
On Geometric Range Searching
and Its Variants

Pingan Cheng

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark





On Geometric Range Searching
and Its Variants

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Pingan Cheng
July 31, 2023





Abstract

Given a set P of points in Rd , how to preprocess P into a structure so that for any
query range γ , we can find P∩ γ efficiently? This problem, known as range searching,
is one of the core problems in computational geometry and has countless variants. In
this dissertation, we explore both the classic and modern variants of this problem.

First, we consider “semialgebraic range searching”, arguably the most general
version of range searching, where each query range is described by a constant number
of polynomial inequalities. Almost all natural range queries, e.g., orthogonal box
queries, simplex queries, polytope queries, ball queries, and so on, can be formulated
as special cases of semialgebraic range queries. The study of this problem dates back
to the 1980s, but efficient data structures were known only very recently using new
powerful tools introduced by the “polynomial revolution” in the last decade. In this
dissertation, we complement these upper bound results by presenting the first (and
almost matching) lower bound to the problem.

Then, we turn to intersection searching, a generalization of range searching where
the input (resp. query) objects are t (resp. (d− t)) dimensional for 0≤ t ≤ d. Note
that range searching is the special case where t = 0. Similar to semialgebraic range
searching, new upper bounds were discovered recently using polynomial techniques,
but all these upper bounds only partially improve the old bounds and seem to be
very difficult to generalize. We explain this phenomenon and reveal the limitation of
polynomial techniques by presenting lower bounds for these problems.

The next topic we explore is range summary queries, a variant that appeared in
recent years motivated by the fact that the data size in real-world applications has
become so big that simply reporting or counting the input intersecting a query is no
longer efficient or useful. Instead, it is more desirable to provide a data summary for
the output P∩ γ . Two of the most useful summaries are ε-heavy hitter summaries, i.e.,
elements with frequency at least ε|P∩ γ|, and ε-quantile summaries, i.e., a sequence
of ε−1 +1 elements representing iε−1 quantiles in P∩ γ . We study how to generate
these summaries efficiently for halfspace and dominance range queries.

Finally, we speed up multiple point location queries on (unrelated) axis-aligned
planar subdivisions by generalizing a data structure technique known as “fractional
cascading”. Point location can be viewed as (a variant of) the dual of range searching,
where we are given a planar subdivision (an embedding of a planar graph with straight
line segments) as the input and we want to locate a query point in the subdivision. We
provide upper and lower bounds for a variety of settings of the problem.
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Resumé

Givet et sæt P af punkter i Rd , hvordan forbehandler man P til en struktur så man
effektivt kan finde P∩ γ for hvert forespørgselsområde γ? Dette problem, kendt som
områdesøgning, er et af kerneproblemerne inden for beregnlighedsgeometri og har
utallige varianter. I denne afhandling undersøger vi både de klassiske og moderne
varianter af denne problemstilling.

Vi først overvejer “semialgebraisk områdesøgning”, som formodes at være den
mest generelle version af områdesøgning, hvor hvert forespørgselsområde er beskrevet
af et konstant antal polynomielle uligheder. Næsten alle naturlige områdeforespørgsler,
som f.eks. ortogonale boksforespørgsler, simpleksforespørgsler, polytopforespørgsler,
kugleforespørgsler og så videre, kan formuleres som specielle tilfælde af semial-
gebraiske områdeforespørgsler. Undersøgelsen af dette problem går helt tilbage til
1980’erne men effektive datastrukturer var først kendt for ganske nylig ved hjælp af
nye kraftfulde værktøjer introduceret af den "polynomiellerevolution" i det sidste årti.
I denne afhandling supplerer vi disse øvre grænse resultater ved at præsentere den
første (og næsten matchende) nedre grænse for problemet.

Derefter vender vi os mod krydssøgning, en generalisering af områdesøgning
hvor input (hhv. forespørgsel) objekter er t (hhv. (d− t)) dimensionelle for 0 ≤
t ≤ d. Bemærk, at områdesøgning er det specialtilfælde, hvor t = 0. Lignende med
semialgebraisk områdesøgning, blev nye øvre grænser opdaget for nylig ved hjælp af
polynomielle teknikker, men alle disse øvre grænser forbedrer kun delvist de gamle
grænser og ser ud til at være meget svære at generalisere. Vi forklarer dette fænomen
og afslører begrænsningen af polynomielle teknikker ved at præsentere nedre grænser
for disse problemer.

Det næste emne, vi undersøger, er områderesuméforespørgsler, en variant, der
dukker op i de senere år motiveret af det faktum, at datastørrelsen i applikationer fra
den virkelige verden er blevet så stor at blot at rapportere eller tælle input, der krydser
en forespørgsel, ikke længere er effektivt eller nyttigt. I stedet ønsker man at give et
dataresumé for output P∩γ . To af de mest nyttige resuméer er ε-heavy hitter-resuméer,
dvs. elementer med en frekvens på mindst ε|P∩ γ|, og ε-kvantilresuméer, dvs. en
sekvens af ε−1 +1 elementer, der repræsenterer iε−1 kvantiteter i P∩ γ . Vi studerer,
hvordan man genererer disse resuméer effektivt for halfspace og dominansområde
forespørgsler .

Til sidst fremskynder vi flere punktlokaliseringsforespørgsler på (ikke relateret)
aksejusterede plane underinddelinger ved at generalisere en datastrukturteknik kendt
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som “fractional cascading”. Punktlokalisering kan ses som (en variant af) den dobbelte
områdesøgning, hvor vi får en plan underinddeling (en indlejring af en plan graf med
lige linjesegmenter) som input og vi ønsker at lokalisere et forespørgselspunkt i
underafdelingen. Vi giver øvre og nedre grænser for en række forskellige tilfælde af
problemet.
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Chapter 1

Introduction

One of the central themes in computer science is how to store data in computers in
an organized and structural way so that we can retrieve desired information from
it efficiently. For example, suppose we are given the geographical data of a region,
how should we store this information in a computer system so that for any query
coordinate, we can list all the restaurants within three kilometers efficiently? Or
how to design a database for a library to support queries like counting the number
of computer science books that have been borrowed more than 10 times in the last
six months? These problems, known as range searching, have the same underlying
pattern: the input can be modeled as a set of points in Rd , and the queries can be
formulated as geometric shapes from a certain family, e.g., disks and rectangles in
the two examples, respectively. In the first example, we want to list, or report, all the
points intersecting the query range, while in the second example, we want to count
the number of such points. These two problems are called range reporting and range
counting respectively, and they are the two most common types of range searching.

Besides range reporting and range counting, there are also many other types of
range searching problems, e.g., range emptiness, where we want to determine if a
query range contains an input, range max/min, where each input is associated with a
weight and we want to find the maximum/minimum weight contained in a query range,
and so on. Given that there are so many problem instances of range searching, it would
be convenient to abstract the common features of these problems in a uniform model.
To arrive at this model, we need the help of semigroups. We briefly recap the definition
of semigroups, but a complete introduction to this and other algebraic structures is
beyond the scope of this dissertation. See, e.g., [Lan93] for an introduction.

Recall that a semigroup (G ,◦) is a collection G of elements (which we call
weights) in which an associative binary operator ◦ is defined. Note that, however, we
do not require the existence of an identity element or inverses in a semigroup. Let P
be a set of input points in Rd . We can model different range searching problems with
different semigroups. For example, for range reporting, we choose (G ,◦) = (2P ,∪),
i.e., the semigroup consists of the power set of P , and the semigroup operator is the
set union operator. To model the problem, we assign semigroup weight w(p) = {p},
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4 CHAPTER 1. INTRODUCTION

i.e., a singleton, to each point p ∈P , and to answer a query γ , we take the total
weight of all points in γ , i.e., ∑p∈γ∩P w(p) = ∪p∈γ∩P{p}. Similarly, to model range
counting, we use semigroup (G ,◦) = (N,+), and assign weight 1 to each point p∈P .

This leads to the following formal definition of (general) range searching.

Definition 1.0.1 (Γ-range Searching [Mat94, Aga16]). In a Γ-range Searching prob-
lem, we are given a set P of points in Rd where each point p ∈P is assigned a
weight w(p) from a semigroup (G ,◦), and the goal is to preprocess P into a data
structure such that for any query γ ∈ Γ, the total weight of points in γ ∩P , i.e.,
∑p∈γ∩P w(p), can be computed efficiently.

In this dissertation, range searching will be the central topic of discussion. It is
an important subfield of computational geometry, the study of computational aspects
of geometric problems. We focus on the lower and upper bounds of data structures
that solve range searching problems. Given a data structure built for an input of
size n, we use S(n) and Q(n) to denote its space consumption and query time. For
range reporting data structures, however, we denote its query cost by Q(n)+ f (k),
where the first part Q(n) captures the cost of finding the output and the second part
f (k)≥ k models the cost of actually producing the output of size k. Note that reporting
queries are usually easier compared to counting queries since the total query time can
sometimes be charged to the cost of listing the output. This observation, made by
Chazelle [Cha86], suggests designing different data structures depending on different
output sizes, and this idea has been used to simplify the solutions to many problems.

The classical model of computation used in computational geometry is the
realRAM model. In this model, we have registers and memory cells that are able to
store real numbers of infinite precision. Each basic arithmetic and relational operation
between reals and each memory access takes one unit amount of time; however, we
disallow conversion from reals to integers. In light of the definition of range searching
with semigroups, each memory cell can store a value from the semigroup, and we only
allow the semigroup operation among values stored. (The operation takes again one
unit amount of time.) Note that this assumption is unrealistic for reporting problems.
Recall that the underlying semigroup is the power set of the input set, which means
we can store any subset of the input points using one memory cell.

There are also some computational models used in specific scenarios. One of the
models we will use extensively is the pointer machine model, which provides good
modeling of pointer-based data structures. Pointer machines have a long history and
many variants, and we will discuss this model in much more detail in Chapter 2, but
informally speaking, it can be viewed as the realRAM model without random access,
and the only way to access a memory cell is by a series of pointer navigations. In
this dissertation, we will use a variant of pointer machines by Chazelle [Cha90a],
which has been used to prove lower bounds for many range reporting problems, e.g.,
range reporting with axis-parallel boxes [Cha90a] or with simplices [CR96]. The
semigroup arithmetic model is another commonly used computational model which is
more powerful than the two models mentioned before. This model is often used to
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study the general range searching problem where the values are from any “faithful”
underlying semigroup. In this model, the data structure is modeled as a collection of
partial sums, and the cost to answer a query is modeled as the number of partial sums
needed to answer the query under the semigroup operation. Note that since inverses
are not guaranteed in semigroups, the partial sums used cannot be generated from
values not belonging to the query. There are also lower bounds proved in this model,
e.g., range searching with orthogonal boxes [Cha90b, Afs19] or polytopes [Cha89].

Now we give an overview of the main problems in range searching.

1.1 Orthogonal Range Searching

The query type studied earliest is probably axis-aligned boxes. An axis-aligned box
or an orthogonal range in Rd is defined to be the Cartesian product of d intervals,
each belonging to one of the d dimensions. On the one hand, this type of query has a
strong connection to database systems as a database query can easily be expressed as
a Cartesian product of multiple interval queries along individual dimensions. On the
other hand, as we will see later, axis-aligned boxes have many nice properties, and
therefore are easier to handle than other types of more general queries.

The classic way of solving orthogonal range searching is by dimensionality
reduction. The idea is simple. We first build a balanced binary search tree for
the coordinates in the first dimension. Then by searching a query using its first
coordinate, we can determine at most 2 logn (canonical) subsets of points whose
first coordinates are within the range. Then we solve the problem for each subset
recursively in a space whose dimension is one smaller. This leads to the data structure
of range trees, first described by Bently [Ben79], of size O(n logd−1 n) and query
time O(logd n). It is possible to slightly improve this bound for the reporting [Wil85,
Cha86, AAL10, AAL12] and the counting [Cha88, CW16] variants. There are also
lower bounds [Cha90a, Cha90b, Afs19] in the pointer machine and the arithmetic
semigroup model respectively.

Most of the techniques used to study orthogonal range searching cannot be general-
ized to queries like simplices as they rely on the orthogonality of the query boxes. But
nevertheless, there are some exceptions. The first important idea is the construction
of “multilevel data structures”. In orthogonal range searching, we build a search tree
structure for each level, and this increases the space and query time by an O(logn)
factor at each level. For more general queries, this is a powerful tool to reduce queries
to their simplest forms, e.g., a simplicial query can be reduced to the intersection of
three halfspaces. Another important concept is the lower bound techniques. The lower
bound frameworks in the pointer machine [Cha90a] and the arithmetic [Cha90b]
model Bernard Chazelle developed are quite general and actually work for all types
of range searching problems.
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1.2 Simplex and Semialgebraic Range Searching

Simplex Range Searching

Simplex range searching is probably one of the most well-studied problems in range
searching. Compared to orthogonal boxes, simplices have more of a geometric favor,
and indeed geometry plays a major role in the solution of simplex range searching.

In the later 1980s and early 1990s, this line of research was extensively investi-
gated. This interest of researchers in simplex range searching is well-justified. As
its name suggests, simplices are “simple” geometric objects which can be formed by
simply intersecting d +1 halfspaces in Rd . But behind the mask, they are powerful
as well. In many applications of computational geometry and computer graphics,
we approximate geometric shapes by polytopes. Since we can easily decompose
polytopes into simplices, an efficient solution for simplex range searching will also
imply an efficient solution for polytope queries.

Despite the innocent look, the problem of simplex range searching turns out to
be rather hard. It took about a decade of intensive research by many great minds in
this field to develop the tools, the cutting theorem [Cha93] and the partition theo-
rem [Mat92a, Mat93], to solve this problem. In 1993, the first (almost) optimal data
structure for this problem was finally discovered by Matoušek by combining these
two tools, and he concluded a query time-space tradeoff of S(n)Q(n)d = Õ(nd) 1

[Mat93] for the problem, which matches the earlier lower bound (up to a polyloga-
rithmic factor) discovered by Chazelle [Cha89] in the semigroup arithmetic model.
If we require the space usage to be linear, the query time is O(n1−1/d). For higher
dimensions, this essentially means that we can only do better than the trivial solution
of scanning all the points marginally by a tiny n1/d factor. If we want queries to be
answered in polylogarithmic time, then the space usage has to be rather large, namely
O(nd). In light of the lower bound given by Chazelle [Cha89], there is not much
room for improvement, even in the powerful semigroup arithmetic mode. This is
in sharp contrast with orthogonal range searching we saw in the last section, where
in near-linear space, the best data structure can answer orthogonal range searching
queries in polylogarithmic time by a textbook solution of range trees [dBCvKO08].

This phenomenon is even observed in halfspace range searching, the special case
of simplex range searching. A general lower bound by Arya et al. [AMX12] showed
that for some semigroups, S(n)Q(n)d = Ω̃(nd) holds even if the queries are halfspaces.
However, for the reporting variant, it is possible to break this barrier based on the
“shallow” versions of the partition and the cutting theorem [Mat92b]. For example,
linear-sized halfspace range reporting structures with O(logn+ k) query time exist
in R2 and R3 [AC09]. In general, halfspace range reporting can be solved in time
O(n1−1/bd/2c) with linear space in Rd [Cha12].

However, such improvements for simplex range reporting is impossible. The
most recent lower bound prior to our work by Afshani [Afs13] showed a query time
lower bound of Ω(n1−1/d/2

√
logn + k) for linear space simplex range reporting data

1In this dissertation, we use notations Õ(·),Θ̃(·),Ω̃(·) to hide logO(1) n factors.
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structures. Observe, however, that there is a quite big and annoying 2
√

logn factor gap
between the lower and upper bound. As the first result of this dissertation, we will
eliminate this gap in Chapter 2.

Semialgebraic Range Searching

As we have seen in the previous section, simplex range searching was well-understood
about 30 years ago. However, the generalization of this problem, known as semialge-
braic range searching, remained mysterious until very recently.

To understand this generalization, let us view simplices from a more algebraic
perspective. In the language of algebra, simplices are defined by the intersection
of halfspaces (subsets of Rd) defined by d + 1 linear inequalities. The expressive
power of linear inequalities is somewhat restrictive. For example, given a disk shape
described by a degree-2 polynomial inequality, there is no way to decompose it into
finitely many simplices. Motivated by this limitation, we study a more general type
of query known as semialgebraic sets (of constant descriptive complexity), and this
gives rise to semialgebraic range searching. By a semialgebraic set (of constant
descriptive complexity), we mean the intersection/union/complement of the subsets
of Rd defined by s d-variate degree-∆ polynomial inequalities for constants s,d,∆.
A complete introduction to semialgebraic sets, polynomials, and other algebraic
geometry concepts are beyond the scope of this dissertation. We refer the readers to
textbooks of algebraic geometry, e.g., [CLO15] for more details.

At first glance, it might seem that semialgebraic range searching should be a much
more difficult problem than its simplicial counterpart. But very surprisingly, if we
restrict the space usage to be close to linear, we can solve semialgebraic range search-
ing in roughly the same Õ(n1−1/d) time. This was first proved for lower dimensions
of d ≤ 4 by Agarwal and Matoušek [AM94] using the tools developed for simplex
range searching like the partition and cutting theorems in the early 1990s. However,
to fully address the problem, we need a much more powerful generalization of these
tools for semialgebraic sets. This job was undertaken by Guth and Katz [GK15] as a
part of the polynomial revolution starting around 2010. Then Agarwal, Matoušek, and
Sharir [AMS13] finally proved the general result for all dimensions. This surprising
result spurred researchers to work on the other end of the spectrum: if we want
logO(1) n query time, what is the smallest possible space usage? Is O(nd) sufficient
like simplex range searching? It will be very surprising if it is the case as it means
that simplex and semialgebraic range searching are computationally equivalent, even
though the latter problem looks much more intimidating. This is also the open problem
asked explicitly at the end of their seminal paper [AMS13]. But given the result for
the small-space version, this is also not inconceivable.

The second result of this dissertation answers this question. In Chapter 2, we show
that semialgebraic range searching acts completely differently in the fast-query regime
compared to the small-space regime. The space usage of fast-query data structures
for semialgebraic range searching has to be Ω(nβ−o(1)), where β is the number of
parameters needed to determine the query polynomial inequality. In general, for a
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d-variate degree-∆ polynomial, β can be as large as
(

∆+d
d

)
−1. In comparison, current

best fast-query data structures for simplex range searching only use O(nd) space.

1.3 Beyond Classic Range Searching

Besides these classic range searching problems, there are many variants of range
searching, generalizing the problem from different perspectives. In this section, we
introduce some interesting variants that we will focus on in this dissertation.

Intersection Searching

A direct generalization of range searching is intersection searching. In this problem,
we allow input objects (resp. query objects) to have higher (resp. lower) dimensions
than points (resp. full-dimensional objects), e.g., the input and queries can be a
set of line segments, triangles, simplices, and so on. To be more specific, we now
want to preprocess a set of t-dimensional objects so that given a (d− t)-dimensional
query object, we can find the input objects intersecting the query object efficiently for
0≤ t ≤ d. For example, given a collection of triangles in R3, we want to preprocess
the triangles such that for any query ray, we can output the first triangle intersecting the
query ray efficiently. This problem, known as ray shooting, is a very important problem
in both computational geometry and computer graphics with many applications in the
real world like video games and the movie industry.

For a long time, the standard approach to solve the problem has been to reduce it to
semialgebraic range searching. However, this requires us to transform the objects to a
higher dimensional parametric space, and thus the solution does not seem to be optimal.
For example, to describe a line in 3D, a parametric representation (a1z+b2,a2z+b2,z)
requires four parameters a1,a2,b1,b2 and a free variable z. This reduces the problem
to a semialgebraic range searching problem in 4D, and by the known result [AM94],
we get an upper bound of S(n)Q(n)4 = O(n4+ε)2. A major improvement to this
solution was found very recently by Ezra and Sharir [ES22b] who showed a better
solution of O(n3/2+ε) space and O(n1/2+ε) query time using polynomial techniques.
Since this solution lies on the tradeoff curve of S(n)Q(n)3 = O(n3+ε), an interesting
open problem here is if we can actually show this tradeoff for the problem for all
possible combinations of space and time. It is conceivable as the problem lies in R3

instead of R4. However, as we will see in Chapter 3, our third result of this dissertation
suggests that such a generalization is not possible.

Summary Queries

A more recent generalization of range searching is range summary queries. As the
input size grows in many real-world scenarios in the modern big data era, many
drawbacks of the classic range searching solutions have gradually emerged. For one

2In this dissertation, ε is an arbitrarily small positive constant unless stated explicitly otherwise.
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thing, although a range reporting structure finds all the data for a query of interest,
answering such queries can be time-consuming when the output size is gigantic, and
it is often unnecessary to output all the data in the query in the first place. For the
other, range counting, median, mean, mode, and other query types for simple statistics
contain too little information to be useful for data analysis. To this end, it is desirable
to consider more useful “data summaries” of the output.

One useful summary is heavy hitters, a generalization of modes. Given a set S of
elements, each associated with a color from a color set C, an ε-heavy hitter summary
for 0 < ε < 1 is a subset of colors C′ ⊂C where the frequency of each color c∈C′ is at
least ε|C|. We will be interested in the query version of ε-heavy hitters, namely, given
a parameter ε , how to preprocess a set of colored points in Rd into a structure such
that we can output an ε-heavy hitter summary of P∩ γ for a query range γ efficiently?

Another summary type that has been studied quite frequently is quantiles, a
generalization of medians. Given a set S of elements, each associated with a weight
from R, an ε-quantile summary for 0 < ε < 1 is a sequence s0, · · · ,s1/ε of 1/ε + 1
elements from S where the rank of si is iε|S| in the sequence of S sorted by their
weights. Similar to before, we study the query version of ε-quantiles, namely, given a
parameter ε , how to preprocess a set of weighted points in Rd into a structure such
that we can output an ε-quantile summary of P∩ γ for a query range γ efficiently?

In general, it is computationally inefficient to compute ε-heavy hitter and ε-
quantile summaries exactly; so instead the approximate versions are considered in the
literature. In Chapter 4, as the fourth result in this dissertation, we will see efficient
data structures supporting approximate range summary queries.

Iterative Search

Before we describe what iterative search is, it is helpful to look at range searching
from a “dual” perspective. In the original problem, the input consists of 0-dimensional
points and the queries are d-dimensional ranges. By switching the roles of the input
and the query (a collection of d-dimensional ranges as the input and points as queries),
we get the dual range stabbing problem.

Now we start the description of iterative search with a motivating example. Given
t lists, each consisting of n numbers, we want to preprocess the numbers such that for
any query number q, we can find the successors of q in all of these t lists. Note that
this is range stabbing in 1D, as each list can be viewed as a collection of intervals in
R. A trivial solution to this problem takes O(tn) space and O(t logn) query time by
building the optimal successor searching structure, e.g., a balanced binary search tree,
for each list and then query iteratively.

In 1986, Chazelle and Guibas [CG86a] invented a technique known as fractional
cascading that can solve iterative search much more efficiently. The statement of
their main theorem is in fact very general: if given an undirected graph where each
vertex has a constant degree and is associated with a list of numbers, suppose the total
number of numbers is n, then we can build a structure of O(n) space such that for
any query subgraph π and any query number q, we can find all the |π| successors
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in time O(logn+ |π|), turning the multiplicative dependence in the path length in
the simple solution described in the previous section to an additive one. Note that
this essentially means that after the initial O(logn) investment, we can find all the
remaining successors in O(1) time, and this is clearly optimal. This technique is very
general and has many applications in computational geometry [CG86b].

However, generalizing fractional cascading to higher dimensions, i.e., each vertex
is associated with a collection of higher dimensional geometric objects, seems to be
difficult, and it has been shown to be impossible in 2D in the general setting [CL04].
Interestingly, as we will see in Chapter 5, as the last result described in this dissertation,
we show that it is possible to circumvent the lower bound for the important special case
of axis-parallel planar subdivisions and significantly outperform the trivial solution.

1.4 Roadmap of the Dissertation

This dissertation consists of two parts.
The first five chapters belong to the first part. These chapters provide an overview

of the problems studied with an introduction to the background, a summary of the
main results, and highlights of the ideas and techniques used. In Chapter 2, we focus
on simplex and semialgebraic range searching, the two most classic range searching
problems. We review the standard upper and lower bound tools and present new
results for the two problems. In Chapter 3, we switch to the first generalization of
range searching, intersection searching. We review the reduction between intersection
searching and semialgebraic range searching, and give a timely lower bound which
complements the current upper bound development of this problem. In Chapter 4,
we consider a generalization arising recently in this big data era, range summary
queries. We review the common summaries and recent attempts to answer range
summary queries. We conclude this chapter with (near) optimal solutions to two very
popular summary types. Finally in Chapter 5, we consider iterative search in which
we need to solve multiple dual problems of range searching iteratively. We review the
classic result in 1D, justify the hardness of generalizing it to higher dimensions in the
general setting, and show a series of new results for the important special case of 2D
orthogonal subdivisions where improvements are possible.

The second part consists of the corresponding six publications during my PhD
studies. The contents in these chapters are identical to the papers.

1. 2D Generalization of Fractional Cascading on Axis-aligned Planar Subdivisions,
in FOCS 2020 [AC20].

2. Lower Bounds for Semialgebraic Range Seaching and Related Problems, in
SoCG 2021 (JACM version [AC23b]).

3. On Semialgebraic Range Reporting, in SoCG 2022 [AC22].

4. An Optimal Lower Bound for Simplex Range Reporting, in SOSA 2023 [AC23c].
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5. Lower Bounds for Intersection Searching among Flat Objects, in SoCG 2023 [AC23a].

6. On Range Summary Queries, in ICALP 2023 [ACBRW23].





Chapter 2

Simplex and Semialgebraic Range
Seaching

In this chapter, we focus on simplex and semialgebraic range searching. We start
our journey with an exposition of the classic tools used to solve the two problems.
We first describe the partition and cutting theorems and their polynomial versions as
the upper bound techniques and then explore the lower bound techniques tailored for
range reporting problems.

2.1 Upper Bound Techniques

In the literature, simplex and semialgebraic range searching have been investigated
from two opposite directions, one aiming at solving the problem with near linear
space, and the other with polylogarithmic query time. These two directions give rise to
so-called “small-space” data structures based on the partition theorem and “fast-query”
data structures based on the cutting theorem. A space-time tradeoff can be obtained
by interpolating the two solutions. We start with “small-space” data structures.

Small-space Data Structures and the Partition Theorem

Early Developments Small-space data structures for both simplex and semialge-
braic range searching are both based on the concept of partition trees (built from the
partition theorem). The partitioning technique used for semialgebraic queries can be
viewed as a generalization of that for simplex range searching.

The concept of partition trees dates back to Willard’s early attempt [Wil82] to
solve simplex range searching in 1982. The underlying idea in [Wil82] is simple and
elegant. By the famous ham-sandwich theorem, see, e.g., [Mat99] for an introduction,
given a set P of n points in R2, we can partition the plane into four disjoint regions
using two lines l1, l2 such that each region contains n/4 points. The key observation is
that for any query halfspace γ , one of the four regions is either fully contained in or

13
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fully outside of γ , and so we only need to solve three of the four subproblems. See
Figure 2.1 for an example.

γ

l1

l2

Figure 2.1: A Partition Based on the Ham-sandwich Theorem: line l1 partitions the
point sets into two subsets with equal sizes, and by the ham-sandwich theorem, we
can find a line l2 that partitions each of the two subsets further into two equally-sized
subsets, which creates four equally-sized subsets in total. Line γ intersects three of
these four subsets.

Thus, if the query is only a halfplane, this suggests that we build a tree structure
where each node implicitly represents a subset of R2. For example, the root is the
entire plane R2, and it has four children, each representing one of the four subregions
formed by the two partitioning lines. The root node itself stores (the coordinates of)
the two partitioning lines as well as the total semigroup weight of the points in the
region it represents. This structure is built recursively until the number of points in a
region corresponding to a node drops below some constant. Such trees are known as
partition trees.

To answer a halfplane query using this structure, at each node, we only recurse to
three out of the four children which are determined by the partitioning lines stored in
the node. We therefore obtain the following recurrence relation for the query time

Q(n) = 3Q
(n

4

)
+O(1),

which solves to Q(n) = O(nlog4 3). On the other hand, the space usage satisfies

S(n) = 4S
(n

4

)
+O(1),

which solves to S(n) = O(n). (We assume that it takes constant space to store the
weight of each region.) Note that a simplex in R2 is the intersection of three halfplanes,
so we can use this tree structure to answer simplex queries: at each node, we recurse
to all the subregions intersected by the boundary of any of the halfplanes. Since the
total number of nodes visited will be at most three times of those visited by each
individual halfplane, the total query time is asymptotically the same.
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This idea, although it does not lead to the optimal solution, introduces a very
important strategy: partition the point set into subsets of roughly equal sizes so that
any query range has a small crossing number, i.e., the number of subsets intersecting
the boundary of the range is small, and then recursively use this strategy to build a
partition tree to support simplicial queries.

The Classical Partition Theorem for Simplex Queries Following the work of
Willard [Wil82], after a series of work attempting to improve the crossing number or
generalize the partition scheme to higher dimensions [Yao83, EW86, HW87, YDEP89,
CW89, Wel92, CSW92], a partition theorem with the optimal crossing number was
finally discovered by Matoušek [Mat92a, Mat93] in the early 1990s.

Theorem 2.1.1 ([Mat92a, Mat93]). Given a set P of n points in Rd for d ≥ 2. For
any integral parameter s with 2 ≤ s < n, there is a set Π of simplicices such that
s≤ |∆∩P| ≤ 2s for any ∆ ∈Π and any hyperplane intersects O(r1−1/d) simplicies,
where r = n/s.

To get an intuition of Theorem 2.1.1, let us consider the following example. In
this example, we study an input set of n points placed uniformly at random inside a
unit cube in Rd .

Example 2.1.1. Consider a d-dimensional hypercube U = ∏
d
i=1[0,1]. We divide

U into a uniform grid G of size r1/d × ·· ·× r1/d . Now we sample n points in U
uniformly at random, then in expectation, each cell of G has n/r points. Furthermore,
any hyperplane γ intersects O(r1−1/d) cells in G . See Figure 2.2 for an example.

r1/d
r1/d

r1/d

1
r1/d

γ

Figure 2.2: Partition Theorem for a Uniform Random Point Set.

Applying Theorem 2.1.1, Matoušek showed that we can build a more efficient
partition tree for simplex range searching which achieves O(n) space and O(n1−1/d)
query time. This has been simplified and improved (in terms of the preprocessing time)
by Chan recently [Cha12]. To sum up, using linear space, simplex range searching
can be solved in time O(n1−1/d).
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Polynomial Partitioning for Semialgebraic Queries The generalization of The-
orem 2.1.1 was first explored by Guth and Katz [GK15] during the polynomial
revolution beginning in around 2010. This technique is so powerful that it has been
successfully applied to address many long-standing discrete geometry problems, e.g.,
the distinct distance problem in the paper where they introduced this technique [GK15].
However, Guth and Katz did not attempt to bound the crossing number of this parti-
tion strategy. Later, Agarwal, Matoušek, and Sharir [AMS13] further developed this
technique to (almost) fully address semialgebraic range searching. The new partition
theorem is listed below, where the crossing number of the partition is due to [AMS13].

Theorem 2.1.2 ([GK15] and [AMS13]). For any r > 1 and a set P of n points in
Rd , there is a polynomial P of degree O(r1/d) such that Z(P) partitions Rd into r
open cells such that every cell contains at most n/r points of P . This polynomial P is
called an r-partitioning polynomial. The zero set of any constant degree polynomial
intersects at most O(r1−1/d) cells in the partition.

To better understand this technique, we give a proof of Theorem 2.1.2 in R2. This
proof is adapted from [KMS12]. We use the polynomial ham-sandwich theorem as a
black box.

Theorem 2.1.3 (Polynomial Hams-sandwich Theorem). Let P1, · · · ,Pr be a collec-
tion of r sets of points in R2, and let ∆ be a positive integer with

(
∆+2

2

)
−1≥ r. There is

a bivariate polynomial f of degree at most ∆ that bisects P1, · · · ,Pr simultaneously.

Proof of Theorem 2.1.2 in R2. We iteratively apply Theorem 2.1.3 to partition point
sets. In the first step, we bisect P into two sets P1,P2 using a degree 1 polynomial
f1 by Theorem 2.1.3. After i iterations, we have a collection of 2i sets, and to
bisect them into 2i+1 sets, we need a polynomial fi of degree no more than

√
2i+1

by Theorem 2.1.3. We stop until we obtain a collection of r sets. It is clear that
P = ∏

logr
i=1 fi is an r-partitioning polynomial and its degree is

logr

∑
i=1

deg( fi) =
logr

∑
i=1

√
2i+1 = O(

√
r).

The crossing number part of the theorem follows from Bézout theorem. See Fig-
ure 2.3a for an example.

An efficient algorithm for computing the partitioning polynomial in Theorem 2.1.2
was given by [AMS13]. They also addressed the problem of degeneracy, i.e., many
points lie on the zero set of the partitioning polynomial. Note that this problem cannot
be easily eliminated. For example, a set of points can all lie on the zero set of a line
and to partition this point set into r sets, a polynomial of degree roughly r instead
of O(r1/d) is required by the fundamental theorem of algebra. See Figure 2.3b for
an example. This problem is addressed by Agarwal, Matoušek, and Sharir [AMS13]
by projecting these points to a lower dimensional space and recursively constructing
partitioning polynomials in the new space. A simplified and improved approach was
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f1

f2

f3

P1

P5

P2

P3P4

P6

P7

P8

(a) Partitioning a Point Set by Polynomials

f

(b) Degeneracy

Figure 2.3: Polynomial Partitioning.

later proposed by Matoušek and Patáková [MP15]. To sum up, they showed that with
close to linear space, semialgebraic range searching can be solved in time Õ(n1−1/d).

Fast-query Data Structures and the Cutting Theorem

The Dual Transformation The fast-query version of the problem can be viewed as
the dual of the small-space variant and indeed the problem is solved in the dual space.

In R2, the point-line duality establishes a transformation between a point and a
hyperplane (a1, · · · ,ad)↔ xd +ad =∑

d−1
i=1 aixi. This transform is incidence-preserving

and order-preserving, i.e., given a point p and a hyperplane H in the primal space and
their duals p̄ and H̄ in the dual space

• p ∈ H if and only if H̄ ∈ p̄;

• p is above H if and only if H̄ is above p̄.

See Figure 2.4 for an example in R2.

p : (1, 1)

l : y = −x + 2

p̄ : y = x− 1

l̄ : (−1,−2)

q : (1, 2)

q̄ : y = x− 2

x

y

x

y

O

O

Primal Space Dual Space

Figure 2.4: Point-line Duality.
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The Classical Cutting Theorem for Simplex Range Searching As in the small-
space case, we first focus on halfspace range searching. By applying duality, the
problem can be formulated as follows in the dual space: given a set of n hyperplanes
in Rd , preprocess the hyperplanes into a structure such that for any query point q, the
hyperplanes below q can be found efficiently. Intuitively, the arrangement formed by
n hyperplanes has complexity O(nd). To answer a query, it suffices to locate which
cell in the arrangement the query point is in. Thus the problem essentially reduces
to a point location problem. How to efficiently answer point location queries among
the arrangement of hyperplanes leads to the development of another important tool:
(1/r)-cuttings.

Definition 2.1.1 ((1/r)-cuttings). Let H be a collection of n hyperplanes in Rd and
r be a parameter with 0 < r < n. A (1/r)-cutting for H is a collection of (possibly
unbounded) disjoint simplices C that together cover Rd and the interior of any
simplex in C intersects at most n/r hyperplanes in H. The collection of hyperplanes
intersected by each simplex is called the conflict list of the simplex.

The development of cuttings dates back to the late 1980s when Klarkson [Cla87]
and Haussler and Welz [HW87] applied random sampling to computational geometry.
After a series of works in the computational geometry community [Aga90, Aga91,
Mat90, Mat91, Mat95, CF90], the optimal cutting and its construction was given by
Chazelle [Cha93].

Theorem 2.1.4 (Chazelle [Cha93]). Given a set H of n hyperplanes in Rd , a (1/r)-
cutting of size O(rd) exists. The cutting as well as the conflict list for each cell in the
cutting can be constructed in time O(nrd−1).

To get an intuition of Theorem 2.1.4, we consider the average case. Consider a
set H of n hyperplanes and we know that there are Θ(nd) d-wise intersections among
hyperplanes in H. For a cutting of size Θ(rd), on average, each cell of the cutting
should contain Θ((n/r)d) intersections, which means the number of hyperplanes
intersecting each cell should be Θ(n/r).

Using Theorem 2.1.4, we can build a cutting tree where each node represents a
subset of Rd . Let r be a constant. We store a (1/r)-cutting for each node as well as
the total weights above the region the node represents. Each node has O(rd) children,
each representing a cell in the cutting. The root node represents the entire Rd and
we recursively build the tree until the number of hyperplanes intersecting the region
represented by a node drops below some constant. The query time of this structure is
clearly O(logn). The space of this structure satisfies

S(n) = crdS
(n

r

)
+ crd ,

for some constant c, which solves to O(nd+ε).
Extending the result from halfspace range searching to simplex range searching

is less obvious in the fast-query setting compared to the small-space setting. This



2.1. UPPER BOUND TECHNIQUES 19

extension relies on the concept of multilevel data structures. Very recently, Chan and
Zheng [CZ23] showed that it is possible to improve the space usage to O(nd).

Generalizing the Cutting Lemma to Semialgebraic Sets The fast-query version
of semialgebraic range searching is again solved by dualization. Here the dual space
is the parametric space of the queries. Consider a query P(x1, · · · ,xd ,a1, · · · ,at)≤ 0
specified by t independent parameters a1, · · · ,at , we can turn the query into a point
in (a1, · · · ,at) ∈ Rt and, alternatively, each input point (x1, · · · ,xd) into a polynomial
inequality P(x1, · · · ,xd ,a1, · · · ,at)≤ 0 specified by d parameters x1, · · · ,xd .

In the dual parametric space, semialgebraic range searching is transformed to point
location among the arrangement formed by semialgebraic sets. Similar to fast-query
data structures for simplex range searching, the solution to this problem is based
on the (generalized version of) the Cutting Theorem 2.1.4. In 2015, Guth [Gut15]
generalized Theorem 2.1.2 and introduced the concept of generalized partitioning
polynomials. This can be viewed as a generalization of the Cutting Theorem 2.1.4.

Theorem 2.1.5 ( [Gut15]). Given a set S of n k-dimensional semialgebraic sets in
Rd , for any positive integer r, there is a polynomial of degree at most r such that each
connected component of Rd \Z(P) intersects O(n/rd−k) sets of S .

Note that by setting k = d−1 and considering hyperplanes, Theorem 2.1.5 yields
the bound of Theorem 2.1.4. An efficient algorithm for computing generalized
partitioning polynomials for a collection of semialgebraic sets was given by Agarwal
et al. recently [AAEZ21]. Essentially, this gives an O(nt+ε) space, polylogarithmic
query time data structure for semialgebraic range searching.

We mention in passing that an earlier approach to solving semialgebraic range
searching is linearization, introduced by Yao and Yao [YY85]. Simply put, this
approach reduces a semialgebraic range searching problem in Rd to a simplex range
searching problem in RL, where L > d is called the linearization dimension. For
example, by mapping input points (x,y) to (x,y,x2 + y2) and each query polynomial
inequality (x−a)2 +(y−b)2− r2 ≤ 0 to a linear inequality z−2ax−2by+a2 +b2−
r2 ≤ 0, we reduce 2D circular range searching to 3D halfspace range searching. This
gives us a fast-query data structure of Õ(nL) space that solves semialgebraic range
searching with linearization dimension L. In general, L can be bigger than t, the
number of actual parameters needed to define a polynomial inequality, so the approach
based on general polynomial partitioning [AAEZ21] usually yields better bounds.

Space-time Tradeoff

It is also possible to combine the small-space and the fast-query solutions to get a
space-time tradeoff straightforwardly: build the partition tree for some level and then
switch to the fast query structure. This gives us a tradeoff of S(n)Q(n)(t−1)d/(d−1) =
O(nt+ε) for semialgebraic range searching where each polynomial inequality is de-
fined by at most d variables and t parameters. For simplex range searching in Rd , the
tradeoff simplifies to S(n)Q(n)d = Õ(nd).
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2.2 Lower Bound Techniques

In this dissertation, we focus on range reporting lower bounds in the pointer machine
model. We first introduce the model, and then present a lower bound framework in
this model tailored for range reporting problems.

The Pointer Machine Model

Pointer-based computational models emerged very early in the literature. The first
such model was probably the Kolmogorov-Uspenskii machine [KU58] in 1958. Later
Knuth introduced a similar model known as the linking automaton [Knu97], and
Schönhage [Sch79] independently devised the storage modification machine, which he
showed is capable of simulating Turing machines with multidimensional tapes in real-
time. In 1979, Tarjan [Tar79] augmented Knuth’s linking automaton and defined the
pointer machine model on which he showed lower bounds for maintaining disjoint sets.
The main restrictions placed on the pointer machine model are that memory access can
only be done by pointer navigations and no pointer computation is possible. However,
the data types stored and arithmetic operations allowed depend on the problems to
study. In this sense, the pointer machine model is more of a class of computational
models. For example, Chazelle [Cha88] defined the semi-arithmetic pointer machine
and the arithmetic pointer machine to study multidimensional searching.

The pointer machine model we will use in this dissertation is an augmented version
by Chazelle [Cha90a]. In this version, the memory is modeled by a directed graph
G = (V,E). Each node v ∈V stores (a reference to) one of the input elements as well
as two pointers to other nodes in G. Among the nodes in V , there is a special root
node r. During the execution of an algorithm, an explored subgraph S is maintained.
Initially, S = {r}, i.e., only the root is included. Then at each step, the algorithm
can choose to add one vertex v ∈ G\S to S as long as there is a node u ∈ S pointing
to v. The algorithm terminates when every output element appears in S at least
once. This model is granted unlimited computational power and full knowledge of
G, which means that the algorithm can always choose the optimal strategy to explore
the smallest subgraph S containing the output elements. Note that for proving lower
bounds, we can strengthen the power of a model as we want as long as we can still
prove meaningful lower bounds. However, the restriction that new nodes can only be
accessed by pointer navigation still applies. Essentially, in such a variant, the space
usage of a data structure will be the size of G, and the query time of any algorithm
will be the size of the smallest subgraph S needed to explore to answer the query.

A Lower Bound Framework for Geometric Range Reporting

We now introduce a lower bound framework in the pointer machine model for geo-
metric range reporting problems formulated by Chazelle [Cha90a] and later Chazelle
and Rosenberg [CR96]. The intuition behind the framework is as follows. On the one
hand, if we want to answer queries efficiently, the points corresponding to queries
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need to be stored close to each other in the directed graph G. This is because the
output is generated by pointer navigations and the size of the subgraph explored is
the query time, and so we want the explored subgraph to be as small as possible (but
at least contains the output). On the other hand, suppose there exists a collection of
queries such that their outputs share very few common points, then this means the
subgraphs explored to answer these queries should also share few nodes in common.
As a result, we need to store the outputs to queries relatively separately. (We can
overlap some queries to save a bit of space but asymptotically the space usage is the
same since there are few nodes shared by queries.) So if the output size of each query
is big and we have many such queries, the space usage will be large.

We now present the framework formally.

Theorem 2.2.1 (Chazelle [Cha90a], Chazelle and Rosenberg [CR96]). For a range
reporting problem, assume that we can find a collection of m sets S1, · · · ,Sm of
points, each being the output of some query of the range reporting problem, such that
the following two conditions are satisfied:

1. The size of each point set is at least Q(n), i.e., ∀i ∈ 1,2, · · · ,m, |Si| ≥ Q(n) .

2. The intersection of any α ≥ 2 distinct point sets is upper bounded by β , i.e.,
∀i1, · · · , iα ⊆ {1,2, · · · ,m}, |Si1 ∩·· ·Siα |< β for two parameters α,β .

Then there is data structure lower bound of S(n) = Ω

(
mQ(n)
α2O(β )

)
for the problem.

It is possible to directly apply this framework to show lower bounds. We will
later describe a direct application of this framework to prove a tight lower bound for
linear-sized simplex range reporting data structures. But in most cases, it is difficult
to give a construction of point sets satisfying the two conditions in the framework.
Instead, this is typically done by a probabilistic argument as follows. Let Rd be the
space where the range reporting problem is defined. We fix some region in Rd , usually
a unit hypercube, but any region with bounded volume suffices. Then we create m
geometric query ranges instead of m point sets such that

• Each range intersects the region with large volume.

• The intersection of each α ranges intersect with very small volume.

The exact values of the two volumes depend on the application, but they are chosen
such that if we sample n points uniformly at random in the region, then with positive
probability, each region contains at least Q(n) points and the intersection of every α

ranges contains less than β points. We mention that as a consequence, by applying
this probabilistic argument, we will inevitably lose some factors in the lower bound.
We capture this in a more streamlined version of the framework.

Theorem 2.2.2. For a range reporting problem, assume that we can find m ranges
R1, · · · ,Rm and a unit cube U ⊂ Rd such that
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1. The intersection volume of each range and U is at least Q(n)/n .

2. The intersection volume of any two distinct ranges is O(1/ f (n)) for some
function f (n)≥ n2

√
logn .

Then the range reporting problem has a data structure space lower bound of S(n) =
o

Ω(mQ(n))1.

We remark that the 2
√

logn = no(1) factor is used in the probabilistic argument to
show that a worst-case construction exists with positive probability. This is also the
reason why we lose an no(1) in our lower bound.

Lower Bounds for Simplex and Semialgebraic Range Reporting

Prior to our results which we will introduce later in this dissertation, there are two
important lower bounds for simplex range reporting, one by Chazelle and Rosen-
berg [CR96] and the other by Afshani [Afs13]. For any data structure of query time
Q(n)+O(k), the former showed a lower bound of S(n)Q(n)d = Ω(nd−ε) while the
latter improved it to S(n)Q(n)d = Ω(n/2O(

√
logQ(n))). Since the current upper bound

is S(n)Q(n)d = Õ(nd), there is a gap between the upper and lower bounds. Especially,
when the size of the structure is linear, the lower bound is a super polylogarithmic
2
√

logn factor away from the upper bound.

2.3 An Overview of Our Results

We present our new lower bounds for simplex and semialgebraic range reporting in
the pointer machine model.

Lower Bounds for Simplex Range Reporting

For simplex range reporting, we show the first tight lower bound for linear-sized sim-
plex range reporting structures, improving the previous result of Afshani [Afs13] by a
2
√

logn factor, and it matches the upper bound by Matoušek [Mat93] and Chan [Cha12].
This result was published in SOSA 2023 [AC23c].

Theorem 2.3.1 ([AC23c]). Any linear-space pointer machine data structure that
solves simplex range reporting must use query time Ω(n1−1/d + k), where k is the
output size.

More generally, we prove the following lower bound for the tradeoff between
space and query time.

1In this dissertation, we use
o

O(·),
o

Θ(·),
o

Ω(·) notations to hide no(1) factors.



2.3. AN OVERVIEW OF OUR RESULTS 23

Theorem 2.3.2 ([AC23c]). Any pointer machine data structure that solves simplex
range reporting with space S(n) must use query time Ω((n2/S(n))(d−1)/d + k), where
k is the output size.

So for any simplex range reporting data structures that use almost linear space, i.e.,
S(n) = O(n logO(1) n), we improve the previous best lower bound by Afshani [Afs13].

Lower Bounds for Semialgebraic Range Reporting

For the more general semialgebraic range reporting problems, we start with the special
case when the query ranges are polynomial slabs in 2D. A polynomial slab is defined
to be the region between curves y = P(x) and y = P(x)+w for a univariate polynomial
P of degree ∆ and some parameter w. More formally speaking,

Definition 2.3.1. A 2D polynomial slab, denoted by (P,w), is the region between the
graphs of y = P(x) and y = P(x)+w for some univariate polynomial P(x) and some
parameter w, i.e., (P(x),w) = {(x,y) ∈ R2 : P(x)≤ y≤ P(x)+w}.

We first describe the following lower bound result for this special case. This result
was published in SoCG 2021 [AC23b].

Theorem 2.3.3 ([AC23b]). The space usage S(n) and query time Q(n)+O(k) of any
data structure that is able to solve 2D polynomial slab range reporting defined by
polynomials of form y = P(x) where P is a univariate polynomial of degree ∆ must
satisfy S(n) = Ω

(
n∆+1−o(1)

Q(n)(∆+3)∆/2

)
.

Note that by linearization, we can solve the problem with Õ(n∆+1) space and
polylogarithmic query time. So our lower bound is tight up to an no(1) factor. The
significance of Theorem 2.3.3 is that it shows semialgebraic range reporting is inher-
ently more difficult than simplex range reporting in the fast-query case. This is in
strong contrast with the small-space case where the two problems admit solutions of
approximately the same query complexity.

However, there are several weaknesses of Theorem 2.3.3. Taking bivariate polyno-
mials of degree ∆ as an example, the space upper bound for fast-query data structures
is Õ(n(

∆+2
2 )−1), since the number of parameters needed to specify a general bivari-

ate polynomial can be as large as
(

∆+2
2

)
−1. But the exponent in Theorem 2.3.3 is

only ∆+ 1. Furthermore, Theorem 2.3.3 is restricted to bivariate polynomials and
multivariate polynomials are not considered.

To overcome this weakness, we generalize polynomial slabs as follows. Let P
be a d-variate polynomial. We define a (generalized) polynomial slab defined by P
to be {X ∈ Rd : 0≤ P(X)≤ w}. As our second main result for semialgebraic range
reporting lower bounds, we show the following. This result was published in SoCG
2022 [AC22].
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Theorem 2.3.4 ([AC22]). The space usage S(n) and query time Q(n)+O(k) of any
data structure that is able to solve polynomial slab range reporting defined by d-
variate degree-∆ polynomials must satisfy S(n) = Ω

(
nβ−o(1)

Q(n)Θ(β )

)
, where β =

(d+∆

d

)
−1

is the maximum number of coefficients needed to define a query polynomial.

Note that our lower bound almost matches the current upper bound by linearization
or the result by Agarwal et al. [AAEZ21].

2.4 Highlights of Ideas and Techniques

The main tool we use to prove the aforementioned lower bounds is the lower bound
framework described in Theorem 2.2.1. We first give a short and simple proof of
Theorem 2.3.2 in 2D to demonstrate the idea.

Lower Bound for Simplex Range Reporting

Assume that Q(n), n
Q(n) , and n

2Q(n)2 are integers for simplicity. Let G be an integer
grid of size n

Q(n) ×Q(n). To use Theorem 2.2.1, we need to show the existence of a
collection of point sets satisfying Condition 1 and 2. We put G in a Cartesian system
and generate these point sets by intersecting G with several hyperplanes, i.e., lines
in R2. Observe that hyperplanes are degenerated simplices, so any lower bound we
prove for hyperplanes also holds for simplices. Specifically, we consider lines of form

y = ax+b,

where a = 1,2, · · · , n
2Q(n)2 and b = 1,2, · · · , n

2Q(n) . See Figure 2.5 for an example.

0 1 Q(n)

1

n
Q(n)

2

2

· · ·

...

3

y = x+ 1

x

y

Figure 2.5: A Tight Simplex Range Reporting Lower Bound Construction in 2D

We make two observations.



2.4. HIGHLIGHTS OF IDEAS AND TECHNIQUES 25

1. Any line intersects exactly Q(n) points.

2. Let A,B be two set of points intersected by two distinct lines, then |A∩B| ≤ 1.

The first observation follows from the fact that we are considering an integer grid and
all the coefficients of the lines are integers as well; furthermore, the maximum y value
of the intersection of any line and G is at most n/Q(n). The second observation is a
simple fact that distinct lines intersect at most at one point. The total number of lines
we generated is n2/(4Q(n)3), which is also the number of point sets we generated.
By applying Theorem 2.2.1, we obtain a lower bound of

S(n) = Ω

(
n2

Q(n)3 ·Q(n)
)

=⇒ S(n) = Ω

(
n2

Q(n)2

)
,

which is a tight lower bound for simplex range reporting in R2.
This simple proof contains many important ideas that can be generalized to prove

a lower bound in higher dimensions. First, by considering hyperplanes as degenerated
simplices, we can generate point sets using an integer grid. Or even more generally,
this boils down to a point-hyperplane incidence problem in incidence geometry.
Second, we need to bound the points in the intersection of hyperplanes. This is trivial
in R2, but it requires more work in higher dimensions since in a higher-dimensional
space, the intersection could be a lower-dimensional hyperplane which could contain
many points. Addressing this problem is one of the main challenges in this work.
The high-level idea is to consider more hyperplanes and prove an upper bound of the
number of hyperplanes needed so that their intersection is a single point. We omit the
technical details but refer the readers to Chapter 6 for more details.

Lower Bounds for Semialgebraic Range Reporting

For the purpose of demonstration, we will show a slightly weaker version of Theo-
rem 2.3.3. Our aim is to show the following lower bound.

Theorem 2.4.1. The space usage S(n) and query time Q(n) + O(k) of any data
structure that is able to solve 2D polynomial slab range reporting defined by polyno-
mials of form y = P(x) where P is a univeraite polynomial of degree ∆ must satisfy
S(n) = Ω

(
n∆+1−o(1)

Q(n)(φ+1)(∆+1)−1

)
where φ =

(
∆+1

2

)
.

We point out that for technical reasons, it is difficult to directly give a construction
(of point sets) for Theorem 2.2.1. What we will do instead is to use an encapsulation
of Theorem 2.2.1, i.e., Theorem 2.2.2, to show a lower bound. The main advantage of
Theorem 2.2.2 is that we now only need to construct geometric ranges with certain
guarantees of their volumes which are easier to analyze.

The first step of our construction is to generate polynomials of form

P(x) =
∆

∑
i=0

aixi,
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where ai = τ,2τ,3τ, · · · , 1
2(∆+1) for τ = Q(n)φ+12φ

√
logn

n and φ =
(

∆+1
2

)
. Based on these

polynomials, we construct polynomial slabs (P(x),w) and set w = Q(n)/n. In this
construction, the total number of polynomial slabs we constructed is

Θ

((
1/(2(∆+1))

τ

)∆+1
)

=
o

Θ

(
n∆+1

Q(n)(φ+1)(∆+1)

)
.

To use Theorem 2.2.2, we need to show that Condition 1 and 2 are satisfied. For
Condition 1, first observe that for any polynomial P in our construction and any
x ∈ [0,1], we have

0≤ P(x) =
∆

∑
i=0

aixi ≤ 1
2
.

This means every polynomial slab is fully contained in U in x-interval [0,1] with
volume ∫ 1

0
wdx = w =

Q(n)
n

,

where the last equality follows from w = Q(n)
n . This is exactly what we need for

Condition 1.
For Condition 2, first observe that two slabs (P1(x),w) and (P2(x),w) intersect iff

|P1(x)−P2(x)| ≤ w. We use the following Lemma (See Chapter 8 for a proof).

Lemma 2.4.1. Let P1(x) = ∑
∆
i=0 aixi and P2(x) = ∑

∆
i=0 bixi and there is an i such

that |ai−bi| ≥ τ . If |P1(x)−P2(x)| ≤ w for all x ∈ I, then |I|= O((w/τ)1/φ ) where
φ =

(
∆+1

2

)
.

Observe that in our construction, for any two polynomials P1(x),P2(x), there must
be an i such that the coefficients of xi of them differ by at least τ . By Lemma 2.4.1,
the corresponding slabs (P1(x),w) and (P2(x),w) must intersection with an x-interval
of length O((w/τ)1/φ ) = O(1/(Q(n)2

√
logn)). Then their intersection has volume∫

I
wdx = O

(
w

1
Q(n)2

√
logn

)
= O

(
1

n2
√

logn

)
.

This satisfies Condition 2. Then by Theorem 2.2.2, we obtain a space lower bound of

S(n) =
o

Ω(mQ(n)) =
o

Ω

(
n∆+1

Q(n)(φ+1)(∆+1)−1

)
.

Note that when Q(n) = logO(1) n, this already gives an almost tight space lower
bound of n∆+1−o(1). We remark that the exponent in the denominator can be improved
to (∆+3)∆/2 by a more refined analysis (See Chapter 7) and it has been shown to be
tight for a uniform random input set (See Chapter 8). We can generalize the lower
bound to polynomials with d variates of degree ∆ with

(
∆+d

d

)
−1 coefficients, which

is the maximum possible number of coefficients. This almost matches the current
upper bound by linearization or the result by Agarwal et al. [AAEZ21].
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However, this generalization is nontrivial, and there are many issues we need to
address. First of all, the key intuition behind our construction is that if two polynomials
have one sufficiently different coefficient, then the two polynomials cannot stay close
for too long (Lemma 2.4.1), and thus the corresponding polynomial slabs have a
small intersection area. One technical point is that polynomials of form y−P(x) are
irreducible and this is a necessary condition for the construction to work. To see this,
two reducible polynomials can share common factors even if their coefficients are
arbitrarily different. This is undesirable since sharing common factors means their
zero sets overlap, and thus if we generate polynomial slabs, the intersection will be
infinitely large. Even if a general bivariate polynomial is irreducible, its zero set can
have a complicated structure, and it is not straightforward to define a slab around it.

To overcome these issues, we restrict our attention to polynomials of form

P(X) = X1−X∆
2 +∑

i
AiX i,

where indeterminates X = (X1, · · · ,Xd) and coefficients Ai = (a1, · · · ,ad) = o(1) and
degree i = (i1, · · · , id) with 0 ≤ ∑

d
j=1 i j ≤ ∆. The nice property of polynomials of

this form is that they are very close to P(X) = X1−X∆
2 since all other coefficients

Ai = o(1), which makes the analysis much simpler. However, we will still be able
to generate

(
∆+2

2

)
−1 different polynomials, which is sufficient for us to get a lower

bound matching the known upper bound.
We next describe the high-level ideas behind the lower bound proof for general

bivariate polynomials of form

P(X1,X2) = X1−X∆
2 + ∑

i1,i2

Ai1i2X i1i2 ,

where Ai1,i2 = o(1). The key ingredient is a generalization of Lemma 2.4.1. The
intuition behind Lemma 2.4.2 is as follows. Given two bivariate polynomials P1,P2
of this form, for any value of X2 ∈ [1,2], we define the X1-distance between the zero
sets Z(P1) and Z(P2), denoted by π(Z(P1),Z(P2),X2). This is well-defined as these
polynomials behave similarly to X1−X∆

2 in [1,2]. Then we generalize Lemma 2.4.1 by
bounding the interval length of X2 in which π(Z(P1),Z(P2),X2)≤ O(w) as a function
that depends on the gap between the coefficients of P1,P2.

Lemma 2.4.2. Let P1(X1,X2) = X1−X∆
2 +∑i1,i2 Ai1i2X i1i2 and P2(X1,X2) = X1−X∆

2 +

∑i1,i2 Bi1i2X i1i2 where Ai1i2 ,Bi1i2 = o(1) and 0≤ i1 + i2 ≤ ∆ and there is a pair (i1, i2)
such that |Ai1i2 −Bi1i2 | ≥ τ . If I = {X2 ∈ [1,2]| : π(Z(P1),Z(P2),X2)| ≤ O(w)}, then
|I|= O((w/τ)1/B) where B =

(
∆+2

2

)
−1 and function π(Z(P1),Z(P2),v) denotes the

distance between the zero sets of P1,P2 at X2 = v along the X1 axis.

Observe that Lemma 2.4.2 resembles Lemma 2.4.1 in several ways. However, we
remark that the proof of this generalized lemma relies heavily on the specific form of
P1,P2 and is not generally true for arbitrary polynomials.

If we construct polynomials with gap τ in their coefficients in a similar manner
as we did previously in proving Theorem 2.4.1, using this lemma, we will be able to
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bound the intersection area of each pair of polynomial slabs. This will give us the
following lower bound result for 2D semialgebraic range searching.

Theorem 2.4.2. The space usage S(n) and query time Q(n) + O(k) of any data
structure that is able to solve bivariate degree-∆ polynomial range reporting satisfies
S(n) = Ω

(
nB

Q(n)Θ(1)

)
, where B =

(
∆+2

2

)
−1 and the hidden constants depend on ∆.

Now to generalize this lower bound to higher dimensions, we use a “slicing” idea.
Let us consider trivariate polynomials for an example. Suppose we have two trivariate
polynomials

P(X1,X2,X3) = X1−X∆
2 + ∑

i1,i2,i3

Ai1i2i3X i1
1 X i2

2 X i3
3 ,

and
Q(X1,X2,X3) = X1−X∆

2 + ∑
i1,i2,i3

Bi1i2i3X i1
1 X i2

2 X i3
3 ,

where Ai1i2i3 = Bi1i2i3 = o(1). The idea is to treat the last indeterminant X3 as a part of
the coefficients, i.e., we can rewrite the polynomials as

P(X1,X2,X3) = X1−X∆
2 + ∑

i1,i2

fi1i2(X3)X
i1
1 X i2

2 ,

and
Q(X1,X2,X3) = X1−X∆

2 + ∑
i1,i2

gi1i2(X3)X
i1
1 X i2

2 ,

where

fi1i2(X3) =
∆−i1−i2

∑
i3=0

Ai1i2i3X i3
3

and

gi1i2(X3) =
∆−i1−i2

∑
i3=0

Bi1i2i3X i3
3 .

To see why this helps us, note that to use the results from bivariate polynomials, we
only need to make sure that there is a pair of coefficients with gap τ , i.e.,

∃i1, i2 : | fi1i2(X3)−gi1i2(X3)| ≥ τ.

Alternatively, we want to bound the length of the interval in X3 such that

∀i1, i2 : | fi1i2(X3)−gi1i2(X3)|< τ.

Observe that fi1i2(X3) and gi1i2(X3) are both univariate polynomials, and thus we
can bound the interval length of X3 in which this happens using Lemma 2.4.1. We
make sure that the gap between Ai1i2i3 and Bi1i2i3 is big enough such that this “bad”
interval length for X3 is negligible. Thus, we can create polynomial slabs for trivariate
polynomials respecting this new gap. The rest will be carried out by the base bivariate
polynomials. A careful reader may have noticed that as long as we have a solution
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for d-variate polynomials, we can slice over the last dimension of a (d +1)-variate
polynomials, and thus get a lower bound for (d +1)-variate polynomials.

We end this chapter with a remark that although this approach shows an almost

tight lower bound of
o

Ω(n(
∆+d

d )−1) for polynomial slab reporting, it is an interesting
open problem to show such lower bounds for polynomials of more general forms,
i.e., polynomials not restricted to X1−X∆

2 +∑i1,i2 Ai1i2X i1i2 for Ai1i2 = o(1). The full
details for semialgebraic lower bounds are presented in Chapter 7 and Chapter 8.





Chapter 3

Intersection Searching

In the problem of intersection searching, we are given a collection of geometric objects
of dimension t for 0≤ t ≤ d in Rd as the input, and we want to preprocess the input
into a data structure so that given any query geometric object of dimension d− t,
we can find the input objects intersecting the query efficiently. This is an important
problem in computational geometry, and it has found applications in many other
related fields. For example, when the input consists of a collection of triangles in R3

and queries are rays, we have ray shooting among triangles in 3D, one of the central
problems in computer graphics. When both the inputs and queries are polygons, it
models collision detection, an important problem in computer graphics and robotics.

From a theoretical perspective, the problem can be viewed as a generalization of
the classic range searching problem we encountered in Chapter 2, where the inputs
are points (thus zero-dimensional objects) and the queries are geometric ranges of
dimension d. In intersection searching, the dimensions of the input and query objects
are more flexible.

The classic way of solving intersection searching is by a reduction to semialgebraic
range searching. There are many ways to do the reduction based on the specific
problems we have on hand. We give a relatively simple reduction, but as we will see,
this reduction will eventually help us get a lower bound.

3.1 A Reduction to Semialgebraic Range Searching

The high-level idea of this approach is quite simple. We first parametrize the input ob-
jects and then express the query object as a semialgebraic set in the parametric space to
get a semialgebraic range searching problem. Next, we apply the known semialgebraic
range searching results [AM94, AMS13, AAEZ21] to solve the problem. In particular,
the classic result for ray shooting among triangles in 3D of S(n)Q(n)4 = O(n4+ε) was
obtained by this approach [AM94]. Intuitively speaking, the exponent four in the
tradeoff is a result of the fact that we need four parameters to define a line in 3D.

We demonstrate this approach with an example of line-hyperslab intersection
reporting in 3D. A hyperslab is obtained by shifting a hyperplane in 3D by a fixed

31
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distance along some direction. We first parameterize the objects.

Representing Lines and Hyperslabs

We will consider lines and hyperslabs that are non-degenerate. Specifically, no query
line or any line defining hyperslabs is parallel to any of the axes.

First, recall that a line in 3D can be parametrized by four parameters. For example,
one way to represent a line is to parametrize the points on it by (τ,a1,1τ +a1,2,a2,1τ +
a2,2), where τ is a free variable and ai, j’s are parameters. This is equivalent to a
matrix-vector multiplication of form

 1 0
a1,1 a1,2
a2,1 a2,2

 ·[τ

1

]
=

x
y
z

 . (3.1)

Note that any non-degenerated line can be represented this way. For technical
reasons, we need to introduce an extra parameter a0,1. So a line is represented asa0,1 0

a1,1 a1,2
a2,1 a2,2

 ·[τ

1

]
=

x
y
z

 .
The key point here is that even though we have five parameters, there are only four of
them that are independent.

To represent a hyperslab, we consider a line as the intersection of two hyperplanes
in 3D and then translate the line to get a hyperslab. This can be formulated as a linear
system [

1 b1,1 b1,2
1 b2,1 b2,2

]
·

x
y
z

=

[
0

−1+w

]
,

where bi, j are the parameters of the two hyperplanes defining the line and w ∈ [0,w0]
is a parameter that describes the translation for some positive value w0.

A Reduction from Line-Hyperslab Intersection Reporting to
Semialgebraic Range Reporting

In this section, we show a reduction from line-hyperslab intersection reporting to
semialgebraic range reporting. First, observe that if a line intersects a hyperslab, and
they have the aforementioned representations, then the free variable τ defining the
line must satisfy

[
1 b1,1 b1,2
1 b2,1 b2,2

]
·

a0,1 0
a1,1 a1,2
a2,1 a2,2

 ·[τ

1

]
=

[
0

−1+w

]
,



3.1. A REDUCTION TO SEMIALGEBRAIC RANGE SEARCHING 33

for some w ∈ [0,w0]. Multiplying the two matrices, we get[
a0,1 +∑

2
i=1 ai,1b1,i ∑

2
i=1 ai,2b1,i

a0,1 +∑
2
i=1 ai,1b2,i ∑

2
i=1 ai,2b2,i

]
·
[

τ

1

]
=

[
0

−1+w

]
.

Let us call this linear system Aτ = s. We assume det(A) 6= 0, which is the case
when the line and the hyperslab “properly” intersect, i.e., the line is not contained in
the slab, then by Cramer’s rule, we get∣∣∣∣a0,1 +∑

2
i=1 ai,1b1,i 0

a0,1 +∑
2
i=1 ai,1b2,i −1+w

∣∣∣∣∣∣∣∣a0,1 +∑
2
i=1 ai,1b1,i ∑

2
i=1 ai,2b1,i

a0,1 +∑
2
i=1 ai,1b2,i ∑

2
i=1 ai,2b2,i

∣∣∣∣ = 1.

By linearity of determinants, we can rearrange this equation to get∣∣∣∣a0,1 +∑
2
i=1 ai,1b1,i ∑

2
i=1 ai,2b1,i

a0,1 +∑
2
i=1 ai,1b2,i ∑

2
i=1 ai,2b2,i +1−w

∣∣∣∣= 0.

For brevity of description, let a=(a0,1,a1,1,a1,2,a2,1,a2,2) and b=(b1,1,b1,2,b2,1,b2,2),
and by expanding the determinant, we get

P(a,b)+ f (a,b,w) = 0,

where

P(a,b)= (a1,1a2,2−a2,1a1,2)(b1,1b2,2−b1,2b2,1)+
2

∑
i=1

(ai,1−a0,1ai,2)b1,i+
2

∑
i=1

a0,1ai,2b2,i+a0,1

and

f (a,b,w) =−(a0,1 +
2

∑
i=1

ai,1b1,i)w.

If we view a as (fixed) coefficients, then P(a,b) is a multilinear polynomial in
b. For a fixed vector a, we define polynomial slab (P(a,b), f (w0)) = {b ∈ R4 : 0≤
P(a,b) ≤ − f (a,b,w0)}. For brevity, we use f (w0) to denote f (a,b,w0) when the
context is clear.

We make the following observations.

Observation 3.1.1. A line parameterized by a intersects a hyperslab parameterized
by b of width w0 if and only if the point b is contained in the polynomial slab
(P(a,b), f (w0)), for P(a,b), f (w0) defined as above.

Note that it is an if and only if statement, meaning, we not only get a reduction from
line-hyperslab intersection reporting to semialgebraic range reporting, but we also get
a reduction from (a special type of) semialgebraic range reporting to line-hyperslab
intersection reporting. This latter point is important for us to show a lower bound
as we will explain in more detail later. But for now, given that we have a reduction
from a line-hyperslab intersection reporting problem in 3D to a semialgebraic range
reporting problem in 4D, we obtain the following upper bound by applying the known
semialgebraic range searching results [AMS13, MP15, AAEZ21].
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Theorem 3.1.1. Line-hyperslab intersection reporting in 3D can be solved with a
space time tradeoff of S(n)Q(n)4 = O(n4+ε).

3.2 Intersection Searching by Polynomial Partitioning

The ray shooting reporting result based on a reduction to semialgebraic range reporting
has remained unchallenged for more than two decades until very recently. Ezra and
Sharir [ES22b] observed that using the general polynomial partitioning technique de-
veloped by [Gut15, AAEZ21], more specifically, polynomial cutting in Theorem 2.1.5
we described in Chapter 2, it is possible to construct a cutting for (the edge of) trian-
gles directly which enables us to solve the problem using divide-and-conquer in 3D
without lifting the problem to 4D. They showed that by choosing parameters carefully,
it is possible to achieve an S(n) = O(n3/2+ε) space and Q(n) = O(n1/2+ε) query time
data structure for ray-shooting among triangles in 3D.

The importance of this result is that it is the first work that significantly improves
the classic result of S(n)Q(n)4 = O(n4+ε). In fact, their result lies on the space-time
tradeoff curve of S(n)Q(n)3 = O(n3+ε). This is rather surprising as lines and triangles
are essentially four-dimensional objects. However, it seems quite hard to apply their
approach to get comparable improvements for other combinations of space and query
time. (For their divide-and-conquer to work, they need to pick specific parameters to
get correct bounds for subproblems so that the recurrence relation yields the desired
bound.) By interpolating this new result and the old classic result, we get a new (and
rather unnatural) space-time tradeoff of

max{S(n)Q(n)2 = O(n5/2+ε),S(n)Q(n)5 = O(n4+ε)}.

This is a rather strange-looking bound and does not seem like the correct answer.
Ezra and Sharir [ES22b] also asked at the end of their paper if it is possible to
obtain a smooth tradeoff curve of S(n)Q(n)3 = O(n3+ε). Unfortunately, this was
unknown prior to our work. But on the positive side, this reveals the possibility of
improving known results for many other intersection searching problems. For example,
intersection searching for (semialgebraic) arcs and plates in 3D [AAE+22], line
segments and tetrahedrons in 4D [ES22a], and triangles and triangles in 4D [ES22a].

3.3 An Overview of Our Results

Before describing our results, let us first formally define the problem we study. We
follow the convention that a t-flat is an affine subspace of dimension t. We consider
the following t-flat intersection reporting problem.

Definition 3.3.1. In the t-flat intersection reporting problem, we are given a collection
of (d− t)-hyperslabs as the input, which are in essence shapes formed by translating
a (d− t−1) dimensional flat along some direction, and we are to preprocess these
hyperslabs into a data structure such that given any query t-flat, we can find the
(d− t)-flats that intersect the query efficiently.
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We show two results, one for 1-flat intersection reporting, or line-hyperslab
intersection reporting in Rd , and the other for 2-flat intersection reporting in R4, or
triangle-triangle intersection reporting in R4. These results were published in SoCG
2023 [AC23a].

For line-hyperslab intersection reporting, we show the following lower bound.

Theorem 3.3.1 ([AC23a]). Any pointer machine data structure that solves line-
hyperslab intersection reporting in Rd in time Q(n)+O(k), where n is the input

size and k is the output size, must use space
o

Ω(n2(d−1)/Q(n)Θ(d2)).

Note that hyperslabs are degenerated triangles, so in 3D our lower bound for
line-hyperslab intersection reporting applies to ray-triangle intersection reporting.

For triangle-triangle intersection reporting in 4D, we get:

Theorem 3.3.2 ([AC23a]). Any pointer machine data structure that solves line-
hyperslab intersection reporting in R4 in time Q(n) +O(k), where n is the input

size and k is the output size, must use space
o

Ω(n6/Q(n)125).

The exponents in Q(n) can potentially be improved, but most importantly, these
new results answered the question raised by Ezra and Sharir about the possibility of
better “fast-query” data structures.

Indeed, when the query time is no(1)+O(k), our lower bounds almost match the
current best upper bounds.

Theorem 3.3.3 ([AC23a]). Any pointer machine data structure that solves line-
hyperslab intersection reporting in Rd in time no(1) +O(k), where n is the input

size and k is the output size, must use space
o

Ω(n2(d−1)).

Theorem 3.3.4 ([AC23a]). Any pointer machine data structure that solves triangle-
triangle intersection reporting in R4 in time no(1)+O(k), where n is the input size

and k is the output size, must use space
o

Ω(n6).

This shows improvement comparable to that given by Ezra and Sharir [ES22a] is
not possible if we want to solve flat-object intersection reporting problems with no(1)

query time.

3.4 Highlights of Ideas and Techniques

In this section, we sketch the idea for showing a lower bound for line-hyperslab
intersection reporting in 3D. This contains most of the important ideas we need
to show a general lower bound for line-hyperslab intersection reporting in higher
dimensions or triangle-triangle intersection reporting.
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The Overall Idea

The overall idea of the lower bound is by a reduction from a special type of semialge-
braic range reporting to line-hyperslab intersection reporting. Then we prove a lower
bound for the special type of semialgebraic range reporting problem similar to what
we did in Chapter 2. We have already seen the reduction in Observation 3.1.1, so the
focal point in this section will be showing a lower bound for the semialgebraic range
reporting problem. In our case, it is a (special) polynomial slab reporting problem.

Lower Bound for a Special Polynomial Slab Reporting Problem

The high-level idea used here is similar to the polynomial slab reporting lower bound
proof presented in Chapter 2. For the sake of readability, we recall the approach.
We will use the lower bound framework in Theorem 2.2.2. To this end, we need to
construct a set of polynomial slabs in a cube C in 3D satisfying the two conditions in
Theorem 2.2.2.

Like what we did in Chapter 2, we construct polynomial slabs by first generating
a set of polynomials (of certain forms) and then generate polynomial slabs using them.
Since we view a as coefficients and each P(a,b) is treated as a polynomial in b, we
will use P(b) to denote P(a,b) for brevity. The key point of the analysis is to bound
the intersection volume of two polynomial slabs, which boils down to analyzing how
long the zero sets of the two corresponding polynomials can be close to each other.
This is similar to Lemma 2.4.2, but we cannot directly apply Lemma 2.4.2 as the
polynomials in this problem are of form

P(b)= (a1,1a2,2−a2,1a1,2)(b1,1b2,2−b1,2b2,1)+
2

∑
i=1

(ai,1−a0,1ai,2)b1,i+
2

∑
i=1

a0,1ai,2b2,i+a0,1,

which is different from the form of polynomials considered in Chapter 2

Q(X) = X1−X∆
2 +∑

i
AiX i,

for Ai = o(1) in two major ways.
First, the form of P(b) seems to be quite messy to analyze. Recall that in Chapter 2,

one reason why getting a lower bound was even possible is that Q(X) is close to the
irreducible polynomial X1−X∆

2 (since Ai’s are o(1)). However, we crucially need
this for the analysis. Roughly speaking, since X1 is very close to X∆

2 , it follows that
any monomial X i

1X j
2 is close to X i∆+ j

2 , which in turn allows us to apply multivariate
polynomial interpolation. It is clear that this technique cannot be possibly generalized
to fit our current setting.

For the other, recall that the key ingredient we need for the construction to work
is that there must be one term of two polynomials we generate whose corresponding
coefficients are sufficiently different. Since all the coefficients Ai’s in Q(X) are
independent, it is easy to generate polynomials that are sufficiently different: we
just pick coefficients that are sufficiently different. However, coefficients in P(b) are
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dependent and thus it is not straightforward how we can guarantee big gaps between
coefficients.

To address the first issue, we prove a general lemma that works for polynomials
of form P(X1,X2) = X1G(X2)−F(X2) for univariate polynomials G and F with some
restrictions on their coefficients. Note that this is much more general than polyno-
mials of form Q(X1,X2) = X1−X∆

2 +∑i1,i2 Ai1i2X i1
1 X i2

2 with some restrictions on the
coefficients Ai1i2 we studied in Chapter 2. To prove a lemma similar to Lemma 2.4.2
in Chapter 2 that describes the relationship between the gaps between coefficients
and the interval length in which the zeros sets of two polynomials of this form are
close to each other, we need much more general tools from algebraic geometry, e.g.,
the resultant and the Sylvester matrix of two polynomials, and the proof is rather
technical. We refer the readers to Section 9.3 in Chapter 9 for details. In our example,
by setting a1,1a2,2−a21a1,2 to be 1 and rearranging the terms in P(b), we get

P(b) = b2,2b1,1 +a01a2,2b2,2 +(a1,1−a0,1a1,2)b1,1 +g(b1,2,b2,1),

= b2,2(b1,1 +a0,1a2,2)+(a1,1−a0,1a1,2)b1,1 +g(b1,2,b2,1),

where g(b1,2,b2,1) =−b1,2b2,1 +(a2,1−a0,1a2,2)b1,2 +a0,1a1,2b2,1 +a0,1. We remark
that we can do this without losing the number of independent parameters because we
have added an extra parameter in the representation of the objects in advance. Note
that this is a special case of P(X1,X2) = X1G(X2)−F(X2) by vieweing b2,2 as X1 and
b1,1 as X2. We have the following lemma for this special case.

Lemma 3.4.1. Let P(x,y)= xy+c11x+c12y+c13 and Q(x,y)= xy+c21x+c22y+c23.
Let I = {y ∈ R|∃x : (x,y) ∈ (P(x,y),w)∩ (Q(x,y),w)}. If |c1i− c1 j| ≥ τ , then |I| =
O((w/τ)1/3).

The second problem of dependent coefficients is associated with the forms of the
coefficients in P(b). The coefficients are now polynomials in a, and thus we need
to make sure that these coefficients are sufficiently different such that we can apply
Lemma 3.4.1. The key observation is that Lemma 3.4.1 only requires one of the
coefficients to have a big gap. To see why this helps, let us look at one example. Let

P1(b) = b2,2b1,1 +a0,1a2,2b2,2 +(a1,1−a0,1a2,2)b1,1 +a0,1

and
P2(b) = b2,2b1,1 +a′0,1a′2,2b2,2 +(a′1,1−a′0,1a′2,2)b1,1 +a′0,1,

and we assume all ai, j,a′i, j are big enough constants. We claim that if we can set
the gap between every ai, j and a′i, j to be either 0 or at least τ , the difference of all
coefficients of P1(b) and P2(b) will then be 0 or Θ(τ). Why is this the case? By
Lemma 3.4.1, if |a0,1 > a′0,1| ≥ τ then we are done. Otherwise a0,1 = a′0,1, but if
|a2,2−a′2,2| ≥ τ then we are still done since |a0,1a2,2−a0,1a′2,2|= a0,1|a2,2−a′2,2| ≥ τ .
Similarly it holds for the coefficients of b1,1. Of course the real forms of P(b) are
more complicated, and we need the “slicing” idea we described in Chapter 2 before
we reach this base bivariate case. But the high-level idea remains the same.
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Lower Bounds for More General Flat Objects

We can generalize the lower bound to more general flat objects.
It is relatively straightforward to generalize the parametric representation in

Eq. (3.1) of a line to any t-flat. We represent any t-flat in Rd that is not parallel to any
of the axes by

a0,1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
a1,1 a1,2 · · · a1,t a1,t+1

...
...

. . .
...

...
ad−t,1 ad−t,2 · · · ad−1,t ad−t,t+1


·


τ1
...
τt

1

=

x1
...

xd

 ,

where τ1, · · · ,τt are free variables, and ai, j’s are parameters. Note that similar to the
line case, we introduced one more parameters although there are only (d− t)(t +1)
independent parameters.

Similarly, we can formulate (d− t)-hyperslabs using (d− t)(t +1) parameters
1 0 · · · 0 b1,1 b1,2 · · · b1,d−t
0 1 · · · 0 b2,1 b2,2 · · · b2,d−t
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 bt,1 bt,2 · · · bt,d−t
0 0 · · · 0 bt+1,1 bt+1,2 · · · bt+1,d−t

 ·


x1
x2
...

xd−1
xd

=


0
0
...
0

−1+w

 ,

where bi, j’s are parameters to specify a (d− t−1)-dimensional flat and w ∈ [0,w0].
Using the same idea of the determinants, we can establish a reduction from a

special type of polynomial slab reporting to t-hyperslab intersection reporting. The
actual lower bound proof for the polynomial slab reporting problem is again based on
the base bivariate case and the application of the “slicing” idea.

We refer the readers to Chapter 9 for more details.



Chapter 4

Range Summary Queries

One of the main challenges that data analysis and database fields face in the modern
“big data” era is the increasing amount of data. Many unprecedented applications
like deep neural network based computer vision [RDGF15], natural language process-
ing [VSP+17, DCLT19], and the recent large language models [FC20, Ope23] are
made possible because of the availability of gigantic data, and they have dramatically
changed our life in the last decade. In this development, the traditional ways of data
processing have become increasingly inefficient or inappropriate. For example, in the
computational geometry context, consider the two classic variants of range searching:
range reporting and counting. On the one hand, range reporting queries provide full
(and in some sense unnecessarily complete) information of the interested data, and as
a result, the response time to a query may be very long; on the other hand, a range
counting query returns only one number, which might be output efficiently, but it
contains too little information to be useful. There are some early attempts aiming to
address this problem by introducing more expressive statistics, e.g., range median
and range mode [BKMT05, BGJrS11, JrL11], but in many scenarios, we still need a
better characterization of the output data compared to these simple statistics. This
leads to the concept of data summaries.

4.1 Data Summaries

The concept of data summaries is closely associated with the steaming algorithm
community where the computational model has a limited amount of memory while
the data is given as a data stream of a much larger size. The target is to generate
some useful information of the data in this restrictive setting. An introduction to
this field is out of the scope of this book, we refer interested readers to a classic
introductory book [Mut05]. In the remaining part of this section, we will mainly focus
on introducing a couple of summary types that are relevant to our results.

39
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Heavy Hitter Summaries

One of the summary types that has been studied extensively is heavy hitter summaries,
a generalization of modes. Informally speaking, a heavy hitter of a data set is an
element whose frequency exceeds a certain threshold, and a heavy hitter summary is a
set containing all the heavy hitters. It is defined formally as follows.

Definition 4.1.1 (φ -heavy hitter summaries). Given a multiset S and a parameter φ

with 0 < φ < 1, an element x ∈ S is called a φ -heavy hitter of S iff its frequency is at
least φ |S|, and a φ -heavy hitter summary is the set of all φ -heavy hitters of S.

Computing exact φ -heavy hitters could be challenging, and since we have re-
stricted memory size anyway, it is more natural to consider approximate heavy hitters.

Definition 4.1.2 (ε-approximate φ -heavy hitter summaries). Given a multiset S of
elements and parameters ε,φ with 0 < ε ≤ φ < 1, an ε-approximate φ -heavy hitter
summary contains all elements with frequency larger than (φ + ε)|S| and no elements
with frequency smaller than (φ − ε)|S|. The elements with frequency between (φ −
ε)|S| and (φ + ε)|S| may or may not be included in the summary.

It is also common to study the variant where S is a set instead of a multiset and
each element of S is associated with a color from a color set C, and we want to output
heavy hitters for colors whose frequency (the number of elements bearing this color)
is above some threshold.

Quantile Summaries

Another classic summary type is quantile summaries. This is a very useful tool to
understand the distribution of the data set, and it is a generalization of medians. The
definition of quantile summaries is rather straightforward.

Definition 4.1.3 (φ -quantile summaries). Given a set S of elements and a parameter
φ with 0 < φ < 1, where each element s ∈ S is associated with a weight from R, an
element s∈ S is called a φ -quantile if its weight w(s) has rank φ |S| among the weights
in S. A φ -quantile summary is a sequence of 1/φ +1 elements (x0,x1, · · · ,x1/φ ) where
the rank of xi is iφ |S|.

Similar to heavy hitter summaries, we usually study the approximate version of
quantile summaries in the limited memory scenario.

Definition 4.1.4 (ε-approximate φ -quantile summaries). Given a set S of elements
and parameters ε,φ with 0 < ε ≤ φ < 1, where each element s ∈ S is associated with
a weight from R, an ε-approximate φ -quantile summary is a sequence of 1/φ + 1
elements (x0,x1, · · · ,x1/φ ) where the rank of xi is (iφ ± ε)|S|.
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4.2 Range Summary Queries

The typical problem studied in the streaming community is how to construct sum-
maries efficiently in the streaming model. We will however be interested in the query
version of it: given a set of points as the input, we are interested in constructing
summaries for each output of some query range in an online fashion. In the remaining
of this chapter, we will consider the restricted case when φ = ε . This gives us a bound
for the output size in terms of the error parameter ε , i.e., the output size of an ε-
approximate heavy hitter summary is O(1/ε), and that for an ε-approximate quantile
summary is Θ(1/ε). We define approximate range summary queries as follows.

Definition 4.2.1 (Approximate Range Summary Queries). In the problem of approxi-
mate range summary queries, we are given a set P of points in Rd each associated
with a weight from a set S (depending on the summary type) and a parameter ε with
0 < ε < 1, and we want to preprocess P into a data structure so that for any query
range γ , we are able to generate an ε-approximate ε-summary for P∩ γ efficiently.

For example, when γ is chosen from the family of halfspaces and S is a set
of colors, we can define halfspace approximate heavy hitter queries; or when γ is
the family of dominance ranges and S is R, we can define dominance approximate
quantile queries.

Prior to our work, approximate range summary queries was studied systematically
only in 1D. Yi, Wang, and Wei [YWW14] showed that it is possible to build a linear-
sized data structure to support approximate heavy hitter and approximate quantile
summary queries in time O(logn+ 1

ε
), which is essentially optimal. Their result is

based on an approach they described as “exponentially decomposable summaries”.
The key observation of their approach is as follows. Given a set of points in 1D, we
build a balanced binary search tree on top of them. We store each point in the corre-
sponding leaf of the tree, and for each internal node, we construct a εi-approximate
summary for the set of points which are the descendants of the node. Intuitively
speaking, since the number of points of a node in level i is double that of a node in
level i+1, we can set εi+1 to be a constant factor bigger than εi while preserving the
error. Given a query range, we need to merge the summary of O(logn) nodes, and
it can be shown that merging summaries generated from error parameters forming a
geometric series can be done efficiently. However, it seems hard to generalize this idea
to higher dimensions. A similar idea that works for higher dimensions is “mergeable
summaries” [ACH+13], but unfortunately it cannot give the optimal query time.

Mergeable Summary Based Solutions

We first introduce the concept of “mergeable summaries” used in [ACH+13]. Let
D1,D2 be two data sets (multisets) and ε be the error parameter. Let S(D1,ε),S(D2,ε)
be two summaries generated for D1,D2 using parameter ε respectively. We say that
summary S is mergeable if there is an algorithm that takes S(D1,ε) and S(D2,ε) as the
input and generates an output S(D1]D2,ε) for D1]D2 where ] denotes the multiset
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union operator. Note that since we require the error to be preserved, we may need
extra information to be able to merge two summaries, so the size of the summary
might need to be Ω(1/ε) for the merging algorithm to work.

Agarwal et al. [ACH+13] studied the mergeability of data summaries systemati-
cally. For ε-approximate heavy hitter summaries, they showed that we can merge two
summaries of size O(1/ε) to get a new summary of the same size while preserving
the error. Combining with the standard tree-based data structures for range searching
problems, this gives, e.g., O(n) space and O(n1−1/d/ε) data structure for halfspace
approximate heavy hitter queries. On the other hand, for quantile summaries, merge-
ability requires the size of the summary to be O( 1

ε
log 1

ε
). Again, combining the

known results for range searching results, we can get range summary data structures
for approximate quantile summary queries.

An alternative approach to solve approximate range summary queries is through a
technique called “independent range sampling”.

Independent Range Sampling Based Solutions

In the problem of independent range sampling, we are given a set P of points in Rd ,
and we want to preprocess the points into a data structure such that given a query
range γ and a value t, it returns t independent samples from P∩ γ . The important
feature here is “inter-query independence”, meaning if we issue the same query twice,
the two samples we get are independent of each other. This is a very nice feature in
terms of data analysis. This line of research was initiated by Hu et al. [HQT14] and
followed up by Afshani and Wei [AW17] and further by Afshani and Phillips [AP19].
For a survey of this field, we refer the readers to [Tao22].

The following standard tool from the sampling theory connects independent range
sampling and approximate summary queries.

Theorem 4.2.1 (ε-Approximation). Let (P,Γ) be a finite set system. For any pa-
rameter ε with 0 < ε < 1, a subset A ⊂ P is called an ε-approximation for (P,Γ)
if

∀γ ∈ Γ,

∣∣∣∣ |γ ∩A|
|A|

− |γ ∩P|
|P|

∣∣∣∣≤ ε.

For example, when P is a point set and Γ the collection of all possible subsets of
P created by halfspaces in Rd , we obtain a finite set system (P,Γ). This is usually
known as a geometric set system, and an important observation is that different set
systems created by different ranges have different complexities. For instance, given
the same ground set P, simplices will be able to create more subsets than halfspaces.
This is captured by the notion of VC-dimension [VC15], which plays an important
role in the size of the ε-approximation.

To see why Theorem 4.2.1 is useful for range summary queries, consider, e.g.,
halfspace approximate heavy hitter summary queries. We first build the independent
sampling data structure for the point set P, and to answer a query γ , we sample
Θ( 1

ε2 log 1
δ
) elements from P∩ γ for a parameter 0 < δ < 1. It is known that by
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sampling Θ( 1
ε2 log 1

δ
) elements from P for a set system (P,Γ) with bounded VC-

dimension, we can get an ε-approximation for (P,Γ) with probability at least 1−
δ [VC15]. After obtaining an ε-approximation, note that Theorem 4.2.1 guarantees
that the frequency of an element in the ε-approximation differs by at most ε|P∩ γ|,
which is exactly what we need. Thus we can directly operate over the ε-approximation
without blowing up the error too much. However, although this approach is simple, it
requires us to sample Ω(ε−2) points, and thus the query time is Ω(ε−2); furthermore,
it is Monte Carlo.

4.3 Halfspace and Dominance Range Searching

The main query types we will be considering are halfspace and dominance ranges. A
halfspace range is defined by a linear inequality while a dominance range is defined
by a point r = (r1, · · · ,rd) in Rd and it contains all points q = (q1, · · · ,qd) such that
qi ≤ ri for all i = 1, · · · ,d.

In Chapter 2, we have seen how we can solve simplex range searching in time
O(n1−1/d) query time and O(n) space. This bound holds for reporting queries as well.
However, for halfspace range reporting queries, it is possible to answer queries much
faster with linear space.

In a seminal paper [Mat92a], Matoušek showed that halfspace range reporting
can be solved with a space-time tradeoff of S(n)Q(n)bd/2c = Õ(nbd/2c) by applying
“shallow” versions of Partition Theorem 2.1.1 and Cutting Theorem 2.1.4. The
exponent bd/2c has the following intuitive explanation. We mention without proving
that if we can solve halfspace emptiness, then we can essentially solve halfspace
range reporting by an approach called parametric searching [Meg83] with only a
polylogarithmic extra factor. Given a query halfspace, to determine if it contains
a query point, it suffices to check if a point on the convex hull of the point set is
contained in the halfspace. It is well known that the convex hull of a set of points in
Rd has complexity O(nbd/2c). For more details on the complexity of the convex hull
size, we refer the readers to the classic discrete geometry book by Matoušek [Mat02].

More directly, Matoušek [Mat92a] developed the tools of shallow cuttings to solve
halfspace range reporting. It is a variant of shallow cutting (see Theorem 2.1.4), and
it has been widely used in halfspace and dominance range searching problems. We
state the version in 3D, but it is possible to generalize the result to higher dimen-
sions [Mat92a, Cha12]. Given a collection of hyperplanes in 3D, unlike the normal
cuttings which generate simplices covering the entire space in 3D, k-shallow cuttings
cover (≤ k)-levels, i.e., the set of points with at most k hyperplanes passing below
it. The shallow cutting theorem provides the guarantees of how many simplices are
needed and the number of hyperplanes crossing each simplex as in the normal cuttings.
More formally, the shallow cutting theorem is stated as follows.

Theorem 4.3.1 (3D Halfspace Shallow Cuttings [Mat92a, Cha12]). Given a collec-
tion S of n hyperplanes in R3, a k-shallow cutting C for S is a collection of vertical
prisms that cover the (≤ k)-level of S and the number of hyperplanes intersecting
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each prism is upper bounded by O(k). The number of such prisms, i.e., the size of C ,
is upper bounded by O(n/k).

For an illustration in 2D, see Figure 4.1. The blue polygonal lines indicate the
upper boundary of (≤ 2)-levels of the line arrangement. The shallow cutting contains
three simplices (unbounded from below). Note that the simplices can intersect points
of higher levels, but the key point is that all (≤ 2)-levels are covered by them.

Figure 4.1: A 2D 3-Shallow Cutting

The shallow cutting theorem is usually used in a hierarchical fashion. Given a
collection H of n hyperplanes in 3D, we build a hierarchy of 2i-shallow cuttings for
i = 1,2, · · · , logn. Then given a query point, we can locate the first cell in this cutting
hierarchy above it efficiently.

Lemma 4.3.1 (Afshani and Chan [AC07]). Given a hierarchy of 2i-shallow cuttings
for i = 1,2, · · · , logn built for an arrangement of n planes in 3D, and for any query
point q, we can find the first shallow cutting level ki above q as well as the prism in
that level containing q in time O(logn).

Note that it is relatively easy to find the level and the prism in time O(logn log logn)
by a binary search over levels and point locations on 2D planar subdivisions [dBCvKO08].
A finer probabilistic analysis gets rid of the O(log logn) factor [AC07] . As an appli-
cation of Lemma 4.3.1, we can solve approximate 3D halfspace range counting with a
constant approximation factor in O(n) space and O(logn) time [AC07].

Similar linear space and logarithmic query time results are also possible for
dominance range reporting and approximate dominance range counting [AHZ10].
This is not surprising as dominance ranges can be viewed as a special case of halfspace
ranges by an observation made by Chan, Larsen, and Pǎtraşcu [CLP11].

4.4 An Overview of Our Results

We study halfspace and dominance approximate heavy hitter summary (AHHS)
and approximate quantile summary (AQS) queries in 2D and 3D. The model of
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computation we use is the realRAM model equipped with integer registers of size
w = logn. The following results were published in ICALP 2023 [ACBRW23].

We show the following results of AHHS queries.

Theorem 4.4.1 ([ACBRW23]). 3D halfspace AHHS queries can be answered with a
data structure of space O(n logw

1
ε
) and query time O(logn+ 1

ε
).

Note that the query time is worst-case optimal since the size of an ε-approximate
heavy hitter summary is O(1/ε). When the error parameter ε = Ω(1/ logO(1) n), the
solution is optimal. We can further reduce the space usage to linear for dominance
ranges for any ε > 0.

Theorem 4.4.2 ([ACBRW23]). 3D dominance AHHS queries can be answered with
a data structure of space O(n) and query time O(logn+ 1

ε
).

For AQS queries, we show the following.

Theorem 4.4.3 ([ACBRW23]). 3D halfspace AQS queries can be answered with a
data structure of space O(n log2 1

ε
logw

1
ε
) and query time O(logn+ 1

ε
log2 1

ε
).

Note that we need to pay some extra polylogarithmic factors in 1
ε

in both space
and query time compared to AHHS queries. We will see in the next section why this
is the case. But interestingly, this is avoidable for dominance queries.

Theorem 4.4.4 ([ACBRW23]). 3D dominance AQS search can be answered with a
data structure of space O(n) and query time O(logn+ 1

ε
).

A comparison between our new and known results is given in Table 4.1. The table
is borrowed from [ACBRW23].

4.5 Highlights of Main Ideas and Techniques

We first present the main ideas behind our halfspace AHHS query structures.

AHHS Queries

We show a slightly worse O(n log 1
ε
) space, O(logn+ 1

ε
) query time structure for

halfspace AHHS queries. We briefly mention dominance AHHS queries at the end of
this section. The main idea is to combine ε-approximation with shallow cuttings.

We transform the problem to the dual space using duality introduced in Chapter 2
and then construct hierarchical (2i/ε)-shallow cuttings for i = 0,1, · · · , logn. Note
that by the guarantee given by Theorem 4.3.1, if there are k hyperplanes passing
below a query point, then the prism we identify intersects O(k) hyperplanes. For each
prism, we build a data structure for the hyperplanes intersecting it to facilitate query
answering. This is now a simpler problem since the total error allowed is εk while the
total number of hyperplanes we need to consider is only O(k). In other words, now the
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Table 4.1: Our main results compared with Mergeability-based [ACH+13] (denoted
by M) and Independent Range Sampling (IRS)-based [AW17] (denoted by I) solution.
The IRS-based solutions are randomized with success probability 1−δ for a parameter
0 < δ < 1. F is the number of colors of the input. w = Θ(logn) is the word size of
the machine. † indicates optimal solutions.

Summary
Query Types Space Query Time Remark

3D AHHS
Halfspace

O(n)
O(n)
O(n logw

1
ε
)

O(logn+ 1
ε

n2/3)

O(logn+ 1
ε2 log 1

δ
)

O(logn+ 1
ε
)

M [ACH+13]
I [AW17]
New

3D AHHS
Dominance

O(n)
O(n)
O(n)

O(logn+ 1
ε

log3 n)
O(logn+ 1

ε2 log 1
δ
)

O(logn+ 1
ε
)

M [ACH+13]
I [AW17]
New†

3D AQS
Halfspace

O(n)
O(n)
O(n log2 1

ε
logw

1
ε
)

O(logn+ 1
ε

n2/3 log(εn))
O(logn+ 1

ε2 log 1
δ
)

O(logn+ 1
ε

log2 1
ε
)

M [ACH+13]
I [AW17]
New

3D AQS
Dominance

O(n)
O(n)
O(n)

O(logn+ 1
ε

log3 n log(εn))
O(logn+ 1

ε2 log 1
δ
)

O(logn+ 1
ε
)

M [ACH+13]
I [AW17]
New†

error can be viewed as over the entire hyperplane set instead of the output hyperplanes
(when we restrict ourselves to one prism). Indeed, we can show the following theorem
for this problem.

Theorem 4.5.1 (Theorem 10.3.5, Chapter 10). Given a collection of H hyperplanes
in R3 each associated with a color and a parameter ε , we can build a data structure of
size O(min(|H|,ε−

2d
d+1 )) with query time O(ε−1) such that given any halfspace query

γ , we can output the colors in the query halfspace with frequency at least ε|H|.

The value O(ε−
2d

d+1 ) is due to the fact that the ε-approximation of halfspace ranges
is O(ε−

2d
d+1 ) [MV17]. With this theorem, at shallow cutting level i, we build an

O(min(2i/ε,ε−
2d

d+1 )) space data structure for the hyperplanes intersecting each prism
and there are nε/2i prisms in total. Note that when 0≤ i≤ logε

1−d
d+1 , we need to spend

O(n) space per level. But for higher levels, we spend O(n) space in total. To sum up,
we have a data structure of O(n log 1

ε
) space that solves halfspace AHHS queries in

time O(logn+ 1
ε
).

To obtain Theorem 4.4.1, we need more ideas. First, we can actually improve
Theorem 4.5.1 by a better way of counting frequency colors using integer registers in
the computational model we use. Second, we can use bit-packing to achieve a better
data structure that counts exactly the frequencies of colors in a query halfspace range
(a.k.a., type-2 range counting). They together allow us to compress every w levels
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for level i with 0≤ i≤ logε
1−d
d+1 . Thus we can improve the log 1

ε
factor to logw

1
ε
. We

remark that it is also possible to enhance this data structure so that it produces the
approximate frequencies of the approximate heavy hitters it generates.

For dominance ranges, we apply roughly the same idea. The main reason why we
can get a better bound is that the ε-approximation size for dominance ranges is much
smaller (Õ(1/ε) to be specific), and then we can further compress the layers (in fact
to constant layers).

AQS Queries

We again start with halfspace AQS queries.
For halfspace AQS queries, again, we first apply the dual transformation and

then hierarchical shallow cuttings. Now for each prism, we collect all the planes
intersecting it and classify them into t = Θ(1/ε) lists L1,L2, · · · ,Lt , each of size at
most εk/2, based on the increasing order of their weights. Let q be some query
point. Now consider the prism we locate for q. Suppose we can count the number of
planes ci passing below q efficiently among all lists Li for i = 1,2, · · · , t, then we are
done. This is because we can just walk through lists L1, · · · ,Lt and maintain a running
counter c to record the number of hyperplanes below q we have encountered so far.
Whenever the counter reaches jεk for j = 0,1, · · · ,1/ε after adding ci to c, we report
an arbitrary hyperplane in Li passing below q. This is okay because there are at most
εk/2 hyperplanes in each list, and so the error is at most εk/2.

However, it is very inefficient to count each ci exactly as exact range counting
queries are expensive. Since we are computing approximate quantiles, the natural
idea is to use approximate counting. However, we need to make sure that the error
does not blow up since by adding ci to c the error accumulates. We thus need to make
the error of approximate counting smaller. Also, note that we need to approximate ci

for each of the Θ(1/ε) lists, and thus approximating ci’s separately will be inefficient.
We would need to compute the approximate counts in a parallel fashion. It turns out
that we can apply AHHS to address both problems. We now elaborate on the details.

To compute counts in parallel, we assign a unique color to each list and color the
planes in the list with the color. Then we collect the planes and build a halfspace
AHHS search structure with the approximate parameter set to be ε/4. By doing this,
we can approximate each ci with error εk/4. This might look useless since the total
error could still exceed the budget after adding four lists. Our next idea is to build
a tree structure on top of the lists. The original t lists will be the leaves, and each
internal node will contain the union of hyperplanes in the leaves of its subtree. We
assign unique colors to the nodes and color the planes accordingly. Then we build our
halfspace AHHS structure for all the planes in the tree. The total number of planes is
O(k log t), and to approximate ci, we only need to use O(log t) approximate counts.
This means we can set the error parameter to be ε/(τ log2 t) for some big enough
constant τ . This is the main reason why we have to pay an extra log2 1

ε
factor in the

space and query time in Theorem 4.4.3.
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The solution for dominance ranges is a bit different. The main reason is that
it is possible to count ci exactly by exploiting the fact that dominance ranges are
orthogonal to the axes, and therefore we can use bit-tricks and do divide-and-conquer
using the recursive grid idea [ABR00]. Thus we can get rid of the extra log2 1

ε
factor

introduced by approximate counting in halfspace AQS queries.
We refer the readers to Chapter 10 for details.



Chapter 5

2D Generalization of Fractional
Cascading on Axis-aligned Planar
Subdivisions

Consider the dual version of range searching: we want to preprocess a collection of
geometric ranges into a data structure such that we can identify the ranges stabbed by
a query point efficiently. One way to solve the problem is to identify the cell which
contains the query point in the arrangement formed by the ranges. This problem,
known as point location, is one of the earliest problems studied in computational
geometry. See, e.g., [dBCvKO08] for an introduction. In this chapter, we will explore
“iterative search”, which can be viewed as multiple point locations with the same query
point but unrelated arrangements.

We start this chapter with an introduction to the classic (1D) fractional cascading
approach which solves iterative search optimally. Then we consider iterative search in
higher dimensions and describe the difficulty of generalizing fractional cascading to
higher dimensions. Finally, we present our new 2D fractional cascading results and
explain the key ideas and intuitions.

5.1 (1D) Fractional Cascading

The technique of fractional cascading was invented by Chazelle and Guibas [CG86a,
CG86b] to solve the following “iterative search” problem.

Definition 5.1.1 (Iterative Search). Let G = (V,E) be a connected undirected graph
where the degree of each vertex v ∈V is bounded by some fixed constant, and each
vertex is associated with a list of elements chosen from a totally ordered universe U .
We call G a catalog graph. Let n be the total number of elements attached.

In the iterative search problem, we are to preprocess G as well as the associated
lists into a data structure such that given any query (q,π) where q ∈U and π ⊂ G

49
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is a connected subgraph, we can find the successors of q in the lists attached to the
vertices in π efficiently.

A very natural solution of O(n) space and O(|π| logn) query time to the problem
is to build the optimal successor search structures for all the lists separately, and then
query each list in π one by one. However, the result of fractional cascading [CG86a,
CG86b] tells us that with O(n) space, surprisingly, it is possible to improve the query
time to O(logn+ |π|) in any pointer-based computational models.

Theorem 5.1.1 (Fractional Cascading [CG86a, CG86b]). Iterative search can be
solved in O(n) space and O(logn+ |π|) time.

To illustrate the main idea of fractional cascading, let us consider a simpler
problem where G is a path and π ⊂ G is a subpath and each list has an equal size. Let
t = |G| be the total number of vertices in G and L1, · · · ,Lt be the lists attached to the
vertices v1, · · · ,vt . Now we augment each list Li to L′i as follows. First we keep L′t = Lt

and proceed backwards from Lt to L1. We take every second element of L′i+1 to form
a sample Si+1. L′i is then the union of Li and Si+1. To answer queries efficiently, for
each element in L′i, we maintain a successor pointer s which points to its successor in
Li (pointing to null if no successor exists) as well as a forward pointer f which points
to its successor in Si+1. Furthermore, for each element in Si+1, we maintain a back
pointer b which points to the corresponding element in L′i+1. We build an optimal
successor search data structure for each L′i. See Figure 5.1 for an example.

1 3 5 9

2 4 5 7

1 2 6 8

L3

L2

L1

L′
3 1 3 5 9

L′
2

L′
1

2 3 4 5 7 9

1 2 3 5 6 8 9

null

null

Figure 5.1: An example of fractional cascading. Blue, red, purple arrows are s, f ,b
pointers.

Let π = vl,vl+1, · · · ,vr. To answer a query (q,π), we first locate the successor
of q in L′l . We use the successor pointer to find the successor in Ll and then use the
forward pointer to find the successor of q in Sl+1. Using the back pointer, we proceed
to L′l+1. Note that the successor of q in Ll+1 could be between two elements in L′l+1
and so we need to check one more element, but that takes constant time. We then
proceed similarly using the successor, forward, and back pointers for all the lists.
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The performance of this structure is relatively easy to analyze. First, observe
that the size of each augmented list is L′i = ∑

t−i
j=0

n
t2 j = O(n

t ). So the total size of the
structure we built is still O(n). After the initial O(logn) investment of querying the
successor search structure, the subsequent successors can be found in O(1) time by
navigating the three pointers. Thus the query time is O(logn+ |π|).

Since iterative search is a common problem in computational geometry, this tech-
nique has many applications. Chazelle and Guibas themselves showed the versatility
of this technique in a companion paper [CG86b]. In Chapter 1, we introduced a
two-level range tree structure for orthogonal range searching. Answering a query
in this data structure reduces to answering O(logn) one-dimensional range search-
ing queries attached to a tree structure, which is iterative search. There are also
many follow-up works. This technique was also simplified using randomization by
Sen [Sen95]. Mehlhorn and Näher [MN90] explored dynamic fractional cascading,
and Afshani [Afs21] recently presented corresponding lower bounds.

5.2 Iterative Search in 2D and Early Attempts

Now we define the notion of iterative search in higher dimensions. In essence, iterative
search is a series of point locations.

Successor Search and Point Location

One way to view successor search from a geometric perspective is the following.
Given a collection of n points in the real line, the points partition the line into n+1
disjoint intervals. Finding the successor of a query point is equivalent to finding the
interval to which the query point belongs.

A very natural generalization of this geometric perspective for successor search in
2D gives point location: we are given a planar subdivision, i.e., a planar embedding of
a planar graph where all the edges are straight line segments, and for each query point,
we want to find the cell containing the query point. See Figure 5.2 for an example.

Figure 5.2: Left: Successor search for a query (red square) finds an interval (blue
segment). Right: Point location for a query (red square) finds a cell (blue shaded cell).
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We define the complexity of a planar subdivision to be the sum of the numbers of
vertices, edges, and faces in it. Now we can define the 2D iterative search problem.

Definition 5.2.1 (2D Iterative Search). Let G = (V,E) be a connected undirected
graph where the degree of each vertex v ∈V is bounded by some fixed constant, and
each vertex is associated with a collection of planar subdivisions. We call G a catalog
graph. Let n be the total complexity of these planar subdivisions.

In the 2D iterative search problem, we are asked to preprocess G as well as the
associated planar subdivisions into a data structure so that given any query (q,π),
where q∈U and π ⊂G is a connected subgraph, we can find the cells in subdivisions
in π that contain q efficiently.

A Lower Bound for General 2D Fractional Cascading

Similar to 1D successor search, any improvement to 2D point location immediately
leads to improvements to many other problems, e.g., 3D nearest neighbor searching
and 2D ray shooting.

However, Chazelle and Liu [CL04] showed that 2D fractional cascading is impos-
sible in general. Actually, the 2D proof we have seen for Theorem 2.3.2 in Chapter 2
already gave a lower bound for fractional cascading. Recall that in our construction,
we showed a lower bound for the following problem: given a set of n points in a 2D
grid of size Q(n)×n/Q(n), any data structure that can report all the grid points inter-
secting a query line in query time Q(n) must use space Ω(n2/Q(n)2). We show that
this problem reduces to 2D fractional cascading. First, observe that the duals to all the
points sharing the same x-coordinate in the grid are parallel lines. Thus if we dualize
each column of the grid, we get a collection of parallel lines. Adding a bounding box
to each collection of parallel lines, we get a collection of planar subdivisions, and the
total complexity is n. On the other hand, the dual of a query line is a point. Note that
finding all the points intersecting a query line in the primal problem is equivalent to
finding all the cells in the dual subdivisions containing a query dual point. The latter
problem is exactly 2D fractional cascading. This establishes a reduction, and thus the
lower bound for 2D simplex range reporting applies to 2D fractional cascading. See
Figure 5.3 for an example.

Figure 5.3: Reducing point-hyperplane reporting to 2D fractional cascading

A similar construction was given in [CL04]. This gives the following Theorem.
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Theorem 5.2.1 (Chazelle and Liu [CL04]). Any data structure that solves 2D iterative
search in time logO(1) n+O(|π|) where n is the input size and |π| is the length of the
query subgraph, must use space Ω̃(n2).

Essentially, this means fractional cascading is a one-dimensional technique and
dashes the hope of generalizing it to higher dimensions. Also, note that the hard
instance construction is not pathological: it is merely a collection of parallel strips
attached to a path.

Better Upper Bounds for Special Cases

Although by Theorem 5.2.1, it is generally impossible to solve 2D iterative search
significantly better than the trivial solution, in some interesting special cases, it is
possible to circumvent this bottleneck.

One of the interesting examples is when the subdivision is axis-aligned, meaning
all the edges are parallel to the x or y-axis. When studying orthogonal range reporting,
Afshani et al. [AAL12] observed that by applying the known results for rectangle
stabbing (defined later), iterative point locations among axis-aligned subdivisions
following any path in a tree of height O(logn) can be answered in time O(log3/2 n) and
space O(n). This is an O(

√
logn) improvement to the simple solution of O(log2 n).

Another interesting case is the arrangement of lines. Since overlaying subdi-
visions formed by lines will not increase the complexity asymptotically, Chan and
Zheng [CZ22] recently observed that under certain conditions it is possible to construct
a randomized data structure that matches the 1D fractional cascading bound.

5.3 An Overview of Our Results

We start a systematic study of 2D fractional cascading in axis-aligned planar subdivi-
sions. In this variant, each node of the graph is associated with an axis-aligned planar
subdivision. We study the cases when the underlying catalog graph G is a path, a
(degree-bounded) tree, or a (degree-bounded) graph. And the query subgraph π can
be a subpath, subtree, or a subgraph of G accordingly. We present both upper and
lower bounds for each of the cases. Our results can be summarized in the following
table from [AC20]. These results were published in FOCS 2020 [AC20].

In the table, α(n) and αv(n) are defined as follows. We first define α2(n) = logn,
and then we define αi(n) = α∗i−1(n), the number of times we need to apply the αi−1(·)
function to n until we reach a fixed constant. α(n) corresponds to the value of i such
that αi(n) is at most a fixed constant.

5.4 Highlights of Ideas and Techniques

Upper Bounds

We achieve the upper bound by combining several known tools in an innovative way.
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Table 5.1: Our Results

Graph Query Space Query Time Tight?

Tree Path O(nαc(n))
O(min{|π|

√
logn,c

√
|π| logn} +

logn+ |π|) Up to αc(n) factor

Tree Path O(n)
O(min{|π|

√
logn,α(n)

√
|π| logn}

+ logn+ |π|) Up to α(n) factor

Tree Subtree O(n) O(logn+ |π|
√

logn) yes

Graph
Path or
Subgraph

O(n) O(logn+ |π|
√

logn) yes

The first tool we will use is a rectangle stabbing data structure by Afshani et
al. [AAL12]. Rectangle stabbing is the natural dual problem of orthogonal range
searching. In this problem, we are given a set R of axis-aligned rectangles in Rd , and
the goal is to preprocess R into a data structure so that for any query point q, we can
report the rectangles intersecting q efficiently.

Theorem 5.4.1 (Afshani et al. [AAL12]). There is a data structure of space O(nρ logd−2 n)
and query time O(logn(logn/ logρ)d−2+k) for any parameter ρ ≥ 2 that solves rect-
angle stabbing reporting in Rd .

We now present an optimal solution for 2D iterative search when G is a path and
π is a subpath of G using Theorem 5.4.1.

An Optimal Subpath Query Data Structure for Catalog Paths

To apply rectangle stabbing structures, we first need to ensure each cell in the subdi-
visions is a rectangle. This can be achieved by applying trapezoidal decomposition
(See, e.g., [dBCvKO08] for details). Simply put, this is done by shooting two vertical
rays from each vertex, one upwards and one downwards, until they hit the edges. By
the standard argument, this will only increase the complexity of the subdivision by
a constant factor. Second, we divide G into d|G|/ logne subpaths, each of length at
most logn, and for each subpath, we collect all the rectangles in the subdivisions of all
vertices in it and build a rectangle stabbing structure on top of it using Theorem 5.4.1.
Note that when d = 2, we have a rectangle stabbing reporting structure of size O(n)
and query time O(logn+ k). So the data structure we just built has total size O(n).
To answer a query (q,π), we query d|π|/ logne rectangle stabbing structures, each
taking O(logn) time. So the query time is O(logn+ |π|), which is clearly optimal.

This essentially gives the following result when the underlying graph is a path.

Theorem 5.4.2 ([AC20]). Given a path where each vertex is associated with an axis-
aligned planar subdivision of total complexity n, then we can build a data structure
of size O(n) so that for any query (q,π), where q is a query point and π is a query
subpath, we can report all cells containing q along π in time O(logn+ |π|).
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More General Catalog Graphs

This result we just obtained can be used as a subroutine to accelerate more general
problems. For example, to answer path queries on catalog trees, we can decompose
the tree into O(logn) paths using heavy path decomposition [ST83]. Then for each
path, we build the data structure in Theorem 5.4.2. This data structure is of size linear
and will give the optimal query time for query paths of length at least log2 n.

Now we handle the case when the length of a query path is smaller than log2 n. A
relatively simple case is when the length of the query path is smaller than logn. To
answer such queries efficiently, we build local data structures for each path in the tree
of length at most logr for a parameter r > 0 to fix later. Assume the degree of each
vertex in the tree is at most three, then each vertex in the tree is contained in at most

logr

∑
j=0

j

∑
i=0

3i ·3 j−i = Θ(rlog3 logr)

paths. If we build the data structure in Theorem 5.4.2 for each path, we will have a
data structure of size O(nrlog3 logr), which answers path queries in time O(|π| logr n).
To get linear space, r has to be a constant, but this gives us a rather bad O(|π| logn)
query time. To reduce the query time, we need one extra idea.

The main observation here is that we do not need to store all the rectangles in the
path query data structure. Suppose given a subdivision of complexity ni, we can find a
more coarse subdivision for it such that it contains O(ni/r2) cells (of rectangles) and
each cell contains O(r2) cells of the original subdivision, and then we can just store
the cells of this coarse subdivision in the path query data structure. This will reduce
the space to O(nrlog3 logr/r2) = O(n), and the cost is that we need to do one more
point location among the coarse cell to find the original cell. But since each coarse
cell contains at most r2 original cells, this takes only O(logr) time. We set r = 2

√
logn,

this means the total query time will be

O
(
|π|

logr
· (logn+ logr · logr)

)
= O

(
|π|
√

logn
)
.

Now the only remaining question is how to guarantee we can generate such a
coarse subdivision. Fortunately, the result of “intersection-sensitive cutting” guaran-
tees the existence of such coarse subdivisions.

Theorem 5.4.3 ( [dBS95]). Given a set H of n line segments in the plane with A
intersections, we can construct a collection of O(r+Ar2/n2) rectangles for 1≤ r ≤ n
such that each rectangle intersects O(n/r) line segments. The cutting and the conflict
lists can be found in time O(n logr+Ar/n) by a randomized algorithm.

We remark that this is the generalization of Theorem 2.1.4 we described in
Chapter 2. Also note that here in our application A = n, and so the number of
rectangles we get is O(r), and each rectangle has complexity O(n/r).

This gives us the following result.
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Theorem 5.4.4 ([AC20]). Given a tree where each vertex is associated with an axis-
aligned planar subdivision of total complexity n, then we can build a data structure of
size O(n) so that for any query (q,π), where q is a query point and π is a query path,
we can report all cells containing q along π in time O(logn+ |π|

√
logn).

This strategy is quite general, and it can be applied (with small changes) to obtain
better path or subgraph queries for catalog graphs. The main difference is that the
degree of each vertex in a general graph we consider is no longer three, but since
it is still a constant, it is still fine. We omit the details here and refer the readers to
Chapter 11 for details. We remark that this bound is tight when the length of the query
path is at most logn as we will show later. Next, we consider the case when the length
the query paths is between logn and log2 n.

Handling Query Paths of Length between logn and log2 n

We borrow the observation made by Afshani et al. [AAL12]. For simplicity, we
assume the catalog tree is a perfect binary tree of height between logn and log2 n. We
demonstrate the main idea by the following concrete example.

In Figure 5.4, we have a perfect binary tree (the left-hand side) of height three.
We assign z-intervals to nodes of this tree in different levels as follows. The root node
has z-interval [0,1]. The left child of the root node gets assigned [0,1/2], and the right
child [1/2,1]. We repeat this pattern for nodes in the third layer. Then we lift the
subdivisions attached to the nodes to 3D by assigning the corresponding z-intervals.
This gives the collection of rectangles on the right-hand side.
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Figure 5.4: Equivalence between 2D iterative search and rectangle stabbing.

The key observation here is that given a path query (q,π), we can turn q into a
3D point by attaching an appropriate z-coordinate. For example, in the path query



5.4. HIGHLIGHTS OF IDEAS AND TECHNIQUES 57

in Figure 5.4, we attach z-coordinate (1/4+1/2)/2 = 3/8 for the query path (in red
color). And only the z-intervals of the red 3D rectangles can possibly contain the
query point, which correspond to the subdivisions in the query path π .

In general, if we focus on root-to-leaf path queries. Let l1, · · · , lN be the leaves
of a perfect binary tree ordered from left to right. For leaf i, we assign z-interval
[(i−1)/N, i/N] to all the rectangles in the subdivision attached to it. For an internal
node, its z-interval is the union of the z-intervals of the leaves in its subtree. Then if
we collect all these 3D rectangles and build a 3D rectangle stabbing data structure,
for a root-to-leaf path query (q,π), it suffices to attach the z-coordinate of rectangles
in the leaf node in π to q and query the 3D rectangle stabbing structure. Similar to
what we did before, we create a coarse subdivision for each subdivision first. For each
subdivision of size ni, we create a coarse subdivision of size ni/r such that each cell
in it contains r original cells. Using the data structure in Theorem 5.4.1, we get a
data structure of space O(n

r ρ logn) and query time O(log2 n/ logρ + |π|). By setting

ρ = r
logn/r and r = 2logn/

√
|π|, we get linear space and O(|

√
π| logn) query time.

Note that here we are only considering root-to-leaf path queries. In general, we
would like to be able to handle query paths of arbitrary lengths. For simplicity, we
only consider paths starting from the root for now. First observe that if we know that
the query path is of length between h1 and h2 for two parameter 0 < h1 < h2, we
can build a data structure of space O(n log h2

h1
) and query time O(

√
|π| logn). This

is achieved by first building a root-to-leaf data structure covering paths of length h2.
This data structure is useful for paths of length between h2/2 and h2. Then we build a
root-to-leaf data structure covering paths of length h2/2. This data structure is useful
for paths of length between h2/4 and h2/2. We repeat this process O(log h2

h1
) times

so that we can answer any query along path π of length h1 < |π|< h2 efficiently in
time O(

√
|π| logn). The space usage is simply bounded by O(n log h2

h1
). If we set

h1 = logn and h2 = log2 n then we get a space bound of O(n log logn).
To reduce the space usage, observe that we can afford to build another layer of

more coarse subdivisions over the coarse subdivision for paths of length between h1
and log2 n/ log2 logn without exploding the space. Again we build an intersection-
sensitive cutting of ni/ logn cells for each subdivision of complexity ni, the space
usage reduces to

S(n) = O
(

n
logn

· log logn+n
)
= O(n),

and we need to do one more level of point location, which results in the (asymptoti-
cally) same query time

Q(n) = O
(√
|π| logn

)
+O(|π| log logn) = O

(√
|π| logn

)
,

where the last equality follows from |π| ≤ log2 n
log2 logn

.

For the remaining paths of length between log2 n/ log2 logn and h2, using the
data structure in the last paragraph results in a space usage of O(n log loglogn) while
the query time remains the same. Note that this is a better data structure for paths
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of length between h1 and h2. We then bootstrap and apply this idea multiple times
(Θ(log∗ n) times to be exact) to further reduce the space. However, as a side-effect,
we need to pay an extra Θ(log∗ n) factor. We remark that it is possible to bootstrap in
a more efficient way which reduces the extra iterated logarithm factor to an inverse
Ackermann factor. Also, by a finer analysis and some extra ideas, this structure also
works for paths that do not start from the root. We refer the readers to Chapter 11 for
further details. We conclude with the main upper bound theorem we obtained.

Theorem 5.4.5 ([AC20]). Given a tree of height between logn and log2 n where each
vertex is associated with an axis-aligned planar subdivision of total complexity n,
then we can build a data structure of size O(nαc(n)) for any constant c and the c-th
function of the inverse Ackermann hierarchy αc(n) so that for any query (q,π), where
q is a query point and π is a query path of length between logn and log2 n, we can
report all cells containing q along π in time O(logn+

√
|π| logn). Alternatively, we

can build a data structure of linear space and query time O(α(n)
√
|π| logn) where

α(n) is the inverse Ackermann function.

Lower Bounds

The high-level idea behind these lower bounds is the following. We first reduce a
special rectangle stabbing problem to the 2D iterative search problem to which we
want to show a lower bound. Then we show a lower bound for the rectangle stabbing
problem using a lower bound framework by Afshani [Afs13]. By the reduction, this
gives us a lower bound for the specific 2D iterative search problem. We first describe
the lower bound framework.

A Lower Bound Framework for Geometric Range Stabbing

Similar to the lower bound framework for range reporting, this lower bound framework
works in the pointer machine model of computation we described in Section 2. The
difference is that here the lower bound is for the range stabbing problem where the
input is a collection of geometric ranges and the query is a point. This is a natural
dual problem of the range reporting problem.

Theorem 5.4.6 (Afshani [Afs13]). Let S(n) be the space usage and Q(n)+ γk be the
query time of any data structure that solves a geometric range stabbing reporting
problem where n is the input size, k is the output size, and γ > 0. Let U be a unit cube.
Suppose there exists a collection of n such geometric ranges S1, · · · ,Sn, such that
the following two conditions are satisfied:

1. Each point q ∈U is contained in exactly t ranges and γt ≥ Q(n), for some
parameter t > 0 .

2. The intersection volume of any two distinct ranges is upper bounded by v, for a
parameter v > 0 .

Then S(n) = Ω

(
t

v2O(γ)

)
.



5.4. HIGHLIGHTS OF IDEAS AND TECHNIQUES 59

Main Ideas to Lower Bounds

We sketch the lower bound proof for path queries of a catalog tree when the length of
the query path is at most logn

2 , which contains most of the ideas we use for other cases.
As mentioned before, we need to reduce a (special) rectangle stabbing problem to

the 2D iterative search problem we are interested in. This reduction is the reverse of
the one we have seen when showing the upper bound of roo-to-leaf path queries on a
perfect binary tree. This reduction is demonstrated in Figure 5.5.

On the left-hand side of Figure 5.5, we have three collections of rectangles from
top to bottom. The first collection consists of rectangles with z-interval [0,1]. The
second collection consists of two types of rectangles where the first type consists
of rectangles with z-interval [0, 1

2 ] and the second type [1
2 ,1]. Similarly, the third

collection consists of four types of rectangles of different z-intervals.
We project these rectangles to the xy-plane and then attach these projections to a

binary tree (the right-hand side of Figure 5.5). The key observation here is that any
query point with its z-coordinate ranging between 0 and 1 will intersect exactly one
rectangle in each collection, and these rectangles form a path in the right-side tree.
This is equivalent to an iterative point location root-to-leaf path query in the binary
tree. This establishes a reduction from a (special) rectangle stabbing problem to a 2D
iterative search problem with axis-aligned subdivisions.
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Figure 5.5: Reducing a rectangle stabbing problem to a 2D iterative search problem.

In general, a rectangle stabbing problem instance consisting of h collections
of rectangles where collection i contains 2i−1 types of rectangles whose z-intervals
spanning disjoint z-intervals in [0,1] as described in the example enables us to establish
a reduction to 2D iterative search along a catalog binary tree of height h, and the
subdivisions are the projections of the rectangles in the xy-plane.
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The next step is to show a lower bound for this special rectangle stabbing prob-
lem. The high-level idea is to generate rectangles of h different shapes. The
side lengths of these shapes along the z-axis are decreasing in a geometric series
1,1/2,1/22, · · · ,1/2h−1. We also ensure that the volume of each rectangle is V = h/n.
We tile a unit cube using each shape. Note that we need 1/V copies of each shape to
tile a unit cube. In total, we get a collection of h ·1/V = n rectangles. This forms a
rectangle stabbing instance that reduces to iterative 2D point locations. Note that each
point in the unit cube is contained in exactly h rectangles which is the output size.
Suppose γh≥ Q(n) for some parameter γ , then the first condition in Theorem 5.4.6 is
satisfied.

To satisfy the second condition in Theorem 5.4.6, we generate rectangles of shape

1
2r j ×2r j ·2ir+ j ·V × 1

2ir+ j ,

where i= 0,1, · · · , h
r −1 and j = 0,1, · · · ,r−1. Note that this satisfies our requirement

for the side-lengths and each shape has volume V . With this construction, we can
show that there exist two rectangles whose intersection is upper bounded by v = V

2r by
case analysis. Since h≤ logn

2 , by setting r =
√

logn
4 , we make sure that our construction

is valid, i.e., the side-length of any rectangle is no more than 1.
Thus by the lower bound framework in Theorem 5.4.6, we get

S(n) = Ω

(
h

v2O(γ)

)
= Ω

(
h2r

V 2O(γ)

)
= Ω

(
n2
√

logn/4

2O(γ)

)
,

where the second equality follows from v = V
2r , and the last equality follows from V =

h/n and r =
√

logn
4 . This means that there is a γ = Ω(

√
logn), such that S(n) = Ω(n).

Alternatively, for any data structure with space usage S(n) = O(n), the first condition
of Theorem 5.4.6 must not hold, meaning, we must have Q(n) > γh =⇒ Q(n) =
Ω(h
√

logn). Thus for a root-to-leaf query with |π|= h, we have a query time lower
bound of Ω(|π|

√
logn) for any linear space data structure.

This gives us the following theorem.

Theorem 5.4.7 ([AC20]). Any linear space data structure that can solve 2D iterative
search where the underlying graph is a degree-bounded tree associated with orthogo-
nal planar subdivisions of complexity n and each query subgraph is a path π of length
at most logn

2 must have query time Ω(|π|
√

logn).

We mark that the requirement of h≤ logn
2 is important for the construction to work.

We need a different lower bound construction when the length of the query paths is
between logn and log2 n. We refer the readers to Chapter 11 for details.
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Chapter 6

An Optimal Lower Bound for
Simplex Range Reporting

Abstract

We give a simplified and improved lower bound for the simplex range report-
ing problem. We show that given a set P of n points in Rd , any data structure that
uses S(n) space to answer such queries must have Q(n) = Ω((n2/S(n))(d−1)/d +
k) query time, where k is the output size. For near-linear space data structures,
i.e., S(n) = O(n logO(1) n), this improves the previous lower bounds by Chazelle
and Rosenberg [CR96] and Afshani [Afs13] but perhaps more importantly, it is
the first ever tight lower bound for any variant of simplex range searching for
d ≥ 3 dimensions.

We obtain our lower bound by making a simple connection to well-studied
problems in incident geometry which allows us to use known constructions in
the area. We observe that a small modification of a simple already existing
construction can lead to our lower bound. We believe that our proof is accessible
to a much wider audience, at least compared to the previous intricate probabilistic
proofs based on measure arguments by Chazelle and Rosenberg [CR96] and
Afshani [Afs13].

The lack of tight or almost-tight (up to polylogarithmic factor) lower bounds
for near-linear space data structures is a major bottleneck in making progress
on problems such as proving lower bounds for multilevel data structures. It is
our hope that this new line of attack based on incidence geometry can lead to
further progress in this area.

6.1 Introduction

In the problem of simplex range reporting, we are given a set P of n points in Rd as
input and we want to preprocess P into a structure such that given any query simplex
γ , we can report P∩ γ efficiently. It is known that given O(n) space, the problem
can be solved using Q(n) = O(n1−1/d + k) query time where k is the output size, i.e.,
|P∩ γ| [Cha12]. However, current best lower bounds only match this upper bound
in the plane [CR96, Afs13] and the best known lower bound is off by a factor of
2O(
√

logn) in higher dimensions [Afs13]. Closing this gap has been a long-standing
open problem for this fundamental problem in computational geometry.

63
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In this paper, we prove a tight query time lower bound for simplex range report-
ing in the pointer machine model in the case when the space usage is linear. Our
proof dramatically simplifies the previously known (suboptimal) proofs in [CR96]
and [Afs13]. We obtain the result by observing a connection to incidence geometry
which allows us to use simple deterministic “grid-based” constructions and avoid
the intricate probabilistic construction and measure analysis used in the previous
proofs [Afs13, CR96].

Related Work.

Simplex range reporting is a classical and fundamental problem in computational
geometry and can be viewed as the most general case of range searching as far as
linear constraints are concerned. Indeed, by using multilevel data structures [Aga17]
and polyhedron triangulation, any range intersection reporting problem with constant
complexity linear inputs and queries reduces to simplex range reporting. In general,
there are many flavors of the problem. Here, we focus on the reporting variant where
given a query simplex, the goal is to output the list of points inside the query, a.k.a.
“simplex range reporting”. However, counting variants are also well-studied where the
points have weights from a semi-group and given the query, the goal is to output the
sum of the weights of the points inside the query, a.k.a. “simplex range searching”.

We now quickly review the history of the problem. All the upcoming results apply
to both variants of the problem. When discussing a data structure, we use S(n) to
refer to the space complexity and Q(n) to refer to the query time (ignoring the time
required to produce the output). Thus, with our notation, a data structure for simplex
range reporting uses S(n) space and it has the query time of Q(n)+O(k).

The first nontrivial result for the problem dates back to the early 1980s [Wil82].
After many early attempts [EW86, Yao83, YDEP89, Avi84, Col85, YY85, HW87,
Wel88, CW89], significant progress was made after the discovery of fundamental
tools such as the partition theorem [Mat91, Mat93, Cha12] and cutting lemma [Mat91,
Cha93, dBS95]. The first near-optimal solution of O(n1+ε) space and O(n1−1/d+ε +k)
query time1 was found by Chazelle, Sharir, and Welzl [CSW92] and it was simplified
and slightly improved by Matoušek [Mat93]. Finally, in 2012, Chan [Cha12] removed
the ε factors in the space and query time [CSW92].

It is clear from the above bounds that simplex range searching is a difficult problem
since using linear space, we can only improve the trivial query bound by an n1/d

factor. In 1989, Chazelle formally proved the difficulty of the problem by showing
a query time lower bound of Q(n) = Ω(n1−1/d/ logn) for the general simplex range
searching problem given linear space in the semigroup arithmetic model [Cha89].
Unlike the upper bounds, this lower bound does not apply to the simplex range
reporting problem. Seven years later, Chazelle and Rosenberg [CR96] overcame this
issue, and they showed that if the query time is O(nδ +k), then the data structure must
use Ω(nd−dδ−ε) space, where k is the output size. Note that the conjectured space-

1In this paper, ε is an arbitrarily small positive constant.
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time trade-off for this problem is S(n) = O((n/Q(n))d) and thus this lower bound
is a factor nε factor away from this bound. It was observed by Afshani [Afs13] that
another lower bound of Chazelle and Liu [CL04] for the two-dimensional fractional
cascading problem in fact achieves the aforementioned conjecture space-time trade-
off for simplex range reporting in the plane (d = 2). However, for d ≥ 3, the only
improvement is a lower bound by Afshani [Afs13] who showed a tighter query
time lower bound of Ω(n1−1/d/2O(

√
logn)) [Afs13] which narrows the gap from a

polynomial (nε ) factor to a sub-polynomial (2O(
√

logn)) one. Completely eliminating
this gap seems like a challenging problem since the techniques used by the previous
lower bounds inherently tie to a long-standing open problem known as the Heilbronn’s
triangle problem [Rot76].

The lack of tight lower bounds for the simplex range reporting problem is also a
bottleneck in trying to obtain lower bounds for some more complicated problems, for
instance, for multilevel data structures (i.e., data structures that involve multiple levels
of simplex range searching data structures).

Our Contribution.

We simplify and improve the lower bound for simplex range reporting by Chazelle
and Rosenberg [CR96] and Afshani [Afs13]. Specifically, we show a lower bound
of Q(n) = Ω((n2/S(n))(d−1)/d + k) for the problem. When S(n) = O(n), we get a
clean lower bound of Q(n) = Ω(n(d−1)/d + k), which is the first tight lower bound
for simplex range reporting for d ≥ 3. By a known technique [Afs13], our result also
improves the lower bound for halfspace range reporting in 9 and higher dimensions.
Along the way, we made the observation that the point-hyerplane incidence problem
is highly related to proving lower bounds for simplex range reporting.

6.2 Preliminaries of the Pointer Machine Lower Bound
Framework

We will prove the lower bound for simplex range reporting in (an augmented version
of) the pointer machine model. In this model, the data structure is modeled as a
directed graph M. In each cell of M, we store an element of the input set S as well as
two pointers to other cells. To find the answer to a query q, i.e., a subset Sq ⊂S , the
algorithm starts at a special “root” cell and explores a connected subgraph such that
all elements in Sq can be found in some cell in the subgraph. During the process, we
only charge for pointer navigations. Let Mq be the smallest connected subgraph in
which every element of Sq is stored at least once. Clearly, |M| is a lower bound for
the space usage and |Mq| is a lower bound for the query time. Note that this grants
the algorithm unlimited computational power as well as full information about the
structure of M.

We use the following pointer machine lower bound framework tailored for ge-
ometric range reporting problems by Chazlle [Cha90a] and Chazelle and Rosen-
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berg [CR96].

Theorem 6.2.1 (Chazlle [Cha90a] and Chazelle and Rosenberg [CR96]). Suppose
there is a data structure of space S(n) which can answer range reporting queries in
time Q(n)+O(k) where n and k are the input and output sizes respectively. Assume
we can show the existence of a set S of n points such that there exist m subsets
q1,q2, · · · ,qm ⊂S , where qi, i = 1,2, · · · ,m, is the output of some query and they
satisfy the following two conditions: (i) for all i = 1,2, · · · ,m, |qi| ≥Q(n); and (ii) the
size of the intersection of every β ≥ 2 distinct subsets qi1 ,qi2 , · · · ,qiβ is upper bounded

by some value α , i.e., |qi1 ∩qi2 ∩·· ·∩qiβ | ≤ α . Then S(n) = Ω(∑
m
i=1 |qi|

β2O(α) ) = Ω( mQ(n)
β2O(α) ).

6.3 A Lower Bound for Simplex Range Reporting

Simplex Range Reporting Lower Bounds Through the Incidence
Geometry Lens.

Now we proceed to prove the lower bound. Our first observation is that to get a
lower bound for simplex range reporting, we only need to study a specific incidence
geometry problem. This is due to the fact that hyperplanes are degenerated simplicies,
and so to show a lower bound for simplex range reporting using Theorem 6.2.1, it
suffices to give a point-hyperplane configuration satisfying the two conditions in
Theorem 6.2.1. Stated in the language of incidence geometry, the first condition
requires each hyperplane to be incident to enough (at least Q(n)) points. The second
condition requires us to bound the size of Kα,β in the incidence graph. To put it more
formally, Theorem 6.2.1 implies the following lemma:

Lemma 6.3.1. If there exist a set P of n > 0 points and a set H of m > 0 hyperplanes
each incident to at least t ≥ Q(n) points (called t-rich hyperplanes) in Rd with no
complete bipartite subgraph Kα,β in the incidence graph P×H, then the simplex

range reporting problem has a lower bound of S(n) = Ω( mt
β2O(α) ) = Ω( mQ(n)

β2O(α) ).

It turns out that the relationship between the number of point-hyperplane in-
cidences and Kα,β is a well-studied problem in the incidence geometry commu-
nity [BK03, AS07, She16, BCV19]. However, this is not directly relevant to us as we
require each hyperplane to be “rich”. The closest result of the problem we can find is
the very recent work by Patáková and Sharir [PS22]. They showed the existence of
n points and Θ(nd/td+1) t-rich hyperplanes with no Kα,β in the incidence graph for
β = 2 and α = O(t(d−2)/(d−1)). They also showed a matching lower bound for the
size of α given β = 2.

Unfortunately, their result does not give us a useful lower bound.2 The main
reason for this is that the lower bound in Lemma 6.3.1 has a 2O(α) factor in the

2In fact, by plugging the parameters in [PS22] in Lemma 6.3.1, we can only get a lower bound of
Q(n) = Ω((log nd

S(n) )
d−1
d−2 ).
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denominator and so to show a nontrivial lower bound, α has to be sub-logarithmic. In
our proof, we will still use the construction in [PS22], but we prove an upper bound
for β by fixing α = 2. Note that this is the opposite to the case considered in [PS22].

A Simple Point-Hyperplane Incidence Geometry Lemma.

Here, we prove the following lemma:

Lemma 6.3.2. There exists a configuration of n points and m = Θ(nd/td+1) t-rich
hyperplanes with no K2,β in the incidence graph where β = Θ(nd−2/td(d−2)/(d−1))

for any positive integer t ≤ cn1−1/d for some small enough positive constant c.

We consider the same construction in [PS22]. For the completeness and readability,
we present the construction and reprove some basic facts we will use. W.l.o.g., we
assume that t1/(d−1) and n/t are integers; otherwise we can increase t and decrease
n slightly to ensure the assumption. (It can be easily shown that t,n will remain
asymptotically the same after the process.) Let G be an integer grid in Rd of size
t1/(d−1)× t1/(d−1)×·· ·× t1/(d−1)×n/t. Clearly, G has n grid points. We construct
hyperplanes of form

Xd = b+
d−1

∑
i=1

aiXi,

where ai ∈ {1, · · · ,A} and b ∈ {1, · · · ,B} for A = b n
dtd/(d−1) c and B = b n

dt c. Since
t ≤ cn1−1/d for a small enough positive constant c, A,B≥ 1 and so our construction
is valid. We create all the possible distinct hyperplanes by picking ai’s and b as above.
Let H be the set of all the hyperplanes we generated this way. As we have A choices
for each ai and B choices for b, the total number of hyperplanes we generated is
m = |H |= Ad−1B = Θ(nd/td+1).

Now consider a hyperplane h j ∈H and its intersection with G. Observe that all
the coefficients of h j are positive integers. This means that plugging in an integer
value xi for Xi for i = 1, · · · ,d−1 will yield the integer value xd = b+∑

d−1
i=1 aixi thus a

point (x1, · · · ,xd) with integer coordinates that lies on h j. The value xd is maximized
when b is set to B and all ai’s are set to A. Furthermore, the largest value of the first
d−1 dimensions of G is t1/(d−1). Since

B+(d−1)At1/(d−1) ≤ n/t,

each hyperplane in H intersects exactly (t1/(d−1))d−1 = t grid points.
Finally, we bound β given α = 2. We use the following simple lemma. This is

the only new property we show in this construction and it has a very simple proof.

Lemma 6.3.3. Any subset H ′ ⊂H of size |H ′| ≥ Ad−2 +1 contains at most one
point in common.

Proof. We do proof by contradiction. Assume hyperplanes in H ′ have two distinct
points g1 and g2 in common, then there must be at least one coordinate on which they
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differ. Note that the d-th coordinate cannot be the only difference between g1 and g2
because hyperplanes in H are not parallel to the d-th axis. W.l.o.g., we can assume
that g1 and g2 differ in their (d−1)-th coordinate. By the pigeonhole principle, there
will be two hyperplanes h1,h2 ∈H ′ that have identical first d−2 coefficients. Assume
h1 is defined by coefficients a1, · · · ,ad−2,a1,d−1,b1 and h2 is defined by coefficients
a1, · · · ,ad−2,a2,d−1,b2. We can view h1 and h2 as linear functions, f1 and f2, from
Rd−1 to R. Let X (d−1) = (X1, · · · ,Xd−1). We thus write

f1(X (d−1)) = b1 +a1,d−1Xd−1 +
d−2

∑
i=1

aiXi

and

f2(X (d−1)) = b2 +a2,d−1Xd−1 +
d−2

∑
i=1

aiXi.

Consider the function

D(X (d−1)) = f1(X (d−1))− f2(X (d−1)) = b1−b2 +(a1,d−1−a2,d−1)Xd−1.

Let g′1 and g′2 be the projection of g1 and g2 onto the first d−1 dimensions. Since h1
and h2 pass through points g1 and g2 we have

D(g′1) = D(g′2) = 0.

However, the function D(·) is essentially a univariate linear function (i.e., a line in
the coordinate system defined by the (d−1)-th and d-th axes). Furthermore, since
g1 and g2 have distinct (d−1)-th coordinates, it follows that this function is zero on
two distinct points. This implies that the function D(·) must be identical to the zero
function which implies h1 = h2, a contradiction. Thus, the lemma follows.

According to Lemma 6.3.3, there is no K2,β in the incidence graph of our con-
struction for

β = Ad−2 +1 = Θ(nd−2/td(d−2)/(d−1)).

This completes the proof of Lemma 6.3.2.

Combining Them Together.

Now we are ready to show a lower bound for simplex range reporting. Suppose
dQ(n)e< cn1−1/d , where c is the constant in Lemma 6.3.2, then we can set t = dQ(n)e
and Lemma 6.3.2 applies. By Lemma 6.3.1, we obtain a lower bound of

S(n)=Ω

 Θ

(
nd

Q(n)d+1

)
·Q(n)

Θ

(
nd−2

Q(n)d(d−2)/(d−1)

)
·2O(2)

=Ω

(
n2

Q(n)
d

d−1

)
=⇒ Q(n)=Ω

((
n2

S(n)

) d−1
d
)
.

On the other hand, if dQ(n)e ≥ cn1−1/d , then there is nothing to prove since this is
already a lower bound. To sum up, we have proved the following theorem:

Theorem 6.3.1. The simplex range reporting problem has a lower bound of Q(n) =
Ω((n2/S(n))(d−1)/d).
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6.4 Open Problems

There are three main open problems. The first and the major open problem is to show
a tight lower bound for super-linear space data structures for simplex range reporting.
Our current construction is only optimal when the space usage is restricted to linear.
Although it is one of the most important cases for the problem, it would be desirable
to obtain a tight space-time tradeoff. The main challenge here is to generate more
t-rich hyperplanes without increasing β too much while restricting α to be small, say
a constant.

Second, it is open if we can achieve tight lower bounds for other models of
computation. For example, can we get a tight query time lower bound for the general
simplex range searching problem in the semigroup arithmetic model given linear
space? In this model, it is also possible to formulate a lower bound framework based
on the point-hyperplane incidence property. But in this case, we need to bound α

such that its value decreases proportional to β . See [Cha90a, Cha00] for the classical
lower bound framework in this model. Unfortunately, our construction does not have
this property.

Finally, it is interesting to see if such improvement can be made in related problems
like multilevel data structures as well as the dual stabbing problems.





Chapter 7

Lower Bounds for Semialgebraic
Range Searching and Stabbing
Problems

Abstract

In the semialgebraic range searching problem, we are given a set of n
points in Rd and we want to preprocess the points such that for any query range
belonging to a family of constant complexity semialgebraic sets (Tarski cells),
all the points intersecting the range can be reported or counted efficiently. When
the ranges are composed of simplices, the problem is well-understood: it can be
solved using S(n) space and with Q(n) query time with S(n)Q(n)d = Õ(nd)
where the Õ(·) notation hides polylogarithmic factors and this trade-off is
tight (up to no(1) factors). In particular, there exist “low space” structures
that use O(n) space with O(n1−1/d) query time [Mat93, Cha12] and “fast query”
structures that use O(nd) space with O(logn) query time [CZ23]. However,
for general semialgebraic ranges, only “low space” solutions are known, but
the best solutions [AMS13] match the same trade-off curve as simplex queries,
with O(n) space and Õ(n1−1/d) query time. It has been conjectured that the
same could be done for the “fast query” case but this open problem has stayed
unresolved.

Here, we disprove this conjecture. We give the first nontrivial lower bounds
for semialgebraic range searching and other related problems. More precisely,
we show that any data structure for reporting the points between two concentric
circles, a problem that we call 2D annulus reporting, with Q(n) query time

must use S(n) =
o
Ω(n3/Q(n)5) space where the

o
Ω(·) notation hides no(1) factors,

meaning, for Q(n) = logO(1) n,
o
Ω(n3) space must be used. In addition, we study

the problem of reporting the subset of input points in a polynomial slab defined
by {(x,y) ∈ R2 : P(x)≤ y≤ P(x)+w}, where P(x) = ∑

∆
i=0 aixi is a univariate

polynomial of degree ∆ and a0, · · · ,a∆,w are given at the query time, a problem
that we call polynomial slab reporting. For this, we show a space lower bound

of
o
Ω(n∆+1/Q(n)(∆+3)∆/2), which implies that for Q(n) = logO(1) n, we must use

71
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o
Ω(n∆+1) space. We also consider the dual semialgebraic stabbing problems of
semialgebraic range searching, and present lower bounds for them. In particular,
we show that in linear space, any data structure that solves 2D annulus stabbing
problems must use Ω(n2/3) query time. Note that this almost matches the upper
bound obtained by lifting 2D annuli to 3D. Like semialgebraic range searching,
we also present lower bounds for general polynomial slab stabbing problems.
Again, our lower bounds are almost tight for linear size data structures in this
case.

7.1 Introduction

We address one of the biggest open problems of the recent years in the range searching
area. Our main results are lower bounds in the pointer machine model of computation
that essentially show that the so-called “fast query” version of the semialgebraic range
reporting problem is “impervious” to the algebraic techniques. Our main result reveals

that to obtain polylogarithmic query time, the data structure requires
o

Ω(n∆+1) space1,
where the constant depends on ∆, n is the input size, and ∆+ 1 is the number of
parameters of each “polynomial inequality” (these will be defined more clearly later).

Thus, we refute a relatively popular recent conjecture that data structures with
o

O(nd)
space and polylogarithmic query time could exist, where d is the dimension of the
input points. Surprisingly, the proofs behind these lower bounds are simple, and these
lower bounds could have been discovered years ago as the tools we use already existed
decades ago.

Range searching is a broad area of research in which we are given a set P of n
points in Rd and the goal is to preprocess P such that given a query range R, we can
count or report the subset of P that lies in R. Often R is restricted to a fixed family
of ranges, e.g., in simplex range counting problem, R is a simplex in Rd and the goal
is to report |P∩R|, or in halfspace range reporting problem, R is a halfspace and the
goal is to report P∩R. Range searching problems have been studied extensively and
they have numerous variants. For an overview of this topic, we refer the readers to an
excellent survey by Agarwal [GOT18].

Another highly related problem which can be viewed as the “dual” of this problem
is range stabbing: we are given a set R of ranges as the input and the goal is to
preprocess R such that given a query point p, we can count or report the ranges of R
containing p efficiently. Here, we focus on the reporting version of range stabbing
problems.

Range Searching: A Very Brief Survey

Simplex Range Searching

Simplices is one of the most fundamental families of queries. In fact, if the query
is decomposable (such as range counting or range reporting queries), then simplices

1
o

Ω(·),
o

O(·),
o

Θ(·) notations hide no(1) factors and Ω̃(·), Õ(·), Θ̃(·) notations hide logO(1) n factors.
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can be used as “building blocks” to answer more complicated queries: for a query
R which is a polyhedral region of O(1) complexity, we can decompose it into O(1)
disjoint simplices (with a constant that depends on d) and thus answering R can be
reduced to answering O(1) simplicial queries.

Simplicial queries were hotly investigated in 1980s and this led to development of
two important tools in computational geometry: cuttings and the partition theorem
and both of them have found applications in areas not related to range searching.

Cuttings and Fast Data Structures “Fast query” data structures can answer sim-
plex range counting or reporting queries in polylogarithmic query time but by using
O(nd) space and they can be built using cuttings. In a nut-shell, given a set H of n
hyperplanes in Rd , a 1

r -cutting is a decomposition of Rd into O(rd) simplices such
that each simplex is intersected by O(n/r) hyperplanes of H. These were developed
by some of the pioneers in the range searching area, such as Clarkson [Cla87], Haus-
sler and Welzl [HW87], Chazelle and Friedman [CF90], Matoušek [Mat91], finally
culminating in a result of Chazelle [Cha18] who optimized various aspects of cuttings.
Using cuttings, one can answer simplex range searching queries with O(nd) space
and O((logn)d+1) query time [Mat93]. Recently, the query time has been improved
to O(logn) by Chan and Zheng [CZ23]. An interested reader can refer to a survey on
cuttings by Chazelle [Cha18].

The Partition Theorem and Space-efficient Data Structures At the opposite
end of the spectrum, simplex range searching queries can be answered using lin-
ear space but with a higher query time of O(n1−1/d), using partition trees and the
related techniques. This branch of techniques has a very interesting history. In 1982,
Willard [Wil82] cleverly used the ham sandwich theorem to obtain a linear-sized data
structure with a query time of O(nγ) for some positive constant γ < 1 for simplicial
queries in 2D. After a number of attempts that either improved the exponent or gener-
alized the technique to higher dimensions, Welzl [Wel88] in 1988 provided the first
optimal exponent for the partition trees, then Chazelle et al. [CW89] provided the first
near-linear size data structure with a query time of roughly O(n1−1/d). Finally, a data
structure with O(n) space and O(n1−1/d) query time was given by Matoušek [Mat93].
This was also simplified recently by Chan [Cha12].

Space/Query Time Trade-off It is possible to combine fast query data structures
and linear-sized data structures to solve simplex queries with S(n) space and Q(n)
query time such that S(n)Q(n)d = Õ(nd). This trade-off between space and query time
is optimal, at least in the pointer machine model and in the semigroup model [Afs13,
AC23c, CR96, Cha89] (up to no(1) or logO(1) n factors depending on the model of
computation).

Multi-level Structures, Stabbing and Other Related Queries By using multi-
level data structures, one can solve more complicated problems where both the input
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and the query shapes can be simplicial objects of constant complexity. The best
multi-level data structures use one extra logn factor in space and query time per
level [Cha12] and there exist lower bounds that show space/query time trade-off
should blow up by at least logn factor per level [AD18]. This means that problems
such as simplex stabbing (where the input is a set of simplices and we want to output
the simplices containing a given query point) or simplex-simplex containment problem
(where the input is a set of simplices, and we want to output simplices fully contained
in a query simplex) all have the same trade-off curve of S(n)Q(n)d = Õ(nd) between
space S(n) and query time Q(n).

Thus, one can see that the simplex range searching as well as its generalization
to problems where both the input and the query ranges are “flat” objects is very
well understood. However, there are many natural query ranges that cannot be
represented using simplices, e.g., when query ranges are spheres in Rd . This takes us
to semialgebraic range searching.

Semialgebraic Range Searching

A semialgebraic set is defined as a subset of Rd that can be described as the union or
intersection of O(1) ranges, where each range is defined by a d-variate polynomial
inequality of degree at most ∆, defined by at most B =

(d+∆

d

)
values given at the

query time; we call B the parametric dimension. For instance, with B = 3, ∆ = 2, and
given three values a,b and c at the query time, a circular query can be represented
as
{
(X ,Y ) ∈ R2|(X−a)2 +(Y −b)2 ≤ c2

}
. In semialgebraic range searching, the

queries are semialgebraic sets.
Before the recent “polynomial method revolution”, the tools available to deal with

semialgebraic range searching were limited, at least compared to simplex queries.
One way to deal with semialgebraic range searching is through linearization [YY85].
This idea maps the input points to RL, for some potentially large parameter L, such
that each polynomial inequality can be represented as a halfspace. Consequently,
semialgebraic range searching can be solved with the space/query time trade-off
of S(n)Q(n)L = Õ(nL). The exponent of Q(n) in the trade-off can be improved
(increased) a bit by exploiting that in RL, the input set actually lies in a d-dimensional
surface [AM94].

In 2009, Zeev Dvir [Dvi09] proved the discrete Kakeya problem with a very
elegant and simple proof, using a polynomial method. Within a few years, this led to a
revolution in discrete and computational geometry, one that was ushered in by Katz and
Guth’s almost tight bound on Erdős distinct distances problem [GK15]. For a while,
the polynomial method did not have much algorithmic consequences but this changed
with the work of Agarwal, Matoušek, and Sharir [AMS13] where they showed that
at least as long as linear-space data structures are considered, semialgebraic range
queries can essentially be solved within the same time as simplex queries (ignoring
some lower order terms). Later developments (and simplifications) of their approach
by Matoušek and Patáková [MP15] lead to the currently best results: a data structure
with linear size and with a query time of Õ(n1−1/d).
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Fast Queries for Semialgebraic Range Searching: an Open Problem Nonethe-
less, despite the breakthrough results brought on by the algebraic techniques, the
fast query case still remained unsolved, even in the plane: e.g., the best known data
structures for answering circular queries with polylogarithmic query time still use
Õ(n3) space, by using linearization to R3. The fast query case of semialgebraic range
searching has been explicitly mentioned as a major open problem in multiple recent
publications2. In light of the breakthrough result of Agarwal et al. [AMS13], it is
quite reasonable to conjecture that semialgebraic range searching should have the
same trade-off curve of S(n)Q(n)d = Õ(nd).

Nonetheless, the algebraic techniques have failed to make sufficient advances
to settle this open problem. The best known “fast query” result by Agarwal et
al. [AAEZ21] uses O(nB+ε) space. In general, B can be much larger than d and
thus it leaves a big gap between the currently best upper bound and the conjectured
one. Given that it took a revolution caused by the polynomial method to advance our
knowledge of the “low space” case of semialgebraic range searching, it is not too
outrageous to imagine that perhaps equally revolutionary techniques are needed to
settle the “fast query” case of semialgebraic range searching.

Semialgebraic Range Stabbing

Another important problem is semialgebraic stabbing, where the input is a set of
n semialgebraic sets, i.e., “ranges”, and queries are points. The goal is to output
the input ranges that contain a query point. Here, “fast query” data structures are
possible, for example by observing that an arrangement of n disks in the plane has
O(n2) complexity, counting or reporting the disks stabbed by a query point can be
done with O(n2) space and O(logn) query time (ignoring the output size) using slab
and persistence3 [dBCvKO08]. However, this simple idea does not work for general
semialgebraic sets in higher dimensions. The main bottleneck before the recent
“polynomial method revolution” is that for dimensions higher than 4 no technique was
able to decompose the arrangement formed by a collection of algebraic surfaces into
an arrangement with the property that each cell is a constant-complexity semialgebraic
set and the complexity of the decomposed arrangement is close to that of the original
arrangement. This was also one of the roadblocks for the “fast query” version of
semialgebraic range searching. Recently, Guth [Gut15] showed the existence of
polynomials whose connected components give such decompositions for arbitrary
dimensions. An efficient algorithm for computing such partitioning polynomials
was given very recently by Agarwal et al. [AAEZ21], and as one of the results, they

2To quote Agarwal et al. [AMS13],“[a] very interesting and challenging problem is, in our opinion,
the fast-query case of range searching with constant-complexity semialgebraic sets, where the goal is
to answer a query in O(logn) time using roughly O(nd) space.” The same conjecture is repeated in a
different survey [Aga17] and it is also emphasized that the question is even open for disks in the plane,
“... whether a disk range-counting query in R2 be answered in O(logn) time using O(n2) space?”.

3The arrangement of n circles has complexity O(n2). Disk stabbing queries are reduced to point
location queries, which can be answered by building vertical slabs and persistent structures along the
x-axis.
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showed it is possible to build “fast query” data structures for semialgebraic stabbing
problems using O(nd+ε) space for n semialgebraic sets in Rd . However, comparing
to range searching problems, in this stabbing scenario, it seems difficult to make
advancements in the “low space” side of things; e.g., for the planar disk stabbing
problem, the only known data structure with O(n) space is one that uses linearization
to 3D that results in Õ(n2/3) query time.

Our Results

Our main results are lower bounds in the pointer machine model of computation for
four central problems defined below. In the 2D polynomial slab reporting problem,
given a set P of n points in R2, the task is to preprocess P such that given a query
2D polynomial slab R, the points contained in the polynomial slab, i.e., R ∩P , can
be reported efficiently. Informally, a 2D polynomial slab is the set of points (x,y) such
that P(x)≤ y≤ P(x)+w, for some univariate polynomial P(x) of degree ∆ and value
w given at the query time. In the 2D polynomial slab stabbing problem, the input is a
set of n polynomial slabs and the query is a point q and the goal is to report all the
slabs that contain q. Similarly, in the 2D annulus reporting problem, the input is a set
P of n points in R2 and the query is an “annulus”, the region between two concentric
circles. Finally, in 2D annulus stabbing problem, the input is a set of n annuli, the
query is a point q and the goal is to report all the annuli that contain q.

For polynomial slab queries, we show that if a data structure answers queries
in Q(n) + O(k) time, where k is the output size, using S(n) space, then S(n) =
o

Ω(n∆+1/Q(n)(∆+3)∆/2); the hidden constants depend on ∆. So for “fast queries”, i.e.,

Q(n) = Õ(1),
o

Ω(n∆+1) space must be used. This is almost tight as the exponent
matches the upper bounds obtained by linearization as well as the recent upper bound
of Agarwal et al. [AAEZ21]! Also, we prove that any structure that answers poly-
nomial slab stabbing queries in Q(n)+O(k) time must use Ω(n1+2/(∆+1)/Q(n)2/∆)
space. In the “low space” setting, when S(n) = O(n), this gives Q(n) = Ω(n1−1/(∆+1)).
This is once again almost tight, as it almost matches the upper bounds obtained by
linearization for when S(n) = Õ(n).

For the annulus reporting problem, first note that annuli are geometric objects
of a different type comparing to polynomial slabs in the sense that the degrees of x
and y can both be more than 1, and so the intersection of two annuli can be more
complicated than that of two polynomial slabs. As a result, the techniques we used
for polynomial slabs does not apply. However, by studying the intersection of annuli

of certain special properties, we manage to get the same S(n) =
o

Ω(n3/Q(n)5) lower
bound as polynomial slab reporting when ∆ = 2. For the annulus stabbing problem,
we show S(n) = Ω(n3/2/Q(n)3/4), e.g., in “low space” setting when S(n) = O(n),
we must have Q(n) = Ω(n2/3); compare this with simplex stabbing queries that can
be solved with O(n) space and Õ(

√
n) query time. As before, this is almost tight,

as it almost matches the upper bounds obtained by linearization to 3D for when
S(n) = Õ(n).
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Somewhat disappointedly, no revolutionary new technique is required to obtain
these results. We use novel ideas in the construction of “hard input instances” but
otherwise we use the two widely used pointer machine lower bound frameworks
by Chazelle [Cha90a], Chazelle and Rosenberg [CR96], and Afshani [Afs13]. Our
results are summarized in Table 1.

Table 7.1: Our Results, ∗ indicates this paper. In the table,
o

Ω(·) and
o

O(·) notations
hide no(1) factors, and Õ(·) notation hides logO(1) n factors.

Problem Lower Bound Upper Bound

2D Polynomial Slab Reporting S(n) =
o
Ω

(
n∆+1

Q(n)(∆+3)∆/2

)∗
S(n) = Õ

(
n∆+1

Q(n)2∆

)
[AM94, AMS13, Mat93, AAEZ21]

When Q(n) =
o
O(1) S(n) =

o
Ω
(
n∆+1)∗ S(n) =

o
O
(
n∆+1) [AM94, AMS13, Mat93, AAEZ21]

2D Annulus Reporting S(n) =
o
Ω

(
n3

Q(n)5

)∗
S(n) = Õ

(
n3

Q(n)4

)
[AM94, AMS13, Mat93, AAEZ21]

When Q(n) =
o
O(1) S(n) =

o
Ω
(
n3)∗ S(n) =

o
O
(
n3) [AM94, AMS13, Mat93, AAEZ21]

2D Polynomial Slab Stabbing S(n) = Ω

(
n1+2/(∆+1)

Q(n)2/∆

)∗
S(n) = Õ

(
n2

Q(n)(∆+1)/∆

)
[AAEZ21]

When S(n) =
o
O(n) Q(n) =

o
Ω

(
n1−1/(∆+1)

)∗
Q(n) =

o
O
(

n1−1/(∆+1)
)

[AAEZ21]

2D Annulus Stabbing S(n) = Ω

(
n3/2

Q(n)3/4

)∗
S(n) = Õ

(
n2

Q(n)3/2

)
[AAEZ21]

When S(n) =
o
O(n) Q(n) =

o
Ω

(
n2/3

)∗
Q(n) =

o
O
(

n2/3
)

[AAEZ21]

7.2 Preliminaries

We first review the related geometric reporting data structure lower bound frameworks.
The model of computation we consider is the pointer machine model. There are
many variants of the pointer machine model, but generally speaking in this model
the memory is represented by a directed graph M where each vertex represents a
memory cell. A memory cell can either store an input element or an integer as well
as a constant number of pointers to other cells. A memory cell can only be reached
via pointer navigations from other memory cells (starting from a fixed “root” cell)
and thus random accesses are disallowed in this model. Different variants of the
model differ on what type of operations they allow the machine to perform as well as
other aspects of the computation. Note that all the upper bounds in Table 1 can be
implemented in a pointer machine model.

The variant we use is proposed by Chazelle [Cha90a] and it is defined as follows.
Let S be the input set of elements. Assume a query q requires a subset Sq ⊂S
to be output. Given the query q, the number of pointer navigations to answer the
query forms a lower bound for the query time and thus we only charge the pointer
navigations to the query time. Let Mq be the smallest connected subgraph such that
every element of Sq is stored in at least one element of Mq. Clearly, |M| is a lower
bound for space and |Mq| is a lower bound for query time. Note that this (implicitly)
grants the algorithm unlimited computational power as well as full information about
the structure of M (since we do not charge those to the query time). Also note that
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we can assume that each node has two pointers to other nodes as it will increase the
query time by only a constant factor.

In our variant, there are two main lower bound frameworks, one for range report-
ing [Cha90a, CR96], and the other for its dual, range stabbing [Afs13]. We describe
them in detail here.

A Lower Bound Framework for Range Reporting Problems

The following result by Chazelle [Cha90a] and later Chazelle and Rosenberg [CR96]
provides a general lower bound framework for range reporting problems. In the
problem, we are given a set S of n points in Rd and the queries are from a set R of
ranges. The task is to build a data structure such that given any query range R ∈R,
we can report the points intersecting the range, i.e., R ∩S , efficiently.

Theorem 7.2.1 (Chazelle [Cha90a] and Chazelle and Rosenberg [CR96]). Suppose
there is a data structure for range reporting problems that uses at most S(n) space
and can answer any query in Q(n)+O(k) time where n is the input size and k is the
output size. Assume we can show that there exists an input set S of n points satisfying
the following: There exist m subsets q1,q2, · · · ,qm ⊂ S , where qi, i = 1, · · · ,m, is
the output of some query and they satisfy the following two conditions: (i) for all
i = 1, · · · ,m, |qi| ≥ Q(n); and (ii) the size of the intersection of every α ≥ 2 distinct
subsets qi1 ,qi2 , · · · ,qiα is bounded by some value c, i.e., |qi1 ∩qi2 ∩·· ·∩qiα | ≤ c. Then
S(n) = Ω(∑

m
i=1 |qi|

α2O(c) ) = Ω(mQ(n)
α2O(c) ).

To use this framework, we need to exploit the property of the considered problem
and come up with a construction that satisfies the two conditions above. Often, the
construction is randomized and thus one challenge is to satisfy condition (ii) in the
worst-case. This can be done by showing that the probability that (ii) is violated is
very small and then using a union bound to prove that with positive probability the
construction satisfies (ii) in the worst-case.

A Lower Bound Framework for Range Stabbing Problems

Range stabbing problems can be viewed as the dual of range reporting problems. In
this problem, we are given a set R of n ranges, and the queries are from a set Q of
n points. The task is to build a data structure such that given any query point q ∈Q,
we can report the ranges “stabbed” by this query point, i.e., {R ∈R : R ∩q 6= /0},
efficiently. A recent framework by Afshani [Afs13] provides a simple way to get the
lower bound of such problems.

Theorem 7.2.2 (Afshani [Afs13]). Suppose there is a data structure for range stab-
bing problems that uses at most S(n) space and can answer any query in Q(n)+O(k)
time where n is the input size and k is the output size. Assume we can show that there
exists an input set R⊂R of n ranges that satisfy the following: (i) every query point
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of the unit square U is contained in at least t ≥ Q(n) ranges; and (ii) the area of the
intersection of every α < t ranges is at most v. Then S(n) = Ω( t

v2O(α) ) = Ω( Q(n)
v2O(α) ).

This is very similar to framework of Theorem 7.2.1 but often it requires no
derandomization.

Derandomization Lemmas

As mentioned before, one challenge of using Chazelle’s framework is to show the
existence of a hard instance in the worst case while the construction is randomized.
To do that, we present two derandomization lemmas.

Lemma 7.2.1. Let P be a set of n points chosen uniformly at random in a square S
of side length n in R2. Let R be a set of ranges in S and 2≤ t ≤ n be a positive integer
such that (i) the intersection area of any t ranges R1,R2, · · ·Rt ∈R is bounded by
O
(

n/2
√

logn
)

; (ii) the total number of t-wise intersections is bounded by O
(
n2m
)

for m ≥ 1. Then with probability > 1
2 , for all distinct ranges R1,R2, · · · ,Rt ∈ R,

|R1∩R2∩·· ·Rt ∩P|< 3m
√

logn for a sufficiently large n.

Proof. Consider any intersection region ρ ∈ S of t ranges with area A. Let X be an
indicator random variable with

Xi =

{
1, the i-th point is inside ρ,

0,otherwise.

Let X = ∑
n
i=1 Xi. Clearly, E[X ] = A

n . By Chernoff’s bound,

Pr
[

X ≥ (1+δ )
A
n

]
<

(
eδ

(1+δ )1+δ

) A
n

,

for any δ > 0. Let τ = (1+δ )A
n , then

Pr[X ≥ τ]<
eδ

A
n

(1+δ )τ
<

eτ

(1+δ )τ
=

(
eA
nτ

)τ

.

Now we pick τ = 3m
√

logn, since A≤ cn/2
√

logn for some constant c, we have

Pr
[
X ≥ 3m

√
logn

]
<

(
ce

2
√

logn3m
√

logn

)3m
√

logn

<
(ce)3m

√
logn

n3m .

Since the total number of intersections is bounded by O(n2m), the number of cells
in the arrangement is also bounded by O(n2m) and thus by the union bound, for
sufficiently large n, with probability > 1

2 , the number of points in every intersection
region is less than 3m

√
logn.
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Lemma 7.2.2. Let P be a set of n points chosen uniformly at random in a square S
of side length n in R2. Let R be a set of ranges in S such that (i) the intersection area
of any range R ∈R and S is at least cnt for some constant c≥ 4m and a parameter
t ≥ logn, where m≥ 2; (ii) the total number of ranges is bounded by O

(
nm+1

)
. Then

with probability > 1
2 , for every range R ∈R, |R ∩P| ≥ t for sufficiently large n.

Proof. The proof of this lemma is similar to the one for Lemma 7.2.1. We pick n
points in S uniformly at random. Let Xi j be the indicator random variable with

Xi j =

{
1,point i is in range j,
0,otherwise.

We know that the area of each range is at least cnt. Then the expected number of
points in each range is ct. Consider an arbitrary range, let X j = ∑

n
i=1 Xi j, then by

Chernoff’s bound

Pr
[

X j <

(
1− c−1

c

)
ct
]
< e−

( c−1
c )

2
ct

2

=⇒ Pr[X j < t]< e−
(c−1)2t

2c <
1

n
(c−1)2

2c

≤ 1
n2m−1+1/(8m)

.

The second last inequality follows from t ≥ logn and the last inequality follows from
c ≥ 4m and m ≥ 2. Since the total number of ranges is bounded by O(nm+1), by a
standard union bound argument, the lemma holds.

7.3 2D Polynomial Slab Reporting and Stabbing

We first consider the case when query ranges are 2D polynomial slabs. The formal
definition of 2D polynomial slabs is as follows.

Definition 7.3.1. Let P(x) = ∑
∆
i=0 aixi, where a∆ 6= 0, be a degree ∆ univariate poly-

nomial. A 2D polynomial slab is a pair (P(x),w), where P(x) is called the base
polynomial and w > 0 the width of the polynomial slab. The polynomial slab is then
defined as R2 : P(x)≤ y≤ P(x)+w}.

2D Polynomial Slab Reporting

We consider the 2D polynomial slab reporting problem in this section, where the input
is a set P of n points in R2, and the query is a polynomial slab. This is an instance of
semialgebraic range searching where we have two polynomial inequalities which only
differ by their constant terms where each inequality has degree ∆ and it is defined by
∆+1 parameters given at the query time (thus, B = ∆+1). Note that ∆+1 is also
the dimension of linearization for this problem, meaning, the 2D polynomial slab
reporting problem can be lifted to the simplex range reporting problem in R∆+1. Our
main result shows that for fast queries (i.e., when the query time is polylogarithmic),
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this is tight, by showing an
o

Ω(n∆+1) space lower bound, in the pointer machine model
of computation.

Before we present the lower bound, we first introduce a simple property of
polynomials, which we will use to upper bound the intersection area of polynomials.
Given a univariate polynomial P(x), the following simple lemma establishes the
relationship between the leading coefficient and the maximum range within which its
value is bounded.

Lemma 7.3.1. Let P(x) = ∑
∆
i=0 aixi be a degree ∆ univariate polynomial where ∆ > 0

and |a∆| ≥ d for some positive d. Let w be any positive value and xl be a parameter.

If |P(x)| ≤ w for all x ∈ [xl,xl + t], then t ≤ (∆+1)3
(w

d

) 1
∆ .

Proof. First note that w.l.o.g., we can assume xl = 0, because otherwise we can
consider a new polynomial P′(x) = P(x+xl). Since P′(x) is still a degree ∆ univariate
polynomial with |a∆| ≥ d, and for all x ∈ [0, t], P′(x) = P(x+ xl), to bound t, we only
need to consider P′(x) on interval [0, t].

Assume for the sake of contradiction that t > (∆+1)3
(w

d

) 1
∆ . We show that this

will lead to |a∆|< d.
We pick ∆+ 1 different points (xi,yi), where xi ∈ [0, t] and yi = P(xi), on the

polynomial. Then P(x) can be expressed as

P(x) =
∆

∑
i=0

yi

∆

∏
j=0, j 6=i

x− x j

xi− x j
.

The coefficient of the degree ∆ term is therefore

a∆ =
∆

∑
i=0

yi

∆

∏
j=0, j 6=i

1
xi− x j

.

We pick xi =
t

i+1 for i = 0,1, · · · ,∆ and we therefore obtain

a∆ =
∆

∑
i=0

yi

∆

∏
j=0, j 6=i

1
t

i+1 −
t

j+1
.

We now upper bound
∣∣∣∣ 1

t
i+1−

t
j+1

∣∣∣∣. We assume i < j, the case for i > j is symmetric.

When i < j, ∣∣∣∣∣ 1
t

i+1 −
t

j+1

∣∣∣∣∣= 1
t

i+1 −
t

j+1
=

(i+1)( j+1)
t( j− i)

<
(∆+1)2

t
,

where the last inequality follows from i, j = 0,1, · · · ,∆ and j− i≥ 1. Also by assump-
tion, |yi| ≤ w, we therefore have

|a∆|<
w(∆+1)(∆+1)2∆

t∆
< d,
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where the last inequality follows from t > (∆+1)3
(w

d

) 1
∆ . However, in P(x), |a∆| ≥ d,

a contradiction. Therefore, t ≤ (∆+1)3
(w

d

) 1
∆ .

With Lemma 7.3.1 at hand, we now show a lower bound for polynomial slab
reporting.

Theorem 7.3.1. Let P be a set of n points in R2. Let R be the set of all 2D polynomial
slabs {(P(x),w) : deg(P) = ∆≥ 2,w > 0}. Then any data structure for P that solves
polynomial slab reporting for queries from R with query time Q(n)+O(k), where k

is the output size, uses S(n) =
o

Ω
(
n∆+1/Q(n)(∆+3)∆/2

)
space.

Proof. We use Chazelle’s framework to prove this theorem. To this end, we will need
to show the existence of a hard input instance. We do this as follows. In a square
S, we construct a set of special polynomial slabs with the following properties: (i)
The intersection area of any two slabs is small; and (ii) The area of each slab inside
S is relatively large. Intuitively and consequently, if we sample n points uniformly
at random in S, in expectation, few points will be in the intersection of two slabs,
and many points will be in each slab. Intuitively, this satisfies the two conditions of
Theorem 7.2.1. By picking parameters carefully and a derandomization process, we
get our theorem. Next, we describe the details.

Consider a square S = [0,n]× [0,n]. Let di for i = 1,2, · · · ,∆ and w be some posi-
tive parameters to be specified later. We generate a set of Θ

(
n∆

2∆ ∏
∆
i=1 di
· n

w

)
polynomial

slabs (P(x),w) with

P(x) =

(
∆

∑
i=1

jidixi

ni

)
+ kw

where ji = b n
2di
c,b n

2di
c+1, · · · ,b n

di
c for 1 ≤ i ≤ ∆ and k = b n

4wc,b
n

4wc+1, · · · ,b n
2wc.

Note that we normalize the coefficients such that for any polynomial slab in range
x ∈ [0,n], a quarter of the x-interval length (or equivalently the area) of this slab
is contained in S if w < n/6. See Figure 7.1 for an example. To show this, it is
sufficient to show that every polynomial is inside S, for every x ∈ [0,n/4]. As all
the coefficients of the polynomials are nonnegative, it is sufficient to upper bound
P(n/4), among all the polynomials P(x) that we have generated. Similarly, this
maximum is attained when all the coefficients are set to their maximum value, i.e.,
when ji = bn/dic and k = bn/(2w)c, whose value is upper bounded by polynomial
Pu(x) =

(
∑

∆
i=1 xi/ni−1

)
+ n

2 . Now it easily follows that Pu(n/4)< 5n/6.
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0 n
4

y = n
4

y = 5n
6

n
2

P (x)

n

n

y

x

P (x) + w

Figure 7.1: Intersection of a Polynomial Slab in Our Construction and S

Then, the claim follows from the following simple observation.

Observation 7.3.1. The area of a polynomial slab (P(x),w) for when a ≤ x ≤ b is
(b−a)w.

Proof. The claimed area is (
∫ b

a (P(x)+w)dx)− (
∫ b

a P(x)dx) =
∫ b

a wdx = (b− a)w.

Next, we bound the area of the intersection of two polynomial slabs. Consider two
distinct slabs Rp = (P(x),w) and Rq = (Q(x),w). Observe that by our construction,
if P(x) and Q(x) only differ in their constant terms, their intersection area is 0. So we
only consider the case that there exists some 0 < i≤ ∆, such that the coefficients for
xi are different in P(x) and Q(x). As each slab is created using two polynomials of
degree ∆, Rq∩Rp can have at most O(∆) connected regions. Consider one connected
region R and let the interval η = [x1,x2] ⊂ [0,n], be the projection of R onto the
X-axis. Define the polynomial R(x) = P(x)−Q(x) and observe that we must have
|R(x)| ≤ w for all x ∈ [x1,x2]. We now consider the coefficient of the highest degree
term of R(x). Let jidi/ni (resp. j′idi/ni) be the coefficient of the degree i term in P(x)
(resp. Q(x)). Clearly, if ji = j′i, then the coefficient of xi in R(x) will be zero. Thus, to
find the highest degree term in R(x), we need to consider the largest index i such that
ji 6= j′i; in this case, R(x) will have degree i and coefficient of xi will have absolute

value
∣∣( ji− j′i)di/ni

∣∣≥ di/ni. By Lemma 7.3.1, x2− x1 ≤ O(∆3)
(

wni

di

)1/i
. Next, by

Observation 7.3.1, the area of the intersection of Rq and Rp is O(∆3)nw
(

w
di

)1/i
.

We pick di = c∆3iwi+12i
√

logn and w = 16∆Q(n), for a large enough constant c.
Then, the intersection area of any two polynomial slabs is bounded by n/2

√
logn. Since

in total we have generated O(n∆+1) slabs, the total number of pairwise intersections
they can form is bounded by O(n2(∆+1)). By Lemma 7.2.1, with probability > 1

2 ,
the number of points of P in any intersection of two polynomial slabs is at most
3(∆+1)

√
logn. Also, as we have shown that the intersection area of every slab with
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S is at least nw/4 = 4∆nQ(n), by Lemma 7.2.2, with probability more than 1
2 , each

polynomial slab has at least Q(n) points of P4.
It thus follows that with positive probability, both conditions of Theorem 7.2.1 are

satisfied, and consequently, we obtain the lower bound of

S(n) = Ω

Q(n) · n∆

2∆ ∏
∆
i=1 di
· n

w

23(∆+1)
√

logn

=
o

Ω

(
n∆+1

Q(n)(∆+3)∆/2

)
,

where the last equality follows from di = c∆3iwi+12i
√

logn, w = 16∆Q(n), and

∆

∏
i=1

di = c∆
3(1+∆)∆/2w(2+∆+1)∆/22

√
logn(1+∆)∆/2 = Q(n)(∆+3)∆/2no(1).

So for the “fast query” case data structure, by picking Q(n) = logO(1) n, we obtain

a space lower bound of S(n) =
o

Ω(n∆+1).

2D Polynomial Slab Stabbing

By small modifications, our construction can also be applied to obtain a lower bound
for (the reporting version of) polynomial slab stabbing problems using Theorem 7.2.2.

One modification is that we need to generate the slabs in such a way that they
cover the entire square S. The framework provided through Theorem 7.2.2 is more
stream-lined and derandomization is not needed and we can directly apply the “volume
upper bound” obtained through Lemma 7.3.1. There is also no no(1) factor loss (our
lower bound actually uses Ω(·) notation). The major change is that we need to use
different parameters since we need to create n polynomial slabs, as now they are the
input.

Theorem 7.3.2. Give a set R of n 2D polynomial slabs {(P(x),w) : deg(P) = ∆ ≥
2,w > 0}, any data structure for R solving the 2D polynomial slab stabbing problem
with query time Q(n)+O(k) uses S(n) = Ω

(
n1+2/(∆+1)

Q(n)2/∆

)
space, where k is the output

size.

Proof. We use Afshani’s lower bound framework as described in Theorem 7.2.2. First
we generate n polynomial slabs in a unit square S = [0,1]× [0,1] as follows. Consider
Θ

(
1

2∆ ∏
∆
i=1 di
· ∆

w

)
polynomial slabs with their base polynomials being:

P(x) =
∆

∑
i=1

jidixi + kw,

where ji = b 1
2di
c,b 1

2di
c+1, · · · ,b 1

di
c for 1≤ i≤ ∆ and k =−d∆

we,−d
∆

we+1, · · · ,d∆

we
for parameters di > 0, i = 1,2, · · · ,∆ and w to be specified later. Note that by our con-
struction, any point in the unit square is covered by t = Θ(1/(2∆

∏
∆
i=1 di)) polynomial

4Since we work in the pointer machine, Q(n)≥ logn, and thus Lemma 7.2.2 applies.
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slabs. To see this, consider each polynomial of form

P′(x) =
∆

∑
i=1

jidixi,

where ji = b 1
2di
c,b 1

2di
e+1, · · · ,b 1

di
c for 1≤ i≤ ∆. By shifting P′(x) vertically with

distance kw for k = −d∆

we,−d
∆

we+1, · · · ,d∆

we, we generate a series of adjacent 2D
polynomial slabs. For x ∈ [0,1], 0≤ P′(x)≤ ∆ for each P′(x). The maximum value is
achieved by picking ji = b1/dic for each i = 1,2, · · · ,∆. Observe that S is completely
contained between polynomials y = P′(x)−d∆

wew and y = P′(x)+ d∆

wew. As a result,
for each P′(x) (i.e., each choice of indices ji’s), the square S is covered exactly once.
This implies S is covered t = ∏

∆
i=1

(
b 1

di
c−b 1

2di
c+1

)
= Θ(1/(2∆

∏
∆
i=1 di)) times,

which is the number of choices we have for the indices j1, · · · , j∆. Therefore, each
point in S is covered by t polynomial slabs.

We set di = c1

(
1

Q(n)2/(∆(∆+1))w2/(∆+1)

)i
w for some sufficiently small constant c1 such

that S is covered by t ≥ Q(n) polynomial slabs. We then set w = c2
Q(n)

n for some
suitable constant c2 according to c1 such that the total number of polynomial slabs we
have generated is exactly n.

By Lemma 7.3.1 and a similar argument as in the proof of Theorem 7.3.1, the
intersection area of any two polynomial slabs in our construction is bounded by

v≤ O(∆)w(∆+1)3
(

w
di

) 1
i

= f (∆)
Q(n)1+ 2

∆

n1+ 2
∆+1

,

where f (∆) = O(1) is some value depending on ∆ only and i = 1,2, · · · ,∆ is the
largest degree where the two polynomials differ in their coefficients. Since t ≥ Q(n),
then according to Theorem 7.2.2,

S(n) = Ω

( t
v

)
= Ω

(
n1+ 2

∆+1

Q(n)
2
∆

)
.

So for any data structure that solves the 2D polynomial slab stabbing problem
using S(n) = O(n) space, Theorem 7.3.2 implies that its query time must be Q(n) =
Ω(n1−1/(∆+1)).

7.4 2D Annulus Reporting and Stabbing

2D Annulus Reporting

In this subsection, we show that any data structure that solves 2D annulus reporting

with logO(1) n query time must use
o

Ω(n3) space. Recall that an annulus is the region
between two concentric circles and the width of the annulus is the difference between
the radii of the two circles. In general, we show that if the query time is Q(n)+O(k),
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then the data structure must use
o

Ω(n3/Q(n)5) space. We will still use Chazelle’s
framework.

We first present a technical geometric lemma which upper bounds the intersection
area of two 2D annuli. We will later use this lemma to show that with probability
more than 1/2, a random point set satisfies the first condition of Theorem 7.2.1.

Lemma 7.4.1. Consider two annuli of width w with inner radii of r1,r2, where
w < r1 ≤ r2 and r1,r2 = Θ(n) and w = o(n) for a parameter n > 0. Let d be the
distance between the centers of the two annuli. When w ≤ d < r2, the intersection

area of the two annuli is bounded by O
(

wn
√

w2

(g+w)d

)
, where g = max{r1−r2+d,0}.

The proof sketch. For the complete proof see Appendix 7.A. When w ≤ d ≤
r2− r1 +2w, the intersection region is contained in two triangle-like regions. We only
bound the triangle-like region 4̃PQR in the upper half annuli as shown in Figure 7.2.
We can show that its area is asymptotically upper bounded by the product of its base
length |QR| = O(w) and its height h. We bound h by observing that hd

2 is the area
of triangle4PO1O2 but we can also obtain its area of using Heron’s formula, given
its three side lengths. This gives h = O(n

√
w/d). Since in this case g ≤ 2w, the

intersection area is upper bounded by O
(

wn
√

w2

(g+w)d

)
as claimed.
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Figure 7.2: Intersections When d is Small

When r2− r1 +2w≤ d ≤ r2, the intersection region consists of two quadrilateral-
like regions. See Figure 7.3a for an example. Again we only consider the quadrilateral-
like region �̃ (the shaded region) in the upper half of the annuli, which is contained in
a partial annulus, R̃ABCD.
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Figure 7.3: Cover a Quadrilateral-like Region by a Partial Annulus
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Figure 7.4: Zoomed in Details of Figure 7.3

We show the area of R̃ABCD is asymptotically bounded by |BC| ·w, where |BC|
is the distance between the two endpoints of the inner arc. We upper bound |BC| by
|BD|. We use the algebraic representation of the two annuli, to bound the length of the
projection of BD on the X-axis by Θ

(wn
d

)
; See Figure 7.3b. We use Heron’s formula

to bound the length of the projection of BD on the Y -axis by O
(

n
√

w2/dg
)

. The
sum of the length of the two projections yields the claimed bound.

Remark 7.4.1. It is possible to give a closed form solution to the intersection area.
However, the closed form contains a difference between two square roots whose sizes
are very close to each other and it is hard to approximate this value.

We use Chazelle’s framework to obtain a lower bound for 2D annulus reporting.
Let S1 and S2 be two squares of side length n that are placed 10n distance apart and
S2 is directly to the left of S1. We generate the annuli as follows. We divide S1 into a
n
T ×

n
T grid where each cell is a square of side length T < n. For each grid point, we

construct a series of circles as follows. Let O be a grid point. The first circle generated
for O must pass through a corner of S2 and two horizontal sides of S2, as shown in
Figure 7.5. Then we create a series of circles centered at O by increasing the radius
by increments of w, for some fixed w < T and w,T are monotonically increasing in n
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and wT = o(n), as long as it does not intersect the left side of S2. Every consecutive
two circles define an annulus centered at O. We repeat this for every grid point in S1
and this makes up our set of queries. The input points are placed uniformly randomly
inside S2.

n

n

T

Tn

n

w

S2 S1

10n
· · · O

Figure 7.5: Generate a Family of Annuli at Point O

We now show that for the annuli we constructed, the intersection of ` annuli is not
too large, for some ` we specify later. More precisely we prove the following.

Lemma 7.4.2. In our construction, there exists a large enough constant c such that in
any subset of `= cw2/

√
T annuli, we can find two annuli such that their intersection

has area O
(

nw
√

1
T

)
.

The proof sketch. For the complete proof see Appendix 7.B. Let S be a set of
`= cw2/

√
T annuli. Suppose for the sake of contradiction that we cannot find two

annuli in S whose intersection area is O
(

nw
√

1
T

)
, i.e., any two annuli inter with

area ω

(
nw
√

1
T

)
. Consider any two annuli from S . Let the inner circle radii of

the two annuli be r1,r2 s.t. r1 ≤ r2 and their widths be w. By our construction,
w < T , r1,r2 = Θ(n). Since w,T are monotonically increasing in n and wT = o(n),
for any positive constant c′, when n is big enough, we have w < c′wT < r2. Then
by Lemma 7.4.1, for any constant c′, the intersection area of any two annuli in our

construction with distance c′wT between their centers is O
(

nw
√

1
T

)
for large enough

n. Therefore, the maximum distance between any two annuli in S must be o(wT ).
Let P be a point in the intersection of annuli in S . Consider an arbitrary annulus

R1 ∈S centered at O1 and another annulus R2 ∈S centered at O2 for some O2 /∈
PO1. For R1,R2 to contain P, we must have |PO1| = r1 + a, |PO2| = r2 + b for
0 ≤ a,b ≤ w. See Figure 7.6 for an example. Also |O1O2| = d, by exploiting the
shape of 4PO1O2 and applying Lemma 7.4.1, we can compute an upper bound
for the distance between O2 and PO1, namely, h = d sinα = o(w

√
T ), where α is

the angle between O1O2 and PO1. This implies that S must fit in a rectangle of
size o(wT )×o(w

√
T ). Since the grid cell size is T ×T , only o(w2/

√
T ) annuli are

contained in such a rectangle, a contradiction.
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Figure 7.6: Intersection of Two Annuli

We are now ready to plug in some parameters in our construction. We set T =
w222

√
logn. First, we claim that from each grid point O, we can draw Θ(n/w) circles;

Let C1,C2,C3, and C4 be the corners of S2 sorted increasingly according to their
distance to O. As S1 and S2 are placed 10n distance apart, an elementary geometric
calculation reveals that C1 and C2 are vertices of the right edge of S2, meaning, the
smallest circle that we draw from O passes through C2 and we keep drawing circles,
by incrementing their radii by w until we are about to draw a circle that is about to
contain C3. We can see that |OC3|− |OC2|= Θ(n) and thus we draw Θ(n/w) circles
from O. As we have Θ((n/T )2) grid cells, it thus follows that we have Θ(n3/(T 2w))
annuli in our construction.

Also by our construction, the area of each annulus within S2 is Θ(wn). To see this,
let P be an arbitrary point in S1, let A,B be the intersections of some circle centered at
P as in Figure 7.7.

P

S1S2

α

A

B

C

Figure 7.7: The Angle of an Annulus

We connect AB and let C be the center of AB. Let α = ∠APC. In the triangle
4ABP, all the sides are within constant factors of each other and thus α = Θ(1) and
so the area of the annulus inside S2 is at least a constant fraction of the area of the
entire annulus.

Suppose we have a data structure that answers 2D annulus reporting queries in
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Q(n)+O(k) time. We set w = c′′Q(n) for a large enough constant c′′ such that the
area of each annulus within S2 is at least Θ(wn)> 8nQ(n). Since we have shown that
we have Θ(n3/(T 2w)) = O(n3) annuli in our construction, by Lemma 7.2.2, if we
sample n points uniformly at random in S2, then with probability more than 1/2, each
annulus contains at least Q(n) points.

Also by our construction, the total number of intersections of l annuli is upper
bounded by that of two annuli, which is bounded by O(n6) and by our choice of T ,

O
(

nw
√

1
T

)
= O

(
n

2
√

logn

)
. Then by Lemma 7.2.1 and Lemma 7.4.2, with probability

> 1
2 , a point set of size n picked uniformly at random in S2 satisfies that the number

of points in any of the intersection of cw2/
√

T annuli is no more than 9
√

logn.
Now by union bound, there exist Θ

(
n3

wT 2

)
point sets such that each set is the output

of some 2D annulus query and each set contains at least Q(n) points. Furthermore,
the intersection of any cw2/

√
T sets is bounded by 9

√
logn. Then by Theorem 7.2.1,

we obtain a lower bound of

S(n) = Ω

(
Q(n)n3

√
T

wT 2w22O(
√

logn)

)
=

o

Ω

(
n3

Q(n)5

)
.

This proves the following theorem about 2D annulus reporting.

Theorem 7.4.1. Any data structure that solves 2D annulus reporting on point set of

size n with query time Q(n)+O(k), where k is the output size, must use
o

Ω
(
n3/Q(n)5

)
space.

So for any data structure that solves 2D annulus reporting in time Q(n) = logO(1) n,

Theorem 7.4.1 implies that
o

Ω
(
n3
)

space must be used.

2D Annulus Stabbing

Modifications similar to those done in Subsection 7.3 can be used to obtain the
following lower bound.

Theorem 7.4.2. Any data structure that solves the 2D annulus stabbing problem with
query time Q(n)+O(k), where k is the output size, must use S(n) = Ω(n3/2/Q(n)3/4)
space.

Proof. We use Afshani’s lower bound framework as in Theorem 7.2.2. We construct
annuli similar to the way as we did in the proof of Theorem 7.4.1, but with some
differences. Let S1 be a unit square, we decompose S1 into a grid where each grid
cell is a square of size T ×T , for some parameter T to be determined later. Let S2 be
another unit square to the left of S1 with distance 10. For each grid point in S1, we
generate a family of circles centered at the point where the first circle is the first one
tangent to the right side of S2. See Figure 7.8 for an example. Let r0 be the radius of
this circle. We generate other circles by increasing the radius by w each time. The last
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circle is the one with radius at least r0+(
√

122−9). The choice of constant
√

122−9
is due to the following. Consider a point P in the upper half of S1, let a (resp. b) be
the distance from P to the upper (resp. left) side of S1. The case for the lower half
of S1 is symmetric. Consider the last circle intersecting S2 only at the corners. See
Figure 7.9 for an example. The difference of radius lengths between the last circle
and the first circle is

f =
√
(1−a)2 +(11+b)2−10−b.

Simple analysis shows that f ≤
√

122−10. This shows as long as the last circle has
radius at least

√
122−9+ r0, it is completely outside of S2. Like we did previously,

we consider the region between two consecutive annuli to be an annulus. Note that by
our construction, for any point in S2, it is contained in one of the annuli we generated
for a given grid point. The total number of annuli we have generated is therefore(

1
T
+1
)2

·
√

122−9
w

.

We set T = 1/(2
√

Q(n)−1) and w= 4(
√

122−9)Q(n)/n. Then the total number
of annuli we have generated is n. Furthermore, each query point is contained in
t = (1/T +1)2 ≥ Q(n) annuli.

By setting w ≤ T , which implies Q(n) = O(n2/3), we can use Lemma 7.4.1 to
upper bound the intersection area of two annuli in our construction by v =O(w

√w
T ) =



92
CHAPTER 7. LOWER BOUNDS FOR SEMIALGEBRAIC RANGE SEARCHING AND

STABBING PROBLEMS

O(Q(n)7/4/n3/2). Then by Theorem 7.2.2,

S(n) = Ω

( t
v

)
= Ω

(
n3/2

Q(n)3/4

)
.

So for any data structure that solves the 2D annulus stabbing problem using O(n)
space, Theorem 7.4.2 implies that its query time must be Q(n) = Ω(n2/3).

7.5 Conclusion and Open Problems

We investigated lower bounds for range searching with polynomial slabs and annuli

in R2. We showed space-time tradeoff bounds of S(n) =
o

Ω(n∆+1/Q(n)(∆+3)∆/2) and

S(n) =
o

Ω(n3/Q(n)5) for them respectively. Both of these bounds are almost tight in
the “fast query” case, i.e., when Q(n) = logO(1) n (up to a no(1) factor). This refutes
the conjecture of the existence of a data structure that can solve semialgebraic range

searching in Rd using
o

O(nd) space and logO(1) n query time. We also studied the “dual”
polynomial slab stabbing and annulus stabbing problems. For these two problems, we
obtained lower bounds S(n) = Ω(n1+2/(∆+1)/Q(n)2/∆) and S(n) = Ω(n3/2/Q(n)3/4)
respectively. These bounds are tight when S(n) = O(n). Our work, however, brings
out some very interesting open problems.

To get the lower bounds for the polynomial slabs, we only considered univariate
polynomials of degree ∆. In this setting, the number of coefficients is at most ∆+1,
and we have also assumed they are all independent. It would be interesting to see if
similar lower bounds can be obtained under more general settings. In particular, as
the maximum number of coefficients of a bivariate polynomial of degree ∆ is

(
∆+2

2

)
, it

would interesting to see if a
o

Ω(n(
∆+2

2 )−1) space lower bound can be obtained for the
“fast query” case.

It would also be interesting to consider space-time trade-offs. For instance, by
combining the known “fast query” and “low space” solutions for 2D annulus reporting,
one can obtain data structures with trade-off curve S(n) = Õ(n3/Q(n)4), however, our

lower bound is S(n) =
o

Ω(n3/Q(n)5) and it is not clear which of these bounds is closer
to the optimal bound. For the annulus searching problem in R2, in our lower bound
proof, we considered a random input point set, since in most cases a random point
set is the hardest input instance and our analysis seems to be tight. Therefore, we
conjecture that our lower bound could be tight, at least when Q(n) is small enough. We
believe that it should be possible to obtain the trade-off curve of S(n) = Õ(n3/Q(n)5)
when the input points are uniformly random in the unit square and Q(n) is not too big.

Finally, another interesting direction is to study the lower bound for the counting
variant of semialgebraic range searching.

Acknowledgement: The authors would like to thank Esther Ezra for sparking the
initial ideas behind the proof.



Appendices

7.A Proof of Lemma 7.4.1

Lemma 7.4.1. Consider two annuli of width w with inner radii of r1,r2, where
w < r1 ≤ r2 and r1,r2 = Θ(n) and w = o(n) for a parameter n > 0. Let d be the
distance between the centers of the two annuli. When w ≤ d < r2, the intersection

area of the two annuli is bounded by O
(

wn
√

w2

(g+w)d

)
, where g = max{r1−r2+d,0}.

Proof. We first prove the lemma for when w≤ d ≤ r2− r1 +2w, observe that g≤ 2w
and the intersections are all bounded by two triangle-like regions. We consider
the triangle-like region 4̃PQR in the upper half of the annuli as shown in Fig-
ure 7.A.1. The area of the other triangle-like region can be bounded symmetrically.
When 0 ≤ r2− r1 < 2w, we can trivially bound the area by O(nw) = O(nw w

d ) =

O(nw
√

w2/(g+w)d). So we only focus on the case r2− r1 ≥ 2w. Note that for two
circles to intersect, we must have d ≥ r2− r1−w.
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Figure 7.A.1: Intersections When d is Small

To upper bound its area, we first compute its “height” h. Consider4PO1O2, by
Heron’s Formula, its area is

93
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A4PO1O2 =

√
r1 + r2 +w+d

2
· r2 +d− r1−w

2
· r1 +d +w− r2

2
· r1 + r2 +w−d

2
= O(

√
r2 ·d ·w · r1)

= O
(

n
√

dw
)
,

where the second equality follows from

d ≤ r2− r1 +2w =⇒ r1 + r2 +w+d ≤ 2r2 +3w≤ 5r2,

r2− r1−w≤ d =⇒ r2 +d− r1−w≤ 2d,

d ≤ r2− r1 +2w =⇒ r1 +d− r2 +w≤ 3w,

r2− r1−w≤ d =⇒ r1 + r2 +w−d ≤ 2r1 +2w≤ 4r1.

Then we bound h by

h =
2A4PO1O2

d
= O

(
n
√

w
d

)
.

To bound the area of 4̃PQR, we move the outer circle of the annulus centered
at O1 along O1O2 such that it passes R as in Figure 7.A.2. Let S be a point in
this new circle such that PS ‖ QR. The area of region PSRQ formed by the outer
circle of the annulus centered at O1 and the new circle, as well as PS and QR,
i.e., the shaded region in Figure 7.A.2, is O(wh) by a simple integral argument.
Since r2 ≥ r1 + 2w and w = o(r1), the x-coordinate of P is smaller than that of
O1 and the curvature of the inner circle of the annulus centered at O2 is no larger
than that of the outer circle of O1, hence 4̃PQR is contained in this region. So
A4̃PQR = O(wh) = O(nw

√
w/d) = O(nw

√
w2/(g+w)d).
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Figure 7.A.2: Bound the Intersection Area for Small d

In the case where r2−r1+2w< d < r2, the intersections consist of two quadrilateral-
like regions, one at the upper half and the other at the lower half. In this case, g > 2w.
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We show how to bound the area of the quadrilateral-like region at the upper half, the
other one can be bounded symmetrically.

First note that each quadrilateral-like region �̃ (the shaded region) is contained in
a partial annulus as in Figure 7.A.3. We generate this partial annulus by shooting a ray
ll from the center O1 such that �̃ is completely to the right of this ray, to create the
left boundary AB, where A,B are the intersection of the ray and the outer and inner
circles of the annulus R1 centered at O1 respectively. And similarly, shoot another
ray lr to create the right boundary CD. Note that �̃ can only intersect the left ray at
point B and the right ray at point D. To see this, consider the line lt tangent to circle
(O2,r2 +w) at point B. Let B = (x,y), it is easy to compute that the slope of lt is
d−x

y . Consider a vector~v1 = (x,y) in the direction of ray O1B and vector~v2 = ( y
d−x ,1)

of lt pointing upwards. If v1 and v2 form a right turn, �̃ is completely to the right
of O1B, i.e., ll intersects �̃ at B. The cross product of~v1 and~v2 is easily computed
to be (x,y)× ( y

d−x ,1) =
dx−(x2+y2)

d−x . Since B is the intersection of circle (O1,r1) and
(O2,r2 +w), it must be a solution to the system{

x2 + y2 = r2
1

(x−d)2 + y2 = (r2 +w)2 ,

which implies that
2dx = d2 + r2

1− (r2 +w)2,

and so

d− x = d− d2 + r2
1− (r2 +w)2

2d
=

d2 +(r2 +w)2− r2
1

2d
> 0,

since r2 ≥ r1 and d > r2− r1 +2w > 0. Thus

dx− (x2 + y2)

d− x
=

d2 + r2
1− (r2 +w)2−2r2

1
2(d− x)

=
d2− (r2

1 +(r2 +w)2)

2(d− x)
<

r2
2− (r2

1 +(r2 +w)2)

2(d− x)
< 0,

where the second last inequality follows from d < r2, and the last inequality follows
from d− x > 0. So~v1 and~v2 form a right turn during this process. Thus ll intersects
�̃ at point B. Similarly, we can show that lr intersects �̃ at point D. Now we bound
the area of the partial annulus.

First, we observe that the area of the partial annulus is bounded by the product of
the width of the annulus, w, and the length BC, within some constant factor.

To see this, consider the possible partial annulus generated by any two annuli, see
Figure 7.A.3b for an example. One important observation is that for any intersection,
the angle α of the partial annulus containing it is no more than π . The area of the
partial annulus is clearly α(r1w+w2/2) = Θ(r1wα). Note that for 0 ≤ α ≤ π , let
β = α/2, it is a simple fact that

1
2

β ≤ sinβ ≤ β
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Figure 7.A.4: Zoomed in Details of Figure 7.A.3

for 0 ≤ β ≤ π/2. So for β in this range, sinβ = Θ(β ). Thus we can compute
|BC|= 2r1 sinβ = Θ(r1α), which implies that indeed w · |BC| gives us the area of the
partial annulus, within some constant factor.

Thus in Figure 7.A.3a, the area of the partial annulus is w · |BC|. Since by triangle
inequality |BC| ≤ |BD|+ |CD|= |BD|+w, we bound |BD|. By Lemma 7.A.1 we show

below, we know |BD|= O
(

n
√

w2

dg

)
. Therefore, the area of intersection is bounded

by O
(

wn
√

w2

(g+w)d +w2
)
= O

(
wn
√

w2

(g+w)d

)
as claimed since d,g = O(n).

Lemma 7.A.1. In R2, given two annuli centered at O1,O2 of width w with inner
radius lengths being r1,r2 respectively, where w < r1 ≤ r2 and r1,r2 = Θ(n) for a
parameter n > 0. Let d be the distance between two centers of the annuli satisfying
r2− r1 +2w < d < r2 and let g = r1 +d− r2 > 2w be the distance between two inner
circles of two annuli along the direction of O1O2. Consider the quadrilateral-like

region �̃ formed by four arcs in Lemma 7.4.1, we have |BD|= O
(

n
√

w2

gd

)
Proof. W.l.o.g., we assume that O1 is the origin of the Cartesian coordinate system
and O2 is on the x-axis as shown in Figure 7.A.5.
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Figure 7.A.5: Bound the Length of |BD|

Given any point P in the plane, we use xP (resp. yP) to denote its x (resp. y)
coordinate. We first compute |BT |= xBD = xD− xB, where xBD is the length of BD
along the x-axis. Since B = (xB,yB) is a intersection of the circle centered at O1 with
radius r1 and the one centered at O2 with radius r2+w, B is a solution to the following
system of equations {

x2 + y2 = r2
1

(x−d)2 + y2 = (r2 +w)2.

So xB satisfies
2dx−d2 = r2

1− (r2 +w)2,

which implies

xB =
r2

1− (r2 +w)2 +d2

2d
. (7.1)

Similarly, we obtain

xD =
(r1 +w)2− r2

2 +d2

2d
. (7.2)

So by (7.1) and (7.2), we obtain

|BT |= xBD = xD− xB =
w(r1 + r2 +w)

d
= Θ

(wn
d

)
. (7.3)

Now we compute |DT |= yBD = h1−h2. Let µ1 be the area of4DO1O2 and µ2
be the area of4BO1O2.

By Heron’s formula,µ1 =
√

r1+w+r2+d
2 · r2+d−r1−w

2 · r1+w+d−r2
2 · r1+w+r2−d

2

µ2 =
√

r1+r2+w+d
2 · r2+w+d−r1

2 · r1+d−r2−w
2 · r1+r2+w−d

2 .
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So
µ1

µ2
=

√
(r2 +d− r1−w)(r1 +w+d− r2)

(r2 +w+d− r1)(r1 +d− r2−w)
.

We define two variables X = g−w and Y = 2d−g−w to simplify notations. Recall
that g = r1 +d− r2 > 2w and d−g = r2− r1 ≥ 0 and so

µ1

µ2
=

√
(2d−g−w)(g+w)
(2d−g+w)(g−w)

=

√
(X +2w)Y
X(Y +2w)

=

√
1+

2w(Y −X)

XY +2wX
=

√
1+

2w(Y −X)

X(Y +2w)

≤
√

1+
2w
X

=

√
1+O

(
w
g

)
,

where the last inequality and equality follow from w > 0, X = g−w = Θ(g)> 0, and
Y −X = 2d−g−w− (g−w) = 2(d−g)≥ 0. Note that{

µ1 =
h1d
2

µ2 =
h2d
2

.

Since 2w < g, we therefore have

h1

h2
=

µ1

µ2
=

√
1+O

(
w
g

)
= 1+O

(
w
g

)
=⇒ h2

h1
= 1−O

(
w
g

)
.

By applying Heron’s formula for4DO1O2, we obtain

h1 = O
(

n
√

w
d

)
= O

(
n
√

g
d

)
.

So

|DT |= yBD = h1−h2 = h1

(
1− h2

h1

)
= h1 ·O

(
w
g

)
= O

(
n

√
w2

dg

)
. (7.4)

Therefore, by Equation 7.3 and Equation 7.4, and g = r1 +d− r2 ≤ d, we have

|BD| ≤ |BT |+ |DT |= O

(
n

√
w2

dg

)
.

7.B Proof of Lemma 7.4.2

Lemma 7.4.2. In our construction, there exists a large enough constant c such that in
any subset of `= cw2/

√
T annuli, we can find two annuli such that their intersection

has area O
(

nw
√

1
T

)
.
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Proof. We consider for the sake of contradiction that in our construction for every set
S of l = cw2/

√
T annuli for any positive constant c, we cannot find two annuli in S

such that their intersection area is O(nw
√

1/T ).
First observe that by our construction, any two annuli from the same family have

zero intersection area. Also the distance between the centers of any two annuli is less
than the radius of any annulus. Furthermore, the width of an annulus is always less
than the distance between the centers of any two annuli. So by Lemma 7.4.1, the
intersection area of any two annuli in our construction with center distance Ω(wT ) is
O(nw

√
1/T ). So for our assumption to hold, the distance between the centers of any

two annuli in S is o(wT ).
Let P be a point in the intersection of S , then P is contained in every annulus in

S . Now consider an arbitrary annulus R1 ∈S centered at O1 and another annulus
R2 ∈S centered at O2 for some O2 not in line PO1. Connect PO1 and PO2, for
R1,R2 to contain P, we must have |PO1|= r1+a and |PO2|= r2+b for 0≤ a,b≤w
as shown in Figure 7.B.1.

We first consider the case when the distance between the centers of R1 and R2 is
no more than r2− r1 +2w. In this case, their intersection area is upper bounded by
O(nw

√
w/d) according to Lemma 7.4.1.

r1 + a

r2 + b
hd

O1

O2

P α

(a) Overview

r1 + a

r2 + b
hd

O1

O2

P α

(b) Zoomed in Details of Fig-
ure 7.B.1a

Figure 7.B.1: Intersection of Two Annuli When Distance Between Centers is Small

By Heron’s formula,

Area4PO1O2 =

√
r1 +a+ r2 +b+d

2
· r2− r1 +b−a+d

2
· r1 +a− r2−b+d

2
· r1 +a+ r2 +b−d

2
= O(r1

√
dw)

= Θ(r1h),

where the second equality follows from a,b≤ w≤ d and r2− r1−w≤ d ≤ r2− r1 +
2w, and h is the distance between O2 and line PO1. This implies h = O(

√
dw). Since

d = o(wT ), We obtain that

h = o(w
√

T ). (7.5)
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Now we consider the case when the distance between the centers of R1 and R2 is
more than r2− r1 +2w. See Figure 7.B.2 for an example.

r1 + a

r2 + b d
α

P
O1

O2

h

(a) Overview

r1 + a

r2 + b d
α

P
O1

O2

h

(b) Zoomed in Details of Figure 7.B.2

Figure 7.B.2: Intersection of Two Annuli When Distance Between Centers is Large

Let g = r1 +d− r2 be the distance between the inner circle of R1 and the inner
circle of R2. Let α be the angle between O1O2 abd PO1. Note that α > 0 since O2 is
not in PO1. W.l.o.g., we assume 0 < α ≤ π/2. The situations for other values of α

are symmetric. Then

cos(π−α) =
(r1 +a)2 +d2− (r2 +b)2

2d(r1 +a)
(7.6)

=⇒ −cosα =
(r1 +a)2 +d2− (r2 +b)2

2d(r1 +a)
(7.7)

=⇒ 1− cosα =
(r1 +a+d)2− (r2 +b)2

2d(r1 +a)
(7.8)

=⇒ 1− cosα =
(r1 +a+d− r2−b)(r1 + r2 +a+b+d)

2d(r1 +a)
(7.9)

=⇒ 1− cosα =
(g+a−b)(r1 + r2 +a+b+d)

2d(r1 +a)
(7.10)

=⇒ g = Θ(d(1− cosα)), (7.11)

where the second last implication follows from g = r1+d−r2 and the last implication
follows from the fact that in our construction a,b≤ w, 2w≤ g = r1 +d− r2, r2− r1 +
2w≤ d ≤ r1 + r2, and r1 + r2 = Θ(n).

So according to Lemma 7.4.1 the intersection area of R1,R2 is upper bounded by

A = O

(
wn

√
w2

dg

)
.
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Let A = ω

(
nw
√

1
T

)
, by equation (7.11), we get

d2(1− cosα) = o(w2T ), (7.12)

Since d = h
sinα

= h√
1−cos2 α

, and 0 < α ≤ π/2, we plug d in inequality (7.12) and
obtain

h2

1− cos2 α
(1− cosα) =

h2

1+ cosα
= o(w2T ).

This implies

h = o
(√

w2T (1+ cosα)

)
= o

(
w
√

T
)
. (7.13)

So in order to have no two annuli intersecting with area O(nw
√

1/T ), the distance
between the centers of annuli in S and PO1 must be o(w

√
T ). We have already

shown that the distance between any two centers is o(wT ). Together they imply
that the centers of S fit in a rectangle of shape o(wT )×o(w

√
T ). However, in our

construction, each grid cell is of size T ×T , this implies we only have o(w2/
√

T )
centers in the rectangle. But we should have cw2/

√
T centers, a contradiction.





Chapter 8

On Semialgebraic Range
Reporting

Abstract

Semialgebraic range searching, arguably the most general version of range
searching, is a fundamental problem in computational geometry. In the problem,
we are to preprocess a set of points in RD such that the subset of points inside a
semialgebraic region described by a constant number of polynomial inequalities
of degree ∆ can be found efficiently.

Relatively recently, several major advances were made on this problem.
Using algebraic techniques, “near-linear space” data structures [AMS13, MP15]
with almost optimal query time of Q(n) = O(n1−1/D+o(1)) were obtained. For
“fast query” data structures (i.e., when Q(n) = no(1)), it was conjectured that
a similar improvement is possible, i.e., it is possible to achieve space S(n) =
O(nD+o(1)). The conjecture was refuted very recently by Afshani and Cheng [AC23b].
In the plane, i.e., D = 2, they proved that S(n) = Ω(n∆+1−o(1)/Q(n)(∆+3)∆/2)
which shows Ω(n∆+1−o(1)) space is needed for Q(n) = no(1). While this re-
futes the conjecture, it still leaves a number of unresolved issues: the lower
bound only works in 2D and for fast queries, and neither the exponent of n
nor Q(n) seems to be tight even for D = 2, as the best known upper bounds
have S(n) = O(nm+o(1)/Q(n)(m−1)D/(D−1)) where m =

(D+∆

D

)
−1 = Ω(∆D) is

the maximum number of parameters to define a monic degree-∆ D-variate
polynomial, for any constant dimension D and degree ∆.

In this paper, we resolve two of the issues: we prove a lower bound in D-
dimensions, for constant D, and show that when the query time is no(1)+O(k),
the space usage is Ω(nm−o(1)), which almost matches the Õ(nm) upper bound
and essentially closes the problem for the fast-query case, as far as the exponent
of n is considered in the pointer machine model. When considering the exponent
of Q(n), we show that the analysis in [AC23b] is tight for D = 2, by presenting
matching upper bounds for uniform random point sets. This shows either the
existing upper bounds can be improved or to obtain better lower bounds a new
fundamentally different input set needs to be constructed.

103
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8.1 Introduction

In the classical semialgebraic range searching problem, we are to preprocess a set of
n points in RD such that the subset of points inside a semialgebraic region, described
by a constant number of polynomial inequalities of degree ∆ can be found efficiently.
Recently, two major advances were made on this problem. First, in 2019, Agarwal et
al. [AAEZ21] showed for polylogarithmic query time, it is possible to build a data
structure of size Õ(nβ ) space1, where β is the number of parameters needed to specify
a query polynomial. For example, for D = 2, a query polynomial is in the form of
∑i+ j≤∆ ai jxiy j ≤ 0 where ai j’s are specified at the query time, and when ∆ = 4, β can
be as large as 14 (technically, there are 15 coefficients but one coefficient can always
be normalized to be 1). In this case, a major conjecture was that if this space bound
could be improved to Õ(nD) (e.g., for ∆ = 4, from Õ(n14) to Õ(n2)). Very recently,

Afshani and Cheng [AC23b] refuted this conjecture by showing an
o

Ω(n∆+1) lower
bound. However, there are two major limitations of their lower bound. First, their
lower bound only works in R2, while the upper bound in [AAEZ21] holds for all
dimensions. Second, their lower bound only works for queries of form y−∑

∆
i=0 xi ≤ 0

and thus their lower bound does not give a satisfactory answer to the problem in the

general case. For example, for D = 2,∆ = 4, they show a
o

Ω(n5) lower bound whereas
the current best upper bound is Õ(n14). In general, their space lower bound is at

most
o

Ω(n∆+1) while the upper bound of [AAEZ21] can be Õ(nΘ(∆2)), which leaves
an unsolved wide gap, even for D = 2. Another problem brought by [AAEZ21] is the
space-time tradeoff. When restricted to queries of the form y−∑

∆
i=0 xi ≤ 0, the current

upper bound tradeoff is S(n) = Õ(n∆+1/Q(n)2∆) [MP15, AAEZ21] while the lower

bound in [AC23b] is S(n) =
o

Ω(n∆+1/Q(n)(∆+3)∆/2). Even for ∆ = 2, we observe

a discrepancy between an S(n) = Õ(n3/Q(n)4) upper and an S(n) =
o

Ω(n3/Q(n)5)
lower bound.

Here, we make progress in both lower and upper bound directions. We give a
general lower bound in D dimensions that is tight for all possible values of β . Our

lower bound attains the maximum possible β value mD,∆ =
(D+∆

D

)
−1, e.g.,

o

Ω(n14)
for D = 2,∆ = 4. Thus, our lower bounds almost completely settle the general case
of the problem for the fast-query case, as far as the exponent of n is concerned. This
improvement is quite non-trivial and requires significant new insights that are not
avaiable in [AC23b]. For the upper bound, we present a matching space-time tradeoff
for the two problems studied in [AC23b] for uniform random point sets. This shows
their lower bound analysis is tight. Since for most range searching problems, a uniform
random input instance is the hardest one, our results show that current upper bound
based on the classical method might not be optimal. We develop a set of new ideas for
our results which we believe are important for further investigation of this problem.

1Ω̃(·), Õ(·),Θ̃(·) notations hide logo(1) n factors;
o

Ω(·),
o

O(·),
o

Θ(·) notations hide no(1) factors.
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Background

In range searching, the input is a set of points in RD for a fixed constant D. The goal
is to build a structure such that for a query range, we can report or find the points in
the range efficiently. This is a fundamental problem in computational geometry with
many practical uses in e.g., databases and GIS systems. For more information, see
surveys by Agarwal [GOT18] or Matoušek [Mat94]. We focus on a fundamental case
of the problem where the ranges are semialgebraic sets of constant complexity which
are defined by intersection/union/complementation of O(1) polynomial inequalities
of constant degree at most ∆ in RD.

The study of this problem dates back to at least 35 years ago [YY85]. A linear
space and O(n1−1/D+o(1)) query time structure is given by Agarwal, Matoušek, and
Sharir [AMS13], due to the recent “polynomial method” breakthrough [GK15]. How-
ever, it is not entirely clear what happens to the “fast-query” case: if we insist on
polylogarithmic query time, what is the smallest possible space usage? Early on,
some believed that the number of parameters plays an important role and thus Õ(nβ )
space could be a reasonable conjecture [Mat94], but such a data structure was not
found until 2019 [AAEZ21]. However, after the “polynomial method” revolution, and
specifically after the breakthrough result of Agarwal, Matoušek and Sharir [AMS13],
it could also be reasonably conjectured that Õ(nD) could also be the right bound.
However, this was refuted recently by Afshani and Cheng [AC23b] who showed that

in 2D, and for polynomials for the form y−∑
∆
i=0 xi ≤ 0, there exists an

o

Ω(n∆+1) space

lower bound for data structures with query time
o

O(1). However, this lower bound
does not go far enough, even in 2D, where a semialgebraic range can be specified by
bivariate monic polynomial inequalities2 of form ∑i, j:i+ j≤∆ ai jxiy j ≤ 0 with a0∆ =−1.
In this case, β can be as large as m2,∆ =

(
∆+2

2

)
−1 = Θ(∆2), and much larger than

∆+1 even for moderate ∆ (e.g., for ∆ = 4, “5” versus “14”, for ∆ = 5, “6” versus “20”
and so on). Another main weakness is that their lower bound is only in 2D, but the
upper bound [AAEZ21] works in arbitrary dimensions.

The correct upper bound tradeoff seems to be even more mysterious. Typically,
the tradeoff is obtained by combining the linear space and the polylogarithmic query
time solutions. For simplex range searching (i.e., when ∆ = 1), the tradeoff is S(n) =
Õ(nD/Q(n)D) [Mat93], which is a natural looking bound and it is also known to
be optimal. The tradeoff bound becomes very mysterious for semialgebraic range
searching. For example, for D = 2 and when restricted to queries of the form y−
∑

∆
i=0 xi≤ 0, combining the existing solutions yields the bound S(n)= Õ(n∆+1/Q(n)2∆)

whereas the known lower bound [AC23b] is S(n) =
o

Ω(n∆+1/Q(n)(∆+3)∆/2). One
possible reason for this gap is that the lower bound construction is based on a uniform
random point set, while in practice, the input can be pathological. But in general
the uniform random point set assumption is not too restrictive for range searching
problems. Almost all known lower bounds rely on this assumption: e.g., half-space

2We define that a D-variate polynomial P(X1,X2, · · · ,XD) is monic if the coefficient of X∆
2 is −1.
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range searching [BCP93, AMM06, AMX12], orthogonal range searching [Cha90a,
Cha90b, Afs19], simplex range searching [Cha89, CR96, Afs13].

Our Results

Our results consist of two parts. First, we study a problem that we call “the general
polynomial slab range reporting”. Formally, let P(X) be a monic D-variate poly-
nomial of degree at most ∆, a general polynomial slab is defined to be the region
between P(X) = 0 and P(X) = w for some parameter w specified at the query time.
Unlike [AC23b], our construction can reach the maximum possible parameter num-
ber mD,∆. For simplicity, we use m instead of mD,∆ when the context is clear. We

give a space-time tradeoff lower bound of S(n) =
o

Ω(nm/Q(n)Θ((∆2+D∆)m)), which is
(almost) tight when Q(n) = no(1). We also generalize the lower bound for the annuli
reporting problem studied in [AC23b] to higher dimensions. For this problem, we

show a space lower bound of S(n) =
o

Ω(nD+1/Q(n)2D), which is again (almost) tight
in the fast-query time case.

For the second part, we present data structures that match the lower bounds studied
in the work by Afshani and Cheng [AC23b]. We show that their lower bounds for
2D polynomial slabs and 2D annuli are tight for uniform random point sets. Our
bound shows that current tradeoff given by the classical method of combining extreme
solutions [MP15, AAEZ21] might not be tight. We shred some lights on the upper
bound tradeoff and develop some ideas which could be used to tackle the problem.
Our results are summarized in Table 1.

Table 1: Our Results (marked by ∗). Our upper bounds are for uniform random point
sets.

Query Types Lower Bound Upper Bound
General Polynomial Slabs(

m = mD,∆ =
(D+∆

D
)
−1
) S(n) =

o

Ω

(
nm

Q(n)Θ(m)

)∗
S(n) = Õ

(
nm

Q(n)Θ(m)

)
[MP15, AAEZ21]

When Q(n) =
o

O(1) S(n) =
o

Ω(nm)∗ S(n) = Õ(nm) [MP15, AAEZ21]

2D Semialgebraic Sets(
m = m2,∆ =

(2+∆

2
)
−1
) S(n) =

o

Ω

(
nm

Q(n)m+m2(m−1)−1

)∗ S(n) = Õ
(

nm

Q(n)2m−2

)
[MP15, AAEZ21]

S(n) = Õ
(

nm

Q(n)3m−4

)∗
2D Polynomial Slabs S(n) =

o

Ω

(
n∆+1

Q(n)(∆+3)∆/2

)
[AC23b]

S(n) = Õ
(

n∆+1

Q(n)2∆

)
[MP15, AAEZ21]

S(n) = Õ
(

n∆+1

Q(n)(∆+3)∆/2

)∗
2D Annuli S(n) =

o

Ω

(
n3

Q(n)5

)
[AC23b]

S(n) = Õ
(

n3

Q(n)4

)
[MP15, AAEZ21]

S(n) = Õ
(

n3

Q(n)5

)∗
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Technical Contributions

Compared to the previous lower bound in [AC23b], we need to wrestle with many
complications that stem from the algebraic geometry nature of the problem. In
Section 8.3, we cover them in greater detail, but briefly speaking, the technical
heart of the results in [AC23b] is that “two univariate polynomials P1(x) and P2(x)
that have sufficiently different leading coefficients, cannot pass close to each other
for too long. However, this claim is not true for even bivariate polynomials, since
P1(x,y) and P2(x,y) could have infinitely many roots in common and thus we can
have P1(x,y)−P2(x,y) = 0 in an unbounded region of R2. Overcoming this requires
significant innovations.

8.2 Preliminaries

In this section, we introduce some tools we will use in this paper. We will mainly use
the lower bound tools used in [AC23b]. For more detailed introduction, we refer the
readers to [AC23b].

Geometric Lower Bound Frameworks

We first present a lower bound framework in the pointer machine model of compu-
tation for range reporting problems. It is a streamlined version of the framework
by Chazelle [Cha90a] and Chazelle and Rosenberg [CR96]. In essence, this is an
encapsulation of the way the framework is used in [AC23b].

In a nutshell, in the pointer machine model, the memory is represented as a
directed graph where each node can store one point and it has two pointers to two
other nodes. Given a query, starting from a special “root” node, the algorithm explores
a subgraph that contains all the input points to report. The size of the explored
subgraph is the query time.

Intuitively, for range reporting, to answer a query fast, we need to store its output
points close to each other. If each query range contains many points to report and
two ranges share very few points, some points must be stored multiple times, thus
the total space usage must be big. We present the framework, and refer the readers to
Appendix 8.A for the proof.

Theorem 8.2.1. Suppose the D-dimensional geometric range reporting problems
admit an S(n) space and Q(n)+O(k) query time data structure, where n is the input
size and k is the output size. Let µD(·) denote the D-dimensional Lebesgue measure.
(We call this D-measure for short.) Assume we can find m= nc ranges R1,R2, · · · ,Rm

in a D-dimensional cube C D of side length |l| for some constant c such that (i) ∀i =
1,2, · · · ,m,µD(Ri∩C D)≥ 4c|l|DQ(n)/n; and (ii) µD(Ri∩R j) =O(|l|D/(n2

√
logn))

for all i 6= j. Then, we have S(n) =
o

Ω(mQ(n)).
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A Lemma for Polynomials

Given a univariate polynomial and some positive value w, the following lemma
from [AC23b] upper bounds the length of the interval within which the absolute value
of the polynomial is no more than w. We will use this lemma as a building block for
some of our proofs.

Lemma 8.2.1 (Afshani and Cheng [AC23b]). Given a degree-∆ univariate polynomial
P(x) = ∑

∆
i=0 aixi where |a∆|> 2 and ∆ > 0. Let w be any positive value. If |P(x)| ≤ w

for all x ∈ [x0,x0 + t] for some parameter x0, then t = O((w/|a∆|)1/∆).

Useful Properties about Matrices

In this section, we recall some useful properties about matrices. We first recall
some properties of the determinant of matrices. One important property is that the
determinant is mutilinear:

Lemma 8.2.2. Let A =
[
a1 · · · an

]
be a n× n matrix where ai’s are vectors in

Rn. Suppose a j = r ·w+v for some r ∈ R and w,v ∈ Rn, then the determinant of A,
denoted det(A), is

det(A) = det
([

a1 · · · a j−1 a j a j+1 · · · an
])

= r ·det
([

a1 · · · a j−1 w a j+1 · · · an
])

+det
([

a1 · · · a j−1 v a j+1 · · · an
])
.

One of the special types of matrices we will use is the Vandermonde matrix which
is a square matrix where the terms in each row form a geometric series, i.e., Vi j = x j−1

i
for all indices i and j. The determinant of such a matrix is det(V ) =∏1≤i< j≤n(x j−xi).

Given an n-tuple λ = (λ1,λ2, · · · ,λn) where λ1≥ λ2≥ ·· · ≥ λn≥ 0, we can define
a generalized Vandermonde matrix V ∗ defined by λ , where V ∗i j = xλn− j+1+ j−1

i . The
determinant of V ∗ is known to be the product of the determinant of the induced Van-
dermonde matrix VV ∗ with Vi j = x j−1

i and the Schur polynomial sλ (x1,x2, · · · ,xn) =

∑T xt1
1 · · ·xtn

n , where the summation is over all semistandard Young tableaux [You01]
T of shape λ . The exponents t1, t2, · · · , tn are all nonnegative numbers. The following
lemma bounds the determinant of a generalized Vandermonde matrix.

Lemma 8.2.3. Let V ∗ be a generalized Vandermonde matrix defined by λ =(λ1,λ2, · · · ,λn)
where λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. If n,λ1 = Θ(1), and for all i, xi = Θ(1), then
det(V ∗) =Θ(det(VV ∗)), where VV ∗ is the induced Vandermonde matrix with Vi j = x j−1

i .

8.3 Lower Bound for Range Reporting with General
Polynomial Slabs

In this section, we prove our main lower bound for general polynomial slabs. We first
formally define polynomial slabs.



8.3. LOWER BOUND FOR RANGE REPORTING WITH GENERAL POLYNOMIAL

SLABS 109

Definition 8.3.1. A general polynomial slab in RD is a triple (P,a,b) where P ∈R[X ]
is a degree-∆ D-variate polynomial and a,b are two real numbers such that a < b.
A general polynomial slab is defined as {X ∈ RD : a≤ P(X)≤ b}. Note that due to
rescaling, we can assume that the polynomial is monic.

Before presenting our results, we first describe the technical challenges of this
problem. We explain why the construction used in [AC23b] cannot be generalized in
an obvious way and give some intuition behind our lower bound construction.

Technical Challenges

Our goal is a lower bound of the form
o

Ω(nm/Q(n)Θ(m)). To illustrate the challenges,
consider the case D = 2 and the unit square U = U 2 = [0,1]× [0,1]. To use The-

orem 9.2.1, we need to generate about
o

Ω(nm) polynomial slabs such that each slab
should have width approximately Ω(Q(n)/n), and any two slabs should intersect with
area approximately O(1/n). Intuitively, this means two slabs cannot intersect over an
interval of length Ω(1/Q(n)).

In Lemma 8.2.1, for univariate polynomials, the observation behind their con-
struction is that when the leading coefficients of two polynomials differ by a large
number, the length of the interval in which two polynomials are close to each other
is small. However, when we consider general bivariate polynomials in R2, this ob-
servation is no longer true. For example, consider P1(x,y) = (x+1)(1000x2 + y) and
P2(x,y) = (x+1)(x2 +1000y). The leading coefficients are 1000 and 1 respectively,
but since P1,P2 have a common factor (x+ 1), their zero sets have a common line.
Thus any slab of width Q(n)/n generated for these two polynomial will have infinite
intersection area, which is too large to be useful.

At first glance, it might seem that this problem can be fixed by picking the
polynomials randomly, e.g., each coefficient is picked independently and uniformly
from the interval [0,1], as a random polynomial in two or more variables is irreducible
with probability 1. Unfortunately, this does not work either but for some very nontrivial
reasons. To see this, consider picking coefficients uniformly at random from range
[0,1] for bivariate polynomials P(x,y) = ∑i+ j≤∆ ai jxiy j. The probability of pick a
polynomial with 0≤ a0 j ≤ 1

n for all a0 j is 1
n∆+1 . For such polynomials, 0≤ P(0,y)≤

∆+1
n for y ∈ [0,1]. Suppose we sampled two such polynomials, then the two slabs

generated using them will contain x = 0 for y∈ [0,1], meaning, the two slabs will have
too large of an area (Ω(Q(n)/n)) in common, so we cannot have that. Unfortunately,
if we sample more than n∆+1 polynomials, this will happen with probability close to
one, and there seems to be no easy fix. A deeper insight into the issue is given below.

Map a polynomial ∑i+ j≤∆ ai jxiy j to the point (a00,a01, · · · ,a∆0) in Rm. The
above randomized construction corresponds to picking a random point from the unit
cube U m in Rm. Now consider the subset Γ of Rm that corresponds to reducible
polynomials. The issue is that Γ intersects U m and thus we will sample polynomials
that are close to reducible polynomials, e.g., a sampled polynomial with a0 j = 0 ∈
[0, 1

n ] is close to the reducible polynomial with a0 j = 0. Pick a large enough sample
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and two points will lie close to the same reducible polynomial and thus they will
produce a “large” overlap in the construction. Our main insight is that there exists a
point p in U m that has a “fixed” (i.e., constant) distance to Γ; thus, we can consider
a neighborhood around p and sample our polynomials from there. However, more
technical challenges need to be overcome to even make this idea work but it turns
out, we can simply pick our polynomials from a grid constructed in the small enough
neighborhood of some such point p in Rm.

A Geometric Lemma

In this section, we show a geometric lemma which we will use to establish our lower
bound. In a nutshell, given two monic D-variate polynomials P1,P2 and a point
p = (p2, p3, · · · , pD) ∈ RD−1 in the (D−1)-dimensional subspace perpendicular to
the X1-axis, we define the distance between Z(P1)

3 and Z(P2) along the X1-axis at
point p to be |a−b|, where (a, p2, · · · , pD) ∈ Z(P1) and (b, p2, · · · , pD) ∈ Z(P2). In
general, this distance is not well-defined as there could be multiple a and b’s satisfying
the definition. But we can show that for a specific set of polynomials, a,b can be made
unique and thus the distance is well-defined. For P1,P2 with “sufficiently different”
coefficients, we present a lemma which upper bounds the (D−1)-measure of the set
of points p at which the distance between Z(P1) and Z(P2) is “small”. Intuitively, this
can be viewed as a generalization of Lemma 8.2.1. We first prove the lemma in 2D
for bivariate polynomials, and then extend the result to higher dimensions.

We begin by defining notations we will use during the proof.

Definition 8.3.2. Let ID ⊆ {(i1, i2, · · · , iD) ∈ND}4, D≥ 1, be a set of D-tuples where
each tuple consists of nonnegative integers. We call ID an index set (of dimension D).
Let XD = (X1,X2, · · · ,XD) be a D-tuple of indeterminates. When the context is clear,
we use X for simplicity. Given an index set ID, we define

P(X) = ∑
i∈ID

AiX i,

where Ai ∈ R is the coefficient of X i and X i = X i1
1 X i2

2 · · ·X
iD
D , to be a D-variate poly-

nomial. For any i ∈ ID, we define σ(i) = ∑
D
j=1 i j. Let ∆ be the maximum σ(i) with

Ai 6= 0, and we say P is a degree-∆ polynomial. Given a D-tuple T , we use T: j to
denote a j-tuple by taking only the first j components of T . Also, we use notation Tj

to specify the j-th component of T . Conversely, given a (D−1)-tuple t and a value v,
we define t⊕ v to be the D-tuple formed by appending v to the end of t.

We will consider polynomials of form

P(X) = X1−X∆
2 + ∑

i∈ID

AiX i,

3Z(P) denotes the zero set of polynomial P.
4In this paper, N= {0,1,2, · · ·}.
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where 0≤ Ai = O(ε) = o(1) for all σ(i)≤ ∆ except that Ai = 0 for i = (0,∆,0, · · · ,0).
Intuitively, these are monic polynomials packed closely in the neighborhood of
P(X) = X1−XD

2 . For simplicity, we call them “packed” polynomials. We will prove
a property for packed polynomials that are “sufficiently distant”. More precisely,

Definition 8.3.3. Given two distinct packed degree-∆ D-variate polynomials P1,P2,
we say P1,P2 are “distant” if each coefficient of P1−P2 has absolute value at least
ξD = δτB(ητ)(D−2)∆ > 0 if not zero for parameters δ ,η ,τ > 0 and ητ =O((1/ε)1/B),
where B =

(b
2

)
and b = m2,∆ is the maximum number of coefficients needed to define

a monic degree-∆ bivariate polynomial.

We will use the following simple geometric observation. See Appendix 8.B for
the proof.

Observation 8.3.1. Let P be a packed D-variate polynomial and a=(a1,a2, · · · ,aD)∈
Z(P). If ai ∈ [1,2] for all i = 2,3, · · · ,D, then there exists a unique a1 such that
0 < a1 = O(1).

With this observation, we can define the distance between the zero sets of two
polynomials along the X1-axis at a point in [1,2]D−1 of the subspace perpendicular to
the X1 axis.

Definition 8.3.4. Given two packed polynomials P1,P2 and a point p=(p2, p3, · · · , pD)∈
[1,2]D−1, we define the distance between Z(P1) and Z(P2) at p, denoted π(Z(P1),Z(P2), p),
to be |a−b| s.t. a,b > 0, and (a, p2, p3, · · · ,PD) ∈ Z(P1) and (b, p2, p3, · · · ,PD) ∈
Z(P2).

Now we show a generalization of Lemma 8.2.1 to distant bivariate polynomials in
2D.

Lemma 8.3.1. Let P1,P2 be two distinct distant bivariate polynomials. Let I = {y :
π(Z(P1),Z(P2),y) = O(w)∧ y ∈ [1,2]}, where w = δ/ηB = o(1). Then |l|= O( 1

ητ
).

Proof. We prove it by contradiction. The idea is that if the claim does not hold,
then we can “tweak” the coefficients of P2 by a small amount such that the tweaked
polynomial and P1 have b common roots. Next, we show this implies that the
tweaked polynomial is equivalent to P1. Finally we reach a contradiction by noting
that by assumption at least one of the coefficients of P1 and P2 is not close. Let
P1(x,y) = x− y∆ +∑

∆
i=0 ∑

∆−i
j=0 ai jxiy j and P2(x,y) = x− y∆ +∑

∆
i=0 ∑

∆−i
j=0 bi jxiy j where

by definition all ai j’s and bi j’s are O(ε). Suppose for the sake of contradiction that
|l|= ω( 1

ητ
). We pick b values y1,y2, · · · ,yb in I s.t.

∣∣yi− y j
∣∣≥ |l|/b for all i 6= j. Let

x1,x2, · · · ,xb be the corresponding values s.t. (xk,yk) ∈ Z(P1) in the first quadrant, i.e.,
P1(xk,yk) = 0 for k = 1,2, · · · ,b. Note that

P1(xk,yk) = 0≡ xk− y∆
k +

∆

∑
i=0

∆−i

∑
j=0

ai jxi
ky j

k = 0 =⇒ xk = y∆
k −O(ε),
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since ai j = O(ε) and xk,yk = O(1) by Observation 8.3.1. Since π(Z(P1),Z(P2),yk) =
O(w) for all yk ∈ I, let (xk+∆xk,yk) be the points on Z(P2), we have P2(xk+∆xk,yk) =
P2(xk,yk)+Θ(∆xk) = 0. Since |∆xk| = O(w), P2(xk,yk) = gk for some |gk| = O(w).
We would like to show that we can “tweak” every coefficient bi j of P2(x,y) by some
value di j, to turn P2 into a polynomial Q s.t. Q(xk,yk) = 0,∀k = 1,2, · · · ,b. If so, for
every pair (xk,yk),

Q(xk,yk) = xk− y∆
k +

∆

∑
i=0

∆−i

∑
j=0

(bi j +di j)xi
ky j

k

= P2(xk,yk)+
∆

∑
i=0

∆−i

∑
j=0

di jxi
ky j

k

= gk +
∆

∑
i=0

∆−i

∑
j=0

di j(y∆
k −O(ε))iy j

k

= gk +
∆

∑
i=0

∆−i

∑
j=0

di j(yi∆
k −O(ε))y j

k,

where the last equality follows from ε = o(1) and 1≤ yk ≤ 2. So to find di j’s and to
be able to tweak P2(x,y), we need to solve the following linear system

1 y1 y2
1 · · · y∆−1

1 y∆
1 −O(ε) · · · y∆2

1 −O(ε)

1 y2 y2
2 · · · y∆−1

2 y∆
2 −O(ε) · · · y∆2

2 −O(ε)
...

...
...

. . .
...

...
. . .

...
1 yb y2

b · · · y∆−1
b y∆

b−O(ε) · · · y∆2

b −O(ε)

 ·


d00
d01

...
d∆0

=


−g1
−g2

...
−gb

 ,
where the exponents of yk are generated by i∆+ j for i, j ∈ {0,1,2, · · · ,∆}, j 6= ∆, and
i+ j ≤ ∆. Let us call the above linear system A ·d = g.

By Lemma 8.2.2, det(A) = det(A∗)+∑
Θ(1)
l=1 det(Al), where A∗ is a generalized

Vandermonde matrix defined by an b-tuple λ = (∆2− b, . . . ,0), and each Al is a
matrix with some columns being O(ε). Since b =

(2+∆

2

)
−1 is Θ(1), by Lemma 8.2.3,

we can bound det(A∗) by Θ(det(VA∗)), where VA∗ is the induced Vandermonde matrix.
Since

∣∣yi− y j
∣∣ = Ω(|I|) for i 6= j, det(VA∗) = ∏1≤i< j≤b(y j− yi)) = Ω(|I|B). On the

other hand, for every matrix Al , there is at least one column where the magnitude of
all the entries is O(ε). Since all other entries are bounded by O(1), by the Leibniz
formula for determinants, |det(Al)| = O(ε) = O(( 1

ητ
)B). Since |I|B = ω(( 1

ητ
)B),

we can bound |det(A)| = Ω(|I|B) and in particular |det(A)| 6= 0 and thus the above
system has a solution and the polynomial Q exists. Furthermore, we can compute
d = A−1g = 1

det(A)C · g, where C is the cofactor matrix of A. Since all entries of A
are bounded by O(1), then the entries of C, being cofactors of A, are also bounded
by O(1). Since |gk| = O(w) and |I| = ω( 1

ητ
), for every k = 1,2, · · · ,b, we have∣∣di j

∣∣= O(w/|I|B) = o(w(ητ)B) = o(δτB).
However, since both Z(P1) and Z(Q) pass through these b points, both P1 and

Q should satisfy A · c1 = 0 and A · c2 = 0, where c1,c2 are their coefficient vectors
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respectively. But since det(A) 6= 0, c1 = c2, meaning, P1 ≡ Q. This means for every
i, j = 0,1, · · · ,∆, where j 6= ∆ and i+ j ≤ ∆,

∣∣ai j−bi j
∣∣= di j = o(δτB). However, by

assumption, if two polynomials are not equal, then there exists at least one ci j such
that they differ by at least δτB, a contradiction. So |l|= O( 1

ητ
).

We now generalize Lemma 8.3.1 to higher dimensions.

Lemma 8.3.2. Let P1,P2 be two distinct distant D-variate polynomials. Let S =
{X : π(Z(P1),Z(P2),X) = O(w)∧X ∈ [1,2]D−1}, where w = δ/ηB = o(1). Then
µD−1(S) = O( 1

ητ
).

Proof. We prove the lemma by induction. The base case when D = 2 is Lemma 8.3.1.
Now suppose the lemma holds for dimension D− 1, we prove it for dimension D.
Observe that we can rewrite a D-variate polynomial P(X) = X1−X∆

2 +∑i∈ID AiX i as
P(X) = X1−X∆

2 +∑ j∈ID
:D−1

( f j(XD))X
j

:D−1, where f j(XD) =∑
∆−σ( j)
k=0 A j⊕kXk

D. Consider
two distinct distant D-variate polynomials P(X) = X1−X∆

2 +∑i∈ID AiX i and Q(X) =

X1−X∆
2 +∑i∈ID BiX i. Let f j,g j be the corresponding coefficients for X j

:D−1. Note
that there exists some j such that f j 6≡ g j because P1,P2 are distinct. Let h j(XD) =
f j(XD)− g j(XD) and observe that h j is a univariate polynomial in XD. We show
that the interval length of XD in which

∣∣h j(XD)
∣∣< ξD−1 is upper bounded by O( 1

ητ
)

for any h j(XD) 6≡ 0. Pick any h j(XD) 6≡ 0 and note that this means there exists at
least one coefficient of h j(XD) that is nonzero. By assumption, each coefficient of
h j(XD) has absolute value at least ξD if not zero. If the constant term is the only
nonzero term, then the interval length of XD in which

∣∣h j(XD)
∣∣ < ξD−1 is 0, since∣∣h j(XD)

∣∣≥ ξD > ξD−1 by definition. Otherwise by Lemma 8.2.1, the interval length
|r| for XD in which

∣∣h j(XD)
∣∣< ξD−1 is upper bounded by

|r|= O

((
ξD−1

ξD

)1/∆
)

= O

((
1

(ητ)∆

)1/∆
)

= O
(

1
ητ

)
.

Since the total number of different j’s is Θ(1), the total number of h j(XD) is then
Θ(1). So the total interval length for XD within which there is some nonzero h j(XD)
with

∣∣h j(XD)
∣∣ < ξD−1 is upper bounded by Θ(1) ·O( 1

ητ
) = O( 1

ητ
). Since we are in

a unit hypercube, we can simply upper bound µD−1(S) by O( 1
ητ
) ·Θ(1) = O( 1

ητ
) in

this case. Otherwise,
∣∣h j(XD)

∣∣≥ ξD−1 for all j, and by the inductive hypothesis, the
(D−2)-measure of S in [1,2]D−2 is upper bounded by O( 1

ητ
). Integrating over all XD,

µD−1(S) is bounded by O( 1
ητ
) in this case as well.

Lower Bound for General Polynomial Slabs

Now we are ready to present our lower bound construction. We will use a set S of
D-variate polynomials in R[X ] of form:

P(X) = X1−X∆
2 + ∑

i∈ID

AiX i,
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where X is a D-tuple of indeterminates, ID is an index set containing all D-tuples i
satisfying σ(i)≤ ∆, and each Ai ∈ {kξD : k ∈ {b ε

2ξD
c,b ε

2ξD
c+1, · · · ,b ε

ξD
c}} for some

ξD = δτB(ητ)(D−2)∆ to be set later, except for one special coefficient: we set Ai = 0
for i = (0,∆,0, · · · ,0). Note that every pair of the polynomials in S is distant. A
general polynomial slab is defined to be a triple (P,0,w) where P ∈S and w is a
parameter to be set later. We need w = o(ε) and ε = o(1).

We consider a unit cube U D = ∏
D
i=1[1,2]⊆ RD and use Framework 9.2.1. Recall

that to use Framework 9.2.1, we need to lower bound the intersection D-measure of
each slab we generated and U D, and upper bound the intersection D-measure of two
slabs.

Given a slab (P,0,w) in our construction, first note that both P and P−w are
packed polynomials. We define the width of (P,0,w) to be the distance between Z(P)
and Z(P−w) along the X1-axis. The following lemma shows that the width of each
slab we generate will be Θ(w) in U D. See Appendix 8.C for the proof.

Lemma 8.3.3. Let P1 ∈S and P2 =P1−r for any 0≤ r =O(w). Then π(Z(P1),Z(P2),X)=
Θ(r) for any X ∈ [1,2]D−1.

The following simple lemma bounds the (D− 1)-measure of the projection of
the intersection of the zero set of any polynomial in our construction and U D on the
(D−1)-dimensional subspace perpendicular to X1-axis. See Appendix 8.D for the
proof.

Lemma 8.3.4. Let P ∈S . The projection of Z(P)∩U D on the (D−1)-dimensional
space perpendicular to the X1-axis has (D−1)-measure Θ(1).

Combining Lemma 8.3.3 and Lemma 8.3.4, we easily bound the intersection
D-measure of any slab in our construction and U D.

Corollary 8.3.1. Any slab in our construction intersects U D with D-measure Θ(w).

Combining Lemma 8.3.3 and Lemma 8.3.2, we easily bound the intersection
D-measure of two slabs in our construction in U D.

Corollary 8.3.2. Any two slabs in our construction intersect with D-measure O( w
ητ
)

in U D.

Since there are at most m =
(D+∆

D

)
−1 parameters for a degree-∆ D-variate monic

polynomial, the number of polynomial slabs we generated is then

Θ

((
ε

ξD

)m)
= Θ

((
n

Q(n)1+2B+(D−2)∆2((D−2)∆+2B)
√

logn

)m)
= O(nm),

by setting δ = wQ(n)B, η = Q(n), τ = 2
√

logn, ε = 1
Q(n)B2B

√
logn , and w = cwQ(n)/n

for a sufficiently large constant cw. We pick cw s.t. each slab intersects U D with D-
measure, by Corollary 8.3.1, Ω(w)≥ 4mQ(n)/n. By Corollary 8.3.2 the D-measure
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of the intersection of two slabs is upper bounded by O( w
Q(n)2

√
logn ) = O( 1

n2
√

logn ). By

Theorem 9.2.1, we get the lower bound S(n) =
o

Ω
(
nm/Q(n)m+2mB+m(D−2)∆−1

)
. Thus

we get the following result.

Theorem 8.3.1. Let P be a set of n points in RD, where D≥ 2 is an integer. Let R
be the set of all D-dimensional generalized polynomial slabs {(P,0,w) : deg(P) =
∆ ≥ 2,w > 0} where P ∈ R[X1,X2, · · · ,XD] is a monic degree-∆ polynomial. Let b
(resp. m) be the maximum number of parameters needed to specify a moinc degree-∆
bivariate (resp. D-variate) polynomial. Then any data structure for P that can answer
generalized polynomial slab reporting queries from R with query time Q(n)+O(k),

where k is the output size, must use S(n) =
o

Ω

(
nm

Q(n)m+2mB+m(D−2)∆−1

)
space, where and

B =
(b

2

)
.

We mention in passing that Afshani and Cheng also studied the lower bounds for
2D annuli [AC23b]. It is also possible to generalize their construction and argument
to higher dimensions in a straightforward way to obtain a lower bound for sphere
shells of form {p ∈ RD : r ≤ ‖p−O‖2 ≤ r+w} defined by its center O, radius r, and
width w in RD. Note that sphere shells cannot be modeled by polynomial slabs we
considered in the proof of Theorem 8.3.1 and so the lower bound proved there does
not apply to sphere shells. We simply state the result here and refer the readers to
Appendix 8.E for details.

Theorem 8.3.2. Any data structure that solves sphere shell reporting problems in D
dimensions on a point set of size n with query time Q(n)+O(k), where D≥ 3 and k

is the output size, must use S(n) =
o

Ω(nD+1/Q(n)2D) space.

8.4 Data Structures for Uniform Random Point Sets

In this section, we present data structures for an input point set P uniformly randomly
distributed in a unit square U = [0,1]× [0,1] for semialgebraic range reporting
queries in R2. Our hope is that some of these ideas can be generalized to build more
efficient data structures for general point sets. To this end, we show two approaches
based on two different assumptions: one assumes the query curve has bounded
curvature, and the other assumes bounded derivatives. We show that for any degree-∆
bivariate polynomial inequality, we can build a data structure with space-time tradeoff
S(n) = Õ(nm/Q(n)3m−4)5, which is optimal for m = 3 [AC23b]. When the query
curve has bounded derivatives for the first ∆ orders within U , this bound sharpens
to Õ(nm/Q(n)((2m−∆)(∆+1)−2)/2), which matches the lower bound in [AC23b] for
polynomial slabs generated by inequalities of form y−∑i≤∆ aixi ≥ 0. Since any
polynomial can be factorized into a product of O(1) irreducible polynomials, and we
can show that the zero set of any irreducible polynomial has bounded curvature (See

5In this section, we use m to denote the number of parameters needed to define a degree-∆ bivariate
polynomial.
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Appendix 8.F for more details), we can express the original range by a semialgebraic
set consisting of O(1) irreducible polynomials. We mention that both data structures
can be made multilevel, then by the standard result of multilevel data structures, see
e.g., [Mat93] or [Aga17], it suffices for us to focus on one irreducible polynomial
inequality. So the curvature-based approach works for all semialgebraic sets. For
both approaches, the main ideas are similar: we first partition U into a Q(n)×Q(n)
grid G, and then build a set of slabs in each cell of G to cover the boundary ∂R of a
query range R. The boundaries of each slab consist of the zero sets of lower degree
polynomials. We build a data structure to answer degree-∆ polynomial inequality
queries inside each slab, then use the boundaries of slabs to express the remaining
parts of R. This lowers the degree of query polynomials, and then we can use fast-
query data structures to handle the remaining parts. We assume our data structure can
perform common algebraic operations in O(1) time, e.g., compute roots, compute
derivatives, etc.

A Curvature-based Approach

The main observation we use is that when the total absolute curvature of ∂R is small,
the curve behaves like a line, and so we can cover it using mostly “thin” slabs, and a
few “thick” slabs when the curvature is big. See Figure 1 for an example. We use the
curvature as a “budget”: thin slabs have few points in them so we can afford to store
them in a “fast” data structure and the overhead will be small. Doing the same with
the thick slabs will blow up the space too much so instead we store them in “slower”
but “smaller” data structures. The crucial observation here is that for any given query,
we only need to use a few “thick” slabs so the slower query time will be absorbed in
the overall query time.

Figure 1: Cover an Ellipse with Slabs of Different Widths

The high-level idea is to build a two-level data structure. For the bottom-level,
we build a multilevel simplex range reporting data structure [Mat93] with query time
Õ(1)+O(k) and space S(n) = Õ(n2). For the upper-level, for each cell C in G and
a parameter α = 2i/Q(n), for i = 0, · · · ,blogQ(n)c, we generate a series of parallel
disjoint slabs of width α/Q(n) such that they together cover C. Then we rotate these
slabs by angle γ = j/Q(n), for j = 1,2, · · · ,b2πQ(n)c. For each slab we generated
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during this process, we collect all the points in it and build a Õ(Q(n)α)+O(k) query
time and Õ((n/(Q(n)α))m) space data structure by linearization [YY85] to Rm and
using simplex range reporting [Mat93].

The following lemma shows we can efficiently report the points close to ∂R
using slabs we constructed. For the proof of this lemma, we refer the readers to
Appendix 8.G.

Lemma 8.4.1. We can cut ∂R into a set S of O(Q(n)) sub-curves such that for each
sub-curve σ , we can find a set Sσ of slabs that together cover σ . Let Pσ be the subset of
the input that lies inside the query and inside the slabs, i.e., Pσ = R ∩P ∩ (∪s∈Sσ

s).
Pσ can be reported in time Q(n)Õ(κσ + 1/Q(n))+O(|Pσ |), where κσ is the total
absolute curvature of σ . Furthermore, for any two distinct σ1,σ2 ∈S , s1∩ s2 = /0
for all s1 ∈ Sσ1 ,s2 ∈ Sσ2 .

With Lemma 8.4.1, we can now bound the total query time for points close to ∂R
by ∑σ Q(n)Õ(κσ +1/Q(n))+O(tσ ) = Õ(Q(n))+O(t1), where t1 is the output size.
An important observation is that after covering ∂R, we can express the remaining
regions by the boundaries of the slabs used and G, which are linear inequalities and so
we can use simplex range reporting. Lemma 8.4.2 characterizes the remaining regions.
See Appendix 8.H for the proof.

Lemma 8.4.2. There are O(Q(n)) remaining regions and each region can be ex-
pressed using O(1) linear inequalities. These regions can be found in time O(Q(n)).

With Lemma 8.4.2, the query time for the remaining regions is Õ(Q(n))+O(t2),
where t2 is the number of points in the remaining regions. Then the total query time is
easily computed to be bounded by Õ(Q(n))+O(k), where k = t1 + t2.

To bound the space usage for the top-level data structure, note that we have Q(n)2

cells, for each α , we generate Θ( 1/Q(n)
α/Q(n)) = Θ(1/α) slabs for each of the Θ(Q(n))

angles. Since points are distributed uniformly at random, the expected number of
points in a slab of width α/Q(n) in a cell C is O(n · 1

Q(n) ·
α

Q(n)). So the space usage
for the top-level data structure is

S(n) = ∑
α

Q(n)2 ·Θ
(

1
α

)
·Θ(Q(n)) · Õ

O
(

n · 1
Q(n) ·

α

Q(n)

)
Q(n)α

m

= Õ
(

nm

Q(n)3m−4

)
.

On the other hand, we know that the space usage for the bottom-level data structure is
Õ(n2). So the total space usage is bounded by Õ( nm

Q(n)3m−4 ) for m≥ 3.
We therefore obtain the following theorem.

Theorem 8.4.1. Let R be the set of semialgebraic ranges formed by degree-∆ bi-
variate polynomials. Suppose we have a polynomial factorization black box that
can factorize polynomials into the product of irreducible polynomials in time O(1),
then for any logO(1) n ≤ Q(n) ≤ nε for some constant ε , and a set P of n points
distributed uniformly randomly in U = [0,1]× [0,1], we can build a data structure
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of space Õ(nm/Q(n)3m−4) such that for any R ∈R, we can report R ∩P in time
Õ(Q(n))+O(k) in expectation, where m≥ 3 is the number of parameters needed to
define a degree-∆ bivariate polynomial and k is the output size.

A Derivative-based Approach

If we assume that the derivative of ∂R is O(1), the previous curvature-based approach
can be easily adapted to get a derivative-based data structure. See Appendix 8.I for
details. We can even do better by using slabs whose boundaries are the zero sets of
higher degree polynomials instead of linear polynomials. Using Taylor’s theorem,
we show that we can cover the boundary of the query using “thin” slabs of lower
degree polynomials, similar to the approach above. The full details are presented in
Appendix 8.J.

Theorem 8.4.2. Let R be the set of semialgebraic ranges formed by degree-∆
bivariate polynomials with bounded derivatives up to the ∆-th order. For any
logO(1) n ≤ Q(n) ≤ nε for some constant ε , and a set P of n points distributed
uniformly randomly in U = [0,1]× [0,1], we can build a data structure which uses
space Õ(nm/Q(n)((2m−∆)(∆+1)−2)/2) s.t. for any R ∈ R, we can report P ∩R in
time Õ(Q(n))+O(k) in expectation, where m is the number of parameters needed to
define a degree-∆ bivariate polynomial and k is the output size.

Remark 8.4.1. We remark that our data structure can also be adapted to support
semialgebraic range searching queries in the semigroup model.

8.5 Conclusion and Open Problems

In this paper, we essentially closed the gap between the lower and upper bounds
of general semialgebraic range reporting in the fast-query case at least as far as the
exponent of n is concerned. We show that for general polynomial slab queries defined
by D-variate polynomials of degree at most ∆ in RD any data structure with query

time no(1)+O(k) must use at least S(n) =
o

Ω(nm) space, where m =
(D+∆

D

)
−1 is the

maximum possible parameters needed to define a query. This matches current upper
bound (up to an no(1) factor).

We also studied the space-time tradeoff and showed an upper bound that matches
the lower bounds in [AC23b] for uniform random point sets.

The remaining big open problem here is proving a tight bound for the exponent of
Q(n) in the space-time tradeoff. There is a large gap between the exponents in our
lower bound versus the general upper bound. Our results show that current upper
bound might not be tight. On the other hand, our lower bound seems to be suboptimal
when the query time is nΩ(1)+O(k). Both problems seem quite challenging, and
probably require new tools.



Appendices

8.A Proof of Theorem 9.2.1

Theorem 9.2.1. Suppose the D-dimensional geometric range reporting problems
admit an S(n) space and Q(n)+O(k) query time data structure, where n is the input
size and k is the output size. Let µD(·) denote the D-dimensional Lebesgue measure.
(We call this D-measure for short.) Assume we can find m= nc ranges R1,R2, · · · ,Rm

in a D-dimensional cube C D of side length |l| for some constant c such that (i) ∀i =
1,2, · · · ,m,µD(Ri∩C D)≥ 4c|l|DQ(n)/n; and (ii) µD(Ri∩R j) =O(|l|D/(n2

√
logn))

for all i 6= j. Then, we have S(n) =
o

Ω(mQ(n)).

First we present the original lower bound framework by Chazelle [Cha90a] and
Chazelle and Rosenberg [CR96].

Theorem 8.A.1. Suppose the D-dimensional geometric range reporting problems
admit an S(n) space Q(n)+O(k) query time data structure, where n is the input
size and k is the output size. Assume we can find m subsets q1,q2, · · · ,qm ⊂S for
some input point set S , where each qi, i = 1, · · · ,m is the output of some query and
they satisfy the following two conditions: (i) for all i = 1, · · · ,m, |qi| ≥ Q(n); and
(ii) |qi1 ∩qi2 ∩·· ·qiα | ≤ c for some value c≥ 2. Then, we have S(n) = Ω(

∑
m
i+1 |qi|

α2O(c) ) =

Ω(mQ(n)
α2O(c) ).

A common way to use this framework is through a “volume” argument, i.e., we
generate a set of geometric ranges in a hypercube and then show that they satisfy the
following two properties:

• Each range intersects the hypercube with large Lebesgue measure;

• The Lebesgue measure of the intersection of any k ranges is small.

Then if we sample n points uniformly at random in the hypercube, we obtain S in
Theorem 8.A.1 in expectation. However, we generally want to show a lower bound
for the worst case, then we need a way to derandomize to turn the result to a worst-
case lower bound. We now introduce some derandomization techniques, which are
direct generalizations of the 2D version of the derandomization lemmas in [AC23b].
Given a D-dimensional hypercube C D of side length |l| and a set of ranges. The first

119
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lemma shows that when each range intersects C D with large D-dimensional Lebesgue
measure (For simplicity, we will call such a measure D-measure and denoted by
µD(·).) and the number of ranges is not too big, then with high probability, each range
will contain many points.

Lemma 8.A.1. Let C D be a hypercube of side length |l| in RD. Let R be a set of
ranges in C D satisfying two following conditions: (i) the D-measure of the intersection
of any range R ∈ R and C D is at least c|l|Dt/n for some constant c ≥ 4k and a
parameter t ≥ logn for some value k ≥ 2; (ii) the total number of ranges is bounded
by O(nk+1). Now if we sample a set P of n points uniformly at random in C D, then
with probability > 1/2, |P ∩R| ≥ t for all R ∈R.

Proof. We pick n points in C D uniformly at random. Let Xi j be the indicator random
variable with

Xi j =

{
1,point i is in range j,
0,otherwise.

Since µD(R) ≥ c|l|Dt/n for every R ∈R, the expected number of points in each
range is at least ct. Consider an arbitrary range, let X j = ∑

n
i=1 Xi j, then by Chernoff’s

bound

Pr
[

X j <

(
1− c−1

c

)
ct
]
< e−

( c−1
c )

2
ct

2

=⇒ Pr[X j < t]< e−
(c−1)2t

2c <
1

n
(c−1)2

2c

≤ 1
n2k−1+1/(8k)

,

where the second last inequality follows from t ≥ logn and the last inequality follows
from c≥ 4k. Since the total number of ranges O(nk+1), by the union bound, for k≥ 2
and a sufficiently large n, with probability > 1

2 , |P ∩R| ≥ t for all R ∈R.

The second lemma tells a different story: when the D-measure of the intersection
of any k ranges is small, and the number of intersection is not too big, then with high
probability, each intersection has very few points.

Lemma 8.A.2. Let C D be a hypercube of side length |l| in RD. Let R be a set of
ranges in C D satisfying the following two conditions: (i) the D-measure of the intersec-
tion of any t ≥ 2 distinct ranges R1,R2, · · · ,Rt ∈R is bounded by O(|l|D/(n2

√
logn));

(ii) the total number of intersections is bounded by O(n2k) for k ≥ 1. Now if we sam-
ple a set P of n points uniformly at random in C D, then with probability > 1/2,
|R1∩R2∩·· ·∩Rt ∩P|< 3k

√
logn for all distinct ranges R1,R2, · · · ,Rt ∈R.

Proof. We consider the intersection ρ ∈ C D of any t ranges and let A = µD(ρ). Let
X be an indicator random variable with

Xi =

{
1, the i-th point is inside ρ,

0,otherwise.
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Let X = ∑
n
i=1 Xi. Clearly, E[X ] = An

|l|D
. By Chernoff’s bound,

Pr
[

X ≥ (1+δ )
An

|l|D

]
<

(
eδ

(1+δ )1+δ

) An
|l|D

,

for any δ > 0. Let τ = (1+δ ) An
|l|D

, then

Pr[X ≥ τ]<
e

δ
An
|l|D

(1+δ )τ
<

eτ

(1+δ )τ
=

(
eAn

|l|Dτ

)τ

.

Let τ = 3k
√

logn, since A≤ c|l|D/(n2
√

logn) for some constant c, we have

Pr
[
X ≥ 3k

√
logn

]
<

(
ce

2
√

logn3k
√

logn

)3k
√

logn

<
(ce)3k

√
logn

n3k .

Since the total number of intersections is bounded by O(n2k), the number of cells in the
arrangement is also bounded by O(n2k) and thus by the union bound, for sufficiently
large n, with probability > 1

2 , the number of points in every intersection region is less
than 3k

√
logn.

We now prove Theorem 9.2.1.

Proof. We sample a set P of n points uniformly at random in C D. Since each
range Ri has µD(Ri)≥ 4c|l|DQ(n)/n, and the number of ranges is m = nc, then by
Lemma 8.A.1, with probability more than 1/2, |P ∩Ri| ≥Q(n) for all i = 1,2, · · · ,m.
Since the intersection of any two ranges is upper bounded by O(|l|D/(n2

√
logn)) and

the total number of intersections is O(m2) = O(n2c), then by Lemma 8.A.2, with
probability more than 1/2,

∣∣Ri∩R j ∩P
∣∣ = O(

√
logn) for distinct ranges Ri,R j.

By the union bound, there is a point set such that both conditions in Theorem 8.A.1
are satisfied, then we obtain a lower bound of

S(n) = Ω

(
mQ(n)

2 ·2O(
√

logn)

)
=

o

Ω(mQ(n)).

8.B Proof of Observation 8.3.1

Observation 8.3.1. Let P be a packed D-variate polynomial and a=(a1,a2, · · · ,aD)∈
Z(P). If ai ∈ [1,2] for all i = 2,3, · · · ,D, then there exists a unique a1 such that
0 < a1 = O(1).

Proof. We only need to show that there exists only one solution to equation 0 =
a1− a∆

2 + f (a1) when a1 > 0 and the solution has value O(1), where f (a1) is a
polynomial in a1 with nonnegative coefficients. Since 1≤ a2≤ 2, it easily follows.
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8.C Proof of Lemma 8.3.3

Lemma 8.3.3. Let P1 ∈S and P2 =P1−r for any 0≤ r =O(w). Then π(Z(P1),Z(P2),X)=
Θ(r) for any X ∈ [1,2]D−1.

Proof. Pick any point p= (p1, p2, · · · , pD)∈ Z(P1), and p′= (p′1, p2, · · · , pD)∈ Z(P2)
such that pi ∈ [1,2] for all i = 2,3, · · · ,D, and p′1 = p1+γ . Clearly, 0 < γ < 1 because
0≤ r = O(w) = o(1). By definition

P2(p′) = p1 + γ + pD
2 +

(
∑

i
Ai(p1 + γ)i1 pi2

2 pi3
3 · · · p

iD
D

)
− r = P1(p)+Θ(γ)− r = 0.

So γ = Θ(r), meaning, π(Z(P1),Z(P2), p) = Θ(r) for X ∈ [1,2]D−1.

8.D Proof of Lemma 8.3.4

Lemma 8.3.4. Let P ∈S . The projection of Z(P)∩U D on the (D−1)-dimensional
space perpendicular to the X1-axis has (D−1)-measure Θ(1).

We first bound the length of the y-interval within which a packed bivariate can
intersect U 2.

Lemma 8.D.1. Let P be a packed bivariate polynomial. Then σ = Z(P) is fully
contained in U 2 for some y-interval of length Θ(1).

Proof. We show that σ is sandwiched by curves σl : x− y∆ + cε = 0 for some suf-
ficiently large constant c and σr : x− y∆ = 0 in U 2. We intersect σl,σ ,σr with
line y = y∗ for y∗ ∈ [1,2] and denote the intersections to be (xl,y∗),(xm,y∗),(xr,y∗)
respectively. Since σ is of form x− y∆ +∑

∆
i=0 ∑

∆−i
j=0 ci jxiy j = 0, xm = y∆

∗ −O(ε) be-
cause 0 ≤ ci j = O(ε) and 0 < x = O(1) when y∗ ∈ [1,2] by Observation 8.3.1. So
for sufficiently large c, xl ≤ xm ≤ xr. It is elementary to compute that σl and σr

intersect x = 1 at point (1, ∆
√

1+ cε),(1,1) respectively, and intersect x = 2 at point
(2, ∆
√

2+ cε),(2, ∆
√

2) respectively in the first quadrant. So the intersection of σ with
x = 1 (resp. x = 2) has y-value between 1 and ∆

√
1+ cε (resp. ∆

√
2 and ∆

√
2+ cε). So

the projection of σ ∩U 2 onto the y-axis has length at least ∆
√

2− ∆
√

1+ cε . Since
ε = o(1), the lemma holds.

Now we prove Lemma 8.3.4.

Proof. We intersect Z(P) with Xi = ai ∈ [1,2] for i = 3,4, · · · ,D. The resulting
polynomial will be a packed bivariate polynomial. By Lemma 8.D.1, we know the
intersection of the zero set of this bivariate polynomial and U 2 has 1-measure Θ(1)
in the X2-axis. Integrating over all Xi for i = 3,4, · · · ,5, Z(P) intersects U D with
(D−1)-measure Θ(1) in the subspace perpendicular to the X1-axis.
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8.E Lower Bound for Sphere Shell Ranges

In this section, we show a lower bound for range reporting with ranges being sphere
shells in higher dimensions. We first give a definition for D-dimensional sphere shells.

Definition 8.E.1. A D-dimensional sphere shell, or a D-sphere shell for short, is a
tupe (O,r,w), where O ∈ RD is a point and r,w ∈ R are two real values. We call O
the center of the sphere shell, r the radius of the sphere shell, and w the width of
the sphere shell. A D-dimensional sphere shell is defined to be the set of points with
distance between r and r+w to point O, i.e., {p ∈ RD : r ≤ ‖p−O‖2 ≤ r+w}.

In our proof, we will need the following geometric lemma to bound the intersection
measure of two D-sphere shells.

Lemma 8.E.1. Let (O1,r1,w) and the(O2,r2,w) be two D-sphere shells, where D≥ 3,
r1,r2 = Θ(n) and w = o(n). Let d = ‖O1−O2‖2 > w be the distance between points
O1,O2. Then the D-measure of the intersection of (O1,r1,w) and the(O2,r2,w) is
bounded by O(nD−1w2/d).

Proof. We bound the D-measure of the intersection I of two D-sphere shells S1,S2
as follows. W.l.o.g, we assume the center of S1 is the origin, and the center of S2 is
(d,0,0, · · · ,0), i.e., the first coordinate is d and all other D−1 coordinates are 0’s.

To bound the intersection, we consider two hyperplanes x1 = ab and x1 = ae such
that the intersection region of S1,S2 is sandwiched by the two hyperplanes. Note
that all points p = (x1,x2, · · · ,xD) in the intersection must satisfy{

r2
1 ≤ ∑

D
i=1 x2

i ≤ (r1 +w)2

r2
2 ≤ (x1−d)2 +∑

D
i=2 x2

i ≤ (r2 +w)2 .

This implies {
r2

1− x2
1 ≤ ∑

D
i=2 x2

i ≤ (r1 +w)2− x2
1

r2
2− (x1−d)2 ≤ ∑

D
i=2 x2

i ≤ (r2 +w)2− (x1−d)2 .

So for the intersection to be nonempty, the first coordinates of all points in the
intersection region must satisfy{

r2
1− x2

1 ≤ (r2 +w)2− (x1−d)2

r2
2− (x1−d)2 ≤ (r1 +w)2− x2

1
.

They together imply that

r2
1 +d2− (r2 +w)2

2d
≤ x1 ≤

(r1 +w)2 +d2− r2
2

2d
,

which gives us the values for ab and ae. It suffices to bound the D-measure of the part
of S1 between x1 = ab and x1 = ae. Since d > w > 0, ae−ab ≤ w(r1 + r2 +w)/d <
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r1 r2

w
w

ab ae

x1

x2

(0, 0) (d, 0)

(a) Case 1.

(0, 0) (d, 0)

ab ae

r1
r2

w

w

(b) Case 2.

r1
r2

w

ab ae

(0, 0) (d, 0)

w

(c) Case 3.

Figure 8.E.1: Project Two Sphere Shells to the x1− x2 Plane.

r1 + r2 +w. There are five cases. First, when r1 ≤ ab < r1 +w = ae, see Figure 8.E.1a
for an example, the intersection measure is easily bounded by

µ
D(I)≤

∫ r1+w

ab

c
(√

(r1 +w)2− x2
1

)D−1

dx1

≤
∫ r1+w

ab

c
(√

(r1 +w)2− r2
1

)D−1

dx1

= O((r1w)
D−1

2 · r1w
d

)

= O(
(r1w)

D+1
2

d
) = O(

rD−1
1 w2

d
) = O(

nD−1w2

d
),

where the first inequality follows from the (D−1)-measure of a (D−1)-dimensional
ball and c is the positive constant in the measure formula, the second inequality
follows from r1 ≤ ab ≤ x1, and the last equality follows from D≥ 3, r1 = Θ(n), and
w = o(n).

Second, when ab < r1 < ae < r1 +w, see Figure 8.E.1b for an example, the
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intersection measure is bounded by

µ
D(I)≤

∫ r1

ab

c

((√
(r1 +w)2− x2

1

)D−1

−
(√

r2
1− x2

1

)D−1
)

dx1

+
∫ ae

r1

c

((√
(r1 +w)2− x2

1

)D−1
)

dx1

≤
∫ r1

ab

D−1
2

c
(
(r1 +w)2− x2

1

)D−1
2 −1 (

2r1w+w2)dx1

+
∫ ae

r1

c

((√
(r1 +w)2− r2

1

)D−1
)

dx1

≤
∫ r1

ab

D−1
2

c(r1 +w)D−3 (2r1w+w2)dx1

+
∫ ae

r1

c
(√

2r1w+w2
)D−1

dx1

= O
(

rD−1
1

w2

d

)
+O

(
(
√

r1w)D−1w
)
= O

(
nD−1 w2

d

)
,

where c is a positive constant and the second inequality follows from an− bn ≤
nan−1(a−b) for a,b,c ∈ R and a≥ b, n≥ 1.

Third, when −r1 < ab < ae ≤ r1, see Figure 8.E.1c for an example, we bound the
intersection measure by

µ
D(I)≤

∫ ae

ab

c

((√
(r1 +w)2− x2

1

)D−1

−
(√

r2
1− x2

1

)D−1
)

dx1

≤
∫ ae

ab

D−1
2

c
(
(r1 +w)2− x2

1

)D−1
2 −1 (

2r1w+w2)dx1

≤
∫ ae

ab

D−1
2

c(r1 +w)D−3 (2r1w+w2)dx1

= O
(

rD−1
1

w2

d

)
,

= O
(

nD−1 w2

d

)
,

where c is a positive constant.
Fourth, when −r1−w≤ ab ≤−r1 < ae, see Figure 8.E.2a for an example, note

that it is symmetric to the second case and so the bound follows. Finally, when
ab =−r1−w < ae ≤−r1, see Figure 8.E.2b for an example, note that it is symmetric
to the first case and so the bound follows. and the bound for this case is symmetric to
the second case. Therefore we get µD(I) = O

(
nD−1 w2

d

)
for all cases.
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r1

r2w

ab ae

x1

x2

(0, 0) (d, 0)

w

(a) Case 4.

r1

r2w

ab ae

(0, 0) (d, 0)

w

(b) Case 5.

Figure 8.E.2: Project Two Sphere Shells to the x1− x2 Plane.

We again use Framework 9.2.1 to show a lower bound. We consider the following
construction. Let C D

1 = ∏
D
i=1[0,n] be a hypercube in D dimensions. Let C D

2 =
[−(D+1)n,−Dn]×∏

D
i=2[0,n] be a D dimensional hypercube to the left of C D

1 with
respect to the x1 axis.

For each of the D dimensions, we cut C D
1 into n/d evenly spaced slices. This gives

us a grid consisting of Θ((n/d)D) grid points. For each grid point p with x1 being
kd for k = 0,1,2, · · · ,bn/dc, we construct Θ(n/w) D-sphere shells as follows. We
set its beginning radius r = rb = (

√
(kd/n+D)2 +D−1)n and construct a series of

(D−1)-spheres with p being the center and r being the radius, and then increase the
radius by w each time until reaching r = re = (kd/n+D+1)n. The region between
two consecutive (D−1)-spheres forms a D-sphere shell. Clearly, this construction is
valid since rb < re. The following lemma bounds the D-measure of the intersection of
C D

2 and a slab.

Lemma 8.E.2. Any sphere shell intersects C D
2 with D-measure Ω(nD−1w).

Proof. To see this, consider any grid point p = (kd,x2, · · · ,xD) in C D
1 . The distance

between any point q in C D
2 with its first coordinate being−Dn and p is upper bounded

by

‖p−q‖2 =

√√√√(kd +Dn)2 +
D

∑
j=2

(x j− x′j)2 ≤ (
√

(kd/n+D)2 +D−1)n. (8.1)

Similarly, the distance between any point q′ in C D
2 with first coordinate being −(D+

1)n and p is lower bounded by

‖p−q′‖2 =

√√√√(kd +(D+1)n)2 +
D

∑
j=2

(x j− x′j)2 ≥ (kd/n+D+1)n. (8.2)
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Inequalities (8.1) and (8.2) together imply that a D− 1 dimensional sphere with p
being the center and r being the distance, rb ≤ r ≤ re, intersects C D

2 with (D− 1)-
measure Ω(nD−1). So a sphere shell formed by two such spheres with distance w has
D-measure Ω(nD−1w). See Figure 8.E.3 for an example.

p

rb

re

r

n

nD−1nD−1

n CD
1CD

2

w

Figure 8.E.3: Generating Sphere Shells (Projection to the x− y plane): Each sphere
generated intersect C D

2 with (D−1)-measure Ω(nD−1) (the blue part). The D-measure
of the intersection of C D

2 and a sphere shell is Ω(nD−1w).

In total, we have constructed Θ((n/d)D ·(re−rb)/w)=Θ(nD+1/(dDw)) D-sphere
shells. We set w = cwQ(n) for some sufficiently large constant cw and d = w22

√
logn.

By Lemma 8.E.2, the intersection D-measure of any sphere shell and C D
2 is at

least 4(D+ 1)nD−1Q(n) for large enough constant cw and that of two shells is up-
per bounded by O(nD−1/2

√
logn). Then by Theorem 9.2.1, S(n) = Ω

(
nD+1Q(n)

dDw

)
=

o

Ω

(
nD+1

Q(n)2D

)
.

So we obtain the following lower bound.

Theorem 8.3.2. Any data structure that solves sphere shell reporting problems in D
dimensions on a point set of size n with query time Q(n)+O(k), where D≥ 3 and k

is the output size, must use S(n) =
o

Ω(nD+1/Q(n)2D) space.

8.F Total Absolute Curvature of the Zero Set of
Irreducible Polynomials

In this section, we prove the following lemma.

Lemma 8.F.1. Let P be an irreducible bivariate polynomial of constant degree. Then
Z(P) has total absolute curvature O(1).

We first show for any value v ∈ R∪{±∞}, the number of points on Z(P) whose
derivative achieves this value is O(1).

We will use Bézout’s Thoerem.
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Theorem 8.F.1 (Bézout’s Theorem). Given 2 polynomials P(x,y) and Q(x,y) of
degree ∆p and ∆q respectively, either the number of common zeroes of P and Q is at
most ∆p ·∆q or they have a common factor.

Now we show any irreducible polynomial has O(1) points achieving the same
derivative.

Lemma 8.F.2. Let P(x,y) be an irreducible bivariate polynomial of degree ∆ > 1.
Then the number of points on Z(P(x,y)) which have a fixed derivative c is bounded
by O(∆2).

Proof. For simplicity, we first rotate P(x,y) such that the fixed derivative is 0. Let us
denote the new polynomial with Q(x,y) and it is easy to see that Q is also irreducible
since if Q could be written as Q(x,y) = R(x,y)S(x,y), then P(x,y) would also have a
similar decomposition.

By differentiating Q, we get that dy
dx =−

Qx(x,y)
Qy(x,y)

= 0, and thus Qx(x,y) = 0. As a
result, any point (x,y) with derivative 0, lies on the zero set of Q and Qx.

Both Q and Qx have degree O(∆) and since Q is irreducible and degree of Qx is at
least one, they cannot have a common factor. By Bézout’s Theorem, this implies that
they have O(∆2) common zeroes.

We now prove Lemma 8.F.1. More specifically, we prove the following:

Lemma 8.F.3. Consier a smooth curve C such that for any value v, there are at most
k points p on C such that the tangent line at p has slope v. Then C has total absolute
curvature O(k2).

Proof. We parametrize P(x,y) = 0 by its arc length s over an interval I and then
consider the function α : R→ R be a function that maps the arc length of the curve
to the angle of the curve. Note that α(s) is allowed to increase beyond 2π . Let α1
and α2 be the infimum and surpremum of α(s) over s ∈ I. Note that we must have
α2−α1 ≤ k2π as otherwise we can find more then k points with the same slope on C.
α ′(s) determines the curvature of the curve at point s and its total curvature is

∫
I

∣∣α ′(s)∣∣ds≤ 2πk2

where the inequality follows from the observation that the equation α(s) = v for
every v has at most k solutions and thus the total change in α(s) is bounded by
k · |α2−α1| ≤ 2πk2.

Lemma 8.F.1 then follows easily by Lemma 8.F.2 and 8.F.3.
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8.G Proof of Lemma 8.4.1

Lemma 8.4.1. We can cut ∂R into a set S of O(Q(n)) sub-curves such that for each
sub-curve σ , we can find a set Sσ of slabs that together cover σ . Let Pσ be the subset of
the input that lies inside the query and inside the slabs, i.e., Pσ = R ∩P ∩ (∪s∈Sσ

s).
Pσ can be reported in time Q(n)Õ(κσ + 1/Q(n))+O(|Pσ |), where κσ is the total
absolute curvature of σ . Furthermore, for any two distinct σ1,σ2 ∈S , s1∩ s2 = /0
for all s1 ∈ Sσ1 ,s2 ∈ Sσ2 .

Now suppose we have a sub-curve σ ⊂ ∂R in C that contains no singular points
(points with undefined derivatives) except for possible the two boundaries, if the total
absolute curvature is between 0 and π/4, then we can efficiently find O(1) slabs to
cover it as shown in the following lemma.

Lemma 8.G.1. Let σ be any differentiable sub-curve in a cell C with total absolute
curvature κσ such that 0 ≤ κσ ≤ π/4. We can find a set of O(1) slabs of width
O(κσ/Q(n)+1/Q(n)2) that together cover σ and these slabs can be found in time
Õ(1).

Proof. Let p and q be the end points of the curve σ . Consider the point r furthest
away from the line pq on the curve. See Figure 8.G.1 for an example. Observe that we
can use the mean value theorem between p and r and also between r and q. This yields
that the sum of the angles ∠rpq+∠rqp is at most the total absolute curvature of σ .
Since p,q are in C, |pq|= O(1/Q(n)) and since ∠rpq,∠rqp≤ κσ ≤ π/4, it follows
that the distance between the line tangent to r and pq is O(κσ/Q(n)). Finally, notice
that in our construction, we have created slabs of orientation i/Q(n) for every integer i.
As a result, we can cover σ with O(1) slabs of width O(κσ/Q(n)+1/Q(n)2). To find
the slabs, we can use any of the previous techniques in semialgebraic range searching
since the input size (i.e., the number of slabs) in our construction is Q(n)O(1).

p

q

r

Figure 8.G.1: Covering a Sub-curve Using Slabs

We now show how to decompose ∂R. Observe that ∂R intersects O(Q(n)) cells
in G because otherwise ∂R will have ω(1) tangents, which contradicts Bézout’s
theorem. We cut ∂R using these O(Q(n)) cells to get S .

Let σ ⊂ ∂R be the sub-curve in a cell C ∈G. To find slabs to cover σ , we refine σ

to be smaller pieces of curves to use Lemma 8.G.1. We simply cut σ into pieces such



130 CHAPTER 8. ON SEMIALGEBRAIC RANGE REPORTING

that each piece has total absolute curvature ≤ π/4 and contains no singular points.
Recall that the singular points of the zero set of a bivariate polynomial is a point where
both partial derivatives are 0. By Bézout’s theorem, there are O(1) singular points.
Since the total curvature of ∂R is O(1), we will get O(1) refined sub-curves. This
part is easy with the assumption of our model of computation and so we omit the
details about how to cut σ .

Now for each (refined) sub-curve σr, by Lemma 8.G.1 we can find O(1) slabs to
cover it. We report points close to σr as follows. First we sort the slabs in some order.
Let s be a slab we find for σr. When we examine s, we use the data structure built
in s to find the points in R. The query time will be Q(n)Õ(κσr +1/Q(n))+O(k) by
Lemma 8.G.1. Before reporting the point, we check if the point has been reported
in slabs we have examined before. This is because the slabs we found may intersect.
But since we have O(1) refined sub-curves for σ and each refined sub-curve requires
O(1) slabs to cover, it takes only O(1) time to check for duplicates. Summing up
the query cost for all refined sub-curves for σ , the total query time is Q(n)Õ(κσ +
1/Q(n))+O(tσ ). Since cells in G are disjoint and each slab is built only for a specific
cell, the slabs we find for two distinct sub-curves will have zero intersection. This
proves Lemma 8.4.1.

8.H Proof of Lemma 8.4.2

Lemma 8.4.2. There are O(Q(n)) remaining regions and each region can be ex-
pressed using O(1) linear inequalities. These regions can be found in time O(Q(n)).

There are two types of remaining regions. First, cells fully contained in R but do
not intersect ∂R. Second, the regions in a cell intersected by ∂R but not covered by
slabs.

We first handle the first type. For any two adjacent vertical lines l1, l2 in the grid G,
we find all the cells between them intersected by ∂R in decreasing order with respect
to their y-coordinates. For two consecutive cells C1,C2 we find, all the cells between
C1,C2 must be all contained or all not contained in R because otherwise C1,C2 are
not adjacent. We then express the union of cells in between C1,C2 using four linear
inequalities. By this, we can find all the cells intersecting ∂R and all the chunks of
cells fully contained in R between l1, l2. We do this for every consecutive pair of
vertical lines. The number of chunks is linear to the number of cells intersecting ∂R
which is O(Q(n)) by Bézout’s theorem, so we have O(Q(n)) chunks as well. See
Figure 8.H.1 (a) for an example.

For the second type, observe that each such region is defined by the boundaries
of C (and/or) the outermost boundaries of slabs we used to cover sub-curves. Since
by the analysis of Lemma 8.4.1, the sub-curve in a cell C requires only O(1) slabs to
cover. The outmost boundaries of these O(1) slabs form a subdivision of complexity
O(1). Since each face in the subdivision is either fully contained in R or not contained
in R, it suffices to check an arbitrary point in the face. We omit the details here. In
one cell, we have O(1) remaining regions (faces in the subdivision) and it takes O(1)
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time to find it. Since ∂R intersects O(Q(n)) regions, there are O(Q(n)) regions in
total and it takes O(Q(n)) time to find them. See Figure 8.H.1 (b) for an example.
This proves Lemma 8.4.2.

1
Q(n)

1
Q(n)

(a) (b)
l1 l2

A B C

F

H I J

C3

C4

C5

E

D

G

C1

C2

G C

Figure 8.H.1: To Answer a Query (Shaded Region): (a): Finding cells fully contained
in ∂R. We have a chunk of zero cell between pairs C1,C2 as well as pairs C2,C3 and
C3,C4, and a chunk of two cells between C4,C5. (b): Covering a sub-curve σ in a cell.
Red dots are singular points of ∂R and its intersections with C. The blue dots is used
to make sure each refined sub-curve has total absolute curvature ≤ π/4. We use slabs
(denoted by orange/red line segments) to cover the boundaries of σ . There are 10
regions in the subdivision formed by the outmost boundaries of slabs. Three of them
(D,E,G) are fully contained in R.

8.I An S(n) = Õ( nm

Q(n)3m−4 ) Derivative-based Data Structure

The data structure is similar to the curvature-based one. We also build a two-level data
structure. For each cell C, we “guess” Q(n) first derivatives α1 = −c,−c+ t,−c+
2t, · · · ,c, for a big enough constant c and t = 2c/Q(n). For each guess α1, we generate
a series of disjoint parallel slabs each of (vertical) width wv = 1/Q(n)2 that together
cover C such that the boundary of each slab has derivative α1. Since |α1| = O(1),
the angle γ between any slab and the x-axis is also O(1), so the width of each slab is
w = wv · cosγ = Θ(wv). Therefore the total number of slabs we generate for each α1

in a cell is Θ(1/Q(n))
Θ(wv)

= O(Q(n)). For each slab, we collect the points in it and build
an Õ(1)+O(k) query time and Õ(nm) space data structure. This is our top-level data
structure. For the bottom-level data structure, we still use a multilevel simplex range
reporting data structure with Õ(n2) space and Õ(1)+O(k) query time.

The space usage for the top level data structure is easily bounded to be

S1(n) = Õ
(

Q(n)2 · 2c
2c/Q(n)

·O(Q(n)) ·
(

1
Q(n)2 ·

1
Q(n)

·n
)m)

= Õ
(

nm

Q(n)3m−4

)
.

Since the bottom level data structure takes up Õ(n2) space. The total space usage is
Õ( nm

Q(n)3m−4 ) for m≥ 3.
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For the query answering, we prove a lemma similar to Lemma 8.G.1.

Lemma 8.I.1. In our construction, if some differentiable sub-curve σ is contained in
some cell C, then we can find O(1) slabs that together cover σ . The time needed to
find all these slabs is Õ(1).

Proof. Let (px, px),(qx,qy) be the left and right endpoints of σ and dy
dx(px, py) = α∗1 .

Let f (x) be the implicit function defined by σ between (px, py) and (qx,qy). Let
g(x) = α1(x− px)+ py be the line passing through (px, py) with slope α1. Define the
vertical distance between f (x) and g(x) in [px,qx] to be d(x) = f (x)−g(x). Since we
guess α1 =

dy
dx(px, py) with step size 2c/Q(n),

d(x) = f (x)− (α1(x− px)+ py)

≤ f (x)− ((α∗1 ±2c/Q(n))(x− px)+ py)

= ( f (x)−α
∗
1 (x− px)− py)±2c/Q(n)(x− px)

=
f (2)(ξ )

2!
(x− px)

2±2c/Q(n)(x− px),

for some constant ξ between px and x, where the last equality follows from Taylor’s
theorem. Since x ∈ [px,qx] and |qx− px| ≤ 1/Q(n) as they are in C and all the
derivatives are bounded, |d(x)| = O(1/Q(n)2). Since each slab has vertical width
wv = 1/Q(n)2, we only need O(1) slabs to cover σ .

To find these slabs, by a similar analysis as in Lemma 8.G.1, since there are only
Q(n)O(1) slabs in total, we can build a simple Q(n)O(1) size searching data structure
to find the O(1) slabs in time Õ(1).

Having Lemma 8.I.1 in hand, the query process is essentially the same as the
one for the curvature-based solution and the analysis is also the same by replacing
Lemma 8.G.1 by Lemma 8.I.1. We omit the deials and present the following theorem.

Theorem 8.I.1. Let R be the set of semialgebraic ranges formed by degree-∆ bivari-
ate polynomials with bounded derivatives up to the ∆-th order. For any logO(1) n≤
Q(n) ≤ nε for some constant ε , and a set P of n points distributed uniformly ran-
domly in U = [0,1]× [0,1], we can build a data structure of space Õ(nm/Q(n)3m−4)
such that for any R ∈R, we can report R ∩P in time Õ(Q(n))+O(k) in expec-
tation, where m is the number of parameters needed to define a degree-∆ bivariate
polynomial and k is the output size.

Remark 8.I.1. Note that we actually only need bounded derivatives up to the second
order in Theorem 8.I.1.

8.J An S(n) = Õ( nm

Q(n)((2m−∆)(∆+1)−2)/2 ) Derivative-based Data
Structure

Now we improve the results in Appendix 8.I. The main idea is to use slabs formed
by higher degree polynomial equalities. These slabs work as finer and finer ap-
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proximations to the boundaries of query ranges. We first introduce some notations.

Definition 8.J.1. Let Ix = [xl,xr] be an interval in the x-axis. Let U(x) and L(x) be
two degree-i polynomials in x such that ∀x ∈ Ix,U(x)> L(x). We say that the region
enclosed by U(x), L(x), x = xl and x = xr is an i-slab s. We also say the x-range of s
is [xl,xr]. Furthermore, if for all x ∈ Ix, U(x)−L(x) = w, we say s is a uniform slab
with width w.

In our application, L(x),U(x) will be two degree-i polynomial functions that differ
only in their constant terms. It is not hard to see that in this case, all the slabs are in
fact uniform.

In a nutshell, our data structure Ψ∆ for degree-∆ polynomial inequalities is still
a two-level data structure. The top-level structure is similar to that we described in
Appendix 8.I but instead of using 1-slabs, we use (∆−1)-slabs. These (∆−1)-slabs
will have width 1/Q(n)∆ and we build data structures of size Õ(nm) for the points
in each slab that can answer semialgebraic queries defined by degree-∆ polynomial
inequalities in Õ(1)+O(k) time. The second part is a data structure built for the entire
input points and it can answer degree-(∆−1) polynomial inequality queries in time
Õ(1)+O(k) with space usage Õ(nm′), where m′ = m2,∆−1. The overall idea of our
data structure is the following: given R, we use (∆−1)-slabs to cover its boundary.
Then the remaining parts will be defined by degree-(∆−1) polynomial inequalities.
So we can use the bottom-level data structure to solve them.

Now we describe the details. We first describe how to generate i-slabs for i =
1,2, · · · ,∆−1. The base 1-slabs are what we have described in Appendix 8.I. Now
assume we already have an (i−1)-slab si−1, we generate i-slabs as follows. Let the
x-range of si−1 be [xl,xr]. Let α l

j =
d jy
dx j (xl) for j = 1,2, · · · , i− 1 be the j-th order

derivatives of L(x) of si−1 at x = xl . Now to construct L(x) of an i-slab si, we make
Q(n) finer guesses for each d jy

dx j (xl). Specifically, d jy
dx j (xl) = α l

j,α
l
j +

2c
Q(n)i− j+1 ,α

l
j +

2 · 2c
Q(n)i− j+1 , · · · ,α l

j +
2c

Q(n)i− j , for j = 1,2, · · · , i−1, and diy
dxi (xl) =−c+ 2c

Q(n) ,−c+2 ·
2c

Q(n) , · · · ,c. We then place “anchor” points evenly spaced with distance 1/Q(n)i+1 on
the left boundary of si−1. Every two degree-i polynomials passing through adjacent
anchor points having the same d jy

dx j (xl) for j = 1,2, · · · , i defines an i slab. If any two
degree-i polynomials P(x),Q(x) have the same k-th derivatives for all k = 1,2, · · · , i
at two points (xl,y1), (xl,y2), it is elementary to show that for all x, |P(x)−Q(x)|=
|y1− y2|. So every i-slab is uniform and its width is 1/Q(n)i+1.

To build Ψ∆, we first build 1-slabs as we did in Appendix 8.I, and then repeatedly
applying the process described in the previous paragraph to get degree-(∆−1) slabs.
Then we build the Õ(nm) space data structure in each slab as the top-level data
structure, and then build the Õ(nm′) space data structure for all input points as the
bottom-level data structure.

Now we bound the space usage. By the above procedure, for each (i−1)-slab,
i≥ 3 we generate Q(n)i−2 guesses for derivatives for the first i−2 derivatives, and
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Q(n) guesses for the (i−1)-th derivative. We have 1/Q(n)i−1

1/Q(n)i = Q(n) anchor points for
the lower boundaries of slabs to pass through. So in total, we generate Q(n)i−2 ·Q(n) ·
Q(n) = Q(n)i many (i−1)-slabs in an (i−2)-slab. We know from Appendix 8.I that
the number of 1-slabs is upper bounded by O(Q(n)4). Since we only build fast-query
data structures in (i− 1)-slabs, the total space usage of all the structures built on
(i−1)-slabs is then bounded by

S1(n) = O

(
Q(n)4 ·

(
∆

∏
j=3

Q(n) j·

)
·
(

1
Q(n)∆

· 1
Q(n)

·n
)m
)

= O
(

Q(n)(∆+1)∆/2+1 · nm

Q(n)m(∆+1)

)
= O

(
nm

Q(n)((2m−∆)(∆+1)−2)/2

)
.

As mentioned before, the space usage of the bottom-level data structure for Ψ∆ is
Õ(nm′). Then for query time Q(n) = nε where ε is some small constant, the space
usage of our entire data structure Ψ∆ is bounded by Õ(nm/Q(n)((2m−∆)(∆+1)−2)/2).

For query answering, we first show the following lemma, which is a generalization
of Lemma 8.I.1. The proof idea is similar to Lemma 8.I.1, the only difference is now
we consider a Taylor polynomial of degree-(∆−1) instead of 1.

Lemma 8.J.1. In our construction, if some differentiable sub-curve σ is contained in
some cell C, then we can find up to O(1) (∆−1)-slabs to cover σ . The time needed
to find these slabs is Õ(1).

Proof. Let (px, py),(qx,qy) be the left and right endpoints of σ and diy
dxi (px, py) = α∗i

for i = 1,2, · · · ,∆−1. Let f (x) be the implicit function defined by σ in [px,qx] and
let g(x) be a degree-∆ polynomial whose first ∆ derivatives agree with those of f (x)
at point (px, py). By Taylor’s theorem, the vertical distance between f (x) and g(x)
is easily calculated to be bounded by O(1/Q(n)∆+1) in [px,qx]. Next we bound the
vertical distance between g(x) and the best fitting polynomial in our construction.
Let (a,b) be the intersection of g(x) with the line containing the left boundary of
C. Let h(x) = ∑

∆−1
i=1

αi
i! (x− a)i + b be a degree-(∆− 1) polynomial passing through

(a,b) with the i-th order derivative being αi at x = a. We define the vertical distance
between g(x) and h(x) in this range to be d(x) = g(x)−h(x).
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Since we guess αi =
diy
dxi at x = a with step size 2c/Q(n)∆−i in our construction,

d(x) = g(x)−

(
∆−1

∑
i=1

αi

i!
(x−a)i +b

)

≤ g(x)−

(
∆−1

∑
i=1

(
α∗i ±2c/Q(n)∆−i

i!

)
(x−a)i +b

)

=

(
g(x)−

(
∆−1

∑
i=1

α∗i
i!
(x−a)i +b

))
±

∆−1

∑
i=1

2c/Q(n)∆−i

i!
(x−a)i

=
g(∆)(ξ )

∆!
(x−a)∆±

∆−1

∑
i=1

2c/Q(n)∆−i

i!
(x−a)i

for some constant ξ between a and x, where the last equality follows from Taylor’s
theorem. Since x ∈ [a,qx] and |qx−a| ≤ 1/Q(n) and all the derivatives of g(x) are
bounded in U , |d(x)| = O(1/Q(n)∆). Then the distance between f (x) and h(x) is
bounded by O(1/Q(n)∆+1)+ |d(x)| = O(1/Q(n)∆) in [px,qx]. Since each (∆− 1)-
slab has width 1/Q(n)∆, so it takes O(1) (∆−1)-slabs to cover σ . To find these slabs,
by a similar analysis as in Lemma 8.G.1, since there are only Q(n)O(1) slabs in total,
we can build a simple Q(n)O(1) size searching data structure to find the O(1) slabs in
time Õ(1).

With Lemma 8.J.1 in hand, the query algorithm is essentially the same as the data
structure described in Appendix 8.G except for one minor difference: here when we
answer query in some cell, we find (∆−1)-slabs and use the fast query data structure
in it. But now since the boundaries of slabs are degree-(∆− 1) polynomials, we
need to handle ranges defined by (∆− 1) polynomial inequalities instead of linear
inequalities. This can be handled by our bottom-level data structure. By a similar
analysis as in Appendix 8.G, we can find O(Q(n)) (∆− 1)-slabs to cover ∂R. We
can then report all the points close to ∂R in time Õ(Q(n))+O(k). The remaining
regions of R are defined by O(Q(n)) boundaries of the slabs we used and G by a
similar analysis as in Appendix 8.H. We use the bottom-level data structure for this
part and again we need Õ(Q(n))+O(k) time to report the points. In total, the query
time is bounded by Õ(Q(n))+O(k). This proves Theorem 8.4.2.

Specifically, for polynomial inequalities of form y+∑ai xi ≤ 0 or x+∑ai yi ≤ 0,
where ai ∈ R and 0≤ i≤ ∆ is an integer, we have:

Theorem 8.J.1. For Semialgebraic range R formed by polynomial inequalities of
form y+∑ai xi ≤ 0 or x+∑ai yi ≤ 0, where ai ∈ R and 0 ≤ i ≤ ∆ is an integer, and
any logO(1) n ≤ Q(n) ≤ nε for some constant ε , if the n input points are distributed
uniformly randomly in a unit square U = [0,1]× [0,1], we can build a data structure
of space Õ(n∆+1/Q(n)(∆+3)∆/2) that answers range reporting queries with R in time
Õ(Q(n))+O(k) in expectation, where k is the number of points to report.





Chapter 9

2D Generalization of Fractional
Cascading on Axis-aligned Planar
Subdivisions

Abstract

Recently, Ezra and Sharir [ES22b] showed an O(n3/2+σ ) space and O(n1/2+σ )
query time data structure for ray shooting among triangles in R3. This improves
the upper bound given by the classical S(n)Q(n)4 = O(n4+σ ) space-time trade-
off for the first time in almost 25 years and in fact lies on the tradeoff curve
of S(n)Q(n)3 = O(n3+σ ). However, it seems difficult to apply their techniques
beyond this specific space and time combination. This pheonomenon appears
persistently in almost all recent advances of flat object intersection searching,
e.g., line-tetrahedron intersection in R4 [ES22a], triangle-triangle intersection
in R4 [ES22a], or even among flat semialgebraic objects [AAE+22].

We give a timely explanation to this phenomenon from a lower bound
perspective. We prove that given a set S of (d− 1)-dimensional simplicies
in Rd , any data structure that can report all intersections with a query line in
small (no(1)) query time must use Ω(n2(d−1)−o(1)) space. This dashes the hope
of any significant improvement to the tradeoff curves for small query time and
almost matches the classical upper bound. We also obtain an almost matching
space lower bound of Ω(n6−o(1)) for triangle-triangle intersection reporting in
R4 when the query time is small. Along the way, we further develop the previous
lower bound techniques by Afshani and Cheng [AC23b, AC22].

9.1 Introduction

Given a set S of triangles in R3, how to preprocess S such that given any query
ray γ , we can efficiently determine the first triangle intersecting γ or report no such
triangle exists? This problem, known as ray shooting, is one of the most important
problems in computational geometry with countless papers published over the last
three decades [Pel90, AM93, MS93, Pel93, dBHO+94, AS96, Ram99, AdBG08,
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dBG08, ES22b, AAE+22]. For a comprehensive overview of this problem, we refer
the readers to an excellent recent survey [Pel17].

Recently, there have been considerable and significant advances on ray shooting
and a number of problems related to intersection searching on the upper bound side.
We complement these attempts by giving lower bounds for a number of intersection
searching problems; these also settle a recent open question asked by Ezra and
Sharir [ES22b].

Background and Previous Results

In geometric intersection searching, the input is a set S of geometric objects and
the goal is to preprocess S into a data structure such that given a geometric object γ

at the query time, one can find all the objects in S that intersect γ . In the reporting
variant of such a query, the output should be the list of all the intersecting objects in
S . Intersection searching is a generalization of range searching, a fundamental and
core area of computational geometry [Aga17]. This captures many natural classic
problems e.g., simplex range reporting where the inputs are points (0-flats) and the
queries are simplices (subsets of d-flats), ray shooting reporting among triangles in
R3 where the inputs are triangles (subsets of 2-flats) and the queries are rays (subsets
of 1-flats) and so on. See [Aga17, Pel17] for more information.

Without going too much in-depth, it suffices to say that by now, the simplex range
searching problem is more or less well-understood. There are classical solutions
that offer the space and query time trade-off of S(n)Qd(n) = Õ(nd) where S(n) and
Q(n) are the space and query time of the data structure [Cha18, Mat93, Cha12] and
there are a number of almost matching lower bounds that show these are essentially
tight [Afs13, Cha89, CR96].

However, intersection searching in higher dimensions is less well-understood. The
classical technique is to lift the problem to the parametric space of the input or the
query, reducing the problem to semialgebraic range searching, a generalized version of
simplex range searching, where queries are semialgebraic sets of constant description
complexity. In mid-1990s, semialgebraic range searching could only be solved
efficiently in four and lower dimensions by classical tools developed for simplex range
searching [AM94], resulting in a space-time trade-off bound of S(n)Q(n)4 = O(n4+σ )
for line-triangle intersection searching in R3, where σ > 0 can be any small constant.

Recently, using polynomial techniques [GK15, Gut15], several major advances
have been made on semialgebraic range searching. For example, near optimal small
linear space and fast query data structure were developed [AMS13, MP15, AAEZ21].
These almost match the newly discovered lower bound bounds [AC23b, AC22]. How-
ever, these polynomial techniques also have led to significant advances in intersection
searching. For ray-triangle intersection reporting in R3, Ezra and Sharir [ES22b]
showed that using algebraic techniques, it is possible to build a data structure of
space S(n) = O(n3/2+σ ) and query time Q(n) = O(n1/2+σ ) for ray shooting among
triangles. The significance of this result is that it improves the upper bound given
by the trade-off curve of S(n)Q(n)4 = O(n4+σ ) for the first time in almost 25 years
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and in fact it lies on the trade-off curve of S(n)Q(n)3 = O(n3+σ ). This leads to the
following very interesting question asked by Ezra and Sharir. To quote them directly:

“There are several open questions that our work raises. First, can we improve our
trade-off for all values of storage, beyond the special values of O(n3/2+ε) storage
and O(n1/2+ε) query time? Ideally, can we obtain query time of O(n1+ε/s1/3), with s
storage, as in the case of ray shooting amid planes? Alternatively, can one establish a
lower-bound argument that shows the limitations of our technique?”

Inspired by [ES22b], additional results for flat intersection searching were dis-
covered during the last two years, e.g., triangle-triangle intersection searching in
R4 [ES22a], line-tetrahedron intersection searching in R4 [ES22a], curve-disk in-
tersection searching in R3 [AAE+22], and even more general semialgebraic flat
intersection searching [AAE+22]. Similar to the result in [ES22b], the improved
results are only observed for a special space-time combination and the improvement
to the entire trade-off curve is limited. This once again raises the question of whether
it is possible to obtain the trade-off curve of S(n)Q(n)d = O(nd+σ ) for intersection
searching in Rd .

Our Results

We give a negative answer to this question. We show that answering intersection
searching queries in polylogarithmic time when the queries are lines in Rd and input

objects are subsets of (d−1)-flats (that we call hyperslabs) requires
o

Ω(n2(d−1)) space1.
Our lower bound in fact applies to “thin” (d−1)-dimensional slabs (e.g., in 3D, that
would be the intersection of the region between two parallel hyperplanes with another
hyperplane). This almost matches the current upper bound for the problem and shows
that the improvement in [ES22b] cannot significantly improve the trade-off curve
when the query time is small. To be specific, we obtain a lower bound of

S(n) =
o

Ω

(
n2(d−1)

Q(n)4(3d−1)(d−1)−1

)

for line-hyperslab intersection reporting in Rd and a lower bound of

S(n) =
o

Ω

(
n6

Q(n)125

)
for triangle-triangle intersection reporting in R4. Here, S(n) and Q(n) are the space
and query time of the data structure. Similar to the other semialgebraic range reporting
lower bounds [AC23b, AC22], these lower bounds have a much larger exponent on
Q(n) than on n which does allow for substantial improvements when Q(n) is no longer
too small; we have not opted for optimizing the exponent of Q(n) in our bounds and
using tighter arguments, these exponents can be improved but they cannot match the
exponent of n.

1In this paper,
o

Ω(·),
o

Θ(·),
o

O(·) hides no(1) factors; Ω̃(·),Θ̃(·), Õ(·) hides logO(1) n factors.



140
CHAPTER 9. 2D GENERALIZATION OF FRACTIONAL CASCADING ON

AXIS-ALIGNED PLANAR SUBDIVISIONS

We believe our results are timely as flat intersection searching is a hotly inves-
tigated field recently, and as mentioned, with many open questions that need to be
answered from a lower bound point of view.

Technical Contributions

From a technical point of view, our results require going beyond the previous at-
tempts [AC23b, AC22]. To elaborate, the previous general technique assumed a
particular form for the polynomials involved in defining the query semialgebraic
ranges, namely, of the form X1 = X∆

2 +P(X1, · · · ,Xd) where the coefficients of P had
to be independent and thus could be set arbitrarily small. Unfortunately, the problems
in intersection searching cannot fit this framework and there seems to be no easy fix
for the following reason. The previous technique relies heavily on the fact that if the
coefficients of P is small enough, then one can approximate X1 with X∆

2 and for the
technique to work both conditions must hold (i.e., small coefficients for P and having
degree ∆ on X2).

Generally speaking, the previous techniques do not say anything about problems
in which the polynomials involved have a specific form; the only exception is the
lower bound for annuli [AC23b] where specific approaches had to be created that
could only be applied to the specific algebraic form of circles.

The issue is very prominent in intersection searching where we are dealing with
polynomials where the coefficients of the monomials are no longer independent and
the polynomials involved have specific forms; for instance, the coefficient of X∆

2 is
zero. We introduce techniques that allows us circumvent these limitations and obtain
lower bounds for some broader class of problems that involve polynomials with some
specific forms.

9.2 Preliminaries

The Geometric Range Reporting Lower Bound Framework in the
Pointer Machine

We use the pointer machine lower bound framework that was also used in the latest
proofs [AC22]. This is a streamlined version of the one originally proposed by
Chazelle [Cha90a] and Chazelle and Rosenberg [CR96]. In the pointer machine
model, the memory is represented as a directed graph where each node stores one
point as well as two pointers pointing to two other nodes in the graph. Given a query,
the algorithms starts from a special “root” node, and then explores a subgraph which
contains all the input points to report. The size of the directed graph is then a lower
bound for the space usage and then minimum subgraph needed to explore to answer
any query is a lower bound for the query time.

Intuitively, to answer a range reporting query efficiently, we need to store the
output points to the query close to each other. If the answer to any query contains
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many points and two queries share very few points in common, many points must be
stored multiple times, leading to a big space usage.

The streamlined version of the framework is the following [AC22].

Theorem 9.2.1. Suppose a d-dimensional geometric range reporting problem admits
an S(n) space and Q(n)+O(k) query time data structure, where n is the input size
and k is the output size. Let Vol(·) denote the d-dimensional Lebesgue measure.
Assume we can find m = nc, for a positive constant c, ranges R1,R2, · · · ,Rm in a
d-dimensional hyperrectangle R such that

1. ∀i = 1,2, · · · ,m,Vol(Ri∩R)≥ 4cVol(R)Q(n)/n;

2. Vol(Ri∩R j) = O(Vol(R)/(n2
√

logn)) for all i 6= j .

Then, we have S(n) =
o

Ω(mQ(n)).

Notations and Definitions for Polynomials

In this paper, we only consider polynomials on the reals. Let P(X1, · · · ,Xd) be a
polynomial on d indeterminates of degree ∆. Sometimes we will use the notation X to
denote the set of d interminates X1, · · · ,Xd and so we can write P as P(X). We denote
by Id,∆ a set of d-tuples of non-negative integers (i1, · · · , id) whose sum is at most
∆. We might omit the subscripts d and ∆ if they are clear from the context. For an
i ∈ I, we use the notation X i to represent the monomial Πd

j=1X i j
j where i = (i1, · · · , id).

Thus, given real coefficients Ai, for i ∈ I, we can write P as ∑i∈I AiX i.

Geometric Lemmas

We introduce and generalize some geometric lemmas about the intersection of polyno-
mials used in [AC23b]. We first generalize the core Lemma in [AC23b] for univariate
polynomials, using a proof similar to [AC22]. We refer the readers to Appendix 9.A
for details.

Lemma 9.2.1. Let P(x) = ∑
∆
i=0 aixi and Q(x) = ∑

∆
i=0 bixi be two univariate (constant)

degree-∆ polynomials in R[x] and |ai−bi| ≥ η for some 0≤ i≤ ∆.
Suppose there is an interval I of x such that for every x0 ∈I we have |P(x0)−

Q(x0)| ≤ w, then the length of I is upper bounded by O((w/η)1/U ), where U =(
∆+1

2

)
and the O(·) notation hides constant factors that depend on ∆.

Using Lemma 9.2.1, we can show the following; See Appendix 9.B for details.

Lemma 9.2.2. Let P1(X) = ∑i∈Id,∆
AiX i and P2(X) = ∑i∈Id,∆

BiX i be two d-variate
degree-∆ polynomials in R[X ] and |Ai−Bi| ≥ ηd for some i ∈ Id,∆.

Suppose for each assignment Xd ∈Id to P1,P2, where Id is an interval for Xd ,
all the coefficients of the resulting (d−1)-variate polynomial Q1(X1, · · ·Xd−1) and
Q2(X1, · · ·Xd−1) differ by at most ηd−1, then |Id |= O((ηd−1/ηd)

1/U ).
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We can use Lemma 9.2.2 d−2 times, and obtain the following corollary.

Corollary 9.2.1. Let P1(X) = ∑i∈Id,∆
AiX i and P2(X) = ∑i∈Id,∆

BiX i be two d-variate
degree-∆ polynomials in R[X ] and |Ai−Bi| ≥ ηd for some i ∈ Id,∆ for d ≥ 3.

Suppose for each assignment Xi ∈Ii to P1,P2, where Ii is an interval for Xi, for
i = 3,4, · · · ,d, all the coefficients of the resulting bivariate polynomial Q1(X1,X2) and
Q2(X1,X2) differ by at most η2, then |Ii|= O((ηi−1/ηi)

1/U ) for all i = 3,4, · · · ,d.

To get the final corollary, we would like the set each ηi such that the length of
all each interval Ii is bounded by some parameter ϑ for i = 3, · · · ,d. We thus set
ηd−i = ηd−i+1ϑU .

Corollary 9.2.2. Let P1(X) = ∑i∈Id,∆
AiX i and P2(X) = ∑i∈Id,∆

BiX i be two d-variate
degree-∆ polynomials in R[X ] and |Ai−Bi| ≥ ηd for some i ∈ Id,∆ for d ≥ 3.

Suppose for each assignment Xi ∈Ii to P1,P2, where Ii is an interval for Xi, for
i = 3,4, · · · ,d, all the coefficients of the resulting bivariate polynomial Q1(X1,X2) and
Q2(X1,X2) differ by at most ηdϑU (d−2), then |Ii|= O(ϑ) for all i = 3,4, · · · ,d.

Algebra Preliminaries

In this section, we review some tools from algebra. The first tool we will use is the
linearity of determinants from linear algebra.

Theorem 9.2.2 (Linearity of Determinants). Let A=
[
a1 · · · an

]
be an n×n matrix

where each ai ∈ Rn is a vector. Suppose a j = r ·w+v for some r ∈ R and w,v ∈ Rn,
then the determinant of A, denoted by det(A), is

det(A) = det
([

a1 · · · a j−1 a j a j+1 · · · an
])

= r ·det
([

a1 · · · a j−1 w a j+1 · · · an
])

+det
([

a1 · · · a j−1 v a j+1 · · · an
])
.

We will use two types of special matrices in the paper. The first is Vandermonde
matrices.

Definition 9.2.1 (Vandermonde Matrices). An n×n Vandermonde matrix is defined
by n values x1, · · · ,xn such that each entry ei j = x j−1

i for 1≤ i, j ≤ n.

We can compute the determinant of Vandermonde matrices easily.

Theorem 9.2.3 (Determinant of Vandermonde Matrices). Let V be a Vandermonde
matrix defined by parameters x1, · · · ,xn. Then det(V ) = ∏1≤i< j≤n(x j− xi).

We also need Sylvester matrices.

Definition 9.2.2 (Sylvester Matrices). Let P = ∑
∆1
i=0 aixi and Q = ∑

∆2
i=0 bixi be two

univariate polynomials over R[x] of degrees ∆1,∆2 respectively . Then the Sylvester
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matrix of P and Q, denoted by Syl(P,Q), is a (∆1 +∆2)× (∆1 +∆2) matrix of the
following form 

a∆1 a∆1−1 · · · a0 0 · · · 0 0
0 a∆1 a∆1−1 · · · a0 · · · 0 0
...

...
...

. . .
...

. . .
...

...
0 0 · · · a∆1 a∆1−1 · · · a1 a0

b∆2 b∆2−1 · · · b0 0 · · · 0 0
0 b∆2 b∆2−1 · · · b0 · · · 0 0
...

...
...

. . .
...

. . .
...

...
0 0 · · · b∆2 b∆2−1 · · · b1 b0


.

The Sylvester matrix has ∆2 rows with entries from P and ∆1 rows with entries
from Q. For example, the Sylvester matrx of two polynomials P = p1x+ p2 and
Q = q1x+q2 is

Syl(P,Q) =

[
p1 p2
q1 q2.

]
One application of Sylvester matrices is to compute the resultant, which is one of

the important tools in algebraic geometry. One significance of the resultant is that it
equals zero if and only if P and Q have a common factor.

Definition 9.2.3. Let P,Q be two univariate polynomials over R. The resultant of P
and Q, denoted by Res(P,Q), is defined to be the determinant of the Sylvester matrix
of P and Q, i.e., Res(P,Q) = det(Syl(P,Q)).

9.3 An Algebraic Geometry Lemma

In this section, we prove an important algebraic geometry lemma that will later be
used in our lower bound proof.

Lemma 9.3.1. Let F and G be two univariate polynomials on x of degree ∆F and ∆G

respectively and the leading coefficient of G is 1. Let P(x,y)≡ yG(x)−F(x).
Let L be a set of ` = ∆1 +∆G + 1 points (xk,yk) where ∆1 ≥ ∆F − 1 and each

xk = Θ(1) such that |P(xk,yk)| ≤ ε < 1 for a parameter ε , and G(xk) = Θ(1).
Let V be a vector of ` monomials consisting of monomials xi for 0≤ i≤ ∆1 and

monomials yxi for 0≤ i≤ ∆G−1.
If A is an `× ` matrix where the k-th row of A is the evaluation of the vector V on

point (xk,yk), then |det(A)| ≥Ω(Res(G,F)λ `2
)−O(ε) where λ =min1≤k1<k2≤` |xk1−

xk2 |.

Proof. Note that if Res(G,F) = 0, then there is nothing to prove and thus we can
assume this is not the case. Now observe that since G(xk) = Θ(1), we can write
yk =

F(xk)
G(xk)

+ γk where |γk|= O(ε).
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Now consider the matrix A and plug in this value of yk. An entry of A is in the
form of a monomial yxi being evaluated on a point (xk,yk) and thus we have:

ykxi
k =

(
F(xk)

G(xk)
+ γk

)
xi

k =
F(xk)

G(xk)
xi

k + γi,k (9.1)

where |γi,k| = O(ε). We use the linearity of determinants (see Theorem 9.2.2) in
a similar fashion that was also used in [AC22]. In particular, consider a column
of the matrix A; it consists of the evaluations of a monomial yxi on all the points
(x1,y1), · · · ,(x`,y`). Using Eq. (9.1), we can write this column as the addition of a
column Ci that consists of the evaluation of the rational function F(x)

G(x)x
i on the points

x1, · · · ,x` and a column Γi that consists of all the values γi,k for 1 ≤ k ≤ `. By the
linearity of determinants, we can write the determinant of A as the sum of determinants
of two matrices where one matrix includes the column Ci and the other has Γi; observe
that the magnitude of the determinant of the latter matrix can be upper bounded by
O(ε), with hidden constants that depend on ∆. By performing this operation on all
the columns, we can separate all the entries involving γi,k into separate matrices and
the magnitude of sum of the determinants can be bounded by O(ε).

Let B be the matrix that remains after removing all the γi,k terms. We bound
|det(B)|. Note that B consists of row vectors

U = (1 x · · · x∆1 y yx · · · yx∆G−1).

evaluated at some value x = xk and y = F(xk)
G(xk)

at its k-th row. This is equivalent to the
evaluation of the following vector:

(1 x · · · x∆1 F
G

F
G x · · · F

G x∆G−1).

Observe that row k of matrix B will be evaluating U on the point xk. Since G(xk) =
Θ(1) 6= 0, we can multiply row k by G(xk) and this will only change the determinant
by a constant factor. With a slight abuse of the notation, let B denote the matrix after
this multiplication step. Thus, the columns of B now correspond to the evaluation of
the following vector.

(G Gx · · · Gx∆1 F Fx · · · Fx∆G−1).

Note that we can exchange columns and it will only flip the signs of the determinant
of a matrix. We will focus on bounding the determinant of

(Gx∆1 Gx∆1−2 · · · G Fx∆G−1 Fx∆G−2 · · · F).

The key observation is that there is a strong connection between the Sylvester
matrix of G,F and matrix B. Recall that the Sylvester matrix of G and F is of the
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form

Syl(G,F) =



G∆G G∆G−1 · · · G0 0 · · · 0 0
0 G∆G G∆G−1 · · · G0 · · · 0 0
...

...
...

. . .
...

. . .
...

...
0 0 · · · G∆G G∆G−1 · · · G1 G0

F∆F F∆F−1 · · · F0 0 · · · 0 0
0 F∆F F∆F−1 · · · F0 · · · 0 0
...

...
...

. . .
...

. . .
...

...
0 0 · · · F∆F F∆F−1 · · · F1 F0


,

where Gi (resp. Fi) is the coefficient of xi in G (resp. F). Observe that

(Gx∆F−1 Gx∆F−2 · · · G Fx∆G−1 Fx∆G−2 · · · F) =

Syl(G,F) · (x∆F+∆G−1 x∆F+∆G−2 · · · x 1)T ,

which means that by the linear transformation described by Syl(G,F)−1, which exists
as Res(G,F) = det(Syl(G,F)) 6= 0, we can turn the last ∆F +∆G columns in B to

(x∆F+∆G−1 x∆F+∆G−2 · · · x 1).

Since the remaining columns are all polynomials in x and the highest degree in column
i is ∆G +∆1− i for i = 0,1, · · · ,∆F , by using column operations, we can eliminate all
lower degree terms for each column and the only term left for column i is G∆Gx∆G+∆1−i.
Note that column operations do not change the determinant.

By assumption, the leading coefficients of G is 1, i.e., G∆G = 1. Thus, this trans-
forms B into a Vandermonde matrix VB of size `× `. By Theorem 9.2.3, |det(VB)|=
Ω(λ `2

). Since multiplying the inverse of Syl(G,F) scales det(B) by a factor of
Θ(|det

(
Syl(G,F)−1

)
|)=Θ(|Res(G,F)−1|), we bound |det(B)|= |det(VB)|/(1/|Res(G,F)|)=

Ω(|Res(G,F)|λ `2
). The claim then follows from this.

9.4 Lower Bounds for Flat Intersection Reporting

We are now ready to show lower bounds for flat intersection reporting. We first estab-
lish a reduction from special polynomial slab reporting problems to flat intersection
reporting.

A Reduction from Polynomial Slab Range Reporting to Flat-hyperslab
Intersection Reporting

We study the following flat intersection reporting problem.

Definition 9.4.1 (Flat-hyperslab Intersection Reporting). In the t-flat-hyperslab inter-
section reporting problem, we are given a set S of n (d− t)-dimensional hyperslabs
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in Rd , i.e., regions created by a linear translation of (d− t−1)-flats, where 0≤ t < d,
as the input, and the goal is to preprocess S into a data structure such that given any
query t-flat γ , we can output S ∩ γ , i.e., the set of (d− t)-hyperslabs intersecting the
query t-flat, efficiently.

First, observe that any t-flat that is not parallel to any of the axes can be formulated
as 

a0,1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
a1,1 a1,2 · · · a1,t a1,t+1

...
...

. . .
...

...
ad−t,1 ad−t,2 · · · ad−1,t ad−t,t+1


·


τ1
...
τt

1

=

x1
...

xd

 ,

where ai, j’s are the parameters defining the t-flat, and τ1, · · · ,τt are the free variables
that generate points in the t-flat. Note that we only need (d− t)(t +1) independent
ai, j’s to define a t-flat.

On the other hand, we consider (d− t)-hyperslabs of form
1 0 · · · 0 b1,1 b1,2 · · · b1,d−t
0 1 · · · 0 b2,1 b2,2 · · · b2,d−t
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 bt,1 bt,2 · · · bt,d−t
0 0 · · · 0 bt+1,1 bt+1,2 · · · bt+1,d−t

 ·


x1
x2
...

xd−1
xd

=


0
0
...
0

−1+w

 ,
where bi, j’s are the parameters defining a (d− t−1)-flat, and parameter w ∈ [0,w0]
adds one extra dimension to the flat to make it (d− t)-dimensional; in essence, we
will be considering all the (d− t−1)-flats for all w ∈ [0,w0] which will turn it into a
(d− t)-hyperslab.

Therefore, the intersection of a t-flat and a (d− t)-hyperslab must be a solution to


1 0 · · · 0 b1,1 b1,2 · · · b1,d−t
0 1 · · · 0 b2,1 b2,2 · · · b2,d−t
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 bt,1 bt,2 · · · bt,d−t
0 0 · · · 0 bt+1,1 bt+1,2 · · · bt+1,d−t





a0,1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
a1,1 a1,2 · · · a1,t a1,t+1

...
...

. . .
...

...
ad−t,1 ad−t,2 · · · ad−1,t ad−t,t+1




τ1
τ2
τ3
...
τt
1

=


0
0
...
0

−1+w

 .

Multiplying the two matrices, we obtain the following system
a0,1 +∑

d−t
i=1 ai,1b1,i ∑

d−t
i=1 ai,2b1,i · · · ∑

d−t
i=1 ai,t+1b1,i

∑
d−t
i=1 ai,1b2,i 1+∑

d−t
i=1 ai,2b2,i · · · ∑

d−t
i=1 ai,t+1b2,i

...
...

. . .
...

∑
d−t
i=1 ai,1bt+1,i ∑

d−t
i=1 ai,2bt+1,i · · · ∑

d−t
i=1 ai,t+1bt+1,i

 ·


τ1
...
τt

1

=


0
...
0

−1+w

 .
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We denote this linear system by Amτ = s and assume

det(A) 6= 0 (9.2)

which is the case when the t-flat and the (d− t)-hyperslab properly intersect, and this
system has a solution iff the last entry of the solution vector is 1. So by Cramer’s rule,
we have

1 =

∣∣∣∣∣∣∣∣∣
a0,1 +∑

d−t
i=1 ai,1b1,i ∑

d−t
i=1 ai,2b1,i · · · 0

∑
d−t
i=1 ai,1b2,i 1+∑

d−t
i=1 ai,2b2,i · · · 0

...
...

. . .
...

∑
d−t
i=1 ai,1bt+1,i ∑

d−t
i=1 ai,2bt+1,i · · · −1+w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a0,1 +∑

d−t
i=1 ai,1b1,i ∑

d−t
i=1 ai,2b1,i · · · ∑

d−t
i=1 ai,t+1b1,i

∑
d−t
i=1 ai,1b2,i 1+∑

d−t
i=1 ai,2b2,i · · · ∑

d−t
i=1 ai,t+1b2,i

...
...

. . .
...

∑
d−t
i=1 ai,1bt+1,i ∑

d−t
i=1 ai,2bt+1,i · · · ∑

d−t
i=1 ai,t+1bt+1,i

∣∣∣∣∣∣∣∣∣

.

By the linearity of determinants, we have

0 =

∣∣∣∣∣∣∣∣∣
a0,1 +∑

d−t
i=1 ai,1b1,i ∑

d−t
i=1 ai,2b1,i · · · ∑

d−t
i=1 ai,t+1b1,i

∑
d−t
i=1 ai,1b2,i 1+∑

d−t
i=1 ai,2b2,i · · · ∑

d−t
i=1 ai,t+1b2,i

...
...

. . .
...

∑
d−t
i=1 ai,1bt+1,i ∑

d−t
i=1 ai,2bt+1,i · · · 1+∑

d−t
i=1 ai,t+1bt+1,i−w

∣∣∣∣∣∣∣∣∣ . (9.3)

Consider the value of the above determinant using Leibniz formula for determi-
nants, which is the sum of (t +1)! terms. Consider the terms that have at most 1 factor
of bi, j; these can only come from the diagonals. Thus, any t-flat parameterized by
a = (ai, j) intersects a query (d− t)-hyperslab parameterized by b = (bi, j) if and only
if

0 = a0,1 +a0,1

t+1

∑
j=2

d−1

∑
i=1

ai, jb j,i +
d−1

∑
i=1

ai,1b1,i +E(a,b)+ f (a,b,w) = P(a,b)+ f (a,b,w),

where E(a,b) contains the sum of products of at least two distinct ai1,i2bi3,i1 and
f (a,b,w) is a polynomial with factor w.

Note that after fixing a,b, f (a,b,w) is a polynomial in w and we assume that

∂ f (a,b,w)
∂w

=−

∣∣∣∣∣∣∣∣∣
a0,1 +∑

d−t
i=1 ai,1b1,i ∑

d−t
i=1 ai,2b1,i · · · ∑

d−t
i=1 ai,tb1,i

∑
d−t
i=1 ai,1b2,i 1+∑

d−t
i=1 ai,2b2,i · · · ∑

d−t
i=1 ai,tb2,i

...
...

. . .
...

∑
d−t
i=1 ai,1bt,i ∑

d−t
i=1 ai,2bt,i · · · 1+∑

d−t
i=1 ai,tbt,i

∣∣∣∣∣∣∣∣∣< 0.

(9.4)

This implies the following lemma.
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Lemma 9.4.1. Assuming a,b satisfying Assumptions (9.2) and (9.4), for any fixed a,
there is a b such that 0≤ P(a,b)≤− f (a,b,w0) if and only if there is some w∈ [0,w0]
such that P(a,b)+ f (a,b,w) = 0.

Proof. Since f (a,b,w) is a polynomial in w and ∂ f
∂w < 0, f (a,b,w) is continuous and

decreasing in [0,w0]. Furthermore f (a,b,0) = 0 as w is a factor of f . The lemma
follows.

Fixing a in P(a,b), we obtain a polynomial in b. Let (P(a,b), f (a,b,w0)) =
{b : 0≤ P(a,b)≤− f (a,b,w0)} be a polynomial slab. This essentially establishes a
reduction between polynomial slab reporting and flat intersection reporting.

Corollary 9.4.1. Assuming a,b satisfying Assumptions (9.2) and (9.4), for any fixed
a, there is a b such that b ∈ (P(a,b), f (a,b,w0)) if and only if a t-flat parameterized
by a intersects a (d− t)-hyperslab of width w0 parameterized by b.

Lower Bounds for Flat-hyperslab Intersection Reporting

We are now ready to prove the lower bounds. We show lower bounds for 1-flat-
hyperslab intersection reporting in Rd and 2-flat-hyperslab intersection reporting in
R4.

First observe that by setting t = 1 in Eq. (9.3) and using Corollary 9.4.1 a polyno-
mial slab reporting problem with polynomial

P1(a,b) = a0,1 +a0,1

d−1

∑
i=1

ai,2b2,i +
d−1

∑
i=1

ai,1b1,i +
d−1

∑
i, j=1∧i6= j

(ai,1a j,2−a j,1ai,2)b1,ib2, j

= b1,1G1(b2,2)+F1(b2,2), (9.5)

reduces to a line-hyperslab intersection reporting problem, where to get G1, we have
collected all the monomials that have b1,1 in them and then we have factored b1,1 out
and we are considering it as a polynomial of b2,2 (all the other variables are considered
“constant”). F1 is defined similarly by considering the remaining terms as a function
of b2,2. Observe that the polynomial does not have any term with degree 3. Let
G1 = g1,1b2,2 +g1,0 and F1 = f1,1b2,2 + f1,0.

Similarly, polynomial slab reporting with

P2(a,b) = a0,1 +a0,1

2

∑
j=1

3

∑
i=2

a j,ibi, j +
2

∑
j=1

a j,1b1, j

+a0,1

2

∑
j,l=1∧ j 6=l

(a j,2al,3−a j,3al,2)b2, jb3,l +
2

∑
j,l=1∧ j 6=l

3

∑
k=2

(a j,1al,k−a j,kal,1)b1, jbk,l

= b1,1G2(b2,2)+F2(b2,2) (9.6)

reduces to 2-flat-hyperslab intersection reporting in R4 where G2,F2 are defined
similarly as G1,F1.
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For the moment, we focus on the case of line-hyperslab intersection reporting
but the same applies also to 2-flat-hyperslab intersection reporting in R4 since the
polynomials F2 and G2 involved in the definition of Eq. (9.6) are quite similar to
Eq. (9.5).

Here, we will use our techniques from Section 9.3. The general idea is that we
will use Corollary 9.2.2, to reduce the 2(d− 1)-variate polynomials P1 and P2 into
bivariate polynomials on b1,1 and b2,2. Then, the variable b1,1 will be our y variable
and b2,2 will be the x variable in Section 9.3, and G1 and F1 here will play the same
role as in that section. We will set

a1,1 =
1+a1,2a2,1

a2,2
(9.7)

which will ensure that the leading coefficient of G1 is 1. This is our normalization
step, since we can divide the equations defining the intersection (and thus polynomials
P1 and P2) by any constant. Eventually, the resultant of the polynomials F1 and G1
will play an important role. Observe that the resultant is

Res(G1,F1) =

∣∣∣∣ 1 g0
f1 f0

∣∣∣∣= f0−g0 f1. (9.8)

Construction of Input Points and Queries

Now we are ready to describe our input and query construction. Assume we have a
data structure that uses S(n) space and has the query time Q(n)+O(k) where k is the
output size; for brevity we use Q = Q(n).

We will start with a fixed line and a fixed hyperslab and then build the queries and
inputs very close to these two fixed objects. However, we require a certain “general
position” property with respect to these two fixed objects.

Recall that Eq. (9.5) refers to the condition of whether a (query) line described by
a variables intersects a (d−2)-dimensional flat described by the b variables (which
corresponds to setting the variable w to zero). Consider a fixed flat and a fixed line.
To avoid future confusion, let A and B refer to this fixed line and flat. We require the
following.

• A and B must intersect properly (i.e., the line is not contained in the flat).
Observe that it implies that when we consider P1(A,b) as a polynomial in b
variables, B does not belong to the zero set of P1(A,b). Note that this satisfies
Assumption (9.2).

• The polynomial P1(A,b) (as a polynomial in b) is irreducible. This is true as
long as A is chosen so that no coefficient in P1 is zero. To see this, note that P1
is a polynomial in b and any variable bi, j has degree 1. Suppose for the sake of
contradiction that P1 is reducible, then the factorization must be of the form

P1(A,b) =

(
c10 +

d−1

∑
i=1

c1ib1i

)
·

(
c20 +

d−1

∑
i=1

c2ib2i

)
,
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for nonzero coefficients c10,c20,c1i,c2i. Then by Eq. (9.5),

1. a0,1 = c10c20,

2. ∀i = 1, · · · ,d−1 : a0,1ai,2 = c10c2i,

3. ∀i = 1, · · · ,d−1 : ai,1 = c1ic20,

4. ∀i, j = 1,2, · · · ,d−1 : ai,1a j,2−a j,1ai,2 = c1ic2i.

However, for these conditions to hold, all coefficients of P1 must be zero, a
contradiction.

• Observe that the irreducibility of P1(A,b) as a polynomial in b implies that it
has only finitely many points where the tangent hyperplane at those points is
parallel to some axis. We assume B is not one of those points.

• The irreducibility of P1(A,b) as a polynomial in b can be used to satisfy As-
sumption (9.4) since the corresponding polynomial of the determinant involved
in Assumption (9.4) can only have Θ(1) many common roots with P1(A,b).

• Finally, since the polynomial P1(A,b) is irreducible and since Res(G1,F1) is
also of degree 2 in b variables, it follows that Res(G1,F1) is algebraically
independent of P1(A,b). This means that there are only finitely many places
where both polynomials are zero, meaning, we can additionally assume that
Eq. (9.8) is non-zero (when evaluated at B).

Consider two parameters εp and εq = εp/C where C is a large enough constant
and εp is a parameter to be set later. Consider the parametric space of the input
objects, where the variable b defines a single point. In such a space, B defines a
single point. Place an axis-aligned cube R of side-length εp centered around B. The
input slabs are defined by placing a set of n random points inside R. Each point in R
defines a (d−2)-dimensional flat. We set w = Θ(Q

n ) which in turn defines a “narrow
(d−1)-hyperslab”.

We now define the set of queries. Notice that P1 has exactly 2(d−1) algebraically
independent coefficients; these are the coefficients of linear terms involved plus a0,1;
recall that by Eq. (9.7), a1,1 was fixed as a function of a1,2a2,1 and a2,2 but we still
have a0,1 as a free parameter. These 2(d−1) coefficients define another parametric
space, where A denotes a single point. Place a 2(d−1)-dimensional hypercube of
side length εq and then subdivide it into a grid where the side-length of every cell is τ .
Every grid point now defines a different query. Let Q be the set of all the queries we
have constructed.

Notice that a query defined by a point a ∈Q defines a line in the primal space, but
when considered in the parametric space R, it corresponds to a manifold (zeroes of a
degree two multilinear polynomial) that includes the set of points that correspond to
(d−2)-dimensional flats that pass through the line in the primal space. The variable
w allows us to turn it to a range reporting problem where we need to output any
(d−2)-dimensional flat that passes within w vertical distance of the query line. The
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following observations and lemmas are the important geometric properties that we
require out of our construction.

Observation 9.4.1. For two different queries a1 and a2, the polynomials P1(a1,b)
and P1(a2,b) differ by at least τ in at least one of their coefficients.

Observation 9.4.2. Consider a line f parallel to an axis. For small enough εp, and
any a ∈Q, the function P1(a,b) evaluated on the line f is such that the magnitude of
its derivative is bounded by Ω(1).

Proof. Recall that B was chosen such that the manifold corresponding to A does
not have a tangent parallel to any of the axes at point B and thus the derivate of the
function P1(A,B) is non-zero at B. The lemma then follows since εp and εq are small
enough and P1(A,B) is a continuous function w.r.t any of its variables.

Let Vol′(R) be the (d − 1)-dimensional volume of R, i.e., the volume of the
projection of R to any of its (d−1)-dimensional subspace.

Observation 9.4.3. The intersection volume of the range defined by a query a and R
is Θ(wVol′(R)) if C in the definition of εq is large enough, for w≤ εp.

Proof. Observe that the query manifold defined by A passes through the center, B, of
R by construction. Since each coordinate of a differs from A by at most εq, it thus
follows that by setting C large enough, we can ensure that the distance between B
and a is less than εp/2. Also observe that the width of the range along any axis will
be Θ(w). The claim now follows by integrating the volume over vertical lines using
Observation 9.4.2.

Lemma 9.4.2. Consider a query a ∈Q and let r be the range that represents a in the
parametric space defined by R. Consider an interval I on the i-th side of R, for some
i. Let rI be the subset of r whose projection on the i-th side of R falls inside I . Then,
the volume of rI is O(Vol′(R)w|I |/εp).

Proof. Both claims follow through Observation 9.4.2 by integrating the corresponding
volumes over lines parallel to axes.

Using the Framework

Observe that by the above Observation 9.4.3, setting w = Θ(Q
n εp) satisfies Condition 1

of the lower bound framework in Theorem 9.2.1.
Satisfying Condition 2 requires a bit more work however. To do that, consider two

queries defined by points a1 and a2. Let r1 and r2 be the two corresponding ranges in
the parametric space of R.

To satisfy Condition 2, assume for contradiction that the volume of r1∩ r2 is large,
i.e., ω(Vol(R)/(nψ)) where ψ = 2

√
logn. We now combine Observation 9.4.1, and

Corollary 9.2.2 with parameter ϑ set to ε0
εp

Qψ
where ε0 is a small enough constant and

where X1 represents b1,1, X2 represents b2,2 and the remaining indeterminates represent
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the rest of variables in b; note that the value of d in Corollary 9.2.2 is β = 2(d−1)
and U =

(2+1
2

)
= 3. Observe that each interval Ii determined by Corollary 9.2.2

defines a slab parallel to the i-th axis in R; let Rbad be the union of these slabs. By
Lemma 9.4.2, and choice of small enough ε0, a positive fraction of the intersection
volume of r1 and r2 must lie outside Rbad. In addition, Corollary 9.2.2 allows us to
pick some fixed values for all variables in b, except for b1,1 and b2,2 with the property
the final polynomials H1 and H2 (on indeterminates b1,1 and b2,2) that we obtain have
the property that they have at least one coefficient which differs by

Ω

(
τ

(
ε0

εp

Qψ

)3(β−2)
)

(9.9)

between them; we call this operation of plugging values for all b except for b1,1
and b2,2 slicing. After slicing, we are reduced to the bivariate case; consider the
set of points on which both H1 and H2 have value O(w). If the 1D interval length
of such points is O(εp/(Qψ), we call this a good slice, otherwise a bad slice. By
Lemma 9.4.2, there must be bad slices since if all the slices are good, by integration
of the intersection area of r1 and r2 over all the remaining variables in b, r1 and r2
intersect with volume O(Vol(R)/(nψ)), a contradiction.

We now show that we can arrive at a contradiction, assuming the existence of a bad
slice. Given a bad slice, and any constant `, we can find ` points (x1,y1), . . . ,(x`,y`)
such that |xk1−xk2 |=ω(εp/(Qψ)) for all 1≤ k1 < k2≤ ` and that H1(xk,yk),H2(xk,yk)=
O(w) for all k ∈ {1,2 · · · , `}. Observe that Hi(x,y) has only monomials y, x, xy and a
constant term. The critical observation here is that the coefficient of the monomial
xy is always 1 since the coefficient of the monomial b1,1b2,2 was 1 and there was no
monomial of degree three in P1, meaning, after slicing this coefficient will not change.
We pick `= 3 and thus we tweak all the three other coefficients of H1. Tweaking H1
such that H̃1(xk,yk) = H2(xk,yk) corresponds to solving a linear system of equations
that come from evalutions of monomials X , Y , and a constant term at points (xk,yk).
We can thus use Lemma 9.3.1 with ∆1 = ∆F = 1, λ = ω(εp/(Qψ)). Observe that
Res(G,F) here is a constant by the properties of our construction. Also observe that
by Lemma 9.3.1, the magnitude of the determinant of matrix A defined in Lemma 9.3.1
is

ω

(
(εp/(Qψ)))9

)
.

By the same argument in [AC22], this means that the tweaking operation can be done
such that each coefficient of H1 is changed by

o
(
(εp/(Qψ)))−9 w

)
. (9.10)

We observe that after tweaking, H̃1 and H2 must coincide since by Lemma 9.3.1, the
determinant of the relevant monomials is non-zero and thus there’s a unique polyno-
mial that passes through points (x1,y1), · · · ,(x`,y`). Finally, to get a contradiction, we
simply need to ensure that Eq. (9.10) is asymptotically smaller than Eq. (9.9). This
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yields a bound for the value of τ ,

τ = Θ

(
w(Qψ)3(β−2)+9

)
= Θ

(
w(Qψ)3β+3

)
(9.11)

where we have assumed that εp, and ε0 are small enough constants that have been
absorbed in the Θ(·) notation. Thus, this choice of τ will make sure that Condition 2
of the framework is also satisfied. It remains to calculate the number of queries that
have been generated. Observe that τ was the side-length of a small enough grid around
the point A in a β -dimensional space. Thus, the number of queries we generated is

m =
o

Ω

((
1
τ

)β
)

=
o

Ω

(
nβ

Qβ (3β+4)

)
. (9.12)

Applying Theorem 9.2.1 yields a space lower bound of

S(n) =
o

Ω(mQ) =
o

Ω

(
n2(d−1)

Q4(3d−1)(d−1)−1

)
(9.13)

for line-hyperslab intersection reporting since β = 2(d−1). One can verify that the
same argument works for triangle-triangle intersection reporting in R4, since P2 is
also a multilinear polynomial of degree two. In this case, β = 6 which yields a space
lower bound of

S(n) =
o

Ω

(
n6

Q125

)
. (9.14)

To sum up, we obtain the following results:

Theorem 9.4.1. Any data structure that solves line-hyperslab intersection reporting

in Rd must satisfy a space-time tradeoff of S(n) =
o

Ω

(
n2(d−1)

Q(n)(4(3d−1)(d−1)−1

)
.

Theorem 9.4.2. Any data structure that solves triangle-triangle intersection reporting

in R4 must satisfy a space-time tradeoff of S(n) =
o

Ω

(
n6

Q(n)125

)
.

9.5 Conclusion and Open Problems

We study line-hyperslab intersecting reporting in Rd and triangle-triangle intersecting
reporting in R4. We show that any data structure with no(1)+O(k) query time must

use space
o

Ω(n2(d−1)) and
o

Ω(n6) for the two problems respectively. This matches the
classical upper bounds for the small no(1) query time case for the two problems and
answer an open problem for lower bounds asked by Ezra and Sharir [ES22b]. Along
the way, we generalize and develop the lower bound technique used in [AC23b, AC22].

The major open problem is how to show a lower bound for general intersection
reporting between objects of t and (d− t) dimensions or for flat semialgebraic objects
as studied recently in [AAE+22]. Many of our techniques work, however, one big
challenge is that after applying Corollary 9.2.2, the leading coefficient changes and
thus we can no longer guarantee big gaps between coefficients.





Appendices

9.A Proof of Lemma 9.2.1

Lemma 9.2.1. Let P(x) = ∑
∆
i=0 aixi and Q(x) = ∑

∆
i=0 bixi be two univariate (constant)

degree-∆ polynomials in R[x] and |ai−bi| ≥ η for some 0≤ i≤ ∆.
Suppose there is an interval I of x such that for every x0 ∈I we have |P(x0)−

Q(x0)| ≤ w, then the length of I is upper bounded by O((w/η)1/U ), where U =(
∆+1

2

)
and the O(·) notation hides constant factors that depend on ∆.

Proof. The proof is by contradiction. Assume for the sake of contradiction that
|I | = ω((w/η)1/U ). We pick ∆ + 1 points (u1,v1), · · · ,(u∆+1,v∆+1) from y =
P(x) for u1, · · · ,u∆+1 ∈ I such that |uk1 − uk2 | = Ω(|I |) for k1 6= k2. Let (u1,v1 +
ξ1), · · · ,(u∆+1,v∆+1 + ξ∆+1) be ∆+ 1 points on y = Q(x). By definition |ξk| ≤ w
for all k = 1,2, · · · ,∆+ 1. We would like to tweak coefficient ai of P(x) by δi for
i = 0,1, · · · ,∆ to obtain a polynomial P′(x) such that y = P′(x) and y = Q(x) agree on
x = u1, · · · ,u∆+1. Observe that to do that, for each k, we would like to have

vk +ξk =
∆

∑
i=0

(ai +δi)ui
k =⇒ ξk =

∆

∑
i=0

δiui
k

where the last follows from vk = ∑
∆
i=0 aiui

k. Thus, to perform the tweaking, each δi

should satisfy the following system1 u1 · · · u∆
1

...
...

. . .
...

1 u∆+1 · · · u∆
∆+1

 ·
δ0

...
δ∆

=

 ξ1
...

ξ∆+1

 ,
or A ·mδ = mξ . Note that A is a Vandermonde matrix. So by Theorem 9.2.3,
det(A) = Ω(|I |U ), since |uk1−uk2 |= Ω(|I |). This shows that there exists a unique
solution for δi and thus we can perform the tweaking. In addition, it follows that
|δi| = O( ξ

det(A)) = O( w
det(A)). Now observe that if we assume |I | = ω((w/η)1/U ),

it follows that |δi| = o(η). Since P′,Q have ∆+1 points in common, they must be
equivalent. This mean |ai−bi|= o(η) for all 0≤ i≤ ∆, a contradiction.
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9.B Proof of Lemma 9.2.2

Lemma 9.2.2. Let P1(X) = ∑i∈Id,∆
AiX i and P2(X) = ∑i∈Id,∆

BiX i be two d-variate
degree-∆ polynomials in R[X ] and |Ai−Bi| ≥ ηd for some i ∈ Id,∆.

Suppose for each assignment Xd ∈Id to P1,P2, where Id is an interval for Xd ,
all the coefficients of the resulting (d−1)-variate polynomial Q1(X1, · · ·Xd−1) and
Q2(X1, · · ·Xd−1) differ by at most ηd−1, then |Id |= O((ηd−1/ηd)

1/U ).

Proof. Note that
P1 = ∑

i∈I
AiX i = ∑

j∈I:d−1

hj(Xd)X
j
:d−1,

and
P2 = ∑

i∈I
BiX i = ∑

j∈I:d−1

ĥj(Xd)X
j
:d−1,

where I:d−1 stands for the set of (d−1)-tuples formed by taking the (d−1) entries
of every d-tuple in I and X:d−1 = (X1, · · · ,Xd−1), and the coefficients of X:d−1 are
polynomials in Xd of form

hj(Xd) =
∆

∑
i=0

Aj⊕iX i
d ,

and

ĥj(Xd) =
∆

∑
i=0

Bj⊕iX i
d ,

where j⊕ i stands for a d-tuple formed by appending i to j. Since P1 6≡ P2, there must
exists one j such that hj(Xd)− ĥj(Xd) 6≡ 0. Then by Lemma 9.2.1, the interval length
for Xd in which |hj(Xd)− ĥj(Xd)| ≤ ηd−1 is upper bounded by O(ηd−1/ηd)

1/U ). By
a union bound over all monomials, the lemma follows.



Chapter 10

On Range Summary Queries

Abstract

We study the query version of the approximate heavy hitter and quantile
problems. In the former problem, the input is a parameter ε and a set P of n
points in Rd where each point is assigned a color from a set C, and the goal is
to build a structure such that given any geometric range γ , we can efficiently
find a list of approximate heavy hitters in γ ∩P, i.e., colors that appear at least
ε|γ ∩P| times in γ ∩P, as well as their frequencies with an additive error of
ε|γ ∩P|. In the latter problem, each point is assigned a weight from a totally
ordered universe and the query must output a sequence S of 1+ 1/ε weights
such that the i-th weight in S has approximate rank iε|γ ∩P|, meaning, rank
iε|γ ∩P| up to an additive error of ε|γ ∩P|. Previously, optimal results were
only known in 1D [WY11] but a few sub-optimal methods were available in
higher dimensions [AW17, ACH+13].

We study the problems for two important classes of geometric ranges: 3D
halfspace and 3D dominance queries. It is known that many other important
queries can be reduced to these two, e.g., 1D interval stabbing or interval con-
tainment, 2D three-sided queries, 2D circular as well as 2D k-nearest neighbors
queries. We consider the real RAM model of computation where integer regis-
ters of size w bits, w = Θ(logn), are also available. For dominance queries, we
show optimal solutions for both heavy hitter and quantile problems: using linear
space, we can answer both queries in time O(logn+ 1/ε). Note that as the
output size is 1

ε
, after investing the initial O(logn) searching time, our structure

takes on average O(1) time to find a heavy hitter or a quantile! For more general
halfspace heavy hitter queries, the same optimal query time can be achieved
by increasing the space by an extra logw

1
ε

(resp. log logw
1
ε

) factor in 3D (resp.
2D). By spending extra logO(1) 1

ε
factors in both time and space, we can also

support quantile queries.
We remark that it is hopeless to achieve a similar query bound for dimen-

sions 4 or higher unless significant advances are made in the data structure side
of theory of geometric approximations.
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10.1 Introduction

Range searching is an old and fundamental area of computational geometry that deals
with storing an input set P⊂ Rd of n (potentially weighted) points in a data structure
such that given a query range γ , one can answer certain questions about the subset of
points inside γ . Range searching is often introduced within a general framework that
allows a very diverse set of questions to be answered. For instance, if the points in P
have been assigned integer or real weights, then one can count the points in γ (range
counting), sum the total weights of the points in γ (weighted range counting), or find
the maximum or minimum weight in γ (range max or min queries).

However, there are some important questions that cannot be answered within this
general framework. Consider the following motivating example: our data includes the
locations of houses in a city as well as their estimated values and given a query range
γ , we are interested in the distribution of the house values within γ , for example, we
might be interested to see if there’s a large inequality in house values or not. Through
classical results, we can find the most expensive and the least expensive houses (max
and min queries), and the average value of the houses (by dividing the weighted sum
of the values by the total number of houses in γ). Unfortunately, this information
does not tell us much about the distribution of the house values within γ , e.g., one
cannot compute the Gini index which is a widely-used measure of inequality of the
distribution. Ideally, to know the exact distribution of values within γ , one must
have all the values inside γ , which in the literature is known as a range reporting
query which reports all the points inside the query range γ . However, this could be
an expensive operation, e.g., it can take Ω(n) time if the query contains a constant
fraction of the input points. A reasonable alternative is to ask for a “summary” query,
one that can summarize the distribution. In fact, the streaming literature is rich with
many important notions of summary that are used to concisely represent a large
stream of data approximately but with high precision. Computing ε-quantiles can
be considered as one of the most important concepts for a succinct approximation of
a distribution and it also generalizes many of the familiar concepts, e.g., 0-quantile,
0.5-quantile, and 1-quantile that are also known as the minimum, the median, and the
maximum of S. We now give a formal definition below.

Quantile summaries. Given a sequence of values w1 ≤ ·· · ≤ wk, a δ -quantile, for
0 ≤ δ ≤ 1, is the value with rank bδkc. By convention, 0-quantile and 1-quantiles
are set to be the minimum and the maximum, i.e., w1 and wk respectively. An ε-
quantile summary is then defined as the list of 1+ ε−1 values where the i-th value
is the iε-quantile, for i = 0, · · · ,ε−1. As we will review shortly, computing exact
quantiles is often too expensive so instead we focus on approximations. We define an
approximate ε-quantile summary (AQS) to be a sequence of 1+ ε−1 values where the
i-th value is between the (i−1)-quantile and the (i+1)-quantile1, for i = 0, · · · ,ε−1.
An approximate quantile summary with a reasonably small choice of ε can give a very

1For a≤ 0 (resp. a≥ k), we define the a-quantile to be the 0-quantile (resp. k-quantile).
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good approximation of the distribution. It also has the benefit that the query needs to
output only O(ε−1) values, regardless of the number of points inside the query range.

To obtain a relatively precise approximation of the distribution, ε needs to be
chosen sufficiently small, and thus we consider it an additional parameter (and thus not
a constant). This is also similar to the literature on streaming where the dependency
on ε is important.

Problem Definition, Previous Work, and Related Results

One of our main problems is the problem of answering approximate quantile summary
(AQS) queries which is defined as follows.

Problem 10.1.1 (Approximate quantile summaries). Consider an input set P of n
points in Rd where each point p ∈ P is assigned a weight wp from a totally ordered
universe. Given a value ε , we are asked to build a structure such that given a query
range γ , it can return an AQS of P∩ γ efficiently.

It turns out that another type of “range summary queries” is extremely useful for
building data structures for AQS queries.

Heavy hitter summaries. Consider a set P of k points where each point in P is
assigned a color from the set [n]. Let fi be the frequency of color i in P, i.e., the number
of times color i appears among the points in P. A heavy hitter summary (HHS) with
parameter ε , is the list of all the colors i with fi ≥ εk together with the value fi. As
before, working with exact HHS will result in very inefficient data structures and thus
once again we turn to approximations. An approximate heavy hitter summary (AHHS)
with parameter ε is a list, L, of colors such that every color i with fi ≥ εk is included
in L and furthermore, every color i ∈ L is also accompanied with an approximation,
f ′i , of its frequency such that fi− εk ≤ f ′i ≤ fi + εk.

Problem 10.1.2 (Approximate heavy hitters summaries). Consider an input set P of
n points in Rd where each point in P is assigned a color from the set [n]. Given a
parameter ε , we are asked to build a structure such that given a query γ , it can return
an AHHS of the set P∩ γ .

Observe that in both problems, the output size of a query is O(1/ε) in the worst-
case. Our main focus is to obtain data structures with the optimal worst-case query
time of O(logn+ ε−1). Note that it makes sense to define an output-sensitive variant
where the query time is O(logn+ k) where k is the output size. E.g., it could be the
case for a AHHS query that the numbrer of heavy hitters is much fewer than ε−1. This
makes less sense for AQS queries, since unless the distribution of weights inside the
query range γ is almost constant, an AQS will have Ω(ε−1) distinct values. As our
main focus is on AQS, we only consider AHHS data structures with the worst-case
query time of O(logn+ ε−1).
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A note about the notation. To reduce the clutter in the expressions of query time
and space, we adopt the convention that log(·) function is at least one, e.g., we define
loga b to be max{1, lnb

lna} for any positive values a,b.

Previous Results

As discussed, classical range searching solutions focus on rather simple queries that
can return sum, weighted sum, minimum, maximum, or the full list of points contained
in a given query range. This is an extensively researched area with numerous results
to cite and so we refer the reader to an excellent survey by Agarwal [Aga17] that
covers such classical results.

However, classical range searching data structures cannot give detailed statistical
information about the set of points contained inside the query region, unless one
opts to report the entire subset of points inside the query range, which could be very
expensive if the set is large. Because of this, there have been a number of attempts to
answer more informative queries. For example, “range median” queries have received
quite a bit of attention [BKMT05, BGJrS11, JrL11]. Note that the median is the
same as 0.5-quantile and thus these can be considered the first attempts at answering
quantile queries. However, optimal solution (linear space and logarithmic query
time) to exact range median queries has only be found in 1D [BGJrS11]. For higher
dimensions, to the best of our knowledge, the only known technique is to reduce the
problem to several range counting instances [BGJrS11, CZ15], and it is a major open
problem in the range searching field to find efficient data structures for exact range
counting. Due to this barrier, the approximate version of the problem [BKMT05] has
been studied.

Data summary queries have also received some amount of attention, especially
in the context of geometric queries. Agarwal et al. [ACH+13] showed that the heavy
hitters summary (as well as a few other data summaries) are “mergeable” and this
gives a baseline solution for a lot of different queries in higher dimensions, although a
straightforward application of their techniques gives sub-optimal dependency on ε .
In particular, for d = 2 and for halfspace (or simplex) queries it yields a linear-space
data structure with O(

√
n

ε
) query time. For d = 3 the query time will be O(n2/3/ε). In

general, in the naive implementation, the query time will be O( f (n)/ε) where f (n)
is the query time of the corresponding “baseline” range searching query (see Table 1
for more information). A more efficient approach towards merging of summaries
was taken by [HY17] where they study the problem in a communication complexity
setting, however, it seems possible to adopt their approach to a data structure as well,
in combination with standard application of partition trees; after building an optimal
partition tree, for any node v in the tree, consider it as a player in the communication
problem with the subset of points in the subtree of v as its input. At the query time,
after identifying O(n2/3) subsets that cover the query range, the goal would be to
merge all the summaries involved. By plugging the results in [HY17] this can result
in a linear-space data structure with query time of Õ(n2/3 +n1/6ε−3/2).
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The issue of building optimal data structures for range summary queries was only
tackled in 1D by Wei and Yi [YWW14]. They built a data structure for answering a
number of summary queries, including heavy hitters queries, and showed it is possible
to obtain an optimal data structure with O(n) space and O(logn+1/ε) query time.
Beyond this, only sub-optimal solutions are available. Recently, there have been efforts
to tackle “range sampling queries” where the goal is to extract k random samples
from the set |P∩ γ| [AP19, AW17, HQT14]. In fact, one of the main motivations to
consider range sampling queries was to gain information about the distribution of the
point set inside the query [AP19]. In particular, range sampling provides a general
solution for obtaining a “data summary” and for example, it is possible to solve the
heavy hitters query problem. However, it has a number of issues, in particular, it
requires sampling at least 1/ε2 points from the set |P∩ γ|, and even then it will only
provide a Monte Carlo type approximation which means to boost the probabilistic
guarantee, even more points need to be sampled. For example, to get a high probability
guarantee, Ω(ε−2logn) samples are required.

Type-2 Color Counting. These queries were introduced in 1995 by Gupta et
al. [GJS95] within the area of “colored range counting”. In this problem, given
a set of colored points, we want to report the frequencies of all the colors that appeared
in a given query range. This is a well-studied problem, but mostly in the orthogonal
setting, see e.g., [CHN20].

AHHS queries can be viewed as approximate type-2 color counting queries but
with an additive error. Consider a query with k points. If we allow error εk in type-2
counting, then we can ignore colors with frequencies fewer than εk but otherwise we
have to report frequencies with error εk, which is equivalent to answering an AHHS
query.

Other Related Problems. Karpinski and Nekrich [KN08] studied the problem of
finding the most frequent colors in a given (orthogonal) query range. This problem
has received further attention in the community [BGN13, BGM+21, DHM+13]. But
the problem changes fundamentally when we introduce approximations.

The Model of Computation. Our model of computation is the real RAM where we
have access to real registers that can perform the standard operations on real numbers
in constant time, but we also have access to w = Θ(logn) bits long integer registers
that can perform the standard operations on integers and extra nonstandard operations
which can be implemented by table lookups since we only need binary operations on
fewer than 1

2 logn bits. Note that our data structure works when the input coordinates
are real numbers, however, at some point, we will make use of the capabilities of our
model of computation to manipulate the bits inside its integer registers.
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Our Contributions

Our main results and a comparison with the previously known results are shown in
Table 1.

Overall, we obtain a series of new results for 3D AHHS and AQS query prob-
lems which improve the current results via mergeability and independent range sam-
pling [ACH+13, AW17] by up to a huge multiplicative nΩ(1) factor in query time
with almost the same linear-space usage. This improvement is quite nontrivial and
requires an innovative combination of known techniques like the shallow cutting
lemma, the partition theorem, ε-approximations, as well as some new ideas like
bit-packing for nonorthogonal queries, solving AQS query problem using AHHS
instances, rank-preserving geometric sampling and so on.

For dominance queries, we obtain the first optimal results. When ε−1 = O(logn)
our halfspace AHHS results are also optimal. Note that for small values of ε , our
halfspace AHHS results yield significant improvements in the query time over the
previous approaches. Along the way, we also show improved results of the above
problems for 2D as well as a slightly improved exact type-2 simplex color counting
result.

10.2 Preliminaries

In this section, we introduce the main tools we will use in our results. For a compre-
hensive introduction to the tools we use, see Appendix 10.A and Appendix 10.B.

Shallow Cuttings and Approximate Range Counting

Given a set H of n hyperplanes in R3, the level of a point q ∈ R3 is the number of
hyperplanes in H that pass below q. We call the locus of all points of level at most
k the (≤ k)-level and the boundary of the locus is the k-level. A shallow cutting C
for the (≤ k)-level of H (or a k-shallow cutting for short) is a collection of disjoint
cells (tetrahedra) that together cover the (≤ k)-level of H with the property that every
cell C ∈ C in the cutting intersects a set HC, called the conflict list of C , of O(k)
hyperplanes in H. The shallow cutting lemma is the following.

Lemma 10.2.1. For any set of n hyperplanes in R3 and a parameter k, there exists
an O(k/n)-shallow cutting of size O(n/k) that covers the (≤ k)-level. The cells in
the cutting are all vertical prisms unbounded from below (tetrahedra with a vertex at
(0,0,−∞)).

Furthermore, we can construct these cuttings for all k of form ai simultaneously
in O(n logn) time for any a > 1. Given any point q ∈ R3, we can find the smallest
level k that is above q as well the cell containing q in O(logn) time.

The above can also be applied to dominance ranges, which are defined as below.
Given two points p and q in Rd , p dominates q if and only if every coordinate of p is
larger or equal to that of q. The subset of Rd dominated by p is known as a dominance
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Table 1: Our main results compared with Mergeability-based [ACH+13] and Inde-
pendent Range Sampling (IRS)-based [AW17] solution. The IRS-based solutions are
randomized with success probability 1−δ for a parameter 0 < δ < 1. F is the number
of colors of the input. w = Θ(logn) is the word size of the machine. † indicates
optimal solutions.

Summary
Query Types Space Query Time Remark

Type-2
Simplex Color

Counting
O(n) O

(
n1− 1

d + n1− 1
d F

1
d

wα

)
New

3D AHHS
Halfspace

O(n)
O(n)
O(n)
O(n logw

1
ε
)

O(logn+ 1
ε
n2/3)

Õ(n2/3 + 1
ε3/2 n1/6)

O(logn+ 1
ε2 log 1

δ
)

O(logn+ 1
ε
)

Mergeability-
based [ACH+13]
Monte Carlo [HY17]
IRS-based [AW17]
New

3D AHHS
Dominance

O(n)
O(n)
O(n)

O(logn+ 1
ε

log3 n)
O(logn+ 1

ε2 log 1
δ
)

O(logn+ 1
ε
)

Mergeability-
based [ACH+13]
IRS-based [AW17]
New†

3D AQS
Halfspace

O(n)
O(n)
O(n log2 1

ε
logw

1
ε
)

O(logn+ 1
ε
n2/3 log(εn))

O(logn+ 1
ε2 log 1

δ
)

O(logn+ 1
ε

log2 1
ε
)

Mergeability-
based [ACH+13]
IRS-based [AW17]
New

3D AQS
Dominance

O(n)
O(n)
O(n)

O(logn+ 1
ε

log3 n log(εn))
O(logn+ 1

ε2 log 1
δ
)

O(logn+ 1
ε
)

Mergeability-
based [ACH+13]
IRS-based [AW17]
New†

range. When the query range in a range searching problem is a dominance range, we
refer to it as a dominance query.

As observed by Chan et al. [CLP11], dominance queries can be simulated by a
halfspace queries and thus Lemma 10.2.1 applies to them. See Appendix 10.B for
details.

We obtain the approximate version of the range counting result using shallow
cuttings.

Theorem 10.2.1 (Approximate Range Counting [AHZ10]). Let P be a set of n points
in R3. One can build a data structure of size O(n) for halfspace or dominance ranges
such that given a query range γ , one can report |γ ∩P| in O(logn) time with error
α|γ ∩P| for any constant α > 0.
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ε-approximation

Another tool we will use is ε-approximation, which is a useful sampling technique:

Definition 10.2.1. Let (P,Γ) be a finite set system. Given any 0 < ε < 1, a set A⊆ P
is called an ε-approximation for (P,Γ) if for any γ ∈ Γ, | |γ∩A|

|A| −
|γ∩P|
|P| | ≤ ε.

The set A above allows us to approximate the number of points of γ ∩P with
additive error of ε|P| by computing |γ ∩A| exactly; essentially, ε-approximations
reduce the approximate counting problem on the (big) set P to the exact counting
problem on the (small) set A.

It has been shown that small-sized ε-approximations for set systems formed by
points and halfspaces/dominance ranges exist:

Theorem 10.2.2 (ε-approximation [Mat10, Phi16]). There exist ε-approximations of
size O(ε−

2d
d+1 ) and O(ε−1 logd+1/2

ε−1) for halfspace and dominance ranges respec-
tively.

10.3 Approximate Heavy Hitter Summary Queries

We solve approximate quantile summary (AQS) queries using improved results for
approximate heavy hitter summary (AHHS) queries. We sketch the main ideas of our
new AHHS solutions in this section and refer the readers to Appendix 10.D for details.
We show the following.

Theorem 10.3.1. For d = 3, the approximate halfspace heavy hitter summary queries
can be answered using O(n logw(1/ε0)) space and with the optimal O(logn+1/ε0)
query time.

Theorem 10.3.2. For d = 2, the approximate halfspace heavy hitter summary queries
can be answered using O(n log logw(1/ε0)) space and with the optimal O(logn+
1/ε0) query time.

Theorem 10.3.3. For d = 2,3, the approximate dominance heavy hitter summary
queries can be answered using the optimal O(n) space and with the optimal O(logn+
1/ε0) query time.

Base Solution

The above results are built from a base solution, which solves the following problem:

Problem 10.3.1. [Coarse-Grained AHHS Queries] Let P be a set of points in Rd ,
each associated with a color. The problem is to store P in a structure such that given
a query range q, one can estimate the frequencies of colors in q∩P with an additive
error up to ε|P| efficiently for some parameter 0 < ε < 1.
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Note that here we allow more error (since the error is defined in the entire point
set). To solve Problem 10.3.1, one crucial component we need is a better (exact)
type-2 color counting structure for halfspaces. We combine several known techniques
in a novel way with bit-packing to get the following theorem. See Appendix 10.C for
details.

Theorem 10.3.4. Given an integer parameter F, a set P of n points in Rd where
each point is assigned a color from the set [F ], one can build a linear-sized data
structure, such that given a query simplex q, it can output the number of times each
color appears in P∩q in total time max{O(n(d−1)/d),O(n(d−1)/dF1/d/wα)}, for some
appropriate constant α and word size w.

The main idea for getting a base solution is relatively straightforward. We group
colors according to their frequencies where each group contains colors of roughly
equal frequencies. However, we have to be careful about the execution and the analysis
is a bit tricky. For example, if we place all the points in one copy of the data structure
of Theorem 10.3.4, then we will get a sub-optimal result. However, by grouping the
points correctly, and being stringent about the analysis, we can obtain the following.

Theorem 10.3.5. For d ≥ 3, Problem 10.3.1 for simplex queries (the intersection
of d +1 halfspaces) can be solved with O(X) space for X = min{|P|,ε−

2d
d+1 } and a

query time of

O

(
|P|1−

2
d−1

wαε
2

d−1

)
+O

(
X

d−1
d

)
where w is the word-size of the machine and α is some positive constant.

The main challenge is that we have two cases for the size of an ε-approximation
on n points since it is bounded by min

{
n,O(ε−

2d
d+1 )
}

and also two cases for the query
time of Theorem 10.3.4. However, the main idea is that since the total error budget
is ε|P|, we can afford to pick a larger error parameter εi =

ε|P|
|Pi| , where Pi is the set of

points with color i. The details are presented in the full version.

Solving AHHS Queries

We first transform the problem into the dual space. So the point set P becomes
a set H of hyperplanes and any query halfspace becomes a point q. We want to
find approximate heavy hitters of hyperplanes of H below q. Here, we remark that
obtaining a data structure with O(n log 1

ε0
) space is not too difficult: build a hierarchy

of shallow cuttings covering level 2i/ε0 for i = 0,1, · · · , log(ε0n) of the arrangement
of H. For each shallow cutting cell ∆C, we build the previous base structure for
the conflict list S∆C for a parameter ε = ε0/c for a big enough constant c. Then,
observe that for queries below level ε

−1
0 , we can spend O(logn+ 1

ε0
) time to find all

the hyperplanes passing below the query and answer the AHHS queries explicitly and
also for shallow cutting levels above level ε

−3/2
0 , the total amount of space used by
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the base solution is O(n). Thus, it turns out that the main difficulty lies in handling
the levels between ε

−1
0 and ε

−3/2
0 .

To reduce the space to O(logw
1
ε0
), recall that in the query time of the base structure,

we have two terms O(1/(ε0wα)) and O(X2/3).
Observe that we can afford to set ε to be roughly ε0/wα and the first term will still

be O(ε−1
0 ) because we are at level below ε

−3/2
0 , we have X < ε

−3/2
0 and so the second

term will always be O(ε−1
0 )! The effect of setting ε = ε0/wα is that now the base

structure we built for a cell can output frequencies with a factor of wα more precision,
meaning it can be used for a factor of wα many more levels. So we only need to
build the base structure for shallow cuttings built for a factor of wα ! This gives us the
O(n logw

1
ε0
) space bound. Of course, here the output has size O(ε−1) = O(wαε

−1
0 )

and we cannot afford to examine all these colors. The final ingredient here is that we
can maintain a list of O(ε−1

0 ) candidate colors using shallow cuttings built for a factor
of 2.

We remark that although the tools are standard, the combination of the tools and
the analysis are quite nontrivial. Also when we have Θ(1/ε0) heavy hitters, our query
time is optimal. It is an interesting open problem if the query time can be made output
sensitive.

10.4 Approximate Quantile Summary Queries

In this section, we solve Problem 10.1.1. We first show a general technique that uses
our solution AHHS queries to obtain an efficient solution for AQS queries. We show
that for halfspace and 3D dominance ranges we can convert the solution for AHHS
queries to a solution for AQS queries with an O(log2 1

ε
) blow up in space and time.

Then in Section 10.4, we present an optimal solution based on a different idea for
dominance ranges.

First, we show how to solve AQS queries using the AHHS query solution. We
describe the data structure for halfspaces, since as we have mentioned before, the
same can be applied to dominance ranges in 3D as well. The high level idea of our
structure is as follows: We first transform the problem into the dual space. This yields
the problem instance where we have n weighted hyperplanes and given a query point
q, we would like to extract an approximate quantile summary for the hyperplanes
that pass below q. To do this, we build hierarchical shallow cuttings. For each cell
in each cutting, we collect the hyperplanes in its conflict list and then divide them
into O( 1

ε0
) groups according to the increasing order of their weights. Given a query

point in the dual space, we first find the cutting and the cell containing it, and then
find an approximated rank of each group, within the subset below the query. This is
done by generating an AHHS problem instance and applying Theorem 10.3.1. We
construct the instance in a way such that the rank approximated will only have error
small enough such that we can afford to scan through the groups and pick an arbitrary
hyperplane in corresponding groups to form an approximate ε0-quantile summary.
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The Data Structure and the Query Algorithm

We dualize the set P of n input points which gives us a set H = P of n hyperplanes.
We then build a hierarchy of shallow cuttings where the i-th shallow cutting, Ci, is
a ki-shallow cutting where ki =

2i

ε0
, for i = 0,1,2, · · · , log(ε0n). Consider a cell ∆C in

the i-th shallow cutting and its conflict list S∆C . Let ε = ε0
c for a big enough constant

c. We partition S∆C into t = 1
ε

groups G1,G2, · · · ,Gt sorted by weight, meaning, the
weight of any hyperplane in G j is no larger than that of any hyperplane in G j+1 for
j = 1,2, · · · , t−1.

For each group G j, we store the smallest weight among the hyperplanes it contains,
as its representative. To make the description shorter, we make the simplifying
assumption that t is a power of 2 (if not, we can add some dummy groups). We
arrange the groups G j as the leaves of a balanced binary tree T and let V (T ) be
the set of vertices of T . Next, we build the following set A∆ of colored hyperplanes,
associated with ∆: Let ε ′ = ε

log2 t
. For every vertex v∈V (T ), let Gv to be the set of all

the hyperplanes contained in the subtree of v; we add an ε ′-approximation, Ev, of Gv

to A∆ with color v. Using Theorem 10.3.1, we store the points dual to hyperplanes in
A∆ in a data structure Ψ∆ for AHHS queries with error parameter ε ′. This completes
the description of our data structure.

The query algorithm. A given query q is answered as follows. Let us quickly
go over the standard parts: We consider the query in the dual space and thus q
is considered to be a point. Let k be the number of hyperplanes passing below q.
Observe that by Theorem 10.2.1, we can find a (1+α) factor approximation, k∗, of
k in O(logn) time for any constant α , using a data structure that consumes linear
space. This allows us to find the first ki-shallow cutting Ci with ki−1 < k ≤ ki. The
cell ∆C ∈ Ci containing q can also be found in O(logn) time using a standard point
location data structure (e.g., see [AC09]).

The interesting part of the query is how to handle the query after finding the
cell ∆C. Let Hq be the subset of H that lies below q. Recall that S∆C is the subset
of H that intersects ∆C. The important property of ∆C is that Hq ⊂ S∆C and also
|S∆C |= O(|Hq|) = O(k).

We query the data structure Ψ∆C built for ∆C to obtain a list of colors and their
approximate counts where the additive error in the approximation is at most ε ′|A∆C |.
To continue with the description of the query algorithm, let us use the notation g j to
denote the subset of G j that lies below q, and let g = ∪t

j=1g j and thus |g|= k.
Note that while the query algorithm does not have direct access to g, or k, we

claim that using the output of the data structure Ψ∆C , we can calculate the approximate
rank of the elements of gi within g up to an additive error of ε0k. Again, we can use
tree T to visualize this process. Recall that in Ψ∆C , every vertex v ∈V (T ) represents
a unique color in the data structure Ψ∆C and the data structure returns an AHHS
summary with error parameter ε ′. This allows us to estimate the number of elements
of Ev that pass below q with error ε ′|A∆C | and since Ev is an ε ′-approximation of
Gv, this allows us to estimate the number of elements of Gv that pass below q with
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error at most 2ε ′|A∆C |. Consider the leaf node that represents g j ⊂ G j and the path
π that connects it to the root of T . The approximate rank, r j, of g j is calculated as
follows. Consider a subtree with root u that hang to the left of the path π (as shown in
Figure 1). If color u does not appear in the output of the AHHS query, then we can
conclude that at most 2ε ′|A∆C | of its hyperplanes pass below q and in this case we do
nothing. If it does appear in the output of the AHHS query, then we know the number
of hyperplanes in its subtree that pass below q up to an additive error of 2ε ′|A∆C | and
in this case, we add this estimate to r j. In both cases, we are off by an additive error
of 2ε ′|A∆C |. We repeat this for every subtree that hangs to the left of π . The number
of such subtree is at most log t and thus the total error is at most 2ε ′|A∆C | log t. Now
observe that

2ε
′|A∆C | log t = 2

ε

log2 t
· log t|S∆C | · log t = O(εk) = O

(
ε0k
c

)
≤ ε0k

which follows by setting c large enough and observing the fact that |A∆C | ≤ log t|S∆C |
since every hyperplane in S∆C is duplicated log t times.

Gi

Figure 1: Compute the Approximate Rank of a Group: The approximated rank of Gi

is calculated as the sum of all the approximate counts of square nodes.

We are now almost done. We just proved that in each gi, we know the rank of its
elements within g up to an additive error of ε0k. This means that picking one element
from each Gi gives us a super-set of an AQS; in the last stage of the query algorithm
we simply prune the unnecessary elements as follows: We scan all the leave in T
from left to right, i.e., consider the group G j for j = 1 to t and compute the quantile
summary in a straightforward fashion. To be specific, we initialize a variable j′ = 0
and then consider G j, for j = 1 to t. The first time r j exceeds a quantile boundary, i.e.,
r j ≥ j′ε0k∗, we add the hyperplane with the lowest weight in G j to the approximate
ε0-quantile summary, and then increment j′.

Analysis

Based on the previous paragraph, the correctness is established. Thus, it remains to
analyze the space and query complexities. We start with the former.
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Space Usage. Consider the structure Ψ∆C built for cell ∆C from a ki-shallow cutting
Ci. Observe that ∑v∈V (T ) |Gv|= |S∆C | log t since in the sum every hyperplane will be
counted log t times. Ev is an ε ′-approximation of Gv and thus

|Ev| ≤min
{

ε
′−3/2,Gv

}
(10.1)

which implies

|A∆C |= ∑
v∈V (T )

|Ev| ≤min
{

ε
′−3/22t, |S∆C | log t

}
(10.2)

where the first part follows as there are at most 2t vertices in T and the second part
follows from (10.1). We build an instance of Theorem 10.3.1 on the set A∆C which
by Theorem 10.3.1 uses O(|A∆C | logw

1
ε ′ ) space. Assuming ∆C belongs to a ki-shallow

cutting Ci, we have |S∆C |= O(ki) and there are O(n/ki) cells in Ci. Observe that

∑
∆C∈Ci

|A∆C |= ∑
∆C∈Ci

min
{

ε
′−3/22t, |S∆C | log t

}
= ∑

∆C∈Ci

O
(

min
{

ε
′−3/2t,ki log t

})
=

O
(

min
{

n
ki

ε
−3
0 ,n log

1
ε0

})
. (10.3)

Thus, the total space used for Ci is

O
(

min
{

n
ki

ε
−3
0 logw

1
ε0
,n logw

1
ε0

log
1
ε0

})
.

Finally, observe that there can be at most O(log 1
ε0
) levels where the second term

dominates; to be specific, at least when ki exceeds ε
−4
0 , the first term dominates and

the total space used by those levels is O(n) as ki’s form a geometric series. So the
total space usage of our structure is O(n log2 1

ε0
logw

1
ε0
).

Query Time. By Lemma 10.2.1, we can find the desired cutting cell in time O(logn).
Next, we query the data structure Ψ∆C which by Theorem 10.3.1 uses O(logn+
ε ′−1) = O(logn+ ε

log2 t
) = O(logn+ 1

ε0
log2 1

ε0
) query time. Scanning the groups and

pruning the output of the data structure Ψ∆C takes asymptotically smaller time and
thus it can be absorbed in the above expression. Therefore, we obtain the following
result.

Theorem 10.4.1. Given an input consisting of an error parameter ε0, and a set P of
n points in R3 where each point p ∈ P is associated with a weight wp from a totally
ordered universe, one can build a data structure that uses O(n log2 1

ε0
logw

1
ε0
) space

such that given any query halfspace h, it can answer an AQS query with parameter ε0
in time O(logn+ 1

ε0
log2 1

ε0
).

For the case of 2D, we can just replace Ψ∆C with the structure in Theorem 10.3.2,
and we immediately get the following:
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Theorem 10.4.2. Given an input consisting of an error parameter ε0, and a set P of
n points in R2 where each point p ∈ P is associated with a weight wp from a totally
ordered universe, one can build a data structure that uses O(n log2 1

ε0
log logw

1
ε0
)

space such that given any query halfspace h, it can answer an AQS query with
parameter ε0 in time O(logn+ 1

ε0
log2 1

ε0
).

Dominance Approximate Quantile Summary Queries

Now we turn our attention to dominance ranges. We will show a structure similar to
that for halfspace queries. The main difference is that we now use exact type-2 color
counting as an auxiliary structure to estimate the rank of each group. This saves us
roughly log2 1

ε0
factors for both space and query time and so we can answer quantile

queries in the optimal O(logn+ 1
ε0
) time. To reduce the space to linear, we need more

ideas. We first present a suboptimal but simpler structure to demonstrate our main
idea. Then we modify this structure to get the desired optimal structure. We use
shallow cuttings in the primal space.

A Suboptimal O(n log log 1
ε0
) Space Solution

We first describe a data structure that solves the dominance AQS problem with
O(n log log 1

ε0
) space and the optimal O(logn+ 1

ε0
) query time.

Rank-Preserving Approximation for Weighted Points. Let S be a weighted point
set where every point has been assigned a weight from a totally ordered universe. Let
rS(p) be the rank of a point p in the set S. Consider a geometric set system (P,D),
where P is a set of weighted points in R3 and D is a family of subsets of P induced
by 3D dominance ranges. We mention a way to construct a sample A for P and a
parameter ε such that ∣∣∣∣rP∩D(p)

|P|
− rA∩D(p)

|A|

∣∣∣∣≤ ε (10.4)

for any point p ∈ P and any range D ∈D . First note that taking an ε-approximation
for P does not work since it does not take the weights of P into consideration. Our
simple but important observation is that we can lift the points P into 4D by adding their
corresponding weights as the fourth coordinate. Let us call this new point set P′ and
let (P′,D ′) be the set system in 4D induced by 4D dominance ranges. Consider an ε-
approximation A′ for P′ and let A be the projection of A′ into the first three dimensions
(i.e., by removing the weights again). A will be our sample for P and to distinguish
it from an unweighted approximation, we call it rank-preserving ε-approximation.
Indeed, for any point p ∈ P with weight wp and any D ∈D , rP∩D(p) (resp. rA∩D(p))
is equal to the number of points in P′ (resp. A′) contained in 4D dominance range
D× (−∞,wp). By the definition of ε-approximation, property (10.4) holds.

We now turn our attention to the AQS for 3D dominance queries.
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The Data Structure and The Query Algorithm. Similar to the structure we pre-
sented for halfspace queries, we build 2i

ε0
-shallow cuttings for i = 0,1, · · · , log(ε0n).

Let κ =O(1) be the constant such that O( 1
ε0

logκ 1
ε0
) is the size of the ε0-approximation

for dominance ranges in 4D. Consider one k-shallow cutting C . We consider two
cases:

• If k ≤ 1
ε0

logκ 1
ε0

, for each cell ∆C in the cutting C , we collect the points in its
conflict list S∆C and divide them into t = 1

ε
groups G1,G2, · · · ,Gt according to

their weights (meaning, the weights in Gi are no larger than weights in group
Gi+1) where ε = ε0

c for a big enough constant c as we did for halfspace queries.

• For k > 1
ε0

logκ 1
ε0

, we take a rank-preserving ε-approximation of S∆C first, and
then divide the approximation into t = 1

ε
groups, just like the above case. Again,

for each group, we store the smallest weight among the points it contains.

We build the following structure for each cell ∆C.
Let N be the number of points in all the t groups we generated for a cell ∆C. We

collect groups Gi·α+1,Gi·α+2, · · · ,G(i+1)·α into a cluster Ci for each i= 0,1, · · · , t/α−
1 where α = (log log 1

ε0
)3. For each group j in cluster Ci for j = 1,2, · · · ,α , we color

the points in the group with color j. Then we build the following type-2 color counting
structure Ψi for Ci. Let Ni be the total number of points in Ci:

• First, we store three predecessor search data structures, one for each coordinate.
This allows us to map the input coordinates as well as the query coordinates to
rank space.

• Next, we build a grid of size 3
√

Ni× 3
√

Ni× 3
√

Ni such that each slice contains
3
√

N2
i points. For each grid point, we store the points it dominates in a frequency

vector using the compact representation.

• Finally, we recurse on each grid slab (i.e., three recursions, one for each di-
mension). The recursion stops when the number of points in the subproblem
becomes smaller than N∗ = Nη

i for some small enough constant η .

• For these “leaf” subproblems, note that the total number of different answers
to queries is bounded by O(N3η

i ). We build a lookup table which records the
corresponding frequency vectors for these answers. Note that since at every
step we do a rank space reduction, the look up can be simply done in O(1) time,
after reducing the coordinates of the query to rank space.

The query algorithm. Given a query q, we first locate the grid cell C containing q
and this gives us three ranks. Using the ranks for x and y, we obtain an entry and using
the rank of z, we find the corresponding word and the corresponding frequency vector
stored in the lower corner of C. We get three more frequency vectors by recursing to
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three subproblems. We merge the three frequency vectors to generate the final answer.
This completes the description of the structure we build for each family Ci.

To answer a query q, we first find the first shallow cutting level above q and the
corresponding cutting cell ∆C. We then query the data structure described above to
get the count the number of points dominated by q in each of the t groups. Then
by maintaining a running counter, we scan through the t groups from left to right to
construct the approximate ε0-quantile summary.

Space Usage. For the space usage, note that there are Ni grid points in each recursive
level and the recursive depth is O(1). There are α colors and the frequency of a
color is no more than Ni. So the total number of words needed to store frequency
vectors is O(Ni

α logNi
w ). When the problem size is below Nη

i , for each subproblem,
we store a lookup table using O(N3η

i
α logNi

w ) words. So the total number of words

used for the bottom level is O( Ni
Nη

i
) ·O(N3η

i
α logNi

w ) = O(Ni
N2η

i α logNi
w ). Note that by

our construction and ε0 ≥ 1
n , N = O( 1

ε0
logκ 1

ε0
), α = (log log 1

ε0
)3 ≤ (log logn)3 and

Ni = O(α N
1/ε0

) = O(α logκ 1
ε0
) = O(α logκ n). Since by assumption, w = Ω(logn),

by picking η in N∗ = Nη

i to be a small enough constant, the space usage for frequency
vectors satisfy

f (Ni) =

{
3 3
√

Ni f ( 3
√

N2
i )+O( Ni

w1−o(1) ), for Ni ≥ N∗
O( Ni

w1−β
),otherwise

,

for some constant 0 < β < 1, which solves to O(Ni(logNi)
3

w1−β
) = O( Ni

w1−τ ) for some
constant 0 < τ < 1. Since the recursive depth is O(1), the space usage for all the
predecessor searching structures is O(Ni). Therefore the space usage of Ψi is O(N).
So the total space for each shallow cutting cell ∆C is bounded by N

Ni
·O(Ni) = O(N).

For ki≥ 1
ε0

logκ 1
ε0

, N =O( 1
ε0

logκ 1
ε0
). So the total space usage for them is bounded

by

ε0n

∑
i=κ log log 1

ε0

O
(

n
ki

)
·O(N) =

ε0n

∑
i=κ log log 1

ε0

O
(nε0

2i

)
·O
(

1
ε0

logκ 1
ε0

)
= O(n).

For ki <
1
ε0

logκ 1
ε0

, N = ki and so we have space bound

κ log log 1
ε0

∑
i=0

O
(

n
ki

)
·O(N) =

κ log log 1
ε0

∑
i=0

O
(

n
ki

)
·O(ki) = O

(
n log log

1
ε0

)
.

This completes our space bound proof.

Query Time. For the query time, we first spend O(logn) time to find an appropriate
shallow cutting level and the corresponding cell by the property of shallow cuttings.
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Then we query Ψi for i = 0,1, · · · , t/α−1 to estimate the count for each group in the
cell. For each Ψi, note that each predecessor searching takes O(logNi) time. Also
each frequency vector can fit in one word and so we can merge two frequency vectors
in time O(1). This gives us the following recurrence relation for the query time

g(Ni) =

{
3g( 3
√

N2
i )+O(logNi), for Ni ≥ N∗

O(logNi),otherwise
,

which solves to O((logNi)
3) = O((log log 1

ε0
)3) = O(α). Since we need to query

t/α such data structures to get the count for all groups, the total query time for
count estimation is O(t) = O(1/ε0). Then we scan through the groups and report the
approximate quantiles which takes again O(1/ε0) time. So the total query time is
O(logn+ 1

ε0
).

Correctness. Given a query q, let k be the actual number of points dominated
by q. By the property of shallow cuttings, we find a cell ∆C containing q in the
shallow cutting level ki above it such that k ≤ ki ≤ 2k. When ki <

1
ε0

logκ 1
ε0

, after
we estimate the count in each group, since the estimation is exact and each group
has size

|S∆C |
t =

ε0|S∆C |
c , each quantile we output will have error at most

ε0|S∆C |
c . For

ki ≥ 1
ε0

logκ 1
ε0

, we introduce error ε|S∆C | in the ε-approximation, but since we use
exact counting for each group, the total error will not increase as we add up ranks of
groups. So the total error is at most

2ε0|S∆C |
c . In both cases, the total error is at most

ε0k for a big enough c.

An Optimal Solution for 3D Dominance AQS

In this section, we modify the data structure in the previous section to reduce the space
usage to linear. It can be seen from the space analysis that the bottleneck is shallow
cuttings with ki ≤ 1

ε0
logκ 1

ε0
. For the structures built for these levels, the predecessor

searching structures take linear space at each level which leads to a super linear space
usage in total. To address this issue, we do a rank space reduction for points in the
cells of these levels before constructing Ψi’s so that we can use the integer register to
spend sublinear space for the predecessor searching structures.

Rank Space Reduction Structure. We consider the cells in the 1
ε0

logκ 1
ε0

-shallow
cutting. Let A = logκ+1 1

ε0
. For the points in the conflict list S∆C of a shallow cutting

cell ∆C ∈ C , we build a grid of size A×A×A such that each slice of the grid contains
O(1/(ε0 log 1

ε0
)) points. The coordinate of each grid point consists of the ranks of

its three coordinates in the corresponding dimensions. For each of the O( A
ε0 log(1/ε0)

)
points in S∆C , we round it down to the closest grid point dominated by it. This
reduces the coordinates of the points down to O(log log 1

ε0
) bits and now we can

apply the sub-optimal solution from the previous subsection which leads to an O(n)
space solution. To be more specific, we build the hierarchical shallow cuttings for
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ki ≤ 1
ε0

logκ 1
ε0

locally for hyperplanes in S∆C and apply the previous solution with a
value ε ′ = ε/c for a large enough constant c.

Query Algorithm and the query time. The query algorithm is similar to that for
the previous suboptimal solution. The only difference is that when the query q is
in a shallow cutting level smaller than 1

ε0
logκ 1

ε0
, we use the rank space reduction

structure to reduce q to the rank space. Let q′ be the grid point obtained after reducing
q to rank space. Observe that the set of points dominated by q can be written as the
union of the points dominated by q′ and the subset of points dominated by q in three
grid slabs of A that contain q. We get an ε ′-quantile for the former set using the data
structure implemented on the grid points. The crucial observation is that there are
O(ε−1

0 / log 1
ε0
) points in the slabs containing q and thus we can afford to build an

approximate ε ′-quantile summary of these points in O( 1
ε0
) time. We can then merge

these two quantiles and return the answer as the result. By setting c in the definition
of ε ′ small enough, we make sure that the result is a valid ε0 quantile summary. This
also yields a query time (after locating the correct cell ∆C in the shallow cutting) of
O( 1

ε0
).

Correctness. Since we build shallow cutting ki ≤ 1
ε0

logκ 1
ε0

inside each cell in
1
ε0

logκ 1
ε0

-shallow cutting, the transformed coordinates are consistent. As we described
above, this introduces error to the counts Ψi’s outputs, but since we correct the error
explicitly afterwards, the counts we get are still exact. The remaining is the same as
the suboptimal solution and so our structure finds ε0-quantile properly.

Space Usage. For the rank space reduction structure, we need to store a predecessor
searching structure for the query, which takes space linear in the number of slices
which is O(A). We build this structure for each cell in the A/ε0-shallow cutting level
and there are O(nε0/A) cells in total, and so the space usage is O(nε0). Building
shallow cuttings inside each cell will only increase the space by a constant factor by
the property of shallow cuttings.

For each Ψi, by our analysis in the suboptimal solution, the frequency vectors will
take O( N

w1−τ ) space. Now since the coordinates of the points and queries are integers
of size at most A, it takes O(logA) = O(log log 1

ε0
) bits to encode a coordinate. Since

the word size is w = Ω(logn), we need only O(Ni logA
w ) space to build the predecessor

searching structures for Ψi. In total, we spend O( N
w1−o(1) ) space for each shallow

cutting level less than A/ε0. So, the total space usage is O(n). We conclusion this
section by the following theorem.

Theorem 10.4.3. Given an input consisting of a parameter ε0 > 0, and a set P of n
points in R3 where each point p ∈ P is associated with a weight wp from a totally
ordered universe, one can build a data structure that uses the optimal O(n) space
such that given any dominance query γ , the data structure can answer an AQS query
with parameter ε0 in the optimal query time of O(logn+ 1

ε0
).
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10.5 Open Problems

Our results bring many interesting open problems. First, for type-2 color counting
problems, we showed a linear-sized structure for simplex queries. It is not clear if
the query time can be reduced with more space. It is an intriguing open problem to
figure out the correct space-time tradeoff for the problem. Note that our query time in
Theorem 10.3.4 depends on the number of colors in total. It is unclear if the query
time can be made output-sensitive. This seems difficult and unfortunately there seems
to be no suitable lower bound techniques to settle the problem. Furthermore, since
improving exact simplex range counting results is already very challenging, it makes
sense to consider the approximate version of the problem with multiplicative errors.

Second, for heavy-hitter queries, there are two open problems. In our solution,
the space usage is optimal with up to some extra polylogarithmic factor (in 1

ε
). An

interesting challenging open problem is if the space usage can be made linear. On
the other hand, our query time is not output-sensitive. Technically speaking, there
can be less than 1/ε heavy hitters, and in this case, it would be interesting to see
if O(logn+ k) query time can be obtained for k output heavy hitters with (close to)
linear space2.

Third, for dominance queries, our data structure for halfspace ranges is suboptimal.
The main reason is that we need a type-2 range counting solution as a subroutine. For
halfspace ranges, our exact type-2 solution is too costly, and so we have to switch to
an approximate version. This introduces some error and as a result, we need to use a
smaller error parameter, which leads to extra polylogarithmic factors in both time and
space. In comparison, we obtain an optimal solution for dominance quantile queries
through exact type-2 counting. Currently, it seems quite challenging to improve the
exact type-2 result for halfspace queries and some different ideas probably are needed
to improve our results.

Finally, it is also interesting to investigate approximate quantile summaries, or
heavy hitter summaries (or other data summaries or data sketches used in the streaming
literature) for a broader category of geometric ranges. In this paper, our focus has
been on very fast data structures, preferably those with optimal O(logn+ 1

ε
) query

time, but we know such data structures do not exist for many important geometric
ranges. For example, with linear space, simplex queries require O(n(d−1)/d) time
and there are some matching lower bounds. Nonetheless, it is an interesting open
question whether approximate quantile or heavy hitter summary can be built for
simplex queries in time O(n(d−1)/d + 1

ε
) using linear or near-linear space; as we

review in the introduction, the general approaches result in sub-optimal query times
of O(n(d−1)/d · 1

ε
) or O(n(d−1)/d + 1

ε2 ).

2We thank an anonymous referee for suggesting the “output-sensitive” version.





Appendices

10.A The Partition Theorem, Cuttings, and Exact Range
Counting

The partition theorem is a standard tool for simplex range searching. It is originally
proved by Matoušek [Mat92a] in early 1990s in the following form.

Theorem 10.A.1 (Matoušek’s Partition Theorem [Mat92a]). Let P be a point set of
size n in Rd (d ≥ 2), and s, 2≤ s≤ n, be an integer parameter and set t = n

2s . One
can partition P into t subsets P1, · · · ,Pt such that for every 1 ≤ i ≤ s, s ≤ |Pi| ≤ 2s,
and Pi is enclosed in a simplex ∆i such that any hyperplane in Rd has crossing number
O(t1−1/d), meaning, it intersects O(t1−1/d) of the simplices.

By directly applying this theorem, we can solve simplex range searching problems
in near optimal time (up to logO(1) n factors). The main reason is that the constant
hidden in the crossing number will explode if we build a partition tree of super constant
levels using this theorem. To get the optimal query time, Chan [Cha12] refined and
improved the partition theorem and proved the following version.

Theorem 10.A.2 (Chan’s Partition Refinement Theorem [Cha12]). Let P be a point
set of size n in Rd (d ≥ 2), and H be a set of m hyperplanes in Rd . Suppose we are
given τ disjoint cells covering P, such that each cell contains at most 2n/τ points of
P and each hyperplane in H crosses at most ` cells. Then for any b, we can subdivide
every cell into O(b) disjoint subcells, for a total of at most bτ subscells, such that
each subcell contains at most 2n/(bτ) points of P, and each hyperplane in H crosses
at most the following total number of cells:

O((bτ)1−1/d +b1−1/(d−1)`+b logτ logm).

Note that the crossing number in Chan’s version has some extra terms (b1−1/(d−1)l
and b logτ logm). These terms are dominated by the first term ((bτ)1−1/d) when
τ = logΩ(1) n but otherwise, the crossing number bound in Chan’s bound can be worse
than Matoušek’s. For most applications of the partition theorem, we will build a
partition tree of level Ω(log logn) and in that case, these extra terms can be safely
ignored. Specifically, for the simplex range counting problem, by applying Chan’s
method, we obtain the following optimal result for linear space structures.

177
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Theorem 10.A.3 (Small-Space Exact Simplex Range Counting [Mat93]). Let P be a
set of n points in Rd . One can build a data structure of size O(n) for simplex ranges
such that given a query range γ , one can report |γ ∩P| in O(n(d−1)/d) time.

Given two points p,q∈Rd , we say p dominates q, denoted q≥ p, if all coordinates
of p is no smaller than those of q. A dominance range γ is specified by a point pγ

and is defined to be {q ∈ Rd : q ≤ pγ}. When the context is clear, we use pγ and γ

interchangeably. We will be interested in range counting for halfspace and dominance
ranges in this paper. But since these two types of ranges are special cases of simplex
ranges and so Theorem 10.A.3 applies.

If we want to answer queries faster in polylogarithmic time, one way is to spend
more space. This is done by using point-line duality [dBCvKO08] and applying the
technique of cuttings.

Given a simplex ∆C ⊂ Rd and a set H of hyperplanes, we denote the set of
hyperplanes of H intersecting the interior of ∆C by S∆C , which is called the conflict
list of ∆C. An (1/r)-cutting for H is defined to be a collection C of pairwise interior
disjoint d-dimensional closed simplicies that together cover Rd such that |S∆C | ≤ n/r
for all ∆C ∈ C . The size of a cutting C , denoted by |C |, is defined to be the number
of simplicies it has. The optimal size bound and construction algorithm of cuttings
were developed after a series of work by the pioneers in the computational geometry
community [Cla87, HW87, Mat92a, Aga91, CF90] and culminated in the work of
Chazelle [Cha18].

Lemma 10.A.1 (Cutting Lemma [Cha18]). Given a set H of n hyperplanes in Rd , for
any r ≥ 1, there exists an (1/r)-cutting for H of size O(rd). The cutting as well as the
conflict lists can be constructed in deterministically O(nrd−1) time.

Using Theorem [Cha18], we can obtain the following fast query time result for
simplex range counting.

Theorem 10.A.4 (Fast-Query Exact Simplex Range Counting [Mat93]). Let P be a
set of n points in 2D (resp. 3D). One can build a data structure of size O(nd) for
simplex ranges such that given a query range γ , one can report |γ ∩P| in O(logn)
time.

10.B Shallow Cuttings and Approximate Range Counting

To define shallow cuttings more formally. We borrow the definition of shallow cuttings
for general algebraic surfaces in [AHZ10]. Let F be a collection of continuous and
totally defined algebraic functions f : Rd → R for constant dimension d and degree
∆. Each function f ∈F defines a continuous surface in Rd+1. Given any point p =
(p1, p2, · · · , pd+1) ∈ Rd+1, we say that f passes below p if f (p1, p2, · · · , pd)≤ pd+1.

The collection of all surfaces in F partitions Rd+1 into a subdivision consisting
of disjoint cells (faces of dimensions 0,1, · · · ,d + 1) that together cover the entire
Rd+1. We call this subdivision the arrangement of F . Given any point p ∈ Rd+1, its
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level is defined by the number of functions f ∈F that passes below it. We define the
(≤ k)-level of F to be the closure of all points in Rd+1 with level at most k.

A shallow cutting C for the (≤ k)-level of F (or a k-shallow cutting for short) is
a collection of disjoint cells that together cover the (≤ k)-level of F with the property
that every cell C ∈ C in the cutting intersects a set FC of O(k) functions in F . We
call FC the conflict list of C.

For a set F , we say it is shallow cuttable if it has the following properties:

1. For each k ∈ N, there exists a (≤ k)-shallow cutting for F and the number of
cells the shallow cutting has is bounded by O(|F |/k).

2. The shallow cutting can be constructed in time O(|F | log |F |).

3. Given a hierarchy of α i-shallow cuttings, there exists a linear sized structure
such that given any query point q, we can find the α i-shallow cutting C and the
cell C ∈ C that contains q with the smallest i in time O(log |F |).

For halfspace and dominance range searching problems, shallow cuttings are often
used after translating the problem to the dual space, in which the roles of inputs and
outputs “switch”. It has been shown that both halfspace and dominance ranges are
shallow cuttable in 2D and 3D [AHZ10]. More generally, we can count the number of
points approximately in linear space and logarithmic time for shallow cuttable ranges.

Theorem 10.2.1 (Approximate Range Counting [AHZ10]). Let P be a set of n points
in R3. One can build a data structure of size O(n) for halfspace or dominance ranges
such that given a query range γ , one can report |γ ∩P| in O(logn) time with error
α|γ ∩P| for any constant α > 0.

We mention that the concept of shallow cuttings can also be defined in the primal
space, i.e., for a set P of points. For example, for dominance ranges, given any point
p ∈ P, we can define its level to be the number of points in P dominated by p. A
(primal) k-shallow cutting for P is a set C of points in Rd satisfying that each point in
P with level at most k is dominated by a point in C and each point in C dominates
O(k) points in P. It has been shown that such shallow cuttings can be constructed
efficiently and we can find a shallow cutting level and a cell in a shallow cutting
hierarchy efficiently as in the shallow cutting in the dual space [AT18].

10.C Type-2 Colored Simplex Range Counting

In this section, we study the “type-2” colored range counting problem for simplex
queries in Rd . In the problem, the input is a set of n points in Rd , and each point is
assigned one color from a set of F colors. We want to build a data structure such that
given a query simplex q, we can report the number of points appearing in q for each
color. In other words, we want to output a “frequency vector” for the colors. Formally,
we define frequency vectors as follows.
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Definition 10.C.1 (Frequency Vector). Given a point set P with each point being
assigned one of F colors, the frequency vector of P is defined to be µ(P)= (µ1, . . . ,µF)
where µi is the frequency of the i-th color in P.

Before giving the full details, we describe the overall idea of our data structure.
Depending on different values of F/w, we will build different structures. When
F/w> n

log4 n
, we build a partition tree T using Matoušek’s Theorem 10.A.1. Otherwise,

we build a partition tree T using Chan’s Theorem 10.A.2. For every vertex v of T ,
we denote the partitioning simplex corresponding to v by v(R). We store the colored
points at the leaves of T explicitly. Whereas, for every internal vertex v, we only store
the frequency vector of the points in v(R). The frequency vectors are represented in a
compact way that we explain later.

The query algorithm is as follows. Given a query q, we query the corresponding
partition tree T . During the process, we maintain a running frequency vector, i.e.,
the total of all the different colors seen so far (in a compact representation). We start
from the root r of T . If q fully contains v(R) then we add the frequency vector of
v(R) to the running frequency vector. If q does not contain v(R) but has a non-empty
intersection with it then we traverse its children. If q and v(R) have empty intersection
we do nothing. In case v is a leaf of T , we explicitly count the frequency of every
color in v(R) and update the frequency vector.

The total query time amounts to accessing the compact representations of the
frequency vectors for the internal vertices and the explicit counting for the leaves
which are traversed.

We now present the details. We start with the notion of compact representation.

Compact representations. Consider a frequency vector µ(µ1, . . . ,µF) and let
s=∑

F
i=1 µi. We would like to store µ using O(F log(2(s+2F)/F)) bits while support-

ing the following two operations: one, an “add operation” to add the representations
of two such vectors to obtain a representation of the addition, and two, an “extract”
operation to retrieve the i-th frequency, µi, for a given i in constant time.

We first describe the encoding using a third character # besides 0 and 1: We encode
the µi’s in binary and place the character # between them. The representation can be
easily made binary by simply re-encoding the characters 0, 1, and # in binary which
increase the size of the encoding by a factor of 2. Let L = 2∑

F
i=1(log(µi +2)+ 1),

i.e., the length of the representation in bits. By the arithmetic mean geometric mean
inequality and ∑

F
i=1 µi = s,

L= 2
F

∑
i=1

log(µi +2)+1= 2F+2log
F

∏
i=1

(µi+2)≤ 2F+2F log
s+2F

F
= 2F log

2(s+2F)

F
.

We pack the representation in O(dL/we) words and for each packed word, we store
the number of the µi’s it contains. Let c j be the number of frequencies encoded in the
j-th word. Observe that c j = O(w) and thus, we can store them in a data structure for
prefix sums with constant query time. This concludes the description of the packed
representation.
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Note that two representations can be added in a straightforward way using non-
standard word operations or using tabulations3.

Now consider the extract operation with index i. We need to find the smallest
index j such that the prefix sum up to j exceeds i. However, as each c j is at most
w, it can be encoded in unary and the extraction problem becomes equivalent to the
select operation in bit vectors which can be performed in O(1) time after building
an index that takes linear time [RRS07]. To summarize, we have shown the following.

Lemma 10.C.1. For any set of at most s points with each point being assigned one
of F colors, we can encode its frequency vector with a compact representation of
O(1+ F

w log 2(s+2F)
F ) words, where w is the word size. Furthermore, we can add two

compact representations in time O(1+ F
w log 2(s+2F)

F ) and extract the frequency of the
i-th color in time O(1) for 1≤ i≤ F.

The Data Structure. Now we describe the details of our data structure. As
mentioned before, we build either partition trees based on an earlier version of
Matoušek (Theorem 10.A.1) and a more recent (refined and simplier) version of Chan
(Theorem 10.A.2). The main reason why we need both structures is although Chan’s
version is superior in many aspects, it is not able to handle the case when the partition
tree is very shallow (which can happen in our application). Fortunately, Matoušek’s
early version is able to give the optimal bound in this case. So we will use different
partition trees for different cases.

Theorem 10.3.4. Given an integer parameter F, a set P of n points in Rd where
each point is assigned a color from the set [F ], one can build a linear-sized data
structure, such that given a query simplex q, it can output the number of times each
color appears in P∩q in total time max{O(n(d−1)/d),O(n(d−1)/dF1/d/wα)}, for some
appropriate constant α and word size w.

Proof. We build two partition trees based on the value of F
w . The base case for both

cases is the same: When the size of the subproblem reaches below F/w we stop and
examine all points by brute force.

When F
w ≥

n
log4 n

, we build a partition tree T of Matoušek’s version (Theo-

rem 10.A.1) with fanout t = wδ for some small enough δ > 0. For each node in
T , we store a frequency vector of the points rooted at that node in the compact
representation. The query time Q(n) satisfies the following recurrence relation

Q(n) = O(t
d−1

d )Q
(n

t

)
+O(t) ·O

(
1+

F
w

log
2(n/t +2F)

F

)
.

After running for k steps we have,

Q(n)≤ ck
0tk d−1

d Q
( n

tk

)
+

k

∑
i=1

c1t
1
d t i( d−1

d ) ·
(

1+
F
w

log
2(n/t i +2F)

F

)
, (10.5)

3E.g., pack into words of size logn
2 and then build a table of size n which supports the add operation

in constant time.
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for some constants c0,c1.
Note that when n

t i ≥ 2F , log 2(n/t i+2F)
F ≤ log 4n/t i

F and so the summation in Inequal-
ity 10.5 is upper bounded by

k

∑
i=1

c1t
1
d t i( d−1

d ) ·
(

1+
F
w

log
4n
Ft i

)
= c1

k

∑
i=1

(t
1
d t i( d−1

d ))+ t
1
d t i( d−1

d ) ·
(

F
w

log
4n
Ft i

)
.

Let f (i) = t i( d−1
d ) log 4n

Ft i , and we have

f (i+1)
f (i)

= t
d−1

d

(
1+

log 1
t

log 4n
Ft i

)
= t

d−1
d

(
1+

log t

log Ft i

4n

)
≥ t

d−1
d

(
1+

log t
log w

4

)
≥wδ ( d−1

d )=ω(1),

where the first inequality follows from n
t i ≥ F

w and the last inequality follows from
t = wδ for some constant δ . When n

t i < 2F , the summation in Inequality 10.5 is upper
bounded by

k

∑
i=1

c1t
1
d t i( d−1

d ) ·
(

1+
F
w

log
2(2F +2F)

F

)
≤

k

∑
i=1

c1t
1
d t i( d−1

d ) ·
(

1+
F
w

log8
)
.

In both cases, the summation is a geometric series and it is dominated by the last term,
i.e., when i achieves the maximum value.

Since F
w ≥

n
log4 n

, we observe that after constant levels of applying Matoušek’s
scheme we will reach the base case because we stop as soon as the subproblem
size goes below F

w . So we have F
w1+δ
≤ n

tk ≤ F
w which means tk ≤ nw1+δ

F and tk ≥ nw
F .

Plugging in these inequalities in Equation 10.5, and using that Q(n/tk) = O(F
w ), we

obtain the following bound

Q(n) = O

(
n

d−1
d F

1
d

w
1
d−δ

)
. (10.6)

When F
w < n

log4 n
, we use Chan’s version (Theorem 10.A.2) to build the partition

tree. The observation here is that we can partition the point set into at least τ =
log4 n subsets. Now the crossing number is at least log2 n and thus the main term
O((bτ)1−1/d) dominates.

We build a partition tree based on Chan’s method (Theorem 10.A.2) with parame-
ter b = Θ(1). Again, we attach the corresponding frequency vectors to internal nodes.
The query time Q(n) in this case is bounded by

Q(n) = O(n1−1/d)+O

(
β−1

∑
i=0

bl(bi) ·
(

1+
F
w

log
2( n

bi +2F)

F

))
,

where the first term is the standard cost of traversing the partition tree in Chan’s version
and the second term is the cost of examining all the disjoint cells fully contained in q,
and the parameters β = logb

n
F/w = Ω(log logn) and l(u) is the crossing number of u
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cells. Note that by a similar analysis as we did before, the summation is dominated by
its last term, i.e.,

β−1

∑
i=0

bl(bi) ·
(

1+
F
w

log
2( n

bi +2F)

F

)
= O

(
b
(nw

bF

) d−1
d ·

(
1+

F
w

log
2(F

w +2F)

F

))

= O

(
n

d−1
d F

1
d

w
1
d

)
.

So Q(n) = O
(

n
d−1

d F
1
d

w
1
d

)
in this case. Note that the bound in Equation 10.6 is slightly

larger and thus our query time is bounded by Equation 10.6.

10.D Approximate Heavy Hitter Summary Queries

In this section, we prove the following approximate heavy hitter summary query
results for halfspace and dominance ranges.

Theorem 10.3.1. For d = 3, the approximate halfspace heavy hitter summary queries
can be answered using O(n logw(1/ε0)) space and with the optimal O(logn+1/ε0)
query time.

Theorem 10.3.2. For d = 2, the approximate halfspace heavy hitter summary queries
can be answered using O(n log logw(1/ε0)) space and with the optimal O(logn+
1/ε0) query time.

Theorem 10.3.3. For d = 2,3, the approximate dominance heavy hitter summary
queries can be answered using the optimal O(n) space and with the optimal O(logn+
1/ε0) query time.

We start with the description of a base data structure for more general simplex
ranges which will be used as a building block for our final AHHS solution.

Base Solution for AHHS Queries

Our base data structure is for the following problem:

Problem 10.3.1. [Coarse-Grained AHHS Queries] Let P be a set of points in Rd ,
each associated with a color. The problem is to store P in a structure such that given
a query range q, one can estimate the frequencies of colors in q∩P with an additive
error up to ε|P| efficiently for some parameter 0 < ε < 1.

Note that this is a coarser problem compared to the original AHH query Prob-
lem 10.1.2 since the error is fixed to be ε|P| and is independent of the query range.
We prove the following theorem for this base problem:
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Theorem 10.3.5. For d ≥ 3, Problem 10.3.1 for simplex queries (the intersection
of d +1 halfspaces) can be solved with O(X) space for X = min{|P|,ε−

2d
d+1 } and a

query time of

O

(
|P|1−

2
d−1

wαε
2

d−1

)
+O

(
X

d−1
d

)
where w is the word-size of the machine and α is some positive constant.

We will handle colors with different frequencies differently. To simplify the
exposition, we make the following definition:

Definition 10.D.1. Let P be a set of points with colors. Let Pi be the set of points with
color i. We say a color i is big if |Pi| ≥ (ε|P|)

2d
d−1 ; otherwise we say it is small. For a

small color i, we say it is δ -small if δ (ε|P|)
2d

d−1 ≤ |Pi| ≤ 2δ (ε|P|)
2d

d−1 .

Note that a simple calculation shows that if |P| > ε
− 2d

d+1 , then there are no big
colors since the bound in the definition of a big color exceeds |P|.

The data structure. The idea is to count big colors exactly and count small
colors approximately through ε-approximations. We collect the points with big colors
in a set PBig and build a data structure ΨBig on PBig using Theorem 10.3.4. For each
small color i, we first compute an εi-approximation P′i for Pi where εi = ε|P|/|Pi|.
For a given value δ ≤ 1, let Pδ be the set of points whose colors are δ -small and
let P′

δ
be the union of the approximations built on the δ -small colors. We build P′

δ

for every δ = 1
2 ,

1
4 ,

1
8 , · · · ,

1
2(ε|P|)

− d+1
d−1 . We can bound the number of colors that are

δ -small to be Fδ = Θ(|Pδ |/(δ (ε|P|)
2d

d−1 )). We also store P′
δ

in a data structure Ψδ

using Theorem 10.3.4.

The query algorithm. The query is answered as follows. Given a query simplex
range q, we query the data structures ΨBig as well as all the data structure Ψδ , for
every δ = 1

2 ,
1
4 ,

1
8 , · · · ,

1
2(ε|P|)

− d+1
d−1 . We examine each output frequency vector of

colors and output a color if its frequency is more than ε|P|.
The correctness is trivial since we are either counting the colors exactly or we are

using an εi-approximation. In the latter case, the error is at most εi|Pi|= ε|P|. Since
we can ignore colors of frequencies no more than ε|P|, we only need to consider
δ -small colors for δ ≥ 1

2(ε|P|)
− d+1

d−1 .

Space bound. Let Y = |PBig∪
⋃

i∈small

P′i |. The space usage of our data structure

is clearly bounded by O(Y ). We now show that Y = O(X) which would prove our
claim on the space bound.

First we bound the size of the εi-approximation for each small color i. Consider
a δ -small color i and the set Pi. By construction, we are using an εi = ε|P|/|Pi|
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approximation which has size

O

((
1
εi

) 2d
d+1
)

= O

((
|Pi|
ε|P|

) 2d
d+1
)

= O

(2δ (ε|P|)
2d

d−1

ε|P|

) 2d
d+1


= O
((

δ (ε|P|)
d+1
d−1

) 2d
d+1
)
= O

(
δ

d−1
d+1 |Pi|

)
= O(|Pi|), (10.7)

where the second last equality follows from δ (ε|P|)
2d

d−1 ≤ |Pi|. Thus, each εi-approximation
has size at most O(|Pi|) since δ ≤ 1/2, and so Y ≤ |P|.

When |P|> ε
− 2d

d+1 , as we argued, there is no big color and all the colors are small.
In this case, we can bound

Y ≤

∣∣∣∣∣ ⋃
i∈small

P′i

∣∣∣∣∣= ∑
i

O

((
1
εi

) 2d
d+1
)

= O

(
∑

i

(
|Pi|
ε|P|

) 2d
d+1
)

= O

((
1
ε

) 2d
d+1
)
,

(10.8)

where the last equality follows from the convexity of the function x
2d

d+1 and thus the
sum is maximized when all the values of |Pi| are 0 and one of them equals |P|. We
have thus shown that Y ≤ X = min{|P|,ε−

2d
d+1 } and so O(X) is the space bound.

Query time bound. It remains to analyze the query time. For PBig, note that the
number of colors is no more than FBig = |P|/(ε|P|)

2d
d−1 . By Theorem 10.3.4, the data

structure we built for PBig will have query time

O(|PBig|(d−1)/d + |PBig|(d−1)/dF1/d
Big /wα) = O

(
|P|(d−1)/d

)
+O

(
|P| d−1

d |P| 1d

wα(ε|P|)
2

d−1

)

= O
(

X (d−1)/d
)
+O

(
|P|1−

2
d−1

wαε
2

d−1

)
,

for some constant α , where the first equality follows from PBig ⊂ P and the last
equality follows from |P| ≤ ε

− 2d
d+1 for big colors to exist in which case X = |P| by

definition. We now bound the query time for small colors. By Equation 10.7, the total
size of the ε-approximations stored for the δ -small colors is nδ = |P′

δ
|= O(δ

d−1
d+1 |Pδ |).

By Theorem 10.3.4, the query time of the data structure built on P′
δ

is

O
(

max
{

n(d−1)/d
δ

,n(d−1)/d
δ

F1/d
δ

/wα

})
= O(n(d−1)/d

δ
)+O(n(d−1)/d

δ
F1/d

δ
/wα).

(10.9)

The total query time for small colors is the sum over all δ of the expression in
Equation 10.9. We can bound each of the two terms separately.
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First observe that

∑
δ

(
δ

d−1
d+1

(
|Pδ |
|P|

))(d−1)/d

≤∑
δ

δ
(d−1)2

d(d+1) = O(1),

since the summation is over geometrically decreasing values of δ and |Pδ | ≤ |P| by
definition. When X = min{|P|,ε−

2d
d+1 }= |P|, this implies

∑
δ

n
d−1

d
δ

= ∑
δ

(δ
d−1
d+1 |Pδ |)(d−1)/d ≤ |P|

d−1
d ≤ X

d−1
d .

When X = min{|P|,ε−
2d

d+1 }= ε
− 2d

d+1 , by definition,

∑
δ

n
d−1

d
δ

= ∑
δ

(
∑

i:δ -small

(
1
εi

) 2d
d+1
) d−1

d

= ∑
δ

(
∑

i:δ -small

(
|Pi|
ε|P|

) 2d
d+1
) d−1

d

≤∑
δ

(
|Pδ |
ε|P|

) 2(d−1)
d+1

≤
(
|P|

ε|P|

) 2(d−1)
d+1

=

((
1
ε

) 2d
d+1
) d−1

d

= X
d−1

d ,

where the first inequality follows from 2d
d+1 ≥ 1 for d ≥ 1 and the second inequality

follows from 2(d−1)
d+1 ≥ 1 when d ≥ 3.

For the second term, since Fδ = O(|Pδ |/(δ (ε|P|)
2d

d−1 )),

∑
δ

O

n
d−1

d
δ

F
1
d

δ

wα

= ∑
δ

O

(δ
d−1
d+1 |Pδ |)

d−1
d

wα
·

(
|Pδ |

δ (ε|P|)
2d

d−1

) 1
d
= ∑

δ

O

(
δ

d−3
d+1 |Pδ |

wα(ε|P|)
2

d−1

)

= O

(
(∑δ δ

d−3
d+1 )|P|

wα(ε|P|)
2

d−1

)
≤ O

(
|P|1−

2
d−1

wαε
2

d−1

)
,

where the third equality follows from the observation that the sum of all nδ is at most
|P| and the last equality follows from d ≥ 3 and δ ≤ 1

2 forms a decreasing geometric
series.

3D AHHS Queries

Now we proceed to show how to answer 3D heavy hitter queries for halfspace and
dominance ranges. We show the following two results.

Theorem 10.3.1. For d = 3, the approximate halfspace heavy hitter summary queries
can be answered using O(n logw(1/ε0)) space and with the optimal O(logn+1/ε0)
query time.

Theorem 10.3.3. For d = 2,3, the approximate dominance heavy hitter summary
queries can be answered using the optimal O(n) space and with the optimal O(logn+
1/ε0) query time.
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The Data Structure for 3D AHHS Queries

Let h be the query halfspace (or dominance range) and let k be the number of points in
h (i.e., k = |h∩P|). We consider the dual space. Let H be the set of hyperplanes dual
to P and let q be the dual of h. Using Theorem 10.2.1, we can find a (1+α)factor
approximation, k∗, of k in O(logn) time and using linear space. In our data structure,
we will build a series of shallow cuttings, using parameters β ,λ . Depending on
whether we are dealing with halfspace or dominance ranges, the values of these
parameters will be different. Nonetheless, since the value of k∗ is known, we can
choose the correct level to query. To give more details, we consider the following
cuttings.

• Base cutting: We build a base shallow cutting for the ε
−1
0 level.

• Lower level cuttings: These are built for levels between ε
−1
0 and ε

−1
0 wβλ , where

w = Θ(logn) is the word-size, and β and λ are parameters to be set later. To
be specific, we build ε

−1
0 wβ i-shallow cuttings for i = 1, · · · ,λ .

• Higher level cuttings: We build ε
−1
0 wβλ 2i-shallow cuttings for i= 1, · · · , log

(
nε0/wβλ

)
.

The data structure stores different auxiliary data structures depending on the
shallow cutting. As a result, since the data structure knows k∗, it can choose the correct
level to query. For instance, if k∗ < ε

−1
0 , then we use the query is answered using the

auxiliary data structures built for the base cutting. Similarly, when ε
−1
0 ≤ k∗≤ ε

−1
0 wβλ ,

the data structure uses lower level cuttings, and otherwise it uses higher level cuttings.
We describe each of them in turn. We start with the higher level cuttings.

Higher level cuttings. The data structure for these cuttings is simple. For each cell
∆C in a higher level cutting, we build a c1ε0-approximation E∆C for its conflict list
S∆C and store it in the base structure with parameter c1ε0.

The query algorithm. Recall that the query probes the higher level cuttings
when k∗ exceeds ε

−1
0 wβλ . In this case, it can find the cell ∆C ∈ Ci such that |S∆C |=

O(k∗). We query the base data structure built on S∆C and return the result as the
AHHS. The query time here is O(ε−1

0 ) which follows directly from the base structure.

Correctness. Consider a color c that has frequency jε0k among the hyperplanes
that pass below q, for j ≥ 1. Since E∆C is a c1ε0-approximation of S∆C , it follows
that c appears jε0|E∆C |± c1ε0|E∆C | times among the subset of E∆C that passes below
q. If c1 is chosen to be a small enough constant (e.g., c1 < 0.5), c appears frequent
enough in E that the base structure would report c as well as its frequency with error
at most c1ε0|S∆C |. This in turn allows us to approximate the frequency of c within
hyperplanes below q up to an additive error of 2c1ε0k.
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Space usage. Here, we need to distinguish between halfspaces and dominance
ranges. In the case of halfspaces, the size of E∆C is bounded by O(ε

−3/2
0 ) whereas

for dominance ranges this is bounded by O(ε−1
0 log4 1

ε0
) by Theorem 10.2.2. Conse-

quently, for halfspaces we have the following situation: for a cell ∆C ∈ Ci where Ci

is a ε
−1
0 wβλ 2i-shallow cuttings, according to Theorem 10.3.5, the space of the base

structure built for E∆C is bounded by O(ε
−3/2
0 ) regardless and thus the total space

consumption is bounded by

∞

∑
i=1

O

(
ε
−3/2
0

n
ε
−1
0 wβλ 2i

)
= O(n)

which follows by picking λ such that wβλ = ε
−1/2
0 for a small enough value β .

For dominance ranges, it is sufficient to pick λ such that log4 1
ε0
≤ wβλ ≤ ε

−1/2
0 .

We will need to pick β to be a small enough constant. However, this implies that λ

can also be chosen to be a constant for dominance cases. The total space consumption
here is bounded by

∞

∑
i=1

O

(
ε
−1
0 log4 1

ε0
· n

ε
−1
0 log4 1

ε0
·2i

)
= O(n).

Lower level cuttings. For each cell ∆C in a lower level cutting, we store the list of
frequent colors that appear at least c1ε0

wβ
|S∆C | times in the conflict list S∆C of ∆C. So for

each cutting cell, we store wβ

c1ε0
frequent colors in the base structure in Theorem 10.3.5,

and so the total space needed for all lower cuttings is

λ

∑
i=1

O

(
n

wβ i/ε0
· wβ

c1ε0

)
= O(n).

This also enables us to re-number the colors: consider a ∆C in the lower level
cuttings. We re-number the candidate colors in ∆C from 1 up to wβ ε

−1
0 and store them

in a dictionary such that given any (global) color C, we can fetch its index in our new
re-numbering in O(1) time. Re-numbering is crucial for using the base data structure
as it returns a compact representation. Note that the set of frequent colors is a super
set of the actual heavy hitters. Indeed, the base structures we built for lower levels
can output a frequency vector of wβ

c1ε0
colors (in a compact representation) and thus we

cannot afford to check all these colors.
We use an auxiliary structure to generate a list of O( 1

ε0
) candidate colors for each

query and as we will show, we only need to check these candidate colors. We call it
the testing structure. This is also done via shallow cuttings: We build shallow cuttings
for level ε

−1
0 2i for i = 1,2, · · · , log

(
wβλ

)
. We call these testing cuttings. For each

cell ∆C in the testing cuttings, we collect a list of colors that appear at least c1ε0|S∆C |
times in the conflict list S∆C of ∆C. We call these colors candidate colors and clearly,
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for each cell ∆C, we store at most 1
c1ε0

candidate colors. The total space, over all
testing cuttings, needed to store the candidate colors is at most

∞

∑
i=1

O

(
n

ε
−1
0 2i

· 1
c1ε0

)
= O(n).

The query algorithm. Recall that the query probes the lower level cuttings
when k∗ is between ε

−1
0 and ε

−1
0 wβλ . In this case, we find the smallest index i such

that ε
−1
0 wβ i exceeds k∗. We find the cell ∆C in Ci that contains the query. It thus

follows that |S∆C |= O(wβ k). We query the base data structure implemented on S∆C

with q. However, since we have built the base structure with error parameter ε0/wβ ,
the base data structure may return a list of O(ε−1

0 wβ ) colors, potentially in packed
representation. We pick β small enough such that the result of the base data structure
fits in ε

−1
0 words. On the other hand, since |S∆C |= O(ε−1

0 wβλ ) = O(ε
3/2
0 ), the query

time of the base data structure is O(ε−1
0 ) by Theorem 10.3.5. In addition, we query the

testing structure to obtain a list of O(ε−1
0 ) candidate colors. For each candidate color,

we can use the stored dictionary to find its frequency in the packed representation, if
it exists, we report it using the extract operation. This concludes the query algorithm.

Correctness. The base data structure finds all the colors that appear at least
c1ε0|S∆C |

wβ
= O(c1ε0kwβ )

wβ
≤ ε0k times below q, if c1 is chosen to be a small enough

constant. Thus, any color that appears ε0k times is reported correctly by the base data
structure.

Space analysis. By Theorem 10.3.5, each level in a lower level shallow cutting
Ci will consume O(n) space. There are λ lower level shallow cuttings and thus the
total space used by lower level cuttings is O(nλ ).

For halfspace ranges, recall that we needed to pick λ such that wβλ = ε
−1/2
0 .

As β is chosen to be a small value, it follows that for halfspaces we can choose
λ = O(logw

1
ε0
), leading to an O(n logw

1
ε0
) space bound.

For dominance ranges, it is sufficient to pick λ such that wβλ ≥ log4 1
ε0

. In this
case, as we have shown before, by picking β to be a small enough constant, it suffices
to pick λ to be a large enough constant, leading to an O(n) space bound.

The base cutting. The base cutting, C0, is a ε
−1
0 -shallow cutting. We store the

conflict list of the cells in C0 explicitly. By Lemma 10.2.1, in this case, we find C0
and the cell ∆C ∈ C0 that contains q in time O(logn). Here, we can explicitly access
S∆C and answer the AHHS query directly, in time O(logn+ ε

−1
0 ) with no error.

Putting It Together

Over all three different shallow cutting levels, the total space complexity was O(nλ ).
For dominance ranges, we saw that we can afford to pick λ to be a constant. This
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yields a data structure with O(n) space. For halfspaces, we picked λ = O(logw
1
ε0
)

and thus we get a data structure with O(n logw
1
ε0
) space.

2D AHHS Queries

In the plane, we can actually improve the space complexity even further. However,
this requires modifying the base structure. The main idea here is that the size of ε-
approximation in 2D is small enough that we can try more aggressive approximations.

Base Solution for 2D AHHS Queries

This subsection is devoted to the proof of the specialized base structure for 2D.

Theorem 10.D.1. Consider a colored point set P in R2 and let ε be parameter. Let
B = ε|P|. We can store P in a data structure of linear size such that given a set qc

of F = 1
εB1/3 colors, one can estimate the frequency of the colors in qc up to additive

error of ε|P| in O(F) time.

The main idea and a summary. The main observation is that in 2D, given a
point set P and a value ε , there exists ε-approximations of size O(ε−4/3) and thus
if we store them in a data structure for halfspace range counting queries, the query
time will be reduced to O(ε−2/3) i.e., smaller than ε−1. Intuitively, this means that the
difficult case of the problem is when there a lot of different colors with low frequency.
However, proving the base theorem is still quite non-trivial since we are aiming for
very fast query times. Our main observation is that when there are few points, the size
of the ε-approximations are small enough that we can afford to spend slightly higher
space and lower the query time in return. By picking the parameters carefully, we
arrive at the claimed lemma.

Dealing with “frequent” colors. We define a color to be frequent if it appears
at least εB|P| times. Clearly, the number of frequent colors is at most |P|/(εB|P|) =
(εB)−1. Consider a frequent color j and assume it appears n j times in the point set
P. We store an ε j-approximation E j for this color where ε j =

ε|P|
n j

. The size of E j is

min
{

n j,O
(

n j
ε|P|

)4/3
}

and we store E j in a data structure in Theorem 10.A.3.

Now consider a query and consider dealing with the frequent colors in qc. For
every frequent color j ∈ qc, we simply count the number of points from E j and use
it to get an estimate with the correct additive error. The query time is O(

√
|E j|) =

O
(

n j
ε|P|

)2/3
. The total query time spent on all the frequent colors is thus

∑
j∈qc, j is frequent

O
(

n j

ε|P|

)2/3

≤ 1
εB

O
(

ε|P|B
ε|P|

)2/3

= O
(

1
εB1/3

)
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where the inequality follows from the observation that ∑n j ≤ |P| and since the
exponent 2/3 is less than one, the function x2/3 is a concave function and thus the
expression on the left is maximized when all the n j’s are equal. Since there are at
most (εB)−1 colors the maximum is when each n j = |P|/(εB)−1 = εB|P|. As a result,
we can deal with the frequent colors within our claimed query time. The space is also
clearly linear.

Dealing with infrequent colors. This is the more tricky part of the data struc-
ture. Consider an infrequent color j that appears n j times. As before, we build an

ε j-approximation E j for this color where ε j =
ε|P|
n j

and the size of E j is O
(

n j
ε|P|

)4/3
.

Let X be the collection of E j for all the infrequent colors j. We can bound the size of
X asymptotically by

∑
j is infrequent

(
n j

ε|P|

)4/3

≤ 1
εB

(
εB|P|
ε|P|

)4/3

=
B1/3

ε

where the inequality follows from Jensen’s inequality, i.e., that the function x4/3 is
a convex function that thus the expression on the left is maximized when each n j is
either maximized or minimized; however, as each infrequent color appears at most
εB|P| times, the maximum is achieved when 1

εB of the n j’s are set to εB|P| and the
rest are set to 0.

We then transform X into the dual space using point-line duality. We build a B−2/3-
cutting Z in the dual space. By Lemma 10.A.1, Z has O(B4/3) triangles that cover
the entire plane where each triangle is intersected by O(X/B2/3) = O(1/(εB1/3))
lines. For each triangle, we store the number of lines of each color that passes
below it (F = O(1/(εB1/3)) frequencies), as well as the set of lines intersecting it
(O(1/(εB1/3)) lines). In total we will asymptotically use

1
εB1/3 ·B

4/3 =
B
ε
≤ |P|

space. To bound the query time, consider a query point q which is dual to the query
halfspace. Now observe that after locating the triangle in the cutting that contains q,
we simply need to look at the stored frequencies in the triangle, as well as the set of
lines that intersect the triangle. In total this will take O(1/(εB1/3)) time.

A Data Structure for 2D AHHS Queries

In our data structure for 2D queries, we use most of the ingredients that we developed
for 3D. In particular, we can use O(n) space such that for a given halfplane h, we
can find a list of O(ε−1

0 ) candidate colors in O(logn+ ε
−1
0 ) time. Similarly, we also

build a level 0 shallow cutting C0 that allows us answer the query when h contains at
most ε

−1
0 points. However, we only build the first lower level shallow cutting C1 from

Subsection 10.D. Consequently, if h contains up to ε
−1
0 wβ points, we can answer the
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query in optimal running time. Handling the remaining queries is where we deviate
from the 3D data structure.

We now build a different hierarchy of shallow cuttings. Let g0 = ε
−1
0 wβ . We

build a series of shallow cuttings using parameters g0,g1, · · · that will be determined
shortly. In particular, we build a gi-shallow cutting C ′i until gi exceeds ε

−3
0 ; we then

switch back to the 3D solution and as argued there, the total space of this part of
the structure will be O(n). For each cell ∆C in C ′i , we store the conflict list of ∆C

in the base structure of Theorem 10.D.1, with the following parameters: we have
|P|= Θ(gi), we want to set ε such that the query time equals O(1/ε0) and thus we
must satisfy

1
εB1/3 ≤

1
ε0
⇔ εB1/3 ≥ ε0⇔ ε (ε|P|)1/3 ≥ ε0⇐ ε (εgi)

1/3 ≥ ε0 (10.10)

Thus, setting our parameters in way to satisfy Inequality 10.10 makes sure that the
query time of the base structure we are using is O(ε−1

0 ).
To guarantee the approximation factor, observe that we know that the query is

outside the shallow cutting C ′i−1 which implies there are at least gi−1 points in the
query. Consequently, if we can ensure the following, then our approximation factor is
also as desired:

ε|P| ≤ ε0gi−1⇐ εΘ(gi)≤ ε0gi−1. (10.11)

Inequalities 10.10 and 10.11 give us a recursion for gi. To simplify the exposition, we
can simply rescale the constant ε0 to get rid of the constant in the Θ(·) notation in
Inequality 10.11 and turn the inequality into an equality. This yields ε = ε0gi−1

gi
which

in turn yields

gi ≤ gi−1 (ε0gi−1)
1
3 and recall that we have g0 =

wβ

ε0
. (10.12)

Now a simple induction yields that

gi =
1
ε0
·
(

wβ

)(4/3)i

. (10.13)

Recall that as soon as gi reaches ε
−3
0 , we switch to the 3D solution and from this

point on, the remaining levels will consume O(n) space. As a result, the space
complexity of the data structure is O(n j) where j is the smallest index such that
g j ≥ ε

−3
0 . From Equation 10.13, it is clear that j = O(log logw ε

−1
0 ) and thus the space

bound is O(n log logw ε
−1
0 ).



Chapter 11

2D Generalization of Fractional
Cascading on Axis-aligned Planar
Subdivisions

Abstract

Fractional cascading is one of the influential and important techniques
in data structures, as it provides a general framework for solving a common
important problem: the iterative search problem. In the problem, the input is a
graph G with constant degree. Also as input, we are given a (different) set of
values for every vertex of G. The goal is to preprocess G such that when we
are given a query value q, and a connected subgraph π of G, we can find the
predecessor of q in all the sets associated with the vertices of π . The fundamental
result of fractional cascading, by Chazelle and Guibas, is that using linear space,
queries can be answered in O(logn+ |π|) time, at essentially constant time per
predecessor [CG86a]. While this technique has received plenty of attention in
the past decades, an almost quadratic space lower bound for “two-dimensional
fractional cascading” by Chazelle and Liu in STOC 2001 [CL04] has convinced
the researchers that fractional cascading is fundamentally a one-dimensional
technique.

In two-dimensional fractional cascading, the input includes a planar subdi-
vision for every vertex of G and the query is a point q and a subgraph π and the
goal is to locate the cell containing q in all the subdivisions associated with the
vertices of π . In this paper, we show that it is actually possible to circumvent
the lower bound of Chazelle and Liu for axis-aligned planar subdivisions.

We present a number of upper and lower bounds which reveal that in two-
dimensions, the problem has a much richer structure. When G is a tree and π is a
path, then queries can be answered in O(logn+|π|+min{|π|

√
logn,α(n)

√
|π| logn})

time using linear space where α is an inverse Ackermann function; surprisingly,
we show both branches of this bound are tight, up to the inverse Ackermann
factor. When G is a general graph or when π is a general subgraph, then the
query bound becomes O(logn+ |π|

√
logn) and this bound is once again tight

in both cases.

193
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11.1 Introduction

Fractional cascading [CG86a] is one of the widely used tools in data structures as it
provides a general framework for solving a common important problem: the iterative
search problem, i.e., the problem of finding the predecessor of a single value q in
multiple data sets. In the problem, we are to preprocess a degree-bounded “catalog”
graph G where each vertex represents an input set of values from a totally ordered
universe U ; the input sets of different vertices of G are completely unrelated. Then,
at the query time, given a value q ∈U and a connected subgraph π of G, the goal
is to find the predecessor of q in the sets that correspond to the vertices of π . The
fundamental theorem of fractional cascading is that one can build a data structure of
linear size such that the queries can be answered in O(logn+ |π|) time, essentially
giving us constant search time per predecessor after investing an initial O(logn) search
time [CG86a]. Many problems benefit from this technique [CG86b] since they need
to solve the iterative search problem as a base problem.

Given its importance, it is not surprising that many have attempted to generalize
this technique: The first obvious direction is to consider the dynamic version of
the problem by allowing insertions or deletions into the sets of the vertices of G.
In fact, Chazelle and Guibas themselves consider this [CG86a] and they show that
with O(logn) amortized time per update, one can obtain O(logn+ |π| log logn) query
time. Later, Mehlhorn and Näher improve the update time to O(log logn) amortized
time [MN90] and then Dietz and Raman [DR91] remove the amortization. There
is also some attention given to optimize the dependency of the query time on the
maximum degree of graph G [GK09].

The next obvious generalization is to consider the higher dimensional versions
of the problem. Here, each vertex of G is associated with an input subdivision and
the goal is to locate a given query point q on every subdivision associated with the
vertices of π . Unfortunately, here we run into an immediate roadblock already in
two dimensions: After listing a number of potential applications of two-dimensional
fractional cascading, Chazelle and Liu [CL04] “dash all such hopes” by showing
an Ω̃(n2) 1 space lower bound in the pointer-machine model for any data structure
that can answer queries in O(logO(1) n+ |π|) time. Note that this lower bound can
be generalized to also give a Ω(n2−ε) space lower bound for data structures with
O(logO(1) n)+o(|π| logn) query time. As far as we can tell, progress in this direction
was halted due to this negative result since the trivial solution already gives the
O(|π| logn) query time, by just building individual point location data structures for
each subdivision.

We observe that the lower bound of Chazelle and Liu does not apply to orthog-
onal subdivisions, a very important special case of planar point location problem.
Many geometric problems need to solve this base problem, e.g., 4D orthogonal
dominance range reporting [AAL12, ACT14], 3D point location in orthogonal subdi-
visions [Rah15], some 3D vertical ray-shooting problems [dBvKS95]. In geographic

1The Ω̃ notation hides polylogarithmic factors.
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information systems, it is very common to overlay planar subdivisions describing
different features of a region to generate a complete map. Performing point loca-
tion queries on such maps corresponds to iterative point locations on a series of
subdivisions.

Motivated by this observation, we systematically study the generalization of
fractional cascading to two dimensions, when restricted to orthogonal subdivisions.
We obtain a number of interesting results, including both upper and lower bounds
which show most of our results are tight except for the general path queries of trees
where the bound is tight up to a tiny inverse Ackermann factor [CLRS22].

The problem definition The formal definition of the problem is as follows. The
input is a degree-bounded connected graph G = (V,E) where each vertex v ∈ V is
associated with an axis-aligned planar subdivision. Let n be the total number of
vertices, edges, and faces in the subdivisions, which we call the graph subdivision
complexity. We would like to build a data structure such that given a query (q,π),
where q is a query point and π is a connected subgraph of G, we can locate q in all the
subdivisions induced by vertices of π efficiently. We call this problem 2D Orthogonal
Fractional Cascading (2D OFC).

Related Work

While the negative result of Chazelle and Liu [CL04] stops any progress on the general
problem of two-dimensional fractional cascading, there have been other results that
can be seen as special cases of two-dimensional fractional cascading. For example,
Chazelle et al. [CEGea94] improved the result of ray shooting in a simple polygon by
a logn factor. In a “geodesically triangulated” subdivision of n vertices, they showed
it is possible to locate all the triangles crossed by a ray in O(logn) time instead of
O(log2 n), which resembles 2D fractional cascading. However, their solution relies
heavily on the characteristic of geodesic triangulation and cannot be generalized to
other problems. Chazelle’s data structure for the rectangle stabbing problem [Cha86]
can also be viewed as a restricted form of two-dimensional fractional cascading where
π = G.

In recent years, interestingly, a technique similar to 2D fractional cascading has
been used to improve many classical computational geometry data structures. While
working on the 4D dominance range reporting problem, Afshani et al. [AAL12] are
implicitly performing iterative point location queries along a path of a balanced binary
tree on somewhat specialized subdivsions in O(log3/2 n) total time. Later Afshani
et al. [ACT14] studied an offline version of tree point location problem and gave
an optimal O(n+ k logn) query time and O(n) space data structure, where k is the
number of query points and n is the subdivision size of a tree of height O(logn). The
same idea is used to improve the result of 3D point location in orthogonal subdivisions.
In that probelm, Rahul [Rah15] obtained another data structure with O(log3/2 n) query
time.
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Another related problem is the “unrestricted” version of fractional cascading where
essentially π can be an arbitrary subgraph of G, instead of a connected subgraph. In
one variant, we are given a set L of categories and a set S of n points in d dimensional
space where each point belongs to one of the categories. The query is given by a
d-dimensional rectangle r and a subset Q ⊂ L of the categories. We are asked to
report the points in S contained in r and belonging to the categories in Q. In 1D,
Chazelle and Guibas [CG86b] provided a O(|Q| log |L||Q| + logn+ k) query time and
linear size data structure, where k is the output size, together with a restricted lower
bound. Afshani et al. [ASTW14] strenghtened the lower bound and presented several
data structures for three-sided queries in two-dimensions. Their data structures match
the lower bound within an inverse Ackermann factor for the general case.

Our Results

We study 2D OFC in a pointer machine model of computation. Some of our bounds
involve inverse Ackermann functions. The particular definition that we use is the
following. We define α2(n) = logn and then we define αi(n) = α∗i−1(n), meaning, it’s
the number of times we need to apply the αi−1(·) function to n until we reach a fixed
constant. α(n) corresponds to the value of i such that αi(n) is at most a fixed constant.
Our results are summarized in Table 1.

Table 1: Our Results

Graph Query Space Query Time Tight?
Tree Path O(nαc(n)) O(min{|π|

√
logn,c

√
|π| logn}+ logn+ |π|) Up to αc(n) factor

Tree Path O(n) O(min{|π|
√

logn,α(n)
√
|π| logn} + logn+ |π|) Up to α(n) factor

Tree Subtree O(n) O(logn+ |π|
√

logn) yes

Graph Path / Subgraph O(n) O(logn+ |π|
√

logn) yes

Our results show some very interesting behavior. First, by looking at the last two
rows of Table 1, we can see that we can always do better than the naïve solution by a√

logn factor. Furthermore, this is tight. We show matching query lower bounds both
when G can be an arbitrary graph but with π being restricted to a path and also when
G is a tree but π is allowed to be any subtree of G. Second, when G is a tree and π is
a path we get some variation depending on the length of the query path. When π is
of length at most logn

2 , then we can answer queries in O(|π|
√

logn) time, but when
π is longer than logn

2 , we obtain the query bound of O(
√
|π| logn) (ignoring some

inverse Ackermann factors). Furthermore, we give two lower bounds that show both
of these branches are tight! When π is very long, longer than log2 n

2 , then the query
bound becomes O(|π|) which is also clearly optimal.
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11.2 Preliminaries

In this section, we introduce some geometric preliminaries and present the tools we
will use to build the data structures and to prove the lower bounds.

Geometric Preliminaries

First we review the definition of planar subdivisions.

Definition 11.2.1. A graph is said to be a planar graph if it can be embedded in the
plane without crossings. A planar subdivision is a planar embedding of a planar
graph where all the edges are straight line segments. The complexity of a planar
subdivision is the sum of the vertices, edges, and faces of the subdivision.

Planar point location, defined below, is one classical problem related to planar
subdivisions:

Definition 11.2.2. Given a planar subdivision S of complexity n, in the planar point
location problem, we are asked to preprocess S such that given any query point q in
the plane, we can find the face f in S containing q efficiently.

Note that we can assume that the subdivision is enclosed by a bounding box. There
are several different ways to solve the planar point location problem optimally in
O(logn) query time and O(n) space, see [GOT18] for detail. One simple solution uses
trapezoidal decomposition, see [dBCvKO08] for a detailed introduction. Roughly
speaking, given a planar subdivision S enclosed by a bounding box R, we construct
a trapezoidal decomposition of the subdivision by extending two rays from every
vertex of S, one upwards and one downwards. The rays stop when they hit an edge in
S or the boundary of R. The faces of the subdivision we obtain after this transform
will be only trapezoids. Figure 1 gives an example of trapezoidal decomposition. A
crucial property of trapezoidal decomposition is that it increases the complexity of the
subdivision by only a constant factor.

(a) A Planar Subdivision (b) After Trapezoidal Decomposition

Figure 1: Example of Trapezoidal Decomposition

We also review some concepts related to cuttings.
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Definition 11.2.3. Given a set H of n hyperplanes in the plane, a (1/r)-cutting,
1≤ r ≤ n, is a set of (possibly open) disjoint simplices that together cover the entire
plane such that each simplex intersects O(n/r) hyperplanes of H. For each simplex in
the cutting, the set of all hyperplanes of H intersecting it is called the conflict list of
that simplex.

(1/r)-cuttings are important in computational geometry as they enable us to apply
the divide-and-conquer paradigm in higher dimensions. The following theorem by
Chazelle [Cha93], after a series of work in the computational geometry community
[Mat91, Mat95, Aga90, Aga91, CF90], shows the existence of (1/r)-cuttings of small
size and an efficient deterministic algorithm computing (1/r)-cuttings.

Theorem 11.2.1 (Chazelle [Cha93]). Given a set H of n hyperplanes in the plane,
there exists a (1/r)-cutting, 1≤ r ≤ n, of size O(r2), which is optimal. We can find
the cutting and the corresponding conflict lists in O(nr) time.

In this paper, we will use intersection sensitive (1/r)-cuttings which is a generaliza-
tion of (1/r)-cuttings. The following theorem is given by de Berg and Schwarzkopf [dBS95].

Theorem 11.2.2 (de Berg and Schwarzkopf [dBS95]). Given a set H of n line seg-
ments in the plane with A intersections, we can construct a (1/r)-cutting, 1≤ r ≤ n,
of size O(r+Ar2/n2). We can find the cutting and the corresponding conflict lists in
time O(n logr+Ar/n) using a randomized algorithm.

Note that by the construction of generalized cuttings, see [dBS95] for detail, the
following corollary follows directly from Theorem 11.2.2,

Corollary 11.2.1. Given an axis-aligned planar subdivision of complexity n, we can
construct a (1/r)-cutting, 1≤ r ≤ n, of size O(r). More specifically, each cell of the
cutting is an axis-aligned rectangle and the size of the conflict list of every cell is
bounded by O(n/r). We can find the cutting and the corresponding conflict lists in
time O(n logn) using a randomized algorithm.

Rectangle Stabbing

In d dimensional rectangle stabbing problem, we are given a set of n d-dimensional
axis-parallel rectangles, our task is to build a data structure such that given a query
point q, we can report the rectangles containing the query point efficiently. As noted
earlier, Chazelle [Cha86] provides an optimal solution in two-dimensions, a linear-
sized data structure that can answer queries in O(logn+ t) time where t is the output
size. The following lemma by Afshani et al. [AAL12] establishes an upper bound
of this problem and it is obtained by a basic application of range trees [Ben79] with
large fan-out and Chazelle’s data structure.

Lemma 11.2.1 (Afshani et al. [AAL12]). We can answer d dimensional rectangle
stabbing queries in time O(logn · (logn/ logH)d−2 + t) using space O(nH logd−2 n),
where n is the number of rectangles, t is the output size, and H ≥ 2 is any parameter.
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A Pointer Machine Lower Bound Framework

We will use the pointer machine lower bound framework of Afshani [Afs13]. The
framework deals with an abstract “geometric stabbing problem” which is defined by
a set R of “ranges” and a set U of queries. An instance of the geometric stabbing
problem is given by a set R ⊂ R of n “ranges” and the goal is to preprocess R to
answer queries q. Given R, an element q ∈U (implicitly) defines a subset Rq ⊂ R
and the data structure is to output the elements of Rq. However, the data structure
is restricted to operate in the (strengthened) pointer machine model of computation
where the memory is a directed graph M consisting of “cells” where each cell can
store an element of R as well as two pointers to other memory cells. At the query
time, the algorithm must find a connected subgraph Mq of M where each element of
Rq is stored in at least one memory cell of Mq. The size of M is a lower bound on
the space complexity of the data structure and the size of Rq is a lower bound on the
query time. However, the lower bound model allows for unlimited computation and
allows the data structure to have complete information about the problem instance;
the only bottleneck is being able to navigate to the cells storing the output elements.
In addition, the framework assumes that we have a measure µ such that µ(U) = 1.
We need a slightly more precise version of the lower bound framework where the
dependency on a certain constant is made explicit.

Theorem 11.2.3. Assume, we have an algorithm that given any input instance R⊂ R
of n ranges, it can store R in a data structure of size S(n) such that given any query
q ∈U, it can answer the query in Q(n)+ γ|Rq| time.

Then, suppose we can construct an input set R ⊂ R of n ranges such that the
following two conditions are satisfied: (i) every query point q ∈U is contained in
exactly |Rq|= t ranges and γt ≥ Q(n); (ii) there exists a value v such that for any two
ranges r1,r2 ∈ R, µ(

{
q ∈U |r1,r2 ∈ Rq

}
) is well-defined and is upper bounded by v.

Then, we must have S(n) = Ω(tv−1/2O(γ)) = Ω(Q(n)v−1/2O(γ)).

For the proof of this theorem, we refer the readers to section 11.A. In our
applications, µ will basically be the Lebesgue measure and U will be the unit cube.

11.3 Queries on Catalog Paths

In this section, we give a simple solution for when the catalog graph is a path. It will
be used as a building block for later data structures.

Theorem 11.3.1. Consider a catalog path G, in which each vertex is associated with a
planar subdivision. Let n be the total complexity of the subdivisions. We can construct
a data structure using O(n) space such that given any query (q,π), where q is a query
point and π is a subpath, all regions containing q along π can be reported in time
O(logn+ |π|).

Proof. We can convert each subdivision into a set of disjoint rectangles of total
size O(n) using trapezoidal decomposition [dBCvKO08]. Then, we partition G into
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m = d|G|/ logne paths, G1, · · · ,Gm where each path except potentially for Gm has size
logn and Gm has size at most logn.

Now we use an observation that was also made in previous papers [AAL10,
AAL12, Rah15]: when H = G, the two-dimensional fractional cascading can be
reduced to rectangle stabbing. As a result, for each Gi, 1 ≤ i ≤ m, we collect all
the rectangles of its subdivisions and build a 2D rectangle stabbing data structure
on them. By Lemma 11.2.1 this requires O(n) space. Now given a query subpath
of length |π|, we use the rectangle stabbing data structures on the subdivisions of
each Gi as long as |Gi ∩ π| > 0. Since π is a path, for at most two indices i we
will have 0 < |Gi∩π|< logn and for the rest |Gi∩π|= |Gi|= logn. This gives us
O(logn+ |π|) query time.

11.4 Path Queries on Catalog Trees

Now we consider answering path queries on catalog trees. We first show opti-
mal data structures for trees of different heights. It turns out we need different
data structures to achieve optimality when heights differ. We then present a data
structure using O(nαc(n)) space that can answer path queries in O(logn + |π|+
min{|π|

√
logn,

√
|π| logn}) time and a data structure using O(n) space answering

path queries in O(logn+ |π|+min{|π|
√

logn,α(n)
√
|π| logn}) time, where c ≥ 3

is any constant and αk(n) is the k-th function in the inverse Ackermann hierar-
chy [CLRS22] and α(n) is the inverse Ackermann function [CLRS22] . We also
present lower bounds for our data structures. Without loss of generality, we assume
the tree is a binary tree.

Trees of height ≤ logn
2

The Upper Bound

For trees of this height, we present the following upper bound. The main idea is to
use the sampling idea that is employed previously [CLP11, AAL12], however, there
are some main differences. Instead of random samples or shallow cuttings, we use
intersection sensitive cuttings [dBS95] and more notably, the fractional cascading
on an arbitrary tree cannot be reduced to a geometric problem such as 3D rectangle
stabbing, so instead we do something else.

Lemma 11.4.1. Consider a catalog tree of height h ≤ logn
2 in which each vertex is

associated with a planar subdivision. Let n be the total complexity of the subdivisions.
We can build a data structure using O(n) space such that given any query (q,π),
where q is a query point and π is a path, all regions containing q along π can be
reported in time O(logn+ |π|

√
logn).

Proof. Let r be a parameter to be determined later. Consider a planar subdivision
Ai and let ni be the number of rectangles in Ai. We create an intersection sensitive
(r2/ni)-cutting Ci on Ai. By Corollary 11.2.1, Ci contains O(ni/r2) cells and each cell
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of Ci is an axis-aligned rectangle. Furthermore, the conflict list size of each rectangle
is O(r2). For each cell in Ci, we build an optimal point location data structure on its
conflict list. The total space usage is linear, since total size of the conflict lists is linear.

Then, we consider every path of length at most logr in the catalog graph, and we
call them subpaths. For every subpath, we collect all the cells of the cuttings belonging
to the vertices of the subpath and build a 2D rectangle stabbing data structure on them.
Since the degree of any vertex is bounded by 3, each vertex is contained in at most

logr

∑
j=0

j

∑
i=0

3i ·3 j−i = Θ(rlog3 logr)

many subpaths. Then the total space usage of the 2D rectangle stabbing data structures
is bounded by O(n logr/r2−log3) = O(n). Given any query path π , it can be covered
by |π|/ logr subpaths. For each subpath, we can find all the cells of the cuttings
containing the query point in O(logn) time and then perform an additional point
location query on its conflict list, for a total of O(logn+(logr)2) query time per
subpath. Thus, the query time of this data structure is bounded by

|π|
logr

(logn+ logr · logr).

We pick r = 2
√

logn, then we obtain the desired O(logn+ |π|
√

logn) query time.

The Lower Bound

We now present a matching lower bound. We show the following:

Lemma 11.4.2. Assume, given any catalog tree of height
√

logn≤ h≤ logn
2 in which

each vertex is associated with a planar subdivision with n being the total complexity
of the subdivisions, we can build a data structure that satisfies the following: it uses
at most n2ε

√
logn space, for a small enough constant ε , and it can answer 2D OFC

queries (q,π). Then, its query time must be Ω(|π|
√

logn).

Proof. We will use the following idea: We consider a special 3D rectangle stabbing
problem and show a lower bound using Theorem 11.2.3. We will use the 3D Lebesgue
measure, denoted by V (·). Then we show a reduction from this problem to a 2D OFC
problem on trees to obtain the desired lower bound.

We consider the following instance of 3D rectangle stabbing problem. The input
n rectangles are partitioned into h sets of size n/h each. The rectangles of each set
are pairwise disjoint and they tile the unit cube in 3D. The depth (i.e., the length of
the side parallel to the z-axis) of rectangles in set i is 1/2i. Figure 2 is an example of
rectangles in set 2. Note that the depth of each rectangle is 1

22 , while the other two
dimensions can be arbitrary as long as they together tile the unit cube and the number
of them is n/h. Note that the rectangles in this set can be viewed as four subsets of
rectangles by cutting the z-dimension of the unit cube into four even intervals. The
projection of each subset into the xy-plane gives us an axis-aligned planar subdivision.
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Figure 2: An example of rectangles in set 2

We first show the reduction: assume, we are given an instance of special 3D
rectangle stabbing problem. We build a balanced binary tree of height h on the z-axis
as the catalog graph. Note that the number of vertices at layer i of the tree is the
same as the number of different z-intervals rectangles at set i cover. We project the
rectangles having the same z-interval to the xy-plane and obtain a 2D axis-aligned
planar subdivision. We attach each of the subdivisions to the corresponding vertices.
By construction, the regions reported by a point location query from the root to a
leaf correspond to all the rectangles containing the query point after lifting it to 3D
appropriately.

Now we describe a hard instance of the rectangle stabbing problem to establish
a lower bound. It will have rectangles of h different shapes. For each shape, we tile
(disjointly cover) the unit cube using isometric copies of the shape to obtain a set of
rectangles. We collect every r different shapes into a class and obtain h/r classes,
where r is a parameter to be determined later. We say that the i-th rectangle in a class
has group number i, 1 ≤ i ≤ r. Now we specify the dimensions (i.e., side lengths)
of the rectangles. For a rectangle in class i = 0, · · · ,h/r− 1, with group number
j = 0, · · · ,r−1, its dimensions are

[
1

K j ×K j ·2ir+ j ·V × 1
2ir+ j ],

where K,V are parameters to be determined later and the [W×H×D] notation denotes
an axis-aligned rectangle with width W , height H, and depth D. Observe that every
rectangle has volume V and thus we need 1/V copies to tile the unit cube. By setting
V = h/n, the total number of rectangles we generate is n. Also note that all the
rectangles in the same group are pairwise disjoint and they together cover the whole
unit cube. This implies for any query point q in the unit cube, it is contained in exactly
h = |π| rectangles.
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Now we analyze the intersection of any two rectangles. First, observe that given
two axis-aligned rectangles with dimensions [W1×H1×D1] and [W2×H2×D2], their
intersection is an axis-aligned rectangle with dimensions at most [min{W1,W2}×
min{H1,H2}×min{D1,D2}]. Second, by our construction, the rectangles that have
identical width, depth, and height are disjoint. As a result, either the width of the
two rectangles will differ by a factor K or their depth will differ by a factor 2r. This
means that, the maximum intersection volume of any two rectangles R1,R2 in class
i1, i2, group j1, j2 can be achieved only in one of the following two cases:

V (R1∩R2) =

{
V
2K i1 = i2 and j1 = j2 +1,
V
2r i1 = i2 +1 and j1 = j2.

We set K = 2r, then the intersection volume of any two rectangles is bounded by
v = V/2r. However, for the construction to be well-defined, the side length of the
rectangles cannot exceed 1 as otherwise, they do not fit in the unit cube. The largest
height of the rectangles is obtained for j = r−1 and i = h

r −1. Thus, we must have,

Kr−12r( h
r−1)+r−1V ≤ 1.

By plugging the values V = h/n and K = 2r we get that we must have

2r2−r2h−1h < n (11.1)

Since by our assumptions h≤ logn
2 , it follows that by setting r =

√
logn
4 , the inequality

(11.1) holds.
If γh≥ Q(n) holds, then we satisfy the first condition of Theorem 11.2.3 and thus

we obtain the space lower bound of

S(n) = Ω

(
Q(n)v−1

2O(γ)

)
= Ω

(
n2r

logn2O(γ)

)
. (11.2)

Now observe that if we set γ = δ
√

logn, for a sufficiently small δ > 0, then it follows
that the data structure must use more than Ω(n2Ω(

√
logn)) space. However, by the

statement of our lemma, we are not considering such data structures. As a result,
when γ = δ

√
logn, the query time must be large enough that the first condition of

the framework does not hold, meaning, we must have Q(n) ≥ γh = δ
√

lognh =
Ω(|π|

√
logn).

Trees of height h > logn
2 and h≤ log2 n

2

The Upper Bound

We start with the following lemma which gives us a data structure that can only answer
query paths that start from the root and finish at a leaf. The main idea here is used
previously in the context of four-dimensional dominance queries [AAL12, CLP11]
and it uses the observation that such “root to leaf” queries can be turned into a
geometric problem, the 3D rectangle stabbing problem.
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Lemma 11.4.3. Consider a balanced catalog tree of height h > logn
2 and h≤ log2 n

2 in
which each vertex is associated with a planar subdivision. Let n be the total complexity
of the subdivisions. We can build a data structure using O(n) space such that given
any query (q,π), where q is a query point and π is a path starting from the root to a
leaf, all regions containing q along π can be reported in time O(

√
|π| logn).

Proof. Let r be a parameter to be determined later. For each subdivision Ai, we
create an intersection sensitive (r/ni)-cutting Ci on Ai. By the same argument as
Lemma 11.4.1, all the cells in the cuttings are axis-aligned rectangles satisfying (i)
the conflict set size of any cell in Ci is bounded by O(r) and (ii) the total number of
cells in Ci is O(ni/r).

Now we lift each cell in the cuttings to 3D rectangles and collect all the 3D
rectangles to construct a 3D rectangle stabbing data structure for it. This is done as
follows. We assign a z range for each vertex in the catalog tree; Let m be the number
of leaves. Order the leaves of the catalog tree from left to right and for the i-th leaf
li, i ∈ {1,2, · · · ,m}, we assign the range [i−1, i) as its z range. For any internal vertex,
its z range is the union of the z ranges of its children. Then, we lift the 2D rectangles
induced by the subdivision of a vertex to a 3D rectangle using the z range (i.e., by
forming the Cartesian product of the rectangle and the z range). We store the 3D
rectangles in a rectangle stabbing data structure. Given a query point q = (xq,yq) and
a query path π , we first lift q to be (xq,yq,zq), where zq is any z value in the z range of
the deepest vertex in π , and then query the 3D rectangle stabbing data structure.

In addition, for each cell in a cutting, we build an optimal point location data
structure on its conflict set. All these point location data structures take space
O(∑i ni) = O(n) in total and each of them can answer a point location query in
time O(logr).

To achieve space bound O(n) for the 3D rectangle stabbing data structure, it
suffices to choose H = r

log(n/r) . We then balance the query time for 3D rectangle
stabbing and 2D point locations to achieve the optimal query time

logn · logn
log r

log(n/r)
= h · logr.

We pick r = 2logn/
√

h and the query time is bounded by O(
√

h logn)=O(
√
|π| logn).

The above data structure is not a true fractional cascading data structure because
it can only support restricted queries. To be able to answer query paths of arbitrary
lengths > logn

2 and ≤ log2 n
2 , we need the following result.

Lemma 11.4.4. Consider a catalog tree in which each vertex is associated with a
planar subdivision. Let n be the total complexity of the subdivisions and let h1 and h2,
h1 < h2, be two fixed parameters. We can build a data structure using O(n log(h2/h1))
space such that given any query (q,π), where q is a query point and π is a path whose
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length obeys h1 ≤ |π| ≤ h2, all regions containing q along π can be reported in time
O(
√
|π| logn).

Proof. First, observe that w.l.o.g, we can assume that the height of the catalog tree is
at most h2: we can partition the catalog tree into a forest by cutting off vertices whose
depth is a multiple of h2. Since the length of π is at most h2, it follows that π can
only contain vertices from at most two of the trees in the resulting forest, meaning,
answering π can be reduced to answering at most two queries on trees of height at
most h2.

Thus, w.l.o.g., assume v is the root of the catalog tree of height h2 and π is a path
of length at least h1 in this catalog tree. We build the following data structures. Let
v1, · · · ,vm be the vertices at height h2/2. Let T0 be the tree rooted at v and cut off at
height h/2 with v1, · · · ,vm being leafs and Ti be the tree rooted at vi, 1≤ i≤ m. We
build m+ 1 data structures of Lemma 11.4.3 on T0, · · · ,Tm and then we recurse on
each of the m+1 trees. The recursion stops once we reach subproblems on trees of
height at most h1.

Since the data structure of Lemma 11.4.3 uses O(n) space, at each recursive
level, the total space usage of data structures we constructed is O(n). Over the
O(log(h2/h1)) recursion levels, this sums up to O(n log(h2/h1)) space.

Now we analyze the query time. Given a query (q,π), we may query several data
structures that together cover the whole path of π . Let u be the highest vertex on π .
We can decompose π into two disjoint parts π1 and π2, that start from u and end at
vertices u1 and u2 respectively, with u1 and u2 being descendants of u. It thus suffices
to only answer π1, as the other path can be answered similarly. The first observation
is that we can find a series of data structures that can be used to answer disjoint parts
of π1. The second observation is that we can afford to make the path a bit longer to
truncate the recursion. We now describe the details.

Consider the trees T0, · · · ,Tm defined at the top level of the recursion. If π1 is
entirely contained in one of the trees, then we recurse on that tree. Otherwise, u
is contained in T0 and u1 is contained in some subtree Ti. Now, π1 can be further
subdivided into two smaller “anchored” paths: one from u to vi (“anchored” at u)
and another from vi to u1 (“anchored” at vi) and each smaller path can be answered
recursively in the corresponding tree. Thus, it suffices to consider answering the query
q along an anchored path.

Thus, consider the case of answering an anchored path π ′ in the data structure.
To reduce the notation and clutter, assume π ′ is an anchored path, starting from the
root of T and ending at a vertex u. Assume the vertices v1, · · · ,vm and trees T0, · · · ,Tm

are defined as above. First, consider the case when the height of T is at most h1; in
this case, we have built an instance of the data structure of Lemma 11.4.3 on T but
not on the trees T0, · · · ,Tm. In this case, we simply answer q on a root of leaf path
in T that includes π ′, e.g., by a picking a leaf in the subtree of u. In this case, we
will be performing a number of “useless” point location queries, in particular those
on the descendants of u. However, as the height of T is at most h1, it follows that
the query bound stays asymptotically the same: O(

√
h1 logn). Furthermore, there is
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no recursion in this case and thus this cost is paid only once per anchored path. The
second case is when the height of T is greater than h1. In this case, if u lies in T0
we simply recurse on T0 but if u lies in a tree Ti, we first query the data structure of
Lemma 11.4.3 using the path from the root of T until vi, and then we recurse on Ti. As
a result, answering the anchored path query reduces to answering at most one query
on an instance of data structure Lemma 11.4.3 and another recursive “anchored” on a
tree of half the height. Thus, the i-th instance of the data structure Lemma 11.4.3 that
we query covers at most 1/2i fraction of the anchored path. Thus, if k is the length
of the anchored path, it follows that the total query time of all the data structures we
query is bounded by

∞

∑
i=1

√
k logn
2i = O(

√
k logn) = O(

√
|π| logn).

We now reduce the space of the above lemma dramatically. We will repeatedly
use a “bootstrapped" data structure. The following lemma establishes how we can
bootstrap a base data structure to obtain a more efficient one.

Lemma 11.4.5. Consider a catalog tree of height h > logn
2 and h ≤ log2 n

2 in which
each vertex is associated with a planar subdivision. Let n be the total complexity of the
subdivisions. Assume, for any fixed value ∆, ω(1)≤ ∆≤ logn, we can build a “base”
data structure that can answer a 2D OFC query (q,π) in Qb(n) = O(

√
|π| logn) time

as long as π is path of length between log2 n
2∆

and log2 n
2 . Furthermore, assume it uses

Sb(∆,n) = O(n f (∆)) space, for some function f which is monotone increasing in ∆

and for ∆ = ω(1) we have f (∆) = ω(1).
Then, for any given fixed value ∆, ω(1)≤∆≤ logn, we can build a “bootstrapped”

data structure that can answer a 2D OFC query (q,π) in Qb(n)+O(
√
|π| logn) time

as long as π is path of length between log2 n
2∆

and log2 n
2 . Furthermore, it uses O(n f ∗(∆))

space, where f ∗(·) is the iterative f (·) function which denotes how many times we
need to apply f (·) function to ∆ to reach a constant value.

Proof. We construct an intersection sensitive ( f (∆)/ni)-cutting Ci for each planar
subdivision Ai attached to the tree. Call these the “first level” cuttings. Similar to the
analysis in Lemma 11.4.1, we obtain O(ni/ f (∆)) cells, which are disjoint axis-aligned
rectangles, for each Ci and thus n′ = O(n/ f (∆)) cells in total. Each cell in the cutting
has a conflict list of size O( f (∆)) and on that we build a point location data structure.
This takes O(n) space in total. We store the cells of the cutting in an instance of the
base data structure with parameter ∆. Call this data structure A1. The space usage of
A1 is

Sb(∆,n′) = O(n′ f (∆)) = O(n).

Now we consider a query (q,π). Let δ1 = log( f (∆)). Consider the case when
1
2 ·
(

log2 n
∆

)
≤ |π| ≤ 1

2 ·
(

logn
δ1

)2
. In this case, as A1 is built with parameter ∆, we can
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query it with (q,π). Thus, in Qb(n) time, for every subdivision on path π , we find the
cell of the cutting that contains q. Then, we use the point location data structure on
the conflict lists of the cells to find the original rectangle containing q. This takes an
additional O(log( f (∆))) as the size of each conflict is O( f (∆)). Thus, the query time
in this case is

Qb(n)+O(|π| log( f (∆))) = Qb(n)+O(
√
|π| logn)

since we have |π| ≤ 1
2 ·
(

logn
δ1

)2
= 1

2 ·
(

logn
log( f (∆))

)2
.

Thus, the only paths we cannot answer yet are those when 1
2 ·
(

logn
δ1

)2
≤ |π| ≤ log2 n

2 .
In this case, we can bootstrap. First, observe that we can build a data structure A ′ on
the the original rectangles, where A ′ is an instance of the base data structure but this
time with parameter ∆ set to δ 2

1 .
This will take Sb(δ

2
1 ,n) = O(n f (δ 2

1 )) space. Thus, the total space consumption is

O(n)+Sb(δ
2
1 ,n) = O(n)+O(n f (log2( f (∆)))) = O(n)+O(n f ( f (∆))) (11.3)

where the last inequality follows since f (·) is a monotone increasing function and
log2( f (∆))< f (∆) as f (∆) = ω(1). By construction, the data structure A ′ is built to
handle exactly paths of this lenghth but it is using too much space. The idea here is
that we can repeat the previous technique using “second level” cuttings to obtain a
data structure A2: for a subdivision of size ni, build a ( f ( f (∆))/ni)-cutting, called the
“second level” cutting. By repeating the same idea we used for the first level cuttings,
we can spend additional O(n) space to build a data structure A2 which can answer

queries (q,π) as long as 1
2 ·
(

log2 n
∆

)
≤ |π| ≤ 1

2 ·
(

logn
δ2

)2
where δ2 = log( f ( f (∆))). By

repeating this process for f ∗(∆) steps, we can obtain the claim data structure.

We will essentially begin with the data structure in Lemma 11.4.4 and use
Lemma 11.4.5 to bootstrap. To facilitate the description, we define two useful func-
tions first. Let log∗ n be the iterated log function, i.e., the number of times we need to
apply log function to n until we reach 2. We define log∗(i) n as follows

log∗(i) n =

{
log∗(i)(log∗(i−1) n)+1 n > 1,
0 n≤ 1.

In other words, it is the number of times we need to apply log∗(i−1) function to n until
we reach 2. We also defined the following function

τ(n) = {min i : log∗(i) n≤ 3}.

In fact, log∗(i) n is the (i+2)-th function of the inverse Ackermann hierarchy [CLRS22]
and τ(n) = α(n)−3, where α(n) the inverse Ackermann function [CLRS22].
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Lemma 11.4.6. Consider a catalog tree of height h > logn
2 and h ≤ log2 n

2 in which
each vertex is associated with a planar subdivision. Let n be the total complexity of
the subdivisions. We can build a data structure using O(nαc(n)) space, where c≥ 3 is
any constant and αc(n) is the c-th function of the inverse Ackermann hierarchy, such
that given any query (q,π), where q is a query point and π is a path of length > logn

2

and ≤ log2 n
2 , all regions containing q along π can be reported in time O(

√
|π| logn).

Furthermore, we can also build a data structure using O(n) space answering queries
in time O(α(n)

√
|π| logn), where α(n) is the inverse Ackermann function.

Proof. By Lemma 11.4.4, if we set h1 =
logn

2 and h2 =
log2 n

2 , we obtain a data structure
using O(n log logn) answering queries in time O(

√
|π| logn). By picking ∆ = logn,

f = logn, we can apply Lemma 11.4.5 to reduce the space to O(n log∗(logn)) =
O(n log∗ n) while achieving the same query time. If we again pick ∆ = logn, but f =
log∗ n, by applying Lemma 11.4.5 again, the space is further reduced to O(n log∗∗(logn))=
O(n log∗∗ n). We continue this process until log∗(i) n is less than three. Note that we
will need to pay O(

√
|π| logn) extra query time each time we apply Lemma 11.4.5.

We will end up with a linear-sized data structure with query time O(τ(n)
√
|π| logn) =

O(α(n)
√
|π| logn). On the other hand, if we stop applying Lemma 11.4.5 after a

constant c many rounds, we will end up with a O(n log∗(c) n) = O(nαc+2(n)) sized
data structure with the original O(

√
|π| logn) query time.

The Lower Bound

We show a matching lower bound in this section.

Lemma 11.4.7. Assume, given any catalog tree of height logn
2 < h≤ log2 n

2 in which
each vertex is associated with a planar subdivision with n being the total complexity
of the subdivisions, we can build a data structure that satisfies the following: it uses
at most n2ε logn/

√
h space, for a small enough constant ε , and it can answer 2D OFC

queries (q,π). Then, its query time must be Ω(
√
|π| logn).

Proof. We first describe a hard input instance for a 3D rectangle stabbing problem
and later we show that this can be embedded as an instance of 2D OFC problem on a
a tree of height h. Also, we actually describe a tree of height h′ = h+(logn)/4

2 ≤ h. This
is not an issue as we can add dummy vertices to the root to get the height to exactly h.

We begin by describing the set of rectangles. Each rectangle is assigned a “class
number” and a “group number”. The number of classes is

√
h

2 and the number of
groups is logn

4
√

h
+
√

h. The rectangles with the same class number and group number
will be disjoint, isometric and they would tile the unit cube. Rectangles with class
i = 0, · · · ,

√
h

2 −1 and group j = 0, · · · , logn
4
√

h
−1 will be of shape

[
1

K j ×K j ·2ir+ j ·V × 1
2ir+ j ],
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where V,K are some parameters to be determined later and r =
√

logn
4
√

h
. Similarly,

rectangles with class i = 0, · · · ,
√

h
2 −1 and group j = logn

4
√

h
, · · · , logn

4
√

h
+
√

h−1 will be
of shape

[
1

K j ×K j ·2ir+r ·V × 1
2ir+r ].

The total number of different shapes is
√

h
2 · (

logn
4
√

h
+
√

h) = h′. Note that each rectangle
has volume V , so the total number of rectangles we use in all the tilings is n by setting
V = h′/n. By our construction any query point is contained in t = h′ = |π| rectangles.
Now we analyze the maximal intersection volume of two rectangles. By the same
argument as in the proof of Lemma 11.4.2 the maximal intersection volume can only
be achieved by two rectangles when they are in the same class and adjacent groups or
in the same group of adjacent classes. For two rectangles R1 and R2 in group j1, j2 of
class i1, i2, we have

V (R1∩R2) =


V
2K i1 = i2 and j1 = j2 +1≤ logn

4
√

h
,

V
K i1 = i2 and logn

4
√

h
≤ j1 = j2 +1,

V
2r i1 = i2 +1 and j1 = j2.

We set K = 2r, then the intersection of any two rectangle is no more than v =V/2r.
We also need to make sure no side length of any rectangle exceeds the side length

of the unit cube. The maximum side length can only be obtained when i =
√

h
2 −1 and

j = logn
4
√

h
+
√

h−1 in the second dimension. We must have

K
logn
4
√

h
+
√

h−1 ·2r(
√

h
2 −1)+ logn

4
√

h ·V ≤ 1

Plugging K = 2r and V = h′/n in, we must have

2r logn
4
√

h
+r(
√

h−1) ·2r(
√

h
2 −1)+ logn

4
√

h ·h′ ≤ n (11.4)

Since logn
2 ≤ h≤ log2 n

2 and r = logn
4
√

h
, (11.4) holds.

Suppose γh≥ Q(n), then the first condition of Theorem 11.2.3 is satisfied and we
get the lower bound of

S(n) = Ω(
tv−1

2O(γ)
) = Ω(

n2r

2O(γ)
).

Observe that by setting γ = δ logn√
h

for a sufficiently small δ > 0, the data structure

must use Ω(n2Ω(logn/
√

h)) space, which contradicts the space usage in our theorem.
Therefore, Q(n)≥ γh = δ logn√

h
h = Ω(

√
h logn) = Ω(

√
|π| logn). It remains to show

that this set of rectangles can actually be embedded into an instance of the 2D OFC
problem. To do that, we describe the tree T that can be used for this embedding. See
Figure 3. We hold the convention that the root of T has depth 0. Starting from the root,
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...

... ... ...

...

log n
4
√
h...

... ... ... ...

√
h

Figure 3: A difficult tree for fractional cascading.

until depth logn
4
√

h
, every vertex will have two children (blue vertices in Figure 3) then

we will have
√

h vertices with one child (red vertices in Figure 3). Then this pattern
continues for

√
h

2 steps. The first set of blue and red vertices correspond to class 1, the
next to class 2 and so on. Within each class, the top level corresponds to group 1 and
so on. To be specific, vertices at depth ( logn

4
√

h
+
√

h)i+ j of the tree have rectangles
of class i and group j. Now, it can be seen that the rectangles can be assigned to the
vertices of T , similar to how it was done in Lemma 11.4.2. The notable difference
here is that the depth of the rectangles decreases as the group number increases from
0 to logn

4
√

h
−1 but then it stays the same from logn

4
√

h
until logn

4
√

h
+
√

h−1 but this exactly
corresponds to the structure of the tree T .

Trees of height > log2 n
2

For trees of this height, we have:

Lemma 11.4.8. Consider a catalog tree of height > log2 n
2 in which each vertex is

associated with a planar subdivision. Let n be the total complexity of the subdivisions.
We can build a data structure using O(n) space such that given any query (q,π),
where q is a query point and π is a path of length |π|> log2 n

2 , all regions containing q
along π can be reported in time O(|π|).

Proof. We combine the classical heavy path decomposition by Sleator and Tarjan
[ST83] and the data structure for catalog paths to achieve the desire query time. We
first apply the heavy path decomposition to the tree and then for every heavy path
created we build a 2D OFC data structure to answer queries along the path. Clearly, we
only spend linear space in total. Then by the property of the heavy path decomposition,
we only need to query O(logn) heavy paths to answer a query, which leads to a query
time of O(log2 n+ |π|) = O(|π|).
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By combining Lemma 11.4.1, Lemma 11.4.6, Lemma 11.4.8, we immediately get
the following corollary.

Corollary 11.4.1. Consider a catalog tree in which each vertex is associated with a
planar subdivision. Let n be the total complexity of the subdivisions. We can build a
data structure using O(nαc(n)) space, where c≥ 3 is any constant and αc(n) is the
c-th function of the inverse Ackermann hierarchy, such that given any query (q,π),
where q is a query point and π is a path, all regions containing q along π can be
reported in time O(logn+ |π|+min{|π|

√
logn,

√
|π| logn}). Furthermore, we can

also build a data structure using O(n) space answering queries in time O(logn+ |π|+
min{|π|

√
logn,α(n)

√
|π| logn}), where α(n) is the inverse Ackermann function.

11.5 Queries on Catalog Graphs and Subgraph Queries

In this section, we consider general catalog graphs as well as subgraph queries on
catalog trees. Our result shows that it is possible to build a data structure of space
O(n) such that we can save a

√
logn factor from the naïve query time of iterative point

locations. We also present a matching lower bound.
We begin by presenting a basic reduction.

Lemma 11.5.1. Given a catalog graph G of m vertices with graph subdivision com-
plexity n and maximum degree d, we can generate a new catalog graph G′ with Θ(md)
vertices with graph subdivision complexity Θ(n) and bounded degree O(d2) such that
the following holds: given any connected subgraph π ⊆ G, in time O(|π|), we can
find a path π ′ in G′ such that the answer to any query Q1 = (q,π) in G equals the
answer to query Q2 = (q,π ′) in G′.

Proof. The main idea is that we can add a number of dummy vertices to the graph
such that we can turn a subgraph query to a path query.

We can obtain G′ in the following way. For every vertex in G, place 2d copies of
the vertex in G′. All the copies of a vertex are connected in G′. Furthermore, every
copy of a vertex vi is connected to every copy of vertex v j if and only if vi and v j are
connected in G. The maximum degree of G′ is thus O(d2).

Now consider a subraph query π in G. By definition, π is a connected subgraph of
G and w.l.o.g., we can assume π is a tree. We can form a walk W from π by following
a DFS ordering of π such that W traverses every edge of π at most twice and visits
every vertex of π . We observe that we can realize W as a path in G′ by utilizing the
dummy vertices; as each vertex has 2d dummy vertices, every visit to a vertex in G
can be replaced by a visit to a distinct dummy vertex.

The Upper Bound

Formally, we have the following result.
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Lemma 11.5.2. Consider a degree-bounded catalog graph in which each vertex is
associated with a planar subdivision. Let n be the total complexity of the subdivisions.
We can build a data structure using O(n) space such that given any query (q,π),
where q is a query point and π is a path, all regions containing q along π can be
reported in time O(logn+ |π|

√
logn).

Proof. We build the data structure essentially the same way as in the proof of
Lemma 11.4.1. The only difference is that the degree of a node is bounded by a
d ≥ 2 which can be any constant. By the same argument in the proof of Lemma 11.4.1,
any node is stored at most Θ(rlogd logr) times and we can obtain a O(n) space bounded
data structure achieving O(logn+ |π|

√
logn) query time by creating an intersection

sensitive (r2logd/ni)-cutting for each planar subdivision Ai and balancing the query
time of cutting cells and conflict lists.

By Lemma 11.5.1, we can also obtain the following two corollaries.

Corollary 11.5.1. Consider a catalog graph in which each vertex is associated with
a planar subdivision. Let n be the total complexity of the subdivisions. We can build a
data structure using O(n) space such that given any query (q,π), where q is a query
point and π is a connected subgraph, all regions containing q along π can be reported
in time O(logn+ |π|

√
logn).

Specifically, for catalog trees we have the following:

Corollary 11.5.2. Consider a catalog tree in which each vertex is associated with a
planar subdivision. Let n be the total complexity of the subdivisions. We can build a
data structure using O(n) space such that given any query (q,π), where q is a query
point and π is a subtree, all regions containing q along π can be reported in time
O(logn+ |π|

√
logn).

The Lower Bound

In this section, we show that the
√

logn factor that exists in Lemma 11.5.2, Corol-
lary 11.5.1, and Corollary 11.5.2 is tight. Like the proof of path queries for catalog
trees, we need a reduction from a rectangle stabbing problem to a 2D OFC subtree
query problem on catalog trees. But unlike previous proofs, we use an instance of the
rectangle stabbing problem in a much higher dimension.

We show the lower bound for subtree queries of a catalog tree. By Lemma 11.5.1,
this also gives a lower bound for path queries in general catalog graphs.

Lemma 11.5.3. Assume, given any catalog tree of height
√

logn≤ h≤ logn
2 in which

each vertex is associated with a planar subdivision with n being the total complexity
of the subdivisions, we can build a data structure that satisfies the following: it uses
at most n2ε

√
logn space, for a small enough constant ε , and it can answer 2D OFC

queries (q,π), where q is a query point and π is a subtree containing b =
√

n/ logn
leaves. Then, its query time must be Ω(|π|

√
logn).
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Proof. We define the following special (2+b)-dimensional rectangle stabbing prob-
lem. The input consists of n rectangles in (2+ b) dimensions. According to their
shapes, rectangles are divided into h′ = h− r sets of size n/h′ each where r is a
parameter to be determined later. The rectangles in each set are further divided into
b groups of size n/(h′b) each. All the rectangles in the same group are pairwise
disjoint and they together tile the (2+b)-dimensional unit cube. We put restrictions
on the shapes of the input rectangles to make this problem special. For a rectangle in
set i, i = 0,1, · · · ,h′−1, group j, j = 0,1, · · · ,b−1, except for the first two and the
(2+ j)-th dimensions, its other side lengths are all set to be 1. The side length of the
(2+ j)-th dimension is set to be 1/2i+r. We put restriction on the side lengths of the
first two dimensions in set i as follows: First for the first group j = 0 in this set, we
put no restrictions of the first two dimensions as long as they tile the unit cube and the
total number of rectangles used for this group is n/(h′b). For an arbitrary group j, we
cut the range of the unit cube in the (2+ j)-th dimension into 2i+r equal length pieces.
This partitions the unit cube into 2i+r parts. Note that each part of the unit cube is
also tiled by rectangles since we require the side length of the (2+ j)-th dimension
of the rectangles to be 1/2i+r. If we project the rectangles in each part of the unit
cube into the first two dimensions, we obtain 2i+r axis-aligned planar subdivisions.
The planar subdivisions we generated for the first group is used as a blueprint for the
shape of rectangles in other groups. More specifically, for the remaining groups in
set i, we require that the choices of the first two dimensions to give the same set of
2i+r planar subdivisions as the first group. The problem is as follows: Given a point
in (2+b)-dimensions, find all the rectangles containing this query point.

We now describe a reduction from this problem to 2D OFC subtree queries on
catalog trees. We consider a complete balanced binary tree of height h = h′+ r. Note
that the number of nodes at layer i+r of the tree is the same as the number of different
subdivisions we get by projecting a group in set i to the first two dimensions. Since
we require all the groups in the same set yield the same set of subdivisions, we can
simply attach the subdivisions to the nodes starting from layer r. For nodes in layer
smaller than r, we attach them with empty subdivisions.

Now let us analyze a rectangle stabbing query q on the rectangle stabbing problem.
Consider rectangles in set i, we need to find the rectangle containing q in each of the
b groups. In this special rectangle stabbing problem, to find the rectangle in group j
containing q, we can find the rectangle by first use the (2+ j)-th coordinate of q to find
the part of the unit cube where q is in, and then find the output rectangle by a simple
planar point location on the projection of the part using the first two coordinates of
q. By our construction this is equivalent to choose a node in layer i+ r of the binary
tree and to perform a point location query on the subdivision attached to it. Note that
the node in layer i+ r+1 we choose must be one of the children of the chosen node
in layer i+ r. So if we only focus on one specific group j of all sets, the rectangle
stabbing query corresponds to a series of point location queries from the root to a leaf
in the binary tree we constructed. Similarly, we obtain b such paths if we consider all
groups and they together form a subtree of b leaves. The answer to the point location
queries along the subtree gives the answer to the rectangle stabbing problem.
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We describe a hard high dimensional rectangle stabbing problem instance. As
before, we create rectangles of different shapes to tile the unit cube. But this time,
we will consider a (2+b)-dimensional rectangle stabbing problem. For rectangles in
class i = 0, · · · ,h′/r−1 , supergroup j = 0, · · · ,r−1, we create the following shapes:

[ 1
K j ×K j ·2ir+ j+r ·V × 1

2ir+ j+r ×1×1×·· ·×1]

[ 1
K j ×K j ·2ir+ j+r ·V ×1× 1

2ir+ j+r ×1×·· ·×1]
...

[ 1
K j ×K j ·2ir+ j+r ·V ×1×1×·· ·×1× 1

2ir+ j+r ]


b shapes

where K,V are parameters to be determined later. Note that all the rectangles are
in (2+b) dimensions.

We use each of the shape to tile a unit cube. Since the volume of any rectangle
is V , we need 1/V rectangles of the same shape to tile the cube. We call it a group.
Note that the rectangles in the same group are pairwise disjoint. We generated h′b/V
rectangles in total. By setting V = h′b/n, the total number of rectangles is n. Note
that any point in the unit cube is contained in exactly t = h′b rectangles.

Now we shall analyze the volume of the intersection between any two (2+ b)-
dimensional rectangles. Note that if two rectangles have the same side lengths for b−1
out of the last b dimensions, then it is the case we have analyzed in the proof of, e.g.,
Lemma 11.4.2, and the volume of the intersection of any two rectangles is bounded
by V/K if we set K = 2r. Now we analyze the other case. By our construction, two
rectangles can only have at most two different side lengths in the last b dimensions.
We consider two rectangles in class i1 supergroup j1, and class i2 supergroup j2
respectively. Without loss of generality, we assume j1 ≥ j2. The case for j1 ≤ j2
is symmetric. Then there are two possible expressions for the intersection volume
depending on the values of i1 and i2. The first one is

1
K j1
×K j1 ·2i1r+ j1+r ·V × 1

2i1r+ j1+r ×
1

2i2r+ j2+r =
V

2i2r+ j2+r ≤
V
K
.

The second possible expression is

1
K j1
×K j2 ·2i2r+ j2+r ·V × 1

2i1r+ j1+r ×
1

2i2r+ j2+r =
V

K j1− j2
× 1

2i1r+ j1+r ≤
V
K
.

The last inequality holds because j1 ≥ j2.
To make this construction well-defined, no side length of the rectangles can

exceed 1. The largest side length can only be obtained in the second dimension when
i = h′/r−1 and j = r−1. We must have

Kr−12h′+r−1V ≤ 1.

By plugging in the values V = h′b/n and K = 2r we get that we must have

2r2−r2h′+r−1h′b < n (11.5)
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Since by our assumptions h′ ≤ logn
2 , b≤

√
n

logn , it follows that by setting r =
√

logn
4 , the

inequality (11.5) holds.
If γh′b≥ Q(n) holds, then the first condition of Theorem 11.2.3 is satisfied and

we obtain the lower bound of

S(n) = Ω(
tv−1

2O(γ)
) = Ω(

n2r

2O(γ)
).

Now if we set γ = δ
√

logn for a sufficiently small δ > 0, the data structure must use
Ω(n2Ω(

√
logn)) space, which contradicts the space usage stated in our lemma. Note

that |π|= (h′+ r)b = Θ(h′b). Then Q(n)≥ γh′b = Ω(|π|
√

logn).

Remark 11.5.1. Note that the lower bound holds even when the query path is of length
≥
√

logn and ≤ logn
2 . We have already established this lower bound in Lemma 11.4.2.

Combining Lemma 11.5.1 and Lemma 11.5.3, we immediately have the following
corollary:

Corollary 11.5.3. Assume, given any degree-bounded catalog graph in which each
vertex is associated with a planar subdivision with n being the total complexity of
the subdivisions, we can build a data structure that satisfies the following: it uses
at most n2ε

√
logn space, for a small enough constant ε , and it can answer 2D OFC

queries (q,π), where q is a query point and π is a path. Then, its query time must be
Ω(|π|

√
logn).

11.6 Open Problems

For the linear space data structure we obtained for general path queries of trees
Corollary 11.4.1, there is a tiny inverse Ackermann gap between the query time we
obtain and the lower bound. It is an interesting problem whether we can get rid of that
term or improve the lower bound.

The problem we consider is very general in the sense that the only restriction we
place on the input instance is that the graph subdivision complexity is n. Some special
cases admit better solutions. For example, if we require the subdivision complexity
of each vertex of the graph to be asymptotically the same, we can obtain an O(n)
space and O(logn+ |π| log logn) query time data structure for path queries on catalog
trees of height ≤ logn

2 , while we can only achieve O(logn+ |π|
√

logn) query time
given linear space in the general case Lemma 11.4.1. This is done by creating an
intersection sensitive (logn/ni)-cutting Ci for each subdivision Ai in the tree and then
storing all cutting cells on each path using the data structure in Theorem 11.3.1 and
building point location data structures on the conflict list of each cell.

Higher dimensional generalization of our results is another direction. In 2D, we
can transform an axis-aligned planar subdivision to a subdivision consisting of only
rectangles by increasing the subdivision complexity by only a constant factor; however
it is not the case for 3D. On the other hand, for 3D point locations on orthogonal
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subdivisions, we have Rahul’s O(log3/2 n) query time and linear space data structure
[Rah15] in the standard pointer machine model. Recently, the query time is improved
to O(logn) by Chan et al. [CNRT22], but they use a stronger arithmetic pointer
machine model. Given that the higher dimensional counterparts of the tools we use for
2D are suboptimal, it is a challenging and interesting problem to see how the results
will be in higher dimensions.

Other open problems include considering the dynamization of our results, i.e.,
to support insertion and deletion dynamically, and other computational models, e.g.,
RAM and I/O model.



Appendices

11.A Proof of Theorem 11.2.3

Theorem 11.2.3. Assume, we have an algorithm that given any input instance R⊂ R
of n ranges, it can store R in a data structure of size S(n) such that given any query
q ∈U, it can answer the query in Q(n)+ γ|Rq| time.

Then, suppose we can construct an input set R ⊂ R of n ranges such that the
following two conditions are satisfied: (i) every query point q ∈U is contained in
exactly |Rq|= t ranges and γt ≥ Q(n); (ii) there exists a value v such that for any two
ranges r1,r2 ∈ R, µ(

{
q ∈U |r1,r2 ∈ Rq

}
) is well-defined and is upper bounded by v.

Then, we must have S(n) = Ω(tv−1/2O(γ)) = Ω(Q(n)v−1/2O(γ)).

To prove this theorem, we first show a special property of the subgraph Mq

explored to answer a query q ∈U . Note that in the pointer machine model, we begin
the exploration with a special cell, called the root. If we consider only the first in-edge
to any cell in Mq, we obtain a tree.

Lemma 11.A.1. Let Mq be the explored subgraph corresponds to a query q ∈U. We
call the memory cells in Mq containing reported ranges marked cells. Let a fork be a
subtree of Mq of size at most cγ containing two marked cells, where c is a large enough
constant and γ is the parameter in Theorem 11.2.3. Then Mq can be decomposed into
Ω(|Rq|) many forks, where Rq is the set of ranges containing q.

Proof. The proof we present is very similar to the one described in [Afs13]. We
generate the forks using the following method. For every cell in Mq, we assign two
values mark and size to it. For marked cell, we initialize its mark value to be one.
Other cells will have mark value zero. For any cell in Mq, we assign one to its size
value. Without loss of generality, we assume Mq to be a tree. At every step, we choose
an arbitrary leaf and add its mark value and size value to the corresponding values of
its parent. Then we remove this cell. If its parent has another child, we repeat this
process until its parent becomes a leaf. If after this process its parent has mark value
two and size value more than cγ , we remove its parent as well and do nothing. We
call this situation “wasted”. If its parent has mark value two and size value no more
than cγ , we find a fork. We add it to the fork set and remove the subtree. If its parent
has mark value less than two, we do nothing. Note that its parent cannot have mark
value more than two because that will indicate one of its child has mark value at least
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two but not being added to a fork or wasted. We go on to the next step until reaching
the root.

Let us consider how many marks will be wasted. We only waste marks when we
find a subtree containing two marks but of size more than cγ and when we reach the
root with only one mark. Since Mq contains Q(n)+ γ|Rq| ≤ 2γ|Rq| cells, the number
of marks wasted is bounded by 4γ|Rq|/(cγ)+1 = 4|Rq|/c+1. Other marks are all
stored in forks, so the number of forks is more than (|Rq|−4|Rq|/c−1)/2 = Ω(|Rq|)
for a sufficiently large c.

We also need another lemma, which follows directed from Lemma 1 in Afshani
[Afs13].

Lemma 11.A.2. The number of forks of size O(γ) is O(S(n)2O(γ)).

Now we prove Theorem 11.2.3.

Proof. Consider any query point q ∈U . By definition, it is contained in a set Rq of
ranges. Consider the explored subgraph Mq when answering q. By Lemma 11.A.1,
we can decompose Mq into a set Fq of Ω(|Rq|) forks such that each fork contains two
output ranges. Note that for the two ranges to be output, q must lie in the intersection
of the two ranges. Similarly, q must lie in all the intersection of the two ranges for
every fork in Mq. This implies that q is covered by these intersections Ω(|Rq|) times.

Since we can answer queries for all q ∈ U and by assumption (i) each q is
contained in t ranges, it implies that the intersections of two ranges in all possible
forks cover U Ω(t) times. By Lemma 11.A.2, the number of possible forks of size
O(γ) is O(S(n)2O(γ)). Each fork has

(O(γ)
2

)
= O(γ2) ways to choose two ranges. By

assumption (ii), the measure of any two ranges is bounded by v. So by a simple
measure argument,

O(γ2)S(n)2O(γ)v = Ω(t).

This gives us

S(n) = Ω(
t

v2O(γ)
).

By our assumption (i), γt ≥ Q(n), we also obtain

S(n) = Ω(
Q(n)
v2O(γ)

).
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[Mat91] Jiří Matoušek. Cutting hyperplane arrangements. Discrete Comput.
Geom., 6(5):385–406, 1991. 18, 64, 73, 198
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