose protocol starts by using a standard coin-tossing functionality, FRand, to
sample public random permutations used to shuffle the sets of edaBits and triples. The coin-tossing

1This circuit is rather naive, and in fact there are logarithmic depth circuits with a greater number of AND
gates. However, as we will see later in the section, it is important for our security proof to use specifically these
naive circuits to obtain the tamper-resilient property. Furthermore, they are only used in the preprocessing phase,
so the overhead in round complexity is insignificant in practice.
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Procedure CutNChoose

Pre: A batch of (NB + C) shared edaBits of the form {([r]M , [r0]2, . . . , [rm−1]2)} and a
batch of (N · (B − 1) ·m+ C ′ ·m) triples, all stored in FABB, where party Pi knows the
underlying bits of the edaBits and the triples.
Post: N verified edaBits
The parties do the following:

1. Using FRand, sample two public random permutations and use these to shuffle the
edaBits and the triples.

2. Open the first C of the shuffled edaBits in both worlds, and the first C ′ ·m triples.
Abort if any of the edaBits or the triples are inconsistent.

3. Place the remaining edaBits into buckets of size B and the triples into buckets of size
(B − 1) ·m.

4. For each bucket, select the first edaBit ([r]M , [r0]2, . . . , [rm−1]2), and for every other
edaBit ([s]M , [s0]2, . . . , [sm−1]2) in the same bucket, perform the following check:

a) Let [r + s]M = [r]M + [s]M .

b) Let ([c0]2, . . . , [cm]2) = BitADDCarry([r0]2, . . . , [rm−1]2, [s0]2, . . . , [sm−1]2), us-
ing the FaultyMult command to evaluate each AND gate.

c) Convert [cm]2 7→ [cm]M with ConvertB2A.

d) Let [c′]M = [r+s]M−2m ·[cm]M . Open c′ and the corresponding bits c0, . . . , cm−1

from the binary world, and check that c′ =
∑m−1

i=0 ci2
i.

5. If all the checks pass, output the first edaBit from each of the N buckets.

Figure 3.9: Cut-and-choose procedure to check correctness of input edaBits.

can be implemented, for example, with hash-based commitments in the random oracle model.
Then the first C edaBits and C ′m triples are opened and tested for correctness; this is to ensure
that not too large a fraction of the remaining edaBits and triples are incorrect. Then the edaBits
are divided into buckets of size B, together with B − 1 sets of m triples in each bucket. Then,
the top edaBit from each bucket is checked with every other edaBit in the bucket by evaluating a
binary addition circuit using the triples, and comparing the result with the same addition done
in the arithmetic domain. Each individual check in the CutNChoose procedure takes two edaBits
of m bits each, and consumes m triples as well as a single regular daBit, needed to convert the
carry bit from the addition into the arithmetic domain. Note that when working with modulus
M = 2k, if m = k then this conversion step is not needed.

Weakly Tamper-Resilient Binary Addition Circuit

To implement the BitADDCarry circuit we use a ripple-carry adder, which computes the carry bit
at every position with the following equation:

ci+1 = ci ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)),∀i ∈ {0,m− 1} (3.1)
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where c0 = 0, and xi, yi are the i-th bits of the two binary inputs. It then outputs zi = xi⊕yi⊕ ci,
for i = 0, . . . ,m − 1, and the last carry bit cm. Note that this requires m AND gates and has
linear depth.

Below we define the tamper-resilient property of the circuit that we require. We consider an
adversary who can additively tamper with a binary circuit by inducing bit-flips in the output
wires of any AND gate.

Definition 3.1. A binary circuit C : F2m
2 → Fm+1

2 is weakly additively tamper resilient, if given
any tampered circuit C∗, obtained by additively tampering C, one of the following holds:

1. ∀(x, y) ∈ Fm
2 : C(x, y) = C∗(x, y).

2. ∀(x, y) ∈ Fm
2 : C(x, y) ̸= C∗(x, y).

Intuitively, this says that the tampered circuit is either incorrect on every possible input,
or functionally equivalent to the original circuit. In our protocol, this property restricts the
adversary from being able to pass the check with a tampered circuit with bad edaBits as well as
the same circuit with good edaBits. It ensures that if any multiplication triple is incorrect, then
the check at that position would only pass with either a good edaBit, or a bad edaBit (but not
both).

We now show that this property is satisfied by the ripple-carry adder circuit above, which we
use.

Lemma 3.1. The ripple carry adder circuit above is weakly additively tamper-resilient (Definition
3.1).

Proof. Consider a tampered circuit C∗, and let i be the smallest index where the AND gate in
equation 3.1 has been tampered. Since ci was computed correctly, we have C∗(x, y)[i + 1] =
C(x, y)[i+ 1]⊕ 1. Therefore, any tampering leads to incorrect output, so the circuit is weakly
additively tamper resilient.

As a side note, the naive binary circuit which requires 2 AND gates per carry computation
also has the property of being weakly additively tamper resilient. Because it has 2 AND gates, it
can either be the case that C(x, y) = C∗(x, y) or C(x, y) = C∗(x, y)⊕ 1, depending on whether the
carry computation was tampered with 1 triple or 2 triples. In either case, this is independent of
x and y.

In the case of generating edaBits over Zp, we still use the ripple-carry adder circuit, and our
protocol works as long as the length of the edaBits satisfies m < log(p). If we wanted edaBits
with m = ⌈log p⌉, for instance to be able to represent arbitrary elements of the field, it seems we
would need to use an addition circuit modulo p. Unfortunately, the natural circuit consisting of a
binary addition followed by a conditional subtraction is not weakly additively tamper resilient.
One possible workaround is to use Algebraic Manipulation Detection (AMD) [GIP+14, GIW16]
circuits, which satisfy much stronger requirements than being weakly additively tamper resilient,
however this gives a very large overhead in practice.

Overview of Cut-and-Choose Analysis

The remainder of this section is devoted to proving that the cut-and-choose method used in our
protocol is sound, as stated in the following theorem.
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Table 3.1: Number of edaBits produced by CutNChoose for statistical security 2−s and bucket
size B, with C = C ′ = B.

s B # of edaBits

40 3 ≥ 1048576

40 4 ≥ 10322

40 5 ≥ 1024

80 5 ≥ 1048576

Theorem 3.2. Let N ≥ 2s/(B−1) and C = C ′ = B, for some bucket size B ∈ {3, 4, 5}. Then the
probability that the CutNChoose procedure in protocol ΠedaBitsPriv outputs at least one incorrect
edaBit is no more than 2−s.

Assuming the theorem above, we can prove that our protocol instantiates the desired func-
tionality, as stated in the following theorem. The only interesting aspect to note about security is
that we need m ≤ logM to ensure that the value c′ computed in step 4d of CutNChoose does not
overflow modulo p when M = p is prime. This guarantees that the check values are computed
the same way in the binary and arithmetic domains.

Theorem 3.3. Protocol ΠedaBitsPriv securely instantiates the functionality FedaBitsPriv in the FABB-
hybrid model.

To give some idea of parameters, in Table 3.1 we give the required bucket sizes and number
N of edaBits that must be produced to ensure 2−s failure probability according to Theorem 3.2.
Note that these are exactly the same bounds as the standard cut-and-choose procedure without
any faulty verification steps from [FLNW17]. Our current proof relies on case-by-case analyses for
each bucket size, which is why Theorem 3.2 is not fully general. We leave it as an open problem
to obtain a general result for any bucket size.

Overview of Analysis.

We analyse the protocol by looking at two abstract games, which model the cut-and-choose
procedure. The first game, RealGame, models the protocol fairly closely, but is difficult to directly
analyze. We then make some simplifying assumptions about the game to get SimpleGame, and
show that any adversary who wins in the real protocol can be translated into an adversary in the
SimpleGame. This is the final game we actually analyze.

Abstracting the Cut-and-Choose Game

We first look more closely at the cut-and-choose procedure by defining an abstract game, RealGame,
shown in Figure 3.10, that models this process. Note that in this game, the only difference
compared with the original protocol is that the adversary directly chooses additively tampered
binary circuits, instead of multiplication triples. The check procedure is carried out exactly as
before, so it is clear that this faithfully models the original protocol.

Complexities of analyzing the game. In this game, the adversary can pass the check with a
bad edaBit in two different ways. The first is to corrupt edaBits in multiples of the bucket size B,
and hope that they all end up in the same bucket so that the errors cancel each other out. The
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RealGame

1. A prepares NB+C edaBits {(rj , rj,0, . . . , rj,m−1)}NB+C
j=1 , and batch of N(B−1)+C ′

potentially tampered circuits {C∗j}N(B−1)+C′

j=1 to send to the challenger.

2. The challenger shuffles the edaBits and the circuits using 2 permutations.

3. The challenger opens C edaBits in both worlds and C ′ circuits randomly. If any of
the edaBits are inconsistent, or the circuits have been tampered, Abort.

4. Within each bucket, for every pair of edaBits (r, (ri)i) and (s, (si)i), take the next
circuit C∗ and compute (c0, . . . , cm) = C∗(r0, . . . , rm−1, s0, . . . , sm−1). Compute
c =

∑m−1
i=0 ci2

i and check that r + s− 2m · cm equals c.

The adversary wins if all the checks pass and there is at least one corrupted edaBit in the
output.

Figure 3.10: Abstract game modelling the actual cut-and-choose procedure

second way is to corrupt a set of edaBits and guess the permutation in which they are most likely
to end up. Once a permutation is guessed, the adversary will know how many triples it needs to
corrupt in order to cancel out the errors, and must also hope that the triples end up in the right
place.

To compute the exact probability of all these events, we will also have to consider the number
of ways in which the bad edaBits can be corrupted. For edaBits which are m bits, there are up
to 2m − 1 different ways in which they may be corrupted. On top of that, we have to consider
the number of different ways in which these bad edaBits may be paired in the check. In order to
avoid enumerating the cases and the complex calculation involved, we simplify the game in a few
ways which can only give the adversary a better chance of winning. However, we show that these
simplifications are sufficient for our purpose.

The SimpleGame

In this section we analyze a simplified game and bound the success probability of any adversary
in that game by 2−s. Before explaining the simple game, we will leave the complicated world
of edaBits and triples. We define a TRIP to be a set of triples that is used to check two edaBits.
In our simple world edaBits transform into balls, GOOD edaBits into white balls ( ) and BAD
edaBits into gray balls ( ). An edaBit is BAD when at least one of the underlying bits are not
correct. TRIPs transform themselves into triangles, GOOD TRIPs into white triangles ( ) and
BAD TRIPs into gray triangles ( ). We define a TRIP to be BAD when it helps the adversary
to win the game, in other words if it can alter the result of addition of two edaBits. Figure 3.11
illustrates the simple game.

In the SimpleGame A wins if there is no Abort (means A passes all the checks) and there is at
least one bad ball in the final output. The simple BucketCheck checks all the buckets. Precisely,
in each bucket two balls are being checked using one triangle. For example, let us consider the
size of the buckets B = 3. Now one bucket contains three balls [B1, B2, B3] and two triangles
[T1, T2]. Then BucketCheck checks if the configurations [B1, B2|T1] and [B1, B3|T2] matches
any one of these configurations {[ , | ], [ , | ], [ , | ]}. If that is the case then BucketCheck
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SimpleGame

1. A prepares NB + C balls, corrupts b of them and sends them to the challenger.

2. The challenger opens C of them randomly and checks whether all of them are good.
If any one of them is not good, Abort.

3. The challenger permutes and throws NB balls into N buckets each of size B uniformly
at random. Then sends the order of arrangement to A.

4. A prepares N(B − 1) + C ′ triangles, corrupts t of them and sends them to the
challenger.

5. The challenger opens C ′ of them randomly and checks whether all of them are good.
If any one of them is not good, Abort.

6. The challenger permutes and throws N(B − 1) triangles into N buckets uniformly at
random and runs the Simple BucketCheck subroutine.

7. If Simple BucketCheck returns 1, the challenger outputs first ball from each bucket.
Else, Abort.

A wins if there is no Abort and at least one bad ball is in the output.

Figure 3.11: Simplified CutNChoose game

Aborts. When there are two bad balls and one triangle the abort condition depends on the type
of bad balls. That means we are considering all bad balls to be distinct, say with different color
shades. As a result, in some cases challenger aborts if the checking configuration matches [ , | ]
and in other cases it aborts due to [ , | ] configuration.

In the simple world everyone has access to a public function f , which takes two bad balls and
a triangle as input and outputs 0 or 1. If the output is zero, that means it is a bad configuration,
otherwise it is good. This function is isomorphic to the check from step 4 of RealGame, which
takes 2 edaBits and a circuit as inputs and outputs the result of the check. The BucketCheck
procedure uses f to check all the buckets. Figure 3.12 illustrates the check in detail. A passes
BucketCheck if all the check configurations are favorable to the adversary. These favorable check
configurations are illustrated in Table 3.2.

After throwing triangles, in each bucket, if the check configuration of balls and triangles are
from the first three entries of Table 3.2, then BucketCheck will not Abort. For the last entry
BucketCheck will not Abort if the output of f is 1. Notice that if BucketCheck passes only due to
the first configuration of Table 3.2 in all buckets, then the output from each bucket is going to be

Table 3.2: Favorable combination of balls and triangles for the adversary.

Balls Triangles

/
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Simple BucketCheck

Input: N buckets and a function f . Each bucket contains B balls {x1, . . . , xB} and (B−1)
triangles {y1, . . . , yB−1}.
Output: 0 or 1.
Runs this check in each bucket:

1. Check the configuration of [x1, xi|yi−1] ∀i ∈ [2, B].

• If [x1, xi|yi−1] ∈ {[ , | ], [ , | ], [ , | ]} return Reject.

• If [x1, xi|yi−1] ∈ [ , | ] and f( , , ) = 0 return Reject.

• If [x1, xi|yi−1] ∈ [ , | ] and f( , , ) = 0 return Reject.

2. Otherwise return Accept.

If check returns Accept for all the buckets, then output 1; Otherwise output 0.

Figure 3.12: A simple bucket check procedure

a good ball and A loses. So ideally we should take that into account while computing the winning
probability of the adversary. However, for most of the cases it is sufficient to show that for large
enough N the Pr[A passes BucketCheck] is negligible in the statistical security parameter s, as
that will bound the winning probability of A in the simple game.

Before analyzing the SimpleGame, we show that security of RealGame follows directly from
security of SimpleGame. Intuitively, that is indeed the case, as in the SimpleGame an adversary
chooses number of bad triangles adaptively; Whereas in the RealGame it has to fix the tampered
circuits before seeing the permuted edaBits. Thus, if an adversary cannot win the SimpleGame
then it must be more difficult for it to succeed in the RealGame.

Lemma 3.2. Security against all adversaries in SimpleGame implies security against all adver-
saries in RealGame.

Proof. (Sketch.) We prove that by showing if there exist an efficient adversary B that wins
RealGame with non-negligible probability, then there exist an efficient adversary A against the
SimpleGame challenger that wins the game with non-negligible probability. A simulates the
challenger of the RealGame and uses B to win the SimpleGame. B sends a batch of edaBits and a
set of circuits to A. A transforms the edaBits into circles. It randomly permutes the circuits, and
transforms them into triangles. Clearly, a ball (or triangle) is good or bad depends on whether
that was a good or bad edaBit (or a circuit).
A sends the set of balls to the SimpleGame challenger. The challenger throws them randomly

in buckets, sends the arrangement to A. Then A sends the set of triangles to the challenger. The
challenger throws them randomly in buckets, and sends the arrangement to A. In the RealGame
A throws edaBits and the circuits according to the arrangement of balls and triangles in the
SimpleGame. Clearly, the simulation is indistinguishable from a RealGame challenger. Thus
from the final distribution of triangles, B cannot distinguish whether it is in the RealGame or
in the simulation. Also in the SimpleGame the BucketCheck uses the public function f , which
is isomorphic to check function that takes as input two edaBits and a circuit and outputs the
result of the check, from step 4 of the RealGame. Consequently, if B wins with non-negligible
probability then A wins the SimpleGame with a non-negligible probability.
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Throughout the analysis, we use b to denote the number of bad balls and t to denote the
number of bad triangles. Now in order to win the SimpleGame the adversary has to pass all the
three checks, so let us try to bound the success probability of A for each of them. Throughout
the analysis we consider N ≥ 2

s
B−1 , that is for B ≥ 3, N(B − 1) ≥ 2

s
B−1

+1 and we are opening
B(≥ 3) balls and B triangles in the first two checks.

Opening C balls:

In the first check the challenger opens C balls and check whether they are good. So,

Pr[C balls are good] =
(
NB+C−b

C

)(
NB+C

C

) ≈ (1− b/(NB + C))C .

Now for b = (NB+C)α, where 1/(NB+C) ≤ α ≤ 1, the probability can be written as (1−α)C .
In order to bound the success probability of the adversary with the statistical security parameter
s, let us consider the case when α ≥ 2s/B−1

2s/B
and C = B. Thus,

Pr[C balls are good] ≈ (1− α)C = (2−s/B)B = 2−s.

So if the challenger opens B balls to check then in order to pass the first check A must corrupt
less than α fraction of the balls, where α = 2s/B−1

2s/B
. Lemma 3.3 follows from the above analysis.

Lemma 3.3. The probability of A passing the first check in SimpleGame is less than 2−s, if the
adversary corrupts more than α fraction of balls for α = 2s/B−1

2s/B
and the challenger opens B balls.

Opening C ′ triangles:

In this case we’ll consider the probability of A passing the second check. This is similar to the
previous check, the only difference is that here the challenger opens C ′ triangles and checks
whether they are good. Consequently,

Pr[C ′ triangles are good] =
(N(B−1)+C′−t

C′

)(N(B−1)+C′

C′

) ≈ (1− t/(N(B − 1) + C ′))C
′
.

As in the previous case, if t is more than β fraction of the total number of triangles for β = 2s/B−1
2s/B

,
we can upper bound the success probability of A by (2−s/B)C

′ . Thus for C ′ = B the success
probability of A in the second check can be bounded by 2−s. Lemma 3.4 follows from the above
analysis.

Lemma 3.4. The probability of A passing the second check in SimpleGame is less than 2−s, if
the adversary corrupts more than β fraction of triangles for β = 2s/B−1

2s/B
and the challenger opens

B triangles.

Lemmas 3.3–3.4 show that it suffices to only look at the first two checks to prove security
when the fraction of bad balls or bad triangles is sufficiently large. However, when one of these is
small, we also need to analyze the checks within each bucket in the game.
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BucketCheck procedure:

In this case we consider that the adversary passes first two checks and reaches the last level of the
game. However, in order to win the game the adversary has to pass the BucketCheck. Note that
now we are dealing with NB balls and the challenger already fixes the arrangement of NB balls
in N buckets. Once the ball permutation is fixed that imposes a restriction on the number of
favorable (for A) triangle permutations. For example, let us consider that the challenger throws
12 balls into 4 buckets of size 3 and fixes this permutation:

{[ , , ][ , , ][ , , ][ , , ]}

Then there are only two possible favorable permutations of triangles:

{[ , ][ , ][ , ][ , ]}
{[ , ][ , ][ , ][ , ]}

Two favorable permutations come from the fact that the third bucket contains two bad balls.
From Table 3.2 we can see that whenever there are two bad balls in a bucket the adversary can
pass the check in that bucket either with a good triangle or with a bad triangle. That means both
configurations [ , | ] and [ , | ] might be favorable to the adversary. Now A can use the public
function f to determine the value of f( , , ) and f( , , ). In this example, let us consider the
value of f( , , ) to be 1; Then the first permutation of triangles is favorable to the adversary.
As a result the probability of passing the BucketCheck essentially depends on the probability of
hitting that specific permutation of triangles among all possible arrangements of triangles. Then
the probability of the adversary passing the last check given a specific arrangement of balls Li is
given by:

Pr[A passes BucketCheck|Li] = 1/

(
N(B − 1)

t

)
where t = N(B − 1)β. Thus,

Pr[A passes BucketCheck|Li] =
(N(B − 1)β)! (N(B − 1)(1− β))!

N(B − 1)!

In order to upper bound Pr[A passes BucketCheck] we will upper bound the probability for
different ranges of α and β. Note that the total probability is given by:

Pr[A passes BucketCheck] =
∑
i

Pr[A passes BucketCheck|Li] · Pr[Li]

If we can argue that for all possible (2s/B − 1)/2s/B ≥ α ≥ 1/NB, the maximum probability for
Pr[A passes BucketCheck|Li], for some configuration Li, can be bounded by 2−s, then:

Pr[A passes BucketCheck] ≤
∑
i

2−s · Pr[Li]

Note that the maximum possible value of α is 1, however as the challenger opens C balls and
C ′ triangles, the adversary cannot set α to be 1. To pass the first check A must set α to be less
than (2s/B − 1)/2s/B if the challenger opens B balls and B triangles.

Now let us try to bound Pr[A passes BucketCheck|Li]. The value of
(
N(B−1)

t

)
maximizes

at t ≈ N(B − 1)/2. Starting from the case when there is no bad triangle, the probability
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monotonically decreases from 1 to its minimum at β ≈ 1/2, and then it monotonically increases
to 1 when all triangles are bad. We analyze the success probability of A in three cases.

Case I (B− 1 ≤ t ≤ N(B− 1)− (B− 1)): Here we are considering the cases when A chooses
number of bad triangles t from the range [B − 1, N(B − 1)− (B − 1)] to maximize its success
probability. Now,

Pr[A passes BucketCheck|Li] = 1/

(
N(B − 1)

t

)
.

Clearly, the probability is maximum when t is equal to (B − 1) or N(B − 1)− (B − 1), which is
given by:

Pr[A passes BucketCheck|Li] =
(B − 1)! ·(N(B − 1)− (B − 1))!

N(B − 1)!

=

(
B − 1

N(B − 1)

)
·
(

B − 2

N(B − 1)− 1

)
· · ·
(

1

N(B − 1)− (B − 2)

)

Now given N ≥ 2
s

B−1 we have,

Pr[A passes BucketCheck|Li] ≤
(

1

2
s

B−1

)B−1

= 2−s.

Thus for a given b if the adversary chooses number of bad triangles t ∈ [B−1, N(B−1)− (B−1)],
then:

Pr[A passes BucketCheck] ≤
∑
i

2−s · Pr[Li].

Given b bad balls and (NB − b) good balls one can arrange them in NB! /(NB − b)! ways. So
the probability of hitting a specific arrangement Li is (NB − b)! /NB!. Thus:

Pr[A passes BucketCheck] ≤ NB!

(NB − b)!
· 2−s · (NB − b)!

NB!
= 2−s.

Case II (t > (N(B − 1) − (B − 1))): If t is greater than (N(B − 1) − (B − 1)) then the
adversary will not be able to pass the second check as the challenger opens C ′ = B triangles.
Thus,

Pr[C ′ triangles are good] =
(N(B−1)+C′−t

C′

)(N(B−1)+C′

C′

) ≤ (1− t

N(B − 1) +B

)B

≤
(

2B − 2

N(B − 1) +B

)B

=

(
2

N

)B

·

(
B − 1

B − 1 + B
N

)B

,

which is less than 2−s given N ≥ 2
s

B−1 and s
B−1 > B.

Case III (t < B − 1): Here we try to find the best strategy for the adversary and then show
that the success probability can be bounded by 2−s if N ≥ 2s/B−1. We analyze the probability
for three sub-cases, specifically for bucket size 3, 4 and 5, as that allows us to use our cut and
choose technique for a wide range of practical parameters.
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Bucket size 3: For bucket size 3 we have to consider two cases, namely t = 0 and t = 1. Let
us first consider the case when t = 0. Clearly, if A corrupt all the NB + C balls in a way such
that f( , , ) always returns 1, then the adversary trivially passes BucketCheck. However in that
case A fails with probability 1 as the challenger opens B balls in the first check. If A corrupts α

fraction of NB balls, where α ≥ 2s/B−1
2s/B

; Then the success probability of the A can be bounded
by 2−s, if the challenger opens C = B balls in the first check, given N ≥ 2

s
B−1 . To pass the

first check A can only corrupt less than α fraction of NB balls. However, in that case the total
number of good balls are more than one. Notice that if there is even one good ball out of the NB
balls, then in the BucketCheck [ , | ] or [ , | ] check configuration occurs for most of Lis, and
A fails. More precisely, whenever the number of bad balls are not multiple of B, then there exist
a bucket with a good ball and a bad ball, thus probability of A passing BucketCheck becomes
zero. When number of bad balls are multiple of B then there exist very few configurations for
which the probability of A passing the BucketCheck is one; For all other possible combinations it
become zero. As an example, for (B = 3, N = 3,K = 2, t = 0) only one type of configuration is
favorable for the adversary when K is fixed, where K is the number of bad balls to be outputted
at the end of the BucketCheck, thus 1 ≤ K ≤ N − 1:

{[ , , ][ , , ][ , , ]}

Since f( , , ) returns 1, we can assume that all the bad balls are corrupted in the same way.
Let us consider b = KB, then:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB

)
At K ≈ N/2 this probability reaches its minimum value 2−(NB−1) ≪ 2−s. At K = 1 and
K = (N − 1) the probability reaches its maximum value which is less than (B− 1)! /(NB− (B−
1))B−1 ≤ 2−s for B ≥ 3 as NB > 2s/2. Given that, the best strategy of the adversary would be
to corrupt one bucket, so that it can pass the first check and hope to hit a favorable configuration
in the BucketCheck. However, in that case the probability is still negligible in s. Note that the
analysis for this case is same as the one from [FLNW17].

For t = 1 the analysis is very much similar to the previous case. Only difference is that now
the adversary has to compensate for that one bad triangle. In this case the adversary can win
only when the number of bad balls b are KB, KB − 1 or KB + 1 for 1 ≤ K ≤ (N − 1). We are
not considering the case when K is N , as in that A passing the first check is negl(s). For example
for (B = 3, N = 4,K = 2, t = 1), these are three possible type of favorable configurations for the
adversary:

{[ , , ][ , , ][ , , ][ , , ]}
{[ , , ][ , , ][ , , ][ , , ]}
{[ , , ][ , , ][ , , ][ , , ]}

In the first case there must exist exactly one bad ball pair in one corrupted bucket such that
f( , , ) returns 1, thus for that pair the adversary can use the bad triangle. In the second case
the adversary uses the bad triangle to check one {bad ball, good ball} pair in the second bucket.
In a similar way in the third case A uses the bad triangle to check one {good ball, bad ball}
pair in the third bucket. Note that in the second case the good ball in the second bucket can be
placed in four possible positions to generate other favorable permutations. Similarly in the third
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case the bad ball in the third bucket can be placed in four possible positions to generate other
favorable permutations. For all other arrangement the adversary fails BucketCheck, as it has to
deal with more than one {bad ball, good ball} pair.

Now the probability of A passing the BucketCheck for the case when b = KB and t = 1 is
given by:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB

) · (B − 1) ·K · 1

N(B − 1)
.

The probability of A passing the BucketCheck when b = KB − 1 and t = 1 is given by:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB

KB−1

) · (B − 1) ·K · 1

N(B − 1)
.

In the last case for b = KB + 1 and t = 1 the probability is given by:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB

KB+1

) · (B − 1) · (N −K) · 1

N(B − 1)
.

The probability of success in the second case for K = 1 is higher than the probabilities in the
first case for all possible K. In fact it maximizes at K = 1 in the second case; which is the same
as the highest probability in the third case when K = (N − 1). Consequently the best strategy of
the adversary would be to corrupt minimum number of balls, to minimize the failure probability
of opening and checking C balls, and try to achieve the maximum success probability from the
BucketCheck. That means the optimal strategy for the adversary would be the second case with
K = 1. Thus,

Pr[A passes BucketCheck] ≤ (B − 1)!

(NB − (B − 2))B−1
≤ 2−s, for B ≥ 3.

Bucket size 4: The analysis for the cases B = 4, t = 0 and t = 1 follows directly from the
analysis from B = 3. In other words, the configurations remain the same, the only difference
being the bucket size is now 4.

For bucket size B = 4 and t = 2, there are six possible favorable configurations for the
adversary when K is fixed, where K is the number of bad balls to be outputted at the end of the
BucketCheck, thus 1 ≤ K ≤ N − 1. For example for (B = 4, N = 4,K = 2, t = 2) these are the
six possible configurations for the adversary:

{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}
{[ , , , ][ , , , ][ , , , ][ , , , ]}

For all these cases the success probability of the adversary in the BucketCheck can be expressed
as:

Pr[A passes BucketCheck]

≤
(
N

K

)(
K(B − 1)

g1 + b1

)(
(N −K)(B − 1)

b2

)
1(

NB
KB−g1+b2

) 1(
N(B−1)

t

) , (3.2)
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where g1 is the total number of good balls in the chosen K buckets (which output bad balls at the
end of BucketCheck), b1 is the total number of different kind of bad balls( ), such that f( , , )
returns 1 and b2 is the total number of bad balls from other (N −K) buckets. Note that number
of bad triangles t is equal to g1 + b1 + b2. As an example let us consider the first configuration
among the six favorable configurations; In that case g1 = 1, b1 = 0 and b2 = 1, thus:

Pr[A passes BucketCheck] ≤
(
N

K

)(
K(B − 1)

1

)(
(N −K)(B − 1)

1

)
1(

NB
KB

) 1(
N(B−1)

t

) .
Now for each of these configurations the probability is maximum either at K = 1 or at K = N −1.
After calculating the probabilities for each of these configurations at K = 1 and K = N − 1 it
is easy to see that the success probability of the adversary is maximum in the fourth case for
K = N − 1. Thus:

Pr[A passes BucketCheck] ≤ 9N(N − 1) · 1(
4N
3

) · 1(
3N
2

)
=

(
3N − 3

3N − 1

)
·
(

3

4N

)
·
(

2

4N − 1

)
·
(

2

4N − 2

)
≤
(
3N − 3

3N − 1

)
· 2−s/3 · 2−s/3 · 2−s/3 ≤ 2−s, given N ≥ 2s/B−1.

Bucket size 5: Once again, the analysis from the previous cases carries over for t = 0, 1, 2,
t = 3 being the only new case we have to analyze.

For the case when B = 5 and t = 3, there are 10 favorable configurations for the adversary
when K is fixed. For N = 4 and K = 2, these are the cases:

{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}
{[ , , , , ][ , , , , ][ , , , , ][ , , , , ]}

Using eq. (3.2) we can calculate the probabilities for these 10 cases at K = 1 and K = N − 1
to find the best case scenario for the adversary. Doing so, we found that the first case from the
figure at K = 1, and the fourth case at K = N − 1 have the best probabilities. Considering the
first case, this would be,
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Pr[A passes BucketCheck] ≤
(
N

1

)
·
(
4

3

)
· 1(

5N
2

) · 1(
4N
3

)
= N · 4 · 1(

5N
2

) · 1(
4N
3

)
=

(
2

5N

)
·
(

6

5N − 1

)
·
(

1

4N − 1

)
·
(

1

4N − 2

)
≤ 2−s/4 · 2−s/4 · 2−s/4 · 2−s/4 ≤ 2−s, given N ≥ 2s/B−1.

Even though the probability is the same for the fourth case with K = N − 1, since the number of
bad balls are much higher than the first case, the overall probability will be lower for the fourth,
making the first case the best one.

We summarize the analysis as follows.

Lemma 3.5. The probability of A passing the BucketCheck in SimpleGame is less than 2−s, if
N ≥ 2s/(B−1) and the challenger opens C = B balls and C ′ = B triangles during first two checks
of SimpleGame for B ∈ {3, 4, 5} given s

B−1 > B.

Proof. This follows from the case-by-case analysis of BucketCheck procedure, together with
Lemma 3.3 and Lemma 3.4.

Combining Lemma 3.2 and Lemma 3.5, this completes the proof of Theorem 3.2.

Remark 3.1. As we already mentioned the bound we obtain is not general. However, from
Lemma 3.5 it is evident that one can produce more than 1024 edaBits efficiently with 40-bit
statistical security using different bucket sizes with our CutNChoose technique, which is sufficient
for the applications we are considering in this work. It also shows that if we want to achieve 80-bit
statistical security for N ≥ 220, then increasing the bucket size from 3 to 5 would be sufficient.
Table 3.1 shows the number of edaBits we can produce with different size of buckets.

Optimizing Parameters

In this part of the analysis we try to find optimal parameters for the number of edaBits (C) and
the number of TRIPs (C ′) we need to open so that probability of the adversary winning the game
is at least 1/2s, where s is the security parameter.

Recall that the probability of the adversary winning the game has four components:

Pr[Winning] = Pr[C] · Pr[C ′] · Pr[TRIPs] · Pr[edaBits]

Calculating the exact probability Pr[edaBits] is hard because it requires calculating the number
ways in which red balls can be permuted for a given number of red balls. For a small number of
balls, this is doable but as the number of balls increase beyond a certain threshold, this becomes
challenging.

On the other hand, if we can prove that the probability of the other three components together
is negligible, we do not need to compute the exact probability for the red balls. The fact that it is
< 1 is enough for us to work with.

Expanding the other three components of the probability:

Pr[C] · Pr[C ′] · Pr[TRIPs] =
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=
(p+ C − b)!

(p− b)!
· p!

(p+ C)!
· (q + C ′ − t)!

(q − t)!
· q!

(q + C ′)!
· t! ·(q − t)!

q!
· 2l

=
(p+ C − b)!

(p− b)!
· p!

(p+ C)!
· (q + C ′ − t)!

(q + C ′)!
· t! ·2l

We split the calculation into two cases based on how big k and k′ are.
Recalling Stirling’s Approximation: n!∼

√
2πn · (n/e)n. For n = 100, the ratio of the

approximation to the value of n! is 0.999167. For our calculations this is accurate enough.
For the sake of clarity, expand the numerator and the denominator individually. Applying the

approximation to the numerator first:

=
√
2π(p+ C − b) ·

[
p+ C − b

e

](p+C−b)

·
√
2πp ·

[p
e

]p
·
√
2π(q + C ′ − t) ·

[
q + C ′ − t

e

](q+C′−t)

· t! ·2l
(3.3)

The denominator becomes:

√
2π(p− b) ·

[
p− b

e

](p−b)

·
√

2π(p+ C) ·
[
p+ C

e

](p+C)√
2π(q + C ′)·[

q + C ′

e

](q+C′)
(3.4)

There are same number of
√
2π terms the numerator and the denominator. Canceling those

and isolating the terms we get,

t! ·2l ·

√
p+ C − b

p− b
· p

p+ C
· q + C ′ − t

q + C ′ (3.5)

e(p−b)+(p+C)+(q+C′)

e(p+c−b)+p+(q+C′−t)
(3.6)

(p+ C − b)(p+C−b)

(p− b)(p−b)
· pp

(p+ C)(p+C)
· (q + C ′ − t)(q+C′−t)

(q + C ′)(q+C′)
(3.7)

In equation 3.5, the terms p/(p+C) and (q +C ′ − t)/(q +C ′) are always less than 1 because
k ≥ 1. But since they are under the square root and minuscule compared to other terms, they
won’t impact the parameters significantly and hence are ignored. (p+ C − b)/(p− b) is > 1 and
also small, but we retain it for now. Computing the powers of e and writing 3.5 and 3.6 together
as,

t! ·2l ·

√
p+ C − b

p− b
· et (3.8)

In equation 3.7, we can group the terms that have the same power together and write it as,
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[
p+ C − b

p+ C
· p

p− b

]p
·
[
q + C ′ − t

q + C ′

](q+C′)

·
[

p− b

p+ C − b

]b
·
[
p+ C − b

p+ C

]C
·[

1

q + C ′ − t

]t (3.9)

In equation 3.9, the every term except the first has a denominator that is bigger than the
numerator, which is good for us as it allows us to choose values of C,C ′ that give us negligible
probability. But the first term is not < 1 because p/(p − b) is going to increase as b (or the
number of corrupted edaBits increases.

Clearly, this is not enough to compute the parameters or to even show that the probability of
the adversary winning the game is negligible. So, at this stage we include the 4th component of
the total probability, which the the probability that the edaBits are in the guessed permutation.
However, we do not need to compute the exact probability, we only need an upper bound on it.

From here, the analysis is specific to a bucket size of 3. Let’s start with the expression for the
probability of edaBits being in one particular subset of permutations. We use a, b, c to denote the
number of buckets that contain 1, 2, and 3 red balls respectively. Therefore, the total number of
red balls in the situation will be a+ 2b+ 3c.

(
N

x+ y + z

)
· (x+ y + z)!

x! ·y! ·z!
· 2y · (x+ 2y + 3z)! ·(NB − (x+ 2y + 3z))!

NB!
(3.10)

The first term
(

N
x+y+z

)
is the number of ways in which the buckets can be chosen for the

permutations. The second term is the number of ways in which we can permute the buckets
themselves. For the case of a bucket with 2 red balls, recall that two arrangements [ , , ] and
[ , , ] are possible, so we get a factor of 2y. And finally we have the number of ways in which we
can permute the red balls amongst themselves and the green balls amongst themselves.

The point at which this value maximizes is challenging to find, and since we only need an
upper bound, we use the maximal values for each of the individual terms. Maximizing the term
(x+ y + z)! /x! ·y! ·z! is straightforward, it maximizes when the denominator is the lowest, which
is when x = y = z for any given value of the sum. We let 2y = 2w, where w is the maximum
possible value for a given number of red balls. The last term is the same for every permutation of
the red balls because it only depends on the number of red balls and green balls rather than the
arrangement. We now add this probability into the calculation as well, for the case of x+y+z = k.
But, for the sake of simplifying the calculations, we use x+ y + z = b instead of k. This only
increases the adversary’s chance of winning.

t! ·2l ·

√
p+ C − b

p− b
· et ·

[
p+ C − b

p+ C
· p

p− b

]p
·
[
q + C ′ − t

q + C ′

]q+C′

·[
p− b

p+ C − b

]b
·
[
p+ C − b

p+ C

]C
·
[

1

q + C ′ − t

]t
(
N

b

)
· b!

(b/3! )3
· 2b · b! ·(p− b)!

p!

(3.11)
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=
√
2πt · tt · 2l+b ·

(
N

b

)
·

√
p+ C − b

p− b
·

√
2πb

(2π)3(b/3)3
bb

(b/3)b
·

[
p+ C − b

p+ C

p

p− b

]p
·

√
(2π)2b(p− b)

2πp
· b

b · (p− b)p−b

pp
·[

q + C ′ − t

q + C ′

]q+C′

·
[

p− b

p+ C − b

]b
·
[
p+ C − b

p+ C

]C
·
[

1

q + C ′ − t

]t
(3.12)

Canceling and reordering the terms,

=

(
N

b

)
·

√
27(p+ C − b)t

bp
· 2l+b · 3b ·

[
p+ C − b

p+ C

]p
·
[
q + C ′ − t

q + C ′

]q
·[

b

p+ C − b

]b
·
[

t

q + C ′ − t

]t
·
[
p+ C − b

p+ C

]C
·
[
q + C ′ − t

q + C ′

]C′
(3.13)

We can use Stirling’s approximation for
(
N
b

)
= N b/b! and reapplying it on b!, we get,

1

b
·

√
27(p+ C − b)t

2πp
· N

b

bb
· 2l+b · 3b ·

[
p+ C − b

p+ C

]p
·
[
q + C ′ − t

q + C ′

]q
·[

b

p+ C − b

]b
·
[

t

q + C ′ − t

]t
·
[
p+ C − b

p+ C

]C
·
[
q + C ′ − t

q + C ′

]C′
(3.14)

Note that N b ∗ 3b can be written as pb since NB = p and in this case we use buckets of size 3.

√
27(p+ C − b)t

2πp
· 2l+b · 3b · 1

b
·
[
p+ C − b

p+ C

]p
·
[
q + C ′ − t

q + C ′

]q
[

p

p+ C − b

]b
·
[

t

q + C ′ − t

]t
·
[
p+ C − b

p+ C

]C
·
[
q + C ′ − t

q + C ′

]C′
(3.15)

Ignoring the first four terms for now, we take a deeper look at the other terms. If we can
prove that the product of these 6 terms is negligible across the spectrum of values possible for b, t
for some particular values C,C ′, we can conclude there exists no strategy of corrupting red balls
and red triangles when we open a certain number of red balls and red triangles before the game
begins.

Through these calculations we want to arrive the minimum possible value for C + C ′, in the
order of a tens. Since p, q are of the order 106, at some points we may approximate p/q ± C/C ′

to be p/q. An observation about the game is that b ≥ 1 but t can be 0, a fact we will use in the
optimization.

Case 1: Starting with the minimum possible corruption of the balls and triangles, which are
(1,2), (2,1) and (3,0). Since the values of b, t.C,C ′ are small compared to p, q, we can approximate
p+ C − b to p.
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3.6 Primitives

This section describes the high-level protocols we build using our edaBits, both over Z2k and
Zp. We focus on secure truncation (Section 3.6) and secure integer comparison (Section 3.6),
although our techniques apply to a much wider set of non-linear primitives that require binary
circuits for intermediate computations. For example, our techniques also allow us to compute
binary-to-arithmetic and arithmetic-to-binary conversions of shared integers, by plugging in our
edaBits into the conversion protocols from [Cd10] and [DEF+19] for the field and ring cases,
respectively.

Throughout this section our datatypes are signed integers in the interval [−2ℓ−1, 2ℓ−1). On
the other hand, our MPC protocols operate over a modulus M ≥ 2ℓ which is either 2k or a prime
p. Given an integer α ∈ [−2ℓ−1, 2ℓ−1), we can associate to it the corresponding ring element in
ZM by computing α mod M ∈ ZM (modular reduction returns integers in [0,M)). We denote
this map by RepM (α), and we may drop the sub-index M when it is clear from context. Finally,
in the protocols below LT denotes a binary less-than circuit.

Truncation

Recall that our datatypes are signed integers in the interval [−2ℓ−1, 2ℓ−1), represented by integers
in ZM where M ≥ 2ℓ via RepM (α) = α mod M . The goal of a truncation protocol is to obtain [y]
from [a], where y = Rep

(⌊
α
2m

⌋)
and where a = Rep(α). This is a crucial operation when dealing

with fixed-point arithmetic, and therefore an efficient solution for it has a substantial impact in
the efficiency of MPC protocols for a wide range of applications. An important observation is
that, as integers,

⌊
α
2m

⌋
= α−(α mod 2m)

2m . If M is an odd prime p, this corresponds in Zp to y =
(Rep(α)− Rep(α mod 2m)) · Rep(2m)−1. Furthermore, Rep(α mod 2m) = α mod 2m = a mod 2m

and Rep(2m) = 2m, so y = a−(a mod 2m)
(2m)−1 .

Truncation over Z2k .

Truncation protocols over fields typically exploit the fact that one can divide by powers of 2
modulo p. This is not possible when working modulo 2k. Instead, we take a different approach.
Let [a]2k be the initial shares, where a = Rep(α) with α ∈ [−2ℓ−1, 2ℓ−1) (notice that it may be
the case that ℓ < k). First, we provide a method, LogShift, for computing the logical right shift
of a by m positions, assuming that a ∈ [0, 2ℓ). That is, if a is

(0, . . . , 0︸ ︷︷ ︸
k−ℓ

, aℓ−1, . . . , a0︸ ︷︷ ︸
ℓ

),

this procedure will yield shares of

(0, . . . , 0︸ ︷︷ ︸
k−ℓ+m

, aℓ−1, . . . , am︸ ︷︷ ︸
ℓ−m

).

Then, to compute the arithmetic shift, we use the fact that2⌊ α

2m

⌋
≡ LogShiftm(a+ 2ℓ−1)− 2ℓ−m−1 mod 2k.

2Notice that we can use the LogShift method on a + 2ℓ−1 since, α + 2ℓ−1 ∈ [0, 2ℓ), which implies that
(a+ 2ℓ−1) mod 2k = α+ 2ℓ−1 and therefore (a+ 2ℓ−1) mod 2k is ℓ-bits long, as required.
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Logical right shift over Z2k

Pre:

• FABB

• Input [a]2k where a ∈ [0, 2ℓ).

• Number of bits to shift m

• edaBit ([r]2k , [r]2) of length m

• edaBit ([r′]2k , [r
′]2) of length ℓ−m

Post: [y]2k , where y = LogShiftm(a).

1. The parties compute shares of a mod 2m as follows:

a) Call c = open
(
2k−m · ([a]2k + [r]2k)

)
b) Compute [v]2 = LT((ci)

k
i=k−m+1, ([ri]2)

m−1
i=0 )

c) Convert [v]2 7→ [v]2k

d) Let [a mod 2m]2k = 2m [v]2k − [r]2k + c/2k−m.

2. The parties compute the truncation:

a) Compute [b]2k = [a]2k − ([a]2k mod 2m).

b) Call d = open(2k−ℓ · ([b]2k + 2m [r′]2k)).

c) Compute [u]2 = LT((di)
k−1
i=k−ℓ+m, ([r′i]2)

ℓ−m−1
i=0 )

d) Convert [u]2 7→ [u]2k .
a

e) Output [y]2k = 2ℓ−m [u]2k + d/2k−ℓ+m − [r′]2k

aOne can optimize this by noticing that we only need shares of u modulo 2k−ℓ+m.

Figure 3.13: Protocol for performing logical right-shift

Now, to compute the logical shift, our protocol begins just like in the field case by computing
shares of a mod 2m and subtracting them from a, which produces shares of (ak−1, . . . , am, 0, . . . , 0).
The parties then open a masked version of a− (a mod 2m) which does not reveal the upper k − ℓ
bits, and then shift to the right by m positions in the clear, and undo the truncated mask. One
has to account for the overflow that may occur during this masking, but this can be calculated
using a binary LT circuit.

The details of our logical shift protocol are provided in Fig. 3.13, and we analyze its correctness
next. First, it is easy to see that c = 2k−m((a+ r) mod 2m), so c/2k−m = (a mod 2m) + r− 2mv,
where v is set if and only if c/2k−m < r. From this we can see that the first part of the protocol
[a mod 2m]2k is correctly computed. Privacy of this first part follows from the fact that r mod 2m

completely masks a mod 2m when c is opened.
For the second part, let us write b = 2ma′, then d = 2k−ℓ+m((a′ + r′) mod 2ℓ−m), so

d/2k−ℓ+m = a′ + r′ − 2ℓ−mu, where u is set if and only if d/2k−ℓ+m < r′, as calculated by the
protocol. We get then that a′ = d/2k−ℓ+m − r′ + 2ℓ−mu, and since a′ is precisely LogShiftm(a),
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Probabilistic truncation over Z2k

Pre:

• FABB

• Input [a]2k where a ∈ [0, 2ℓ).

• ℓ < k

• Number of bits to truncate m

• edaBit ([r]2k , [r]2) of length (ℓ−m)

• edaBit ([r′]2k , [r
′]2) of length m

• Random bit [b]2k

Post: [y]2k where y = ⌊a/2m⌋+ u with u = 1 with probability (a mod 2m)/2m.

1. Call c = open(2k−ℓ−1 · ([a]2k + 2ℓ [b]2k + 2m [r]2k + [r′]2k)). Write c = 2k−ℓ−1c′.

2. Compute [v]2k = [b⊕ c′ℓ]2k = [b]2k + c′ℓ − 2c′ℓ [b]2k

3. Output [y]2k = (c′ mod 2ℓ)/2m − [r]2k + 2ℓ−m [v]2k

Figure 3.14: Probabilistic truncation in domain modulo power of two using edaBits

we conclude the correctness analysis.

Probabilistic Truncation. Recall that in the field case one can obtain probabilistic truncation
avoiding a binary circuit, which results in a constant number of rounds. Over rings this is a
much more challenging task. For example, probabilistic truncation with a constant number of
rounds is achieved in ABY3 [MR18], but requires, like in the field case, a 2s gap between the
secret values and the actual modulus, which in turn implies that only small non-negative values
can be truncated.

In Fig. 3.14, we take a different approach. Intuitively, we follow the same approach as in
ABY3, which consists of masking the value to be truncated with a shared random value for which
its corresponding truncation is also known, opening this value, truncating it and removing the
truncated mask. In ABY3 a large gap is required to ensure that the overflow that may happen
by the masking process does not occur with high probability. Instead, we allow this overflow
bit to be non-zero and remove it from the final expression. Doing this naively would require
us to compute a LT circuit, but we avoid doing this by using the fact that, because the input
is positive, the overflow bit can be obtained from the opened value by making the mask value
also positive. This leaks the overflow bit, which is not secure, and to avoid this we mask this
single bit with another random bit. This protocol can be seen as an extension of the probabilistic
truncation protocol by Dalskov et al. [DEK19]. Below, we provide an analysis for our extension
that also applies to said protocol.

Now we analyze the protocol. First we notice that c = 2k−ℓ−1c′ where c′ = (2mr + r′) + a+
2ℓb− 2ℓ+1vb, where v is set if and only if (2mr + r′) + a overflows modulo 2ℓ. It is easy to see
that this implies that c′ℓ = v ⊕ b, so we see that v = c′ℓ ⊕ b, as calculated in the protocol.

On the other hand, we have that (c′ mod 2ℓ) = (2mr + r′) + a − 2ℓv, so a mod 2m =
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Deterministic Truncation over Fp

Pre:

• Shares [a] = [Rep(α)], integer 0 < m < ℓ.

• edaBit ([r]M , [r]2) of length ℓ−m+ s.

• edaBit ([r′]M , [r′]2) of length m.

Post: Shares [y] where y = Rep
(⌊

α
2m

⌋)
.

1. First the parties compute shares of a mod 2m as follows:

a) Let [b] = 2ℓ−1 + [a];

b) Call c = open([b] + 2m[r] + [r′]);

c) The parties compute [v]2 = LT
(
(ci)

m−1
i=0 , ([r′i]2)

m−1
i=0

)
;

d) Convert [v]2 7→ [v].

e) Let [a mod 2m] = [c mod 2m]− [r′] + [v]2m.

2. Compute the truncated value using the formula as follows. Let (2m)−1 be the inverse
of 2m modulo p. Output [y] = (2m)−1 · ([a]− [a mod 2m]).

Figure 3.15: Deterministic truncation over fields with share gap

(c′ mod 2m) − r′ + 2mu, where u is set if (c′ mod 2m) < r′. From this it can be obtained that⌊
(c′ mod 2ℓ)/2m

⌋
− r + 2ℓ−m = ⌊a/2m⌋+ u.

Remark 3.2. The protocol we discussed above only works if a ∈ [0, 2ℓ), that is, if the value α
represented α ∈ [0, 2ℓ−1). We can extend it to α ∈ [−2ℓ−1, 2ℓ−1) by using the same trick as in the
deterministic truncation: The truncation is called with a+2ℓ−1 as input, and 2ℓ−m−1 is subtracted
from the output.

Truncation over Fields.

We begin with a protocol, presented originally by Catrina and de Hoogh [Cd10], and optimize
it with our edaBits. For this protocol we require a larger gap between the shares and the secret
to be truncated, more precisely, it must hold that p > 2ℓ+s+1, where s is the statistical security
parameter. The protocol is presented in Fig. 3.15.

To see the correctness of the protocol, begin by observing that because p > 2ℓ+s+1, and since
b ∈ [0, 2ℓ) the addition of b and 2mr + r′ does not overflow modulo p and therefore c is actually
equal to b+ 2mr + r′, as integers. This preserves the privacy of b as b ∈ [0, 2ℓ) and 2mr + r′ is
uniformly random in [0, 2ℓ+s+1). Given this, it holds then that (c mod 2m) = (b mod 2m)+(2mr+
r′ mod 2m) − v · 2m, where v ∈ {0, 1} is set if and only if (b mod 2m) + (r mod 2m) /∈ [0, 2m).
Now, observe that this condition triggers if and only if c mod 2m =

∑m−1
i=0 ci2

i is smaller than
r mod 2m =

∑m−1
i=0 ri2

i, so the bit v can be obtained by executing a (unsigned) binary less-than
circuit as done by the protocol. We remark that for this step we use our optimized binary-shared
bits, which provides an important optimization with respect to the protocol from Catrina et al.
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Probabilistic truncation over Fp

Pre:

• FABB with p > 2k+s+1.

• Shares [a] = [Rep(α)], integer 0 < m < k.

• edaBit ([r]M , [r]2) of length k −m+ s.

• edaBit ([r′]M , [r′]2) of length m.

Post: Shares [y] where y ≈ Rep
(⌊

α
2m

⌋)
.

1. Let [b] = 2k−1 + [a];

2. Call c = open([b] + 2m[r] + [r′]);

3. Let [d] = [c mod 2m]− [r′].

4. Output [y] = (2m)−1 · ([a]− [d]).

Figure 3.16: Probabilistic truncation over fields.

Taking into account that (2mr+r′) mod 2m = r′, and also that a ≡ b mod 2ℓ−1, (c mod 2m)−
r′ + v · 2m is the same as a mod 2m, we obtain that the first part of the protocol in which shares
of a mod 2m are computed is correct. Finally, the ending step computes the formula for the
truncation, which concludes the correctness analysis.

Probabilistic Truncation. The protocol above is not constant round, as it requires the
computation of a less-than circuit on inputs of length m. It turns out that if one is willing to
allow for some small error, a much more efficient protocol can be devised, as by Catrina and
Saxena [CS10]. This protocol follows the same blueprint as the deterministic one, except that the
computation of the overflow bit v is omitted. The description of the protocol can be found in
Fig. 3.16. Following the analysis from the previous protocol, this implies that the value d computed
in the protocol is d = (a mod 2m)− 2mv, so the final value computed is (a− (a mod 2m))/2m + v,
which is the desired truncation, off by at most one bit. Furthermore, it is easy to see that the
result is biased towards the nearest truncation.

Integer Comparison

Another important primitive that appears in many applications is integer comparison. In this
case, two secret integers [a]M and [b]M are provided as input, and the goal is to compute shares

of α
?
< β, where a = Rep(α) and b = Rep(β).

As noticed by previous works (e.g. [Cd10, DEF+19]), this computation reduces to extracting
the MSB from a shared integer as follows: If α, β ∈ [−2k−2, 2k−2), then α− β = [−2k−1, 2k−1),
so a− b = Rep(α− β) corresponds to the sign of α− β, which is minus (i.e. the bit is 1) if and
only if α is smaller than β.

To extract the MSB, we simply notice that MSB(α) = −
⌊

α
2k−1

⌋
mod 2k, so this can be

extracted with the protocols we have seen in the previous sections.
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MSB extraction in Z2k

Pre:

• FABB

• Input [a]2k where a ∈ [0, 2ℓ).

• Loose edaBit ([r]2k , [r]2) of length ℓ

Post: [y]2k , where y = LogShiftℓ−1(a).

1. Call c = open
(
2k−ℓ · ([a]2k + [r]2k)

)
2. Compute [v]2 = LT((ci)

k−2
i=k−ℓ, ([ri]2)

ℓ−1
i=0)

3. Compute [y]2 = [v]2 ⊕ [rℓ−1]2 ⊕ ck−1

4. Convert [y]2 7→ [y]2k

5. Output [y]2k

Figure 3.17: Protocol to extract the most significant bit

Optimized Comparison with Power of Two Modulus. If the computation modulus is a
power of two, the optimized protocol in Fig. 3.17 can be used. It uses the fact that an overflow
can be erased by multiplication with an appropriate power of two.

3.7 Cost estimates

∆-OT. This is a correlated OT where the sender’s messages are of the form (ri, ri ⊕∆), for
random ri and fixed ∆ ∈ {0, 1}λ.

Authenticated bits. Adding a MAC to a bit held by one party costs (n− 1) ∆-OTs (where n
is the number of parties), plus n− 1 bits of communication; the extra communication is avoided
if the bit is random. To add a MAC to a bit that is secret-shared between all parties, multiply
this by n.

Private triple. Authenticated triples [a]2, [b]2, [c]2, where a single party Pi knows the values
a, b, c. First Pi samples and authenticates a large batch of triples, then the parties check correctness
with a cut-and-choose procedure.

Cost: Each authenticated triple needs 3 private authenticated bits, 2 of which are random.
Total cost per correct triple: 3B private authenticated bits and B(n−1) bits of communication,

where B is the bucket size in the cut-and-choose.

Triple. To create authenticated triples [a]2, [b]2, [c]2, where a, b, c are secret-shared and known
to nobody, we use one of the TinyOT triple generation protocols from [FKOS15, WRK17b].

Cost:
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• Using [FKOS15]:

– 3B2 random, secret-shared authenticated bits.

– Additional 2B2n(n− 1) bits of communication to create the initial triples.

– 2(B − 1)Bn(n− 1) bits for the openings in the sacrifice step

– (B − 1)n(n− 1) bits for the openings in the leakage removal step.

• Using [WRK17b]: 3B secret-shared authenticated bits plus 2Bλn(n− 1) bits of communi-
cation

Private double sharings. Authenticated shares ([r1]2, · · · , [rk]2) and [r]p, where r =
∑k

i=1 ri ·
2i−1 mod p is known to a single party Pi. Pi creates a large batch of tuples, which are checked
with cut-and-choose.

Cost: (B − 1) · Cadd private triples, where Cadd is the size of the binary circuit for addition
modulo p. (Ignoring online phase cost of openings, should be negligible)

Global double sharings. Same as above, where ri and r are secret-shared.
Cost: n times cost of private double sharings, plus (n − 1) · Cadd secret-shared triples (to

securely add up the n sets of private sharings).

Total cost of private double sharing.

CprivDbl ≈ (B − 1) · Cadd · Cpriv
trip

= (B − 1) · Cadd · (3B · (n− 1) · COT +B(n− 1))

= (n− 1) ·B(B − 1) · Cadd · (3COT + 1)

Total cost of global double sharing.

≈ n · CprivDbl + (n− 1) · Cadd · Ctrip

= (n− 1) · Cadd · (B(B − 1) · (3COT + 1) + Ctrip)

3.8 Applications and Benchmarks

Theoretical Cost

We present the theoretical costs of the different protocols in the paper, starting with the cost for
producing Private and Global edaBits in terms of the different parameters.

Table 3.3 shows the main amortized costs for generating a Private and Global edaBit of length
m. For Global edaBits, we assume have the required correct Private edaBits to start with, which is
why number of Faulty edaBits needed is 0. B is the bucket size for the cut-and-choose procedure
and n is the number of parties.

Table 3.4 shows the cost for two of our primitives from Section 3.6, namely comparison of
m-bit numbers and truncation of an ℓ-bit number by m binary digits. For computation modulo a
prime, there is also a statistical security parameter s.

Comparison in Z2k is our only application where it suffices to use loose edaBits (where the
relation between the sets of shares only holds modulo 2m, c.f. Section 3.4). This is because the
arithmetic part of an edaBit is only used in the first step (the masking) but not at the end. Recall
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Table 3.3: Amortized costs for generating 1 Private, and 1 Global edaBit. Costs for Global edaBits
do not include the cost of the n additional sets of Private edaBits that are needed.

Private edaBits Global edaBits
Z2k Fp Z2k Fp

Faulty edaBits B B 0 0 (l −m+ s, m)
Faulty Triples (B − 1)m (B − 1)m 0 0
Secure Triples 0 0 (log n)(n− 1) (log n)(n− 1)
daBits 0 (B − 1) 0 log n
Openings (Z2) (3m+ 1)(B − 1) (3m+ 1)(B − 1) (2m+ 2 log n)(n− 1) (2m+ 3 log n)(n− 1)
Openings (ZM ) (B − 1) (B − 1) 0 0

Table 3.4: Cost of our primitives. Numbers in brackets indicate edaBit length.

Comparison Truncation
Z2k Fp Z2k Fp

Strict edaBits 0 2 {m+ 1, s+ 1} 2 {l −m, m} 2 {l −m+ s, m}
Loose edaBits 1 {m+ 1} 0 0 0
classic daBits 1 1 2 1
Online ANDs ∼ 2m ∼ 2m ∼ 2m ∼ 2k

that the truncation protocols always use the arithmetic part of an edaBit twice, once before
opening and once to compute an intermediate or the final result. Using a loose edaBit would
clearly distort the result. With comparison on the other hand, an edaBit is only used to facilitate
the conversion to binary computation, after which the result is converted back to arithmetic
computation using a classic daBit.

Implementation Results

We have implemented our approach in a range of domains and security models, and we have
run the generation of a million edaBits of length 64 on AWS c5.9xlarge with the minimal
number of parties required by the security model (two for dishonest majority and three for
honest majority). Table 3.5 shows the throughput for various security models and computation
domains, and Table 3.6 does so for communication. In the prime field case, we use log p ≈ 128
to allow additional room needed for comparisons, while for arithmetic mod 2k we use k = 64.
For computation modulo a prime with dishonest majority, we present figures for arithmetic
computation both using oblivious transfer (OT) [KOS16] and LWE-based semi-homomorphic
encryption (HE) [KPR18]. Note that the binary computation is always based on oblivious transfer
for dishonest majority and that all our results include all consumable preprocessing such as
multiplication triples but not one-off costs such as key generation.

We have also implemented 63-bit3 comparison using edaBits, only daBits, and neither, and
we have run one million comparisons in parallel again on AWS c5.9xlarge. Table 3.7 shows the
throughput for our various security models and computation domains, and Table 3.8 does so

3Comparison in secure computation is generally implemented by extracting the most significant bit of difference.
This means that 63-bit is the highest accuracy achievable in computation modulo 264, which the natural modulus
on current 64-bit platforms.
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Table 3.5: Number of edaBits generated (in 1000s) per second in various settings

Domain Strict edaBits Loose edaBits

Dishonest maj.

Malicious
2k (OT) 4.6 7.3
p (OT) 3.6 4.2
p (HE) 2.7 3.4

Semi-hon.
2k (OT) 456.7 922.5
p (OT) 228.0 892.6
p (HE) 470.5 905.6

Honest maj.
Malicious 2k 191.5 205.8

p 156.6 162.1

Semi-hon. 2k 2032.1 7180.0
p 1367.7 4934.3

Table 3.6: Communication per edaBit (in kbit) in various settings

Domain Strict edaBits Loose edaBits

Dishonest maj.

Malicious
2k (OT) 1335.5 480.2
p (OT) 1936.9 1473.2
p (HE) 940.8 779.7

Semi-hon.
2k (OT) 22.5 9.6
p (OT) 43.9 9.6
p (HE) 11.8 9.6

Honest maj.
Malicious 2k 5.6 3.7

p 7.6 6.4

Semi-hon. 2k 0.3 0.2
p 0.5 0.2

for communication. Note that the arithmetic baseline uses either the protocol of Catrina and
de Hoogh [Cd10] (Fp) or the variant by Dalskov et al. [DEK19] (Z2k).

Our results highlight the advantage of our approach over using only daBits. The biggest
improvement comes in the dishonest majority with semi-honest security model. For the dishonest
majority aspect, this is most likely because there is a great gap in the cost between multiplications
and inputs (the latter is used extensively to generate edaBits). For the semi-honest security
aspect, note that our approach for malicious security involves a cascade of sacrificing because
the edaBit sacrifice involves binary computation, which in turn involves further sacrifice of AND
triples. Finally, the improvement in communication is generally larger than the improvement in
wall clock time. We estimate that this is due to the fact that switching to binary computation
clearly reduces communication but increases the computational complexity.

Comparison to Previous Works

Dishonest majority. The authors of HyCC [BDK+18] report figures for biometric matching
with semi-honest two-party computation in ABY [DSZ15] and HyCC. The algorithm essentially
computes the minimum over a list of small-dimensional Euclidean distances. The aforementioned
authors report figures in LAN (1Gbps) and artificial WAN settings of two machines with four-core
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Table 3.7: Number of comparisons (in 1000s) per second in various settings

Domain Arithm. daBits edaBits

Dishonest maj.

Malicious
2k (OT) 0.5 1.2 4.4
p (OT) 0.3 0.3 1.6
p (HE) 0.6 0.7 2.0

Semi-hon.
2k (OT) 5.2 14.4 275.6
p (OT) 1.6 3.3 79.7
p (HE) 5.9 12.8 170.6

Honest maj.
Malicious 2k 76.4 119.2 170.4

p 66.9 78.3 80.1

Semi-hon. 2k 500.6 1007.7 1607.6
p 157.8 277.1 457.6

Table 3.8: Communication per comparison (in kbit) in various settings

Domain Arithm. daBits edaBits

Dishonest maj.

Malicious
2k (OT) 21737.7 9058.6 1310.5
p (OT) 40108.5 34019.1 4783.3
p (HE) 3020.5 3210.9 1584.8

Semi-hon.
2k (OT) 2283.0 830.2 39.0
p (OT) 7353.1 3503.0 134.9
p (HE) 411.6 219.1 38.7

Honest maj.
Malicious 2k 63.4 27.8 5.4

p 94.3 85.0 19.9

Semi-hon. 2k 14.5 7.1 0.4
p 37.4 23.1 1.4

i7 processors. For a fair comparison, we have run our implementation using one thread limiting
the bandwidth and latency accordingly. Table 3.9 shows that our results improves on the time in
the LAN setting and on communication generally as well as on the in the WAN setting for larger
instances compared to their A+B setting (without garbled circuits). The WAN setting is less
favorable to our solution because it is purely based on secret sharing and we have not particularly
optimized the number of rounds.

Honest majority (three parties, one semi-honest corruption). Our approach is not
directly comparable to ABY3 by Mohassel and Rindal [MR18] because they use the specifics of
replicated secret sharing for the conversion. We do note however that their approach of restricting
binary circuits to the binary domain is comparable to our solution, and that they use the same
secret sharing schemes as us in the 2k domain. We compare their results with our approach
applied to logistic regression. Their software implementation [MR19] runs all parties on the
same host without communication encryption. For a fair comparison, we have run their software
as well as ours in the same setting on the same desktop machine with an i7 processor. In our
software, we use the special truncation according to Dalskov et al. [DEK19] and either edaBits or
bit decomposition as in the work above for comparison. The comparison in turn is used for a
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Table 3.9: Overall time and communication for biometric matching

LAN (s) WAN (s) Comm. (MB)

n = 1000
ABY/HyCC (A+Y) 0.22 2.5 9.5
ABY/HyCC (A+B) 0.22 6.1 10.6
Ours 0.12 8.3 7.4

n = 4096
ABY/HyCC (A+Y) 0.63 6.6 40.4
ABY/HyCC (A+B) 0.72 13.6 43.6
Ours 0.48 12.6 29.1

n = 13684
ABY/HyCC (A+Y) 3.66 17.5 138.0
ABY/HyCC (A+B) 5.4 26.2 190.8
Ours 2.00 22.9 111.8

Dimension Batch size ABY3 [MR18] Ours (ABY3 comp.) Ours (edaBits)

10

128 1495 1801 1671
256 1402 1407 1230
512 1229 1014 827

1024 976 656 479

100

128 1303 1372 1269
256 1064 988 904
512 732 657 560

1024 349 387 316

1000

128 327 436 422
256 148 284 271
512 74 167 159

1024 35 90 84

Table 3.10: Iterations per second for logistic regression

piece-wise approximation of the sigmoid function. Table 3.10 shows that edaBit-based comparison
generally comes close to ABY3’s bit decomposition.

daBits. Aly et al. [AOR+19] report figures for daBit generation with dishonest majority and
malicious security in eight threads over a 10 Gbps network. For two-party computation using
homomorphic-encryption, they achieve 2150 daBits per second at a communication cost of 94
kbit per daBit. In a comparable setting, we found that our protocol produces 12292 daBits per
second requiring a communication cost of 32 kbit. Note however that Aly et al. use somewhat
homomorphic encryption while our implementation is based on cheaper semi-homomorphic
encryption.

Convolutional Neural Networks. We also apply our techniques to the convolutional neural
networks.Dalskov et al. [DEK19] present an implementation for deep learning inference. We have
adapted their implementation to our setting and present a comparison for the simplest network
(MobileNet V1 0.25_128) in Table 3.11. It shows that edaBits reduce the communication and
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Domain Time (s) Comm. (GB)

Dish. maj.

Mal.
2k (OT) [DEK19] 1264.9 1748.4

Ours 455.3 561.9

p (HE) [DEK19] 1377.8 282.4
Ours 552.9 299.9

S-h.
2k (OT) [DEK19] 139.5 199.2

Ours 23.8 32.4

p (HE) [DEK19] 129.1 37.1
Ours 22.4 6.8

Hon. maj.

Mal.
2k

[DEK19] 5.3 2.5
Ours 3.4 2.2

p
[DEK19] 9.0 8.7
Ours 8.3 4.6

S-h.
2k

[DEK19] 0.2 0.1
Ours 0.3 0.1

p
[DEK19] 3.3 3.4
Ours 2.2 0.3

Table 3.11: Time and communication for MobileNet inference

time in most security models. The only exception is semi-honest honest-majority computation
modulo 2k, where Dalskov et al. use the conversion by Mohassel et al. [MR18], which has similar
properties to our approach. The figures for malicious protocols have been generated using bucket
size four because the batches would otherwise far exceed the required edaBits.



Chapter 4

Le Mans: MPC for Dynamic
Participants

The contents of this chapter have been taken from the paper [RS22]. The only modifications
made are to move the appendix content into the main body for better readability.

4.1 Introduction

Secure multi-party computation (MPC) allows a set of parties to jointly compute a function on
their inputs, while preserving privacy, that is, not revealing anything more about the inputs
than can be deduced from the output of the function. MPC can be applied in a wide range
of situations, including secure aggregation, private training or evaluation of machine learning
models, threshold signing and more.

Most MPC protocols work under the assumption that the set of parties involved in the
computation is fixed throughout the protocol. Although committee-based MPC and player-
replaceability schemes have existed for a while, recently more practically oriented models have
been proposed such as Fluid MPC [CGG+21] and YOSO [GHK+21]. These models support
protocols with a dynamically evolving set of parties, where participants can join and leave
the computation as desired, without interrupting the protocol. This enables a more flexible
model, where parties can sign up to contribute their resources towards a large-scale, distributed
computation, without having to commit for the duration of the entire protocol. This is particularly
important for large-scale, long-running tasks such as complex scientific computations, such as
Folding@home. In the maximally fluid setting, this concept is pushed to the limit, where each
participant is only required to sign up for a single round of the protocol. This gives the most
possible flexibility for any server who may wish to participate.

The YOSO (you only speak once) paradigm [GHK+21] also considers maximally fluid MPC
protocols, with some differences in the model. Unlike Fluid MPC, they separately study the
role assignment problem, where they show how to leverage a blockchain to randomly assign the
committee of parties who will take part in each round. With their mechanism, the identity of any
member of the current committee is only revealed after they have published their message. This
allows for much stronger security guarantees, since an adversary has no way to identify which
servers are involved in the computation — and hence who to corrupt — until the role played by
the server has already been terminated.

Both of these works give information-theoretically secure protocols in the honest majority
setting, where in any given round of the protocol, the majority of the computing parties should be

65
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honest. Fluid MPC achieves security with abort, where a malicious party can prevent the protocol
from terminating, while YOSO achieves the stronger notion of guaranteed output delivery (but is
less efficient).

Our Contributions

In this work, we study MPC with dynamically evolving parties in the dishonest majority setting.
This gives much stronger security guarantees, since we only require that in any given round of the
computation, there is at least one honest party taking part. However, it is also more challenging
than honest majority. We now elaborate on our contributions and some technical background.

The challenge of fluidity and dishonest majority.

In the dishonest majority setting, most practical MPC protocols are based on authenticated secret-
sharing using information-theoretic MACs, such as in the SPDZ [DPSZ12] or BDOZ [BDOZ11]
protocols. These protocols rely on a preprocessing phase, using more expensive, “public-key”
style cryptography, to generate a large amount of correlated randomness that is consumed in a
lightweight online phase. Unfortunately, this means that each party has to maintain a large state
(the correlated randomness), the size of which grows linearly with the complexity of the function
being computed. This is problematic for achieving Fluid MPC, since when changing from one
committee of parties to another, the natural approach is to securely transfer the entire state to
the new committee. Ideally, we want this state transfer process to be independent of the function
being computed, to avoid the communication complexity blowing up.

Key Tool: Universal Preprocessing for Dynamic Parties.

Before aiming for Fluid MPC, we look at a simpler model which allows just a single change in
the set of computing parties during the protocol. We consider a universal preprocessing phase,
where all of the parties P1, . . . , Pn who may wish to be involved in the computation must take
part. Later, any subset of the n parties can get together and run a fast, online protocol, without
having to interact with anybody else. We assume the inputs to the protocol are provided by the
online subset of parties (though with standard techniques such as [DDN+16], we can also support
inputs from external parties).

Recall that in SPDZ, the parties need to preprocess authenticated multiplication triples,
denoted JaK, JbK, JcK, where a and b are secret, random finite field elements and c = a · b. These
values are secret-shared with MACs, given by

JxK := (xi,mi,∆i)i∈[n]

where party Pi has the share ∆i of the global MAC key ∆ =
∑

∆i, and also the shares xi,mi,
satisfying x =

∑
xi and x ·∆ =

∑
mi over the field.

Instead of producing fully authenticated triples like this, we produce a weaker form of partial
triple, where c is unauthenticated, and not fully computed: every pair of parties (Pi, Pj) will get
a two-party additive sharing of ai · bj . This suffices to reconstruct a share ci, by adding up Pi’s
relevant sharings of aibj , together with aibi.

Importantly, this also enables any subset of parties P ⊂ [n] to obtain a triple, by restricting
to the shares ai, bi for i ∈ P, and summing up the relevant shares of the products to get a ci for
this committee. A similar trick also works to get the MACs on a and b, since each MAC is just a
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secret-shared product with the fixed key ∆. Therefore, it’s enough to give out two-party shares
of ai∆j and bi ·∆j for every i ̸= j.

We show how to realize this type of preprocessing using simple, pairwise correlations between
every pair of parties, in the form of oblivious linear function evaluation (OLE) and vector-OLE.
We ensure correctness of the authenticated JaK, JbK shares using a consistency check, which we
formalize via a multi-party vector-OLE functionality. However, our protocol does not guarantee
correctness of the shares of cross-products ai · bj . We therefore model these errors via adversarial
influence in the preprocessing functionality.

PCG-Friendliness.

An important feature of our preprocessing protocol is that it is PCG-friendly, meaning that it
can be implemented using pseudorandom correlation generators (PCGs) [BCG+19b]. A PCG
allows two parties to take a pair of short, correlated seeds, and expand them to produce a much
larger quantity of correlated randomness. There are efficient PCGs for vector-OLE, based on
variants of the LPN assumption [BCGI18, BCG+19a, WYKW20], and for OLE under a variant
of ring-LPN [BCG+20]. By supporting PCGs in our preprocessing, we obtain communication
and storage complexities as small as O(n log|C|) field elements per party, for an arithmetic circuit
C. Prior to our work, we stress that even with a statically chosen online phase, there was no
practical, multi-party SPDZ-like protocol1 that could support a preprocessing phase with this
feature with good concrete efficiency — ours is the first protocol to support this “silent” feature.
In recent, concurrent work [BGIN22], another MPC protocol with sublinear preprocessing was
given. Their preprocessing protocol also relies on PCGs, but scales with the square root of the
circuit size rather than logarithmically. However, their online phase communication is slightly
better than ours, and the communication of their preprocessing phase scales better with the
number of parties.

Dynamic Variant of SPDZ Online Phase.

One issue with our universal preprocessing is that, since the c terms of triples are not authenticated,
we cannot use the same online phase as SPDZ. Instead, we modify the online phase so that in
each multiplication, we first authenticate c before using a triple to multiply. Since a malicious
party may have introduced errors in c, we then need to add a verification phase, to check the
multiplications are correct. We do this following the approach of Chida et al. [CGH+18] (also used
by the honest majority Fluid compiler of [CGG+21]). Here, as well as computing the circuit, the
parties compute a randomised version of the circuit, where each wire value has been multiplied by
a secret, random value r ∈ Fp. At the end of the computation, the parties run a batch verification
process to check consistency of the two computations. We show that this guarantees our protocol
is correct, even with our weaker preprocessing protocol which allows malicious parties to introduce
special types of errors into c.

Overall, the communication cost of our dynamic online protocol is only 8 field elements on top
of the SPDZ online phase [DPSZ12, DKL+13], which costs 4 elements per party. However, this
comes with the benefits of (1) a dynamically chosen online committee, and (2) a PCG-friendly
preprocessing phase, where each party’s communication and storage complexity is O(n log|C|),
instead of O(|C|) storage and O(n|C|) communication for standard SPDZ preprocessing. Note
that after locally expanding the PCG seeds, the preprocessing material for our dynamic and

1In the two party setting, an efficient PCG-based SPDZ preprocessing protocol was given in [BCG+19b].
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fluid protocols has size O(n|C|) per party, which is n times larger than SPDZ. However, once the
online committee is known in Dynamic SPDZ, this can be compressed down to O(|C|).

Maximally Fluid Online Phase.

We now turn to the harder task of obtaining an online phase where the set of computing parties
can dynamically change. We focus on the most challenging goal of maximal fluidity, where in
each round, a different committee can sign up to receive one round of messages from the previous
committee, before sending one round of messages and going offline.

This brings additional obstacles when it comes to preprocessing data, as well as verifying
MACs on opened values during the online protocol. Since the MAC key of a committee is
determined by the sum of the MAC keys of the parties in it, different committees will have
different MAC keys. The issue with this is that, even though our universal preprocessing allows
any committee to obtain a multiplication triple, these triples end up being authenticated under
different MAC keys, depending on the committee. Hence, re-sharing state from one committee to
another will lead to values that are authenticated under a different MAC key.

As a first attempt to deal with this problem, one could have the current committee, Pcurr,
securely reshare the current state of intermediate computation values, including their MAC key
∆Pcurr , to the next committee, Pnext. To proceed further, however, Pnext will need authenticated
triples under the same MAC key. Our preprocessing phase, on the other hand, only allows them
to obtain triples under a different key ∆Pnext . To avoid this issue, Pcurr would instead have to
reshare all of the triples needed for the rest of the circuit evaluation, after which, Pnext would
use some of these, reshare to the next committee and so on. This incurs a huge blow up in
communication cost, which we would like to avoid.

Our method for dealing with this is a secure key-switching procedure, which allows Pcurr to
transfer a shared JxK to Pnext in a single round, while switching to Pnext’s MAC key. Another
constraint we have from the model is that Pnext cannot send any messages to Pcurr. At first glance,
it may seem impossible, since Pcurr should not have any information on the next key. However,
we show that by leveraging the power of our universal preprocessing, key-switching can be done
with just a single set of messages from Pcurr to Pnext.

In addition to securely switching keys, another challenge in our maximally fluid protocol is
how to check MACs on opened values. We cannot use the batched MAC check from SPDZ, since
this involves storing a large state, which has to be passed around until the end of the protocol.
Instead, we modify this to an incremental procedure, where only a constant-sized state needs to
be transferred in each round. We adopt a similar incremental protocol to verify multiplications,
where, as in our Dynamic SPDZ protocol, we use the same randomised circuit idea as [CGH+18].

Related Work

Bracha [Bra85] introduced the idea of using committees in distributed protocols with a large
number of parties, which has been used in a number of MPC protocols since. One recent example
is [GSY21], which constructs committee-based MPC when up to 1/3 of the parties may be corrupt,
achieving a construction that scales to hundreds of thousands of parties. Although part of their
protocol is based on SPDZ, they do not support the notion of a dynamically chosen subset of
parties from the preprocessing set carrying out the online computation. Concretely, their online
phase for circuit evaluation costs 7x higher than SPDZ, whereas we estimate that we only suffer
a 3x overhead. A detailed analysis of the costs is provided in Section 4.6.
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Functionality FRand

The functionality runs between a set of parties P and an adversary A.
Upon receiving a description of a domain Fm

pr from every party in P, uniformly sample
(x1, . . . , xm)←R Fm

pr and send this to A. If A responds with Deliver, send x1, . . . , xm to all
parties and terminate. Otherwise, if A sends Abort, send Abort to all parties and terminate.

Figure 4.1: Ideal functionality for coin tossing

Another relevant work is [SSW17], which outsources SPDZ preprocessing to an external set
of parties. However, unlike our protocol, this requires resharing the entire preprocessing data
from the external set to the online committee. We avoid this in Dynamic SPDZ, by relying on
our universal preprocessing.

The area of proactive security has long considered the notion of an adversary who can corrupt
different parties throughout the computation. These works typically use a proactive secret
sharing scheme, where secrets are maintained by an ever-changing set of parties. Works such
as [HJKY95, MZW+19] show security in the presence of a mobile adversary that can corrupt
and uncorrupt parties at different points in the protocol. More recently, [BGG+20, GKM+20]
construct secret-sharing protocols for the case of honest majority with active security. The model
used in these papers also splits the work done by each committee into two parts, one used to do
the computation with parties interacting only within the committee, and one used to perform a
secure state-transfer to the committee that comes after them. The primary difference between
Fluid SPDZ and proactive MPC is the motivation and the behaviour of the adversary. In proactive
schemes, the adversary typically operates with a “corruption budget" that limits the adversary
from being able to corrupt parties arbitrarily. We do not make such an assumption, and our
motivation primarily comes from giving parties in a computation the ability to drop in and out,
while minimising the minimum number of rounds they have to stay on for. In addition, we try to
achieve a small state complexity, so that switching committees is not communication intensive.

4.2 Preliminaries and Security Model

Preliminaries

We use κ as the security parameter and ρ as the statistical security parameter. Bold letters such
as a are used to indicate vectors, and a[i] refers to the i-th element of the vector. We write [a, b]
to denote the set of natural numbers {a, . . . , b} and [a, b) = {a, . . . , b− 1}.

Additional Functionalities. We make use of some standard functionalities such as a func-
tionality for oblivious transfer FOT (Fig. 4.4), coin-tossing FRand (Fig. 4.1), commitment FCommit

(Fig. 4.3), and a weak equality test FEQ (Fig. 4.2), that checks equality of two private inputs,
while always revealing one party’s input to the adversary.

Modelling Fluid MPC in Dishonest Majority

The remainder of this subsection covers definitions pertaining to the Fluid model. Computation
broadly proceeds in 4 phases – preprocessing, input, execution, and output. This is similar to that
of Fluid MPC [CGG+21], with the addition of a preprocessing phase, which is used to generate
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Functionality FEQ

This functionality receives a value VA from PA and VB from PB, checks if VA = VB, and
reveals PA’s input to PB.
Equality Check: On input (EQ, Vi) from Pi for i ∈ [A,B]:

1. Send VA to PB.

2. If PB is honest, output success or fail depending on VA
?
= VB to PA.

3. If PB is corrupted, output to PA whatever PB sends.

Figure 4.2: Functionality to for a weak equality check

Functionality FCommit

The functionality runs between a set of parties P and an adversary A.

Commit: On input (commit, Pi, x, τx) from Pi, where τx is a previously unused identifier,
store (Pi, x, τx) and send (Pi, τx) to all parties.

Open: On input (open, Pi, τx) from Pi, retrieve x and send (x, i, τx) to all parties.

Figure 4.3: Ideal functionality for commitments

Functionality FOT

On receiving (m0,m1) from PA (sender), where |m0|= |m1|, and b ∈ {0, 1} from PB

(receiver), output mb to PB.

Figure 4.4: Functionality to for oblivious transfer

data-independent information in the form of multiplication triples, to be used in the execution
phase. In the preprocessing phase, we require all parties who wish to take part in the computation
at some later point to be active, and after this they may go offline. The execution phase proceeds
in epochs, where each epoch runs among a fixed set of parties, or committee. An epoch contains
two parts, the computation phase, where the committee performs some computation, followed by
a hand-off phase, used to securely transfer the current state to the next committee.

Fluidity. The computation phase of each epoch may take several rounds of interaction. Fluidity
is defined as the minimum number of rounds in any given epoch of the execution phase. We say
that a protocol achieves maximal fluidity if the epoch only lasts for one round. This means each
server in the committee does some local computation, before sending a single message to the next
committee in the hand-off phase. In the input and output phases, we do not measure fluidity,
instead, the committee may interact for several rounds to share inputs or reconstruct the outputs.

A server is said to be “active" in the computation if it either performs computations or sends
and/or receives messages. Therefore, a server participating in epoch i is active starting from the
hand-off phase of epoch i− 1, until the end of the hand-off phase of epoch i.

Committee formation. The committees used in each epoch may be either fixed ahead of time,
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or chosen on-the-fly throughout the computation. Fixing them ahead of time can be useful, for
instance, in a volunteer sign-up based model, where servers can volunteer to participate in any
epoch, and stay on for any number of epochs depending on their resource constraints. On the
other hand, choosing committees on-the-fly may be desirable in settings closer to the YOSO
model [GHK+21], where a role-assignment mechanism is used to ensure that the next committee
is only revealed at the last possible moment.

In this work, we do not distinguish between these two cases, and instead simply require that
during the hand-off phase of epoch i, the current committee, denoted Pi, knows the identities
of the parties in the next committee Pi+1. We make no assumptions or restrictions about the
overlap between committees. As in [CGG+21], the formation process can be modelled with an
ideal functionality that samples and broadcasts committees according to the desired mechanism.

Corruption. Our model allows all-but-one of the servers who are active at the start of any
given epoch to be corrupted, where the set of corrupt parties is fixed at the beginning of the
epoch. Formally, this corresponds to an R-adaptive adversary from [CGG+21]. Here, at the
beginning of epoch i with committee Pi, the adversary may adaptively choose a set of servers in
Pi to be corrupted, and then learns the entire state of each corrupted server in any prior epochs.
For the duration of epoch i, this set of corrupted parties is then fixed and cannot change. To rule
out the adversary learning information on prior epochs, a server S may be corrupted in epoch i
only if this does not lead to any prior epoch j with committee Pj becoming entirely corrupt.

We use this model for the online phase of our fluid MPC protocol. Note that for our dynamic
SPDZ protocol, where the online committee does not change, this corresponds to the more
common notion of static security. In the preprocessing phase for both dynamic SPDZ and our
fluid MPC protocol, we have only proven security against a static adversary. While for fluid MPC,
we would ideally also like the preprocessing to be adaptively secure, this is particularly challenging
in the dishonest majority setting, and is known to imply strong primitives like non-committing
encryption. In fact, since no practical adaptively secure preprocessing protocols are even known
for the standard SPDZ protocol [DPSZ12], we view this as an interesting open problem.

Security Model

To model fluid MPC, we adopt the arithmetic black box model (ABB), which is an ideal
functionality FABB in the universal composability framework [Can01]. The functionality allows for
a set of parties P1, . . . , Pn to input their values, perform computations on them, and receive the
outputs. The functionality is parameterised by a finite field Fp, and supports native operations of
addition and multiplication in the field.

We instantiate FABB with the Dynamic SPDZ protocol (ΠSPDZ-Online), which uses a prepro-
cessing phase between a set of parties, and supports a dynamically chosen subset to perform the
online phase. The preprocessing phase is used to set up partially authenticated, partially formed
triples using pairwise MACs similar to BDOZ [BDOZ11] and TinyOT [HSS17]. We adapt the
vector OLE from Wolverine [WYKW21b], and PCGs from [BCG+19a] and use them to form the
partial triples.

To model Fluid MPC, we modify FABB to support computations with dynamic committees,
as functionality FDABB in Fig. 4.5. The main difference is that now, the functionality keeps
track of the currently active committee in a variable Pcurr. In operations which are part of the
execution phase, where the committee may change, the functionality receives the identity of the
next committee from the currently active parties (if it receives inconsistent inputs, we assume
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Functionality FDABB

Parameters: Finite field Fp, and set of parties Pmain = {P1, . . . , Pn}. The functionality
assumes all parties have agreed upon public identifiers idx, for each variable x used in the
computation. For a vector x = (x1, . . . , xm), we write idx = (idx1 , . . . , idxm).

Initialise: On input (Init,Pcurr) from Pi, for i ∈ [1, n], where each Pi sends the same set
Pcurr ⊂ Pmain, initialise Pcurr as the first active committee.

Input: On input (Input, idx, x) from some Pi ∈ Pmain, and (Input, idx) from all parties in
Pcurr, store the pair (idx, x).

Add: On input (Add, idz, idx, idy) from Pi, for every Pi ∈ Pcurr, compute z = x+ y and
store (idz, z).

Batch Multiply: On input (Mult,Pnext, idz, idx, idy) from every Pi ∈ Pcurr:

• Compute z = x ∗ y.

• Update Pcurr := Pnext.

• Wait to receive a message (MultFinish,P ′
next) from every Pi ∈ Pcurr. Then, store the

batch of products (idz, z) and update Pcurr := P ′
next.

Output: On input (Output, idz) from every Pi ∈ Pcurr, where idz has been stored previously,
retrieve (idz, z) and send it to the adversary. Wait for input from the adversary, if it is
Deliver, send the output to every Pi ∈ Pcurr. Otherwise, abort.

Figure 4.5: Functionality for a dynamic arithmetic black box

it aborts). In our protocol, the Batch Multiply command is the only part of the execution
phase with interaction, so this is where any changes in committee might take place. We have
Pcurr provide the next committee Pnext as input, and then wait for another message from Pnext,
who will provide a subsequent committee P ′

next. This is because our multiplication protocol takes
place over two rounds, so it inherently allows up to two committee changes whenever it is called
(if we want to support maximal fluidity).

In practice, with our protocol it is possible to interleave multiplications, so that a new
multiplication can be started before the old one has finished (reducing round complexity).
However, for simplicity, we do not model this in FDABB.

We instantiate FDABB with a Fluid Online (ΠFluid-Online) protocol. It extends the model of
Fluid MPC [CGG+21] which only works for the honest majority case, to the dishonest majority
setting with active security. It uses the same preprocessing phase as Dynamic SPDZ, but the
online phase supports committees switching. Parties can leave the computation by securely
transferring their state to the subsequent committee, and rejoin the computation at a later point.
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4.3 Universal Preprocessing for Dynamic Committees

In this section, we present the preprocessing phase used in our two online protocols. Our main
design goals are (1) to allow a flexible and dynamic choice of participants during the online phase,
and (2) to obtain a silent preprocessing phase, where the storage and communication complexities
are (almost) independent of the function being computed. The section is organised in a top-down
manner, where we start by describing an ideal preprocessing functionality, and then gradually
explain our protocol for realising it.

Overview.

In this section, we focus on realising FPrep, using variants of oblivious linear function evaluation
(OLE), as well as how to realise a multi-party variant of vector-OLE (FnVOLE).

Preprocessing Functionality

Let Pmain = {P1, . . . , Pn} be the set of all parties who may want to participate in the online
phase.

Authenticated Secret Sharing.

For the preprocessing, we use two kinds of secret sharing. [x] denotes that x ∈ Fp is additively
shared between the parties, that is, x = x1 + . . .+ xn where Pi holds xi. We also use pairwise
authenticated shares, indicated by ⟨x⟩. Here, in addition to an additive share of x, each party holds
an information-theoretic MAC on their share with every other party, who holds a corresponding
MAC key. The MAC of Pi’s share xi under Pj ’s key is defined as M i

j = Kj
i +∆j · xi, where Pi

holds the MAC M i
j and Pj holds the local key Kj

i as well as the global key ∆j (which is fixed
for all MACs). While the shares xi lie over the field Fp, we allow MAC keys and MACs to be in
an extension field Fpr , giving a forgery probability of p-r, in case p is not large enough for the
desired statistical security level.

If x is only shared between a smaller committee PC ⊂ Pmain, we write [x]PC . Similarly,
for pairwise MACs, we can consider a sharing between two (possibly overlapping) committees
PA,PB ⊂ Pmain, where PA holds shares and MACs on x, while PB holds the corresponding MAC
keys:

⟨x⟩PA,PB =
(
{xi,

(
M i

j

)
j∈PB

}i∈PA
, {∆j , (Kj

i )i∈PA
}j∈PB

)
When the committees are clear from context, we will sometimes omit them and simply write ⟨x⟩
or [x].

If all the parties in P of size n have a sharing ⟨x⟩P , where x = x1 + · · ·+ xn, any two subsets
PA,PB can locally convert this into a sharing ⟨x′⟩PA,PB of a different value x′ =

∑
i∈PA

xi. This
procedure is done by simply restricting the relevant shares and MACs to those corresponding to
the two committees. We denote it as follows:

RestrictShares(⟨x⟩P ,PA,PB)→
〈
x′
〉PA,PB

In our protocols, we rely on the fact that if the original shares of x were uniformly random,
then so is the resulting value x′.
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Functionality (Fig. 4.6).

The aim of FPrep is to allow arbitrary committees to obtain [·] and ⟨·⟩-shared values, in the form
of random authenticated field elements, and partial triples. The functionality begins with an
initialization phase, which models the setting up of the necessary data to obtain up to mR random
values and mT multiplication triples. Then, either the Rand or Trip command can be queried by
a pair of dynamically-chosen committees (Pcurr,Pnext), who obtain the appropriate shares. We
assume that each query uses a distinct index k, which is necessary to ensure that in our protocol,
the corresponding preprocessing data is not reused when another committee produces a triple.2

A key difference between our functionality and previous works like SPDZ [DPSZ12, DKL+13]
is that our triples are only partially authenticated. In a random triple (a, b, c) where c = a · b, the
values a and b are authenticated with pairwise MACs, while c is only additively shared. This is a
crucial aspect which allows our protocol to support dynamically-chosen parties, and also achieving
a communication overhead that is significantly less than the circuit size. One drawback of this
preprocessing, compared to SPDZ, is that the size of each partial triple is O(n) field elements
per party, due to the pairwise MACs and products. However, once the online phase committee
in which the triples will be used is known, they can be compressed to standard, constant-sized
SPDZ triples.

Corrupt behaviour. As is common in SPDZ-like protocols [DPSZ12], we allow corrupted
parties to choose their own randomness, i.e. shares, MACs and MAC keys, after which the honest
parties’ shares are picked at random to give a valid sharing. Moreover, we also allow the adversary
to introduce errors into multiplication triples, by choosing error terms which are multiplied with
the honest parties’ shares of a and b, and then added to the result of c.

Preprocessing Protocol

Our protocol for realising FPrep consists of two main building blocks: a 2-party OLE function-
ality, and an n-party vector-OLE (VOLE) functionality; we elaborate on these below, and later
(in Section 4.3) show how they can be realized. These are used for computing the unauthenticated
shares of c in multiplication triples, and authenticated shares of random values, respectively.

Programmable OLE. We use a functionality for random, programmable oblivious linear
evaluation (OLE), Fprog

OLE , shown in Fig. 4.7. This is a two-party functionality, which computes a
batch of secret-shared products, i.e. random tuples (ui, vi), (wi, xi), where wi = uixi + vi, over
the field Fp. The programmability requirement is that, for any given instance of the functionality,
the party who obtains ui or vi can program these to be derived from a chosen random seed.
This allows e.g. the same random ui’s to be used in a different instance of Fprog

OLE . We model the
programmability with a function Expand : S → Fm

p , which deterministically expands the chosen
seed into a vector of field elements. When instantiating the functionality, the expansion function
will correspond to some kind of secure PRG.

Multi-party programmable VOLE. Vector oblivious linear evaluation (VOLE) can be seen
as a batch of OLEs with the same xi value in each tuple, that is, a vector w = ux+ v, where

2In our online phases, we assume the parties have a means of agreeing upon the ordering of committees to
ensure that the indices queried to FPrep are not reused.
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Functionality FPrep

Parameters: Finite fields Fp and Fpr , parties P1, . . . , Pn, adversary A and set of honest
parties PH .
Functionality: Generates triples with unauthenticated c, and authenticated random
values.

Init: On receiving (Init,mT ,mR) from Pi, for i ∈ [1, n], where mT is the upper bound on
the number of triples and mR on random values, sample a MAC key ∆i ←R Fpr , send ∆i

to Pi and ignore subsequent Init commands from Pi.
Random Value: On input (Rand,Pcurr,Pnext, k) from every Pi ∈ Pcurr ∪ Pnext, where
k ∈ [1,mR] and Rand has not been queried before with the same k:

1. Sample shares ri ←R Fp, for i ∈ Pcurr.

2. For each i ∈ Pcurr and j ∈ Pnext \{i}, sample Kj
i ←R Fpr and let M i

j = Kj
i +∆j ·ri ∈

Fpr .

3. Let ⟨r⟩Pcurr,Pnext =
(
ri, (M i

j ,K
j
i )j∈Pnext\{i}

)
i∈Pcurr

, and output the relevant shares,
MACs and MAC keys to the parties in Pcurr,Pnext.

Triple: On input (Trip,Pcurr,Pnext, k), from every Pi ∈ Pcurr ∪ Pnext, where k ∈ [1,mT ]
and Trip has not been queried before with the same k:

1. Run the steps from Random Value twice, to create sharings ⟨a⟩ , ⟨b⟩.

2. Additive errors: Wait for A to input {δia, δib}i∈PH∩Pcurr , each in Fp. Let c = a · b +∑
i∈PH∩Pcurr

(ai · δib + bi · δia).

3. Sample shares ci ∈ Fp, for i ∈ Pcurr, such that
∑

i∈Pcurr
ci = c. Let [c]Pcurr := (ci)i∈Pcurr .

4. Output ⟨a⟩Pcurr,Pnext , ⟨b⟩Pcurr,Pnext , [c]Pcurr to the parties in Pcurr,Pnext.

Corrupt parties: In addition to additive errors, corrupt parties may choose their own
randomness for all sharings, namely ri in Rand, ai, bi, ci in Trip, as well as any MACs and
MAC keys they receive. The honest parties’ shares/MACs/keys are adjusted accordingly.

Figure 4.6: Functionality for the preprocessing

x ∈ Fp is a scalar given to one party. Here, while x lies in the field Fp, the remaining values are
in the extension field Fpr , since we use VOLE to generate MACs. In multi-party VOLE, shown as
FnVOLE in Fig. 4.8, every pair of parties (Pi, Pj) is given a random VOLE instance wi

j = uixj+vj
i .

The functionality guarantees consistency, in the sense that the same ui or xj values will be used
in each of the instances involving Pi or Pj . While unlike the OLE functionality, the ui, xi values
in FnVOLE are not programmable, we do require that the functionality outputs to Pi a short seed
representing ui, so that Pi can later use this as an input to program Fprog

OLE .

Protocol. Given these building blocks, we use the preprocessing protocol ΠPrep (Fig. 4.9) to
generate partially authenticated triples and authenticated random values between dynamically
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Functionality Fprog
OLE

Parameters: Finite field Fpr , and expansion function Expand : S → Fm
p with seed space

S and output length m.
The functionality runs between parties PA and PB.

On receiving sa from PA and sb from PB, where sa, sb ∈ S:

1. Compute u = Expand(sa), x = Expand(sb) and sample v ←R Fm
p .

2. Output w = u ∗ x+ v to PA and v to PB.

Corrupt parties: If PB is corrupt, v may be chosen by A. For a corrupt PA, A can
choose w (and then v is recomputed accordingly).

Figure 4.7: Functionality for programmable OLE

chosen committees. As discussed earlier, the key observation is that it suffices to generate a batch
of pairwise secret-shared products, between every pair of parties, which can later be combined to
produce preprocessing amongst an arbitrary subset of the parties.

The protocol is relatively straightforward, involving no interaction other than calling the
relevant functionalities. In the Init phase of the protocol, each party Pi initializes FnVOLE,
obtaining a random MAC key ∆i. Parties use the Extend command of FnVOLE to authenticate
their shares with every other party. Towards this, each Pi calls FnVOLE twice, which picks two
random seeds sia, s

i
b and expands them into the shares ai, bi. It outputs to Pi the pairwise MACs

on its shares of the triples, along with the seeds. Each pair (Pi, Pj) then use Fprog
OLE to obtain

2-party sharings of the products ai ∗ bj , for each j ̸= i.
Later, when a triple is required by the committees Pcurr,Pnext, every party in the committee

Pcurr sums up its pairwise shares of the product terms corresponding to one triple, obtaining a
share of a · b, where a, b are the sum of the corresponding shares within that committee. The
second committee Pnext does not have any shares of a · b, but instead obtains the MAC keys on
the a, b shares from the previous FnVOLE outputs. To obtain authenticated random values, a
similar procedure is done using only FnVOLE to add MACs.

Note that, if a corrupt party Pi inputs an inconsistent seed sia or sib into Fprog
OLE , the resulting

triple will be incorrect. This is modelled by the additive errors that may be introduced in FPrep.
Below, we prove the following.

Theorem 4.1. Suppose that Expand : S → Fm
p is a secure pseudorandom generator. Then, the

protocol ΠPrep securely implements the functionality FPrep in the (FnVOLE,Fprog
OLE)-hybrid model,

when up to n− 1 out of n parties are corrupted.

Proof. Since the protocol involves no interaction other than with FnVOLE and Fprog
OLE , simulation

is quite straightforward. Let A be the set of corrupt parties. We construct a simulator, S,
as follows. For each i ∈ A, S receives ∆i from A and forwards it to FPrep. We focus on the
setup for triple generation; the simulation for random values is simpler. S receives the corrupt
parties’ seeds sia, s

i
b as input to FnVOLE, as well as the MACs and MAC key outputs which are

chosen by the corrupt parties. S then computes the expanded shares ai = Expand(sia) and
bi = Expand(sib). For each i ∈ A and honest Pj , it receives seeds si,ja , si,jb as input to the Fprog

OLE
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Functionality FnVOLE

Parameters: Finite field Fpr , and expansion function Expand : S → Fm
p with seed space S

and output length m. The functionality runs between P1, . . . , Pn.

Initialise: On receiving Init from Pi, for i ∈ [1, n], sample ∆i ←R Fpr , send it to Pi, and
ignore all subsequent Init commands from Pi.
Extend: On receiving (Extend) from every Pi ∈ P:

1. Sample seedi ←R S, for each Pi ∈ P.

2. Compute ui = Expand(seedi).

3. Sample (vj
i )j ̸=i ←R Fm

pr for i ∈ P, j ̸= i. Retrieve ∆j and compute wi
j = ui ·∆j + vj

i .

4. If Pj is corrupt, receive a set I from A. If seed ∈ I, send success to Pj and continue.
Else, send abort to both parties, output seed to Pj and abort.

5. Output
(
(seedi,wi

j),v
i
j

)
j ̸=i

to Pi, for Pi ∈ P.

Corrupt parties: A corrupt Pi can choose ∆i and seedi. It can also choose wi
j (and vj

i

is recomputed accordingly) and vi
j .

Global key query: If Pi is corrupted, receive (guess,∆′) from A with ∆′ ∈ Fn
pr . If

∆′ = ∆, where ∆ = (∆1, . . . ,∆n), send success to Pi and ignore any subsequent global
key query. Else, send (abort,∆) to Pi, abort to Pj and abort.

Figure 4.8: Functionality for n-party VOLE

instances between Pi and Pj . For any instance where si,ja ̸= sia, S computes the additive error
multipliers δi,jb = Expand(si,ja )−ai, and similarly computes δi,ja = Expand(si,jb )−bi. For j ∈ [n]\A,
let δjb =

∑
i∈A δi,jb , and δja =

∑
i∈A δi,ja .

Finally, S sends the error terms δja, δ
j
b to FPrep, as well as the corrupted parties’ expanded

shares ai, bi (for i ∈ A), MACs, MAC keys and ci shares (all computed the same way as in the
protocol).

We now argue indistinguishability of the ideal and real executions. Since the corrupt parties
receive no information during the protocol, we only need to look at the distribution of the parties’
outputs. Let Pcurr,Pnext be two committees which query the Triples command, and suppose each
committee has at least one honest party (for an entirely corrupt committee, indistinguishability
of the corresponding outputs is trivial). Each sharing ⟨a⟩Pcurr,Pnext , ⟨b⟩Pcurr,Pnext is defined from a
subset of the original sharings ⟨a⟩ , ⟨b⟩, where each honest party’s share ai, bi was derived as an
output of Expand on an independent random seed. Hence, by a standard hybrid argument, these
shares are computationally indistinguishable from random values. The MACs and MAC keys
held by the two committees on ⟨a⟩ , ⟨b⟩ are perfectly indistinguishable, because in both worlds,
corrupt parties choose their own values, while values between a pair of honest parties are sampled
at random. Finally, we need to consider the shares ci, for i ∈ Pcurr. In the real world, we have
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Protocol ΠPrep

Parameters: Finite field Fpr , number of triples mT , random values mR, and expansion
function Expand : S → Fm

p with seed space S and output length m.
Init: Run the following two stages among all the parties in Pmain.
Triples setup: repeat the following, until ≥ mT outputs have been obtained (each iteration
produces m).

1. Each Pi calls FnVOLE with Init, receiving ∆i.

2. Each Pi, for i ∈ [1, n], calls FnVOLE twice, with input Extend and receives the seeds
sia, s

i
b. Use the outputs to define vectors of shares ⟨a⟩ , ⟨b⟩ such that ai = Expand(sia)

and bi = Expand(sib).

3. Every ordered pair (Pi, Pj) for i, j ∈ [1, n] calls Fprog
OLE with Pi sending sia and Pj

sending sjb, and it sends back ui,j to Pi and vj,i to Pj , such that ui,j + vj,i = ai ∗ bj .

Random values setup: repeat the following, until ≥ mR outputs have been obtained.

1. Every Pi, for i ∈ [1, n], samples a seed sir ∈ S and calls FnVOLE with input (Extend, sir)
from Pi, forming ⟨r⟩.

Triples: To get the k-th triple in committees Pcurr,Pnext:

1. Let ⟨a′⟩ , ⟨b′⟩ be the k-th shares from ⟨a⟩ , ⟨b⟩. The parties run
RestrictShares(⟨a′⟩ , ⟨b′⟩ ,Pcurr,Pnext) to obtain ⟨a⟩Pcurr,Pnext , ⟨b⟩Pcurr,Pnext .

2. Each Pi ∈ Pcurr computes ci = ai · bi +
∑

j∈Pcurr\{i}(u
i,j [k] + vi,j [k]).

3. The parties output the triple (⟨a⟩Pcurr,Pnext , ⟨b⟩Pcurr,Pnext , [c]Pcurr).

Random Values: To get the k-th random value in committees Pcurr,Pnext, the parties take
⟨r′⟩, the k-th random value from ⟨r⟩, and run RestrictShares to convert this to ⟨r⟩Pcurr,Pnext .

Figure 4.9: Protocol for preprocessing

c =
∑

i∈Pcurr

ci =
∑

i∈Pcurr

(aibi +
∑
j ̸=i

(ui,j + vi,j))

=
∑

i∈Pcurr

(aibi +
∑
j ̸=i

(ui,j + vj,i))

=
∑

i∈Pcurr

(aibi +
∑
j ̸=i

(ai,jbj,i)

where ai,j , bi,j equal ai, bi if Pi is honest, or if Pi is corrupt, derived from the seed used by Pi

with Pj in Fprog
OLE . Plugging in ai,j = δi,jb + ai and bj,i = δj,ia + bj , we have
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c =
∑

i∈Pcurr

(aibi +
∑
j ̸=i

(ai + δi,jb ) · (bj + δj,ia )

= ab+
∑

i∈Pcurr

∑
j ̸=i

(aiδj,ia + bjδi,jb )

= ab+
∑

i∈Pcurr

(aiδia + biδib)

where δia, δ
i
b are defined as in the error vectors from the simulation, and we have assumed that,

for any i, j where both Pi and Pj are corrupt, δi,ja and δj,ib are both zero (since here, simulation is
trivial).

It follows that the way c is computed in the real world, above, is identical to that in the ideal
world. Furthermore, the randomness of the individual ci shares is guaranteed, because of the
randomly sampled outputs of Fprog

OLE between two honest parties.

Instantiating Multi-Party VOLE

In multi-party VOLE, each party Pi runs an instance of random VOLE with every other party Pj .
We model two-party random VOLE as the functionality Fprog

VOLE [RS21], and show how to realize
it in Section 4.3. To allow parties to use the same random input in different VOLE instances, the
functionality is also programmable, similarly to Fprog

OLE .
The main challenge in realizing FnVOLE is to guarantee that each party uses the same

programmed input across every instance of Fprog
VOLE with other parties. For instance, a corrupt

party Pi could potentially use different ∆i values as the sender, or different seeds for ui as the
receiver across instances. To prevent this, we use a consistency check to prevent parties from
using different inputs across the instances. The check involves taking a random linear combination
of the outputs of Fprog

VOLE and opening the sum, and is similar to the ΠTripleBucketing protocol from
[HSS17], except we work over a general finite field rather than F2.

Another difference is that we formalize the resulting protocol and show it realizes the multi-
party VOLE functionality, while in [HSS17], the check was only used as part of a larger protocol.
To prove this, we had to introduce the Global key query command in FnVOLE, which allows
corrupt parties to try to guess the honest parties’ global scalars (MAC keys).

The final protocol for ΠnVOLE appears in Fig. 4.10.

Consistency Check:

Since Fprog
VOLE does not guarantee that each party uses the same seed si or scalar ∆i with every

other party, we need some sort of a consistency check to detect malicious behaviour. The high
level idea is for parties to compute random linear combinations on the outputs of Fprog

VOLE, securely
open the sum and check that it is zero. This check is similar to the idea from [HSS17], wherein it
was used to check TinyOT triples.

The protocol starts with each (Pi, Pj) running Fprog
VOLE between them twice, once with Pi as the

sender and once as the receiver. Recall that for a value v, Pi holds the share ⟨v⟩ = (vi, {M i
j ,K

i
j}j ̸=i).

Using the outputs of Fprog
VOLE, each Pi can define its shares of ⟨r1⟩ , . . . , ⟨rm⟩ , ⟨t⟩ ∈ Fpr locally. To

compute a random linear combination, parties call FRand and receive χ1, . . . , χm ∈ Fpr . They
can locally compute shares of ⟨C⟩, and reconstruct C by broadcasting the shares. We wish to
check

∑n
i=1 Z

i
j = 0 for j ∈ [1, n], where {Zi

j}i ̸=j = M i
j and Zi

i = (Ci−C) ·∆i−
∑

j ̸=iK
i
j . Parties



80 CHAPTER 4. LE MANS: MPC FOR DYNAMIC PARTICIPANTS

Protocol ΠnVOLE

Parameters: Extension field Fpr , parties P1, . . . , Pn.
Initialise: Each party Pi samples ∆i ←R Fpr . Every ordered pair of parties (Pi, Pj) calls
Fprog
VOLE with (Init,∆i), Init respectively.

Random Values: To create m authenticated random values ⟨r1⟩ , . . . , ⟨rm⟩,

1. Each party Pi samples a seed si.

2. Each ordered pair of parties (Pi, Pj) call Fprog
VOLE, with Pi sending (Extend, si) and Pj

sending Extend. Pi receives {rik,M
i,k
j } and Pj receives Kj,k

i for k ∈ [1,m+ 1].

3. The outputs of Fprog
VOLE define sharings ⟨r1⟩ , . . . , ⟨rm⟩ , ⟨t⟩ ∈ Fpr , where each rj =∑n

i=1 r
i
j and t =

∑n
i=1 r

i
m+1.

4. Each Pi does the following to check the consistency of inputs to Fprog
VOLE:

a) Call FRand together with other parties to get random values χ1, . . . , χm ∈ Fpr .

b) Locally compute

⟨C⟩ =
m∑
i=1

χi · ⟨ri⟩+ ⟨t⟩

c) Pi has a share Ci, the MACs and keys (M i
j ,K

i
j)j ̸=i from ⟨C⟩.

d) Pi rerandomizes the share locally by sending a zero share to the other parties.
Call the randomised shares Ĉi.

e) Broadcasts Ĉi and reconstructs C =
∑n

i=1 Ĉ
i

f) Pi calls FCommit with n+ 1 values:

Ci, (Zi
j)j ̸=i = M i

j , Zi
i = (Ci − C) ·∆i −

∑
j ̸=i

Ki
j

5. Parties open their commitments and check that
∑n

i=1 Z
i
j = 0, for j ∈ [1, n]. In

addition, each Pi checks that Zj
i = Ki

j + Cj ·∆i. If any of the checks fail, abort.

Figure 4.10: Protocol for Consistent VOLE

commit and open their shares, and locally check that each
∑n

i=1 Z
i
j = 0. If any of them fail, they

abort.
The following is an analysis of the consistency check followed by a proof.

Analysis of the Consistency Check

Since Fprog
VOLE does not guarantee that each party Pi uses the same seed si with every other party,

we need some sort of a consistency check to detect malicious behaviour. The high level idea is for
parties to compute a random linear combination on the outputs of Fprog

VOLE, securely open the sum
and check that it is zero. The check is similar to the one from [HSS17], wherein it was used to
check TinyOT triples.
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Recalling the notation for a 2-party MAC between (Pi, Pj), Pi holds the values (xi,M i
j), where

M i
j(x

i) = Kj
i (x

i) + xi ·∆j . Kj
i is the local key that Pj has with Pi, and ∆j is the global key that

is supposed to be kept the same across interactions with different parties.
We formalise the security of the consistency check used in Fig. 4.10. There are two sources of

errors a corrupt PB can use, which are:

1. Providing inconsistent inputs (∆) when acting as the sender in the Initialise command of
Fprog
VOLE with 2 different honest parties.

2. Providing inconsistent values (s) when acting as the receiver in the Extend command of
Fprog
VOLE with 2 different honest parties.

In both instances, we are only concerned with the cases in which a dishonest party interacts
with an honest one. If both parties are corrupt, Fprog

VOLE need not be simulated in the proof.
Difference between [HSS17] and this: In [HSS17], the adversary can use different values as

inputs when acting as the receiver with different honest parties. This translates to a chosen
additive error by the adversary. However, in our case the adversary inputs a seed s, from which
the value u is computed as Expand(s). Therefore, this will not be an arbitrarily chosen additive
error but limited to a subset of values over the field.

For the analysis, we continue to treat this error as an arbitrarily chosen additive error.
These attacks are modelled by defining the inputs used by a corrupt Pj , with every honest

party. Let Pi0 be the party for which Pj uses the inputs sj,i0 , and ∆j,i0 , which we consider to be
the actual inputs. As a result of using a different s with different parties, the values r, t will be
different. Let the values used by Pj with Pi0 be rj,i0l , tj,i0 ∀l ∈ [m]. For simplicity, we omit the i0
in the superscript for these values. Ideally Pj should use the same inputs with every other honest
party. We can model the errors as:

εj,i0 = 0, εj,i = ∆j,i −∆j , i /∈ (A ∪ i0)

δj,i0 = 0, δj,il = rj,il − rjl , l ∈ [m], i /∈ (A ∪ i0)

δ̂j,i0 = 0, δ̂j,il = tj,i − tj , i /∈ (A ∪ i0)

Where εj,i is the error in the global key used by Pj with Pi. This error is fixed in the Initialise
command, whereas the error δ can be different in every instance of Extend. If Pi, Pj are both
corrupt, or both honest, the errors are set to 0. Therefore, the outputs of Fprog

VOLE between (Pj , Pi)
satisfy:

MJ
i (r

j,i
l ) = Ki

j(r
j,i
l ) + rj,il ·∆

i,j

or equivalently,

M j
i (r

j
l + εj,il ) = Ki

j(r
j
l + εj,il ) + (rjl + δj,il ) · (∆j + εi,j)

δj,i ̸= 0 if Pj (the receiver) cheated, and εi,j ̸= 0 if Pi (the sender) cheated.
The first case is of a corrupt sender Pj , which uses inconsistent global keys ∆j,i when acting

as a sender with different honest parties Pi, i /∈ (A ∪ i0). The inconsistency is proved impossible
via:

Lemma 4.1. If ΠnVOLE succeeds, then all the global keys ∆j,i are consistent and well defined, i.e
εj,i = 0 for every i, j ∈ [1, n].
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Proof. We start by analysing possible deviations by Pj ∈ A in Step 4g in Fig. 4.10, where we
want to catch inconsistent ∆j,i used with different honest parties.

In Step 4e, parties broadcast their shares of C, and the corrupted parties can send the wrong
shares so that

∑n
j=1 Ĉ

j = C + e, where e is the additive error from Pj . Another thing the
corrupted parties can do is cheat in the commitments, by committing to Ẑ l

j values such that∑
l∈A Ẑ l

j =
∑

l∈A Z l
j + Ej .

Therefore, the check now becomes:

0 =
n∑

i=1

Ẑi
j

= Ej + Zj
j +

∑
i ̸=j

Zi
j

= Ej +

(Cj − C − e) ·∆j −
∑
i ̸=j

Kj(Ci)

+
∑
i ̸=j

M i
j(C

i)

= Ej + (Cj − C − e) ·∆j +
∑
i ̸=j

(M i
j(C

i)−Kj
i (C

i))

= Ej + (Cj − C − e) ·∆j +
∑
i ̸=j

Ci ·∆j,i

= Ej + (Cj +
∑
i ̸=j

Ci − C − e) ·∆j +
∑
i ̸=j

Ci · εj,i

= Ej − e ·∆j +
∑
i ̸=j

Ci · εj,i

where εj,i indicates the error as compared to the ∆j used in computing Zj
j . Using inconsistent

global keys means that ∃i′ /∈ (A ∪ i0), ε
j,i′ ̸= 0. Therefore the attack would require e ·∆j − Ej =

Ci′ · εj,i′ . Pj does not know anything about the shares of C at the time of committing to Ẑ l
j due

to using the re-randomised shares of C for reconstruction in step 4e. Therefore, the probability
that the check passes with the errors is 1/F as the adversary will have to guess the share of C.

The second case is proving that Pj as a corrupted receiver cannot input inconsistent values
ej,i to different honest parties.

Lemma 4.2. If ΠnVOLE succeeds, every ordered pair (Pi, Pj) holds a secret sharing of rjl ·∆
i for

every l ∈ [1,m]. In other words, δj,il = 0 for every i, j, l.

Proof. We can define the MAC on Cj held by Pj with party Pi as,

M j
i (C

j) =
m∑
l=1

χl ·M j
i (r

j,i
l ) +M j

i (t
j,i)

and the key held by Pi as,

Ki
j(C

j) =
m∑
l=1

χl ·Ki
j(r

j,i
l ) +Ki

j(t
j,i)
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In step 4f of ΠnVOLE, a corrupted Pj can commit to incorrect MACs Ẑj
i (C

j) = M j
i (C

j) + Ej
i

and Ĉj = Cj + ej . In order to succeed, the check Ẑj
i = Ki

j(C
j) + Ĉj ·∆i from step 4g must hold.

This implies,

M j
i (C

j) + Ej
i = Ki

j(C
j) + (Cj + ej) ·∆i

=⇒ Ej
i − (Cj + ej) ·∆i = Ki

j(C
j)−M j

i (C
j) = −

(
m∑
l=1

χl · rj,il + tj,i

)
·∆i

=⇒ Ej
i =

(
Cj + ej −

m∑
l=1

χl · (rjl + δj,il ) + (tj,i + δ̂j,i)

)
·∆i = (ej −

m∑
l=1

χl · δj,il + δ̂j,i) ·∆i

A malicious Pj has two options to cheat, both with probability of 1/F to succeed:

1. Setting Ej
i = (ej −

∑m
l=1 χl · δj,il + δ̂j,i) ·∆i ̸= 0, which requires guessing ∆i, known only to

Pi.

2. Set Ej
i = 0 and ej =

∑m
l=1 χl · δj,il + δ̂j,i for every i /∈ A. Since δj,i0l = δ̂j,i0 = 0, ej should

also be 0. Therefore, for i /∈ (A ∪ i0) it should hold that,

0 =

m∑
l=1

χl · δj,il + δ̂j,i = δ̂j,i = −
m∑
l=1

δj,il · χl ∈ Fpr

Since χ are uniformly random values from a field, the probability that this holds is 1/F.

Theorem 4.2. Protocol ΠnVOLE UC-securely computes FnVOLE in the presence of a static malicious
party corruption up to n− 1 in the (Fprog

VOLE,FRand,FCommit)-hybrid model.

Proof. We construct a PPT Simulator (S) that run the adversary (A) as a subroutine, and is
given access to FnVOLE. It internally emulates the functionalities Fprog

VOLE,FRand,FCommit and we
implicitly assume that it passes all communication between A and the environment (Z).

The parties controlled by the A are indicated by PA and the honest parties by PH. The
simulator uses a flag which is set to 1 in case A is caught cheating before the consistency check
happens, and the simulation is carried on. The simulation proceeds as follows:

Malicious PA:
Init: S receives a vector ∆i for every i ∈ A, which are its inputs to Fprog

VOLE. S chooses the
first one in each of these vectors and forwards them to FnVOLE with the Init command. If any of
these vectors are not of the form (∆i, . . . ,∆i), set the flag = 1.

Random Values:

1. When A acts as receiver in step 2, S receives a vector eij from every Pi ∈ PA and j ∈ [1, n].
It picks the first vector and forwards it to FnVOLE with the Extend command. If any of the
vectors received from a Pi are inconsistent, set flag = 1.

2. For Pi ∈ PA and j ∈ [1, n], S records wi
j when A acts as the receiver in step 2, and vi

j

when it acts as the sender.

3. Emulate the call to FRand by sampling χ1, . . . , χm and sending them to A.

4. Receive zero-shares from A and record them. Sample a zero-share for Pj ∈ PH and send
them to A.
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5. Sample a random share of C for each honest party and send them to A. Receive Ĉi for
Pi ∈ PA, reconstruct C =

∑n
i=1 Ĉ

i.

6. Emulate FCommit by recording C̃i, (Zi′
j )j ̸=i, Z

i′
i from Pi ∈ PA. S computes Ci as it knows

χ, and shares of A for Fprog
VOLE. Using those, it sets ⟨C⟩ =

∑m
i=1 χi · ⟨ri⟩+ ⟨t⟩ for all parties

in PA.

7. If C̃i = Ci and flag = 0: for each sum,
∑n

i=1 Z
i
j , where j ∈ [1, n], sample shares for the

honest parties as follows: sample uniformly random values for all but one honest party, and
pick the last share such that the sum is zero.

8. If C̃i = Ci and flag = 1: sample random values for PH for shares of Z and send them to A,
send abort to FnVOLE and abort.

9. If C̃i ̸= Ci, compute Z̃i
j −Zi

j , where Zi
j is the value computed by S using Ci, for all j ∈ PH .

For A to pass the check, it must have guessed the correct ∆j for every honest Pj .

a) Therefore, S can extract A’s guess as ∆̃j = (Z̃i
j − Zi

j)/(C̃
i − Ci). Set ∆̃ = (∆̃j , . . .).

b) Forward (guess, ∆̃) to FnVOLE. If FnVOLE returns success, send true to A, forward w
to FnVOLE. Compute shares of PH such that

∑n
i=1 Z

i
j = 0 for j ∈ [1, n] and send them

to A. Output whatever A outputs.

c) Else, receive (abort,∆), where ∆ is the vector of ∆ values used by PH . Compute
shares of PH using ∆, send them to A, and abort.

10. Whenever A queries Fprog
VOLE with a set I, forward it to FnVOLE.

The Missing Pieces: Programmable OLE and VOLE.

We now describe how to realize the two missing building blocks used in our preprocessing protocol,
namely 2-party programmable OLE and VOLE.

Realizing Fprog
OLE . This can be realized in a number of ways, for instance, based on linearly

homomorphic encryption [BDOZ11]. However, this would give a protocol with communication
that scales linearly in m, the number of OLEs. Instead, we rely on the recent work of [BCG+20],
which uses a variant of the ring-LPN assumption to obtain communication that is logarithmic
in m. While the OLE functionality from [BCG+20] is not programmable, we observe that their
protocol easily supports programmable inputs, so suffices for our application.

Realizing Fprog
VOLE. Unlike the OLE protocol from [BCG+20], this work starts with a building

block called single-point VOLE, where the vector u contains a single, non-zero element, which is
assumed to be sampled at random. When we need programmability, however, we cannot assume
this. We therefore modify the underlying single-point VOLE from [WYKW21b] to support
programmable inputs, and show that the resulting protocol is still secure. We show how this can
then be used to build programmable VOLE, with essentially the same steps as [WYKW21a].

We start with a standard random VOLE functionality called Base VOLE, as shown in Fig. 4.11.
This can be realised by any of the existing protocols for VOLE [ADI+17, BCGI18, BCG+19a,
WYKW21b]. Using this, we build a single-point subfield VOLE (spsVOLE), where the input of
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Functionality FsVOLE

Parameters: An extension field Fpr , length m, and party identifiers PA, PB.
Initialise: On receiving Init from PA, and (Init,∆) from PB, store the global key ∆, and
ignore all subsequent Init commands.
Extend: This procedure can be run multiple times. On receiving (Extend, l) from PA, PB ,
do:

1. If PB is honest, sample K[x]←R Fl
pr . Else, receive K[x] ∈ Fl

pr from A.

2. If PA is honest, sample x ←R Fl
p and compute M[x] = K[x] + ∆ · x ∈ Fl

pr . Else,
receive x ∈ Fl

p and M[x] ∈ Fl
pr from A and recompute K[x] = M[x]−∆ · x ∈ Fl

pr .

3. Send (x,M[x]) to PA and K[x] to PB.

Global key query: If PA is corrupted, receive (guess,∆′) from A with ∆′ ∈ Fpr . If
∆′ = ∆, send success to PA and ignore any subsequent global key query. Else, send abort
to both parties and abort.

Figure 4.11: Functionality for a subfield VOLE (Base VOLE)

the receiver is a u such that u[α] = β and is 0 everywhere else. Wolverine [WYKW21b] has a
construction for random spsVOLE, where the sender’s global key ∆ and the receiver’s input u are
randomly picked. Since, in our setting, we want parties to be able to influence the randomness
used to derive their inputs, we give a modified version of this protocol that supports chosen-inputs,
in Fig. 4.13.

To reflect the chosen-input protocol, we need to slightly modify the spsVOLE functionality,
Fci
spsVOLE, in Fig. 4.12. First, we let the party PA choose α and β, which determine the special

point in the vector u, which is nonzero only at u[α] = β. The second tweak is to make Fci
spsVOLE

reveal the secret index α used by an honest PA, in case of an abort. Previously, this was not
needed, since α was always sampled at random and not a private input.

The protocol Πci
spsVOLE uses FOT, a standard OT functionality, and FEQ, a functionality to

check equality, which reveals an honest PA’s input to PB. The protocol can be split into two
parts, with the first part being a semi-honest VOLE protocol, and the second part involving a
consistency check.

Parties PA, PB start by generating ⟨β⟩ ∈ Fp, where β is an input of PA. Doing so is
straightforward and involves one call to FsVOLE. PA then defines the single-point vector u ∈ Fm

p

such that u[α] = β, where α ∈ [0, n) is also its input. Next we need PB to generate v ∈ Fm
p in such

a way that PA learns all v[i] values except v[α]. Towards this, parties run the GGM subroutine,
starting with PB sampling s←R {0, 1}κ and computing all the nodes in the GGM tree of depth h
with s as the root node. The j-th node in the tree at the i-th level is denoted by sij . PB defines

s00 = s as the root, and computes
(
si2j , s

i
2j+1

)
= G(si−1

j ), for i ∈ [1, h), j ∈ [0, 2j−1), where

G : {0, 1}κ → {0, 1}2k is a PRG. The leaf nodes are computed as (v[2j],v[2j + 1]) = G′(sh−1
j )

for j ∈ [0, 2h−1), where G′ : {0, 1}κ → F2
pr is a PRG. The GGM(1n, s) output can be written

as,
(
{vj}j∈[0,n), {(Ki

0,K
i
1)}i∈[h]

)
, where (Ki

0,K
i
1) are the XOR of the values at the even and odd

nodes at level i respectively. For the leaf nodes, instead of XOR, addition over Fpr is computed.
Then, parties run h instances of FOT with PA sending ᾱi for i ∈ [1, h] and PB sending (Ki

0,K
i
1)
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Functionality Fci
spsVOLE

Parameters: An extension field Fpr , length m, and party identifiers PA, PB.
Initialise: On receiving Init from PA, and (Init,∆) from PB , store the global key ∆ ∈ Fpr ,
and ignore all subsequent Init commands.
Extend: On receiving (Extend,m, α, β) from PA and Extend from PB, where m = 2h, do:

1. If PB is honest, sample v ←R Fm
pr . Else, receive v from A.

2. Set u ∈ Fm
p such that {u[i]}i ̸=α = 0 and u[α] = β. Compute w = v +∆ · u ∈ Fm

p .

3. If PB is corrupt, receive a set I ⊆ [0,m) from A. If α ∈ I, send success to PB and
continue. Else, send abort to both parties, output α to PB and abort.

4. Output (u,w) to PA and v to PB.

Global-key query: If PA is corrupted, receive (guess,∆′) from A with ∆′ ∈ Fpr . If
∆′ = ∆, send success to PA and ignore any subsequent global-key query. Else, send abort
to both parties and abort.

Figure 4.12: Functionality for a chosen-input sVOLE

as the input. The outputs from FOT give PA (w[i])i ̸=α as w[i] = v[i] for i ̸= α. The only thing
that remains is to obtain w[α] = v[α] + ∆ · β. Recall that parties already have ⟨α⟩. Therefore,
PB can send K[β]−

∑m
i=1 v[i] to PA, which can compute w[α] as:

w[α] = M[β]− (K[β]−
m∑
i=1

v[i])−
∑
i ̸=α

v[i] = M[β]− K[β] + v[α] = v[α] + ∆ · β

To check for malicious behaviour, we run the consistency check from Wolverine, which is
described here for completeness. The idea is for parties to samples uniformly random values
χ0, . . . , χn−1 ∈ Fpr and checking the randomised version of the VOLE as:

n−1∑
i=0

χi ·w[i] =

n−1∑
i=0

χi · v[i] + ∆ · β · χα

PB cannot compute this however, as it does not know α, β. Therefore, parties can use FsVOLE

to generate Z, Y ∈ Fpr such that Z = Y +∆ · β · χα. Since β · χα lies in Fpr as opposed to Fp,
we cannot directly use FsVOLE. Instead, χα can be viewed as (χα,0, . . . , χα,r−1 ∈ Fr

p. They can
then use r calls to FsVOLE to which gives PA z and PB y such that z = y + ∆ · β · χα. Let
Z =

∑r−1
i=0 z[i] · Xi and Y =

∑r−1
i=0 y[i] · Xi. This means PA can compute VA =

∑n−1
i=0 χiw[i]− Z

and PB can compute VB =
∑n−1

i=0 χi · v[i]− Y . The final step is to call FEQ with VA, VB, which
returns either success or abort.

Theorem 4.3. If G and G′ are pseudorandom generators, then Πci
spsVOLE UC-realises Fci

spsVOLE

in the (FsVOLE,FEQ,FOT)-hybrid model. In particular, no PPT environment Z can distinguish
the real-world execution from the ideal-world one except with probability at most 1/pr + negl(k).

Proof. The first part deals with the case of a malicious PA and the second one with a malicious
PB . In each case we construct a PPT simulator S which is given access to Fci

spsVOLE that runs the
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Protocol Πci
spsVOLE

Parameters: An extension field Fpr , party identifiers PA, PB.
Initialise: Executed only once between a pair of parties. PA sends Init and PB sends
(Init,∆) to FsVOLE.
Extend: Can be executed multiple times. PA has input (α, β), where α ∈ [0, n), β ∈ F∗

p.

1. PA and PB send Extend to FsVOLE, which returns (a, c) ∈ Fp×Fpr to PA and b ∈ Fpr

to PB such that c = ∆ · a+ b.

2. PA sets δ = c and sends a′ = β − a ∈ Fp to PB which computes γ = b − ∆ · a′,
forming ⟨β⟩. PA defines u ∈ Fm

p as the single-point vector such that u[α] = β.

3. PB samples s←R {0, 1}k, runs GGM(1m, s) to get ({vj}j∈[0,m), {(Ki
0,K

i
1)}i∈[1,h]) and

sets v[j] = vj for j ∈ [0,m). PA lets ᾱi be the compliment of the ith bit of the
binary representation of α. For i ∈ [1, h], PA sends ᾱi ∈ {0, 1} to FOT and PB sends
(Ki

0,K
i
1) to FOT. PA receives Ki

ᾱi
, which then runs {vj}j ̸=α = GGM′(α, {Ki

ᾱi
}i∈[1,h]).

4. PB sends d = γ −
∑

i∈[0,m) v[i] ∈ Fr
p to PA. Then, PA defines w ∈ Fm

pr as the vector

with w[i] = vi for i ̸= α and w[α] = δ −
(
d+

∑
i ̸=αw[i]

)
. Note that w = ∆ · u+ v.

Consistency check:

1. Both parties send (Extend, r) to FsVOLE, which returns (x, z) ∈ Fr
p × Fr

pr to PA and
y∗ ∈ Fr

pr to PB such that z = ∆ · x+ y∗.

2. PA samples χi ←R Fpr for i ∈ [0,m) and writes χα =
∑r−1

i=0 χα,i · Xi. Let
χα = (χα,0, . . . , χα,r−1) ∈ Fr

p. PA then computes x∗ = β · χα − x ∈ Fr
p and

sends ({χi}i∈[0,m),x
∗) to PB, which computes y = y∗ −∆ · x∗ ∈ Fr

pr .

3. PA computes Z =
∑r−1

i=0 z[i] · Xi ∈ Fpr and VA =
∑m−1

i=0 χi ·w[i] − Z ∈ Fpr , while
PB computes Y =

∑r−1
i=1 y[i] · Xi ∈ Fpr and VB =

∑m−1
i=0 χi · v[i] − Y ∈ Fpr . Then

PA sends VA to FEQ, and PB sends VB to FEQ. If either party receives false or abort
from FEQ, it aborts.

4. PA outputs (u,w) and PB outputs v.

Figure 4.13: Protocol for single-point sVOLE

A as a subroutine and emulates the functionalities FsVOLE,FEQ,FOT. We implicitly assume that
the simulator S passes all the communication between the A and the environment Z.

The S for a malicious PA behaves exactly the same as it does in Wolverine [WYKW21b]. The
interesting case is when PB is malicious.

Malicious PA: Every time the extend procedure is run with inputs (m,α, β), S interacts
with A as follows:

1. S emulates FsVOLE and records the values (a, c) that A sends to FsVOLE. When A sends
the message a′ ∈ Fp, then S sets β = a′ + a ∈ Fp and δ = c.
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2. For i ∈ [1, h), S samples Ki ←R {0, 1}κ; it also samples Kh ←R Fpr . Then for i ∈ [1, h],
S emulates FOT by receiving ᾱi ∈ {0, 1} from A, and returning Ki

ᾱi
= Ki to A. It sets

α = α1 . . . αh and defines u ∈ Fm
p as the vector that is 0 everywhere except that u[α] = β.

Next, S computes {vj}j ̸=α = GGM′(α, {Ki
ᾱi
}i∈[1,h]).

3. S picks d ←R Fpr and sends it to A. Then S defines w as the vector of length m with
w[i] = vi for i ̸= α and w[α] = δ − (d+

∑
i ̸=αw[i]).

4. S emulates FsVOLE by recording (x, z) from A.

5. S receives {χi}i∈[0,n) and x∗ ∈ Fr
p from A, and sets x′ = x∗+x ∈ Fr

p and x′ =
∑r−1

i=0 x
′[i]·Xi.

6. S records VA ∈ Fr
p that A sends to FEQ. It then computes V ′

A =
∑m−1

i=0 χi ·w[i]−
∑r−1

i=0 z[i] ·
Xi ∈ Fr

p and does:

a) If x′ = β · χα, then S checks whether VA = V ′
A. If so, S sends true to A, and sends

u,w to Fci
spsVOLE. Else, S sends abort to A and aborts.

b) Else, S computes ∆′ = (V ′
A − VA)/(β · χα − x′) ∈ Fr

p and sends a global-key query
(guess,∆′) to Fci

spsVOLE. If Fci
spsVOLE returns success, S sends true to A, and sends u,w

to Fci
spsVOLE. Else, S sends abort to A and aborts.

7. Whenever A sends a global-key query to (guess,∆′) to the functionality FsVOLE, S forwards
the query to Fci

spsVOLE and returns the answer to A. If the answer is abort, S aborts.

Malicious PB: The simulator S interacts with A as follows. First, it simulates the initial-
isation step by recording the global-key ∆ ∈ Fpr that A sends to FsVOLE. Then, every time
(Extend,m) is called, S does:

1. S records b ∈ Fpr that A sends to FsVOLE. Then S samples a′ ←R Fp and sends it to A.
Next, S computes γ = b−∆ · a′, and samples β ∈ F∗

p and sets δ = γ +∆ · β.

2. S records the values {(Ki
0,K

i
1)}i∈[1,h] sent to FOT by A.

3. S receives d ∈ Fpr from A. Then, for each α ∈ [0, n), it computes a vector wα as follows:

a) Execute {vαj }j ̸=α = GGM′(α, {Ki
ᾱi
}i∈[1,h]) and set wα[i] = vαi for i ̸= α.

b) Compute wα[α] = δ − (d+
∑

i ̸=αwα[i]).

4. S records the vector y∗ sent to FsVOLE by A.

5. S samples χi ←R Fpr for i ∈ [0, n) and x∗ ←R Fpr , and sends them to A. Then S computes
y = y∗ −∆ · x∗.

6. S computes Y =
∑r−1

i=0 y[i] · Xi. It then records VB sent to FEQ by A. Then, S computes a
set I ⊆ [0, n) as follows:

a) For α ∈ [0, n), compute V α
A =

∑n−1
i=0 χi ·wα[i]−∆ · β · χα − Y .

b) Define I = {α ∈ [0, n)|V α
A = VB}.
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S sends I to Fci
spsVOLE. If it returns (abort, α∗), where α∗ was the value used by an honest

PA, S uses α∗ to compute the correct V α∗
A and sends (false, V α∗

A ) to A on behalf of FEQ,
and then aborts. Else, S sends (true, VB) to A.

7. S chooses an arbitrary α ∈ I and computes a vector v as follows:

a) Set v[i] = wα[i] for i ∈ [0, n)i ̸=α.

b) Set v[α] = γ − d−
∑

i ̸=α v[i].

S sends v to Fci
spsVOLE and outputs whatever A outputs.

We first consider the view of the adversary A in the ideal-world execution and the real-world
execution. The values a′ and x∗ simulated by S have the same distribution as the real values,
which are masked by a uniformly random element/vector output by FsVOLE. The set I extracted
by S corresponds to a selective failure attack on the output index α∗ of PA. If S receives an
abort from Fci

spsVOLE, it means α∗ /∈ I. In the real protocol, PA aborts if V α∗
A ̸= VB. Therefore,

Fci
spsVOLE only aborts if the real-world protocol aborts.

Since α is given as input by PA instead of being chosen at random, S cannot pick a random
α ∈ [0, n) \ I, as it does in [WYKW21b]. It needs to send the VA that corresponds to the VA

that an honest PA would have sent in the real-world. In order to facilitate this, the Fci
spsVOLE

functionality is designed to return the α∗ that was used in the real protocol, in the case of an
abort. This means the distribution of VA sent by the S is indistinguishable from the real world
distribution.

From Πci
spsVOLE to Πprog

VOLE

The final step is to go from single-point VOLE to standard (programmable) VOLE. Here, we will
realize Fprog

VOLE instantiated with a particular expansion function Expand : S → Fm
p , based on a

variant of the LPN assumption.

t-regular vector: A t-regular vector e is defined as a set of t vectors e1, . . . , et concatenated,
wherein each ei is a sparse vector with Hamming weight one.

We use the dual form of LPN over Fp, with a regular error distribution. This has also been
considered in previous works [BCG+19a, WYKW21b].

Definition 4.1 (Regular Dual-LPN assumption). Let H ∈ Fk×m
p , and consider the following

game Gb(κ) with a PPT adversary A, parameterised by a bit b and the security parameter κ:

1. Sample a random, t-regular vector e ∈ Fk
p.

2. If b = 1, let y = H · e, else sample y ←R Fm
p .

3. Send y to A, which then outputs a bit b′ (in case of abort, define the output of A to be ⊥).

The assumption states that A has negligible advantage in distinguishing G0(κ) and G1(κ).
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Functionality Fprog
VOLE

Parameters: Finite field Fpr , and expansion function Expand : S → Fm
p with seed space

S and output length m.
The functionality runs between parties PA and PB.
Initialise: On receiving Init from PA, and (Init,∆) from PB, store ∆, and ignore all
subsequent Init commands.
Extend: On receiving Extend from PB and (Extend, seed) from PA, where seed ∈ S:

1. Compute u = Expand(seed).

2. Sample v ←R Fm
pr and compute w = u ·∆+ v.

3. If PB is corrupt, receive a set I from A. If seed ∈ I, send success to PB and continue.
Else, send abort to both parties, output seed to PB and abort.

4. Output (u,w) to PA and v to PB.

Corrupt parties: If PB is corrupt, v may be chosen by A. For a corrupt PA, A can
choose w (and then v is recomputed accordingly).
Global key query: If PA is corrupted, receive (guess,∆′) from A with ∆′ ∈ Fpr . If
∆′ = ∆, send success to PA and ignore any subsequent global key query. Else, send abort
to both parties and abort.

Figure 4.14: Functionality for programmable VOLE

Expansion function: Fix a dual-LPN matrix H ∈ Fm×k
p . We consider a seed space S ⊂ Fk

p

consisting of t-regular vectors in Fk
p. We define the LPN-based expand function

ExpandLPN : S → Fm
p , ExpandLPN(e) = H · e

Overview of Πprog
VOLE: The first step is to execute FsVOLE, which gives ∆ to PB on Init and

gives ⟨u⟩ ∈ Fk
p. In addition, they run Fci

spsVOLE t times, to get vectors of authenticated values.
Vectors are denoted by ei, each of them is of length m/t and has exactly one nonzero entry.
Parties use the public matrix H to convert these to a vector of authenticated values of length m.

Under the regular dual-LPN assumption, the values appear pseudorandom to PB , if the seed S
was sampled at random. Note, however, that the protocol perfectly realizes Fprog

VOLE without relying
on dual-LPN, because Fprog

VOLE itself is defined in terms of the expansion function. Therefore, it is
only when using Fprog

VOLE to instantiate our preprocessing protocol, where LPN comes into play.

4.4 Dynamic SPDZ

We now show how to use our preprocessing to obtain a dynamic variant of the SPDZ pro-
tocol [DPSZ12, DKL+13]. The preprocessing is performed between the entire set of parties
Pmain = {P1, . . . , Pn}, and later, when an online phase committee Pcurr ⊂ Pmain wants to run
MPC, they non-interactively select the relevant preprocessing data, and run our online phase.
We consider evaluating arithmetic circuits over Fp for a large enough (superpolynomial) p, and
will use FPrep entirely over Fp (i.e. not using the extension field Fpr).
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Protocol Πprog
VOLE

Parameters: Extension field Fpr , length m, noise weight t, LPN dimension n and matrix
H ∈ Fm×k, and party identifiers PA, PB. q = k/t.
Intialise: Executed only once between two parties. PA, PB send Init, (Init,∆) respectively
to Fci

spsVOLE.
Extend: On input seed from PA, where seed describes a t-regular vector e ∈ Fk

p:

1. For i ∈ [1, t], PA and PB send (Extend, q) to Fci
spsVOLE, which returns (ei, ci) to PA

and bi to PB such that ci = ∆ · ei + bi ∈ Fq
pr and ei ∈ Fq

p has exactly one nonzero
entry. If either party receives abort from Fci

spsVOLE in any of these executions, it
aborts.

2. PA defines e = (e1, . . . , et) ∈ Fk
p and c = (c1, . . . , ct) ∈ Fk

pr . Then PA computes
x = H · e and z = H · c. PB defines b = (b1, . . . , bt) ∈ Fk

pr and computes
y = H · b ∈ Fm

pr .

3. PA outputs (s,M [s]) = (x, z) ∈ Fm
p × Fm

pr . PB updates v by setting v = y ∈ Fm
pr ,

and outputs K[s] = y ∈ Fm
pr .

Figure 4.15: Protocol to extend spsVOLE

Since our preprocessing is significantly weaker than SPDZ — due to faulty and partially
authenticated triples — we cannot use the same online phase for multiplications. Instead, in
our multiplication protocol, we will first have the parties add a MAC to the ‘c’ component of a
triple (using a preprocessed random authenticated value), and then use the fully authenticated
triple to multiply. Since the triples may be faulty, to verify multiplications we take the approach
of [CGH+18], where parties compute two versions of the circuit: one with the actual inputs and
one with a randomised version of the inputs. At the end of the protocol, they first run a MAC
Check protocol to verify correctness of the opened values in multiplication, as in SPDZ. If this
check succeeds, they open the random value used to compute the randomised circuit. Using that,
they take a random linear combination of wires in both circuits and check that they are the
consistent. We start by describing the online phase protocol ΠSPDZ-Online, before analysing the
verification process and concluding with a cost analysis.

SPDZ Sharing, Share Conversion and Opening.

A SPDZ share of v ∈ Fp contains a vector of additive shares ([v], [∆], [∆ · v]), where the shares
are held by each Pi within the current committee Pcurr. We denote this by J·KPcurr , and omit Pcurr
when it is clear from context. Note that the MAC key ∆ is fixed for every sharing in the same
committee.

Given a pairwise authenticated sharing ⟨x⟩Pcurr,Pcurr , the parties can locally convert this into a
SPDZ sharing with the procedure ΠConvert:

ΠConvert(⟨x⟩Pcurr,Pcurr) : Pi outputs
(
xi,∆i,∆i · xi +

∑
j∈Pcurr

(M i
j −Ki

j)
)
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Protocol ΠSPDZ-MAC

Usage: Parties in Pcurr want to check the MACs on opened values (A1, . . . , Am).

1. Parties in Pcurr call FRand to obtain random values χ1, . . . , χm ∈ Fp.

2. Compute A =
∑m

j=1 χj ·Aj and [γ] =
∑m

j=1 χj · [∆ ·Aj ].

3. Compute [σ] = [γ]− [∆] ·A. Each Pi ∈ Pcurr calls FCommit with input [σ].

4. Parties open their commitments and check that
∑n

i=1[σ] = 0. If not, output abort,
else output continue.

Figure 4.16: Protocol to check MACs in Dynamic SPDZ

where M i
j ,K

i
j are Pi’s MACs and MAC keys from the ⟨·⟩ sharing. By inspection, this gives a

consistent sharing JxKPcurr .
We let ΠOpen denote the opening protocol, which given JxK or [x] has all parties send to each

other their shares xi and reconstruct x =
∑

xi. This procedure does not check the MACs, so
it may be unreliable. To check the MAC on an opened value (after running ΠOpen), we use the
standard SPDZ MAC check protocol [DKL+13], shown in Fig. 4.16.

Online Protocol.

ΠSPDZ-Online (Fig. 4.17) begins with each Pi in a set of parties Pcurr ⊆ Pmain querying FPrep to
receive an authenticated random value ⟨t⟩, where Pi knows t, and every other party has a share
of the MAC. Pi uses this to generate J·K sharing of its input x. This takes one round, where Pi

sends x+ t to everyone else, along with a fresh sharing of x. The parties then use their MACs
from ⟨t⟩ to obtain the MAC share for JxK. For the randomised circuit evaluation (used to check
multiplications), during initialization the parties first use FPrep to obtain a random sharing JrK.
Then, whenever an input JxK is authenticated, the parties multiply it with JrK, using a triple
from FPrep.

Addition and multiplication by a public constant are standard operations, performed locally
by every party on its shares. Multiplication is the more challenging operation as we do not have
fully authenticated triples. The first step is to call FPrep twice to get two triples (JaK, JbK, [c]),
(Ja′K, Jb′K, [c′]), as well as two random values JlK, Jl′K, incrementing the corresponding counter
after each call. JlK, Jl′K are used to authenticate [c], [c′] of the triples. This is done by computing
[l + c], [l′ + c′] locally, and opening the values by broadcasting the shares. Parties can then
locally compute the MAC on c as ∆i · (l + c) − [∆ · l] for Pi. However, since we do not check
the correctness at this point, the MACs in JcK, Jc′K might have an additive error chosen by the
adversary. In addition, the c part of the triple may have errors, since this is allowed by FPrep.

Let Pi be an honest party in Pcurr. In a triple (a, b, c), ci can have additive errors of the
form {δj,ia · bi + δj,ib · a

i}j∈PA , where δj,ia , δj,ib are chosen by a malicious Pj in FPrep. We show
in Lemma 4.3 that these errors do not give the adversary any additional power compared to
injecting additive errors to the output of multiplications in the online phase, and will be detected
by our verification procedure. Using the potentially inconsistent triples, parties then compute the
multiplications x · y, rx · y by opening Jx− aK, Jy − bK, Jrx− a′K, Jy − b′K in the standard way of
using Beaver triples. To open J·K-shared values, parties broadcast arithmetic shares of the value
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and continue with the computation. At the end of the protocol, the verification phase computes
a MAC Check on all the authenticated values that had been opened. The protocol for the online
phase of Dynamic SPDZ appears in Fig. 4.17.

Note that for a multiplication x · y, it is important that [l + c] is not opened in the same
round as Jx− aK, Jy − bK. This is because if we do, a rushing adversary can perform the following
attack: To make the illustration simpler, we consider only two parties Pi, Pj in the committee.
Suppose the adversary Pj introduces an error δj,ib · a

i with an honest party Pi, using the errors in
FPrep. The adversary then waits until it receives x− a, and when opening [l + c], injects another
additive error given by

(
(x− a) + aj

)
· δj,ib . Therefore, the triple will now be:

JaK, JbK, JcK = {[c] + δj,ib · a
i + [(x− a) + aj ] · δj,ib , [∆ · c]}

= {[c] + x · δj,ib , [∆ · c]}

This results in the adversary mounting a selective failure attack, since the error now depends
on the secret wire value x. It can be avoided by making the adversary add the additive error
prior to learning x− a. A simple way of achieving this is to authenticate c one round prior to
opening x− a. Although this costs an additional round, the authentication step of a triple for
the current layer can easily be merged with the opening of x− a from the previous layer. This
is still secure because the triples are independent and the adversary does not gain anything by
opening the independently masked c in the previous layer.

The verification phase, described in Fig. 4.18, is run before outputting any result of a
computation. First, the parties check the MACs on all the values that were opened over the
course of the computation. If the check fails, the parties abort. Otherwise, they proceed by
checking correctness of multiplications, with the check from [CGH+18], which involves checking a
random linear combination of the inputs and outputs, and randomised versions of them. Parties
start by calling FCoin to receive random challenges α1, . . . , αN and β1, . . . , βM ∈ Fp. They locally
compute JuK =

∑N
i=1 αi · JrziK +

∑M
i=1 βi · JαviK and JwK =

∑N
i=1 αi · JziK +

∑M
i=1 βi · JviK. If no

cheating had occurred, opening JuK− r · JwK should result in zero. To check this, parties securely
reconstruct JrK using ΠOpen, locally compute JuK− r · JwK. If the opened value is not zero, they
reject.

The analysis of the verification phase proceeds similarly to that of [CGH+18], except we also
need to deal with the additional errors from our preprocessing functionality.

Lemma 4.3. Suppose A introduces additive errors of the form δj,ia , δj,ib ̸= 0, for malicious parties
Pj and honest Pi in FPrep, and in ΠSPDZ-Online additive errors δc, δc′ ̸= 0 when authenticating
triples a, b, c and a′, b′, c′ respectively. If any errors are non-zero, then the Verification phase in
ΠSPDZ-Online fails to abort with probability less than 2/p.

Proof. Consider a multiplication gate at layer k, wherein the multiplications carried out are
zk = xk · yk, and rzk = rxk · yk. Note that rx, ry will have errors from the layer k − 1. A can
insert an additive error when c, c′ are authenticated and these are denoted by δc, δc′ respectively.
The errors δc, δc′ are going to be consistent with the MACs as well, due to the way c and c′ are
authenticated. They will not get caught during the MAC Check, which is why we compute the
randomised circuit in addition to using MACs.
A can insert an additive error in the output of a multiplication, and the error is indexed by

εk for layer k. Let the error introduced by A in computing JrK · JxK be denoted by ε1, ignoring
the superscript for simplicity. The errors in computing JxK · JyK and JrK · JvK, where JvK is the
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input, are indicated by ε2, and ε4 respectively. Finally, computing JrzK is done by computing
JrxK · JyK, and the error introduced is ε3.

In addition, we need to account for the errors in the triples used to carry out these multiplica-
tions. Parties receive a triple of the form JaK, JbK, [c] from FPrep in the online phase. The [c] part
of the triple has additive errors due to using an inconsistent Fprog

OLE , as explained in Section 4.3.
These errors can be viewed as [ĉ] = [c] + {δj,ia · bi + δj,ib · a

i}, for j ∈ PA, i ∈ PH . On top of this,
parties authenticate [c] in the online phase before processing the multiplication gates, wherein
A can introduce another additive error, denoted by δc. We let ε̂ = ε+ {δj,ia · bi + δj,ib · a

i}+ δc,
for j ∈ PA, i ∈ PH and a multiplication that used a triple JaK, JbK, JcK. Therefore, the values
computed will be:

1. JrxK = JrK · JxK→ Jrx+ ε̂1K (layer k − 1)

2. JzK = JxK · JyK→ Jxy + ε̂2K

3. JrzK = JrxK · JyK→ (Jrx+ ε̂1K · JyK) + ε̂3

4. JrvK = JrK · JvK→ Jrv + ε̂4K

Note: The MACs on these values have been checked for consistency by this point (and we
ignore here the case that an invalid MAC was successfully forged).

Parties sample random values α1, . . . , αN and β1, . . . , βM to compute a random linear combi-
nation on the actual values and their randomised variants. This is computed for all the inputs
to the circuit, and the outputs of every multiplication gate. The random linear combination of
the actual values is denoted by JwK and the randomised one is denoted by JuK. The idea is that
parties will then open JrK, and compute JuK− r · JwK. Ideally, this value would be equal to 0. We
calculate and show that the probability that A injects errors as detailed earlier, and does not get
caught in the check is upper bounded by 2/p.

Parties start by computing JuK, JwK as,

JuK =
N∑
i=1

αi ·
(
(rx+ ε̂i1) · y + ε̂i3

)
+

M∑
i=1

βi · (rv + ε̂i4)

JwK =
N∑
i=1

αi · (x · y + ε̂i2) +
M∑
i=1

βi · v

JuK− r · JwK =
N∑
i=1

αi ·
(
(rx+ ε̂i1) · y + ε̂i3

)
+

M∑
i=1

βi · (rv + ε̂i4)

− r ·

(
N∑
i=1

αi · (x · y + ε̂i2) +

M∑
i=1

βi · v

)

=
N∑
i=1

αi(ε̂
i
1 · y + ε̂i3 − r · ε̂i2) +

M∑
i=1

βi · ε̂i4

The analysis, below, is similar to [CGH+18]. The intuition about why the additional errors
introduced in the triples do not give the adversary any additional advantage is as follows. Errors
in [c] received from FPrep are of the form δj,ia · bi, for when a corrupt Pj interacts with an honest
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Pi. Since the adversary does not know the honest Pi’s share bi, this is going to be a random
additive error that is not known to A. At this point, if the triple was authenticated in the same
round as the computing the multiplication, in other words opening x−a, y− b along with opening
l + c, A can wait until it receives x− a, y − b in the clear. Using these values, it can choose a δc
such that this results in an error of the form x · δj,ib , a selective failure attack.

When we later authenticate the triple, A has still learnt no information about a or b (since
we haven’t yet opened x− a, y − b), so any error δc that A injects will also be an independent,
additive error.

The analysis can be split into two cases:

Case 1: There exists some index i such that ε̂i4 ̸= 0. Let m be the smallest one for which it
holds. JuK− r · JwK = 0 if and only if:

βm =

− N∑
i=1

αi

(
ε̂i1 · y + ε̂i3 − r · ε̂i2

)
+

M∑
i ̸=m

βi · ε̂i4

 · (ε̂m4 )−1 (4.1)

Since βm is chosen independently and is uniformly distributed over F, this holds with
probability at most 1/p.

Case 2: All ε̂i4 = 0, meaning there was no cheating in the triple used to compute JrvK or in the
output of the multiplication. Assuming the multiplication wires in the succeeding layers were
tampered, ε̂i2 ̸= 0 and/or ε̂i3 ̸= 0. Let k be the wire for this, and it holds that ε̂k1 = 0 for the wire
as no input was tampered with before this point. Therefore, JuK− r · JwK = 0 if and only if,

αk · (ε̂k3 − r · ε̂k2) = −
N∑
i=1

αi

(
ε̂i1 · y + ε̂i3 − r · ε̂i2

)
(4.2)

There are two scenarios, one in which (ε̂i3 − r · ε̂i2) = 0. The probability of this happening
is 1/p as r is sampled independently and A does not know r at the time of injecting errors
into the triple or even to the output of the multiplication gate. The other scenario is when
(ε̂i3 − r · ε̂i2) ̸= 0. Since αk is chosen independently and not known to A, the probability of this
holding is (1− 1/p) · 1/p. Therefore the total probability of the adversary passing the check in
Case 2 is bounded by 2/p.

The following theorem shows that the protocol securely realizes the standard arithmetic
black-box functionality, FABB (recall, this is identical to FDABB in Fig. 4.5, except the operations
are all carried out in one committee, Pcurr).

Theorem 4.4. Protocol ΠSPDZ-Online UC-securely computes FABB in the presence of a static
malicious adversary corrupting up to all-but-one of the parties in Pcurr, in the (FPrep,FCoin)-
hybrid model.

Proof. We construct a PPT Simulator (S) that run the adversary (A) as a subroutine, and is
given access to FDABB. It internally emulates the functionalities Fprog

VOLE,FRand,FCommit and we
implicitly assume that it passes all communication between A and the environment (Z).

The parties controlled by the A are indicated by PA and the honest parties by PH. The
simulator uses a flag which is set to 1 in case A is caught cheating before the consistency check
happens, and the simulation is carried on. The simulation proceeds as follows:
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Malicious PA:
Init: Receive (Init,mT ,mR) from Pi ∈ PA sent to FPrep, sample a random ∆i and send it

back. Receive (Rand, Pi,Pcurr, rcount) from each Pi ∈ PA, abort if Pcurr is not consistent across
calls. Receive A’s shares for JrK and store them. Sample random shares for inputs of PH and
send them to A.

Input:

1. Receive (Rand, Pi,Pcurr, rcount) from each Pi ∈ PA, abort if Pcurr is not consistent across
calls. Receive A’s shares for ⟨t⟩ and store them. For the honest parties’ calls to FPrep, let
A choose its shares and sample the honest parties’ shares at random.

2. Simulate the multiplication step as described below.

Addition, Multiplication by constant: Need not be simulated as they are local operations.
Multiplication:

3. Receive the Trip calls to FPrep, sample random values for A’s shares of the triples and send
them. Receive {δja}j∈PA , {δ

j
b}j∈PA from A and if either

∑
j∈PA

δja ̸= 0 or
∑

j∈PA
δjb ̸= 0, set

flag = 1.

4. On receiving the Rand call to FPrep, sample random values for the shares JlK, Jl′K and send
them to A.

5. Receive shares of Jx − aK, Jy − bK, Jrx − a′K, Jy − b′K and [l + c], [l′ + c′]. S computes the
correct shares A was supposed to send, and if they are inconsistent, sets flag = 1. Send
random values for shares of PH .

6. At this point, one of the following things can happen:

a) Case 1: The flag = 1 because A cheated in one of the openings by sending inconsistent
values. In this case, S sends random values on behalf of the honest parties in ΠSPDZ-MAC

and aborts at the end of it.

b) Case 2: The flag = 1 becauseA cheated in one of the calls to Trip during a multiplication
but not in the openings. S proceeds with ΠSPDZ-MAC by simulating the Rand call to
FPrep. It then records {σi}PA sent to FCommit during ΠSPDZ-MAC. If A sent the correct
value, it samples shares for the honest parties such that

∑n
i=1 σ

i = 0 and sends them
to A. It then simulates ΠSPDZ-Verify by sending random values for the honest party
shares and aborts at the end of it.

c) Case 3: The flag = 0, but A cheats in ΠSPDZ-MAC. S aborts at the end of ΠSPDZ-MAC.

d) Case 4: The flag = 0 and there was no cheating in the MACs, so ΠSPDZ-MAC does not
abort, but the A causes an inconsistency in the randomised circuit computation. This
could be in one of four places:

i. Opening of JrK.
ii. ΠSPDZ-MAC on r.
iii. Opening of JuK− r · JwK.
iv. ΠSPDZ-MAC on u− rw.

In this case, S records {σi}PA sent to FCommit during ΠSPDZ-MAC, and samples shares
for the honest parties such that

∑n
i=1 σ

i = 0 and sends them to A. In ΠSPDZ-Verify,
send random values for JrK, and JuK− r · JwK. Abort at the end of the protocol.
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e) Case 5: There was no cheating. S simulates ΠSPDZ-MAC as in the previous cases when
there was no cheating. In ΠSPDZ-Verify, it opens a random JrK to A by sending random
shares on behalf of PH . It receives shares of JuK− r · JwK from A, and samples shares
such that u− r · w = 0. To compute the outputs, S sends A’s inputs to FABB using
the relevant commands and forwards the output it receives from FABB to A. If A
outputs abort, forward it to FABB and abort.

We now briefly argue that A cannot distinguish between interacting with the S and FPrep,
and FABB. In the input phase the adversary in both the simulation and the real world, only sees
uniformly random values sent by the honest parties since they are masked by a random value
not known to A. Addition, addition by a constant, and multiplication by a constant are local
operations. In all the calls to FPrep using Trip,Rand, A is allowed to choose its own share therefore
the distribution of the MAC shares on these values between the real world and the simulation
is perfectly indistinguishable. Furthermore, the values opened during the multiplication are
uniformly random values in the real world, as is the case with the simulation. At the end of the
computation, parties run ΠSPDZ-MAC on all the values that were opened. In the real world A is
able to cheat with probability at most 2/p. The check is the one as the one proved in [DKL+13],
so we refer the reader to it for a detailed analysis of ΠSPDZ-MAC. As shown in Lemma 4.3, the
probability that A cheats in the calls to FPrep and passes the check is 2/p. Therefore, the overall
probability of A cheating is negligible in p.

Complexity Analysis.

Compared with the standard SPDZ online phase [DKL+13], our dynamic variant is more expensive,
since we need to verify multiplications. Instead of 2 openings of J·K-shared values per multiplication,
as in SPDZ, we need 4 openings of J·K-shared values, plus 2 openings of [·] sharings. This leads the
overall online communication and the storage complexity to be around 3x that of SPDZ. However,
our preprocessing protocol from Section 4.3 is vastly more efficient than any SPDZ preprocessing,
since it is the only protocol that is PCG-friendly, allowing N triples to be preprocessed with
communication scaling in O(logN). Furthermore, this comes with the additional flexibility of
dynamically choosing the set of parties in the online phase.

Protocol Variants.

If supporting a dynamic committee for the online phase is not a requirement, we could modify our
scheme by shifting the verification of multiplication triples to the preprocessing. This reduces the
overhead of the online phase, and is essentially a regular SPDZ protocol run with our preprocessing.
We simply authenticate all the c, c′ components of the triples during the preprocessing phase, and
then run a standard pairwise verification procedure [DPSZ12] to check one triple using another.
This effectively moves the 4 extra openings in our online phase to the preprocessing, leading to an
online phase with the same cost as SPDZ, although now the preprocessing has O(N) complexity.

Of course, if the entire preprocessing committee Pmain does this, this introduces a lot more
interaction from parties who may not have been involved in the online phase. Another option is
to run this verification in the online committee Pcurr at the start of the online phase, after Pcurr
has been elected, but possibly before the desired computation has been determined.
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4.5 Fluid SPDZ

In this section, we show how to run Fluid SPDZ, which is a SPDZ-like online phase that supports
fluidity. We base ourselves on the universal preprocessing from Section 4.3, where the entire
set of parties, Pmain, is involved. Later, in the online phase, we start with a subset of parties
Pcurr ⊂ Pmain, and this committee can later evolve in a dynamic way (in contrast to Dynamic
SPDZ, where the committee is fixed once the online phase begins). As discussed in Section 4.2,
we assume when the committee changes at the end of an epoch, the current committee is made
aware of the identity of the next committee who they hand-off their state to. We show how to
leverage FPrep to achieve a maximally fluid online phase, where each epoch may last only one
round. In our protocol, we will denote the current committee in a given epoch by Pcurr. Before
going into the main online protocol, we cover some key building blocks necessary to support
fluidity, and describe how we adapt the SPDZ MAC check protocol to work in this context.

Simple Resharing.

We use a standard method for resharing an additively shared value [x]Pcurr from committee Pcurr
into committee Pnext, as shown in Fig. 4.19. To reduce communication, we assume a setup where
every pair of parties shares a common PRG seed. (If this is not available, note that we can still
have parties in Pcurr sample and send the PRG seeds, which saves communication when a large
batch of values is being reshared).

Resharing with MACs: the Key-Switch Procedure.

Since our protocol uses SPDZ J·K-sharing, simple resharing is not enough to securely transfer the
state from one committee to another. We also need a way to securely reshare a value JxK, while
switching to a different MAC key, which is held by the second committee.

Our solution is to use the key-switch protocol, ΠKey-Switch, shown in Fig. 4.20. This securely
transfers JxK from Pcurr to Pnext, while switching to the appropriate MAC key. The protocol
proceeds as follows: each party Pi ∈ Pcurr starts with a random value ri that is pairwise
authenticated with every party in Pcurr ∪ Pnext — that is, Pi holds a MAC on ti under Pj ’s MAC
key, for each Pj ∈ Pcurr ∪ Pnext. This can easily be obtained by a call to FPrep using the Rand
command. Each Pi can then obtain [∆Pcurr · t], where t =

∑
i∈Pcurr

ti, by combining the relevant
MAC shares as in ΠConvert, thus forming JtK. The idea now is for Pcurr to open the masked value
x+ t, which Pnext can use to obtain [∆Pnext · x] = [∆Pnext ] · (x+ t)− [∆Pnext · t]. All that remains is
for parties in Pnext to get [∆Pnext · t]. Note that ∆Pnext · t =

∑
i∈Pcurr

∑
j∈Pnext

M i
j −Kj

i . Therefore,
the parties in Pcurr can reshare M =

∑
j∈Pnext

M i
j to parties in Pnext, who then locally sum the

shares and their keys to obtain shares of ∆Pnext · t = M −
∑

i∈Pcurr
Kj

i . Security of ΠKey-Switch is
stated and analysed in Lemma 4.4.

Lemma 4.4. If parties in Pcurr follow the protocol, ΠKey-Switch leads to a consistent sharing of
JxKPcurr , and its transcript is simulatable by random values.

Proof. Consider a committee Pcurr running ΠKey-Switch on a J·K-shared value x. They begin by
calling FPrep to receive a ⟨·⟩-shared random t. Pcurr then locally applies ΠConvert to get JtK. Note
that,
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M i
j = ∆j · t+Kj

i , ∀j ∈ Pnext,

∆Pnext · t =
∑

i∈Pcurr

∑
j∈Pnext

M i
j −Kj

i

(∆Pnext · t)
j = [M ]− [K], where M =

∑
j∈Pnext

M i
j ,K =

∑
i∈Pcurr

Kj
i

Each Pi ∈ Pcurr can compute a share of M by adding all the MACs it has with parties in
Pnext. Therefore, by resharing [M ], Pnext can compute [∆Pnext · t]. In parallel, Pcurr opens Jx+ tK
to Pnext, which Pnext uses to compute MAC shares on x under the key ∆Pnext . This is still secure
as the adversary does not know t in the clear so x+ t is uniformly random. Finally, Pcurr reshares
[x] to Pnext.

An adversary could cheat in the opening of Jx+ tK or during the resharing of [M ] and [x].
In the first scenario, since we are opening an authenticated sharing, if the adversary cheats by
injecting an additive error, it will get caught in the ΠFluid-MAC that is run as part of ΠOpen except
with probability 2/p.

Let the additive error by the adversary during the resharing of [M ] be ϵM and resharing of
[x] be ϵx. We show that if ϵM , ϵx ̸= 0, it will result in an inconsistent MAC on x except with
negligible probability. Observe that Pnext will compute,

[∆Pnext · t] = [M ]− [K] + ϵM ,

[∆Pnext · x] = [∆Pnext ] · (x+ t)− [∆Pnext · t] + ϵM

[x] = [x] + ϵx

At this point, one of two things can happen with JxK. The first is, Pnext uses JxK to evaluate a
multiplication gate. In this case, Jx− aK will be opened using a triple (a, b, c) by running ΠOpen,
which runs a MAC Check so the adversary will get caught. The other thing that could happen is
JxK is reconstructed as an output, where before accepting x, a MAC Check on the opened value is
run. Therefore, the probability of the adversary cheating in ΠKey-Switch depends on guessing ∆Pnext

to make ϵM = ∆Pnext · ϵx to cheat in the MAC Check. Since the MAC Check has a probability of
2/p of failing, we conclude that the adversary gets caught in ΠKey-Switch except with negligible
probability.

Fluid MAC Check:

The MAC check protocol from SPDZ (Fig. 4.16) is designed to check a large batch of MACs at
the end of the computation. The protocol involves computing an additively shared [σ], which is
derived from a random linear combination of all the opened values and the corresponding MACs.
We call σ the MAC check state. If there was no cheating, σ, when opened, should be zero. In the
fluid setting, however, deferring the MAC check means that parties need to keep track of all the
opened values and MACs by resharing them across committees, which blows up the complexity of
the protocol. An alternative would be to run the full MAC Check protocol on values as soon as
they are opened over the course of the computation. Instantiating this in a maximally fluid way
would run over 4 epochs. Instead, we propose an incremental version of the check that updates
the MAC check state in every epoch, using a fresh random challenge to serve as the next linear
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combination coefficient. This essentially compresses the number of things to be checked down to
a constant size. Another advantage of the incremental check is that it only runs over 2 epochs.

ΠFluid-MAC, detailed in Fig. 4.21, has two subprotocols. During the online computation, parties
run Compute State to incrementally update the MAC check state, the shared value [σ] (which
is initially zero). At the end of the computation, the final committee runs Check State to check
that the [σ] is still zero. Let (A1, . . . , Am) be a set of opened values that Pi wants to check the
MACs on. We assume that Pi+1 holds the shared state [σ′], from prior epochs. The protocol
begins with Pi, which opens a random challenge β from FPrep to Pi+1; since β is obtained in
⟨·⟩ form, Pi+1 can locally check the MACs on β to verify this. By taking a linear combination
with powers of β, Pi+1 computes [σ] = [σ′] + γk − [∆Pi ] · A, where A =

∑m
j=1 β

j · Aj and
γk =

∑m
j=1 β

j · [∆Pi ·Aj ].
At the end of the protocol, when a committee wants to complete the MAC Check, all it has

to do is securely open [σ] and check that it is zero.

Fluid Verify:

In ΠFluid-Verify, parties in a given committee, say Pi+1, want to verify the outputs of multiplication
gates using the randomised circuit outputs, similar to the verification method from Section 4.4. As
in the Fluid MAC check, we carry out the check incrementally throughout the computation, where
in the first phase, the parties open a random value, which is expanded into challenges αi ∈ Fp,
used to update the sharings JuK, JwK, corresponding to the tally of randomised multiplications
and actual multiplications. These are maintained as state, until the final verification phase where
we open JrK and check that JuK− r · JwK = 0. The underlying technique is similar to the one used
in [CGG+21], and the protocol appears in Fig. 4.22.

Fluid Online:

We now describe how the online phase works. ΠFluid-Online begins the same way as ΠSPDZ-Online

with a set of parties Pcurr ⊆ Pmain, running Input and Initialise phases. These are used to set up
the preprocessing functionality, and create authenticated sharings of the inputs. During these
two phases, we assume that the committee does not change. Addition and multiplication by a
public constant are local operations, so they are naturally maximally fluid operations.

Multiplication needs to be spread out over multiple epochs to do it in a maximally fluid
way. To evaluate one multiplication between x, y, we need to perform two multiplications: x · y
and rx · y. At a high level, we can think of parties doing two things in ΠFluid-Mult. The first
is computing output shares of the multiplications JzK, JrzK. The second thing is running the
MAC check and the verification protocols in an incremental way, so that we retain a small state
complexity throughout the computation. Both of these parts are run in parallel between the
committees Pcurr−1,Pcurr,Pcurr+1.

The full online phase is given in Fig. 4.23. Below, we focus on describing the multiplication
protocol, shown in Fig. 4.24.

Computing the output shares. In order for the current committee Pcurr to evaluate the
multiplications, we start with the committee of the previous epoch Pcurr-1. We want to use Pcurr-1
to set up an authenticated triple for Pcurr to use. Towards this, Pcurr-1 calls FPrep to receive two
triples - (⟨a⟩ , ⟨b⟩ , [c]) and (⟨a′⟩ , ⟨b′⟩ , [c′]). In addition, they also call it using Rand to receive
authenticated shares of two random values ⟨l⟩ and ⟨l′⟩, to be used to authenticate [c], [c′]. Parties
use ΠConvert to locally go from ⟨·⟩ to J·K shares of the triples and the random values. To transfer
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the triples to Pcurr such that the MACs are under their key, Pcurr-1 runs the ΠKey-Switch protocol
with Pcurr, on (JaK, JbK), (Ja′K, Jb′K), JlK, Jl′K and opens [l + c], [l′ + c′] to them. As a result, Pcurr
can locally get authenticated shares of the triples under the MAC key ∆Pcurr . Using shares of the
triples, they locally compute Jx− aK, Jy − bK, Jx− a′K, Jy − b′K and open them to Pcurr+1. Pcurr+1

can compute JzK, JrzK using the standard Beaver multiplication technique.

Security of the Online Protocol.

We now briefly discuss security of the online protocol, ΠFluid-Online. As argued in Lemma 4.4,
the values sent in the key-switch protocol are always indistinguishable from random, and any
errors in the resulting sharing will always be detected by a MAC check. Regarding ΠFluid-MAC and
ΠFluid-Verify, note that these protocols both follow essentially the same set of steps as the Dynamic
SPDZ protocols (ΠSPDZ-MAC and ΠSPDZ-Verify). The key differences are (1) the random challenges
are obtained by opening random authenticated sharings, instead of FCoin, and (2) the final check
values are computed incrementally, instead of immediately. For (1), because the sharings are
authenticated and MACs immediately checked, they are still uniformly random until the time
of opening. For (2), note that since each challenge is only opened after the corresponding value
being checked has been made public, its randomness still contributes in the same way as Dynamic
SPDZ, to prevent cheating.

During the multiplication protocol, ΠFluid-Mult, the parties run the same computations as in
Dynamic SPDZ, with the difference that in each round, the state is securely transferred using
ΠReshare or ΠKey-Switch, and the MAC check and verification procedures are run in the background.
Hence, security can be proven similarly to the proof of Theorem 4.4. We obtain the following.

Theorem 4.5. Let A be an R-adaptive adversary in ΠFluid-Online. Then, the protocol UC-securely
computes FDABB in the presence of A in the FPrep-hybrid model.

Protocol Variants:

Similar to the variants considered for the Dynamic SPDZ protocol, we can shift some of the costs
involved in ΠFluid-Online to a post-preprocessing phase. We can make the model slightly more
restrictive by having the parties communicate the epochs of the online phase in which they would
be active, at the end of the preprocessing phase. The committees are now known, which means
parties can communicate within their committees to authenticate triples before the function to be
computed is determined. Since the triples are authenticated by the time the online computation
starts, we do not need Pcurr−1 to send the triple to Pcurr, saving in terms of communication.

4.6 Cost Analysis

In Table 4.1 we give some efficiency estimates for our protocols, in terms of the per-party
communication and storage costs. n is the number of parties, while nc is the average committee
size in the online phase. First, in the preprocessing, our dynamic and fluid protocols have
significantly smaller storage and communication compared with previous SPDZ protocols (if n is
small, relative to the circuit size). As mentioned in Section 4.4, we can also use our preprocessing
to get a modified version of SPDZ, with the same online cost as regular SPDZ, by verifying the
multiplication triples in the offline phase. This gives the best preprocessing complexity for any
SPDZ-like protocol with the same online phase.
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Table 4.1: Cost estimates for various protocols (comm. in # field elements per party)

Protocol Online comm. Preproc. comm. Storage

SPDZ [KPR18, KOS16] 2n|C| O(n|C|) O(|C|)
[BGIN22] 2n|C| O(n

√
|C|) O(

√
|C|)

SPDZ (with our preproc.) 2n|C| O(|C|) +O(n log(|C|) O(|C|) +O(n log(|C|)
Dynamic SPDZ 6n|C| O(n log(|C|) O(n log(|C|)
Fluid SPDZ O(nc|C|) O(n log(|C|) O(n log(|C|)

In all protocols apart from Fluid SPDZ, the online complexities can be reduced from O(n)
field elements per multiplication to O(1), by using the “king“ approach to open values [DN07],
where parties send their shares to a designated party, who sums them up and sends back the
result. Although this takes an additional round, the “king" approach brings down the cost of
traditional SPDZ protocols to 4|C| field elements per party, and 12|C| for Dynamic SPDZ. It
seems that the king approach cannot be used to improve Fluid SPDZ, because of the need to
reshare values from one committee to another.

In Table 4.1 we present asymptotic estimates of the cost of variants of our protocols against
the current best SPDZ protocols [KPR18, KOS16]. The primary improvement comes from our
preprocessing, which can be used to run a traditional SPDZ online phase without any fluidity, at
the same cost as the other approaches. It has an additional factor of O(|C|) in the preprocessing
compared to Dynamic and Fluid SPDZ because we also authenticate and check the triples in
the preprocessing. Comparing Dynamic SPDZ with [KPR18, KOS16] shows that we can support
dynamic participants at the cost of a small overhead in the online phase, and a vastly more
cheaper preprocessing phase, making it practically efficient. Compared with the recent work
of [BGIN22], our preprocessing scales asymptotically better with the circuit size, although its
storage costs scale worse with the number of parties, and our online phase is slightly less efficient.

To get an idea of the concrete efficiency of our universal preprocessing, we give some commu-
nication estimates based on existing VOLE and OLE protocols. For producing N = 220 triples,
each pair of the n parties needs a VOLE of length 4N and an OLE of length N field elements.
Using state-of-the-art LPN-based VOLE [WYKW21b] and OLE [BCG+20], this can be done
with a total of around 4MB of communication per pair of parties. For example, using Dynamic
SPDZ with 10 parties, each party can use under 40MB of bandwidth, to gain the ability to do
MPC with any subset of parties later on.

Concrete Costs and Optimizations for ΠFluid-Online

In this section, we estimate the concrete communication cost per party running ΠFluid-Online. Note
that running the online phase in a maximally fluid way, as described in Fig. 4.24, allows for
multiplications to be interleaved across committees. This means that parties in a committee,
say Pi, may be involved in three multiplications in parallel. This can be seen as running three
instances of ΠFluid-Online in parallel, with Pi playing different roles (Pcurr-1,Pcurr,Pcurr+1) across
the three instances in parallel. In addition, we can reduce the number of random challenges
that need to be opened as part of Compute State and Incremental Verification due to the
interleaving.

To calculate the concrete cost, we assume that the circuit has a uniform width of m, and the
committees are of size nc. The number of elements per party per epoch can then be estimated by
the following formula: 14 ·m · nc + 42 ·m+ 13 · nc + 20. If the circuit is wide, i.e. m≫ nc, the
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amortised cost per multiplication becomes 14 · nc + 42. The cost of adding an additional party to
the computation will roughly be 14 elements.

Though we presented maximally fluid protocols, in practice one could relax the model by
allowing each epoch to last more than one round. The motivation to do so is to save in terms of the
concrete communication cost. For instance, assume that the fluidity is four rounds instead of one.
As the multiplication in ΠFluid-Online takes three rounds (including computing Compute State
and Incremental Verification), this means the committee that starts the multiplication will be
the one to finish it as well. There will not be a need for state transfer during the multiplication,
essentially getting rid of all the Key-Switch operations in ΠFluid-Online. Transferring the state after
the multiplication is also cheaper, as the committee will only have to Key-Switch output wires of
the multiplication, the MAC key, and the random value JrK. The cost of running the Fluid online
with a fluidity of four is 12 ·m + 4 · nc, where 12 ·m is the cost for authenticating 2m triples
and opening the Beaver triple intermediate values, and the 4 · nc is for the random challenges
that need to be opened for Compute State and Incremental Verification. With a wide
enough circuit, the amortised cost per multiplication per party comes down to about 12 elements,
matching the cost of Dynamic SPDZ.
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Protocol ΠSPDZ-Online

Init: Each Pi ∈ Pmain sends (Init,mT ,mR) to FPrep and receives ∆i. Later, when Pcurr ⊆
Pmain wants to run the online phase, each Pi ∈ Pcurr sets count = 0, rcount = 0, and calls
FPrep with (Rand,Pcurr,Pcurr, rcount) to obtain JrK.
Input: To share an input x, Pi inputs (Rand, Pi,Pcurr, rcount) to FPrep to get ⟨t⟩, where
Pi knows t. Then,

1. Pi samples shares of x such that x =
∑

j∈Pcurr
xj and sends (xj , x+t) to each Pj ∈ Pcurr.

Pi sets its share (∆ ·x)i = ∆i · (x+ t)− (∆t)i, where (∆t)i = ∆i · t−
∑

j∈Pcurr\{Pi}M
i
j .

2. Each Pj ∈ Pcurr \ {Pi} sets its share to be JxK = (xj ,∆j · (x + t) − (∆t)j), where
(∆t)j = Kj

i .

3. Each Pi ∈ Pcurr runs Multiplication below on JxK and JrK to get Jr · xK.a

Addition: To perform addition, JzK = JxK + JyK, each Pi ∈ Pcurr locally adds their shares
of JxK, JyK, and JrxK, JryK to get Jx+ yK, Jr(x+ y)K.
Addition by Constant: To compute JzK = Jx+ cK, a designated party (say Pj) adds c
to its share xj , and all parties add ∆ic to their MAC share.
Multiplication by Constant: To compute JzK = k · JxK, each Pi ∈ Pcurr locally multiply
the public constant k to shares of JxK to get JkxK, Jr · (kx)K.
Multiplication: To compute JzK = JxK · JyK and JrzK = JrxK · JyK, each Pi ∈ Pcurr:

1. Calls FPrep twice with inputs (Trip,Pcurr,Pcurr, count), incrementing count after each
call. FPrep outputs shares of the triples (⟨a⟩ , ⟨b⟩ , [c]), (⟨a′⟩ , ⟨b′⟩ , [c′]).

2. Calls FPrep with (Rand,Pcurr,Pcurr, rcount) twice to receive ⟨l⟩ , ⟨l′⟩. Increment rcount
after each call.

3. Applies ΠConvert on (⟨a⟩ , ⟨b⟩ , ⟨a′⟩ , ⟨b′⟩ , ⟨l⟩ , ⟨l′⟩) to get J·K shares.

4. Runs ΠOpen on [l + c], [l′ + c′].

5. Runs ΠOpen on [e] = [x − a], [d] = [y − b], [e′] = [rx − a′] and [d′] = [y − b′]) and
computes the multiplications as:

[∆ · c] = (l + c) ·∆j − [∆ · l], [∆ · c′] = (l′ + c′) ·∆j − [∆ · l]
JzK = e · d+ e · JbK + d · JaK + JcK
JrzK = e′ · d′ + e′ · Jb′K + d′ · Ja′K + Jc′K

Reconstruction: First, run ΠSPDZ-Verify to check the multiplications. Then, to output
JzK, run ΠOpen on [z], then use ΠSPDZ-MAC to check its MAC.

aWe actually only use one triple to multiply x and r, skipping the extra product in the protocol.

Figure 4.17: Protocol for the online phase of Dynamic SPDZ
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Protocol ΠSPDZ-Verify

Verification: Let {vi, rvi}i∈[M ] be the input wires of the circuit, and {zi, rzi}i∈[N ] be the
output wires of multiplication gates of the circuit.

1. Parties start by running ΠSPDZ-MAC to check MACs on all the values opened in
multiplications and inputs previously. If ΠSPDZ-MAC fails, abort, else continue.

2. Parties call FCoin to receive α1, . . . , αN , β1, . . . , βM ∈ Fp

3. Parties locally compute

JuK =
N∑
i=1

αi · JrziK +
M∑
i=1

βi · JrviK

JwK =
N∑
i=1

αi · JziK +
M∑
i=1

βi · JviK

4. Parties open JrK by broadcasting shares of [r] and running ΠSPDZ-MAC on it.

5. Parties locally compute JuK− rJwK, open it and run ΠSPDZ-MAC. If the MAC check
passes and u− rw = 0, parties Accept it and go to reconstruction, else Reject.

Figure 4.18: Protocol for the verification phase in Dynamic SPDZ

Protocol ΠReshare

Setup: Each pair of parties Pi, Pj ∈ Pmain has a common PRG seed si,j .
Usage: Pcurr reshares [x]Pcurr to Pnext. Parties in Pnext are indexed from 1 to m.

1. Each Pi ∈ Pcurr computes xi,j ∈ Fp as a fresh output of a PRG applied to si,j , for
j = 2, . . . ,m. Pi defines xi,1 = xi −

∑m
j=2 x

i,j .

2. Each Pi sends xi,1 to P1 in Pnext. Each Pj ∈ Pnext defines its share as xj =
∑

i∈Pcurr
xi,j

(where if j ̸= 1, xi,j is computed from the PRG).

Figure 4.19: Protocol for resharing values across committees
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Protocol ΠKey-Switch

Input: JxK = ([x], [∆Pcurr · x]) in Pcurr.
Output: JxK = ([x], [∆Pnext · x]) in Pnext.

1. Each Pi ∈ Pcurr calls FPrep with (Rand,Pcurr,Pcurr ∪ Pnext, rcount) to receive
ti, {M i

j}j∈Pcurr∪Pnext , while Pj ∈ Pcurr ∪ Pnext receives Kj
i .

2. Pcurr uses ΠConvert to form JtKPcurr . Each Pi ∈ Pcurr computes M i =
∑

j∈Pnext
M i

j to
obtain [M ].

3. Parties in Pcurr run ΠOpen(Jx+ tK) and ΠReshare([M ], [x]), all to Pnext.

4. Each Pj ∈ Pnext computes Kj =
∑

i∈Pcurr
Kj

i to obtain [K], and then defines [∆Pnext ·
t] = [M ]− [K]

5. Finally, Pj can compute its share of the MAC [∆Pnext ·x] as [∆Pnext ] ·(x+ t)− [∆Pnext ·t].
Pnext outputs [x], [∆Pnext · x].

Figure 4.20: Protocol to switch MAC keys
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Protocol ΠFluid-MAC

Usage: Parties in Pi want to check the MACs values (A1, . . . , Am) opened to them. We
assume Pi+1 gets the MAC state [σ′] from a previous run of ΠFluid-MAC.

Compute State: Compute the MAC check state [σ]:

Committee i:

1. Each Pj ∈ Pi calls FPrep with input (Rand,Pi,Pi+1, rcount) to receive
〈
βj
〉
.

2. Hand-off: Send βj ,M j
k to each Pk ∈ Pi+1, along with A1, . . . , Am. Reshare

[σ′], [∆Pi ], [∆Pi ·A1], . . . , [∆Pi ·Am].

Committee i+ 1:

3. Pk locally checks M j
k = βj ·∆k +Kk

j for all j ∈ Pi, and aborts if any of them fail.
Let β =

∑
j∈Pi

βj .

4. It updates [σ′] as [σ] = [σ′] + γk − [∆Pi ] · A, where A =
∑m

j=1(β)
j · Aj and γk =∑m

j=1(β)
j · [∆Pi ·Aj ] (here, (β)j is the j-th power of β).

Check State: (Committee i+ 2)

5. Set σj =
∑

k∈Pi+1
[σk]. Each Pj ∈ Pi+2 calls FCommit to commit to σj .

6. Open all commitments, and if they are consistent, Accept if
∑

j∈Pi+2
σj = 0. Else,

Reject.

Figure 4.21: MAC check protocol for a fluid committee
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Protocol ΠFluid-Verify

Usage: Parties in Pi+1 want to verify the output wires of multiplication gates of layer
l, denoted by {zj , rzj}Nj=1. We assume that Pi+1 gets the state Ju′K, Jw′K from a previous
run of ΠFluid-Verify.
Incremental Verification:

Committee i:

1. Each Pj ∈ Pi calls FPrep with (Rand,Pi,Pi+1, rcount) to receive ⟨s⟩.

2. Hand-off: Pj sends the share sj and MAC M j
k to each Pk ∈ Pi+1, and runs ΠKey-Switch

on Ju′K, Jw′K.

Committee i+ 1:

3. Pk locally checks M j
k = sj · ∆k + Kk

j for all j ∈ Pi, and aborts if any fail. Let
s =

∑
j∈Pi

sj . Using s as a seed for PRG, generate pseudorandom α1, . . . , αN ∈ Fp.

4. Each Pk locally computes JuK = Ju′K+
∑N

i=1 αi · JrziK and JwK = Jw′K+
∑N

i=1 αi · JziK.

Final Check:

Committee i+ 2:

5. Parties in Pi+2 start by running ΠKey-Switch with Pi+1 to receive JuK, JwK under ∆Pi+2 .

6. Then they run the Check MACs phase of ΠFluid-MAC. If ΠFluid-MAC fails, Reject, else
continue.

7. They execute ΠOpen on JrK to receive r, and check its MAC with ΠFluid-MAC.

8. Parties compute ΠOpen(JuK− rJwK), then check the MAC. If the opened value is 0,
parties Accept and go to reconstruction, else Reject.

Figure 4.22: Verification phase for a fluid computation
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Protocol ΠFluid-Online

Init: Every Pi ∈ Pcurr ⊆ Pmain sets count = 0, rcount = 0. Pi inputs
(Rand,Pcurr,Pcurr, rcount) to FPrep and receives ⟨r⟩. Pi sends (Init,mT ,mR) to FPrep and
receives ∆i.
Input: To form J·K-sharing of an input x possessed by Pi ∈ Pmain,

1. Pi along with parties in Pcurr runs ΠKey-Switch, where Pi (acting as Pcurr) inputs JxK
under its key and parties in Pcurr (as Pnext) receive JxK under their key.

2. Parties in Pcurr input (Trip,Pcurr,Pcurr, count) to FPrep and receive (⟨a⟩ , ⟨b⟩ , [c]).

3. Then they engage to perform the multiplication of {JxiK}i∈Pcurr with JrK to produce
{Jr · xiK}i∈Pcurr .

Addition: To perform addition, JzK = JxK + JyK, each Pi ∈ Pcurr locally adds their shares
of JxK, JyK, JrxK, JryK to get Jx+ yK, Jr(x+ y)K.
Addition by Constant: To compute JzK = Jx+ cK, a designated party (say Pj ∈ Pcurr)
adds c to its share xj , and all the other parties add ∆ic to their MAC share.
Multiplication by Constant: To compute JzK = k · JxK, each Pi ∈ Pcurr locally multiply
the public constant k to shares of JxK to get JkxK, Jr · (kx)K.
Multiplication: To compute JzK = JxK · JyK and JrzK = JrxK · JyK in Pcurr, run ΠFluid-Mult

among (Pcurr-1,Pcurr,Pcurr+1).

Verify and Reconstruct:

1. Parties in the final committee, say Pfinal, run Compute State of ΠFluid-MAC. If
ΠFluid-MAC fails, Reject, else continue.

2. Parties execute Final Check phase of ΠFluid-Verify. If the result is Accept, for each
output wire z, they open JzK by broadcasting their shares to the other parties and
running both phases of ΠFluid-MAC. If ΠFluid-MAC fails, Reject.

Figure 4.23: Protocol for a maximally fluid online phase
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Protocol ΠFluid-Mult

Usage: Pcurr wants to evaluate multiplications z = x · y, rz = rx · y.

Committee Pcurr-1:

1. Calls FPrep twice with (Trip,Pcurr-1,Pcurr-1, count), incrementing count after each call.
FPrep outputs shares of the triples (⟨a⟩ , ⟨b⟩ , [c]), (⟨a′⟩ , ⟨b′⟩ , [c′]).

2. Calls FPrep with (Rand,Pcurr-1,Pcurr-1, rcount) twice to receive ⟨l⟩ , ⟨l′⟩, incrementing
rcount after each call.

3. Applies ΠConvert to get on (⟨a⟩ , ⟨b⟩ , ⟨a′⟩ , ⟨b′⟩ , ⟨l⟩ , ⟨l′⟩) to get J·K shares. Locally
computes [l + c], [l′ + c′].

4. Hand-off:

a) Run ΠKey-Switch on (JaK, JbK), (Ja′K, Jb′K), JlK, Jl′K, and JrK.

b) Run ΠOpen on [l + c], [l′ + c′].

Committee Pcurr:

5. Locally computes

[c] = (l + c)− [l], [c′] = (l′ + c′)− [l′]

[∆Pcurr · c] = [∆Pcurr ] · (l + c)− [∆Pcurr · l]
[∆Pcurr · c′] = [∆Pcurr ] · (l′ + c′)− [∆Pcurr · l′]

6. In addition, they also compute Jx− aK, Jy − bK, Jx− a′K, Jy − b′K.

7. Executes Steps 1, 2 in Incremental Verification of ΠFluid-Verify and Compute
State in ΠFluid-MAC.

8. Hand-off : In parallel to the Hand-off in Incremental Verification and Compute
State,

a) Run ΠKey-Switch on (JaK, JbK, JcK), (Ja′K, Jb′K, Jc′K), JrK, and JmK, where JmK is
the set of wires not used in a multiplication in the current layer.

b) Run ΠOpen on Jx− aK, Jy − bK, Jrx− a′K, Jy − b′K.

Committee Pcurr+1:

9. Locally executes the remaining steps of key-switch, and evaluates the multiplications
as:

e = x− a, d = y − b, e′ = rx− a′, d′ = y − b′

JzK = e · d+ e · JbK + d · JaK + JcK
JrzK = e′ · d′ + e′ · Jb′K + d′ · Ja′K + Jc′K

10. Executes Steps 3 and 4 in Incremental Verification of ΠFluid-Verify on JzK, JrzK and
in the Compute State phase in ΠFluid-MAC on (x− a, y − b, rx− a′, y − b′).

Figure 4.24: Protocol for a maximally fluid multiplication
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