
Localized Static Program Analysis
for Optimization and Error Detection

Oskar Haarklou Veileborg

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Localized Static Program Analysis
for Optimization and Error Detection

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Oskar Haarklou Veileborg

May 16, 2023

Abstract

Software development processes continuously evolve, but remain imperfect. In
this thesis we identify two issues related to software development in the modern
programming languages, Java and Go. The first issue concerns a type of software
defect commonly known as concurrency bugs. To realize the full potential of modern
multi-core processors, programmers must write concurrent, multi-threaded programs.
However, development of concurrent programs is complex, and it can be difficult to
avoid common shared-memory concurrency bugs, such as data races and deadlocks,
in part because scheduling non-determinism makes it hard to reason about behaviors
of a multi-threaded program. The Go programming language endorses the use of a
channel communication model as a means to avoid concurrency bugs, but recent work
shows that Go developers who use channels still introduce many concurrency bugs in
their programs, some of which are directly caused by misuse of channels.

The second issue involves abstraction overhead of using functional programming
paradigm features in mainstream languages, in particular Java. The use of immutable
data and pure functions is an important principle of functional programming. It makes
it easier to reason about potential behaviors of programs, which in turn makes it
easier to prevent the introduction of bugs. Realizing the benefits of this programming
style, mainstream languages have introduced features that are commonly associated
with functional programming, such as declarative data-processing. This feature was
introduced in Java 8 through the stream API and has been widely adopted. However,
previous work shows that using this API instead of imperative data-processing methods
comes with a performance cost, referred to as abstraction overhead, which dissuades
some developers from using it.

In this thesis we present two novel static program analysis techniques based on ab-
stract interpretation. One enables ahead-of-time optimizations for Java programs that
use streams, while the other allows for detection of blocking errors involving channels
in Go programs. We built proof-of-concept implementations of these techniques and
have experimentally validated their efficacy. The techniques scale to large real-world
programs, which consist of both application code and many libraries. Both techniques
build on the idea of localized analysis, a form of static program analysis that splits
the analyzed program into smaller fragments that can be analyzed individually with a
high degree of precision.

i

Resumé

Vores softwareudviklingsprocesser udvikler sig løbende, men de forbliver uperfekte. I
denne afhandling identificerer vi to problemstillinger softwareudviklere støder på i
de moderne programmeringssprog, Java og Go. Den første problemstilling vedrører
en type softwarefejl, der almindeligvis er kendt som concurrency-fejl. For at udnytte
det fulde potentiale af moderne multi-core-processorer, skal programmører skrive
parallelle, flertrådede programmer. Det er komplekst at udvikle parallelle programmer,
og det kan være vanskeligt at undgå almindelige shared-memory concurrency-fejl,
såsom data races og deadlocks, bl.a. fordi vilkårligheder i, hvornår hver tråd får
lov til at eksekvere, gør det svært at ræsonnere om et flertrådet programs adfærd.
Programmeringssproget Go lægger op til brugen af en kanalkommunikationsmodel
som et værktøj til at undgå concurrency-fejl, men tidligere forskningsarbejde viser, at
Go-udviklere, der bruger kanaler, stadig introducerer mange concurrency-fejl i deres
programmer, hvoraf nogle af dem er direkte forårsaget af forkert brug af kanaler.

Den anden problemstilling vedrører det abstraktionsoverhead, der er forbundet
med brugen af features fra det funktionelle programmeringsparadigme i mainstream-
sprog, især Java. Brugen af uforanderlige data og funktioner uden sideeffekter er
et vigtigt princip i funktionel programmering. Det gør det lettere at ræsonnere om
programmernes potentielle adfærd, hvilket igen gør det lettere at forhindre, at der
opstår fejl. Mainstream-sprogene har erkendt fordelene ved denne programmeringsstil,
og har indført features, der almindeligvis forbindes med funktionel programmering,
såsom deklarativ databehandling. Denne feature blev indført i Java 8 gennem stream-
API’et, og mange udviklere har taget konceptet til sig. Tidligere forskningsarbejde
viser imidlertid, at brugen af dette API, fremfor imperative databehandlingsmetoder,
er forbundet med en forringet ydeevne, som vi kalder abstraktionsoverhead, hvilket
afholder nogle udviklere fra at bruge det.

I denne afhandling præsenterer vi to nye statiske programanalyseteknikker baseret
på abstrakt fortolkning. Den ene muliggør ahead-of-time optimeringer for Java-
programmer, der bruger streams, mens den anden gør det muligt at opdage concurrency-
fejl der involverer kanaler i Go-programmer. Vi har implementeret disse teknikker og
har bekræftet deres effektivitet med eksperimenter. Teknikkerne virker selv på store
open-source programmer, som består af både applikationskode og mange biblioteker.
Begge teknikker bygger på ideen om lokaliseret analyse, hvilket er en form for statisk
programanalyse, der opdeler det analyserede program i mindre fragmenter, der kan
analyseres individuelt med en høj grad af præcision.

iii

Acknowledgments

Let me start by thanking Anders for being a supportive advisor, for the opportuni-
ties and experiences I have been granted through my time as a PhD student, both
in industry and in academia, and for the great teamwork required to meet rapidly
approaching deadlines. I also want to thank Vlad for being an excellent colleague
and close collaborator. Getting our Go project shepherded to the finish line took a
large combined effort, but it was a good time. Let me also thank Benjamin and Martin
for giving me a warm welcome in the research group, and for guidance in my initial
years as a PhD student. My colleagues in the PL and LogSem research groups deserve
thanks for fostering a very cozy work environment. I want to thank Asger for both
friendly rivalry and fruitful cooperation, and for pushing me to be better. Finally, let
me thank my family for their continued support, and Camilla for her never-ending
encouragement.

Oskar Haarklou Veileborg,
Aarhus, May 16, 2023.

v

Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

I Overview 1

1 Introduction 3
1.1 Research Challenges . 7
1.2 Contributions . 8
1.3 Outline . 9

2 Program Analysis 11
2.1 Lattice Theory . 11
2.2 Monotone Frameworks . 13
2.3 Pointer Analysis . 17

3 Declarative Data-processing with Streams 19
3.1 Push- & Pull-style Stream Implementations 21

II Publications 25

4 Eliminating Abstraction Overhead of Java Stream Pipelines using
Ahead-of-Time Program Optimization 27
4.1 Introduction . 28
4.2 Background: Pull- and Push-Style Stream APIs 31
4.3 Approach Overview . 36
4.4 Phase 1: Pre-Analysis . 41
4.5 Phase 2: Interprocedural analysis 42
4.6 Phase 3: Inlining and stack allocation 46

vii

viii CONTENTS

4.7 Phase 4: Cleanup . 49
4.8 Evaluation . 51
4.9 Related Work . 57
4.10 Conclusion . 59
4.11 Epilogue: Pre-analysis in Practice 59

5 Detecting Blocking Errors in Go Programs using Localized Abstract
Interpretation 65
5.1 Introduction . 65
5.2 Background . 67
5.3 Approach . 68
5.4 Evaluation . 80
5.5 Related Work . 88
5.6 Conclusion . 89
5.7 Epilogue: Modeling of more Concurrency Primitives 89
5.8 Epilogue: Sound Blocking Error Detection 94

Bibliography 99

Part I

Overview

1

Chapter 1

Introduction

This thesis demonstrates that a localized form of static program analysis enables new
techniques for optimization and error detection in Java and Go programs. To motivate
the need for these techniques, we start with an introduction of software development
from a broad perspective.

In our day, software is ubiquitous. Enormous amounts of resources are spent on
development, maintenance and execution of software. This thesis presents two pieces
of work that can — at a high level — make these processes more efficient.

With some generalization, we can categorize the time software developers spend
on construction of software into two categories. The first concerns itself with the
addition of features to a product. These features have many different forms, but
they are usually aimed at satisfying new needs of users of the product. The second
category describes time spent on maintenance in the form of repairing defects and
refactoring. Depending on which programming language the software is written
in, there are different trade-offs in terms of how easy work in the two categories is
(and consequently, how much time it requires). Dynamically typed programming
languages typically excel at letting developers get features implemented quickly,
while making maintenance and exploration of already written code a bit harder than
in statically typed programming languages. In such languages, the type system
enforces structure on programs, which both rules out a class of software defects (bugs)
known as type errors, and also makes it easier to understand how program executions
may unfold up-front. This is not only true for humans, but for machines as well.
Statically typed programming languages typically have better tools that enhance the
developer experience, such as auto-completion and automated refactoring in Integrated
Development Environments (IDE’s), and also better analysis tools that can detect bugs
and security vulnerabilities in programs. The increased rigidity of programs written
in these languages enables tools to automatically reason about them in ways that are
currently impossible for programs written in dynamically typed languages. However,
both kinds of languages are widely used today.

The 2022 Stack Overflow Developer Survey [64] asked developers which lan-
guages they used in the past year, and which languages they love to use. It is clear that

3

4 CHAPTER 1. INTRODUCTION

the most used programming languages (as reported in this survey) are dynamically
typed, as we find JavaScript and Python in the top of the rankings. However, one
third of the respondents report that they used Java in the last year, and more than
16% report that they want to use Go, making it one of the “most-wanted” languages.
In the top of the list of loved languages, we find two languages in the functional
programming paradigm, Elixir and Clojure, and also Rust and TypeScript, which are
statically typed programming languages. The absence of side-effects in programs
written in functional programming languages can, like a type system, make programs
easier to reason about, which we will discuss later. Rust is an interesting language. It
features a type system that is much more complex than what we have seen previously
in mainstream programming languages. This system can guarantee the absence of
common programming errors involving shared memory, such as use-after-free errors,
double-free errors and data races.

Importantly, even when supported by complex type systems, developers still write
buggy software. Not only do bugs require developer time to fix, but the bugs them-
selves can also have severe consequences. Program analysis is a suite of techniques
for automatic reasoning about the behavior of programs. Program analysis tools
take other programs as input, and attempt to infer some information about how the
analyzed program behaves when it is run. This information can be used reason about
the presence of bugs, but it can also be used for program optimizations.

Dynamic program analyses execute the analyzed program and attempt to find
bugs in the observed executions. Examples include software testing, but also more
advanced techniques, such as dynamic taint analysis, that observe whether untrusted
(and potentially malicious) inputs flow to security critical parts of the software. Such
techniques are limited by only being able to observe a small subset of all possible
executions of the program, so they can never prove the absence of errors. In practice,
fuzzing tools are used to increase code coverage, and can enable the dynamic analyses
to observe an enormous amount of executions. This can increase our confidence in
the program’s correctness.

Opposite of dynamic program analysis, static program analysis techniques reason
about programs without running them. They attempt to create a finite model of a
program’s behavior across all (possibly infinitely many) executions. We can then
check whether the model admits undesirable behavior, such as executions that trigger
bugs. It is necessary for static analyses to approximate the program’s behavior. If the
static analysis is sound, the inferred model will be an over-approximation. This means
that the inferred model captures behavior from all possible executions of the program,
and potentially also executions that are actually impossible. Traditionally, sound static
analysis has been used for program optimization. Having additional information about
how a program may behave when it executes enables different forms of optimizations.
One of the techniques we propose uses static analysis for this purpose. In terms of
error detection, if we determine that none of the modeled executions are buggy, sound
program analysis can in principle guarantee the absence of bugs, which is impressive!
However, in practice it is very difficult to strike a good balance between efficiency
of the analysis and precision, i.e. the degree of over-approximation, which, if severe,

5

can prevent the analysis from proving absence of errors, even though the program is
correct.

Static program analysis tools have been used successfully in the software develop-
ment industry to find bugs. Notable examples at large technology companies include
Infer at Facebook/Meta [14], NullAway at Uber [7], and Tricorder at Google [71]. A
long line of research on static program analysis starting in the 1970’s paved the way
for these achievements.

Concurrency bugs Bugs in one particular category can be extremely difficult to
detect, namely concurrency bugs. Modern computers have multi-core processors
that can execute many streams of instructions concurrently. To properly exploit the
full potential of such processors, the software we write must be concurrent as well.
If we can slice up the work that our program needs to perform into independent
pieces, the smaller pieces of work can be performed concurrently. Used properly, this
approach can lead to large savings in wall-clock execution time. One way to realize
this potential is through the use of threads. In a normal, single-threaded, program,
the main thread executes instructions from the program’s entry-point and onwards,
until the program terminates. In a multi-threaded program, threads can choose to
spawn new threads with different entry-points. Typically a thread entry-point is a
function in the program. All non-terminated threads can then execute concurrently.
Modern systems allow programs to have more threads than the processor has cores. In
this case, a special program known as the scheduler divides processor time between
the different active threads according to some fairness constraints. (Our computers
typically run operating systems that group threads in processes. However, most of the
intricacies regarding operating systems and processes are irrelevant in our context, so
we purposefully do not consider them here.)

In a multi-threaded program, threads typically need to communicate to work
together to solve some common task. This communication can happen through reads
and writes to shared memory. However, data races are a common issue that can occur
when threads communicate through shared memory. A data race occurs when two
threads access the same piece of data concurrently, and at least of one the threads
wants to modify the data. In this case, there is potential for data corruption, which
can lead the program into an inconsistent state. To prevent data races, programmers
protect accesses to shared memory with mutual exclusion devices, such as locks.
Unfortunately, locks come with their own problems. Deadlocks are a common class of
concurrency bugs, where two or more threads end up waiting for events that will never
happen. Both data races and bugs involving locks can be frustratingly hard to detect,
because triggering them depends on non-deterministic behavior in the scheduler. The
huge space of possible execution schedules makes it extremely difficult to comprehend
all the possible behaviors of the program, and it makes techniques such as fuzzing
less effective.

Inspired by Hoare’s communicating sequential processes (CSP), the Go pro-
gramming language’s hallmark concurrency feature is channels. They provide an

6 CHAPTER 1. INTRODUCTION

alternative way for threads to communicate, compared to traditional communication
through shared memory. Although it is claimed that the use of channels prevents many
concurrency bugs, recent work shows that developers that write multi-threaded Go
applications still face concurrency-related issues, some of which are unique to chan-
nels. In this thesis we present a tool that helps Go developers detect channel-related
concurrency bugs in their programs.

Abstraction overhead As mentioned earlier, programs written in functional pro-
gramming languages can be perceived as easier to reason about, compared to programs
written in traditional imperative and object-oriented languages. This is mainly due to
an emphasis on absence of side-effects. Functional programming’s successes have
caused typical functional programming concepts to leak into other programming lan-
guages. We have new languages that explicitly describe themselves as multi-paradigm,
such as Scala. In traditional languages, such as Java, C++, C#, etc., cornerstone
concepts of functional programming have been introduced in recent years, such as
first-class functions, pattern matching, and declarative data-processing. Developers
demand these concepts, and are quick to adopt them, as they enable work at a high
level of abstraction, which in turn makes it easier to develop bug-free software. How-
ever, we find that some developers explicitly choose not to use these features, because
they are associated with an increased performance cost. Previous work shows that
the performance cost of using Java’s implementation of declarative data-processing
is significant in some cases. We call this kind of cost abstraction overhead. Due to
abstraction overhead, developers must sometimes choose between performance and
comfortability.

In Java, source programs are initially compiled to bytecode. Bytecode is a sim-
plified program representation that is suitable for interpretation by a virtual machine
(VM). Almost all program optimizations performed in Java happen through the just-
in-time (JIT) compiler, which is embedded in the VM. As the VM interprets bytecode,
it simultaneously collects information about the execution that is relevant to opti-
mizations, such as run-time type information. When enough information has been
collected, and some performance-critical parts of the program have been identified,
the JIT compiler uses the gathered information to optimize the interpreted bytecode
into natively executable machine code. Gathering information while the program
executes and optimizing bytecode uses precious execution time, so the JIT compiler
has to favor simple optimizations over complex ones.

Ahead-of-time (AOT) optimization techniques have been effective for languages
that compile directly to native machine code, such as C, C++, and languages in the
ML family. These techniques have the advantage that the time spent on optimizations
is separate from the time spent executing the program, so they can afford to apply
analyses that are too expensive to perform in a JIT setting. Additionally, the optimizer
can tell the developer if optimizations have been applied successfully. The disadvan-
tage of these techniques is that they do not have access to run-time information, which
makes the application of some optimizations harder. To realize the full performance

1.1. RESEARCH CHALLENGES 7

potential of Java programs, it may be time to pursue AOT optimization techniques
for bytecode. However, strong encapsulation guarantees in the Java language makes
traditional optimization techniques non-trivial to apply. In this thesis we present an
AOT bytecode optimization technique for Java aimed at removing the abstraction
overhead of using declarative data-processing.

In the next sections, we summarize the issues presented here that developers face
when they develop modern software, as well as contributions we have made towards
alleviating them, particularly through precise and scalable static analysis for programs
written in statically typed programming languages. We show how to achieve a good
trade-off between precision and scalability by employing localized static analysis,
which splits a program into smaller fragments that can be analyzed independently.

1.1 Research Challenges

Based on the issues presented in the introduction, we describe our four main challenges
that we investigate in this thesis:

C1 Declarative data-processing with streams is a popular functional-style feature
introduced to Java in version 8. Developers want to use functional abstractions
in their programs, as they make programs easier to comprehend, and make it
easier to avoid some classes of bugs. However, abstraction overhead persuades
some developers to avoid the abstractions due to a performance cost. Can we
design a technique that eliminates the need for such a choice?

How can we obtain the benefits of a more functional programming style in
modern Java, in particular declarative data-processing, without a perfor-
mance penalty?

C2 The program optimizations performed in Java are almost fully restricted to the
JIT compiler. However, AOT optimizations may have their own benefits. Java’s
strong encapsulation guarantees makes some traditional AOT optimizations
difficult to perform at the bytecode level. Can we overcome these difficulties
and bring the benefits of AOT optimizations to Java?

How do we realize the benefits of AOT optimization techniques in languages
that are traditionally optimized at run-time?

C3 The creators of the Go programming language encourage developers to use
channels as a means of communication between threads, as opposed to tradi-
tional shared-memory communication. The rationale is that the use of channels
prevents many classical concurrency-related bugs. However, studies show that
Go programs contain many blocking errors, some of which are directly related
to channels. Can we design a technique that can effectively and statically detect
such channel-related bugs?

How can Go programmers detect and avoid concurrency bugs that are
common to channel-related communication?

8 CHAPTER 1. INTRODUCTION

C4 It can be very difficult to strike a good balance between static analysis per-
formance and precision, especially for analyses involving pointers (described
in section 2.3). Designing highly precise pointer analyses that scale to large real-
world code bases, which consist of both application code and many libraries, is
an active area of research. We find that solutions to the previous challenges (C1-
C3) based on static analysis techniques need precise handling of pointers. How
can we circumvent the scalability issues that typical whole-program pointer
analyses face?

How can we design extremely precise, goal-oriented, program analyses that
still scale to large real-world Java and Go programs?

1.2 Contributions

The thesis is based on research papers that present solutions to the previously men-
tioned challenges. They are included as published in Part II with minor visual changes
to accommodate differences between page layouts. Additionally, some sections are in-
cluded that describe unpublished follow-up work relevant to the techniques presented
in the publications. These sections are written solely by the author, and their titles are
prefixed by Epilogue.

P1 Eliminating Abstraction Overhead of Java Stream Pipelines
using Ahead-of-Time Program Optimization

Anders Møller and Oskar Haarklou Veileborg. Published in the Proceedings of
the ACM on Programming Languages, Volume 4, Issue OOPSLA, November
2020. Included in Chapter 4.

P2 Detecting Blocking Errors in Go Programs
using Localized Abstract Interpretation

Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller. Published
in the 37th IEEE/ACM International Conference on Automated Software En-
gineering (ASE ’22), October 2022. The paper received the ACM SIGSOFT
Distinguished Paper Award. Included in Chapter 5.

The above papers describe novel analysis techniques that improve state of the art
for the four challenges outlined in section 1.1. For challenges C1 and C2, we present
an AOT program transformation tool for Java bytecode which optimizes programs
that use streams for declarative data-processing (P1, Chapter 4, [56]). We empirically
evaluate our technique through a proof-of-concept implementation, and find that our
optimizations can remove the abstraction overhead of using streams in most cases.
The program transformations are guided by a novel static analysis technique that
is tailored to very precise analysis of stream pipelines. Furthermore, the technique
is API-agnostic, and we show that it enables optimizations for two different kinds
of stream API implementations. We also show how bytecode optimizations can be

1.3. OUTLINE 9

tricky due to strong encapsulation. However, being able to apply inlining and stack-
allocation transformations aggressively, and selective application of code cloning,
allows the optimizer to produce bytecode that does not violate Java’s encapsulation
rules.

For challenge C3, we propose a novel static analysis technique for detection of
blocking errors involving channels (P2, Chapter 5, [86]). Through pragmatic de-
sign choices, the static analysis can model interesting executions of multi-threaded
programs, without succumbing to the problem commonly known as combinatorial
explosion. We empirically evaluate our technique through a proof-of-concept im-
plementation, and find that it is able to detect more blocking errors than previous
state-of-the-art techniques on a suite of 6 large real-world Go programs. It also has an
acceptable ratio of true to false reports.

Towards challenge C4, we show how localized analysis (analysis of small program
fragments) enables us to perform analyses that are typically too expensive to run for
whole programs. The static analysis techniques proposed in both publications build
on this idea, and demonstrate that it is very effective. Restricting the analysis to
selected parts of a program requires careful considerations to preserve soundness. In
the static analysis technique developed for P1, the program fragment to be analyzed
is not determined up-front, but is computed based on how interesting objects flow
through the program. The analysis soundly skips calls to functions that cannot impact
such objects. In P2 we propose a static analysis technique that analyzes fragments
that are constructed before the analysis starts. Through the use of a pre-analysis that
over-approximates side-effects of function calls, the static analysis can model the
effects of function calls that go outside the defined fragment. Splitting a program into
fragments that can be analyzed separately is not a novel idea, but we show that it is a
surprisingly powerful and versatile technique, and we show how it can be applied in
two apparently different situations.

The author of this thesis has made major contributions to the processes that
lead to the publication of the included papers. This includes ideas, tool design and
implementation, experimental evaluation and paper writing. The optimization tool
developed for the first paper, STREAMLINER, was developed solely by the author,
while the static analysis tool for blocking error detection developed for the second
paper, GOAT, was developed in part by co-author Georgian-Vlad Saioc. Both tools
are open-source and are available at brics.dk/streamliner and brics.dk/goat,
respectively.

1.3 Outline

The thesis is structured into two parts. Part I contains an overview of the research area
surrounding the author’s work, while published research papers are included in Part II.

Part I begins with this introduction. Then, Chapter 2 presents fundamental back-
ground material on static program analysis, such as lattices and monotone frameworks.
The theory and practices presented there are the pillars upon which our novel static

https://brics.dk/streamliner/
https://brics.dk/goat/

10 CHAPTER 1. INTRODUCTION

analysis techniques are built. In Chapter 3 we present the concept of declarative
data-processing. First through the use of lists, but then through use of streams, which
is an abstraction that has been implemented in mainstream programming languages,
in two different styles. The content of this chapter serves as background material
for the paper included in Chapter 4. Part II contains published research papers that
present solutions to our challenges, and they have individual conclusions.

Chapter 2

Program Analysis

This chapter aims to introduce background theory of program analysis, which is
relevant for both publications (Chapters 4 and 5) presented in the thesis. Specifically
we will look at the branch of program analysis known as static program analysis. Static
program analysis is a collection of techniques that aim to reason mathematically about
the behavior of a program without running it. This is different from dynamic program
analysis, which mainly reasons about programs by inspecting concrete executions
of the analyzed program. The contents of this chapter is based on previous work by
Cousot and Cousot [19, 20], Kam and Ullman [35] and Kildall [38].

The analyses we develop aim to tell us some interesting things about the programs
that are analyzed. If we want to perform automatic program optimization, static
analyses may be employed to figure out when it is safe to apply the optimization.
In the case of bug detection, we use static analysis to figure out if the program
has undesirable (buggy) executions. Unfortunately, Rice’s Theorem [69] states that
determining whether a program’s behavior satisfies a “non-trivial” property is, in
general, undecidable. In practice, this has the consequence that automated techniques
which reason about properties of behavior of programs must approximate in one
of two directions. Techniques can over-approximate the behavior of a program,
modeling everything that the program can do when it is run, at the cost of possibly
also modeling behavior that cannot occur. Over-approximation of behavior gives a
sound but incomplete analysis. A program’s behavior can also be under-approximated.
Here the model of the program’s behavior is known to only include behavior that
can actually occur when it is executed, at the cost of not capturing the behavior of
all possible executions of the program. This kind of approximation gives a complete
but unsound analysis. The following sections introduce some program analysis
fundamentals.

2.1 Lattice Theory

Lattices are ubiquitous in program analysis. They offer a convenient way to con-
solidate information collected by the analysis along different execution paths in an

11

12 CHAPTER 2. PROGRAM ANALYSIS

⊤

OPEN CLOSED

⊥
(a) Channel status lattice used in Chapter 5.

⊤

- +0

⊥
(b) Sign lattice used for Java bytecode cleanup
in Chapter 4.

Figure 2.1: Examples of lattices used in later chapters.

analyzed program. Their use also enable neat proofs of desirable properties of program
analyses, such as soundness and completeness.

A lattice is defined in terms of a set of elements A and a partial order ⊑ on the
elements in A. An upper bound a for a set of elements S ⊆ A satisfies ∀s ∈ S : s ⊑ a,
written simply as S ⊑ a. A least upper bound for a set of elements S, written

⊔
S, is

an upper bound for S, and is less than any other upper bound of S: S ⊑ a ⇒
⊔

S ⊑ a.
The least upper bound

⊔
S is also referred to as the join of the values in S, and we

will often write x⊔ y instead of
⊔
{x,y}. We have analogous definitions for (greatest)

upper bounds, where the dual operator
d

S is referred to as the meet of the values in S.
The pair of A and ⊑ defines a lattice if x⊔ y exists for all x,y ∈ A, and a lattice is said
to be complete if

⊔
S exists for all S ⊆ A. We will only be working with complete

lattices in this thesis.

Lattices are often illustrated as Hasse diagrams, where the least elements are
in the bottom and the greatest are in the top, and the partial order is depicted with
lines between elements. Two examples of lattices are shown in fig. 2.1. Elements
of the first lattice are used to represent the status flag of channels in Go, which can
be either open or closed. The elements ⊤ and ⊥ represent unknown and undefined,
respectively. The result of joining the OPEN and CLOSED elements is ⊤. Elements
of the second lattice, also known as the Sign lattice, represent integers that are negative
(-), zero, or positive (+). The top element in this lattice represents all integers, and is
therefore an upper bound of any subset of the other elements. When we use lattices in
program analysis, the elements of the lattice are usually abstract representations of
some set of concrete items from the analyzed program. In the channel status lattice,
the elements abstractly represent sets of boolean values, while the elements in the
Sign lattice represent sets of integers. However, we will also see that lattices are used
to represent sets of more complex structures, such as program heaps and complete
program states. We relate lattice elements and concrete items with abstraction and
concretization functions, denoted as α and γ , respectively [19]. Using the Sign lattice
as an example, the signatures of these functions are given as α : Sign → P (Z) and
γ : P (Z)→ Sign. With the set-based view on lattice elements, we say that a lattice
element x is more precise than y when x ⊏ y.

The height of a lattice is defined as the length of the longest chain of unique
elements satisfying a1 ⊑ a2 ⊑ a3 ⊑ ·· · , where ai ∈ A. Both lattices in fig. 2.1 have
height 3. Lattices with finite height are of special interest, as we will see in section 2.2.

2.2. MONOTONE FRAMEWORKS 13

Standard lattice constructions There are two standard lattice constructions that
are used throughout the publications in this thesis: product lattices and map lattices. A
product lattice on two sub-lattices, (A,⊑A) and (B,⊑B), has elements in the Cartesian
product A×B (hence the name), and the partial order is defined componentwise:

(a1,b1)⊑ (a2,b2) ⇐⇒ a1 ⊑A a2 ∧b1 ⊑B b2

It follows that least upper bounds and greatest lower bounds can be decomposed
componentwise as well. Product lattice elements are conveniently used to represent
values with multiple independent components. For instance, we use a product lattice
with sub-lattices for different concrete Go types to abstractly represent the set of all
concrete values in Go in Chapter 5.

The other standard lattice construction is a map lattice, which is defined in terms of
a set X and a lattice (A,⊑A), and is usually written as X → A. The elements of X → A
are functions that map elements in X to elements in A. We write [x1 7→ a1, x2 7→ a2, . . .]
for the function that maps x1 to a1, x2 to a2, etc. The partial order for map lattices is
defined in terms of a pointwise decomposition:

∀ f ,g ∈ X → A : f ⊑ g ⇐⇒ ∀x ∈ X : f (x)⊑A g(x)

And, similarly to product lattices, least upper bounds and greatest upper bounds
can also be decomposed pointwise on each element of X . In program analysis we
typically use map lattice elements to represent values for a set of program variables.
For instance, if Vars denotes the set of variables in the analyzed program, the lattice
Vars → Sign could be used to abstractly represent sets of integers for all variables.
Another typical use of map lattices is to distinguish state at different program points.
In this case we will usually refer to the domain as a set Nodes of control locations.
This idea can also be lifted further to distinguish states based on more properties of an
execution, such as calling contexts.

2.2 Monotone Frameworks

Monotone frameworks are a systematic way to design program analyses, which
gives guarantees about decidability, precision and correctness. The main idea is
to derive a system of equations from a control flow graph (CFG) representation
of a program, which is subsequently solved methodically. The nodes in a control
flow graph are associated with instructions in the source program, and directed edges
between nodes represent possible control flow. Most nodes have a single successor, but
some nodes associated with branching, function call and return instructions can have
multiple successors. We associate with each control flow graph node v a constraint
variable JvK, which holds an element of some complete analysis lattice L with finite
height. Typically the elements of this lattice are abstract representations of program
state for a single program point. The element JvK describes the state of the program in
the program model computed by the analysis after the instruction associated with v is

14 CHAPTER 2. PROGRAM ANALYSIS

executed.1 This gives a so-called flow-sensitive analysis, which is an analysis where
the control flow between instructions is taken into account. The analyses presented
in both included publications are also flow-sensitive, as they are instantiations of
monotone frameworks.

For each node v, we emit an equation: JvK= fv(x). The function fv is the constraint
function associated with v, and it describes how the program’s state after executing
the instruction for v is related to the program’s state at other points in the program.
Here x is an element of the lattice: Nodes → L, which allows fv to access the state at
every point in the program, but typically only the program’s state at v’s neighbors is
relevant. We can then gather the constraints into a unified analysis constraint function:
f (x) = [v 7→ fv(x) | v ∈ Nodes]. We seek a solution to the constraint system, i.e. an
assignment, x, of values to all JvK, that satisfies the constraints.2 Such an assignment
is a fixed point of the analysis constraint function: x = f (x). While any fixed point is
a solution, we are interested in the least fixed point, which is the most precise solution
to our constraints.

It is imperative that the constraint functions are monotone. For a lattice L, a
function f : L → L is monotone only if ∀x,y ∈ L : x ⊑ y ⇒ f (x) ⊑ f (y). When
the constraint functions fv are monotone, the unified analysis constraint function is
monotone as well. Due to Kleene’s fixed-point theorem [40], we know that the unique
least fixed point of such a function is defined as follows:

lfp(f) =
⊔
i≥0

f i(⊥)

A consequence of monotonicity of f is that
⊔

0≤i≤k f i(⊥) = f k(⊥). Because L has
finite height, there exists a k such that the increasing chain

⊥⊑ f (⊥)⊑ f (f (⊥))⊑ ·· · ⊑ f k(⊥)⊑ f k+1(⊥)⊑ ·· ·

stagnates at f k(⊥), i.e. f k(⊥) = f k+1(⊥). This gives us an algorithm for computing
the most precise solution to our constraint system. We can start with the bottom
element of the lattice Nodes → L and iteratively apply the function f until the result
does not change. This is known as the “naive fixed-point algorithm”.

Imagine that we want to design an analysis that can reason about potential nulla-
bility of variables at run-time. For each variable and program point, we want to know
if that variable is guaranteed to contain a non-null reference, or if it may contain the
null pointer. For this purpose we may use the lattice States = Vars → Null to represent
abstract states. Each abstract state associates with each variable an element of the
lattice Null, which is a simple 2-element lattice with a ⊤ and ⊥ element. ⊥ abstractly
represents values that are guaranteed to be non-null, while ⊤ represents all values
(including null).

1In a backwards analysis (described later), the element describes the state of the program before the
instruction has been executed.

2JvK and x(v) are used interchangeably.

2.2. MONOTONE FRAMEWORKS 15

Here we give constraint functions for a CFG node v representing an assignment to a
variable X , depending on the right-hand side of the assignment.

X = null: JvK = wrap(λσ .σ [X 7→ ⊤])

X = alloc T: JvK = wrap(λσ .σ [X 7→ ⊥])

X = Y: JvK = wrap(λσ .σ [X 7→ σ(Y)])

wrap(tv) = tv

 ⊔
w∈pred(v)

JwK

The wrap function computes the abstract state just prior to the execution of the
instruction associated with v and passes it on to the transfer function. We use tv to
refer to the transfer function associated with v. The prior abstract state is computed
by taking the join of abstract states at all control flow predecessors of v. The transfer
functions then return an updated abstract state where the effect of executing the
associated instruction is reflected. For assignments that directly assign null or a
reference to a newly allocated object, the abstract value for X is simply updated to ⊤
or ⊥, respectively.3 However, for an assignment with a right-hand side that is another
variable Y , the abstract value for X becomes the same as the abstract value for Y ,
which represents the flow of a value from Y to X .

It is convenient to use transfer functions as shown in the example, as it lets us
focus on how an abstract state is transformed based on the executed instruction.
Constraint functions in many analyses can be phrased in terms of transfer functions,
where we only need to describe how instructions affect the abstract state at the point
before the instruction is executed. Analyses that can be phrased in this way can
have their constraint systems solved more efficiently than with the naive fixed-point
algorithm. In each iteration of the naive algorithm, all of the constraint functions are
run. However, we do not expect all of the constraint variables to obtain new values in
each iteration. The constraint functions presented above only “return something new”
when the abstract state at one of the predecessors changed in the previous iteration.
This observation leads to the design of the work-list fixed-point algorithm, which is
outlined in algorithm 1. It works by keeping track of a work-list of CFG nodes that
need to have their transfer functions re-run. Initially the work-list contains all nodes.
In each iteration of the loop, a node v is removed from the work-list and the value
of JvK is recomputed. If the value changes, we add to the work-list the nodes whose
constraint functions depend on the value of JvK, i.e. the successors of v. In this way
we can avoid a lot of redundant work compared to the naive fixed-point algorithm.

Variants of the work-list algorithm are used in practice to solve constraint systems
in monotone frameworks, and it is used in the implementations developed for both
publications in the thesis. The definition does not impose an order in which the
nodes should be picked from the work-list. However, different orders can make a

3The syntax x[y 7→ z] denotes a function that returns z when given y, and returns the same as x on all
other inputs.

16 CHAPTER 2. PROGRAM ANALYSIS

Algorithm 1: Work-list algorithm

x = [v 7→ ⊥ | v ∈ Nodes]
W = Nodes
while W ̸= /0 do

v = Pop(W)

y = tv
(⊔

w∈pred(v) x(w)
)

if x(v) ̸= y then
x = x[v 7→ y]
W =W ∪ succ(v)

large difference on the performance of the algorithm in practice, and choosing a
good one has been a subject of previous work [18, 34]. The work-list algorithm used
in Chapter 4 orders nodes intraprocedurally (in the same function) in a FIFO (first-in-
first-out) fashion, modeling a queue, while nodes that are in different functions are
ordered in a LIFO fashion. Because the analysis is infinitely context sensitive (see
below), the order that functions are explored in corresponds to a depth-first exploration
of the call tree. The work-list algorithm used in Chapter 5 orders nodes in a reverse
post-order based on the structure of the interprocedural control flow graph.

Variations We can classify standard instantiations of monotone frameworks ac-
cording to different parameters. One parameter is whether the analysis is a forward
or backward analysis. The analysis presented earlier is a forward analysis, and is
characterized by transfer functions that transforms abstract states from control flow
predecessors into an abstract state where the effect of executing an instruction is
reflected. In a forward analysis, the constraint function for a node depends on con-
straint variables in predecessors nodes. This is important in the implementation of the
work-list algorithm, where we add the inverse of this dependency relation (the suc-
cessors) to the work-list when a constraint variable changes. In a backwards analysis,
each transfer function derives some information about the program state before the
instruction is executed. It derives this based on program state from “the future”. A
typical example of a backwards analysis is live variables analysis. A variable is live at
a program point if, in an extension of execution from this point, the variable is read
before it is assigned. This property can be approximated by a program analysis. In this
analysis, the transfer functions operate on elements of a powerset lattice that represent
the set of program variables that may be live. For an assignment to a variable X , the
set of variables that are live before the instruction is those that are live just after the
instruction, except for X (because we are assigning it just now), and the variables
that are used in the right-hand side of the assignment. In a backwards analysis, the
input for transfer functions is computed as the join of abstract states at all control flow
successors of the current node, as opposed to the predecessors, and the dependency
relation (relevant to the work-list algorithm) is also inverted.

2.3. POINTER ANALYSIS 17

In broad strokes, forward analyses are useful for approximating information that
holds for executions up until each instruction, while backwards analyses approximate
information that holds in the future for executions starting from each instruction.

Another common characteristic that differentiates analyses is whether they are
context-sensitive. In the monotone framework, a context-sensitive analysis infers an
abstract program state not just for each CFG node, but for each combination of node
and context. Usually contexts are derived from some property of the execution that
lead to a function being called, which can relieve some of the imprecision that arises
when information from different call sites of the same function is joined. Imagine a
scenario where we perform sign analysis on a program that uses the identity function
in different places. At one call site the function is called with a positive argument,
while it is called with a negative argument at another call site. If we are not able
to separate the abstract states in these two calls, the abstract element representing
the parameter of the identity function will necessarily become imprecise, as we
will join the abstract elements for the positive and negative parameters. For the
identity function, this imprecision carries over to the returned value, and this can have
downstream consequences for the precision of the rest of the analysis.

A common choice of context is k-limited call strings, where a context contains the
call sites of the top k functions in an abstract call stack. This choice of contexts allows
us to avoid imprecision due to joined information from different callers for call trees
of depth up to k. The downside of context-sensitive analysis is that the analysis can
become more expensive to compute, because we need to infer abstract information for
more program points. The full analysis lattice (in a monotone framework) goes from
Nodes → L to Contexts×Nodes → L, so the size of the set Contexts is significant for
performance. Luckily, it is unexpected that all possible contexts are realizable in a
program, as there is usually some structure to the way that functions call each-other.
The choice of domain of contexts presents trade-offs, as you want to strike a balance
between performance and precision. This choice is further complicated by the fact
that increased precision can make some analyses terminate faster.

2.3 Pointer Analysis

Pointer analysis is a very common analysis to perform for programs written in lan-
guages that support dynamic memory allocation and references as first-class values.
The goal of pointer analysis is to answer questions of the form: “which pieces of
memory can some variable point to at run-time?” When analyzing programs written
in object-oriented programming languages, it is common to phrase the question in
terms of objects, i.e. which objects can some variable point to. Being able to answer
such questions gives insights about the overall structure of the program. Also, for
languages that support dynamic calls (perhaps through dynamic dispatch in object-
oriented languages, or through function pointers), precise pointer analysis is required
to be able to statically resolve such calls. Because pointer analysis results usually
depend on the call graph, we often compute call graphs simultaneously with pointer

18 CHAPTER 2. PROGRAM ANALYSIS

analyses, referred to as on-the-fly call graph construction.
An infinite program execution can allocate an unbounded amount of concrete

memory cells. We cannot hope to distinguish all of the allocations, as our analysis
abstractions must be finite. A common choice is to introduce one abstract cell per
syntactic allocation site, which will abstractly represent all concrete cells allocated at
that instruction. This is known as the allocation-site abstraction [16]. It is versatile in
the sense that the abstraction can be enriched in various ways. We can choose to not
only identify cells by syntactic allocation site, but by the combination of allocation
site and calling context. We use this variant in Chapter 4, and it is commonly known
as heap cloning or context-sensitive heap [60, 76]. In Chapter 5 we use a variant of
allocation-site abstraction that additionally distinguishes cells based on the thread that
allocated memory.

Because an abstract allocation site may represent multiple concrete cells, modeling
memory writes often has to done weakly. If we have an abstract heap σ : Cells → L, an
abstract cell o ∈ Cells, and we want to model the effect of an instruction that assigns
an abstract value x ∈ L to o, we must use the constraint σ(o)⊒ x (or the equivalent:
σ(o) = σ(o)⊔ x) instead of σ(o) = x. In a concrete execution, the instruction writes
to exactly one of the cells that are abstracted by o, but in the analysis o may abstract
multiple concrete cells. We must soundly model that some cells represented by o
retain their original value, which is done by stating that cells represented by o contain
a value that is the join of the previous value and x. This can be unsatisfactory for
precision, so in the analyses we developed for the included publications, we use a
technique known as strong updating [16]. When the analysis can prove that an abstract
memory cell exactly corresponds to a single concrete memory cell, we can soundly
use the precise model of memory writes.

Pointer analysis can be framed in the monotone framework, but for large programs,
flow-sensitive pointer analysis is typically too expensive. Instead, flow-insensitive
pointer analyses are used, such as variants of Steensgaard’s pointer analysis [80] and
Andersen’s pointer analysis [3] with different degrees of context-sensitivity. Designing
pointer analyses that strike a good balance between precision and performance is still
an active area of research. Both approaches described in the included publications
rely on whole-program pointer analysis as a pre-analysis, and we find that state-of-
the-art pointer analysis implementations are still inadequate in terms of precision and
performance.

Chapter 3

Declarative Data-processing with
Streams

There are many ways to define declarative data-processing, streams, and their combina-
tion. This chapter aims to give a common understanding of these concepts, particularly
in relation to the way they are used the first publication (Chapter 4).

Declarative data-processing is a concept that is typically attributed to functional
programming languages. Abstractly, it is a style of data transformation where you aim
to describe the properties of the output given the input, and defer the task of specifying
exactly the intermediate steps the program should execute to derive this input, to the
compiler and/or data-processing library. An example of declarative data-processing
is given in fig. 3.1, where a piece of OCaml code computes the sum of some even
squares. Although this computation is slightly contrived, it is a recurring example
in Chapter 4 and related work. The main point to notice is that all the transformations
of the input data (the list of numbers from 0 to 9) happen via calls to higher-order
functions in the List standard library. For instance, in the call to List.map (x ->
x * x), we specify that in the resulting list, each element should be the squared
version of the element in the input list. Notably we do not instruct OCaml in how
the list is actually constructed or write any code to traverse the input list. This is
all hidden inside the library. Declarative data-processing works at a high level of

1 (* Construct a list of the numbers from 0 to 9 *)
2 List.init 10 (fun x -> x)
3 (* Square the numbers in the list: [0, 1, 4, 9, ..., 81] *)
4 |> List.map (fun x -> x * x)
5 (* Restrict to even numbers: [0, 4, 16, 36, 64] *)
6 |> List.filter (fun x -> x mod 2 == 0)
7 (* Sum the numbers in the list and print the result: 120 *)
8 |> List.fold_left (+) 0 |> print_int

Figure 3.1: Example of computing the sum of some even squares in OCaml.

19

20 CHAPTER 3. DECLARATIVE DATA-PROCESSING WITH STREAMS

1 (* Construct a stream of the numbers from 0 to 9 *)
2 Seq.init 10 (fun x -> x)
3 (* Transform the stream: elements become squared *)
4 |> Seq.map (fun x -> x * x)
5 (* Transform the stream: odd elements are discarded *)
6 |> Seq.filter (fun x -> x mod 2 == 0)
7 (* Sum the numbers in the stream and print the result: 120 *)
8 |> Seq.fold_left (+) 0 |> print_int

Figure 3.2: Computing the sum of some even squares with streams.

abstraction, and has the advantage that the intended behavior of the program is often
clear, compared to if the program was implemented in an imperative style, where
the intended behavior must be derived from the intermediate steps describing how to
compute the output from the input.

One disadvantage of the implementation in fig. 3.1 and list-based data trans-
formations in general is that the transformations are applied eagerly (we assume a
programming language with strict, i.e. eager, evaluation semantics common to most
modern programming languages). The intermediate operations that output new lists
(List.map and List.filter in the example) consume and transform the full input
list before control is passed on to the next operation. For instance, the map operation
creates a new temporary list that is processed once by the filter operation and is
then thrown away. This is wasteful both in terms of time and space. There are some
scenarios where the overhead is more pronounced: A common operation to perform
is to retrieve the first n elements of the output list (where n is much smaller than the
input) and discard the rest. In this case, naively applying the element-wise intermedi-
ate transformations (for instance the squaring operation passed to List.map in the
example) for elements that will not be part of the output is wasteful, especially if the
operations themselves are expensive to perform. Previous work has addressed these is-
sues for pure programs amenable to equational reasoning through listlessness [88, 89],
deforestation [30, 90] and stream fusion [22, 39]. However, these techniques cannot
be transferred directly to impure programs (which most programs written in modern
programming languages are). To fix the problem in general we need to move away
from traditional data transformations based on temporary lists and use streams instead.

Streams (also known as stream pipelines, lazy lists, delayed lists and functional
iterators) consist of a stream source, some intermediate operations that transform
the elements of the stream, and a terminal operation that consumes the elements
and produces the desired result.1 The same example as in fig. 3.1 is implemented
with streams in fig. 3.2. The OCaml standard library Seq for streams has a similar
interface as the List library, so the code looks near identical to the original example.
While the end result of running both programs is the same, the evaluation order of

1Some definitions of streams allow reuse of sources and intermediate streams with multiple terminal
operations, but we do not consider this to be a requirement.

3.1. PUSH- & PULL-STYLE STREAM IMPLEMENTATIONS 21

the anonymous functions passed to init, map and filter is different, which would
be noticeable if they had side effects. In the list-based code, all of the calls to the
init anonymous function execute before the calls to the map anonymous function,
which in turn execute before the calls to the filter anonymous function. In the
code with streams, the calls are inter-leaved. First, a call to the init anonymous
function happens, which returns a number, this number is then passed through the
map anonymous function and is replaced with its square. Afterwards the number is
passed to the filter predicate, and if the number passes the test, the number finally
enters the terminal left fold operation. If the stream was not exhausted, the process
starts over with the next element of the stream source. This design avoids allocation
of intermediate temporary lists and allows for potential early termination in terminal
operations without exhausting the stream source, which is useful for the operation
mentioned above of returning the first n elements (a terminal operation that can return
without exhausting the stream source is also referred to as a short-circuiting operation).
In essence, streams allow programmers to realize the benefits of the combination of
declarative data-processing and lazy evaluation semantics in mainstream programming
languages.

3.1 Push- & Pull-style Stream Implementations

There are two main flavors to choose from when implementing the stream abstraction,
referred to as pull- and push-style, respectively. When we work with full stream
pipelines consisting of a source, some intermediate operations, and a terminal opera-
tion, i.e. when we are users of an already implemented abstraction, it is generally not
possible to tell the difference. The difference lies in the type (or API) of the stream
objects themselves and the control flow of the execution of a stream pipeline. Fig-
ure 3.3a contains two example OCaml types defining streams in push- and pull-style.2

The push-style stream interface accepts a consumer function that will be called by the
stream object for each element in the stream. The returned boolean flag signals to
the stream source whether more elements can be consumed, which is useful for the
implementation of short-circuiting operations. In this style, control is handed over to
the stream object until the stream is exhausted or early termination is signaled. The
pull-style stream interface is a function that can be called to retrieve the next element
of the stream (if any). This strongly resembles iterators in conventional programming
languages.

Most common stream operations can be implemented in both styles, including
map, filter, concat (ordered concatenation of two streams), flatMap (given a
function that transforms an element to a stream, return the concatenation of the streams
produced by applying the function to all elements in the original stream), and the left

2Of course many variations are possible. These types make it necessary for implementations to be
impure, which can be avoided with different definitions, but this (push-style stream) definition closely
resembles the type of streams in Java and other object-oriented programming languages with a stream
abstraction.

22 CHAPTER 3. DECLARATIVE DATA-PROCESSING WITH STREAMS

1 type 'a pushstream = ('a -> bool) -> unit
2 type 'a pullstream = unit -> 'a option

(a) Type definitions for push- and pull-style streams.

4 let list_to_pushstream (l: 'a list): 'a pushstream =
5 fun (consume: ('a -> bool)) ->
6 let rec aux = function
7 | x :: xs -> if consume x then aux xs
8 | [] -> ()
9 in aux l

10

11 let map_pushstream (f: 'a -> 'b) (s: 'a pushstream): 'b pushstream =
12 fun (consume: ('b -> bool)) ->
13 s (fun (x: 'a) -> consume (f x))
14

15 let filter_pushstream (p: 'a -> bool) (s: 'a pushstream): 'a pushstream =
16 fun (consume: ('a -> bool)) ->
17 s (fun (x: 'a) -> if p x then consume x else true)
18

19 let sum_pushstream (s: int pushstream): int =
20 let acc = ref 0 in
21 s (fun (x: int) -> acc := !acc + x; true);
22 !acc
23

24 let list_to_pullstream (l: 'a list): 'a pullstream =
25 let r = ref l in
26 fun () ->
27 match !r with
28 | x :: xs -> (r := xs; Some x)
29 | [] -> None
30

31 let map_pullstream (f: 'a -> 'b) (s: 'a pullstream): 'b pullstream =
32 fun () ->
33 match s () with
34 | Some x -> Some (f x)
35 | None -> None
36

37 let filter_pullstream (p: 'a -> bool) (s: 'a pullstream): 'a pullstream =
38 let rec aux () =
39 match s () with
40 | Some x -> if p x then Some x else aux ()
41 | None -> None
42 in aux
43

44 let sum_pullstream (s: int pullstream): int =
45 let rec aux acc =
46 match s () with
47 | Some x -> aux (acc + x)
48 | None -> acc
49 in aux 0

(b) Map, filter & sum implementations for both stream definitions.

Figure 3.3: Example OCaml implementation of a stream abstraction in both styles.

3.1. PUSH- & PULL-STYLE STREAM IMPLEMENTATIONS 23

fold terminal operation. Example implementations for the filter, map, and sum (a
specialization of left fold) operations are given for both styles in fig. 3.3b. While they
can provide much of the same functionality, there are advantages and disadvantages
to both styles. It is not possible to implement the zip operation, which unifies two
streams into a stream of pairs, on infinite streams with a push-style abstraction. The
reason is that control has to be transferred to one of the streams until it is exhausted,
which means that we will never get an opportunity to traverse the second stream. With
a pull-style stream, control is passed back to the zip operation after a single element
from the first stream is found, so it is possible to then request the next element of the
second stream, and then pass both elements on as a pair. However, push-style streams
have the advantage that the execution of a stream pipeline generally only contains a
single loop (barring the behavior of user-provided functions), which is located in the
stream source. Contrast this with pull-style streams, where we find loops (modeled
as recursive functions in OCaml) in both the left fold operation and the filter
operation. The presence of only a single loop can make execution of the stream easier
to optimize for just-in-time compilers such as the HotSpot compiler found in the Java
virtual machine (JVM). Java’s stream abstraction is implemented in push-style, while
equivalent abstractions such as views in Scala and Language-Integrated Queries in C#
are pull-style.

Although a stream is a nice abstraction for declarative data-processing, we will
see that its use, particularly in Java, comes with a performance cost when compared to
imperative-style implementations. In Chapter 4 we explore the cause of the so-called
abstraction overhead in Java’s stream implementation, and develop an ahead-of-time
optimization technique that mitigates the overhead for both push- and pull-style stream
implementations.

Part II

Publications

25

Chapter 4

Eliminating Abstraction Overhead
of Java Stream Pipelines using
Ahead-of-Time Program
Optimization

By Anders Møller and Oskar Haarklou Veileborg. Published in the Proceedings of
the ACM on Programming Languages, Volume 4, Issue OOPSLA, November 2020.
Section 4.11 is new material.

Abstract

Java 8 introduced streams that allow developers to work with collections of data using
functional-style operations. Streams are often used in pipelines of operations for pro-
cessing the data elements, which leads to concise and elegant program code. However,
the declarative data processing style comes at a cost. Compared to processing the
data with traditional imperative language mechanisms, constructing stream pipelines
requires extra heap objects and virtual method calls, which often results in significant
run-time overheads.

In this work we investigate how to mitigate these overheads to enable processing
data in the declarative style without sacrificing performance. We argue that ahead-
of-time bytecode-to-bytecode transformation is a suitable approach to optimization
of stream pipelines, and we present a static analysis that is designed to guide such
transformations. Experimental results show a significant performance gain, and that
the technique works for realistic stream pipelines. For 10 of 11 micro-benchmarks, the
optimizer is able to produce bytecode that is as effective as hand-written imperative-
style code. Additionally, 77% of 6879 stream pipelines found in real-world Java
programs are optimized successfully.

27

28
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

1 int sumOfSquaresEven(int[] v) {
2 int result = 0;
3 for (int i = 0; i < v.length; i++)
4 if (v[i] % 2 == 0)
5 result += v[i] * v[i];
6 return result;
7 }

(a) Imperative style.

8 int sumOfSquaresEven(int[] v) {
9 return IntStream.of(v)
10 .filter(x -> x % 2 == 0)
11 .map(x -> x * x)
12 .sum();
13 }

(b) Functional style, using a stream pipeline.

Figure 4.1: Two variants of computing sums of even squares.

4.1 Introduction

Functional programming is no longer a niche programming paradigm. Although
classic functional languages may remain mainly of academic interest only, functional
language features are being integrated into mainstream languages, most importantly
Java. Version 8 of Java was released in 2014 and included features such as lambda
functions and the Stream API [61, 62], which enables functional-style processing of
data. A 2017 study found that the adoption of lambda expressions is growing, and that
they are mostly used for behavior parameterization such as in stream pipelines [50].
As a simple example, fig. 4.1 shows two ways of computing sums of even squares:
(a) using traditional imperative-style iteration and mutable state, and (b) using a
functional-style stream pipeline. A stream pipeline consists of a source, in this case
an array of integers, operations to be performed on the elements of the stream, here
filter and map, and a terminal operation, such as sum. The advantages of functional
programming are well known; most importantly, once familiar with this paradigm,
the declarative style and absence of side-effects tend to make code easier to read and
write than the imperative alternatives, especially for more complex computations.

Despite this advance in language and library design, programmers sometimes
avoid using streams for performance reasons. The authors of the 2017 study inter-
viewed a developer from the Open Source project Cassandra on adoption of lambda
expressions, who mentioned that “...Unfortunately, we quickly realized that Streams
and Lambdas were pretty bad from a performance point of view. Due to this fact,
we stopped using them in hot path.” A developer at Oracle working on the HotSpot
Java compiler wrote: “In order to get the full benefit from JDK 8 streams we will
need to make them optimize fully” [70]. In 2014, Biboudis et al. [8] measured the
performance of stream APIs in different languages, including Java 8 and Scala, on
seven micro-benchmarks that compare stream pipelines with traditional imperative
data processing. They found the Java 8 stream implementation to be the most mature
with regards to performance, but also that the baseline imperative-style alternatives
were much faster. For example, for their benchmark sumOfSquaresEven, which
performs the computation shown in fig. 4.1, the stream approach suffered from a 60%
performance degradation compared to the baseline implementation. For pipelines that
include the flatMap operation, the performance overheads were even larger, and a
later study shows performance losses that grow quickly in the number of intermediate
pipeline operators [39].

4.1. INTRODUCTION 29

cart

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

100

200

300

400

500

600

700

Av
er

ag
e

tim
e

(m
s)

1607
2631

Time by benchmark
Baseline
Stream

Figure 4.2: Performance of baseline imperative implementation versus sequential Java
streams.

Interestingly, today – six years after the experiments by Biboudis et al. – their
conclusions still hold, despite improvements in compilers and virtual machine technol-
ogy. We have replicated their study in Java 13 using the OpenJDK Server VM (build
13+33) with default settings on a machine with an Intel i7-8700 @ 4.6GHz processor
and 16 GB of memory. The results are shown in fig. 4.2.1 As an extreme case,
the megamorphicMaps benchmark is still around 52× slower when using streams
compared to the imperative-style baseline.

One of the strengths of stream pipelines is that it is often easy to switch to parallel
processing and thereby exploit modern multi-core CPUs. Although this may reduce
the computation time, it is not an ideal solution. It wastes cores, and even for trivially
parallelized pipelines, there is typically still a substantial overhead [8]. Moreover,
parallel processing does not work well with stateful stream operations, such as sorted,
or computations with side-effects.

The problem with abstraction overhead of stream processing is well known also
for other programming languages than Java. This has motivated the development of,
for example, the strymonas library for Scala and OCaml [39], LinqOptimizer for C#
and F# [65], and ScalaBlitz for Scala [67], however, those approaches are based on
meta-programming capabilities that are not available in Java.

Since the early versions of Java, the main approach to code optimization has
been as part of just-in-time (JIT) compilation in the virtual machine. Few ahead-of-
time (AOT) optimizations are performed by javac, since it is believed that the JIT

1The micro-benchmarks from Biboudis et al. [8] can be found at https://github.com/
strymonas/java8-benchmarks/blob/master/src/main/java/benchmarks/S.java.

https://github.com/strymonas/java8-benchmarks/blob/master/src/main/java/benchmarks/S.java
https://github.com/strymonas/java8-benchmarks/blob/master/src/main/java/benchmarks/S.java

30
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

optimizer is able to make smarter decisions at run-time based on profiling informa-
tion. In principle, at run-time the optimizer could be able to deduce that a stream
pipeline can be transformed into a for-loop to yield optimal performance, however,
the experiments mentioned above show that this is often not the case in practice, even
for simple stream pipelines. By manually tuning the HotSpot JIT settings for the
megamorphicMaps benchmark to inline much more aggressively, we find that a 2×
speedup can be obtained, but it is still an order of magnitude slower than the baseline.
Also, substantial modifications to the JIT settings compared to the defaults can of
course degrade performance for other code. Although promising results have been
obtained for the Graal JIT compiler on Scala code [68], AOT optimization techniques
have advantages compared to JIT optimizations. First, a JIT compiler has to make
fast decisions about what and when to optimize while running the program, whereas
an AOT optimizer can be given time to perform more precise whole-program analysis.
Second, JIT optimizations are known to be unpredictable, while AOT techniques allow
the developer to know before program execution whether an optimization attempt
succeeds. Third, new AOT optimizations can be deployed, for example in mobile
apps, without requiring modifications to the JVM installations. These observations
suggest that it may be time to start pursuing AOT optimization techniques for Java,
to reach the full potential of functional-style Java code, most importantly for stream
pipelines.

By the use of bytecode-to-bytecode transformations driven by a static program
analysis, we combine the best of two styles of programming: the conciseness of
functional-style stream pipelines at source-code level, and the efficiency of low-level
imperative code at run-time. Among the salient features of our approach are that it
does not require adding new Java language features or modifications of the application
source code, it does not depend on API-specific knowledge (we demonstrate that it
works on both push- and pull-style stream APIs without any adaptation), and it is
predictable in the sense that the programmer can be informed ahead-of-time whether
optimization succeeds for a given stream pipeline. Furthermore, as the transformations
and the static analysis work on Java bytecode, this optimization technique is easy to
integrate into existing program development processes.

In summary, the contributions of this paper are:

• We propose an ahead-of-time Java bytecode optimization technique that tar-
gets stream pipelines in Java code to make them as efficient as hand-written
imperative code. Specifically, we demonstrate that applying a combination of
well-known program transformations suffices to reach this goal, most impor-
tantly, method inlining and stack allocation.

• We present a static program analysis that simultaneously performs type and
pointer analysis for driving the program transformations.

• We report from an experimental evaluation showing that applying the optimiza-
tion to a suite of 11 micro-benchmarks makes 10 of them as fast as hand-written
imperative code, in several cases leading to more than 10× speedup, and that

4.2. BACKGROUND: PULL- AND PUSH-STYLE STREAM APIS 31

77% of 6879 stream pipelines found in real-world Java programs are optimized
successfully. The evaluation also demonstrates that the approach is not limited
to Java’s push-style streams but also works for a pull-style stream API, although
with potential for improvements of the static analysis.

4.2 Background: Pull- and Push-Style Stream APIs

Stream APIs can be implemented in two different styles. A pull-style stream API
follows the iterator protocol, with a method hasNext for querying whether the stream
has more elements and a method next for pulling out the next element from the
stream. The iteration through the elements of the stream is controlled by the terminal
operation, and each operation in the pipeline thus pulls the elements one at a time
from its predecessor.

In a simple pull-style stream API, the map intermediate operation, which applies a
given function to each element of the stream, can be implemented in Java as shown in
fig. 4.3. The function allocates a new PullStream object to represent the intermediate
mapping operation, which becomes the new head of the pipeline. When elements
are queried from this head, it extracts an element from its predecessor in the pipeline
(using PullStream.this.next to refer to the method of the outer class) and applies
the supplied function to it before it is returned.

A push-style stream API instead includes a single method that takes a consumer
action to apply to each element in the stream. When executing the stream pipeline,
the source operation controls the iteration by pushing every element in the underlying
data source to its consumer action until the data source is empty or until the pipeline
terminates early (for example, the findFirst operation usually does not have to look
at all the elements).

In a push-style stream API, the filter intermediate operation, which filters
out elements that do not satisfy a given predicate, can be implemented as shown in
fig. 4.4. A new PushStream object is allocated to form the new head of the pipeline.

14 public abstract class PullStream <V> implements Stream<V> { ...
15 public <U> Stream<U> map(Function <? super V, ? extends U> f)

{
16 return new PullStream <U>() {
17 protected U next() {
18 return f.apply(PullStream.this.next());
19 }
20 protected boolean hasNext() {
21 return PullStream.this.hasNext();
22 }
23 };
24 } ...
25 }

Figure 4.3: The map intermediate operation in a pull-style stream API.

32
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

26 public abstract class PushStream <V> implements Stream<V> { ...
27 public PushStream <V> filter(Predicate <? super V> p) {
28 return new PushStream <V>() {
29 protected void exec(Consumer <? super V> c) {
30 PushStream.this.exec(x -> {
31 if (p.test(x)) c.accept(x);
32 });
33 }
34 };
35 } ...
36 }

Figure 4.4: The filter intermediate operation in a simple push-style stream library.

When we execute this pipeline by calling exec on the final stream object, the filtering
operation constructs a new consumer and passes it to its predecessor in the pipeline
(using PushStream.this.exec to refer to the method of the outer class). When this
consumer is invoked with an element, it only forwards it to the next consumer if the
element satisfies the predicate that was given to the filter function.

The stream API in Java’s standard library is push-style, whereas Scala’s views
and C#’s Language-Integrated Queries (LINQ) are pull-style [8].

The Java stream implementation is quite complex. It provides specialized stream
pipelines for the int, long and double Java primitives to avoid boxing at run-
time, and pipelines can be executed in parallel using multiple threads. Additionally,
certain characteristics of pipelines are recorded to perform further optimizations
at run-time. For example, in the pipeline list.stream().sorted().sorted().
collect(Collectors.toList()), the second sorting operation is skipped, since
the library infers that the stream is already sorted after the first one.

One of the main reasons why stream pipelines are less efficient than their imperative-
style counterparts is that executing a stream pipeline involves many virtual calls. A
Java stream pipeline with N elements and depth K will accumulate up to N×K virtual
calls just to push the elements through the pipeline [39]. Our optimization technique
builds on the key observation that fully inlining the consumer chain will reduce this
to a constant number of calls depending on the stream source. Method inlining (also
called inline expansion) is a classic compiler optimization technique that replaces a
call with the body of the method being called, with parameters and return value flow
properly substituted to preserve the program semantics [4, 24].

If we take a deeper look into Java’s stream implementation we see that its streams
are backed by spliterators, which are similar to iterators but support more advanced
features, such as splitting a data source into smaller chunks for parallel computa-
tion. Every Java class that implements the Collection interface inherits a default
implementation of a spliterator backed by the collection’s iterator implementation.
Stream pipelines eventually end up calling the forEachRemaining method on the
backing spliterator (unless they stop early due to short-circuiting operations such as
findFirst) to push every element in the collection through a provided consumer

4.2. BACKGROUND: PULL- AND PUSH-STYLE STREAM APIS 33

40 public class ArrayList <T> extends ... implements ... {
41 transient Object[] elementData;
42
43 @Override
44 public Spliterator <T> spliterator() {
45 return new ArrayListSpliterator(...);
46 }
47
48 final class ArrayListSpliterator <T>
49 implements Spliterator <T> {
50 public void forEachRemaining(Consumer <? super T> action) {
51 int i, hi, mc;
52 Object[] a = elementData;
53 ...
54 }
55 ...
56 }
57 ...
58 }

Figure 4.5: Excerpt of the spliterator implementation in Java’s ArrayList class.

function. For the default iterator-backed spliterator, this translates roughly into this
code:
37 while (it.hasNext()) consumer.accept(it.next());

This is expensive, as it requires three virtual calls per element, even for a pipeline
with zero intermediate operations. Therefore, to achieve better performance, collec-
tions can provide their own spliterator implementation. For example, the ArrayList
class provides an efficient forEachRemaining spliterator implementation that is
essentially a while loop over the internal array:
38 while (index < elementData.length)
39 consumer.accept(elementData[index++]);

This means that if we can fully inline the execution of such a stream pipeline, we
expose a primitive while loop with a single virtual call per element. If we can
furthermore inline calls to the consumer.accept method, the code we are left with
will resemble a hand-written imperative loop construct.

Inlining a method call is a relatively simple program transformation in itself. The
key to be able to inline the relevant calls ahead-of-time is precise type information to
enable virtual call resolution. The static analysis we present in section 4.5 is designed
to provide this information.

One complication to inlining is that spliterators sometimes rely on private fields
in the source collection, in which case naively inlining will violate Java’s access
rules. An example is the spliterator in Java’s ArrayList class, shown in fig. 4.5,
where the forEachRemaining method accesses the field elementData, which is
package-private (i.e., Java’s default access mode). This prevents inlining the method
into another package. A similar situation may occur when the default iterator-backed
spliterator is used, since the implementations of hasNext and next in the source

34
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

59 public interface IntStream <StreamT extends IntStream > {
60 /* Intermediate operations */
61 StreamT map(IntUnaryOperator f);
62 StreamT filter(IntPredicate p);
63 StreamT flatMap(IntFunction <? extends StreamT> f);
64 StreamT limit(long maxSize);
65 /* Terminal operations */
66 void forEach(IntConsumer c);
67 int reduce(int initial, IntBinaryOperator r);
68 }

Figure 4.6: A simple IntStream interface, which can be implemented either pull-
style or push-style.

collection may also rely on private fields. This is not a concern for any of the most
widely used collections in Java’s standard library, but it can be an issue for non-
standard stream sources. In section 4.6 we discuss different options for how to handle
these situations.

To be able to study optimization opportunities in a more controlled environment
and to present manageable examples in the following sections, we have created a
simple implementation of a push-style stream library with an API that is similar to that
of Java’s streams and also to stream implementations studied in related work [9]. This
library suffers from the same performance issues as Java’s standard stream library (see
section 4.8). Its API is shown in fig. 4.6. The library additionally supports pull-style
streams, which allows us to explore the flexibility of our optimization techniques also
for such a fundamentally different kind of stream API than the one in Java’s standard
library.

Our current focus is on optimizing sequential (i.e., non-parallel) stream pipelines,
since those are by far the most common in practice. (In 28 randomly selected open
source Java projects from the RepoReapers dataset [57] that we could build we found
6879 sequential stream pipelines and 49 parallel stream pipelines. A recent study by
Khatchadourian et al. [37] confirms this finding.) Still, sequential stream pipelines
are often used in multi-threaded applications, so we cannot assume a single-threaded
execution environment when designing optimization techniques.

Another crucial observation we can exploit when optimizing stream pipelines
is that the entire construction and execution of a typical pipeline take place locally
within a single method. Objects of type Stream rarely appear as arguments or return
values at calls to other methods than those in the stream library, nor are such objects
stored in data structures on the heap. We have made a quantitative study of the
top 100 Java projects on GitHub to experimentally verify this claim, and found
that 93% of calls with streams as parameter or return types are to stream sources,
intermediate, or terminal operations, and there is only one field access that involves
stream objects per 200 stream operations in the code. Furthermore, all the spliterator
objects, consumer objects, and other transient objects are only used internally within
the stream operations. This means that all the information stored in these objects can

4.2. BACKGROUND: PULL- AND PUSH-STYLE STREAM APIS 35

69 private static class PushStream$1 <V> extends PushStream <V> {
70 private final PushStream <V> previous;
71 private final Predicate <? super V> predicate;
72
73 PushStream$1(PushStream <V> previous , Predicate <? super V>

predicate) {
74 this.previous = previous;
75 this.predicate = predicate;
76 }
77
78 protected void exec(Consumer <? super V> c) {
79 previous.exec(x -> {
80 if (predicate.test(x)) c.accept(x);
81 });
82 }
83 }
84
85 public PushStream <V> filter(Predicate <? super V> p) {
86 return new PushStream$1 <>(this, p);
87 }

Figure 4.7: The filter intermediate operation from fig. 4.4, flattened such that the
inner class is now lifted outside the filter method, similar to the structure of the
bytecode.

be placed on the stack instead of in the heap, thereby eliminating the object allocations
and reducing the need for garbage collection. As for inlining, this optimization, called
stack allocation, is widely used and well understood [17, 66].

The Java JIT compiler already tries to perform stack allocation,2 but the escape
analysis used in the Java JIT to drive stack allocation is limited by being intraproce-
dural only. We exploit the fact that stack allocation works even better in the AOT
setting that allows more precise analysis, together with the aggressive inlining strategy
described above. Conversely, stack allocation can also boost inlining. For example,
if a method accesses private fields, it cannot be inlined at call sites in other classes,
however, if the fields are moved to local variables then inlining can be performed
without violating Java’s access control mechanisms.

To understand how stack allocation can apply to stream pipelines, consider the
filter operation from fig. 4.4. It contains an inner class, which the Java compiler
lifts outside the method. The free variables of the inner class, PushStream.this
and p, then become fields that are set by the constructor. Java code that roughly
corresponds to the resulting bytecode is shown in fig. 4.7. Here, it is clear that every
access to PushStream.this and p in the original method actually involves fields in
objects in the heap. This heap allocation cannot be converted into stack allocation
without information about the code that calls the filter method and uses of the
resulting stream object via its execmethod. By statically analyzing the entire pipeline,

2https://docs.oracle.com/javase/7/docs/technotes/guides/vm/
performance-enhancements-7.html#escapeAnalysis

https://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html#escapeAnalysis
https://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html#escapeAnalysis

36
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

Phase 1: Off-the-shelf pointer analysis

Phase 2: Interprocedural, flow- and context-sensitive type and pointer analysis

Phase 3: Inlining and stack allocation transformations

Phase 4: Bytecode cleanup

Input program

Pipelines and stream source types

Abstract states

Transformed program

Output program

Figure 4.8: Flow diagram of the approach.

our approach can obtain the required information. Also note that the exec method in
fig. 4.7 cannot be inlined unless we also perform stack allocation of PushStream$1,
because the fields are declared as private.

In summary, these observations suggest that method inlining and stack allocation,
which are two classic optimization techniques, can be effective together in AOT
optimization of stream pipelines.

4.3 Approach Overview

Figure 4.8 shows the structure of our approach. We start the optimization process by
analyzing the compiled program with an off-the-shelf pointer analysis [11, 45, 79].
The purpose of this phase is to find the segments of the bytecode that correspond to
stream pipelines in the program and to find the concrete types of the stream sources.

We then process each stream pipeline individually. As mentioned in section 4.2,
stream pipelines rarely span multiple methods, and the stream objects are rarely stored
in the heap, so tracking the flow of stream objects is trivial (we skip pipelines where
this is not the case). For each pipeline we perform a flow- and context-sensitive
type and pointer analysis. The result of this analysis consists of an abstract state for
every analyzed control flow graph node (in JVM bytecode, a node corresponds to a
bytecode instruction), for each call context. Informally, an abstract state maps each
local variable and object field to an abstract value, which is a pair of a Java type and
an abstract points-to value. For the types, we distinguish between abstract types τ and
concrete types τ [2], where an abstract value with type τ can represent any object that
is a subtype of τ , while τ only represents objects that have exactly the type τ . The
abstract points-to values use allocation-site abstraction [16] as the heap model. The
analysis is explained in more detail in section 4.5.

We then use facts from the analysis result in the next phase to guide the optimiza-
tion transformations. The type information allows us to resolve calls for the inlining
transformation, while the pointer information is used in the stack allocation transfor-

4.3. APPROACH OVERVIEW 37

mation to redirect field accesses on stack allocated objects to the corresponding local
variables. After the pipeline has been transformed, we feed it to a cleanup phase that
can remedy some inefficiencies that are inherent to the two transformations.

It may be the case that the analysis aborts. This happens when it can determine
that the analysis result would not allow optimizations to take place. If, for example,
the analysis discovers that a pipeline object flows out of the boundary of the analyzed
method, for instance to a static field, then after this point the analysis (and therefore
also the transformation) cannot make any useful assumptions about the state of the
object. Another condition for aborting is over-approximation of an unanalyzable call
that leads to an unusable analysis result. These and other cases are described in more
detail in section 4.5.

Example To get an intuitive understanding of the approach before we explain the
details in the following sections, we can apply it to the example stream pipeline shown
in fig. 4.9a. It is presented as Java source code for readability although the actual
technique works on Java bytecode.

The pre-analysis finds a stream pipeline in the sum method. The initial abstract
state for the main analysis is seeded with abstract values from the pre-analysis for the
local variables and the stack. The method contains one local variable for the argument
v, which is given the abstract value (int[],unrelated). Here, unrelated denotes a
pointer value that cannot refer to any allocation site that appears during the analysis
and whose field values are not tracked in the abstract heap. Since the stream source
is constructed by a static method call in this example, it does not require additional
type information to be resolved. (We show an example in section 4.4 that needs the
pre-analysis to infer the concrete type of the stream source object.)

The first instructions encountered during the main analysis phase correspond to
the call to IntPushStream.of(v). We resolve this call by finding the static method
on IntPushStream with the correct signature and continue by analyzing the resolved
method:

88 public static IntPushStream of(int[] arr) {
89 return new IntPushStream() {
90 public void exec(IterConsumer c) {
91 int i = 0;
92 while (i < arr.length) c.accept(arr[i++]);
93 }
94 };
95 }

This of method constructs an instance of an anonymous subclass of IntPush-
Stream. Following Java conventions this subclass could be named IntPushStream$0.
We update our abstract state with this allocation site named ℓ1 and continue by analyz-
ing the constructor of IntPushStream$0 (not shown here) and see that the implicitly
passed arr parameter is stored as a field that is also named arr in the subclass. The
abstract value that is returned from IntPushStream.of is (IntPushStream$0, ℓ1),
and the heap part of the new abstract state maps ℓ1 to {arr 7→ (int[],unrelated)}. The

38
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

96 public static int sum(int[] v) {
97 IntPushStream stream = IntPushStream.of(v);
98 return stream.reduce(0, Integer::sum);
99 }

(a) An example method, sum, containing a stream pipeline.

100 public static int sum(int[] v) {
101 // inlined IntPushStream.of
102 int[] IntPushStream_of_arr = v;
103 IntPushStream stream = null;
104 int[] IntPushStream$0_arr = IntPushStream_of_arr;
105 // inlined IntPushStream.reduce
106 IntPushStream IntPushStream_reduce_this = stream;
107 int IntPushStream_reduce_initial = 0;
108 IntBinaryOperator IntPushStream_reduce_r = null;
109 Reducer IntPushStream_reducer = null;
110 int Reducer_state = IntPushStream_reduce_initial;
111 IntBinaryOperator Reducer_operator = IntPushStream_reduce_r

;
112 // inlined IntPushStream$0.exec
113 IntPushStream$0 IntPushStream$0_exec_this = (

IntPushStream$0) IntPushStream_reduce_this;
114 IterConsumer IntPushStream$0_exec_c = IntPushStream_reducer

;
115 int IntPushStream$0_exec_i = 0;
116 while (IntPushStream$0_exec_i < IntPushStream$0_arr.length)

{
117 // inlined Reducer.accept
118 Reducer Reducer_accept_this = (Reducer)

IntPushStream$0_exec_c;
119 int Reducer_accept_v = IntPushStream$0_arr[

IntPushStream$0_exec_i++];
120 // inlined Integer.sum
121 int Integer_sum_a = Reducer_state , Integer_sum_b =

Reducer_accept_v;
122 Reducer_state = Integer_sum_a + Integer_sum_b;
123 }
124 return Reducer_state;
125 }

(b) The sum method after inlining and stack allocation.

126 public static int sum(int[] v) {
127 int state = 0, i = 0;
128 while (i < v.length) state += v[i++];
129 return state;
130 }

(c) The resulting sum method after the cleanup phase.

Figure 4.9: Optimization of a stream pipeline.

4.3. APPROACH OVERVIEW 39

next instructions in sum allocate the lambda argument to the reduce function, causing
the abstract state to be updated with a new allocation site, ℓ2. The abstract value of the
receiver of the reduce call is (IntPushStream$0, ℓ1) and contains precise type infor-
mation such that we can resolve the call according to Java’s virtual method invocation
semantics.3 We thus continue by analyzing IntPushStream.reduce, shown below,
where the abstract values of the receiver and arguments are (IntPushStream$0, ℓ1),
(int,⊤), and (λ0, ℓ2), respectively, where λ0 denotes the type of the object created
for the method reference Integer::sum.

131 public int reduce(int initial, IntBinaryOperator r) {
132 Reducer reducer = new Reducer(initial, r);
133 this.exec(reducer);
134 return reducer.state;
135 }

Continuing analysis in this method, after allocating the Reducer at allocation site
ℓ3, we have the abstract heap

[ℓ1 7→ {arr 7→ (int[],unrelated)}, ℓ2 7→ {},
ℓ3 7→ {state 7→ (int,⊤),reducer 7→ (λ0, ℓ2)}]

and the abstract values of this, initial, and r are (IntPushStream$0, ℓ1),
(int,⊤), and (λ0, ℓ2), respectively. The Reducer carries the state field to keep
track of the running sum while the pipeline executes, and a reference to the reducer
method. The purpose of that method is to compute a new state from a stream element
and an old state, as a left-fold operation.

To resolve the call to exec, the analysis looks up the abstract value of the re-
ceiver (this), which is (IntPushStream$0, ℓ1) in this case, so it can continue the
analysis in IntPushStream$0.exec where the abstract value of the first argument
is (Reducer, ℓ3). Inside exec (see lines 90–93) the field arr of ℓ1 is accessed twice.
The analysis can precisely resolve these accesses using the abstract state since the
abstract points-to value of this is ℓ1. The call to Reducer.accept is resolved and
the analysis continues in that method:

136 public void accept(int v) {
137 state = reducer.applyAsInt(state, v);
138 }

Here it is even more crucial that the analysis has precise type and points-to information
for this, as this allows it to look up the value of reducer on ℓ3 in the abstract state
and resolve the call to λ0.applyAsInt. After finishing the analysis, we have the
information necessary to unambiguously resolve the calls at every analyzed call site.

The following phases perform optimizing transformations on the analyzed pipeline.
Like the analysis it operates on stack-based Java bytecode, but we will outline the
transformation as if it happens directly on Java source code. The first transformation

3https://docs.oracle.com/javase/specs/jvms/se13/html/jvms-6.html#jvms-6.5.
invokevirtual

https://docs.oracle.com/javase/specs/jvms/se13/html/jvms-6.html#jvms-6.5.invokevirtual
https://docs.oracle.com/javase/specs/jvms/se13/html/jvms-6.html#jvms-6.5.invokevirtual

40
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

phase applies inlining and stack allocation transformations. Local variables are used
in place of the object’s fields and are also allocated for the parameters of inlined
methods.

We can look into how the analysis result is used to transform the call to Int-
PushStream.of(v) in fig. 4.9a. The analysis resolved the callee such that it can be
inlined into the sum method:

139 int[] IntPushStream_of_arr = v;
140 IntPushStream stream = new IntPushStream() {
141 public void exec(IterConsumer c) {
142 int i = 0;
143 while (i < IntPushStream_of_arr.length)
144 c.accept(IntPushStream_of_arr[i++]);
145 }
146 };

Notice that a fresh local variable has been generated for the arr parameter.

The next step is to allocate IntPushStream$0 on the stack instead of on the heap
(see line 140). First, the new instruction is replaced with null to preserve the operand
stack layout. The class has one field of type int[] so a local variable is allocated
for it (IntPushStream$0_arr at line 149 below). The variable is associated with
the allocation site ℓ1 of the IntPushStream$0 object, and the constructor is inlined.
Inside the constructor of IntPushStream$0, the array is stored as a field on the
object. According to the abstract state for the field write instruction, the object that is
written to is the object allocated at site ℓ1. The field write instruction can therefore be
redirected to write to the local variable allocated for the object (see line 150):

147 int[] IntPushStream_of_arr = v;
148 IntPushStream stream = null;
149 int[] IntPushStream$0_arr = null;
150 IntPushStream$0_arr = IntPushStream_of_arr;

Whenever the transformation later finds an instruction that accesses the arr field
of ℓ1, it is similarly replaced with an instruction that instead accesses IntPush-
Stream$0_arr.

The result of the transformation phase is shown in fig. 4.9b. This transformed
method can be executed as is but is rather large and filled with redundancies. The last
transformation phase aims to reduce the code size and the number of local variables
in the resulting code. It does so by identifying and removing duplicate aliasing
local variables, unused variables, and redundant bytecode instructions. After these
transformations, we end up with the code shown in fig. 4.9c. Notice that the resulting
code is a simple while-loop that iterates over the array, without any virtual calls,
similar to what a programmer would likely write if not having streams available.

In the following sections, we describe how each of the four phases work more
generally, and with more details about the analysis and transformations.

4.4. PHASE 1: PRE-ANALYSIS 41

4.4 Phase 1: Pre-Analysis

The optimization process begins with a preliminary analysis. Its goals are (1) to
identify stream pipelines within the analyzed program, and (2) to restrict the set of
possible concrete types for stream sources. This information allows us to subsequently
use an expensive analysis, which is specialized for guiding our optimizations, only at
the program points where it is needed. The concrete types for the stream sources are
used for seeding the analysis in phase 2.

Consider the example stream pipeline marked with gray in fig. 4.10. By simply
using the type information available in the Java bytecode of the compiled program,
it is trivial to find all local variables of type Stream, which allows us to recognize
the segment of bytecode constituting the pipeline. (In case the stream objects are
passed as parameters or return values of non-application methods, or they are stored
in or retrieved from fields in objects, we simply give up optimizing the pipeline, as
mentioned earlier; this can be improved in future work.) Application code, such as
the two lambdas in fig. 4.10, is considered outside the pipeline by the main analysis
although it is being inlined in the transformation phase. However, we do analyze the
(implicit) constructors for the lambdas, to be able to detect if stream objects escape
from the pipeline code. An exception is made for the flatMap operator where the
callback creates a stream object directly involved in the execution of the pipeline, and
must therefore be included in the main analysis.

In many cases, the stream source type is trivial to infer (as in the sum example
in fig. 4.9a), but other cases require information about dataflow. When compiled to
bytecode, the call to list.stream() in fig. 4.10 simply contains List as the receiver
of the call. At run-time it is up to the JVM to dispatch the call to the implementation
of the concrete type of the receiver of the call, in this case ArrayList. It does not
require an advanced analysis to figure out that the concrete type of the receiver is
indeed ArrayList in this simple example, but the receiver is not always allocated in
the same method as the stream pipeline, as it could be passed as an argument to the
method or reside in a field of an object. To handle such situations, we can apply an

151 class Application {
152 private void method(...) {
153 List<Integer> list = new ArrayList <Integer >();
154 // ...

155 boolean anyMatching = list.stream()

156 .map(x -> x * y)

157 .anyMatch(x -> x > z) ;

158 // ...
159 }
160 }

Figure 4.10: A stream pipeline (marked) as part of a bigger program. Note that the
lambdas are excluded from the code considered by the main analysis.

42
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

⊤

⊥

C1 Cn

C1 Cn

(a) Type lattice for all classes, interfaces,
primitive types, and array types C1 . . .Cn.

⊤

⊥

unrelated
ℓnℓ2ℓ1

any

(b) Pointer lattice for allocation sites
ℓ1, ℓ2, . . . , ℓn.

Figure 4.11: Lattices for type and pointer components of abstract values.

off-the-shelf pointer analysis to statically find the concrete type of the stream source
object. Several such tools are available, including Soot [45, 79], Doop [11], and
WALA [28]. Instead of simply selecting every non-abstract subclass of the declared
type List of the list variable, such analyzers can narrow the set of possible concrete
types by safely over-approximating the dataflow in the program. Usually, this gives
us a single concrete type for each pipeline source. In case multiple possible concrete
types are found, one possibility is to optimize the pipeline separately for each of them
and then branch at run-time based on the actual type. Since we typically only need the
type information for a small number of expressions in the program, a demand-driven
analysis [77, 79], which only analyzes the relevant part of the code, is a good fit.

4.5 Phase 2: Interprocedural analysis

We express the main analysis as a monotone framework [35], which requires a lattice
of abstract states. Abstract values are defined as elements of the lattice

Values = Type×Pointer

and Type and Pointer are illustrated in fig. 4.11. The Type lattice contains all concrete
and abstract types, for modelling classes, interfaces, primitives, and arrays. The
dashed edges between the types represent the class and interface inheritance relations.
The least upper bound of two Java types is not always a single unique class or interface,
which is why this simple lattice is chosen. In the Pointer lattice, any represents a value
that can point to any allocation site that occurs in the pipeline. The lattice element
unrelated represents values that can point to objects unrelated to the execution of
stream pipelines or objects allocated before the analysis entry point. Values that are
references to objects are modeled by object labels, ℓ1, ℓ2, ℓ3, . . . , ℓn ∈ ObjectLabels.
Objects are abstracted by their allocation sites, ObjectLabels = Contexts×Nodes.
Here, Nodes is the set of control flow graph nodes (i.e., bytecode instructions), and
Contexts is the set of all call contexts (explained below), so the allocation sites are
qualified by contexts (also called heap cloning or context sensitive heap) [60, 76].

An abstract state defines an abstract value for each local variable and operand
stack cell (together referred to as the set Cells), and it carries an abstract heap that

4.5. PHASE 2: INTERPROCEDURAL ANALYSIS 43

maps each object label to a map from fields to abstract values:

States =

Stack and locals︷ ︸︸ ︷
(Cells → Values) ×

Heap︷ ︸︸ ︷
(ObjectLabels → Fields → Values)

To achieve context sensitivity we apply the well known call-string technique with
unbounded length [74]. This allows us to precisely analyze stream pipelines of
arbitrary depth. Such an extreme choice of context sensitivity is of course not scalable
to Java code in general, but stream pipelines are relatively small. For modeling object
constructions, we pick the entire current call context as context for the object labels.
The analysis is also flow sensitive, so the full analysis lattice has an abstract state for
each context and control flow graph node:

Contexts → Nodes → States

The analysis is invoked for each pipeline found in phase 1. Such a pipeline is
marked by a range of bytecode instructions that contain all instructions relevant to its
execution. Thus the analysis can start at the first of these instructions when initialized
with a sensible initial abstract state. This state contains the concrete type information
from the pre-analysis necessary to resolve the call to the stream source. The analysis
then proceeds to analyze the pipeline code. If a critical loss of precision occurs on the
way, the analysis aborts and no optimization of the pipeline is performed.

The transfer functions of the intraprocedural parts of the analysis are straight-
forward. Generally they model the modification to the abstract operand stack and
local variables after executing bytecode instructions. For instance, the getfield
instruction on a field F of type τ looks at the topmost value (τ ′, p) of the abstract
stack and proceeds by case analysis to figure out which value v to replace it with:

v =

lookup(p)(F) if p ∈ ObjectLabels⊔

ℓ⊑p ∧ filter(ℓ,τ ′) lookup(ℓ)(F) if p = any
(τ, p) if p ∈ {⊤,unrelated}
(⊥,⊥) if p =⊥

The function lookup(ℓ)(F) looks up the abstract value of field F in abstract object ℓ
in the current abstract state. In the first case, p ∈ ObjectLabels, we simply look up the
field value, which precisely captures the semantics of getfield. If p = any then the
result value is the least upper bound of the abstract values for that field on all relevant
objects. The predicate filter(ℓ,τ ′) filters the set of object labels ℓ according to the type
τ ′: If τ ′ is a concrete type then only abstract objects of exactly that type are included,
otherwise abstract objects that are subclasses of τ ′ are included. If p ∈ {⊤,unrelated},
then v cannot be refined further than (τ, p), as p could point to an object that the
analysis does not track.

For putfield instructions, the two topmost values on the stack are popped. Let
(τo, po) and (τv, pv) denote the abstract values of the object reference and assigned
value, respectively. If unrelated ⊑ po and there exists an object label ℓ such that

44
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

ℓ⊑ pv the analysis aborts, as ℓ can escape from the analyzed part of the program. If
po ∈ ObjectLabels, a strong update on the object can be performed,4 otherwise a weak
update on all the object labels ℓ⊑ po that have the corresponding field is performed.

For the interprocedural part of the analysis we define transfer functions for method
calls. The first part of a method call is to resolve the callee. If the call instruction
is invokestatic or invokespecial this is easy,5 otherwise the callee depends on
the run-time type of the receiver. If the type component of the abstract value of the
receiver is precise, then we can use Java’s virtual method lookup procedure. If not,
we might be able to exploit that the targeted method is final or that the declaring class
is final. Otherwise the analysis resorts to over-approximation without involving the
callee body, as follows.6 If any value (τ, p) flows into an over-approximated call
(either as receiver or argument) where there exists some ℓ ∈ ObjectLabels such that
ℓ⊑ p and filter(ℓ,τ) holds, then the analysis aborts, as the method could modify the
full reachable heap from this object, leading to a very imprecise heap. Otherwise, if
the callee can be uniquely resolved, analysis continues in the resolved method in a
new context with the current abstract heap. After the analysis of the method finishes,
we merge the abstract states at all reachable return instructions in the method and
continue analysis in the caller with the merged abstract heap. The return value is the
topmost value on the stack in the merged state.

It is possible to construct stream pipelines whose structure is not statically fixed,
for example by applying a stream operation conditionally as in the following example.

161 IntStream s = /* some source */;
162 if (shouldSquare) s = s.map(x -> x * x);
163 return s.filter(x -> x % 2 == 0).sum();

This causes the analysis to abort due to a failed resolution of a call target, in this
case at a call that appears as part of the terminal operation, no matter if Java’s stream
library or the simple push- or pull-style implementation described in section 4.2 is
used.

Callbacks from the stream library to the application code, such as the lambdas
in figs. 4.1b, 4.9a and 4.10, are not analyzed unless it is necessary. These must be
analyzed if a pipeline object flows into such a method (the lambda can capture a
reference to the pipeline), or if it is the callback from a flatMap operator.

Calls to methods implemented in native code are handled by over-approximating
as explained above. To prevent this from aborting the analysis in common cases
we use custom models for a few core methods in the Java standard library (e.g.,
Class.getName and System.arraycopy). Other typical obstacles to sound and
precise static analysis for Java, such as reflection or dynamic class loading, are not a
concern, because we only apply the analysis to the stream library code, and stream

4Strong updating [16] is sound in this situation because of the use of flow sensitivity and full context
sensitivity.

5invokestatic is a direct method call while invokespecial resolves the callee by traversing the
superclasses of the enclosing class until a matching method is found.

6We could instead apply some variant of Class-Hierarchy Analysis [23] to find potential callees and
merge the results of analyzing those methods.

4.5. PHASE 2: INTERPROCEDURAL ANALYSIS 45

libraries do not use such mechanisms. (If the analysis should encounter use of such
mechanisms, it simply aborts.)

Context-sensitive analysis with unbounded call strings may diverge for programs
that contain recursion. It is not trivial to detect ill-natured recursion, as the call stack
may legitimately contain the same method multiple times during the execution of a
stream pipeline, if the pipeline contains multiple instances of the same intermediate
operation. To ensure termination, we therefore abort the analysis if the length of a call
string exceeds 1000. This bound is well above what is needed to admit analysis of
most pipelines.

With this analysis lattice and these transfer functions, the analysis runs using a
standard worklist algorithm that repeatedly applies the transfer functions until either a
fixed-point is reached, in which case we proceed to the transformation phase, or the
analysis aborts due to one of the conditions described above. In summary, the realistic
situations where the analysis aborts are (1) an object created in the analyzed part of
the code may escape that part of the code (this happens for around 2% of the pipelines
in our experiments, see section 4.8), (2) a call target cannot be resolved with sufficient
precision (happens for around 14% of the pipelines), and (3) recursion causing the
analysis to diverge (happens for less than 1% of the pipelines).

Handling Java’s Stream Library The analysis presented above suffices for simple
stream libraries, such as the one described in section 4.2, but not for more complex
ones. As mentioned earlier, the Java standard library stream implementation is quite
complex and uses different code paths for sequential and parallel computation, and for
short-circuiting and non-short-circuiting pipelines. To obtain sufficient analysis preci-
sion to fuel optimizations, we need to avoid analyzing certain paths that are not taken
in actual runs of the code. We achieve this by including constant propagation [15] in
the abstract values and by making the analysis control sensitive (also called branch
sensitive) to take branch conditions into account for refining abstract values and for
eliding dead code.

A common source of precision loss is the use of stream flags in the library code.
Every stream pipeline has a set of flags that are queried at different stages of execution.
If we cannot analyze these queries precisely, the analysis loses too much precision to
be useful. The flags are bitmasks that are computed at run-time by the static initializer
of the StreamOpFlag enum class. The code in a static initializer of the class is run
the first time the class is accessed and is mainly used to populate static fields. Since
we do not necessarily want to limit ourselves to a whole-program analysis, we cannot
make assumptions about when this initialization happens and in what state the static
fields of the class are in at the analysis entry point. However, we observe that if the
fields have the final modifier, they cannot have been reassigned after initialization.

Analyzing StreamOpFlag’s initializer statically requires loop unrolling to be pre-
cise enough to be useful. We take a simpler approach: Instead we utilize an on-demand
dynamic pre-analysis that takes a snapshot of the reachable heap after initializing
static fields and preserves abstract values for fields that are marked final. This allows

46
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

us to get precise information on StreamOpFlag and StreamOpFlag$Type enums
needed for control sensitivity.

This small extension of the analysis relies on two assumptions. The first is that
final fields of pre-analyzed classes are not modified by the client at run-time. This
assumption could be violated by clients that use reflection,7 or by bytecode that is not
emitted by the Java compiler. Even though the Java compiler does not allow multiple
writes to final fields, it is possible to load classes into the JVM that violate this
constraint.8 We also assume that the values of static final fields involved in the
stream pipeline do not rely on the run-time environment in which they are initialized.

A final trick necessary to enable useful analysis of the Java stream implementation
is a model for the standard library method java.util.stream.AbstractPipeline
.wrapSink. This method is responsible for traversing the stream pipeline from back
to front, chaining together consumers (called Sinks in Java stream terminology) along
the way. This consumer is what the spliterator will send elements into when the
pipeline executes, and analyzing the chaining precisely is therefore critical. This
method is implemented with a loop instead of with recursion and thus loop unrolling
is necessary to analyze the behavior precisely. We have precise enough information to
unroll the loop, but we have not extended the analysis to support this in the proof-of-
concept implementation, so instead we replace that method with a model that has the
loop manually unrolled.

4.6 Phase 3: Inlining and stack allocation

Both kinds of transformations we apply, inlining and stack allocation, are classic com-
piler optimizations used for decades [17, 24]. In this section we briefly describe how
they work, in particular how they depend on each other, how they use the information
from the main analysis phase, and what their limitations are. The transformation starts
at the entry point of the pipeline and considers each bytecode instruction one-by-one.

Inlining

At a method call instruction the transformation tries to resolve the callee in the same
way as the analysis, using the abstract state for this program point. If the callee
cannot be uniquely determined, inlining is not applied for the call. Otherwise the
callee is resolved to some method with n arguments and m local variables. At the
call instruction the Java operand stack must contain at least n values where the top n
values will be consumed by the call. At method entry, the callee expects the parameter
values to be placed in the local variables numbered 0 to n−1. In the caller method,
we allocate m new locals for the inlined method. For each argument in reverse order, a
store instruction is inserted to the appropriate newly allocated local variable before

7However, since Java 9 the JVM can disallow all reflective accesses to JDK internal API’s. See
Relaxed-strong-encapsulation.

8See https://hg.openjdk.java.net/jdk/jdk12/file/06222165c35f/src/hotspot/
share/interpreter/rewriter.cpp#l435

http://openjdk.java.net/jeps/261#Relaxed-strong-encapsulation
https://hg.openjdk.java.net/jdk/jdk12/file/06222165c35f/src/hotspot/share/interpreter/rewriter.cpp#l435
https://hg.openjdk.java.net/jdk/jdk12/file/06222165c35f/src/hotspot/share/interpreter/rewriter.cpp#l435

4.6. PHASE 3: INLINING AND STACK ALLOCATION 47

the call instruction. The callee is then recursively transformed where care is taken to
remap variable accesses to the allocated variables in the caller. Return instructions
are handled by replacing them with an unconditional jump to a fresh label placed at
the end of the inlined method.9 The list of bytecode instructions in the transformed
method is then spliced into the caller in place of the call instruction, and the maximum
stack size of the caller is adjusted accordingly.

The transformation is easy to apply, but the ability to apply it in the AOT setting
can be hindered by Java’s access control mechanisms. If the callee is in a different
class and/or package than the caller, the callee might be able to access fields, methods,
and classes that the caller cannot, for example if they are declared private. In
this case, inlining the callee would produce code that does not pass Java’s runtime
encapsulation checks [12, 13]. We return to this issue at the end of the section.

Since the analysis does not cover the whole program, the inlining transformation
is only successful if callees can be inlined all the way into the body of the method
containing the stream pipeline. If the analysis starts in method f1 and analyzes a
call to f2 that further calls f3, only inlining f3 into f2 using the abstract states from
the analysis would be unsound, as f2 could have other callers than f1 where the
abstract states do not match the ones we used for the transformation. This implies that
the technique is not directly suitable to optimize parallel stream pipelines. In such
pipelines, the work of executing the pipeline is delegated to multiple threads, and can
therefore not be inlined into the method containing the stream pipeline.

Stack Allocation

Stack allocation can only be done for objects that do not escape their method [17]; the
analysis has already checked that property as explained in section 4.5. To be able to
perform the transformation in a way that preserves the program semantics, it is also
necessary that sufficiently precise pointer information is available from the preceding
phase. For this reason, we use the following concept of stack allocation eligibility.
When an object is allocated in the stack, and its fields are stored in local variables in
the call frame instead of on the heap, all instructions that access the object’s fields
must be appropriately transformed. If this condition cannot be satisfied for a given
object (identified by an object label), then the object is ineligible for stack allocation.
Eligibility is determined by examining all field access instructions in the analyzed
code. At a field access instruction the abstract state can be queried for the abstract
value of the object reference, denoted (τ, p). If p /∈ ObjectLabels then all object
labels ℓ where ℓ ⊑ p and filter(ℓ,τ) holds are made ineligible for stack allocation.
For such an ℓ the abstract state is not precise enough to ensure that this field access
instruction can be redirected to the corresponding local variable. Notice that stack
allocation eligibility relies on inlining – all method calls that the potentially stack

9The semantics of a JVM call instruction specify that (at most) one value is placed on the operand
stack after execution. While the stack is not required to contain only one value at a return instruction,
this is the case for all bytecode generated by the Java compiler. Additional measures can be taken to
allow for full return semantics.

48
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

allocated object flows into must be inlined to ensure that we can translate load and
store instructions and inline virtual calls.

After stack allocation eligibility is determined, the transformation starts. It oper-
ates on new, putfield, and getfield instructions. Whenever new is encountered,
the transformation checks whether the allocation site defined by this bytecode instruc-
tion is eligible for stack allocation. If this is the case, local variables are allocated
for all of the object’s fields, and they are associated with the object label. To keep
the operand stack layout valid, the new instruction is temporarily replaced with an
instruction that loads the null constant.

At a getfield instruction, the abstract state is queried for the abstract value of
the object reference, denoted (τ, p) as above. If p ∈ ObjectLabels and p is eligible
for stack allocation, the instruction is transformed into a read to the local variable
that was previously allocated for the field. The transformation handles putfield
instructions similarly.

As mentioned in section 4.3, stack allocation can enable more inlining optimiza-
tions. If a candidate method for inlining contains field accesses that would violate
Java’s access control, inlining can only take place if the object that is accessed is
allocated on the stack, such that its fields can be accessed as local variables instead.

In practice, because of the interdependencies between the two transformations,
optimizing a given stream pipeline with our technique is usually “all or nothing” –
either inlining succeeds for all the methods involved in the pipeline and all the objects
created in the process are stack allocated, or the optimization fails entirely.

Handling Private Fields

In section 4.1 we mentioned how spliterator implementations for Java’s standard
library contain accesses to package-private fields (see fig. 4.5). These accesses are
directed at a Collection object that should not be stack allocated, either because
the object is not allocated within the analyzed method, or because the scope of the
analysis would have to be broadened to not only include the stream pipeline but also
parts of the application code relevant to the collection object, to be able to carry out the
necessary transformations. The consequence is that inlining the spliterator methods
will always be prohibited by the rules described above. Not being able to inline the
spliterator methods produces a cascade of other optimizations that cannot take place,
due to the interplay between them. When this happens, different courses of action are
possible:

Inline as much as possible: We can choose to apply only the optimizations that
are possible. This is, however, undesirable, as the bulk of the performance
benefits of the optimization comes from fully inlining the call to spliterator.
forEachRemaining and eliminating chains of virtual calls to push elements through
the pipeline. This chain starts in the forEachRemaining method, and when this
method cannot be inlined it disallows inlining of further calls.

4.7. PHASE 4: CLEANUP 49

Use reflection: Violating field accesses can be circumvented with the use of Java’s
Reflection API. The use of reflection can have unfortunate performance drawbacks,
and is only possible when the application is run in an appropriate Java security
context. Since reflection allows us to expose encapsulated fields that are not
part of the object’s interface, using reflection only works as long as the internal
implementation of the object does not change, which could happen between
different Java releases.

Exploit the Java module system: Since Java 9 introduced the Platform Module Sys-
tem,10 it is possible, with appropriate JVM settings, to inject a class into the same
module and package as the collection class, to expose private members of the
class in a public interface. This does not suffer the same performance drawback as
reflection, but still depends on the internal implementation of the class. In addition
the JVM must be run with special settings.

Copy the class: We can make a copy of the collection class that publicly exposes its
members. This class must be used in place of the original class throughout the
application code. This way the application will work no matter the environment
in which it runs, and will not suffer any performance drawbacks.

None of these solutions are ideal, but allow the transformation to optimize stream
pipelines with collection sources. For our experiments we chose the last course of
action as the lesser evil.

4.7 Phase 4: Cleanup

The above transformations, while general, typically introduce a lot of redundant
bytecode instructions. The goal of the cleanup phase is to remove some of these
redundancies from the transformed method. The null values introduced temporarily
during the stack allocation transformation (see section 4.6) are also eliminated in this
phase. As input, the phase receives the transformed method from the previous phase.
It then applies a few simple intraprocedural analyses and transformations described
below. We motivate the cleanup techniques with two examples of method bodies that
can be shortened. In the first example, method f invokes twice in line 166:

10https://www.oracle.com/corporate/features/understanding-java-9-modules.
html

https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html

50
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

164 int f(int i) {
165 ILOAD 0
166 INVOKE int twice(int)
167 ...
168 }

169 int twice(int x) {
170 ILOAD 0
171 ICONST_2
172 IMUL
173 IRETURN
174 }

175 int f_opt(int i) {
176 ILOAD 0
177 ISTORE 1 (removed)
178 ILOAD 1 (removed)
179 ICONST_2
180 IMUL
181 ...
182 }

When twice has been inlined into f as shown on the right, the argument loaded for
twice will be stored into a fresh local variable that is immediately reloaded and never
reassigned. In this case we can remove the store and load instructions (indicated by
‘removed’ above). In general, such redundancies occur whenever we inline a method
that is called with variables as arguments, and the method never assigns to the local
variables for those parameters.

Another type of redundancy is introduced in the stack allocation transformation.
Consider the following example on the left. A State object is created, then i is
written to its value field, and finally the value is read from the field and returned. In
this example, the State object can be stack allocated.

183 class State { public int value; }
184
185 int m(int i) {
186 NEW State
187 DUP
188 INVOKE void State.<init>()
189 ASTORE 1
190 ALOAD 1
191 ILOAD 0
192 PUTFIELD State.value int
193 ALOAD 1
194 GETFIELD State.value int
195 IRETURN
196 }

197 int m_opt(int i) {
198 ACONST_NULL (removed)
199 DUP (removed)
200 POP (removed)
201 ASTORE 1 (removed)
202 ALOAD 1 (removed)
203 ILOAD 0
204 ISTORE 2 (removed)
205 POP (removed)
206 ALOAD 1 (removed)
207 POP (removed)
208 ILOAD 2 (removed)
209 IRETURN
210 }

On the right, the method is shown after applying the stack allocation transformation,
but before cleanup. The State class has one field, so a fresh local variable is allocated
for it in the method, in this case it gets the index 2. The putfield instruction is
replaced with a store to the allocated local variable followed by a pop. This pop is
necessary to preserve the operand stack layout. A similar transformation is applied for
the getfield instruction. With further intraprocedural simplifications, the body of
the method can now be reduced to only a load of the argument followed by a return
instruction, making all the other instructions redundant.

Figure 4.9b shows a transformed stream pipeline with redundancies from both the
inlining and stack allocation transformations, in Java source code form.

4.8. EVALUATION 51

Both inlining and stack allocation introduce a lot of redundant local variables in the
transformed method. To eliminate such redundancy, we incorporate a flow-sensitive
must-alias analysis similar to the one used in the Scala compiler.11 This analysis
determines which values are guaranteed to be equal for each program point. For
instance it can determine that the local variables 0 and 1 must alias at line 178. With
this information we can redirect the load instruction to the first local variable. This in
turn makes the instructions in lines 176 and 177 dead, so they can safely be removed.
We additionally employ other well-known intraprocedural analyses: strongly live
variables analysis, nullness analysis, reachability analysis, and sign analysis, and the
optimizations they enable, together with a suite of peephole optimizations.

In our benchmarks, the cleanup optimizations reduce the number of local variables
in the transformed stream pipeline by a factor of 10 to 40 and the number of bytecode
instructions by a factor 10, and thereby enable further optimizations by the JIT. Of
course these numbers vary a lot depending on the pipeline in question.

4.8 Evaluation

Our proof-of-concept implementation of the approach, named STREAMLINER, con-
sists of approximately 8 KLOC Java code, building on ASM12 for bytecode manipula-
tion and analysis.

We evaluate our approach by answering the following research questions:

RQ1: Is the performance of the optimized code comparable to that of hand-optimized
code, when applied to micro-benchmarks and using either push- or pull-style
libraries?

RQ2: To what extent is the technique able to optimize stream pipelines in real-world
Java applications? In cases where it fails, what are the reasons?

The STREAMLINER implementation and experimental data are available at https:
//brics.dk/streamliner/.

RQ1: Performance Evaluation

To answer the first research question we wish to compare the performance of programs
before and after optimization. Our approach mainly targets stream pipelines which
usually are components of larger programs. To isolate the performance impact of our
optimization we evaluate the approach on a suite of 11 micro-benchmarks that consist
only of stream pipelines. This suite builds upon micro-benchmarks from previous
work [9] and includes a new benchmark that uses the allMatch terminal operation.
This operation terminates the execution of the pipeline as soon as an element that

11https://github.com/scala/scala/blob/2.13.x/src/compiler/scala/tools/nsc/
backend/jvm/analysis/AliasingAnalyzer.scala

12https://asm.ow2.io/

https://brics.dk/streamliner/
https://brics.dk/streamliner/
https://github.com/scala/scala/blob/2.13.x/src/compiler/scala/tools/nsc/backend/jvm/analysis/AliasingAnalyzer.scala
https://github.com/scala/scala/blob/2.13.x/src/compiler/scala/tools/nsc/backend/jvm/analysis/AliasingAnalyzer.scala
https://asm.ow2.io/

52
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

Table 4.1: Java Virtual Machines used in the performance evaluation.

Name Java Version Build number

Oracle HotSpot VM 8 1.8.0_241
OpenJDK HotSpot VM 13 13+13
GraalVM CE 11 11.0.6+9-jvmci-20.0
Eclipse OpenJ9 13 0.18.0

does not satisfy the supplied predicate is found (it is a short-circuiting operation), and
therefore follows an alternative code path in the Java stream library.

We do not include real-world Java programs in the performance evaluation, as
measuring the impact of the optimization would be extremely difficult to do in a fair
manner. Stream pipelines are used for different reasons and with different workloads,
as small parts of bigger applications. Many stream pipelines in existing code are not
performance critical; conversely, programmers sometimes avoid using streams exactly
for performance reasons, as discussed in the introduction.

The performance measurements are made using the Java Microbenchmarking
Harness (JMH) tool [63], a benchmarking tool designed for JVM-based languages
included in the OpenJDK project. It performs a series of iterations to warm up the
JIT before doing proper testing iterations. In our experiments we perform 5 warm-up
iterations and 10 normal iterations, and the presented number is the average over those
10 iterations. We omit confidence intervals, as fluctuations between runs are negligible
compared to the differences resulting from the use of optimization and the choices of
library and VM [29].

We have performed experiments on the four different Java VMs and versions
shown in table 4.1. For each VM we measure the performance of each micro-
benchmark before and after optimization. For each benchmark we have four groups.
The Baseline group constitutes the benchmark implemented with Java for-loops,
while the Pull and Push groups use the simple library implementation described in
section 4.2. We include our own stream library implementations to show that they
suffer from the same performance deficiencies as the Java stream implementation com-
pared to the baseline, and that the optimization can yield performance improvements
for both pull- and push style stream APIs. Finally, the Stream group uses the stream
implementation of the Java standard library. The results can be found in figs. 4.12
to 4.15. The sum and sumOfSquaresEven benchmarks are shown in fig. 4.9a and
fig. 4.1, respectively.

The results show that, when using Java’s stream library, after optimization 10 of the
11 benchmarks have comparable performance to that of the baseline implementation.

The technique fails to optimize the stream pipeline for flatMapTake in the
Stream group on all VMs except Oracle HotSpot VM 8 (indicated by gray bars).
This benchmark features a short-circuiting pipeline that includes a flatMap operator,
which uses a lazily-initialized buffer to hold elements from its generated streams.13

13All the VMs use the OpenJDK implementation of the standard library for streams. The Oracle

4.8. EVALUATION 53

allMatch cart
count

filte
rCount

filte
rMapCount

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

50

100

150

200

250

300

350

400

Av
er

ag
e

tim
e

(m
s)

555 494 1607
2631

1669
2760

598 2766
3422

Baseline
Stream
Stream optimized
Push
Push optimized
Pull
Pull optimized
Missing optimization

Figure 4.12: Micro-benchmarks run on OpenJDK 13.

The lazy initialization pattern results in too much imprecision causing the analysis to
abort. This can be remedied in future work by more precise analysis.

Across all implementations we experience a massive speedup for the (pathologi-
cal) cart, megamorphicFilters, and megamorphicMaps benchmarks. The count
benchmarks (which count the number of elements in a stream) experience drastic
speedups after optimization, because the JIT can determine that the result is equivalent
to the length of the supplied array, effectively making the run-time negligible.

Although our focus is on Java’s stream library, we also test the applicability of our
approach for pull-style streams. Across all tests, the analysis is too imprecise to opti-
mize the cart and flatMapTake benchmarks in the Pull group. These benchmarks
all use the flatMap stream operator. In the pull stream implementation, this operator
assumes the iterator protocol in that calls to get are preceded by a call to hasNext re-
turning true. A relational analysis is required to separate the abstract states for when
hasNext returns true or false respectively. In many cases the performance of the
optimized pull-style stream pipelines does not match that of the baseline, nor the per-
formance of the optimized Java pipelines. This is due to a suboptimal structure of the
optimized bytecode, which results in the JIT compiler generating performance-wise
worse machine code. The same reason explains how optimized code in some cases
performs marginally worse than the unoptimized version, as seen in the filterCount
and filterMapCount benchmarks with OpenJDK 13 in fig. 4.12. Further cleanup
transformations are needed to make the bytecode as efficient as the baseline.

There are some differences between the results on the various VMs. The Oracle
HotSpot VM is slower for some benchmarks in the Baseline group compared to
OpenJDK 13, which is not surprising as the OpenJDK VM has experienced five more
years of development. However, we still experience the same relative speedup when
the optimization is applied.

Hotspot VM uses an earlier version that does not use lazy initialization.

54
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

allMatch cart
count

filte
rCount

filte
rMapCount

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

100

200

300

400

500

Av
er

ag
e

tim
e

(m
s)

774 1557
2719

1614
2720

594 2617
3109

Baseline
Stream
Stream optimized
Push
Push optimized
Pull
Pull optimized
Missing optimization

Figure 4.13: Micro-benchmarks run on Oracle’s JDK 8.

allMatch cart
count

filte
rCount

filte
rMapCount

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

100

200

300

400

500

600

700

800

Av
er

ag
e

tim
e

(m
s)

1095
3096

3447
1911

2760
1130

2465
3361

Baseline
Stream
Stream optimized
Push
Push optimized
Pull
Pull optimized
Missing optimization

Figure 4.14: Micro-benchmarks run on OpenJ9 13.

allMatch cart
count

filte
rCount

filte
rMapCount

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

100

200

300

400

500

Av
er

ag
e

tim
e

(m
s)

1040
1198

1922
1136

2003
635 1950

2261

Baseline
Stream
Stream optimized
Push
Push optimized
Pull
Pull optimized
Missing optimization

Figure 4.15: Micro-benchmarks run on GraalVM 11.

4.8. EVALUATION 55

211 public int megamorphicMaps() {
212 return IntStream.of(v)
213 .map(d -> d * 1)
214 .map(d -> d * 2)
215 .map(d -> d * 3)
216 .map(d -> d * 4)
217 .map(d -> d * 5)
218 .map(d -> d * 6)
219 .map(d -> d * 7)
220 .sum();
221 }

(a) Benchmark implemented with Java streams.

222 public int megamorphicMaps() {
223 int acc = 0;
224 for(int i = 0; i < v.length; i++)
225 acc += v[i]*1*2*3*4*5*6*7;
226 return acc;
227 }

(b) Benchmark implemented with a for loop.

228 public int megamorphicMaps() {
229 int[] values = v;
230 int endExclusive = values.length;
231 // bounds and null checking omitted
232 int state = 0;
233 if(values.length >= endExclusive) {
234 int i = 0;
235 if (0 < endExclusive) {
236 do {
237 int t = values[i];
238 int t2 = t * 1;
239 int t3 = t2 * 2;
240 int t4 = t3 * 3;
241 int t5 = t4 * 4;
242 int t6 = t5 * 5;
243 int t7 = t6 * 6;
244 int t8 = t7 * 7;
245 state += t8;
246 } while (++i < endExclusive);
247 }
248 }
249 return state;
250 }

(c) Decompiled benchmark after optimization.

Figure 4.16: The megamorphicMaps benchmark.

For the OpenJ9 VM, we also experience significant speedups for the optimized
code, although OpenJ9’s absolute performance seems to be below that of the other
VMs. In some of the benchmarks, in particular the sum benchmarks, the Stream
optimized code seems to be twice as fast as the baseline, which is suspicious. A
plausible explanation for this is that the Java Microbenchmarking Harness is geared
towards performance evaluation of HotSpot-based virtual machines (and OpenJ9 is
not based on the HotSpot VM), which may lead to inaccurate measurements.

The megamorphicMaps benchmark that was highlighted in section 4.1 for its
exceptionally poor performance when executed with Java’s streams is presented in
fig. 4.16. Figures 4.16a and 4.16b show the code that is executed in the Stream
and Baseline group, respectively. In fig. 4.16c we show the optimized code after
decompilation. The JIT compiler is able to transform both the baseline and optimized
code into equally efficient machine code, but it is perhaps not immediately clear to
the programmer that the code in fig. 4.16a is semantically equivalent to the code
in fig. 4.16c. The optimized code shows similar structure to that of the baseline
implemented with a for loop, but includes several transformation artifacts. One such
artifact is the check of values.length >= endExclusive, which is always true. This
could be removed with additional simple intraprocedural cleanup transformations,
although it does not affect the performance.

56
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

Table 4.2: Results of the evaluation on optimization of stream pipelines in general
Java programs.

Category Count %

Successful optimization 5293 77%
Imprecise resolution of call target 985 14%
Use of advanced stream operators 260 4%
Escaping pipeline object 121 2%
Infinite recursion 34 <1%
Other 186 3%

Total 6879 100%

RQ2: Evaluation on General Programs

To answer the second research question, we run the analysis and transformation on
a suite of 28 different Java projects that use streams, to evaluate how many stream
pipelines the analysis is able to optimize. Projects are randomly chosen from the
RepoReapers dataset [57] under the criteria that we can build the project and that the
project contains uses of streams.

Since we are not interested in evaluating the quality of the exact choice of pre-
analysis, in this experiment we use a simple alternative to dataflow analysis to decide
the stream source types. The ability to optimize a pipeline does not hinge on the
concrete type of the stream, only that we know which one it is. For this reason,
for streams created from collections (i.e., using the stream method in a sub-class
of java.util.Collection), we simply choose a specific concrete collection type,
such as ArrayList. For other kinds of stream sources, this pre-analysis simply
aborts.

We identified 6879 sequential stream pipelines in the chosen projects. As ex-
plained in section 4.6, whether a stream pipeline can be optimized with our approach
is “all or nothing”. This gives us a simple way to classify each attempt to optimize a
pipeline as being successful or not: If the optimizer succeeds in inlining all the stream
library code used in the pipeline into the method containing the pipeline, then the
optimization is successful. For each pipeline, we invoked the combined analysis and
transformation, and recorded whether the pipeline was successfully optimized or not.

In the cases where the optimization is not successful, we have attempted to
identify the most likely cause. The results of the experiment are presented in table 4.2.
Out of 6879 pipelines, 5293 (77%) are successfully optimized. This leaves 1586
pipelines that fail to optimize for different reasons. The most prominent reason is
that the analysis aborts due to imprecise type information at call sites, making it
impossible to statically track the interprocedural control flow of the stream pipeline.
This imprecision can arise from different sources as described in section 4.5. One
is that the simple pre-analysis implementation fails to deliver the type information
needed to analyze the construction of the stream source, which accounts for about
half of the 985 cases. (That may happen if the stream is created neither from a

4.9. RELATED WORK 57

collection nor from static methods such as IntStream.of.) Incorporating a full-
fledged pointer analysis, such as Boomerang, [77] can likely help the analysis in these
cases. The analysis also experiences imprecision when the pipeline structure depends
on branching (for example when an intermediate operation is applied to a stream
only under some conditions, as in line 162). More advanced techniques could insert
optimized code for both cases and branch on the original condition. The next most
common cause of inability to optimize is the use of stream operators that the analysis
is not precise enough to handle. This includes the LongStream.range source, which
leads to infinite recursion, the toArray and concat operators, and the flatMap
operator when involved in a short-circuiting pipeline as outlined in section 4.8. These
operators include some complex state that is initialized during pipeline execution
which the analysis is unable to follow. This can cause the analysis to abort due to an
imprecise resolution of a call target, as described in section 4.5, or make the analysis
result too imprecise to allow meaningful optimization, as described in section 4.6. In
121 cases, the main analysis aborts due to an object escaping the analyzed part of the
code, and in 34 cases the analysis aborts due to uncontrolled growth of call strings.
Both of these conditions are described in section 4.5. The remaining unsuccessful
cases are harder to classify. In most of these cases the analysis succeeds but Java’s
access control mechanisms prevent optimization, as discussed in section 4.6.

In summary, the results from this experiment show that the relatively simple static
analysis presented in section 4.5 can produce the information needed to optimize
stream pipelines in a variety of programs. Moreover, the technique is quite cheap to
apply. In our experiments, the analysis and transformation take approximately one
second to apply for each pipeline on average.

4.9 Related Work

Most work on compiler optimization for Java focuses on JIT optimizations [5, 6],
and there is (surprisingly) little work on AOT optimizations in general for Java and
related languages. To our knowledge, we are the first to investigate the use of AOT
optimization for eliminating the massive abstraction overhead of Java stream pipelines.

The bytecode-to-bytecode optimizer described by Budimlic and Kennedy [12, 13]
applies a transformation called object inlining, which inlines all data and code from
selected objects, much like our use of method inlining and stack allocation, however,
they do not present any strategies for when to apply the transformation. They also
encounter the limitation of inlining methods that access private members. The term
‘object inlining’ has also been used for another kind of optimization that fuses together
objects to reduce the number of object allocations, without method inlining or stack
allocation [27].

Another related technique is the interprocedural escape analysis for guiding stack
allocation optimization for Java by Choi et al. [17]. Our dataflow analysis (section 4.5)
performs a variant of escape analysis by the use of the unrelated lattice element, to
determine which objects may escape the stream pipeline code.

58
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

The Interflow optimizer [73] for Scala Native uses a combination of flow-sensitive
type inference, method duplication, partial evaluation, partial escape analysis, and
inlining. It focuses on optimizations for Scala’s collection library, not for stream
pipelines, and is designed for native code generation instead of bytecode-to-bytecode
transformation. By targeting native code, they avoid the problems with Java’s access
modifiers discussed in section 4.6. On the other hand, by choosing bytecode-to-
bytecode transformation, our approach is easier to incorporate into existing build
processes and execution platforms.

Our approach builds on ideas from the techniques mentioned above, and applies
them to optimize stream pipelines. By focusing analysis and transformation on stream
pipeline code that has large potential for optimization, we can afford more expensive
analysis than the general purpose optimization techniques.

Our optimization technique can also be viewed as a form of program special-
ization [72], where we specialize the stream library code to each individual stream
pipeline. Instead of using a binding-time analysis as in traditional partial evalua-
tion, we use a specialized analysis that simultaneously infers types and points-to
information to guide the transformations.

Khatchadourian et al. [36] have developed a tool for optimizing Java streams that
uses a static typestate analysis to determine whether it is advantageous to convert a
sequential stream to a parallel one or vice versa. Parallel computation is a natural
source of performance improvement, so their goal is to determine preconditions for
when it is safe to execute pipelines concurrently. While parallel streams can offer
better performance, it does not address the inherent overhead that is currently present
when using Java’s streams sequentially, as discussed in the introduction.

Declarative data processing has close ties to functional programming. Deforesta-
tion [90] is a technique that transforms functional programs that operate on trees (in
particular lists) into equivalent programs without allocating intermediate results in
new trees, thereby improving run-time performance. Many variants of deforestation
exist, but mostly for functional programming languages. These techniques are difficult
to adapt to optimize code that uses Java’s stream library, in particular because of its
advanced features described in section 4.2.

For programming languages with advanced meta-programming capabilities, such
as staging, efficient stream implementations can be obtained by implementing stream
fusion and other optimizations within the libraries themselves. The strymonas library
for Scala and OCaml [39], ScalaBlitz for Scala [67], the fold-based fusion technique
for Scala by Jonnalagedda and Stucki [33], and LinqOptimizer for C# and F# [65]
follow that approach. These techniques cannot be adapted to Java, because it lacks
the necessary language features. Also, our goal is to enable optimization for Java’s
existing stream library, not to replace it.

The stream library for Java by Biboudis et al. [9] aims for extensibility, not to
reach the performance of imperative code.

C# supports declarative data processing in the form of Language-Integrated Query
(LINQ), which suffers from similar performance problems as Java streams compared
to hand-optimized code. The Steno tool [58] makes it possible to translate declarative

4.10. CONCLUSION 59

LINQ queries into imperative code, using iterator fusion and nested loop generation
optimizations. Earlier work has applied similar approaches as Steno for Common
Lisp and Pascal programs [91]. The key difference to our technique is that Steno relies
on hardwired knowledge about the semantics of all the available LINQ operators and
thus does not need to look at their implementations; in contrast, our approach is not
limited to a specific API but instead relies on static analysis of the stream library
implementation.

Also for C#, Adamus et al. [1] have developed a technique for optimizing LINQ
queries by identifying free expressions in nested queries. By lifting these expressions
out of the nested query they can avoid redundant re-computation at run-time, thus
improving performance. Their technique builds on the idea of rewriting stream
pipelines, and is not concerned with the performance overhead of using LINQ queries
compared to hand-optimized code.

4.10 Conclusion

Streams are a powerful abstraction mechanism in Java programming, but they incur
a large performance overhead, which JIT optimization has been unable to mitigate.
In this work we exploit the fact that stream pipelines are relatively small pieces of
code, which makes them amenable to high-precision interprocedural analysis and
optimization. We have demonstrated the feasibility of AOT optimization of Java
stream pipelines. By aggressively applying method inlining and stack allocation
transformations driven by a static type/pointer analysis, our experimental results
show that a variety of stream pipelines can be automatically transformed into effi-
cient imperative-style code that has much better performance characteristics. For
10 of 11 micro-benchmarks, the resulting bytecode is as effective as hand-written
imperative-style code, and 77% of 6879 stream pipelines found in real-world Java
programs are optimized successfully. Since the optimizer is fast (even for a prototype
implementation) and structured as a bytecode-to-bytecode transformer, it is easily
deployed in ordinary build processes. Moreover, the approach is not restricted to
Java’s push-style stream implementation but also produces good results for a simple
pull-style library.

The experimental results also identify opportunities for future work. Most im-
portantly, more pipelines could be optimized if the analysis is improved to be able
to reason more accurately about short-circuiting operations. Also, incorporating
relational analysis can lead to improved precision necessary for optimizing certain
operations when using a pull-style stream library.

4.11 Epilogue: Pre-analysis in Practice

In the evaluation of STREAMLINER we used an unsound and optimistic pre-analysis.
Recall from section 4.8 that for queries for the type of receivers of calls to java.util
.Collection<T>.stream() it always answers with an arbitrary concrete collection

60
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

type that is valid according to the type information present in method. For the purpose
of measuring how many pipelines fail to optimize due to limitations experienced
in the main analysis phase (as opposed to failures directly caused by imprecise pre-
analysis), the optimistic pre-analysis was a reasonable choice. Since STREAMLINER

performs program optimizations, it is critical that the different involved analyses are
sound, otherwise the optimizations may not preserve program behavior. Therefore
this pre-analysis is unsuitable for use in “real” applications of the tool. Section 4.4
lists several pointer analysis tools that are both designed to be (mostly) sound and
can (in principle) answer the queries that STREAMLINER asks. A natural question
to ask is how well STREAMLINER works when it is paired with one of those off-
the-shelf pointer analyses, i.e., how many of the 6879 pipelines studied for RQ2
can we optimize with a sound pre-analysis based on state-of-the-art tools. In this
section we present a few state-of-the-art analysis tools and describe how they can be
used to answer STREAMLINER queries. We then experimentally verify how well our
tool works when coupled with these pointer analyses by integrating them into the
experimental setup originally used to answer RQ2.

There are two different modes of operation for the pointer analyses we will
investigate. The first mode is whole-program pointer analysis. In a whole-program
pointer analysis the program we need to answer queries for is analyzed once up-
front. The results of the analysis are consulted when a type query is received from
STREAMLINER. These queries are answered quickly because no more analysis is
required. The second mode of operation is demand-driven pointer analysis. In a
demand-driven pointer analysis the main work of the analysis is postponed until a
query is received from STREAMLINER. The analysis may require some additional up-
front analysis before queries can be answered, but this can be cheaper than traditional
whole-program pointer analysis. Demand-driven pointer analysis is practical because
the work of the analysis can be tailored to the individual queries. It may be possible to
avoid a lot of the work that whole-program analyses do for parts of the program that
are irrelevant with respect to the queries. However, the implementation of efficient
demand-driven pointer analyses is difficult and generally requires a different set of
tools than those used for the implementation of whole-program analyses.

WALA [28] is the first tool that we will investigate. WALA contains a framework
for performing analysis of Java programs, on top of which variants of Andersen’s
pointer analysis [3] are implemented. WALA also includes an implementation of the
demand-driven pointer analysis by Sridharan and Bodík [79]. These analyses have
a plethora of options that can be tuned, so we are glad to have Manu Shridharan —
one of the core developers of WALA and author of the demand-driven analysis —
help us select sensible configurations for our use case. This results in three different
pre-analyses based on WALA: 1) a pre-analysis that answers queries using WALA’s
demand-driven pointer analysis seeded with an imprecise but quick-to-construct
call graph built with Class Hierarchy Analysis (DemandCHA), 2) a pre-analysis that
answers queries based on the results of a whole-program pointer analysis (OfflineCFA),
and 3) a pre-analysis that combines the two previous approaches, but seeds the demand-
driven pointer analysis with a (potentially more precise) call graph computed by the

4.11. EPILOGUE: PRE-ANALYSIS IN PRACTICE 61

Table 4.3: Optimization results & query statistics for pre-analyses.

Initialization Queries

Pre-analysis Success Time Success / Total Avg. time Opt. pipelines

Baseline 28 0.0 h 0 / 6351 (0.0%) 0 ms 1108 (16.1%)
Optimistic 28 0.0 h 13137 / 24682 (53.2%) 0 ms 5218 (75.9%)
WALA:

DemandCHA 27 3.6 h 2512 / 7393 (34.0%) 627 ms 1796 (26.1%)
OfflineCFA 25 6.9 h 1830 / 6715 (27.3%) 1 ms 1475 (21.4%)
Combined 25 7.0 h 1830 / 6715 (27.3%) 57 ms 1475 (21.4%)

Soot:
SPARK 25 1.2 h 1749 / 7202 (24.3%) 0 ms 1481 (21.5%)
Boomerang 25 1.3 h 1819 / 7272 (25.0%) 5088 ms 1481 (21.5%)

whole-program analysis (Combined). The whole-program analysis is configured to be
context-insensitive, it unsoundly ignores reflection, and it uses a heap abstraction that
represents all concrete objects of the same type with a single abstract object. Although
this is imprecise, the analysis does not scale to our benchmarks with more precise
configurations.

The second tool we will investigate is Soot [85] which contains the SPARK whole-
program pointer analysis framework [45]. With the default SPARK configuration,
which defines a subset-based pointer analysis akin to Andersen’s analysis, we create
a pre-analysis that answers queries in the same way as OfflineCFA. We also define a
pre-analysis based on Boomerang [77], a demand-driven pointer analysis technique
implemented on top of Soot. Specifically we use the implementation of Boomerang
in the framework of Synchronized Pushdown Systems [78]. Like the demand-driven
pointer analysis implemented on top of WALA, this one must also be seeded with a
call graph. For this purpose we use the call graph computed by SPARK and, similar
to the Combined pre-analysis described above, we only invoke Boomerang when the
SPARK results (which are readily available after computing the call graph) are too
imprecise to answer a query. In the original evaluation of Boomerang a query timeout
of 1 second is used. For our evaluation we use a timeout of 15 seconds, which we
think is fair, but otherwise use Boomerang’s default configuration.

Finally we include a Baseline pre-analysis that purposefully fails to answer any
queries and the Optimistic pre-analysis used in the original RQ2 experiment. The
Baseline pre-analysis makes it possible to measure how many additional stream
pipelines can be optimized when STREAMLINER is paired with one of the realistic
pre-analyses.

For each of the pre-analyses we repeat the RQ2 experiment and record additional
statistics about the performance of the pre-analysis. The results of these experiments
are available in table 4.3. The second and third columns of the table contain metrics
related to initialization of the pre-analysis itself. The Success column denotes the

62
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

number of projects initialization succeeded for (of which there are 28 in total). For the
WALA-based pre-analyses, initialization fails for one project because it targets a newer
version of Java that is unsupported by WALA. The WALA whole program analysis
— used in the OfflineCFA and Combined pre-analyses — fails in two instances due
to (perceived) inconsistencies in class files compiled from Groovy, a programming
language used with the Gradle build system that also targets the JVM. When initial-
ization fails, the pre-analysis cannot answer any queries from STREAMLINER, and
the received queries are not included in data used to derive the query metrics. The
SPARK pre-analyses fail to initialize for the same two projects as the ones where
WALA had Groovy-related issues. It also fails to initialize for one project due to
multiple incompatible definitions of the same class. The Time column contains the
total time spent on initialization over all projects. The results show that the WALA
demand-driven pointer analysis does require less initialization time compared to the
WALA whole-program analysis, but also that the time saved is not enough to make the
pre-analysis applicable in scenarios that require rapid feedback (at least not without
further optimizations).

The next two columns contain metrics related to the individual queries processed
by the pre-analysis. The first of them contains the number of queries answered
successfully, the total number of received queries, and the derived success rate. Due to
design decisions in the implementation of STREAMLINER, a type query is successful
when it is answered with a single concrete type. There are many scenarios where
such an answer is impossible (i.e. the result would be unsound), so a success rate
of 100% is generally unattainable. Potential changes that can make STREAMLINER

accept less precise answers are discussed in section 4.8 and below. Notice that
the total number of queries received is not the same across the pre-analyses. One
reason is that, as explained above, when initialization fails, the pre-analysis cannot
answer any queries for that project. However, the discrepancy between the number
of received queries for the Baseline and Optimistic pre-analyses, which cannot have
failed initialization, is large. This is because STREAMLINER can ask multiple queries
during the main analysis phase. If the main analysis phase aborts early due to failed
queries, potential follow-up queries will not be performed. The second of the query
metric columns contains the average processing time of each query. For the pre-
analyses based on WALA, we see that the purely demand-driven pointer analysis
approach (DemandCHA) spends more time per query than the ones based on whole-
program analysis, but it still spend less total time overall when initialization time is
included (while also answering more queries in total). This suggests that demand-
driven pointer analyses can be a good fit for our approach, at least with respect to
performance. Interestingly, the results show that the combination of a demand-driven
pointer analysis and a whole-program analysis has negligible impact on the success
rate (compare OfflineCFA with Combined & SPARK with Boomerang). We expected
the demand-driven pointer analyses to be able to recover some of the precision that is
sacrificed to make the whole-program analyses scalable, but this was not the case for
our benchmarks. Both the demand-driven analysis in WALA and Boomerang time out
for most queries that the whole-program analyses cannot answer. We tried to increase

4.11. EPILOGUE: PRE-ANALYSIS IN PRACTICE 63

the budgets for both analyses by an order of magnitude, but this had almost no impact
on the number of timeouts.

The final column contains the number of pipelines that can be optimized based on
the type query answers provided by the pre-analysis. With the Baseline pre-analysis
STREAMLINER can optimize 1108 pipelines. When paired with a pre-analysis based
on off-the-shelf pointer analysis, the number of optimizable pipelines is between
1475 and 1796, which is an increase of 30−60%. Interestingly, the difference in the
results for pre-analyses based on whole-program analysis between WALA and Soot
is negligible. The main result is that the pre-analyses based on state-of-the-art tools
allow for a significant increase in optimizable stream pipelines, but also that there
is still room for improvement when we compare with the Optimistic pre-analysis.14

This improvement can come in the form of better off-the-shelf analyses, but also from
changes to our approach that can allow optimization to take place with less precise
query results.

Sound pre-analysis

The pointer analysis tools presented in the previous section are designed to be mostly
sound (soundy [49]), which is fine for many applications of pointer analysis, such as
code navigation in an IDE and bug detection. However, STREAMLINER optimizes
the analyzed programs based on information gained (in part) from the pre-analysis.
The analyses and optimizations used in our technique are sound, i.e. they preserve
program behavior under the assumption that the results provided by the pre-analysis
are sound. But if the pre-analysis fails to abstractly model some program behaviors
that can occur at run-time, STREAMLINER’s optimizations may change the behavior
of the program and even introduce bugs.

Designing fully sound and useful pointer analyses is a difficult problem. Con-
sider the example method sum in fig. 4.17. To optimize the pipeline in this method,
STREAMLINER needs to know the concrete type of the collection passed to sum as a
parameter. The performed optimization preserves program behavior if the argument
has the same concrete type at all call sites. However, in the presence of opaque code
due to reflection and classes loaded at run-time, it is really impossible to statically
guarantee anything for all call sites, as there may be call sites that are unknown at
compile-time. Uses of reflection and other dynamic features of the Java language are
widespread in practice [42], so simply ignoring them is unsatisfactory. For the sum
method in fig. 4.17 the consequence is that, even though a pre-analysis might be able
to determine that only a single concrete type is possible at all observable call sites,
it is still problematic to optimize for that type alone. Recent work by Smaragdakis
and Kastrinis [75] on defensive pointer analysis shows that an analysis designed to
only compute points-to information for variables whose values are guaranteed to only
depend on information in the current calling context can be both scalable and precise
in practice, even with a high degree of context-sensitivity. In their experiments the

14There is a slight deviation in the number of optimized pipelines compared to the results in the
original RQ2 experiment due to minor changes in test setup and the STREAMLINER implementation.

64
CHAPTER 4. ELIMINATING ABSTRACTION OVERHEAD OF JAVA STREAM

PIPELINES USING AHEAD-OF-TIME PROGRAM OPTIMIZATION

251 public class Example {
252 private static int sum(Collection <Integer> c) {
253 return c.stream().mapToInt().sum();
254 }
255
256 public static void fun() {
257 System.out.println(
258 sum(List.of(1, 2, 3)) +
259 sum(Set.of(4, 5, 6)));
260 }
261 }

Figure 4.17: A method that sums the integers in a collection with a stream

defensive pointer analysis can compute sound points-to information for 45.6% of all
variables in some calling context, and for 35.5% of variables specifically in the empty
context. A devirtualization client is also studied. This client wants the set of callees for
a virtual call to be a singleton set, which is very similar to our pre-analyses. On their
benchmarks the results show that the defensive analysis satisfies the devirtualization
client in 38.7% of cases (when restricted to devirtualization in the empty context),
whereas a soundy state-of-the-art pointer analysis can satisfy the client in 89.3% of
all cases. This is disappointing wrt. STREAMLINER, which already fails to optimize
most pipelines when paired with soundy analyses.

One way to circumvent the issue with optimization based on unsound pre-analyses,
and also make optimization possible when the pre-analyses are too imprecise, is
to insert guards around the optimized code that assert that the run-time type of
the argument is as expected. If the assertion fails the method can fall back to the
unoptimized version of the code and preserve its expected behavior. A different
approach is to attempt to recursively inline the method containing the stream pipeline
into its callers until the concrete type of the .stream() receiver no longer depends on
information from callees. In the funmethod of the example class in fig. 4.17, there are
two invocations of sum with different concrete argument types. However, if the calls
are inlined in both cases, the optimizer can trivially specialize the code for both types
that are now known in the context of fun. Both of these approaches have the potential
to increase the code size of the program after optimization, so implementing them,
verifying that they enable more optimizations, and checking whether the optimizations
are worthwhile compared to the potential increase in code size, is an opportunity for
future work.

Chapter 5

Detecting Blocking Errors in Go
Programs using Localized Abstract
Interpretation

By Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller. Published in
the 37th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’22), October 2022. Sections 5.7 and 5.8 are new material.

Abstract

Channel-based concurrency is a widely used alternative to shared-memory concur-
rency but is difficult to use correctly. Common programming errors may result in
blocked threads that wait indefinitely. Recent work exposes this as a considerable prob-
lem in Go programs and shows that many such errors can be detected automatically
using SMT encoding and dynamic analysis techniques.

In this paper, we present an alternative approach to detect such errors based on
abstract interpretation. To curb the large state spaces of real-world multi-threaded
programs, our static program analysis leverages standard pre-analyses to divide the
given program into individually analyzable fragments. Experimental results on 6 large
real-world Go programs show that the abstract interpretation achieves good scalability
and finds 104 blocking errors that are missed by the state-of-the-art tool GCatch.

5.1 Introduction

The key feature of the Go programming language is its channel-based approach to
concurrency with lightweight threads. Instead of communicating via shared memory,
Go advocates the use of channels to avoid errors involving data races. This language
design choice is a central reason for the popularity of the language. More than 270000
open source projects on GitHub use Go, including prominent applications, such as,

65

66
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

Docker and Kubernetes. However, using channels does not eliminate all concurrency-
related errors. Previous work has shown that channel-related concurrency errors are
frequent in Go programs [47, 48, 84]. A common erroneous pattern involves a thread
waiting on a blocking channel operation that will never be unblocked by any other
thread, often due to some unexpected condition occurring for potential communication
partners. Repeated occurrences of such progress failures may drain system resources
and eventually cause execution to halt.

To detect such blocking errors automatically ahead of program execution, we
propose an approach based on abstract interpretation. Our analysis first locates
channel creation and communication operations by leveraging existing basic analyses
for producing call graphs and aliasing information, and identifies for each channel a
program fragment covering its operations. Each fragment is then analyzed separately
using abstract interpretation, hence the term localized abstract interpretation, to infer
a finite transition system that flow-sensitively models the state space for the relevant
threads and channels in the fragment. Dynamic thread creation may lead to a statically
unbounded number of threads, causing challenges for static analysis. The localized
analysis approach partially circumvents this issue for fragments that may execute an
unbounded number of times at run-time but where each execution only involves a
bounded number of threads. The last step consists of analyzing the generated transition
systems, looking for configurations where a thread may be blocked indefinitely, in
which case a potential error is reported.

Our approach is inspired by GCatch [47], which aims to detect the same category
of errors and similarly analyzes selected program fragments one-by-one. The central
difference is that GCatch does not use abstract interpretation but instead enumerates
potential execution paths for each thread within the fragment and uses an SMT solver
to compose the paths and detect blocked threads. We believe it is simpler to model
channel operations and other Go language constructs using abstract interpretation
instead of SMT encodings. The tool Gomela [25, 26] has similar goals and is based on
bounded model checking of Promela-encoded Go programs. It obtains high scalability
on real-world code, but detects relatively few blocking errors. Another recent approach
is GFuzz [48], which detects blocking errors by fuzzing concrete executions obtained
by running the programs’ test suites. That approach relies on high-coverage test suites
to be effective.

Preliminary experiments show that our localized abstract interpretation approach
scales to large Go programs (typically analyzing each fragment in less than a second),
it is capable of finding many blocking errors that are missed by the existing state-of-
the-art tools, and it has an acceptable false positive rate (less than 50%).

These results are enabled by some pragmatic design choices: (1) A common
programming pattern involves worker pools with correlated loops, which we handle
in a light-weight manner by modeling only a fixed number of loop iterations. (2) The
localized abstract interpreter models a coarse-grained thread scheduler that intuitively
ignores potential shared-memory data races, giving a substantial state space reduction.
As our goal is not to detect data races but channel-related issues, it is acceptable that
not all possible interleavings are explored. Disabling these techniques reduces the

5.2. BACKGROUND 67

performance and accuracy of the analysis.
In summary, the contributions of this paper are:

• We demonstrate that localized abstract interpretation is a promising approach
to detect channel-related concurrency errors. This is notable, because abstract
interpretation is historically rarely used for reasoning about such concurrency
errors due to the large state spaces that often appear.

• By experimentally evaluating the approach on 6 large real-world Go programs,
we show that it compares favorably with the state-of-the-art tools GCatch and
GFuzz. Specifically, it detects 104 blocking errors that GCatch misses and 84
that GFuzz misses (thereof 76 missed by both), and most program fragments are
analyzed in seconds. Additionally, we show that the pragmatic design choices
are important for the efficacy.

• We report on typical scenarios that cause false positives and false negatives,
which suggests interesting opportunities for future work.

The approach is implemented in the tool GOAT.1

5.2 Background

Go is a statically-typed concurrent imperative language geared towards systems
development. Threads (called “goroutines”) can be created dynamically like in many
other languages. Although Go supports traditional shared-memory communication
among threads using locks and other basic synchronization mechanisms, its hallmark
concurrency feature is channels inspired by Hoare’s CSP. A channel is a bounded
queue that can be accessed by multiple threads. Reading from a channel blocks until
data is available, and sending to a channel blocks if the channel is full. The channel
capacity is selected when the channel is created. For example, make(chan T, 3)
creates a channel for values of type T with capacity 3. Channels with capacity
zero are called synchronous because they require reads and corresponding writes to
happen simultaneously. Alongside the send and receive operations (c <- · · · denotes
writing to a channel c and · · · <- c denotes reading), Go’s select statement allows
nondeterministic choice among enabled channel operations. Channels may also be
closed, at which point their blocked receive operations are unblocked and further send
or close operations will fail.

Channel-based concurrency is a powerful and popular language mechanism that
prevents low-level data races, but it does not prevent all concurrency issues. If all
threads are blocked on some channel operations, waiting for other threads to send
or receive, Go’s built-in deadlock detector aborts execution. However, a much more
common situation is that some but not all the threads are blocked, waiting for channel
operations that can never occur, because some thread has taken an execution path

1Go analysis tool

68
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

that was not anticipated by the programmer. This situation may violate desirable
progress properties of the program, and it causes “goroutine leaks” that consume
precious system resources. The goal of our work is to automatically detect whether
such blocking errors are possible in a given Go program.

Figure 5.1 illustrates such an error, found in etcd,2 a distributed key-value store im-
plemented in Go. It involves creating a configurable server (line 44), and waiting until
it is ready (line 45). Servers implement the Server interface (line 1), which contains
a Ready method that returns a channel. Since creating a server may be asynchronous,
a rendezvous point is established by reading from this channel. The servers produced
by NewServer (line 6) are represented by the server structure (line 23), where the
Ready method (line 35) returns the channel embedded in the readyc field. Servers
are ready when the readyc channel is closed (line 31). NewServer normally achieves
this by spawning a thread (expressed using the go keyword), go s.listenAndServe()
(line 19), that executes the close operation. However, if an error occurs (line 14), the
function returns without closing the channel. In this case, reading from the readyc
channel will block indefinitely. The proposed fix for this blocking error is to read
from both the readyc and errc channels simultaneously using a select statement
(lines 45–49).

This example illustrates how channels may easily be misused. Any client using the
API similarly to the testServer function in fig. 5.1 exposes itself to the resource leak.
Fixing the error requires knowledge of the implementation of NewServer and Ready,
which is complicated by having the implementation of *server methods hidden
behind the Server interface.

This particular error is missed by the existing tools GCatch and GFuzz. GCatch
fails to detect the erroneous execution path through the relevant part of the program.
GFuzz performs fuzzing of program executions by re-ordering choices of case clauses
in select statements, which does not suffice to discover that err may be non-nil in
this case. In contrast, GOAT successfully discovers the error by analyzing a program
fragment containing the functions that involve operations on the readyc channel.
The fragment does not contain the function net.Listen, so the analysis makes a
worst-case assumption about the possible value of err, therefore considering the path
with the server start-up error where no thread is spawned at line 19. The developers of
etcd have subsequently confirmed the error and approved the proposed fix.

5.3 Approach

Reasoning automatically about the presence or absence of blocking errors in Go
programs requires flow-sensitive analysis of multi-threaded code and channel state.
Our approach to obtain scalability to large, real-world programs is to consider each
syntactic channel creation site individually (e.g., line 9 in fig. 5.1) and ignore program
code that is unlikely to affect whether operations on channels created there may block.

2https://etcd.io/

https://etcd.io/

5.3. APPROACH 69

1 type Server interface { // Server API
2 Error() chan error
3 Ready() chan struct
4 }
5
6 func NewServer(cfg) Server {
7 s := &server{ // Server object
8 ...
9 readyc: make(chan struct{}) // Ready channel
10 errc: make(chan error, 16) // Error channel
11 }
12 ...
13 _, err = net.Listen(s.from.Scheme, addr)
14 if err != nil { // Server startup error
15 s.errc <- err
16 s.Close()
17 return s
18 }
19 go s.listenAndServe()
20 return s
21 }
22
23 type server struct { // Server data structure
24 ...
25 readyc chan struct{}
26 errc chan error
27 }
28
29 func (s *server) listenAndServe() {
30 ...
31 close(s.readyc) // Close ready channel
32 for { ... } // Listen-and-serve loop
33 }
34
35 func (s *server) Ready() { // Ready channel getter
36 return s.readyc
37 }
38 func (s *server) Error() { // Error channel getter
39 return s.errc
40 }
41
42 func testServer() {
43 ...
44 s := NewServer(cfg)

45 - <-s.Ready() // Potential blocking error

46 + select {

47 + case <-s.Ready(): ... // Proceed normally

48 + case err := <-s.Error(): ... // Handle error

49 + }

50 ...
51 }

Figure 5.1: A blocking error in etcd. (Irrelevant details have been elided, and explana-
tory comments have been added.)

70
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

As an example, the code involving the blocking error of the readyc channel, and the
suggested fix shown in fig. 5.1 is a tiny fraction of the 180 KLOC that constitute etcd.

Overall, the analysis of a given Go program is divided into three main phases:

1. The pre-analysis phase identifies channel creation sites syntactically, and for each
of them selects a program fragment consisting of functions that likely cover the
relevant channel operations. To this end, we leverage the existing Go parser and
Andersen-style points-to analysis [82]. The selection of program fragments is
inspired by the one used by GCatch [47] as explained in detail in section 5.3.

2. The main work is performed in the abstract interpretation phase that analyzes
each program fragment and builds a superlocation graph, which is a finite transition
system that models the state space of the fragment. In section 5.3 we describe
the abstract domain and abstract semantics of this analysis, and how it handles
interactions with program code outside the fragment. These abstractions are
carefully designed to track enough information to enable reasoning about blocking
channel operations, while allowing typical fragments to be analyzed in less than a
second.

3. In the blocking error detection phase described in section 5.3, the superlocation
graphs are traversed, searching for abstract threads at channel operations with no
possible unblocking path. Such threads may likely block indefinitely at run-time.

We conjecture that most uses of channels in real-world Go programs are amenable to
such localized analysis. By bounding the analysis time for each program fragment, we
effectively obtain an analysis technique that scales linearly in the size of the program
(if ignoring the time for the pre-analysis). For programs with multiple entry points,
the precision of the pre-analysis can be improved by running it separately for each
entry point, essentially treating each entry point as a separate program.

Pre-Analysis

The pre-analysis first runs the points-to analysis available in the pointer package
developed by the Go team [82]. Since channels are first-class values in Go, the
resulting points-to information [3] tells us for each channel creation site which channel
operations may involve channels created at that site. Continuing the etcd example
from fig. 5.1, channels created at line 9 may be used only at lines 31 and 45 (before
the fix is applied). We henceforth identify channels by their syntactic creation site in
the program. The points-to analysis result also includes a call graph that approximates
which functions may be called at each call site.3 To support the next steps, we compute

3Imprecision of this existing analysis can lead to a large number of callees for some call sites,
especially where interface method invocation is involved. To prevent such situations from affecting the
main analysis, we prune the call graph at sites where the number of callees exceeds an arbitrarily limit
(10 in our experiments). This pragmatic choice increases precision and speed, at the cost of causing
unsoundness in the analysis.

5.3. APPROACH 71

the strongly connected components (SCCs) of the call graph and organize them in
reverse topological order.

With these initial steps in place, we can perform fragment construction that
selects a set of functions, called a fragment, for each channel c in the program. This
process is inspired by GCatch [47] but has some extensions as explained below. The
basic idea is to locate functions that are likely relevant for reasoning about operations
on c, building on the points-to and call graph information. Since this may involve
other channels, we first identify a set of likely relevant channels, P(c) (called Pset in
[47]). Intuitively, communication operations on channels not in P(c) are ignored by
the abstract interpretation of the fragment constructed for c. The set P(c) consists of
the channel c itself and any other channel c′ that satisfies one or both of the following
conditions:

C1: c′ and c are mutually dependent. Channel c depends on c′ if an operation on c that
may unblock another operation on c is intra-procedurally reachable from a blocking
operation on c′.

C2: c′ and c are used in different cases of the same select statement.

Figure 5.2a illustrates C1 by a blocking error that is due to a communication
mismatch, which would not be revealed by analyzing channels individually. We have
that a depends on b because the read operation on line 55, which may unblock the
write on line 57, intra-procedurally requires reading from b on line 54. Conversely,
b depends on a because writing to b on line 58 requires writing to a first on line 57.
Restricting to intra-procedural reachability is a heuristic that prevents call graph
imprecision to lead to very large P(c) sets.

Figure 5.2b motivates C2 by showing an example of a blocking select that would
not be detected if c′ /∈ P(c) and c /∈ P(c′).

An additional condition for both C1 and C2 is that the dominator of c′ is reachable
from the dominator of c in the call graph. Here, the dominator of a channel is the
dominator in the call graph of all the functions that might create, use, or return the
channel. This additional condition helps limiting the sizes of the P(c) sets, thereby
providing a more fine-grained analysis of the program.

We extend the definition of P(c) beyond the Pset construction of GCatch by also
including any channel c′ in P(c) that satisfies the following condition:

C3: c′ might carry c as a payload, irrespective of how their dominators are related.

This addition of C3 is owed to our empirical observation of programming patterns
involving channels with channel payloads. Figure 5.2c illustrates a non-blocking
example where a would not be included in P(b) by GCatch, leading the analysis to
lose track of the connection between b and the payload of a when ignoring operations
on a. Including a in the set of channels relevant to b allows precise analysis of all
communication in the fragment.

72
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

52 a, b := make(chan int), make(chan int)
53 go func() {
54 <-b
55 <-a
56 }()
57 a <- 1
58 b <- 2

(a) Blocking error resulting from channel communication
mismatch, captured by condition C1.

59 a, b := make(chan int), make(chan int)
60 select {
61 case <-a:
62 case <-b:
63 }

(b) Blocking select statement, captured by condition C2.

64 a := make(chan chan int, 1)
65 go func() {
66 b := make(chan int)
67 a <- b
68 b <- 3
69 }()
70 <-<-a

(c) Common non-blocking communication pattern involv-
ing channels with channels as payload, captured by condi-
tion C3.

Figure 5.2: Motivating examples for constructing P(c).

For each set P(c) we now define a program fragment F (c) containing each
function that for some c′ ∈ P(c) either creates, returns, or performs a communication
operation on c′. Additionally, F (c) includes all ancestors in the call graph, up to
the dominator of those functions. We denote this dominator as the fragment entry.
Note that F (c) typically does not include all functions that may be called from the
fragment. Intuitively, excluded functions that may be called from within the fragment
are considered irrelevant to the operations on c. For the etcd example in fig. 5.1, the
program fragment obtained for the channel created at line 9 contains all the functions
defined in the figure, and its entry is one called testServer.

Next, a side-effect analysis is performed, bottom-up in the SCCs. A function is
marked as potentially inducing side-effects to a points-to analysis allocation site if the
function itself, or any function it may call directly or transitively, might write to that
allocation site. This information, derived from the points-to and call graph analysis, is
used in the abstract interpretation phase for estimating the potential side-effects of
function calls outside the fragment under analysis.

In the etcd example, the call to s.Close at line 16 is not relevant for exposing the

5.3. APPROACH 73

bug involving readyc and the function being called is not included in the fragment
for the readyc channel. A naive over-approximation of possible side-effects of that
function would assume that the readyc and errc fields may be overwritten by invoking
s.Close, losing the guarantee that future reads of these fields yield the references to
the initial channels (lines 9–10). The side-effect analysis prevents this by marking the
invocation of the Close method as not overwriting these fields of s.

The results of the pre-analysis phase are used during abstract interpretation,
described in the next section.

Localized Abstract Interpretation

This section gives an overview of the abstract interpretation phase by first defining the
analysis domain and then describing the abstract semantics in the context of analyzing
program fragments. The analysis is designed such that it aborts if it encounters
certain difficult situations, which helps ensure a good balance between analysis time,
precision, and recall when analyzing a given fragment.

Analysis domain. The abstract domain is a complete lattice that models program
behavior flow-sensitively. It is defined as

A =

superlocations︷ ︸︸ ︷
(G ↪→ (N ×F)︸ ︷︷ ︸

control locations

)→
abstract states︷ ︸︸ ︷
(L → V)

representing bindings from superlocations (defined below) to abstract states. We next
explain each of the components, N, F , G , L and V .

Using the ssa package [83] and the call graph from the pre-analysis, we obtain a
control flow graph (CFG) for the given program with a set of nodes N and functions F .

The set G represents abstract threads. We define G as the set of go instructions
that appear in the program, i.e., G ⊆ N ∪{ε}, where the special element ε represents
the main thread. Intuitively, each thread that may appear at run-time is represented
abstractly by the go instruction where it was spawned.

The domain of A is the set of superlocations, where each abstract thread from G
is bound to a control location (or is undefined). In a control location (n, f) ∈ N ×F ,
the CFG node n represents the next instruction to be executed by the corresponding
thread. The function f is the one where the thread started execution. For example,
for threads created at line 19 in fig. 5.1, f is the listenAndServe function defined
at lines 29–33. Intuitively, for a superlocation where g 7→ (n, f), thread g ∈ G is
currently at node n and terminates when it leaves f . If g does not map to any control
location, it means that no corresponding thread exists. Since control locations are
derived from control flow nodes, any (n′, f) is a successor of (n, f) if n′ is a successor
of n in the CFG. Additionally the control location (fexit, f) where fexit is the exit CFG
node for f , indicating that a thread is at the exit of the function where it started, has a
special successor (◦, f), indicating that the thread has terminated.

L is the set of abstract stack and heap locations. These are identified syntactically
by the variable declaration sites and allocation sites, respectively, and are further

74
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

distinguishable by the abstract thread that allocates them (akin to context-sensitive
heaps, or heap cloning, in context-sensitive points-to analysis [76]).

V is the domain of abstract values. It is a product lattice that combines standard
analysis domains for each Go type: constant propagation for basic primitive types,
points-to sets for reference types (pointers, interfaces, channel locations,4 closures,
references to built-in dynamic data structures), and a map lattice for aggregate data
types, e.g., struct values. This is extended with the domain of abstract channels,
which is a product of four sub-domains:

1. The channel status, represented by a four-element lattice consisting of OPEN,
CLOSED, undefined (⊥), and unknown (⊤). This information is relevant for mod-
eling channel communication (closed channels do not block on reading, whereas
sending produces an error) and payload data flow (closed channels with empty
buffers produce the zero-value for the payload type).

2. The capacity lattice, which is a constant propagation lattice for natural numbers,
keeping track of the channel capacity.

3. The current buffer size lattice, as an interval lattice bounded in height by the
number encoded in the capacity, if statically decidable, or a one element lattice
(unknown) otherwise.

4. The channel payload, which is itself the abstract value lattice. Possible payload
values are joined for channels with capacities greater than 1. For the example in
fig. 5.2c, this definition allows the precise modeling of the payload of channel a as
the reference to channel b.

While the abstract domain of channel payloads makes the value lattice inductive, the
type system of Go ensures that the height of this lattice is always finite for any given
Go program: named types may not have cyclical definitions, except via indirection,
which is modeled by points-to sets.

Figure 5.3 depicts the execution paths of the example in fig. 5.1 as a graph. The
top of each node represents a superlocation,5 and the bottom is the associated abstract
state. For example, at the superlocation [ε 7→ if err != nil]2, the channel readyc
has been previously initialized, and its status is OPEN (we here focus on the channel
status and omit all the other information being represented by the abstract states). At
[ε 7→<-s.Ready() ,g1 7→ close(s.readyc)]6, we model the configuration where the
main thread waits on <-s.Ready(), and the child thread denoted g1, which is created
at line 19, will next close the readyc channel. In abstract states of successors of
this superlocation, readyc is CLOSED. The edges in the graph express the successor
relation between the superlocations, and the nodes with thick borders constitute those

4To account for potential aliasing, channels are treated as a special kind of objects along with other
reference types.

5We denote a CFG node by its syntax and omit the function component of control locations for
brevity. The subscript labels, e.g., [. . .]1, uniquely identify the superlocations.

5.3. APPROACH 75

[ε 7→ testServerentry]1

readyc 7→ ⊥

Fragment entry superlocation

· · ·

[ε 7→ if err != nil]2

readyc 7→ OPEN

[ε 7→ <-s.Ready()]3
readyc 7→ OPEN

[ε 7→ go s.listenAndServe()]4
readyc 7→ OPEN

[ε 7→ return s, g1 7→ listenAndServeentry]5

readyc 7→ OPEN

· · ·

[ε 7→ <-s.Ready() , g1 7→ close(s.readyc)]6
readyc 7→ OPEN

· · ·

[ε 7→ <-s.Ready() , g1 7→ ◦]7
readyc 7→ CLOSED

· · ·

then

else

Figure 5.3: Subset of the control flow in the example from fig. 5.1, where superloca-
tions are paired with abstract states.

included in the superlocation graph as explained later. For an execution that takes
the ‘then’ branch, reading from channel readyc (at the node marked with red) will
block because there is no communication partner. Conversely, on the ‘else’ branch, g1
closes readyc, unblocking the read operation in the main thread (at the node marked
with blue).

Notice that the abstract domain of the analysis has been designed such that
it maintains an abstract state for each superlocation rather than tracking state for
individual threads. In the example, the status of the readyc channel importantly
depends on the combination of where the different threads are in the program.

Abstract semantics. Given a program fragment F (c) with entry f , the ab-
stract interpretation computes an element of the abstract domain A using a fixpoint
computation, as usual in monotone frameworks [35].

76
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

Analysis is initiated by assigning an initial abstract state to the entry superlocation
[ε 7→ (fentry, f)], i.e., the superlocation that only maps the main thread, ε , to the entry
of the function f , where fentry is the entry CFG node for f . All other threads are
inactive (i.e., their control locations are undefined) at the entry superlocation. Since
the fragment entry is generally not a program entry point, the initial abstract state is
constructed such that it conservatively models the values of any parameters or free
variables using the ⊤ lattice element for the corresponding Go type. To reduce the
size of the abstract state, reference types are handled lazily as explained below (see
‘Localized analysis’).

The abstract interpretation repeatedly applies the transfer functions for the next
Go instruction for each active thread, using a worklist algorithm until the least fixpoint
is reached. For brevity, we omit a detailed description of the transfer functions;
intuitively, they simply model the semantics of Go instructions in the control flow
graphs obtained via the ssa package [83], according to the abstraction established by
the analysis domain. Some interesting analysis design choices are involved, however,
in enabling strong updates of control locations, modeling the thread scheduler, and
handling calls to code outside the fragment being analyzed, as explained next.

Enabling strong updates of control locations. To provide sufficient analysis
precision about channel communication, it is important that each abstract thread
represents at most one run-time thread. This property makes it possible to strongly
update the CFG node to its successors when processing its transfer function for
an abstract thread.6 If the analysis at a superlocation encounters a go instruction
that already represents an abstract thread (meaning that a control location is already
assigned to that abstract thread), it simply aborts. In complete executions of whole
programs, it is very common that a syntactic go instruction is encountered multiple
times. However, because we analyze not whole programs but relatively small program
fragments, the consequences are less severe, as many go instructions encountered by
the analysis will spawn functions that are not in the analyzed fragment, making the
analysis simply ignore them (while treating their potential side-effects conservatively).
For example, the fragment of readyc in fig. 5.1 may be analyzed independently, even
if the fragment entry, testServer, may be reached an unbounded amount of times in
a complete program execution.

Handling correlated loops. Figure 5.4 shows a common pattern in Go programs.
At lines 71–78, a statically unknown number of worker threads are created to compute
some values that are then sent to the channel ch. At lines 79–81, the results are
collected by the main thread. Assume that, in normal executions, the worker threads
always take the branch to the send operation at line 75. In this situation, the total
number of send operations is equal to the total number of receive operations, so
all the threads eventually progress. However, if one of the worker threads does not
execute its send operation, the main thread is blocked indefinitely. This program

6This notion of strong updates is reminiscent of the one used in points-to analysis [16]. If one
abstract thread could represent multiple concrete threads, the CFG node of the control location could
only be updated weakly, which would lose the effect of flow sensitivity.

5.3. APPROACH 77

71 for i := range list {
72 go func() {
73 ...
74 if ... {
75 ch <- res
76 }
77 }()
78 }
79 for i := range list {
80 ...<-ch
81 }

Figure 5.4: Example program where communication involves correlated loops.

exemplifies correlated loops, where two loops perform the same number of iterations
as determined by the number of elements in list. We take a lightweight approach to
handling this pattern by assuming that all loops perform exactly one iteration. This has
the advantage of reducing the number of analysis aborts triggered by the conditions
discussed above, while allowing the analysis to detect blocking errors as the one in
fig. 5.4. If the error in that example is fixed by having the send operations occur
unconditionally (e.g., by removing line 74), the analysis reports no error.

Modeling the thread scheduler. Although channels are the recommended mech-
anism in Go for communicating between threads, the language also supports shared-
memory concurrency. The goal of our analysis is not to detect data races but blocking
errors caused by channel miscommunication.7 Nevertheless, the possibility of data
races means that a perfectly sound analysis would have to consider all possible inter-
leavings of thread executions, at the level of individual instructions, which quickly
leads to a combinatorial explosion in the size of the explored superlocation set.

We alleviate this issue by treating non-communicating instruction sequences as if
they were atomic, while preserving the interleavings of channel operations. Intuitively,
the abstract interpreter only models thread switches that occur when the currently
executing thread is ready to communicate (or has terminated), and communication
only occurs when all threads are ready to communicate (or have terminated). Such a
coarse-grained modeling of thread scheduling substantially reduces the state space
and can only result in missed bugs in the presence of race conditions.

To express this more precisely, we classify each control location as either com-
municating or silent to denote whether the operation at its control flow node is a
communication operation or not, respectively. Each thread in a superlocation is simi-
larly classified, depending on the type of control location it is bound to. At a silent
superlocation, at least one thread is silent, and at a communicating superlocation, all
threads are communicating or terminated.

The analysis computes the least fixpoint a ∈ A of the analysis constraints by a
series of approximants ⊥= a0 ⊏ a1 ⊏ a2 ⊏ · · ·⊏ an = a using a traditional worklist

7This approach is supported by the design philosophy of the Go design team: “Don’t communicate
by sharing memory; share memory by communicating” [81].

78
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

algorithm on superlocations [19, 35]. Let φ be a superlocation and σ its corresponding
abstracting state. Processing φ in the worklist algorithm produces a set of transitions,
each consisting of a successor superlocation φ ′ and an updated abstract state σ ′.

• If φ is communicating, we model inter-processual data flow. For each enabled
communication operation of each thread, the outgoing transitions are computed.
Let g be a thread in φ where the instruction at the corresponding control location
θ = φ(g) is an enabled communication operation according to the abstract seman-
tics of the instruction and the abstract state σ . For every φ ′ obtained by modeling
the instruction at θ in φ , we have that θ ′ = φ ′(g) is a successor of θ (and similarly
for any g′ which is chosen as a potential communication partner, in the case of
channel synchronization). Similarly, the corresponding abstract state σ ′ is obtained
by appropriately updating σ according to the abstract semantics of the instruction
at θ .

• If φ is silent, we model intra-processual data flow, by only producing transitions
for the next silent thread. The next silent thread is selected by imposing an arbitrary
but deterministic order on threads. Let g be the next silent thread of φ , and let
θ = φ(g). The set of outgoing transitions at φ is now computed according to
the abstract semantics of the (non-communicating) instruction at g relative to the
abstract state σ .

In both cases, the next approximant is computed as the least upper bound ai+1 =
ai ⊔ [φ ′

1 7→ σ ′
1]⊔ ·· ·⊔ [φ ′

k 7→ σ ′
k] where each pair φ ′

j, σ ′
j for j = 1, . . . ,k is one of the

generated transitions.
As an example, since [ε 7→ return s,g1 7→ listenAndServeentry]5 in fig. 5.3 is

silent, we apply the intra-processual analysis, first by modeling the sequential opera-
tions of ε until <-s.Ready() is reached, and then those of g1 until close(s.readyc)
is reached (the intermediary steps are elided in the figure). This leads to [ε 7→
<-s.Ready() ,g1 7→ close(s.readyc)]6, which is a communicating superlocation,
where the analysis models possible progress for each enabled operation of ε and g1
via inter-processual data flow. As reading from readyc is not enabled, due to readyc
being OPEN and ε not having a communication partner, only g1 can proceed by
closing readyc. Starting at the successor, we again apply the intra-processual analysis
to g1 (elided), reaching communicating superlocation [ε 7→<-s.Ready() ,g1 7→ ◦]7.
At this point, g1 is terminated, while ε can proceed by reading from readyc, which is
now enabled since readyc is guaranteed to be closed.

Localized analysis. The fragment being analyzed may contain calls to code
outside the fragment. Unknown primitive values (integers, strings, etc.) that originate
from such code are modeled conservatively using the ⊤ lattice element for the corre-
sponding type (representing all possible values of that type), as in the construction of
the initial abstract state. Code outside the fragment may also affect the abstract state
due to side-effects when references escape the fragment. Heap locations that may
be affected according to the side-effect analysis (section 5.3) and are of a primitive
type are similarly overwritten by ⊤ elements for the corresponding type. For every

5.3. APPROACH 79

82 type S struct { ch chan int; val int; flag bool }
83
84 func entry() {
85 s := S{ch: make(chan int, 1), val: 10, flag: false}
86 init(&s)
87 s.ch <- s.val
88 }
89
90 func init(s *S) {
91 if s.flag {
92 s.val = 0
93 }
94 }

Figure 5.5: Localized analysis example.

escaping heap location with a reference type, the points-to pre-analysis provides a
conservative points-to set that models all possible side-effects to that location.

Unfortunately, Go’s standard points-to analysis that we rely on does not support
points-to queries to arbitrary heap locations but only to SSA registers. For this reason,
our implementation queries the points-to analysis lazily, when the points-to sets of
interest reach registers. This also has the effect of reducing the sizes of the points-to
sets in the abstract states. However, it causes complications when lazily evaluated
points-to sets themselves escape the fragment being analyzed. When that occurs, we
pragmatically choose to simply ignore side-effects involving those references. Also,
we let the analysis of a fragment abort if a lazily evaluated points-to set contains a
reference to a channel in P(c), as the analysis has likely lost too much precision in
that situation.

For the fragment created for the channel allocated on line 85 in the example
program in fig. 5.5, the fragment entry is the function entry and the function init is
not included in the fragment. When the analysis reaches the call to init, the reference
to s escapes the fragment. At this point the abstract state for the object stored at
that abstract location corresponding to &s is [ch 7→ {make(chan int, 1)ε

85}, val 7→
10, flag 7→ false]. Here, make(chan int, 1)ε

85 denotes a channel allocation on
line 85 by the thread ε . The side-effect analysis tells us that the field val may be
overwritten in the call to init, therefore the abstract value for the field val is updated
to ⊤. We can soundly keep the abstract points-to set for the field ch and the constant
false as the abstract value for the field flag, as these fields cannot be written to
in init. Consequently, the abstract interpreter knows that the only channel that is
operated on at line 87 is make(chan int, 1)ε

85.
To illustrate the technical issue with channel references in lazily evaluated points-

to sets, assume we modify the assignment s.val = 0 on line 92 such that s.ch is
instead assigned a newly allocated channel. The abstract value for the ch field would
then be replaced by a lazily evaluated points-to set when the call to init is encoun-
tered. After the call, when the channel receive operation is reached on line 87, the
lazily evaluated points-to set reaches an SSA register and is expanded by querying

80
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

the points-to analysis, which returns the points-to set {nil, make(chan int, 1)⊤85,
make(chan int, 1)⊤92}, where ⊤ denotes an unknown thread. In this case, the analy-
sis aborts because the expanded points-to set contains the channel the fragment was
created for. In our experiments we find that channel values are rarely overwritten, so
this situation is not common.

The side-effect analysis is a crucial component that tells the abstract interpreter
when it can soundly be assumed that channel values are not overwritten in calls to
functions outside the fragment. Despite the technical limitations regarding points-to
information and potential for analysis failure, the experimental evaluation (section 5.4)
shows that the analysis is able to find many blocking errors.

Detecting Blocking Errors

The abstract interpretation of a given program fragment produces a superlocation
graph, which is a finite transition system where each node denotes a reachable com-
municating superlocation or is the initial superlocation of the fragment, and edges are
obtained from the transitions described in section 5.3. Given communicating super-
locations φ1 and φ2, there is an edge from φ1 to φ2 if the abstract interpreter discovers
a sequence of transitions from φ1 to φ2 where all the intermediate superlocations are
silent.

The error detection phase is carried out by performing simple model checking on
the superlocation graph. Specifically, it checks for every communicating thread g of
every superlocation φ that there exists at least one path from φ to some φ ′ where g
has made progress. The absence of such a path indicates a potential blocking error in
the fragment.

This approach to detecting blocking errors may have both false positives and false
negatives. Since the abstract interpretation phase performs over-approximations, it
may discover reachable superlocations that do not correspond to concrete program
configurations that are reachable at run-time. Abstract threads in such superlocations
may exhibit blocking errors according to the check described above, leading to
false positives. Over-approximating whether transitions are enabled can also lead to
blocking errors being missed, as the produced transition system may contain spurious
paths to superlocations where a thread makes progress.

An error report specifies which thread is potentially blocked and on which line,
which channel is involved, and a shortest path in the superlocation graph from the
fragment’s entry superlocation to the superlocation where the goroutine is blocked.
This information aids further diagnosis.

5.4 Evaluation

The proposed approach is implemented in the tool GOAT, on top of existing libraries
for Go program analysis, i.e., the Go package loader, parser, type analysis, SSA
IR constructor [83], and the points-to and call graph analysis [82]. We evaluate its
efficacy by answering the following research questions:

5.4. EVALUATION 81

RQ1: What is the precision of the analysis for detecting blocking errors in real-world
Go programs?

RQ2: How does the analysis accuracy compare to that of the state-of-the-art Go
concurrency bug detection tools GCatch [47] and GFuzz [48]?

RQ3: Does the analysis scale to large code bases?

RQ4: Are the central design choices (treatment of loops and thread scheduling)
important for the analysis accuracy and performance?

To answer the research question regarding accuracy and performance, and to
compare with GCatch and GFuzz, we use a suite of 6 large real-world Go projects
as benchmarks. These are shown in table 5.1. They are mature software systems
used in critical production environments. Also, they nearly correspond to the suite of
benchmarks used for the evaluation of GFuzz, but we have chosen to exclude Docker
as it uses a legacy dependency management and build system. To enable comparison
of our results with those of GFuzz, we use the same version of the projects as the
GFuzz artifact. We refer to this version of the benchmarks as suite A.

The GCatch tool was evaluated on the same projects but in an earlier state, so we
manually revert the relevant fixes submitted by the GCatch team such that rediscov-
ering the blocking errors is possible.8 We refer to this version of the benchmarks as
suite B.

When we run GOAT on a project, we invoke it once for every package in the
project that contains channel creation and consolidate the results over all packages.
The pre-analysis phase (section 5.3) is run once for each package, and the abstract
interpretation and blocking error detection phases (section 5.3) are run once for each
fragment produced by the pre-analysis. We impose a 60 seconds time limit on each
run of the abstract interpreter.

The GOAT tool and the experimental data are available at brics.dk/goat.

RQ1: Precision

Analysis precision is measured as the ratio between the analysis’ reports that are true
positives and the total number of reports.

Running GOAT on the 6 real-world Go projects described above results in a
set of reports of potential blocking errors. To evaluate the metric the reports must
be categorized into true and false positives. Two co-authors manually performed
the categorization by inspecting the context of the reported code, and by looking
at previously reported and known blocking errors from GCatch and GFuzz, and at
the issue trackers for the relevant projects to see if the blocking error had previously
been reported or fixed. In cases of doubt due to complex control-flow in the context

8Reproducible builds are not supported by older versions of Go. Using the same versions of the
projects as GCatch was evaluated on is unfortunately not possible as we could not build them in the old
state.

https://github.com/moby/moby
https://brics.dk/goat/

82
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

Name Description KLOC GitHub stars

grpc An implementation of the gRPC remote procedure call system 117 15.5K
etcd A distributed reliable key-value store 181 39.7K
go-ethereum An implementation of the Ethereum protocol 368 37.1K
tidb A distributed HTAP database compatible with MySQL 476 31.2K
prometheus A monitoring system and time series database 1186 42.2K
kubernetes A system for managing containerized applications across multiple hosts 3453 88.0K

Table 5.1: Go benchmark projects.

True positives False positives
Benchmark GFuzz Shared GOAT GOAT

grpc 7 1 2 6
etcd 3 4 31 11
go-ethereum 34 6 14 27
tidb 7 0 0 0
prometheus 8 3 5 6
kubernetes 15 2 31 30

Total 74 16 83 80

Table 5.2: Bug reports for suite A.

True positives False positives
Benchmark GCatch Shared GOAT GOAT GCatch

grpc 2 4 2 6 1
etcd 2 28 39 11 7
go-ethereum 3 9 25 29 15
tidb 5 0 0 0 3
prometheus 1 7 10 6 2
kubernetes 3 5 28 30 7

Total 16 53 104 82 35

Table 5.3: Bug reports for suite B.

https://github.com/grpc/grpc-go/
https://github.com/etcd-io/etcd/
https://github.com/ethereum/go-ethereum/
https://github.com/pingcap/tidb
https://github.com/prometheus/prometheus
https://github.com/kubernetes/kubernetes

5.4. EVALUATION 83

of the reported blocking error, or insufficient understanding of a project’s code,
we conservatively categorized the report as a false positive. None of the bugs we
found have yet been reported to the developers (except for the etcd bug described in
section 5.2).

The results of the categorization are presented in tables 5.2 and 5.3. In total, GOAT

reports 99 true positives for suite A (obtained by adding the ‘Shared’ true positives
to those listed in the GOAT column in table 5.2) and 80 false positives, and 157 true
positives and 82 false positives are reported when GOAT is run on suite B. GOAT

achieves a precision of 99/179 ≈ 55% on suite A and a precision of 157/239 ≈ 65%
on suite B, which is on par with the precision of GCatch. This means that roughly one
in every two reports is a true positive, which we consider acceptable for practical use.

On the suite of 6 large real-world Go projects, GOAT achieves
an acceptable true positive ratio of more than 50%.

RQ2: Comparison with GFuzz and GCatch

We compare the effectiveness of our proof-of-concept blocking error detection tool
with two state-of-the-art tools GFuzz and GCatch.

Comparison with GFuzz: For this comparison we run GOAT on the benchmarks in
suite A and collect the produced blocking error reports. To obtain the blocking errors
reported by GFuzz we do not attempt to run the tool itself, as it relies on a highly
non-deterministic fuzzing technique. Instead we use the list of blocking error reports
in the GFuzz artifact [46]. The results are summarized in table 5.2.

The true positive reports are separated into three non-overlapping groups: ‘Shared’
reports are reported by both tools, whereas the GOAT and GFuzz groups denote reports
that are produced exclusively by the corresponding tool.

We see that the tools report a nearly disjoint set of blocking errors. This is
expected, as the techniques involved are very different. GFuzz only attempts to
over-approximate which select branches are chosen in an execution, while GOAT

also explores data-dependent control flow, scheduling, and choice of communication
partners.

Since GFuzz detects bugs in fuzzed concrete executions, the tools reports few
false positives. Nonetheless, imprecision in how GFuzz tracks which goroutines can
send on which channels causes it to report 14 false positives according to its authors.
The GFuzz artifact additionally contains bugs reported by GCatch when run on suite
A. When the true positive reports are combined with the GFuzz reports, GOAT finds
76 bugs that are missed by both GFuzz and GCatch.

Comparison with GCatch: We run both GCatch and GOAT on the benchmarks in
suite B and collect the produced blocking error reports. The results are summarized
in table 5.3. The true positive reports are again separated into three non-overlapping
groups. The false positive reports are not separated in this fashion.

84
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

We find that GOAT reports 104 true positives that GCatch misses, whereas GOAT

misses 16 true positives that GCatch reports. We inspected the 16 reports that GOAT

misses to understand why they are missed. Three reports involve unsupported features,
like reflection, panic and recover, or standard library functions we have not modeled.
Three errors are missed due to imprecision in abstract channel properties, resulting
from branches in sequential control flow. GCatch handles such situations with more
precision by generating different paths for each branching point. Another two errors
require precise loop unrolling, handled by GCatch as part of its path unrolling mecha-
nism. One blocking error is missed due to GOAT unsoundly pruning the call graph.
The remaining errors are undetected due to aborting the analysis, with the unbounded
spawning of threads as the predominant factor.

GOAT is able to detect many blocking errors that are missed
by the state-of-the-art tools GCatch and GFuzz.

RQ3: Scalability

For this research question we wish to evaluate whether the program analysis scales to
large code bases. We do this by measuring the running time of the analysis phases
on suite B (the results for suite A are essentially the same). The results of the
measurements are presented in table 5.4. The “Time” column displays the average
time per run, while the “95%” column displays the time t such that 95% of the runs
complete in less than t seconds.

Across all benchmarks, pre-analysis is performed 476 times, whereas the abstract
interpretation phase and the blocking error detection phase are run 11199 times. On
average, 14 minutes are spent in each run of the pre-analysis phase and a second
is spent in each run of the abstract interpretation phase. In these experiments we
repeat the pre-analysis for all program packages to best measure the potential of our
approach in detecting blocking errors. It is also possible to run the pre-analysis once
for all packages combined, at the cost of a modest reduction in analysis precision. The
largest benchmark, kubernetes, is an outlier for the pre-analysis time but is processed
quickly by the main analysis phases. tidb is an outlier for analysis time where more
than 5% of analysis runs for this benchmark time out.

A detailed breakdown of the running time of the abstract interpretation phase
is presented in fig. 5.6. Here we see that the vast majority of runs of the abstract
interpreter finish within 5 seconds, and that only a small number of runs (70 of 11199
≈ 0.6%) are aborted due to reaching the time limit. The time required for the blocking
error detection phase is negligible.

The abstract interpretation and blocking error detection phases
of the approach finish quickly in the majority of cases. The total
analysis time is dominated by the points-to analysis performed
in the pre-analysis phase.

5.4. EVALUATION 85

Pre-analysis Main analysis
Benchmark Runs Time 95% Runs Time 95%

grpc 96 24 s 46 s 3023 1.64 s 5 s
etcd 45 42 s 65 s 1769 0.12 s 1 s
go-ethereum 65 31 s 54 s 3796 0.55 s 2 s
tidb 14 1182 s 1958 s 342 10.99 s 60 s
prometheus 24 67 s 494 s 742 0.22 s 1 s
kubernetes 232 1651 s 8924 s 1527 0.15 s 1 s

Total 476 856 s 7774 s 11199 1.02 s 4 s

Table 5.4: Number of runs and running times for pre-analysis and main analysis.

0 5 10 15 20 25 30 35 40 45 50 55 ≥ 60
Analysis time (s)

100

101

102

103

104

Co
un

t

Figure 5.6: Distribution of running times.

86
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

Mode TP FP Aborts Timeouts

Normal 123 53 76% 69
Sound loops 109 46 79% 66
Fine-grained scheduler 113 47 73% 780

Table 5.5: Importance of design choices.

RQ4: Importance of Design Choices

For this research question we wish to evaluate the choice of modeling only one
iteration of each loop and the coarse-grained thread scheduler, both explained in
section 5.3. We do this by analyzing the benchmarks in suite B with GOAT in three
different modes. ‘Normal’ is the default mode, ‘Sound loops’ models loops soundly
as in normal abstract interpretation, and ‘Fine-grained scheduler’ replaces the coarse-
grained scheduler with a fine-grained scheduler that considers the interleavings of all
operations. In table 5.5, we compare each mode by measuring reported true and false
positives, timeouts, and the abort ratio for all benchmarks except kubernetes (which
we exclude in this experiment due to prohibitive pre-analysis times).

Disabling the special treatment of loops increases the number of aborted analysis
runs, as expected. The analysis also detects fewer blocking errors: 16 errors are
missed compared to a normal run, but only 2 new errors are discovered. The number
of false positives also decreases, but at a smaller rate compared to that of true positives.

Modeling all interleavings, including those for silent superlocations, causes a
significant increase in the size of the reachable superlocation space explored by
the worklist algorithm. For example, analyzing the fragment in fig. 5.1 with the
approach from section 5.3 only computes 637 unique superlocations, while 29629
superlocations are reached if considering all possible interleavings. More generally,
the average time for one abstract interpretation run increases from 1.02 s to 9.43 s,
the number of timeouts increases substantially, and the number of detected errors
decreases without any significant reduction in false positives.

The pragmatic design choices positively impact the analysis by
improving the error detection capability and efficiency.

Discussion

Among the threats to the validity of the claims is the choice of benchmarks, which
may not be representative of typical Go programs. We have selected benchmarks that
are used in prior work to enable comparison, and they are large and high ranked on
GitHub. Also, mistakes during the manual inspection of reports may lead to incorrect
classification of true positives and false positives; as mentioned we have attempted to
conservatively classify difficult cases as false positives.

In our experiments the abstract interpretation phase aborts in 73% of all runs
according to the conditions described in section 5.3 and reports no blocking errors

5.4. EVALUATION 87

in those cases. Although the tool still finds many blocking errors and has a good
ratio between true and false positives according to the experiments, many errors may
remain undetected. As an interesting opportunity for future work, it may be possible
to increase the completion rate by refining the analysis domain and the heuristics of
the pre-analysis.

The GoBench [92] test suite contains 103 bug kernels, i.e., Go programs that
have been manually synthesized by extracting the critical parts of surrounding code
necessary to trigger blocking errors found in real-world Go projects. Of these 103
kernels, 24 are synthesized from blocking errors involving channels and are therefore
in the scope of GOAT. We find that GOAT detects 12 of the 24 blocking errors
(whereas GCatch detects 10), again indicating that there may be many more errors to
be found (provided that the bug kernels are representative of real-world Go programs).
Alongside over-approximations and aborting the analysis, another prevalent cause
of missing blocking errors is the construction of P and F , which both GOAT and
GCatch rely on. The current heuristics largely group channels intra-procedurally,
but several bug kernels expose blocking errors caused by intricate inter-procedural
interactions. More extensions for identifying specific inter-procedural patterns (such
as C3 in section 5.3) might improve error detection capabilities while keeping the
resulting fragments small, which remains to be explored in future work.

Many false positives are due to channel operations that are unreachable in concrete
executions but reached by the analysis due to over-approximation. Typical causes of
such over-approximations are data-dependent control-flow, spurious cycles in the call
graph, imprecision due to channel inclusion in dynamic data structures, or excluding
critical channels from the relevant set of a given fragment. Under-approximations
also cause false positives. Call graph pruning at highly imprecise call sites may
remove edges to functions that should be included in the fragment, and the special
treatment of loops and the coarse-grained modeling of the thread scheduler might lead
to missing control flow paths. As pointed out in section 5.3, over-approximation in
the pre-analysis and abstract interpretation phases may also cause errors to be missed
in the blocking error detection phase.

The results of the experiments for RQ3 indicate that GOAT would benefit from
more performant analyses used in the pre-analysis phase. Our approach does not
require the full points-to solution that the analysis produces, it only needs points-to
information for channel operations and for reference values that come from outside
the fragment being analyzed. This suggests that a demand-driven points-to analysis
would be a good fit for GOAT.

To limit the scope of GOAT, we focus on blocking errors, but the underlying tech-
nique may be extended to check for other channel-related properties. The produced
abstract states may be used to check for potential safety violations, such as writing
to or closing already closed or nil-valued channels. The scope of blocking errors
can also be extended to include other common Go concurrency primitives, like Mutex,
WaitGroup, and Cond.

88
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

5.5 Related Work

As stated in section 5.1, GCatch [47] and GFuzz [48] represent the current state-of-
the-art for automated detection of blocking errors in real-world Go programs. The key
difference to our approach is that GCatch relies on SMT encoding of the execution
paths in the program fragments whereas GOAT builds abstract state spaces for the
program fragments using abstract interpretation. We believe abstract interpretation
provides a natural approach to model the various language features of Go, and that it is
flexible for exploring variations of the abstract domain. GFuzz is a dynamic analysis
tool that instruments select statements to force execution of specific branches and
produce alternative case selections via fuzzing. This leads the modified executions
to reach execution paths that may be difficult to produce in traditional testing. It
also instruments the run-time of Go by collecting relationships between threads and
channels, and periodically scans the memory for threads blocked on channels with no
future communication partner. As a dynamic analysis tool, GFuzz has high precision
for the paths it explores but is restricted to concrete executions.

Combining behavioral types and model checking is another popular approach.
Techniques include deadlock detection for programs with synchronous channels by
global graph synthesis [59] and session type inference for fenced programs [43],
abstracted to a symbolic state space for which safety and k-liveness properties are
verified. The Godel checker [44] infers session types and verifies safety and liveness
properties defined as µ-calculus encodings via off-the-shelf LTL model checkers. Key
limitations to these approaches are difficulties in combining session types and more
precise data abstractions, and scalability to real-world Go programs due to lack of
coverage of other Go features, e.g., higher-order functions, aliasing, and interfaces.
The most recent approach in this family is Gomela [25, 26], which translates Go
programs to Promela and uses SPIN [32] for model checking. The experimental
results reported for Gomela show good results on small programs but also that it finds
relatively few concurrency errors in large, real-world Go programs.

Abstract interpretation has a solid mathematical foundation [19] and has been
studied and applied extensively for decades, mostly for single-threaded programs but
also for concurrency (see, e.g., [41, 53–55, 87]). Most of the existing techniques are
based on thread-modular analysis, without localization to program fragments, and are
designed for shared-memory concurrency not involving channels. Previous work on
abstract interpretation for channel-based concurrency introduced a notion of process-
local static analysis where each abstract thread flow-sensitively models an over-approx-
imation of possible futures as lattice-valued regular expressions [51]. However, it only
models communication for a fixed number of threads and synchronous channels, and
has only been evaluated on small programs, unlike our approach.

Many of these existing tools detect not only blocking errors but also other kinds of
concurrency errors. In principle, GOAT can easily be extended to also scan for safety
errors, based on the superlocation graphs it already produces, but we leave that for
future work.

GCatch, Gomela and GOAT all achieve scalability by analyzing program fragments

5.6. CONCLUSION 89

individually. The technique GOAT uses for approximating the behavior of program
code outside the fragment being analyzed can be seen as a variation of the “worst-case
separate analysis” approach by Cousot and Cousot [21], except that we do not need to
compose modular analysis results. Also, we leverage the pre-analysis and we choose
to ignore certain potential side-effects involving references as discussed in section 5.3.

5.6 Conclusion

We have shown that localized abstract interpretation is a promising approach to detect
blocking errors in programs that use channel-based thread communication. This
approach offers an alternative to existing techniques that rely on SMT encoding or
bounded model checking of program fragments. The pragmatic design choices make
the approach neither sound nor complete, but enable scalability to large code bases
and detection of many bugs in practice. The implementation of the approach, GOAT,
can detect blocking errors in real-world Go programs that other tools miss, with more
than 50% of the reported issues being true positives.

Our experiments also suggest opportunities for further improvements. Provided
that the existing collection of small benchmark programs by Yuan et al. [92] is
representative of real-world usage of Go, many blocking errors remain beyond reach
of existing automated techniques despite the progress obtained by GOAT. It may
also be worthwhile to develop more specialized pre-analyses. Furthermore, it may
be interesting to extend the analysis to also report safety errors and to model other
concurrency primitives, by building on the superlocation graphs produced by GOAT

and making further use of the flexibility of abstract interpretation.

5.7 Epilogue: Modeling of more Concurrency Primitives

We mentioned an opportunity for future work in the previous section, which is to
extend the analysis with support for additional shared memory concurrency primi-
tives available in Go’s sync package: Mutex (locks), RWMutex (reader/writer mutual
exclusion locks), WaitGroup, and Cond (condition variables). We will refer to these
primitives as traditional concurrency primitives. The idea behind this extension is
two-fold. One aspect is to give evidence to the flexibility of our approach. The
extension should only require simple changes in the pre-analysis phase, changes to the
analysis domain to support special abstract representations of the new primitives, and
the implementation of transfer functions for Go function calls that manipulate the new
primitives. We claim that the bug detection phase, which inspects superlocation graphs
produced by the abstract interpretation phase, does not require changes at all. The
second aspect is to further characterize the false negative rate of our technique. The
main tool that we use to measure false negatives is the GoBench suite [92], mentioned
briefly in section 5.4. The study of false negatives requires a set of programs with
known bugs, such that when we run our analysis on these programs, we can detect
whether we fail to report the known bugs. The experiment we performed to measure

90
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

95 import "sync"
96
97 type SynchronousCounter struct {
98 sync.Mutex
99 cnt int
100 }
101
102 func (sc *SynchronousCounter) inc() {
103 sc.Lock()
104 defer sc.Unlock()
105 sc.cnt++
106 }
107
108 func main() {
109 ch := make(chan int)
110 mu := &sync.Mutex{}
111 counter := &SynchronousCounter{}
112 /* ... */
113 }

Figure 5.7: Go program with channel and mutex allocation sites.

false negatives was conducted on a small set of programs, as only 24 of the 103 buggy
programs in the GoBench suite contain bugs that are directly (and only) related to
channels. By expanding the scope of GOAT to traditional concurrency primitives, we
increase the number of relevant programs in the GoBench suite to 68.9 Provided that
the programs are representative of real-world Go programs, increasing the size of
the benchmark suite can give us more confidence that the measured false negative
rate is also representative. These additional programs contain blocking errors that are
caused by misuse of traditional primitives only, but also programs where interplay
between traditional and channel concurrency primitives results in bugs. We do not
distinguish between these cases in the remainder of the section, but we note that
modeling traditional primitives can lead to more blocking errors being reported for
channels.

Implementation In the pre-analysis phase we identify creation sites for primitives,
analyze how they are used throughout the program, and identify a fragment based on
this information. Previously we did this only for channels, but to support traditional
primitives, we extend this phase such that it also creates fragments for these. Figure 5.7
contains a small program that allocates a channel, a mutex, and an instance of the
custom type SynchronousCounter. The program illustrates a common Go idiom
where a mutex is embedded inside a struct type, which serves the purpose of protecting
against concurrent accesses to the struct’s fields, in this case only the integer field cnt.
The channel allocation is easy to identify syntactically due to the use of the builtin

9The remaining programs contain non-blocking bugs, such as data races, which are not in the scope
of our technique.

5.7. EPILOGUE: MODELING OF MORE CONCURRENCY PRIMITIVES 91

function make on line 109. The other concurrency primitives are implemented as
regular structs, and can be allocated in various ways. Line 110 contains an example
of a direct allocation of a mutex. In the SSA representation of the program, this line
is compiled to an allocation instruction for an object of type sync.Mutex. Finally,
line 111 allocates an instance of SynchronousCounter, which implicitly contains a
mutex. The SSA allocation instruction for this line is thus the allocation site of both
the SynchronousCounter object and the embedded mutex. In the SSA translation
of the inc function, the call to sc.Lock() is lowered to a series of instructions that
first computes the address of the mutex given the address of the receiver object and
then calls the Lock method on the mutex object. By querying the pointer analysis for
the allocation site of the receiver of the call to Lock, we will receive the allocation site
of the object the mutex is contained within. It is a slight technicality, but a structure
can freely contain multiple fields of the same type, i.e. mutexes, and in this case we
would treat all of them as having the same allocation site. The pointer analysis used
to connect uses of primitives with their allocation sites does give enough information
to discern different primitives embedded in the same structure, but we chose to keep
the implementation simple and aligned with our existing handling of channels.

Uses of channels come in the form of select statements and send-, receive- and
close operations. However, we identify uses of traditional primitives by looking
for calls to special methods, such as Lock and Unlock on lines 103 and 104. This
generally requires pointer analysis information, as calls to these methods can happen
via dynamic dispatch through interface values. Extra care must be taken for condition
variables, which wrap a reference to a lock. A call to Wait on a condition variable is
not relevant to the object only, but also to the wrapped lock, which will be unlocked
and locked during the execution of Wait. Condition variables are also a little bit
special in that they are typically allocated with the constructor function sync.NewCond,
as opposed to being allocated directly as seen in fig. 5.7. Presumably, this is to
prevent users from forgetting to supply a reference to the mutex which should be
wrapped by the condition variable. This is slightly problematic for us, as any condition
variable allocated with the constructor will have the same syntactic allocation site
due to context insensitivity in the pointer analysis result. To alleviate this issue, we
pre-process the analyzed code and automatically inline calls to this function.

Otherwise, the rest of the pre-analysis phase proceeds similarly as described in sec-
tion 5.3. P(c) is computed for traditional primitives as well as channel primitives,
and they can contain both types of primitives at the same time. Note that the only
relevant criterion for inclusion of a traditional primitive in P(c) is C1, as the others
are specific to channel primitives.

For the main analysis phase, we must extend the domain of abstract values V
with sub-domains for the new concurrency primitives. For values of type sync.Mutex
we use a simple lattice for a boolean flag, identical to the one used for the status
of channels. Instead of OPEN and CLOSED we use UNLOCKED and LOCKED.
For reader/writer mutual exclusion locks (sync.RWMutex) we use a product lattice
between the simple mutex lattice for the exclusive lock and a constant propagation
lattice on non-negative integers that models the number of held read-locks. The

92
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

sync.WaitGroup primitive is a wrapper around a thread-safe counter, where threads
can choose to suspend execution until the counter reaches 0. We abstractly model this
with a constant propagation lattice for non-negative integers (a run-time error occurs
if the counter becomes negative). We model the final kind of primitive, condition
variables, with elements from the points-to lattice. This element shall contain the
over-approximated set of mutexes that the condition variable may wrap at run-time.

The implementation of transfer functions for instructions that manipulate the
traditional concurrency primitives – which are now classified as communicating –
follows naturally from the definitions of their abstract domains. For instance, this
is a constraint-based formulation of the transfer function for the lock operation on
mutexes:

φi(g) = mu.Lock()

o ∈ σi(mu)\{nil}
UNLOCKED ⊑ σi(o)

⇒
o ∈ σ j(mu)

LOCKED ⊑ σ j(o)

Here σi is the abstract state associated with superlocation φi, and σ j is the abstract
state associated with the successor superlocation φ j = φi[g 7→ succ(mu.Lock())]. It
says that, if there is a thread g in superlocation φi that is ready to perform a lock
operation, if the variable mu corresponding to the operated-on mutex contains a non-nil
reference to a mutex, and if the referenced mutex may be unlocked, then the variable
can still point to the referenced mutex in the successor superlocation, and the abstract
value for the mutex is at least LOCKED.

The semantics of waiting on a condition variable is complex, so we split a call to
cv.Wait() into three synthetic instructions (control locations). The first instruction
is equivalent to unlocking the mutex wrapped in the condition variable. After this
instruction is executed, the thread progresses to a waiting state where it can be woken
by another thread calling cv.Signal() on the same condition variable. If this happens,
the waiting thread transitions to the final synthetic instruction, which is equivalent to
locking the mutex wrapped in the condition variable.

Experiments With the implementation in place we can move on to the experiments.
The first experiment is to run our extended tool on the 68 relevant buggy programs in
the GoBench suite to determine if our approach works at all for traditional concurrency
primitives. GOAT is able to detect bugs in 38 of these programs, which gives a false
negative rate that is slightly better than what we experienced for the previous restricted
set of programs (recall that GOAT detected bugs in 12 of 24 programs). Common
reasons for missed bugs are explained in section 5.4, and they also apply to bugs
involving traditional concurrency primitives.

We have then repeated the experiment on the 6 large real-world Go programs to
determine whether we can find bugs involving traditional concurrency primitives in

5.7. EPILOGUE: MODELING OF MORE CONCURRENCY PRIMITIVES 93

those, and whether our approach still scales to large programs with our extensions.
Because the difference between suite A and suite B is related to channels only, we
chose to run the experiments on suite A for simplicity.

Across all benchmarks, the abstract interpretation and blocking error detection
phases are run 24803 times. This means that approximately twice as many fragments
are formed when we analyze both traditional and channel concurrency primitives.
Analysis still completes within a second in most cases, and the analysis success rate is
similar to what we presented in section 5.4.

With respect to bug detection, we saw in table 5.2 that 170 potential blocking
errors were reported when the analysis was restricted to channel primitives only. With
our extensions, the analysis now reports 246 potential blocking errors in total, and 76
of them are for operations on traditional concurrency primitives. Unfortunately, none
of these reports appear to be true positives. We looked into the circumstances around
the false positives and can report some findings categorized by the type of primitive
that the analysis thinks an operation may block indefinitely on.

Typical uses of condition variables associate a condition, i.e. some predicate on
the program’s state, with each variable. If the condition is not satisfied, the condition
variable can be waited on until relevant parts of the program’s state changes, which is
signaled by another thread. Proper use of a condition variable (typically) requires the
variable to be waited on in a loop, like so:

while (condition is not satisfied) { cv.Wait() }

The abstract state inferred by GOAT before such loops is typically not precise enough
to determine (yes/no) if the condition is satisfied, so for soundness both possibilities
are modeled. This causes the analysis to model that cv.Wait() can be called in
scenarios where it cannot, and where there are no threads that will signal the waiting
thread in the future. This is the predominant reason for false positives involving
condition variables. This issue can potentially be overcome with standard abstract
interpretation techniques for precise reasoning about specific pieces of program
state, such as relational analysis [52, 54, 55] and path-sensitivity [10, 31], and is an
opportunity for future work.

For false positives involving WaitGroup primitives, we note that wait groups
are typically used to wait for a number of concurrent child threads to finish their
assigned work. In such cases, a wait group is initialized with the number of child
threads that will be spawned, after which the threads are spawned — often in a loop
— and execution in the parent thread is suspended until the counter in the wait group
reaches 0. When a child thread terminates it decrements the counter in the wait
group. In many cases the value that the wait group is initialized with is not statically
determinable because it is computed as the run-time size of some data structure. In
such cases, the analysis will never report a potential blocking error, as it cannot
eliminate the possibility of the wait group counter being 0 when the parent thread
suspends execution. The use of a slightly more complex abstract domain for wait
groups, that has an additional lattice element modeling strictly positive integers, would
allow for some reasoning about the presence of potential blocking errors in these

94
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

situations. But there are also cases where the counter is initialized with a value that
is statically determinable, and an unfortunate interaction with our special handling
of loops directly causes false positive reports. When we fix the number of loop
iterations for a loop that is supposed to decrement a counter N times, we also change
the semantics such that only a single decrement is modeled by the abstract interpreter.
This causes the modeled counter in the wait group to never reach 0, triggering a
potential error to be reported, even though the program may use wait groups correctly.
We can create a filter for potential blocking errors that can detect when the report is a
likely false positive due to this interaction.

Surprisingly, there are no reports involving operations on locks. It seems that
the status of abstractly modeled locks often becomes unknown, which prevents bugs
from being reported by our bug detector. A common bug pattern involving locks is
to forget to unlock a lock along some execution paths in a function, for instance if
some exceptional condition occurs. In such a scenario the abstractly modeled status of
the lock would become the join of the status along all execution paths, i.e. unknown.
GCatch [47] finds 29 bugs involving locks in the analyzed benchmarks, specifically
by looking for common patterns of misuse of locks, such as the one mentioned above,
so there are clearly some bugs that our tool may be able to detect. However, our
approach does not attempt to identify such patterns, but instead looks for program
configurations where a thread is blocked indefinitely. Forgetting to unlock a lock
will only cause a blocking error if a thread later attempts to acquire the same lock.
Standard abstract interpretation extensions to our technique, such as path-sensitivity,
may be able to increase the analysis’ ability to reason precisely about the status of
locks, which can lead to more bugs being reported. Such extensions are an opportunity
for future work.

In conclusion, while we were able to find known blocking errors involving tradi-
tional concurrency primitives in the GoBench suite, the results from experiments in
this section are mostly negative. A common theme is that imprecision in the analysis
prevents bugs from being reported, which applies to channel concurrency primitives
as well. In the next section we will explore how GOAT can detect bugs, even when
faced with imprecision in the main analysis.

5.8 Epilogue: Sound Blocking Error Detection

Static analyses aimed at sound bug detection usually work by first over-approximating
the behavior of the analyzed program. Then, if the over-approximated model of the
program contains a buggy execution, a report is issued. Designing a bug detector in
this way makes it easy to argue for its soundness, as any behavior that can be exhibited
in a concrete execution is guaranteed to be captured by the over-approximation. The
bug detector outlined in section 5.3 is not designed in this way. As described earlier, it
is unsound and is prone to false negatives, i.e. it can fail to detect bugs that are present
in the analyzed program.

5.8. EPILOGUE: SOUND BLOCKING ERROR DETECTION 95

Recall that our approach consists of multiple phases: the abstract interpretation
phase produces a program model in the form of a superlocation graph, and the graph
is inspected in the bug detection phase where potential blocking errors are reported.
From program analysis theory we know how to make abstract interpreters sound,
however, pragmatic design choices (deterministic thread scheduling, fixed loop itera-
tions, ignored side-effects of some instructions, etc.) inherently make our produced
models unsound. Therefore, any non-trivial bug detector we design, that identifies
potential bugs by inspecting the model produced by the abstract interpretation phase,
will not be able to soundly report bugs wrt. the concrete semantics of the analyzed
Go program. The interesting question that is explored in this section is whether it
is possible to design a blocking error detector that is sound (and possibly complete)
wrt. the semantics of superlocation graphs (as opposed to the semantics of the analyzed
Go program).

To understand when GOAT can fail to detect a bug, let us look at the bug detection
algorithm in a little more detail. If the abstract interpretation phase (section 5.3)
finishes successfully, its output is a graph with communicating superlocations φi as
nodes (plus the initial superlocation). Each φi has an abstract, finite representation
of a potentially infinite set of concrete configurations γ(φi).10 The edge relation is
over-approximated as follows: If there exists a concrete configuration ci in γ(φi),
and it is possible to end up in configuration c j ∈ γ(φ j) (where φ j is communicating)
from ci by executing at most one communicating instruction, followed by a series
of silent instructions, there is an edge from φi to φ j in the superlocation graph. The
set of configurations that are reachable from the initial superlocation in this graph
(
⋃

φinitial→∗φi
γ(φi)) over-approximates the set of communicating configurations that are

reachable in a concrete execution of the program. This is positive from a soundness
perspective, as we want to check that, for each non-terminated thread in each reachable
communicating configuration, the thread can make progress in some finite number of
steps. By checking this property for a set of configurations that is known to be larger
than the set of configurations reachable in a concrete execution, we will not miss any
bugs present in the analyzed program. However, the property that is checked by our
current bug detector is a different one. Namely it checks that, for each abstract thread g
in each reachable superlocation φi, there is a path to another superlocation φ j where
the thread has made progress. Consider a scenario where the path consists only of a
single edge φi → φ j. From the definition of the transition relation, we know that there
exists a concrete configuration ci in γ(φi) such that c j is in γ(φ j) and g makes progress
when executing instructions from ci to c j. There may be another c′i ̸= ci in γ(φi) where
some of the instructions that are executed between ci and c j are disabled, and where
there does not exist a path to a configuration where the thread makes progress at all.

For a concrete example of such a case, let us inspect the program in fig. 5.8 and its
corresponding superlocation graph. The program only has a single thread, the main
thread, which performs some operations on an asynchronous channel initialized with

10Assume that the concretization function γ concretizes both the superlocation and its associated
abstract state.

96
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

115 func main() {
116 ch := make(chan int, 1)
117
118 if ... {
119 ch <- 10
120 }
121
122 <-ch
123 }

[ε 7→ mainentry]1

ch 7→ ⊥

Fragment entry superlocation

· · ·

[ε 7→ if ...]2
ch 7→ [0,0]

[ε 7→ <-ch]4
ch 7→ [0,1]

[ε 7→ ch <- 10]3
ch 7→ [0,0]

[ε 7→ ◦]5
ch 7→ [0,0]

else

then

Figure 5.8: Go program with a potential blocking error and the superlocation graph
for the only fragment in the program.

a capacity of 1. The value of the branch condition in the if-statement is statically
unknown. If the then branch is taken, a message is put into the channel. At this
point the analysis knows that the channel is empty, which is indicated by the buffer
interval [0,0], so this operation is definitely enabled.11 After the send operation, the
abstract value for the buffer of ch is [1,1]. The control flow is then merged after the
if-statement, which results in a merge of the abstract values for the channel’s buffer.
If the then branch is taken, the buffer is [1,1], otherwise it is [0,0]. The result of the
merge [1,1]⊔ [0,0] is [0,1]. This is depicted in the abstract state associated with the
superlocation node [ε 7→<-ch]4. Concretization of the channel at this point results
in two concrete channels: one that is empty and one that is full. The next operation
to be performed is a channel receive operation. This operation is enabled when the
channel is nonempty. Since the abstract configuration has a concretization where the
channel is nonempty, the superlocation graph models the possibility of the operation
succeeding with an edge to the superlocation [ε 7→ ◦]5 where the main thread has
terminated.

With the superlocation graph in place, the bug detection algorithm proceeds to
check for potential blocking errors in each reachable communicating superlocation.
In both of the interesting superlocations, [ε 7→ ch <- 10]3 and [ε 7→<-ch]4, there is
a path in the graph to a superlocation where the main thread makes progress, which

11Only the lattice sub-element abstracting the channel’s buffer size is included in the figure, as the
other sub-elements are irrelevant in this example.

5.8. EPILOGUE: SOUND BLOCKING ERROR DETECTION 97

means that no bugs are reported. However, the program does contain a potential
blocking error! When the then branch is not taken, the channel’s buffer will be empty
when the main thread encounters the receive operation (<-ch), and it will therefore
be blocked indefinitely. This is a false negative. The absence of a path where a
communicating thread makes progress does indicate a blocking error, but it is not
a necessary condition. It under-approximates the presence of blocking errors. The
underlying problem is that the edges in the superlocation graph represent transitions
that may be enabled.

While the program in fig. 5.8 is unrealistic, scenarios that lead to imprecise ab-
stract states in a similar way are common in practice. They arise whenever abstract
channels manipulated by the abstract interpreter concretize to more than one con-
crete channel, which typically happens because a thread performs a communicating
operation conditionally.

One way to make the bug detector sound is to use a different, under-approximating,
edge relation when checking for the presence of unblocking paths. Formally, we define
the new “must” edge relation such that φi and φ j are connected only if not some but
all ci in γ(φi) can end up in (possibly different) c j ∈ γ(φ j) by executing at most one
communicating instruction, followed by a series of silent instructions. This edge
relation is simple to derive given the original over-approximated relation. Each edge,
corresponding to the execution of one communicating instruction, is checked in turn.
The edge is discarded if the concretization of the source abstract configuration contains
a concrete configuration where the instruction is disabled, which is trivial to decide
given the abstract state and type of instruction. Notice that this excludes the edge
between superlocations [ε 7→ <-ch]4 and [ε 7→ ◦]5 in the example program, which
leads to a blocking error being reported.

We have re-run the bug detection experiment on the 6 large real-world Go projects,
described in section 5.4, with the above sound implementation of the bug detector.
For simplicity we restrict the experiment to suite A. Across all 6 benchmark projects,
1954 bugs are reported. This is significantly higher than the 170 reports issued by
the original bug detector. Due to the high number of bug reports, it is not feasible
to classify all of them as true or false positives by manual inspection, which is what
we did for the original 170 reports. Instead, we randomly sample 50 new reports and
classify only those. According to our best-effort and conservative classification, all of
these new reports are false positives. Scenarios that lead to imprecise abstract values
for channels, such as channels that are allocated multiple times in a fragment, and
communication operations that are performed conditionally, will often lead to a bug
report with the sound detector. However, our experiments show that such scenarios
are poor indicators of actual blocking bugs.

Note that the new “must” edge relation used to find unblocking paths is not fully
precise. Consider the program and associated superlocation graph in fig. 5.9. The pro-
gram is similar to the one presented in fig. 5.8, but an additional thread is spawned that
attempts to send a message on the provided channel. In the associated abstract state for
the superlocation φ5 (corresponding to [ε 7→<-ch , g1 7→ ch <- 5]5) the abstract value
for the buffer of ch is [0,1]. For both discovered transitions φ5 → φ6 (corresponding to

98
CHAPTER 5. DETECTING BLOCKING ERRORS IN GO PROGRAMS USING

LOCALIZED ABSTRACT INTERPRETATION

124 func main() {
125 ch := make(chan int, 1)
126
127 if ... {
128 ch <- 10
129 }
130
131 go f(ch)
132
133 <-ch
134 }
135
136 func f(ch chan int) {
137 ch <- 5
138 }

[ε 7→ mainentry]1

ch 7→ ⊥

Fragment entry superlocation

· · ·

[ε 7→ if ...]2
ch 7→ [0,0]

[ε 7→ ch <- 10]3
ch 7→ [0,0]

[ε 7→ go f(ch)]4
ch 7→ [0,1]

· · ·

[ε 7→ <-ch , g1 7→ ch <- 5]5
ch 7→ [0,1]

[ε 7→ ◦, g1 7→ ch <- 5]6

ch 7→ [0,0]

[ε 7→ <-ch , g1 7→ ◦]7
ch 7→ [1,1]

[ε 7→ ◦, g1 7→ ◦]8
ch 7→ [0,1]

else

then

Figure 5.9: Go program with no blocking error and the superlocation graph for the
only fragment in the program.

the execution of <-ch by the main thread) and φ5 → φ7 (corresponding to the execution
of ch <- 5 by g1), there is a concrete configuration in γ(φ5) where the transition is
disabled. Therefore the transitions are not included in the derived edge relation, which
causes potential blocking errors to be reported for both operations. However, it is not
possible for the main thread nor g1 to become blocked indefinitely in any execution of
the program, so these reports are false positives. There is a dependency between the
enabledness of the instructions: when one of the transitions is disabled, the other must
necessarily be enabled. It is an interesting opportunity for future work to design a bug
detector for superlocation graphs that takes these dependencies into account, to limit
the sources of imprecision to the abstract interpretation phase only.

Bibliography

[1] Radoslaw Adamus, Tomasz Marek Kowalski, and Jacek Wislicki. A step to-
wards genuine declarative language-integrated queries. In 2015 Federated
Conference on Computer Science and Information Systems, FedCSIS 2015, Lódz,
Poland, September 13-16, 2015, volume 5, pages 935–946. IEEE, 2015. doi:
10.15439/2015F156. 59

[2] Ole Agesen. The cartesian product algorithm: Simple and precise type inference
of parametric polymorphism. In ECOOP’95 - Object-Oriented Programming,
9th European Conference, Århus, Denmark, August 7-11, 1995, Proceedings,
volume 952 of Lecture Notes in Computer Science, pages 2–26. Springer, 1995.
doi: 10.1007/3-540-49538-X_2. 36

[3] Lars Ole Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, 1994. 18, 60, 70

[4] Matthew Arnold, Stephen J. Fink, Vivek Sarkar, and Peter F. Sweeney. A com-
parative study of static and profile-based heuristics for inlining. In Proceedings
of ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Op-
timization (Dynamo 2000), Boston, MA, USA, January 18, 2000, pages 52–64.
ACM, 2000. doi: 10.1145/351397.351416. 32

[5] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F.
Sweeney. A survey of adaptive optimization in virtual machines. Proceedings of
the IEEE, 93(2):449–466, 2005. doi: 10.1109/JPROC.2004.840305. 57

[6] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97–113,
2003. doi: 10.1145/857076.857077. 57

[7] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. NullAway: Practical
Type-Based Null Safety for Java. In Marlon Dumas, Dietmar Pfahl, Sven
Apel, and Alessandra Russo, editors, Proceedings of the ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August
26-30, 2019, pages 740–750. ACM, 2019. doi: 10.1145/3338906.3338919. 5

[8] Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. Clash of the
lambdas. CoRR, abs/1406.6631, 2014. 28, 29, 32

99

https://doi.org/10.15439/2015F156
https://doi.org/10.15439/2015F156
https://doi.org/10.1007/3-540-49538-X_2
https://doi.org/10.1145/351397.351416
https://doi.org/10.1109/JPROC.2004.840305
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/3338906.3338919

100 BIBLIOGRAPHY

[9] Aggelos Biboudis, Nick Palladinos, George Fourtounis, and Yannis Smaragdakis.
Streams a la carte: Extensible pipelines with object algebras. In 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015,
Prague, Czech Republic, volume 37 of LIPIcs, pages 591–613. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2015. doi: 10.4230/LIPIcs.ECOOP.2015.591.
34, 51, 58

[10] Rastislav Bodík and Sadun Anik. Path-sensitive value-flow analysis. In David B.
MacQueen and Luca Cardelli, editors, POPL ’98, Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Diego, CA, USA, January 19-21, 1998, pages 237–251. ACM, 1998. doi:
10.1145/268946.268966. 93

[11] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification
of sophisticated points-to analyses. In Proceedings of the 24th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA,
pages 243–262. ACM, 2009. doi: 10.1145/1640089.1640108. 36, 42

[12] Zoran Budimlic and Ken Kennedy. Optimizing Java: theory and practice.
Concurrency - Practice and Experience, 9(6):445–463, 1997. 47, 57

[13] Zoran Budimlic and Ken Kennedy. Static interprocedural optimizations in Java.
Technical report, Center for Research on Parallel Computation, Rice University,
Technical Report CRPC-TR98746, 1998. 47, 57

[14] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim
Purbrick, and Dulma Rodriguez. Moving fast with software verification. In
Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA Formal
Methods - 7th International Symposium, NFM 2015, Pasadena, CA, USA, April
27-29, 2015, Proceedings, volume 9058 of Lecture Notes in Computer Science,
pages 3–11. Springer, 2015. doi: 10.1007/978-3-319-17524-9_1. 5

[15] David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interproce-
dural constant propagation. In Proceedings of the 1986 SIGPLAN Symposium
on Compiler Construction, Palo Alto, California, USA, June 25-27, 1986, pages
152–161. ACM, 1986. doi: 10.1145/12276.13327. 45

[16] David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. Analysis of pointers
and structures. In Proceedings of the ACM SIGPLAN’90 Conference on Program-
ming Language Design and Implementation (PLDI), White Plains, New York,
USA, June 20-22, 1990, pages 296–310. ACM, 1990. doi: 10.1145/93542.93585.
18, 36, 44, 76

[17] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar,
and Samuel P. Midkiff. Escape analysis for Java. In Proceedings of the 1999 ACM

https://doi.org/10.4230/LIPIcs.ECOOP.2015.591
https://doi.org/10.1145/268946.268966
https://doi.org/10.1145/268946.268966
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/12276.13327
https://doi.org/10.1145/93542.93585

BIBLIOGRAPHY 101

SIGPLAN Conference on Object-Oriented Programming Systems, Languages
& Applications (OOPSLA ’99), Denver, Colorado, USA, November 1-5, 1999,
pages 1–19. ACM, 1999. doi: 10.1145/320384.320386. 35, 46, 47, 57

[18] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. Iterative data-flow
analysis, revisited. Technical report, 2004. 16

[19] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977, pages
238–252. ACM, 1977. doi: 10.1145/512950.512973. 11, 12, 78, 88

[20] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In Conference Record of the Sixth Annual ACM Symposium on
Principles of Programming Languages, San Antonio, Texas, USA, January 1979,
pages 269–282. ACM Press, 1979. doi: 10.1145/567752.567778. 11

[21] Patrick Cousot and Radhia Cousot. Modular static program analysis. In Compiler
Construction, 11th International Conference, CC 2002, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2002,
Grenoble, France, April 8-12, 2002, Proceedings, volume 2304 of Lecture Notes
in Computer Science, pages 159–178. Springer, 2002. doi: 10.1007/3-540-
45937-5_13. 89

[22] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: from
lists to streams to nothing at all. In Ralf Hinze and Norman Ramsey, editors,
Proceedings of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, pages 315–
326. ACM, 2007. doi: 10.1145/1291151.1291199. 20

[23] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In ECOOP’95 - Object-
Oriented Programming, 9th European Conference, Århus, Denmark, August
7-11, 1995, Proceedings, volume 952 of Lecture Notes in Computer Science,
pages 77–101. Springer, 1995. doi: 10.1007/3-540-49538-X_5. 44

[24] David Detlefs and Ole Agesen. Inlining of virtual methods. In ECOOP’99 -
Object-Oriented Programming, 13th European Conference, Lisbon, Portugal,
June 14-18, 1999, Proceedings, volume 1628 of Lecture Notes in Computer
Science, pages 258–278. Springer, 1999. doi: 10.1007/3-540-48743-3_12. 32,
46

[25] Nicolas Dilley and Julien Lange. Bounded verification of message-passing
concurrency in Go using Promela and Spin. In Proceedings of the 12th Inter-
national Workshop on Programming Language Approaches to Concurrency-

https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1007/3-540-48743-3_12

102 BIBLIOGRAPHY

and Communication-cEntric Software, PLACES@ETAPS 2020, Dublin, Ire-
land, 26th April 2020, volume 314 of EPTCS, pages 34–45, 2020. doi:
10.4204/EPTCS.314.4. 66, 88

[26] Nicolas Dilley and Julien Lange. Automated verification of Go programs via
bounded model checking. In 36th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19,
2021, pages 1016–1027. IEEE, 2021. doi: 10.1109/ASE51524.2021.9678571.
66, 88

[27] Julian Dolby and Andrew A. Chien. An evaluation of automatic object inline
allocation techniques. In Proceedings of the 1998 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages & Applications (OOPSLA)
’98), Vancouver, British Columbia, Canada, October 18-22, 1998, pages 1–20.
ACM, 1998. doi: 10.1145/286936.286943. 57

[28] Julian Dolby, Stephen J. Fink, and Manu Sridharan. T.J. Watson Libraries for
Analysis, 2010. URL http://wala.sourceforge.net/. 42, 60

[29] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous Java
performance evaluation. In Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada,
pages 57–76. ACM, 2007. doi: 10.1145/1297027.1297033. 52

[30] Andrew John Gill, John Launchbury, and Simon L. Peyton Jones. A short cut
to deforestation. In Proceedings of the conference on Functional programming
languages and computer architecture, FPCA 1993, Copenhagen, Denmark, June
9-11, 1993, pages 223–232. ACM, 1993. doi: 10.1145/165180.165214. 20

[31] L. Howard Holley and Barry K. Rosen. Qualified data flow problems. In Paul W.
Abrahams, Richard J. Lipton, and Stephen R. Bourne, editors, Conference
Record of the Seventh Annual ACM Symposium on Principles of Programming
Languages, Las Vegas, Nevada, USA, January 1980, pages 68–82. ACM Press,
1980. doi: 10.1145/567446.567454. 93

[32] Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23
(5):279–295, 1997. doi: 10.1109/32.588521. 88

[33] Manohar Jonnalagedda and Sandro Stucki. Fold-based fusion as a library:
a generative programming pearl. In Proceedings of the 6th ACM SIGPLAN
Symposium on Scala, Scala@PLDI 2015, Portland, OR, USA, June 15-17, 2015,
pages 41–50. ACM, 2015. doi: 10.1145/2774975.2774981. 58

[34] John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative
algorithms. J. ACM, 23(1):158–171, 1976. doi: 10.1145/321921.321938. 16

https://doi.org/10.4204/EPTCS.314.4
https://doi.org/10.4204/EPTCS.314.4
https://doi.org/10.1109/ASE51524.2021.9678571
https://doi.org/10.1145/286936.286943
http://wala.sourceforge.net/
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/165180.165214
https://doi.org/10.1145/567446.567454
https://doi.org/10.1109/32.588521
https://doi.org/10.1145/2774975.2774981
https://doi.org/10.1145/321921.321938

BIBLIOGRAPHY 103

[35] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks.
Acta Inf., 7:305–317, 1977. doi: 10.1007/BF00290339. 11, 42, 75, 78

[36] Raffi Khatchadourian, Yiming Tang, and Mehdi Bagherzadeh. Safe auto-
mated refactoring for intelligent parallelization of Java 8 streams. Science
of Computer Programming, page 102476, 2020. ISSN 0167-6423. doi:
10.1016/j.scico.2020.102476. 58

[37] Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Baishakhi Ray.
An empirical study on the use and misuse of Java 8 streams. In Fundamental
Approaches to Software Engineering - 23rd International Conference, FASE
2020, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, volume
12076 of Lecture Notes in Computer Science, pages 97–118. Springer, 2020. doi:
10.1007/978-3-030-45234-6_5. 34

[38] Gary A. Kildall. A unified approach to global program optimization. In Patrick C.
Fischer and Jeffrey D. Ullman, editors, Conference Record of the ACM Sympo-
sium on Principles of Programming Languages, Boston, Massachusetts, USA,
October 1973, pages 194–206. ACM Press, 1973. doi: 10.1145/512927.512945.
11

[39] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis.
Stream fusion, to completeness. In Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017, pages 285–299. ACM, 2017. doi:
10.1145/3093333.3009880. 20, 28, 29, 32, 58

[40] Stephen Cole Kleene. Introduction to Metamathematics. Princeton, NJ, USA:
North Holland, 1952. 14

[41] Markus Kusano and Chao Wang. Flow-sensitive composition of thread-modular
abstract interpretation. In Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016, Seat-
tle, WA, USA, November 13-18, 2016, pages 799–809. ACM, 2016. doi:
10.1145/2950290.2950291. 88

[42] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Challenges for static
analysis of java reflection: literature review and empirical study. In Sebastián
Uchitel, Alessandro Orso, and Martin P. Robillard, editors, Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017, pages 507–518. IEEE / ACM, 2017. doi:
10.1109/ICSE.2017.53. 63

[43] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. Fencing
off Go: Liveness and safety for channel-based programming. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,

https://doi.org/10.1007/BF00290339
https://doi.org/10.1016/j.scico.2020.102476
https://doi.org/10.1016/j.scico.2020.102476
https://doi.org/10.1007/978-3-030-45234-6_5
https://doi.org/10.1007/978-3-030-45234-6_5
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/3093333.3009880
https://doi.org/10.1145/3093333.3009880
https://doi.org/10.1145/2950290.2950291
https://doi.org/10.1145/2950290.2950291
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/ICSE.2017.53

104 BIBLIOGRAPHY

POPL 2017, Paris, France, January 18-20, 2017, pages 748–761. ACM, 2017.
doi: 10.1145/3009837.3009847. 88

[44] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A static
verification framework for message passing in Go using behavioural types. In
Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 1137–1148.
ACM, 2018. doi: 10.1145/3180155.3180157. 88

[45] Ondrej Lhoták and Laurie J. Hendren. Scaling Java points-to analysis using
SPARK. In Compiler Construction, 12th International Conference, CC 2003,
Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume
2622 of Lecture Notes in Computer Science, pages 153–169. Springer, 2003.
doi: 10.1007/3-540-36579-6_12. 36, 42, 61

[46] Ziheng Liu, Yu Liang, Shihao Xia, Linhai Song, and Hong Hu. GFuzz ASPLOS
2022 #710 Artifact, December 2021. 83

[47] Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song. Automatically
detecting and fixing concurrency bugs in Go software systems. In ASPLOS ’21:
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Virtual Event, USA, April 19-23, 2021, pages
616–629. ACM, 2021. doi: 10.1145/3445814.3446756. 66, 70, 71, 81, 88, 94

[48] Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu. Who goes
first? detecting Go concurrency bugs via message reordering. In ASPLOS ’22:
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, 28 February 2022 -
4 March 2022, pages 888–902. ACM, 2022. doi: 10.1145/3503222.3507753.
66, 81, 88

[49] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták,
José Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker,
Anders Møller, and Dimitrios Vardoulakis. In defense of soundiness: a manifesto.
Commun. ACM, 58(2):44–46, 2015. doi: 10.1145/2644805. 63

[50] Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. Un-
derstanding the use of lambda expressions in Java. PACMPL, 1(OOPSLA):
85:1–85:31, 2017. doi: 10.1145/3133909. 28

[51] Jan Midtgaard, Flemming Nielson, and Hanne Riis Nielson. Process-local
static analysis of synchronous processes. In Static Analysis - 25th International
Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings,
volume 11002 of Lecture Notes in Computer Science, pages 284–305. Springer,
2018. doi: 10.1007/978-3-319-99725-4_18. 88

https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1145/3445814.3446756
https://doi.org/10.1145/3503222.3507753
https://doi.org/10.1145/2644805
https://doi.org/10.1145/3133909
https://doi.org/10.1007/978-3-319-99725-4_18

BIBLIOGRAPHY 105

[52] Antoine Miné. A new numerical abstract domain based on difference-bound
matrices. In Olivier Danvy and Andrzej Filinski, editors, Programs as Data
Objects, Second Symposium, PADO 2001, Aarhus, Denmark, May 21-23, 2001,
Proceedings, volume 2053 of Lecture Notes in Computer Science, pages 155–
172. Springer, 2001. doi: 10.1007/3-540-44978-7_10. 93

[53] Antoine Miné. Static analysis of run-time errors in embedded real-time parallel
C programs. Log. Methods Comput. Sci., 8(1), 2012. doi: 10.2168/LMCS-
8(1:26)2012. 88

[54] Antoine Miné. Relational thread-modular static value analysis by abstract
interpretation. In Verification, Model Checking, and Abstract Interpretation -
15th International Conference, VMCAI 2014, San Diego, CA, USA, January
19-21, 2014, Proceedings, volume 8318 of Lecture Notes in Computer Science,
pages 39–58. Springer, 2014. doi: 10.1007/978-3-642-54013-4_3. 93

[55] Antoine Miné, Laurent Mauborgne, Xavier Rival, Jerome Feret, Patrick Cousot,
Daniel Kästner, Stephan Wilhelm, and Christian Ferdinand. Taking Static
Analysis to the Next Level: Proving the Absence of Run-Time Errors and
Data Races with Astrée. In 8th European Congress on Embedded Real Time
Software and Systems (ERTS 2016), Toulouse, France, January 2016. URL
https://hal.archives-ouvertes.fr/hal-01271552. 88, 93

[56] Anders Møller and Oskar Haarklou Veileborg. Eliminating abstraction overhead
of java stream pipelines using ahead-of-time program optimization. Proc. ACM
Program. Lang., 4(OOPSLA):168:1–168:29, 2020. doi: 10.1145/3428236. 8

[57] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curat-
ing github for engineered software projects. Empirical Software Engineering,
22(6):3219–3253, 2017. doi: 10.1007/s10664-017-9512-6. 34, 56

[58] Derek Gordon Murray, Michael Isard, and Yuan Yu. Steno: automatic opti-
mization of declarative queries. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2011, San Jose, CA, USA, June 4-8, 2011, pages 121–131. ACM, 2011. doi:
10.1145/1993498.1993513. 58

[59] Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concurrent
Go by global session graph synthesis. In Proceedings of the 25th International
Conference on Compiler Construction, CC 2016, Barcelona, Spain, March
12-18, 2016, pages 174–184. ACM, 2016. doi: 10.1145/2892208.2892232. 88

[60] Erik M. Nystrom, Hong-Seok Kim, and Wen-mei W. Hwu. Importance of heap
specialization in pointer analysis. In Proceedings of the 2004 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software Tools and Engineering,
PASTE’04, Washington, DC, USA, June 7-8, 2004, pages 43–48. ACM, 2004.
doi: 10.1145/996821.996836. 18, 42

https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.2168/LMCS-8(1:26)2012
https://doi.org/10.2168/LMCS-8(1:26)2012
https://doi.org/10.1007/978-3-642-54013-4_3
https://hal.archives-ouvertes.fr/hal-01271552
https://doi.org/10.1145/3428236
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/1993498.1993513
https://doi.org/10.1145/1993498.1993513
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1145/996821.996836

106 BIBLIOGRAPHY

[61] Oracle. Jdk 8, 3 2014. URL https://openjdk.java.net/projects/jdk8/.
28

[62] Oracle. java.util.stream documentation for jdk 8, 2014. URL
https://docs.oracle.com/javase/8/docs/api/java/util/stream/
package-summary.html. 28

[63] Oracle. Java microbenchmarking harness, 2014. URL http://openjdk.java.
net/projects/code-tools/jmh/. 52

[64] Stack Overflow. 2022 Developer Survey. URL https://survey.
stackoverflow.co/2022/. 3

[65] Nick Palladinos and Kostas Rontogiannis. Linqoptimizer: An automatic query
optimizer for linq to objects and plinq, 2014. URL http://nessos.github.
io/LinqOptimizer/. 29, 58

[66] Young Gil Park and Benjamin Goldberg. Escape analysis on lists. In Proceedings
of the ACM SIGPLAN’92 Conference on Programming Language Design and
Implementation (PLDI), San Francisco, California, USA, June 17-19, 1992,
pages 116–127. ACM, 1992. doi: 10.1145/143095.143125. 35

[67] Aleksandar Prokopec and Dmitry Petrashko. Scalablitz: Lightning-fast scala
collections framework, 2013. URL https://scala-blitz.github.io/. 29,
58

[68] Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas
Würthinger. Making collection operations optimal with aggressive JIT compi-
lation. In Proceedings of the 8th ACM SIGPLAN International Symposium on
Scala, SCALA@SPLASH 2017, Vancouver, BC, Canada, October 22-23, 2017,
pages 29–40. ACM, 2017. doi: 10.1145/3136000.3136002. 30

[69] Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical society, 74(2):358–366,
1953. 11

[70] John Rose. Hotspot-dev mailing list: Perspectives on streams perfor-
mance, 3 2015. URL http://mail.openjdk.java.net/pipermail/
hotspot-compiler-dev/2015-March/017278.html. 28

[71] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. Tricorder: Building a program analysis ecosystem. In Antonia Bertolino,
Gerardo Canfora, and Sebastian G. Elbaum, editors, 37th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 1, pages 598–608. IEEE Computer Society, 2015. doi:
10.1109/ICSE.2015.76. 5

https://openjdk.java.net/projects/jdk8/
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
http://nessos.github.io/LinqOptimizer/
http://nessos.github.io/LinqOptimizer/
https://doi.org/10.1145/143095.143125
https://scala-blitz.github.io/
https://doi.org/10.1145/3136000.3136002
http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-March/017278.html
http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-March/017278.html
https://doi.org/10.1109/ICSE.2015.76
https://doi.org/10.1109/ICSE.2015.76

BIBLIOGRAPHY 107

[72] Ulrik Pagh Schultz, Julia L. Lawall, and Charles Consel. Automatic program
specialization for Java. ACM Trans. Program. Lang. Syst., 25(4):452–499, 2003.
doi: 10.1145/778559.778561. 58

[73] Denys Shabalin and Martin Odersky. Interflow: interprocedural flow-sensitive
type inference and method duplication. In Proceedings of the 9th ACM SIGPLAN
International Symposium on Scala, SCALA@ICFP 2018, St. Louis, MO, USA,
September 28, 2018, pages 61–71. ACM, 2018. doi: 10.1145/3241653.3241660.
58

[74] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow
analysis, chapter 7, pages 189–234. Prentice-Hall, 1981. 43

[75] Yannis Smaragdakis and George Kastrinis. Defensive points-to analysis:
Effective soundness via laziness. In Todd D. Millstein, editor, 32nd Eu-
ropean Conference on Object-Oriented Programming, ECOOP 2018, July
16-21, 2018, Amsterdam, The Netherlands, volume 109 of LIPIcs, pages
23:1–23:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.ECOOP.2018.23. 63

[76] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your con-
texts well: Understanding object-sensitivity. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011, pages 17–30. ACM, 2011. doi:
10.1145/1926385.1926390. 18, 42, 74

[77] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden.
Boomerang: Demand-driven flow- and context-sensitive pointer analysis
for Java. In 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs, pages
22:1–22:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.ECOOP.2016.22. 42, 57, 61

[78] Johannes Späth, Karim Ali, and Eric Bodden. Context-, flow-, and field-sensitive
data-flow analysis using synchronized pushdown systems. Proc. ACM Program.
Lang., 3(POPL):48:1–48:29, 2019. doi: 10.1145/3290361. 61

[79] Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-
to analysis for Java. In Proceedings of the ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation, Ottawa, Ontario, Canada,
June 11-14, 2006, pages 387–400. ACM, 2006. doi: 10.1145/1133981.1134027.
36, 42, 60

[80] Bjarne Steensgaard. Points-to analysis in almost linear time. In Hans-Juergen
Boehm and Guy L. Steele Jr., editors, Conference Record of POPL’96: The 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

https://doi.org/10.1145/778559.778561
https://doi.org/10.1145/3241653.3241660
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/3290361
https://doi.org/10.1145/1133981.1134027

108 BIBLIOGRAPHY

Papers Presented at the Symposium, St. Petersburg Beach, Florida, USA, January
21-24, 1996, pages 32–41. ACM Press, 1996. doi: 10.1145/237721.237727. 18

[81] The Go Authors. Share memory by communicating. https://go.dev/doc/
effective_go, 2010. 77

[82] The Go Authors. Points-To analysis and Call Graph construction for Go, 2022.
URL https://pkg.go.dev/golang.org/x/tools/go/pointer. 70, 80

[83] The Go Authors. Static Single Assignment Intermediate Representation for Go,
2022. URL https://pkg.go.dev/golang.org/x/tools/go/ssa. 73, 76,
80

[84] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding real-
world concurrency bugs in Go. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019,
pages 865–878. ACM, 2019. doi: 10.1145/3297858.3304069. 66

[85] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
and Vijay Sundaresan. Soot - a Java bytecode optimization framework. In
Stephen A. MacKay and J. Howard Johnson, editors, Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative Research,
November 8-11, 1999, Mississauga, Ontario, Canada, page 13. IBM, 1999.
URL https://dl.acm.org/citation.cfm?id=782008. 61

[86] Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller. Detecting
blocking errors in go programs using localized abstract interpretation. In 37th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2022, Rochester, MI, USA, October 10-14, 2022, pages 32:1–32:12. ACM, 2022.
doi: 10.1145/3551349.3561154. 9

[87] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo Vene, and
Ralf Vogler. Static race detection for device drivers: the Goblint approach. In
Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 391–
402. ACM, 2016. doi: 10.1145/2970276.2970337. 88

[88] Philip Wadler. Listlessness is better than laziness: Lazy evaluation and garbage
collection at compile time. In Robert S. Boyer, Edward S. Schneider, and Guy
L. Steele Jr., editors, Proceedings of the 1984 ACM Conference on LISP and
Functional Programming, LFP 1984, Austin, Texas, USA, August 5-8, 1984,
pages 45–52. ACM, 1984. doi: 10.1145/800055.802020. 20

[89] Philip Wadler. Listlessness is better than laziness II: composing listless functions.
In Harald Ganzinger and Neil D. Jones, editors, Programs as Data Objects,
Proceedings of a Workshop, Copenhagen, Denmark, October 17-19, 1985,

https://doi.org/10.1145/237721.237727
https://go.dev/doc/effective_go
https://go.dev/doc/effective_go
https://pkg.go.dev/golang.org/x/tools/go/pointer
https://pkg.go.dev/golang.org/x/tools/go/ssa
https://doi.org/10.1145/3297858.3304069
https://dl.acm.org/citation.cfm?id=782008
https://doi.org/10.1145/3551349.3561154
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1145/800055.802020

BIBLIOGRAPHY 109

volume 217 of Lecture Notes in Computer Science, pages 282–305. Springer,
1985. doi: 10.1007/3-540-16446-4_16. 20

[90] Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theor.
Comput. Sci., 73(2):231–248, 1990. doi: 10.1016/0304-3975(90)90147-A. 20,
58

[91] Richard C. Waters. Automatic transformation of series expressions into
loops. ACM Trans. Program. Lang. Syst., 13(1):52–98, 1991. doi:
10.1145/114005.102806. 59

[92] Ting Yuan, Guangwei Li, Jie Lu, Chen Liu, Lian Li, and Jingling Xue. GoB-
ench: A benchmark suite of real-world Go concurrency bugs. In IEEE/ACM
International Symposium on Code Generation and Optimization, CGO 2021,
Seoul, South Korea, February 27 - March 3, 2021, pages 187–199. IEEE, 2021.
doi: 10.1109/CGO51591.2021.9370317. 87, 89

https://doi.org/10.1007/3-540-16446-4_16
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/114005.102806
https://doi.org/10.1145/114005.102806
https://doi.org/10.1109/CGO51591.2021.9370317

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Research Challenges
	Contributions
	Outline

	Program Analysis
	Lattice Theory
	Monotone Frameworks
	Pointer Analysis

	Declarative Data-processing with Streams
	Push- & Pull-style Stream Implementations

	Publications
	Eliminating Abstraction Overhead of Java Stream Pipelines using Ahead-of-Time Program Optimization
	Introduction
	Background: Pull- and Push-Style Stream APIs
	Approach Overview
	Phase 1: Pre-Analysis
	Phase 2: Interprocedural analysis
	Phase 3: Inlining and stack allocation
	Phase 4: Cleanup
	Evaluation
	Related Work
	Conclusion
	Epilogue: Pre-analysis in Practice

	Detecting Blocking Errors in Go Programs using Localized Abstract Interpretation
	Introduction
	Background
	Approach
	Evaluation
	Related Work
	Conclusion
	Epilogue: Modeling of more Concurrency Primitives
	Epilogue: Sound Blocking Error Detection

	Bibliography

