
CONTRIBUTIONS TOWARDS
IMPROVING THE USEFULNESS OF
PARTIAL VISUALIZATIONS IN
PROGRESSIVE VISUAL ANALYTICS

marius hogräfer

phd thesis

October 2022

DEPARTMENT OF COMPUTER SCIENCE

AARHUS

UNIVERSITY AU

C O N T R I B U T I O N S T O WA R D S I M P R O V I N G T H E U S E F U L N E S S
O F PA RT I A L V I S U A L I Z AT I O N S I N P R O G R E S S I V E V I S U A L

A N A LY T I C S

marius hogräfer

A Thesis in Partial Fulfillment of the Requirements for the Ph.D. Degree
Presented to:

Department of Computer Science
Faculty of Natural Sciences

Aarhus University

October 2022

Marius Hogräfer: Contributions Towards Improving the Usefulness of Par-
tial Visualizations in Progressive Visual Analytics PhD Thesis, © October
2022

The road to wisdom? Well, it’s plain
And simple to express:

Err
and err

and err again,
but less
and less
and less.

— Piet Hein

A B S T R A C T

Progressive Visual Analytics (PVA) is a recent approach for gaining
insights into massive datasets, providing analysts with immediate re-
sults of computations that would otherwise run for much longer. This
is done by showing early, partial visualizations of these computations
that refine over time, rather than waiting until they complete before
showing analysts any results. The related work has shown analysts
in PVA to clearly outperform those using non-progressive systems in
terms of completion time, while finding comparatively many insights.
A defining challenge for the success of PVA is that these partial visu-
alizations are as useful as possible, in that they “show what analysts
need to see”, which is an inherently subjective assessment that must
be made by the analysts in their particular analysis context. Conse-
quently, only analysts can improve this usefulness by configuring the
process to their needs. However, this requires that this process can, in
fact, be configured. This desired configurability stands in contrast to
the dedicated (i.e., preconfigured) solutions presented in the PVA lit-
erature, as they often address a particular analysis scenario and, thus,
cannot be further configured.

In response, this thesis contributes configurable approaches that
enable analysts to bring in their subjective expertise to improve the
usefulness of partial visualizations in PVA in terms of their expressive-
ness, effectiveness, and efficiency. This is achieved by extending ana-
lysts’ control over the data shown in partial visualizations. First, this
thesis contributes tailorable sampling for PVA, which allows analysts
to ensure that partial visualizations express the desired information
as early as possible, in a way that can be adapted to new insights
without restarting the computation. Then, it contributes configurable
strategies for context-dependent Degree of Interest (DOI) functions en-
abling their effective use in PVA, to allow extracting the desired infor-
mation as early as possible in partial visualization. Third, the thesis
contributes a steering approach that poses minimal requirements on
the analysis scenario, allowing analysts to focus their computations
on relevant data subspaces.

Overall, with these contributions in place, this thesis provides a
step towards a fully configurable PVA process that can be tailored
by analysts based on their particular needs, in order to make partial
visualizations as useful as possible as early as possible.

vii

A B S T R A C T (I N D A N I S H)

Progressive Visual Analytics (PVA) er en nyudviklet metode til at opnå
indsigt i meget store datasæt, som giver analytikere øjeblikkelige re-
sultater af beregninger, der ellers ville skulle køre i meget længere
tid. Dette gøres ved at vise tidlige delvise visualiseringer af disse
beregninger, som så bliver forfinet over tid, frem for at vente indtil
beregningerne er færdige, før resultaterne bliver tilgængelige for an-
alytikeren. Tidligere arbejde har vist, at analytikere, der bruger PVA,
på væsentligt kortere tid gør lige så mange opdagelser i deres data
som analytikere, der bruger ikke-progressive systemer. En fundamen-
tal udfordring for PVA’s succes er at gøre de delvise visualiseringer
så nyttige som muligt — altså sørge for at de “viser det, som ana-
lytikeren har brug for at se”, hvilket er en subjektiv vurdering, der
må foretages af analytikeren i vedkommendes specifikke analysekon-
tekst. Dermed er det kun analytikeren, der kan forbedre PVA’s brug-
barhed ved at konfigurere processen til sine behov. Men det kræver,
at processen rent faktisk kan konfigureres. Behovet for at konfig-
urere PVA-processen står i kontrast til de prækonfigurerede løsninger,
der typisk præsenteres i PVA-litteraturen, da disse ofte adresserer et
bestemt analyse-scenarie og derfor ikke kan konfigureres yderligere.
Denne afhandling adresserer dette ved at bidrage med konfigurerbare
løsninger, der lader analytikeren gøre brug af sin subjektive eksper-
tise og forbedre de delvise visualiseringers udtrykskraft og effek-
tivitet og dermed forbedre PVA’s anvendelighed.

Dette opnås ved at udvide analytikerens kontrol over den data,
som vises i de delvise visualiseringer. Til at starte med præsenterer
afhandlingen PVA-sampling, der kan skræddersys, så analytikeren
kan sikre, at de delvise visualiseringer udtrykker den ønskede in-
formation så tidligt som muligt, på en måde der kan tilpasses til nye
opdagelser, uden at beregningen skal startes på ny. Dernæst præsen-
terer afhandlingen konfigurerbare strategier til kontekstafhængige in-
teresse grads funktioner (Degree of Interest functions/DOI functions)
og muliggør derved effektiv anvendelse af dem i PVA, for at udtrække
den ønskede information så tidligt som muligt i delvise visualiseringer.

Endeligt præsenterer afhandlingen en styremetode, der stiller min-
imale krav til analysesituationen og lader analytikeren fokusere sine
beregninger på relevante data-underrum. Som helhed er denne afhan-
dling et skridt hen imod en fuldt konfigurerbar PVA-proces, der kan
skræddersys af analytikere baseret på deres specifikke behov, således
at delvise visualiseringer kan gøres så nyttige som muligt så tidligt
som muligt.

viii

P U B L I C AT I O N S

The contributions of this thesis are based on the following publica-
tions and manuscripts:

published papers

p1 Marius Hogräfer, Jakob Burkhardt, and Hans-Jörg Schulz. A Pipe-
line for Tailored Sampling for Progressive Visual Analytics. Proceed-
ings of the International EuroVis Workshop on Visual Analytics
(EuroVA), 2022, pp.49-53 doi:10.2312/eurova.20221079.

p2 Marius Hogräfer, Marco Angelini, Giuseppe Santucci, and Hans-
Jörg Schulz. Steering-by-Example for Progressive Visual Analytics.
ACM Transactions on Intelligent Systems and Technology (TIST),
Volume 13, Issue 6, 2022, pp.96:1–96:26 doi:10.1145/3531229.

manuscripts

m1 Marius Hogräfer and Hans-Jörg Schulz. Tailorable Sampling for
Progressive Visual Analytics. In submission at IEEE Transactions
on Visualization and Computer Graphics.

m2 Marius Hogräfer, Dominik Moritz, Adam Perer, and Hans-Jörg
Schulz. Strategies for Enabling Degree-of-Interest Functions for Pro-
gressive Visualization. In preparation for submission to EuroVis
2023.

ix

https://doi.org/10.2312/eurova.20221079
https://doi.org/10.1145/3531229

A C K N O W L E D G M E N T S

This PhD thesis is the outcome of three exciting years at Aarhus Uni-
versity, and I owe thanks to all the many amazing people that were
part of that journey.

First and foremost, I want to thank my advisor, Hans-Jörg, for invit-
ing me to Denmark and for introducing me to Progressive Visual An-
alytics. I am infinitely grateful for your guidance and support over
the last three years. I have grown a lot as a young researcher, and this
would not have been possible without you occasionally nudging me
back onto the right track. This PhD has been quite an experience, and
I am thankful for all our work together.

I also thank all my co-authors for our fruitful collaborations.
Many thanks are also due to my colleagues here at AU, in par-

ticular my fellow UBI and CoCHI people, who warmly welcomed
me when I arrived here and provided me with an open and accept-
ing atmosphere for conducting my research, including the countless
lunches and Friday bars we shared together. I also want to thank
Adam, my host during my virtual stay-abroad, as well as everybody
in the DIG lab that welcomed me (virtually) at CMU.

Thanks are due to my friends in Aarhus, who supported me along
the way, including (but not limited to) Wenkai and Jana, the world’s
best office mates; Nathalie for your tremendous help and support
during thesis writing (and the kardamommesnurrer); Philip, for your
inspirational pep-talks; Marcel, for our mutual venting about PhD life
and Deutsche Bahn journeys; Henriette for the cumulative marathons
we ran along the coast of Aarhus that helped me clear my head from
time to time; Noga for our coffee breaks; Ida, Matthias, Lars, Peter,
and Penny the one and only Ceres gang. Thank you, Tommaso and
Virginia, i miei italiani, for enduring late-night typing noises during
these last few months, and mille grazie for all the comfort foot (espe-
cially the pizza), TV series, and conversations we shared together.

And thank you, Sofie, for always being there for me, and for sup-
porting me (and putting up with me) during these last few months.

Lastly I also want to thank my family, who always supported me
from afar. Mama, Papa, Tobi, Heike, Kalle; danke für eure undendliche
und bedingungslose Unterstützung, bei all den merkwürdigen Din-
gen, für die man mich bezahlt. Oma und Opa, danke für die Pakete
voll mit dringend benötigter Nervennahrung, und dafür, dass ihr
mich immer auf dem Laufenden gehalten habt. I could not have gone
through with this PhD journey without you.

Marius Hogräfer,
Aarhus, October 2022.

xi

C O N T E N T S

I overview 1

1 introduction 3

1.1 Motivation 3

1.2 Main Challenges 5

1.2.1 Expressiveness: The sampling cannot be tailored
dynamically 5

1.2.2 Effectiveness: DOI functions can be infeasible in
PVA 6

1.2.3 Efficiency: Steering mechanisms are restricted
to certain scenarios 7

1.3 Thesis Statement 7

1.4 Research Questions and Contributions 7

1.5 Research Approach 9

1.6 Authorship Statement 10

1.7 Thesis Outline 10

2 background 11

2.1 Visual Analytics 11

2.1.1 Interactive Information Visualization 12

2.1.2 Ensuring Fluid Interaction in VA 13

2.1.3 Reducing Interaction Latency with Sampling in
VA 15

2.2 Progressive Visual Analytics 16

2.2.1 Benefits of PVA 17

2.2.2 Analytical Computations in PVA 19

2.2.3 Partial visualizations in PVA 20

2.2.4 Interaction in PVA 21

2.3 Summary 23

3 improving the usefulness of partial visualiza-
tions in pva 25

3.1 Characterizing Usefulness of Partial Visualizations in
PVA 25

3.2 Proposing a Criteria-Based Delin. of Usefulness of Part.
Vis. in PVA 28

3.3 Improving the Expr. of Part. Vis. with Tailorable Sam-
pling 29

3.3.1 Research Background 29

3.3.2 Research Challenge 30

3.3.3 Contribution 31

3.4 Improving the Effect. of Part. Vis. with DOI Functions 31

3.4.1 Research Background 31

3.4.2 Research Challenge 33

xiii

xiv contents

3.4.3 Contribution 33

3.5 Improving the Effic. of Part. Vis. with Steering 33

3.5.1 Research Challenge 35

3.6 Summary 36

4 discussion and future work 37

4.1 Contextualizing the Thesis Contributions 37

4.2 Reflecting on the Research Questions 38

4.3 Future Research Directions 40

4.3.1 Providing integrated library support to devel-
opers 40

4.3.2 Guidance for improving the usefulness in par-
tial visualizations 41

4.3.3 Increasing the efficiency with progressive pa-
rameter space visualization 41

II papers 43

5 a pipeline for tailored sampling for progressive

visual analytics 45

5.1 Introduction 45

5.2 Related Work 47

5.3 A Sampling Pipeline for PVA 48

5.3.1 Linearization 48

5.3.2 Subdivision 49

5.3.3 Selection 49

5.4 Usage Example of the Sampling Pipeline 50

5.4.1 ProSample 50

5.4.2 Scenarios 50

5.5 Conclusion and Future Work 52

6 tailorable sampling for pva 53

6.1 Introduction 53

6.2 Characterizing PVA Sampling 56

6.3 Related Work 58

6.3.1 Sampling as an operation 58

6.3.2 Sampling as a process 59

6.3.3 PVA-Sampling approaches 60

6.4 A Pipeline for Tailorable PVA-Sampling 60

6.4.1 Modularizing PVA-sampling along data formats 60

6.4.2 Linearization: Putting the data in order 63

6.4.3 Subdivision: Splitting the data into bins 65

6.4.4 Selection: Placing items into chunks 67

6.5 Tailoring PVA-Sampling on-the-fly 69

6.5.1 Dynamically tailoring to changing tasks 69

6.5.2 Dynamically tailoring to incremental input data 70

6.5.3 Dynamically tailoring to changing scope 71

6.6 Utilizing the pipeline’s modularity for tailored sam-
pling 73

contents xv

6.6.1 Recreating existing samplings 74

6.6.2 Recomposing sampling pipelines 74

6.6.3 Tailoring the sampling towards multiple attributes 75

6.7 Limitations 76

6.8 Conclusion and Future Work 77

7 strategies for enabling degree-of-interest func-
tions for prog . vis . 79

7.1 Introduction 79

7.2 Running Example 81

7.3 Related Work 82

7.3.1 Degree-of-Interest Functions 83

7.3.2 Incremental Learning 83

7.3.3 Progressive Visual Analytics 84

7.4 Degree-of-Interest Functions on Chunked Data 84

7.4.1 Problem Description 84

7.4.2 Solution Outline 85

7.5 Enabling DOI Functions for Progressive Visualization 86

7.5.1 Strategies for Providing Context to DOI Func-
tions in Progressive Visualization 86

7.5.2 Strategies for Updating Outdated Interest Val-
ues 90

7.6 Benchmarks 93

7.6.1 Setup 94

7.6.2 Results 95

7.6.3 Threats to Validity 99

7.7 Discussion and Future Work 100

7.7.1 Increasing the Chunk Size vs. Using the Strate-
gies 100

7.7.2 Applicability Limitations 101

7.7.3 Using interest values in Progressive Visualiza-
tion 101

7.8 Conclusion 102

8 steering-by-example for progressive visual ana-
lytics 105

8.1 Introduction 105

8.2 Related Work 107

8.3 The Steering-by-Example Approach 108

8.3.1 The Steering-by-Example Scenario 109

8.3.2 Description of the Approach 109

8.3.3 Extension to the Basic Approach 112

8.4 Benchmarks 113

8.4.1 Test Results 113

8.4.2 Test Cases 114

8.4.3 Detailed Measures 116

8.4.4 Implementation Details 120

8.4.5 Threats to Validity of Benchmarks 120

xvi contents

8.5 ProSteer: An Experimental Visual Environment for Steering-
by-Example 122

8.5.1 Comparing steered with non-steered progres-
sions 123

8.5.2 Make selections in view space 125

8.5.3 Explore a progression at one point in time 125

8.5.4 Comparing a progression between different points
in time 126

8.5.5 Comparing data inside the selection with the
rest of the data 126

8.6 Use Cases 127

8.6.1 Steering-by-Example on Large Datasets 127

8.6.2 Steering-by-Example on Dimensionality Reduc-
tions 129

8.7 User Study 130

8.7.1 Setup 130

8.7.2 Procedure 130

8.7.3 Results 131

8.8 Discussion 133

8.8.1 Implicit Assumptions of Steering-by-Example 133

8.8.2 Limitations of Steering-by-Example in PVA 134

8.9 Conclusion and Future Work 135

III appendix 139

bibliography 141

A C R O N Y M S

PVA Progressive Visual Analytics

VA Visual Analytics

DOI Degree of Interest

InfoVis Information Visualization

MDS Multi-dimensional Scaling

PCA Principal Component Analysis

SAX Symbolic Aggregate approXimation

t-sne t stochastic neighbors encoding

UMAP Uniform Manifold Approximation

xvii

Part I

O V E RV I E W

1
I N T R O D U C T I O N

1.1 motivation

Visual Analytics (VA) is a research field exploring the interactive vi-
sual analysis of data [64]. The general idea behind VA is to leverage
the cognitive skills of human analysts on one side and the processing
power of modern computers on the other to facilitate sense-making
on large complex datasets. The interaction between them runs as a di-
alogue: The computer performs the analytic processing and presents
results through an interactive visualization, which human analysts
can then efficiently interpret and reason about, bringing in common
sense and domain knowledge. Based on the insights they gather, an-
alysts can then interact with the visualization to reconfigure the com-
putation, prompting the computer to rerun the analysis and update
the visualization. This continues until analysts eventually complete
their task. In order for VA to be effective, though, the dialogue with
the computer must be fluid, in that the visualization should update
quickly after analysts perform their interaction, as analysts otherwise
lose their “flow” [33] or get distracted. An obvious challenge here
is that running complex computations on large datasets even with
modern hardware can take a long time (minutes, hours, even weeks),
which inherently reduces the successfulness of VA.

A recent approach to this problem is Progressive Visual Analyt-
ics (PVA) [107]. Rather than waiting until these long-running compu-
tations have completed before showing any results to analysts, in PVA,
partial visualizations show early results of the computation, bringing
down waiting times to interactive rates. By tightening the feedback
loop, PVA allows analysts to maintain their flow and to draw insights
based on early results, even when the computation is long-running.

The reason why this approach is successful is that patterns found
in the final result can in many cases already be observed or approx-
imated early on in the computation. In the words of Angelini et al.,
PVA in principle allows analysts to interact with the partial visual-
ization, “as if interacting with the final result” [5]. An example of four
partial visualizations is depicted in Figure 1. The patterns of the result
after the computation has completed can already be observed at 50%
and partially even at 25%. In addition to early insights as in the exam-
ple, PVA has other benefits for the analysts. For example, analysts can
identify errors in the computation early from partial results and stop
the computation without wasting time, and they can gain insights
into the inner workings of otherwise black-box computations.

3

4 introduction

1% 25% 50% 75% 100%

Figure 1: An example of a progression that incrementally processes parti-
tions of the data, showing how even at early stages of the pro-
gression, patterns from the final result become apparent. Adapted
from Loeschcke et al. [74].

PVA can, however, also be unsuccessful. This is because in order for
PVA to work, the partial visualization must be useful for analysts. In
turn, whenever that is not the case, for example, as no clear patterns
form or when they never stabilize until the computation completes,
the progressive approach is not necessarily beneficial. Or worse: PVA

can also mislead analysts into drawing false conclusions from pat-
terns that are only present in the partial results, but not in the final
visualization. This is, of course, detrimental to the analysis.

A defining challenge for PVA is, thus, to ensure that partial visualizations
become as useful as possible as early as possible.

The contributions of this thesis focus on this general challenge. Cur-
rent PVA literature mostly views usefulness in terms of generating
a visualization that is as similar to the final visualization as possi-
ble [41]. In practice, however, usefulness is often a more nuanced
trait, in that some parts of the partial visualization are more relevant
than other parts to extract the information needed for completing a
particular analysis task. This is evident in the conceptual notion that
in PVA, a partial visualization is “only useful if it shows what the ana-
lyst needs to see” [6], which clearly highlights the need for subjective
interpretation of usefulness.

At the same time, this subjective and scenario-dependent notion
of usefulness implies that the process of generating partial visualiza-
tions needs to be configurable to that scenario. This is because only
analysts themselves know, what makes the partial visualization use-
ful in their particular analysis scenario. In addition to that, analysts’
interests can dynamically change at runtime as they learn more and
more about their data, and consequently the usefulness of the partial
visualization needs to remain configurable at runtime. This means
that configuring a useful partial visualization is not just a one time
operation made by a system designer, but it is an ongoing process
during the analysis by the analysts actually using that system. How-
ever, many PVA approaches in the field are dedicated solutions to spe-
cific analysis problems that can be difficult or impossible to configure,
both before and during the analysis. This rigidity poses an obvious

1.2 main challenges 5

challenge whenever “what analysts need to see” — and thereby what
makes the visualization useful — changes or does not match with
what a system was designed for. In other words, there still exists a
clear gap between how usefulness of partial visualizations in PVA is
viewed conceptually and how it is achieved in practice.

This thesis addresses this gap by contributing approaches for im-
proving the usefulness of partial visualizations in PVA by configuring
the process to analysts’ interests. In particular, this thesis makes con-
tributions to the following three criteria:

• Expressiveness (data perspective): express the desired informa-
tion as early as possible.

• Effectiveness (task perspective): allow extracting the needed in-
formation as early as possible.

• Efficiency (resource perspective): the gains from using the visu-
alization outweigh its costs as early as possible.

In doing so, this thesis builds on and expands upon existing notions
of what makes partial visualization useful for PVA.

1.2 main challenges

As outlined above, the usefulness of partial visualizations in PVA

needs to be subjectively assessed and configured by analysts based
on their particular interests. Usefulness of visualizations in VA can
be assessed in terms of how well they cater to a given visualization
problem at hand: the data (expressiveness), the task (effectiveness),
and the available resources (efficiency) [108, p. 17-18]. This thesis
addresses the following research challenges that currently limit the
usefulness of partial visualizations in PVA in terms of these criteria,
contributing approaches for configuring the PVA process to analysts
interests.

1.2.1 Expressiveness: The sampling cannot be tailored dynamically

A visualization is characterized as expressive of the underlying data,
if it “express[es] the desired information contained in the data, and only this
information” [108, p.17]. A problem for the expressiveness of partial
visualizations in PVA is that this “desired information” may not even
be present yet in the partial data, which means it simply cannot be
expressed. A reason for this to happen is that the sampling responsi-
ble for defining the order in which the data gets processed spreads
it randomly throughout the progression. A solution to this challenge,
therefore, is tailoring the sampling to the user interest, such that it
brings out the desired information as early as possible. The current

6 introduction

approach is to configure the sampling once before starting the pro-
gression, meaning that analysts can no longer configure it later on
when their interest changes. However, the user interest does in fact
often change during the analysis in PVA with analysts learning more
about their data [78], and so this approach clearly limits the expres-
siveness of partial visualizations. The research challenge here is that
existing PVA sampling approaches are usually designed to address
specific analysis scenarios and, therefore, tailoring them to other sce-
narios can in itself be difficult, costly, or even impossible — let alone
during the analysis. This means that an entirely new approach is
needed for sampling in PVA, which can account for this.

This thesis contributes tailorable sampling for PVA, which allows
dynamically configuring the sampling to the current user interest,
thereby increasing the expressiveness of partial visualizations.

1.2.2 Effectiveness: DOI functions can be infeasible in PVA

Tominski and Schumann characterize a visual encoding as effective,
if it is “designed such that it allows extracting the information needed for
the task” [108, p.17]. A problem for the effectiveness of partial visual-
izations in PVA is that this information can be quickly buried under
the masses of the data that progressive visualization is often used for.
For non-progressive visualization, this is commonly overcome by con-
figuring the encoding, such that the most interesting data stands out,
while reducing or even completely hiding less interesting data. This
is enabled by Degree of Interest (DOI) functions, which compute the
“interestingness” of each data item in context of all other data. In PVA

this data context changes all the time with each processed sample.
This can mean that the same item gets a high interest score at early
stages, but as more data gets processed, may lose its importance, or
— vice-versa — an “uninteresting” item may gain in importance as
it becomes part of a pattern that only forms in later steps of the pro-
gression. In response, the current approach for utilizing DOI values
in PVA is to continuously recompute the interest values for all data
with every new sample, which is too time-consuming for many DOI

functions. The research challenge here is to allow analysts to specify
a suitable subset of the data, which on one hand includes as many
data items as possible to maintain valid interest values, but on the
other only as few as necessary to reduce the computation time. This
strongly scenario-dependent specification requires that the solution
is flexible enough to capture a variety of subjective requirements.

This thesis contributes strategies that allow analysts to tailor the
input selection for DOI functions in PVA to increase the effectiveness
of partial visualizations.

1.3 thesis statement 7

1.2.3 Efficiency: Steering mechanisms are restricted to certain scenarios

Lastly, a visualization is efficient, if “[t]he gains from using [it] outweigh
the computational resources and human effort needed to carry out the anal-
ysis” [108, p.18]. While PVA in general reduces the time before ana-
lysts can analyze their data, a remaining problem for the efficiency
is that time and computational resources may still be wasted process-
ing data that is not relevant to analysts. For example, analysts may
identify an emerging pattern in the data that they want to investigate
further, but they need to wait until more of that data gets processed.
The current approach to this is to allow analysts to steer the computa-
tion, such that it prioritizes unprocessed data that is similar to those
in the emerging pattern. The challenge here is that existing steering
mechanisms require either a 1-to-1 mapping between data and view
space, which not all visualization techniques employ, or they require
maintaining a dedicated index structure, which can quickly become
too demanding for large datasets. The research challenge here lies in
designing a novel steering algorithm that overcomes the limitations
of existing approaches, while posing minimal requirements on the
analysis scenario, allowing analysts to efficiently focus resources on
their interests.

This thesis contributes a steering mechanism for PVA which only re-
quires a set of relevant items as input to steer the progression towards
a data subspace to increase the efficiency of partial visualizations.

1.3 thesis statement

This thesis explores the hypothesis that configurable approaches that
improve the expressiveness, effectiveness, and efficiency of partial vi-
sualizations in PVA enable analysts to bring in their subjective exper-
tise in making them as useful as possible as early as possible. This
is based on the idea that usefulness of partial visualizations in PVA

should be assessed subjectively by analysts and, therefore, can be im-
proved by providing analysts control over the process to configure it
to their interests. Identifying what is desired allows configuring PVA

to improve the usefulness of partial visualizations. Consequently, pro-
viding configurable approaches is a step towards user-centric design
approaches for future PVA systems, which focus on usefulness as a
central design goal.

1.4 research questions and contributions

To support the thesis statement above, this thesis addresses the fol-
lowing research questions.

8 introduction

RQ1: How can the sampling in PVA be tailored to bring out the desired
information in partial visualizations?

This thesis addresses RQ1 in multiple ways. First, it contributes
a characterization of PVA-sampling, distinguishing these approaches
from regular sampling in VA, in that sampling in PVA is an ongoing
process running in parallel to the analysis, whereas regular sampling
is a step performed once before the analysis. It also contributes a pipe-
line that modularizes PVA sampling into three steps, allowing to tailor
the sampling to analysts’ interests and in such a way that does not
require restarting the analysis. The tailorability of the pipeline is eval-
uated in a series of examples, demonstrating how each step affects the
resulting sample, but also demonstrating how existing samplings can
be recreated, recomposed, and tailored to user interests. To demon-
strate the user experience, the publicly available tool ProSample is in-
troduced, which implements the pipeline concept and facilitates the
interactive comparison of samplings.

RQ2: How can DOI functions in PVA be continuously updated to allow
extracting the information needed for the task from partial visualizations?

This thesis addresses RQ2 by first contributing a characterization
of the challenges limiting the use of DOI functions in progressive vi-
sualizations, which are caused by the continuous updates required
for producing valid interest scores over changing input data. Based
on this, this thesis also contributes a series of strategies for limiting
the computational overhead caused by these updates by only select-
ing specific data items. These strategies allow analysts to tailor what
data is included in the DOI computations based on their task, thereby
enabling the use of new DOI functions in PVA. These strategies are
evaluated in a series of benchmarks, which suggest the use of interest-
specific strategies to improve the accuracy of interest values. The in-
teractive visual analysis tool ProInterest is introduced, which adapts
these strategies.

RQ3: How can steering be made more widely applicable across PVA scenar-
ios to reduce the mental and computational efforts of using partial visual-
izations?

This thesis contributes a steering approach called steering-by-example
that allows prioritizing subspaces of interest in the analysis. In con-
trast to prior approaches, it only requires a small set of relevant items
from that subspace as input. This makes steering-by-example applica-
ble for many visualization techniques beyond 1-to-1 mappings, and
it does not require continuous re-binning of the entire unprocessed

1.5 research approach 9

data space. The approach is evaluated in benchmarks, comparing it
to state-of-the-art steering mechanisms, showing a clear improvement
in terms of precision in retrieving data from a selected subspace in
the next partition. To demonstrate the user experience of steering-
by-example, the publicly available tool ProSteer is introduced, which
allows to interactively assess the utility of steering-by-example over
state-of-the-art steering.

1.5 research approach

According to Brooks, conducting computer science resembles the work
of a toolsmith, which he describes as symbiotic work of applying sci-
entific and engineering methods [16]. In order to address research
questions in the field, Brooks characterizes that work as inherently
cyclic: One generally has to build a tool that can be studied, first
(which Brooks calls the science perspective), yet in order to be able to
build these tools, one also needs to consider the theory (which Brooks
calls the engineering perspective). Since this thesis explores practical
solutions for challenges in a conceptual process, its research approach
is inspired by this cyclic workflow to address the research questions.

Most contributions came about by considering a solution to a con-
ceptual challenge for useful partial visualizations in PVA, and while
constructing tools to demonstrate them, details of these solutions
were then fleshed out. Specifically, the contributions of this thesis
were facilitated by ProSample, a visual comparison tool for pipeline
configurations in PVA (see Section 5.4.1), ProInterest, a visual interface
for configuring progressive DOI functions (see Section 7.7.3), and ProS-
teer, a visual comparison tool for the steering-by-example approach
(see Section 8.5). The source code to the tools designed for address-
ing the research questions is publicly available under open source
licenses, to ensure the reproducibility of the reported evaluation re-
sults, as well as reusability of the proposed methods.

The contributions towards the thesis statement, thus, came out of a
cyclic process similar to the one discussed by Brooks. This is because
the process of tool building itself was necessary to evaluate, whether
a solution was feasible while revealing detailed challenges, and it also
informed further conceptual considerations for solutions. In the case
of RQ2 for example, the original goal was to implement a specific
DOI function for PVA, which revealed the inherent conceptual chal-
lenge that the data context changes progressively. This insight then
led to more theoretical work again, exploring general approaches for
context-dependent computations, which, in turn, were then imple-
mented in ProInterest. The insights from these implementations then
informed the strategies that are also presented in the paper, which
were then quantitatively evaluated in the presented benchmarks.

10 introduction

1.6 authorship statement

While I am the principal author of this thesis, much of my work was
done in collaboration with my advisor Hans-Jörg Schulz, and the
papers were written in collaboration with the respective co-authors.
Below I outline how I contributed to each paper included in this the-
sis:

tailorable sampling I made significant contributions to the con-
cept and design phases of the initial tailorable pipeline research,
and I contributed a majority of the implementation of ProSam-
ple. I am the first author of the published paper, which is in-
cluded in Chapter 5. I also led the extension of this work, lead-
ing the concept and design phases, and I was also responsible
for extended implementations and benchmarks. I am the first
author of the paper, which is included in Chapter 6 of this the-
sis.

steering-by-example I made significant contributions to the con-
cept and design phases of the project, I contributed a majority
of the implementation of ProSteer, and I planned, conducted,
and analyzed the expert interviews in Aarhus. I am shared first
author of the paper, which is included in Chapter 8 of this the-
sis.

degree of interest for pva I led the concept and design phases
of the project and I provided the implementation and conducted
the benchmarks. I am the first author of the paper, which is
included in Chapter 7 of this thesis.

1.7 thesis outline

The remainder of this thesis is split into two parts. Part I goes on
to provide a background on the related scientific literature in Chap-
ter 2. Based on this, the research challenges for useful partial visual-
izations are identified and the contributions towards addressing them
are summarized in Chapter 3. Chapter 4 concludes the first part by
reflecting on the research question in light of the contributions of this
thesis and by proposing future research directions.

Part II consists of the papers containing the thesis contributions.

2
B A C K G R O U N D

This chapter discusses the relevant scientific literature, building the
theoretical foundation on which the considerations in the following
chapters rest. In the first part provides the scientific background on
Visual Analytics, leading up to one of its challenges: long computa-
tion times. This is then where Progressive Visual Analytics provides
a solution and the background on this topic, therefore, forms the sec-
ond part of this chapter.

2.1 visual analytics

The contributions of this thesis are situated in the research field of Vi-
sual Analytics (VA). Keim et al. define VA as follows: “Visual analytics
combines automated analysis techniques with interactive visualizations for
an effective understanding, reasoning and decision-making on the basis of
very large and complex data sets.” [64]. The goal in VA is to get the best
out of two worlds: The cognitive skills of the human analyst, who
has domain-specific background knowledge about the dataset and
can analyze things in context, and the computation power of mod-
ern hardware that excel at storing and processing large amounts of
efficiently with complex analytic algorithms. In VA a data visualiza-
tion serves as the two-way interface between user and computation:
The visualization presents the analysis results to analysts, and it also
allows analysts to interact with the computation to adjust it, which
in turn produces a new visualization. This back and forth between
computer and analyst distinguishes VA approaches from “regular”
(non-interactive) data analysis, and it has been shown to be success-

Human
in the loop

InfoVis pipeline Data mining pipeline

build/represent

Data

ModelVisualization

Figure 2: A basic model of the VA process (inspired by the model by Keim
et al. [64]). VA puts the “human in the loop” during the analysis,
giving analysts full control over the model and data through inter-
active visualizations.

11

12 background

ful in many domains that require processing large amounts of data
like healthcare, fraud detection, and disaster management.

In this section, the related scientific literature on VA is discussed.
This both serves as theoretic background for the following chapters
and helps to motivate the need for progressive approaches and the
research challenges this thesis addresses. In particular, the following
aspects are highlighted: the need for fluid interactions, Degree of In-
terest functions, and the role of regular (non-progressive) sampling
in VA.

2.1.1 Interactive Information Visualization

Depending on the context, there are different ways to interpret the
term “visualization” [22]. This thesis uses it interchangeably to inter-
active information visualization, which Card et al. define as “the use
of computer-supported, interactive, visual representations of abstract data
to amplify cognition” [17]. With visualization as the interface between
computation and analyst in VA, designing an efficient visualization
for a particular analysis task becomes an essential Human-Computer
Interaction (HCI) challenge underpinning all VA applications. The rea-
son why visualization is successful is that vision as an information
channel has the highest bandwidth compared to all other senses,
which enables us to immediately recognize certain visual patterns
and then interpret them in context of the data [116, pp. 152]. This
allows humans to immediately spot a red dot in a sea of blue dots, or
distinguish clusters of similar items that are placed closely together,
but separately from other clusters. It also allows discovering patterns
that are otherwise obfuscated behind descriptive statistics [7], as de-
picted in Figure 3. The most efficient visual encodings have repeat-
edly been evaluated experimentally [24, 77], e.g., mapping numerical
values to the height of a rectangle or categorical values to categorical
colors scales.

Beyond mapping data to graphical symbols, modern computing
hardware also makes it possible to also update visualizations based
on user input. Analysts can further explore their data, for example, by

Figure 3: The four depicted datasets have almost identical basic descriptive
statistics, meaning that they appear similar when only relying on
these metrics. However, a simple visualization reveals their differ-
ences immediately [7].

2.1 visual analytics 13

panning and zooming into a scatterplot to enlarge a region of interest,
or by highlighting data selected in one plot in another. Through inter-
action, analysts can take an active role in the visual analysis, which in
particular benefits the exploration of large, complex datasets. These
interactions are often performed directly on the data using direct ma-
nipulation [105]. For example, instead of setting view parameters by
manually selecting the range of x and y axes, analysts can use direct
manipulation by dragging the visualization with the mouse cursor,
or using the scroll wheel to zoom into the region the cursor points to.
Direct manipulation reduces the separation between user and data,
and thus makes the analysis more direct, accessible, and engaging.

2.1.2 Ensuring Fluid Interaction in VA

Designing VA systems is not a trivial endeavor, as the interaction be-
tween analyst and system must be designed in such a way that it
engages analysts in their work, rather than distract them. This qual-
ity has been characterized by Elmqvist et al. as fluid interaction [33],
which describes interactions that allow analysts to be deeply engaged
with their task, facilitated by the VA system. Fluid interaction brings
the concept of “flow” from psychology [26] to the Information Vi-
sualization (InfoVis) world. Csikszentmihalyi defines flow as “mental
state of total immersion in an activity where the challenge of the activity
and the skills of the participant are perfectly balanced, leading to high focus,
involvement, and rewarding outcomes” [26]. The qualities listed in that
definition are obviously beneficial to solving complex analysis tasks
in InfoVis and VA. Accordingly, Elmqvist et al. characterize fluid inter-
action around this concept as systems that show three properties [33],
listed below together with brief explanations:

• It promotes flow: Interactions provide an “optimal experience”
as defined above, rather than distracting, confusing, or annoy-
ing the analyst.

• It supports direct manipulation: Interactions take place as close
to the representations of the data they affect, rather than at dis-
connected parts of the interface.

• It minimizes the gulfs of action: Interactions reduce the mis-
match between analysts’ mental model of the system state and
the actual system state (gulf of evaluation) and it reduces the
mismatch between the intentions for using the system and the
actions allowed by the system (gulf of execution).

Providing fluid interactions has, since then been a goal in the design
and implementation of visualizations and in turn also of VA systems.

Breaking the “flow” on the other hand has been shown to be detri-
mental, not only to the user experience but also to the successfulness

14 background

Response Interaction goal

.1s Perceptual Update: Computations initiated through di-
rect interaction with the view.

1s Immediate Response: Feedback on GUI interactions like
tuning computational parameters.

10s Task completion: Initiating a computational task, such as
a query or complex filter operation on large datasets.

Table 1: Expected response times for different levels of responsiveness to
maintain fluid interaction for different purposes, as compiled by
Angelini et al. [6].

of the analysis. Tominski and Schumann identify three threats to fluid
interaction: temporal separation, spatial separation, and conceptual
separation [108, pp. 140]. Temporal separation describes a temporal
delay in the interaction, spatial separation describes a distance in the
place of the interaction and the effect it has, and conceptual separa-
tion describes a mismatch in the internal model of the system and
analysts’ comprehension of it.

PVA, the focus of this thesis, addresses the temporal separation,
which can be caused by the ever-growing size of datasets and the in-
creasing complexity of analysis methods, as both often increase com-
putation times. Since interactions require a response from the system
(often a rerun of parts of the analysis), this response becomes delayed,
the more data is in the analysis pipeline.

The impact of such delay on human-computer interaction has been
well studied. For example, in 1968 Miller was already able to show
how for many computer-supported tasks, waiting up to ten seconds
produced good results, while performance measurably declined for
longer delays [79]. Shneiderman similarly found there to be a “sweet
spot” (at around twelve seconds in his study) in response times for
certain tasks, below and above which participants’ error rates in-
creased [106]. Accordingly, Card et al. identified three levels of de-
lay that were acceptable for different tasks: below .1s for perceptual
processing (“maintaining the illusion of animation” [18]), below 1s for
immediate responses (“serve[s] to keep the parties of the interaction in-
formed that they are still engaged in an interaction” [18]), and below 10s

for unit tasks (“completing an elementary task’’ [18]). Recently, Liu and
Heer studied the general effects of delay on the exploratory visual
analysis, finding that even adding delay of 500ms had a noticeable
impact on exploration strategies, and it decreased user activity and
dataset coverage [72]. Angelini et al. [6] later compiled expected re-
sponse times for different interactions in PVA (see Table 1).

These findings are clearly supporting the claims of fluid interaction,
where a tight coupling of the interaction through low response rates is
correlated with performance gains. The takeaway here is that in order

2.1 visual analytics 15

for a VA system to provide fluid interactivity, it must keep response
times to user input low.

2.1.3 Reducing Interaction Latency with Sampling in VA

One approach in non-progressive VA to reduce the latency is to run
the computation on a smaller subset (a so-called “sample”) of the
data. The process for generating such a subset is also called sampling.
Sampling can be a viable option, because approximate results can
be just as useful as definitive results [67]. Reducing the size of the
dataset can obviously increase the update rate in VA, as it reduces
the complexity of the analysis. One standard heuristic for sampling
is statistic representativeness, meaning that the value distributions in
the sample are similar to those in the overall dataset. How this rep-
resentativeness is defined, though, depends on the analysis scenario,
as what makes the approximate results useful depends on what ana-
lysts want to do with it. This is further demonstrated in the examples
below; more complete surveys can be found in the work by Olken
and Rotem [86] and Cormode et al. [25].

A simple interpretation of representativeness is that the frequency
with which certain values appear in the sample should correlate with
the frequency of the full dataset. Accordingly, in the commonly used
random uniform sampling without replacement, items from the full
dataset are sampled with uniform probability, which means that val-
ues appearing across many items have a high probability of appear-
ing in the sample. This sampling is often used in VA for overview
tasks, as this heuristic generally performs well at maintaining fre-
quent values. It does, however, have known shortcomings in main-
taining rare values in small sample sizes, which can be challenging
for tasks like training models on unbalanced class labels. Here, strati-
fied sampling can be a solution, which facets the data along the class
attribute and then randomly selects from within each facet a speci-
fied number of items. That way, it is possible to guarantee a certain
number of values for each class in the sample.

The choice in a useful sampling method is also influenced by the
underlying dataset. For example, for sampling network data contain-
ing links and nodes, the structure of the network is often relevant
for the analysis. Again there are different ways of preserving a use-
ful structure in different tasks. Wu et al. [120], for example, showed
that three graph sampling methods preserve different visual features
in a node-link diagram of the sample. Similarly, for geographic data,
the spatial distribution of the data is essential for its analysis. Park
et al., for example, present visualization-aware sampling that selects
elements in a way that the visualization of geospatial data maximizes
the visual fidelity at each zoom level [89]. In contrast, Zheng et al.

16 background

Source Data

Partitioning

Partial Data

Analytical
Processing

Partial Analysis Result

Visualization
Rendering

Update

Partial Visualization

Analyst

Figure 4: A basic pipeline of the PVA process, adapted from Li and Ma [68].

present a method that reduces the error in Kernel density estimates
on geospatial data [129].

The takeaway here is that sampling is a successful approach for
reducing the size of large data for reducing the computation time
of the analysis. Rather than processing the entire dataset, the idea
is to find a representative subset of the data on which to run the
analytic computation. Which sampling method is useful depends on
the analysis task, as well as the type of the dataset. These conclusions
are relevant for the contributions in this thesis, in that sampling is an
important mechanism for producing early, partial visualizations in
PVA, and the same conditions (task- and data-dependency) hold true
there as well.

2.2 progressive visual analytics

Another response to reducing the delay in visualizing large datasets
is Progressive Visual Analytics (PVA). The term PVA was introduced
by Stolper et al. in 2014 [107], and has since been taken up by other re-
searchers. In contrast to regular VA, partial visualizations show early
results of long-running computations are shown to analysts, rather
than forcing them to wait until the full computation completes. This
means analysts can maintain their flow, as they get to see the results
much earlier. In contrast to performing VA on sampled data, analysts
also eventually get to see the entire dataset. Thus, the goal of PVA

was characterized in a Dagstuhl report as putting analysts back into the
loop of long-running computations [39]. Figure 4 depicts a simple model
of the PVA process. There exist different interpretations of PVA [60,
pp.11]. The remainder of this thesis uses the definition by Fekete and
Primet, who define the progressive data analysis around a function
with three properties [41]:

1. A constant computation time of partial computation steps.
2. A guaranteed computation time per step that lies below a cer-

tain threshold time.
3. Results that converge over time.

The PVA literature can generally be distinguished into two general
approaches for producing partial visualizations: Either by iteratively
outputting partial visualizations from computation steps, or by incre-
mentally outputting partial visualizations from partitions of the data.
Examples for iterative computations are online dynamic graph draw-

2.2 progressive visual analytics 17

ing [44] and dimensionality reduction algorithms like t-sne [93]. This
thesis focuses on incremental PVA.

2.2.1 Benefits of PVA

There are many reasons for using PVA [6]. This section highlights
some of these benefits to further motivate the contributions in this
thesis.

analysts can maintain their flow The main benefit of PVA

used to motivate it in the Introduction Section 1.1 is that showing
useful, early results allows analysts to maintain their analysis flow
during long-running computations. This distinguishes it from non-
progressive (also called monolithic) VA approaches, where they would
need to wait for hours, days, or weeks, before getting to see the fi-
nal result. As discussed in Section 2.1.2, flow is essential for making
the interactive visual analysis successful. Beyond not forcing analysts
to wait for the analysis to gain early insights, PVA also allows main-
taining flow when adjusting the analysis. For example, as outlined
by Micallef et al. [78], an analyst may take on a passive role in the
analytic process at first, starting out by passively observing the pro-
gressive visualization. Then, once they notice that the visualization
does not produce useful results, switch to a more active role and be-
gin adjusting the parameters of the computation. Thus, analysts can
switch roles within one PVA session as summarized in the hierarchical
model depicted in Figure 5. Rather than restarting the entire computa-
tion, whenever results do not return what the analyst was looking for,
they can switch gears to adjust the parameters of the progression “to
help [it] along” [78]. While this aspect of PVA helps maintain the flow,
it also makes the analysis more efficient, since analysts do not have to
redo the entire computation to adjust the analytic computation, but
can dynamically do so on the fly.

analysts can terminate the computation early Another
benefit is that analysts cannot only maintain their flow based on early
results, but they can also terminate the computation early, which
saves time. Terminating the computation early may happen for mul-
tiple reasons. One such reason is that the partial visualizations were
useful, and the analyst was able to complete their task based on par-
tial visualizations; they found what they were looking for. Alterna-
tively, the analyst might detect that the results are not useful (for ex-
ample, due to a poor choice in algorithms), and decide to stop the
computation to reconfigure the analysis. In both cases, they save time
by terminating early compared to waiting until completion. Some
recent studies have indeed confirmed that analysts in PVA often com-

18 background

Observer

Ascertain suitable quantity
of processed data and
stability of the computed
results

View large information
spaces progressively

Understand an algorithm
and its inner workings

Searcher

Analyze an approximate or
partial result of a costly
query

Refine search space based
on the intermediate results
provided by the progres-
sion

Compare different execu-
tions of the computation

Explorer

Gain an overview of an
unfamiliar information
space

Identify possibilities for
furthering the computation
by integrating the user’s
tacit knowledge or prefer-
ences

Investigate alternative
scenarios

Figure 5: User roles and tasks in PVA (reproduced with permission from [40,
Ch.7.4]). Important to note here is that roles and tasks are hierar-
chical, because analysts in PVA can change their interest while the
computation is ongoing.

plete their tasks earlier using progressive systems compared to non-
progressive systems, while still generating correct insights [94, 127].

analysts can steer the progression In PVA, analysts inter-
act with an ongoing computation, rather than a finished result, which
allows them to steer the computation based on their insights, while it
is still running. Some literature uses the term steering inconsistently,
describing analysts controlling parameters of the algorithm [10], pri-
oritizing data subspaces [27], or prioritizing parts of the result [93].
In light of this “confusion”, Raveneau compiled the following encom-
passing definition of steering in PVA:

“An analyst steers the algorithm in a Progressive Visual Ana-
lytics system, when 1/ they express a constraint on a subset of
the data or of the results, and 2/ they demand that the algorithm
satisfies the constraint during the next execution iteration(s),
i.e., without restarting.” [98, p.84]

The contributions in this thesis use steering in terms of constraining
the algorithm on a subset of the data. One aspect of steering under
this definition is that it allows analysts to focus the computational
resources on relevant subspaces, rather than “wasting” them on data
irrelevant to their task. For example, while running a progressive an-
alytic over a decade-worth of data, based on the early results the an-
alyst may identify an interesting pattern in a particular week. Rather
than processing data from the entire data space or restarting the com-
putation to filter, the analyst in PVA can instead focus the computation
on that interesting data on the go. They can thus complete the com-
putation locally earlier, i.e., getting “the full picture” for the region
of interest. In non-progressive VA, they would have had to wait until

2.2 progressive visual analytics 19

the full computation is done, to then explore the data, find the inter-
esting pattern, and only then could investigate it. The added benefit
of computational steering in PVA is that it allows analysts to confirm
or reject hypotheses about the partial data much quicker, as they can
directly engage with the computation. For example, they might find
after focusing the computation on the interesting pattern, that that re-
gion turns out to be uninteresting when looking at the “full picture”.
The analyst can thus move onto the next interesting pattern, without
interruption or restart. This further increases the efficiency of the pro-
gressive analysis, as reflected in experiments by Procopio et al., who
showed that even non-expert users were able to use steering in their
work [94].

2.2.2 Analytical Computations in PVA

A defining difference to analytical computations that derive models
from data in non-progressive VA is that in PVA, only parts of the
dataset can be accessed. In PVA, for which the partial results should
converge over time, the underlying assumption is that the analytical
computation produces the same results for parts of the data, as it
does on the entire dataset. Some computations inherently fulfill this
requirement: For example, when subtracting a static value from each
entry in the data, for each item, this result is the same regardless of
the partitioning. This is because these computations only look at the
data element by element. Computations that relate elements to other
elements, however, need to be adjusted to work progressively. For ex-
ample, when computing outliers in the data (i.e., items in the data
that significantly differ from all other items), the decision whether
an item is considered an outlier depends on the other items in the
chunk. Therefore, using this type of computation progressively in-
herently produces errors. A general challenge that the literature on
progressive analytical computations addresses is thus to find ways of
reducing that error, in order to use these computations progressively.

A related field is online (or incremental) learning, which explores
ways for reducing the error on unsupervised learning algorithms dis-
cussed for VA [76]. Following Fekete and Primet, online learning al-
gorithms can provide partial results much fast than running compu-
tations exhaustively, and they can be adapted to PVA by ensuring that
results are produced within the human latency constraints [41]. This
notion clearly highlights the importance of online learning for PVA.
The scientific literature on online learning is abundant, in fact, there
are diverse approaches looking at the problem of incremental cluster-
ing alone [3, 11, 55, 124]. As such, online learning is already widely
used in PVA systems, for example Turkay et al. use an incremental
variant of Principal Component Analysis (PCA) [110], and Fekete et al.
have applied an incremental variant of k-means [37, 41] to produce

20 background

partial visualizations of clusterings. Others have explored aspects
of progressive analytical computations directly from a PVA perspec-
tive, developing progressive algorithms. Jo et al. for example first
presented an algorithm for progressively computing kd-trees [62],
which was then used as basis for the implementation of progressive
k-nearest neighbors [59], and progressive Uniform Manifold Approx-
imation (UMAP) [65]. Other progressive dimensionality reduction al-
gorithms are progressive t stochastic neighbors encoding (t-sne) [93]
and progressive Multi-dimensional Scaling (MDS) [118].

To assess the quality of the partial results of online algorithms, ro-
bust statistics can be applied. Robust here signifies that “the shape of
the true underlying distribution deviates slightly from the assumed model” [58],
meaning that the approximate, partial result resembles the complete
result of the computation. This research field is highly-relevant in
PVA, where analysts work with partial (i.e., assumed) results, requir-
ing them to perform their analysis under the uncertainty that these
results may change. By supplying them with robust statistics, ana-
lysts can be assured that the result after the computation completes
lies within a certain error bound of the partial result. One central
challenge is that ensuring robust partial results generally requires
large sample sizes, which can stand in contrast to PVA’s requirements
of the human latency constraints. Pébay, for instance, states the well
known conflict between online learning and robust statistics, in that
“algorithms for calculating [robust statistics] for the sake of execution speed
[...] lead to unacceptable numerical instability” [91]. In response to this,
dedicated online robust statistics have been proposed, for example,
in Pébay’s work on higher moments [91] or for Welford’s method for
variance [9].

2.2.3 Partial visualizations in PVA

Just as with visualization in VA, its purpose in PVA is to encode the
results of the analytic computation. The main difference compared
to non-progressive VA is that the results in the visualization are in-
herently incomplete and that the visualization continuously changes
with every new chunk of data. This section looks at how the literature
addresses this difference.

One way the literature addresses changes in the visualization is to
inform the user about the result incompleteness upfront. A common
example of this are error bands on bar charts that show the confidence
interval [61, 94]. Turkay et al. show a method that adjusts the size of
bins in a binned scatterplot to encode the error, in that the larger the
bins, the greater the chance that the location of dots in these regions
may change at a later stage, as more and more data is loaded [110].

An alternative approach is to inform the user retroactively about
changes in the visualization, since they last looked at it. Moritz et al.

2.2 progressive visual analytics 21

propose so-called optimistic visualization [80]. The general approach
is to provide analysts with fast approximate results that are refined
as analysts work with the data. Later, when the computation is com-
pleted, analysts can look back at their earlier results and are informed
about in what areas and by how much the initial approximation dif-
fered from the final result. Then, they can choose, what parts of the
analysis to rerun based on these “corrections”. A related approach to
optimistic visualization is ProReveal [61]. Here, analysts can formu-
late hypotheses on progressive visualization by specifying the range
in which they expect the final result to lie. Whenever the progressive
value exceeds these bands, the analyst is notified, so they can recon-
sider their insights.

A third option found in the literature is to design the visualiza-
tion in such a way that it avoids these changes in the first place. Wa-
terink et al. present a technique to reduce the visual fluctuation in
progressive visualization between two steps, which they name “pop-
ping artifacts” [117]. Chen et al. look at the considerations for render-
ing scatterplots and dot map visualizations, presenting adjustments
to the sampling step of the PVA pipeline to achieve a more suitable
visualization [23]. Rosenbaum and Schumann [99], on the other hand,
explore a technique for prioritizing the most salient features of the vi-
sualization, before refining the details by adjusting the rendering step
of the PVA pipeline. Therefore, the overall layout of the data remains
stable, and only changes in the details. While their approach does not
strictly fall under the definition of PVA, since this technique requires
knowledge about the final visualization before it can be applied —
the approach was proposed to overcome limitations of limited band-
width — it shows potential beyond just plotting more and more data
as it arrives. Another related example are Progressive Parallel Coor-
dinates [100], a progressive visualization technique for high/dimen-
sional data. Therein, the authors demonstrate how the same visual-
ization technique can be progressively visualized in different ways,
each tailored to a particular user interest.

2.2.4 Interaction in PVA

Earlier, this chapter noted that a goal of PVA is to put the human
back in the loop in long-running computations [39]. A conceptual dif-
ference to non-progressive VA from an interaction perspective is that
analysts no longer operate on a finished analytic result, but instead
with an ongoing analytic process. However, leveraging the benefits of
PVA — actually putting the human back in the loop — requires that
there is no noticeable difference between the two interactions from the
analyst’s point of view, in that interaction on a process should behave
exactly like interaction on the final result [6]. Thus, interactions with
the analytic process must be tightly coupled with interactions with

22 background

the progression. Mühlbacher et al. distinguish between two degrees
of control that analysts gain by interacting with an ongoing computa-
tion: execution control (controlling the input of the computation) and
result control (controlling its output) [82]. This section looks at how
the related work addresses interaction in terms of these two aspects.

Mühlbacher et al. divide execution control into cancellation and
prioritization. Cancellation is an often cited benefit of PVA, and it is
often used as a main argument for applying progressive visualiza-
tion [43, 94, 127]. Cancellation is also discussed as it facilitates rapidly
restarting the computation for fine-tuning parameters of the compu-
tation [10]. The related has also looked at coupling view interaction
with prioritization (regarding remaining parts of the computation).
In terms of the interaction coupling in PVA, interaction on the visu-
alization affects data that is already in the visualization as well as
data that in the future will appear in that part of the visualization
the analyst interacted with. The goal in PVA literature is thus to find
ways of prioritizing this “invisible” data. An example of prioritiza-
tion was presented by Williams and Munzner, who discuss a method
for prioritizing data in MDS, based on a user-selected bin [118]. Here,
the interaction was fully decoupled from view space exploration and
purely served to interact with the progression. The Sherpa method
by Cui et al., on the other hand, steers analytic computations over
sequential data such as genomes or time series, based on brushing
interactions that analysts perform for exploring the data [27]. The in-
teraction with the progression in this case is tightly coupled with the
view space interaction, and participants in the evaluation even stated
that they had intuitively expected this behavior. Pezzotti et al. present
steering for a t-sne layout, which couples view space interactions like
brushing and magic lenses with the prioritization [93], again showing
a tight coupling. In terms of the coupling of interaction, the related
work provides dedicated solutions for coupling control over the pro-
gression with prioritization.

Regarding result control, prior work has mostly discussed ways in
which to interact with the progression in PVA, i.e., inner result con-
trol in Mühlbacher et al.’s terms [82], which allows for controlling
the output within one analysis session. Badam et al., for example, ex-
plicitly look at the challenge of “steering the craft” [10]. In terms of
the result control, they present a system that uses widgets to play,
pause, and stop the progression, a progress bar that allows “going
back in time” to view the progression at earlier stages, as well as
buttons and sliders to set specific parameters of the underlying com-
putation. Turkay et al. discuss interaction considerations for PVA on
high-dimensional data, and similarly use widgets to control the pro-
gression, including widgets for manually restarting the computation
and setting the chunk size [110]. Looking at coupling between the
view and computation, the related work has mostly separated result

2.3 summary 23

control from view, i.e., the interaction is “spatially separated” [108,
pp. 140]. Outer result control, on the other hand, that is, configuring
the PVA process for multiple consecutive executions has only been ad-
dressed in terms of toolkits, which allow building and configuring
PVA processes. P5 [68] for example proposes a declarative approach
for configuring the progression. ProgressiVis [37] addresses the archi-
tectural challenges of progressive data structures and modules. These
frameworks are, however, still under development, and mostly used
experimentally.

2.3 summary

This chapter provided the theoretical background on related concepts
in VA and its specialization PVA by exploring the scientific literature.
Based on this, the addressed research challenges and provided con-
tributions in this thesis are motivated in the following chapter.

3
I M P R O V I N G T H E U S E F U L N E S S O F PA RT I A L
V I S U A L I Z AT I O N S I N P R O G R E S S I V E V I S U A L
A N A LY T I C S

This chapter characterizes “usefulness” of partial visualizations in
PVA and provides an overview of the contributions in this thesis to-
wards the research challenges.

3.1 characterizing usefulness of partial visualizations

in progressive visual analytics

The interpretation of usefulness for partial visualizations in PVA in
the scientific literature has evolved over time. In the work by Stolper
et al., which introduced Progressive Visual Analytics (PVA), useful-
ness referred to partial results that were “semantically meaningful”
to analysts [107]. In a following paper by Fekete and Primet the inter-
pretation of usefulness was further refined, suggesting for the visual-
ization to converge to the final result “as quickly as possible” [41]. The
authors, however, also note that guaranteeing such a quantitative use-
fulness is challenging, as it depends on many factors, including the
analysis function, its parameters, the data, the computation method,
and the way in which this convergence is measured.

Later work emphasized the importance of subjective interpreta-
tions of usefulness. In particular, the work by Moritz et al. on op-
timistic visualization [80] and the work by Jo et al. on progressive
guards [61] emphasize that the partial visualization must be “trust-
worthy”, in order for analysts to continue their analysis. The idea
behind this perspective is clear, as only when analysts trust the visu-
alization can they move on in their analysis, and thus actually make
use of the partial visualization. A similar notion can be found in the
review of PVA literature by Angelini et al., who explicitly note that “a
partial result is only useful [...] if it shows what the analyst needs to see” [6].
This quote clearly brings out the idea that usefulness can only be
viewed in connection with a particular user interest in a particular
scenario.

The review further qualifies the usefulness of the partial results
at four levels as “meaningful” at first, “trustworthy” later on, and
then “significant” [6] and finally, of course, “complete” once the pro-
gression concludes. These levels are depicted in Figure 6. It also pro-
vides recommendations for supporting analysts through partial re-
sults. To support the first level — that is meaningful partial results —
the system needs to ensure immediacy, significance, and actionabil-

25

26 improving the usefulness of partial visualizations in pva

Verification of Findings &
Insight Generation

tCompletetStabletReliabletResponse

Early Partial
Results

Firsts meaningful partial result

Basic Interaction &
Observation

PVA

Data Observation &
Exploration

First trustworthy partial result Last significant partial result Last result

Definitive Partial
Results

Mature Partial
Results

Figure 6: Timeline conceptually showing the increasing usefulness in par-
tial visualizations for PVA as presented by Angelini et al.. While
analysts in non-progressive VA would have to wait until the entire
computation is completed in order to make use of it, the partial vi-
sualization in PVA becomes useful much earlier (reproduced from
[6]).

ity. To support the analysis at the trustworthy level, these criteria are
extended towards “establishing trust in the still incomplete results” [6],
meaning that the system now needs to communicate the uncertainty
of the ongoing process to analysts. That is, the system needs to inform
analysts how close or far away the partial result is from a stable, sig-
nificant result, both in terms of the data (such as confidence bounds),
but also about the process (such as provenance information) [6]. To
support the third level of usefulness, where partial results remain
mostly stable as no further significant changes are expected, PVA sys-
tems should also include ways of assessing the stability of results, by
informing the judgement of the state of the process and the progress
of the progress [6]. One aspect to note here is that the notion of useful-
ness in general and in these recommendations in particular is based
on qualitative terms rather than quantitative metrics, indicating that
analysts need to subjectively assess usefulness.

In a follow-up work, the authors then defined ten quantitative de-
scriptive indicators for the progression to support analysts in their
assessment. These measure the quality of input, result, and view
in terms of progress, stability, and certainty [5] (see Figure 7). Vi-
sualizing these indicators in an interface allows analysts to subjec-
tively assess the usefulness of the partial visualization, meaning that
they can now — based on numeric values — determine, where on
the meaningful–trustworthy–significant spectrum the partial visual-
ization currently is. This intuitively makes sense, in that the same
partial result can be useful in some scenarios, but it may not suf-
fice in others, and indicator metrics help inform analysts’ decision on
whether it is the case.

Relying on the subjective assessment of usefulness naturally opens
the door for cognitive biases in PVA. Biases are a systematic and in-
voluntary way of how humans deviate from rational judgement, re-
gardless of intelligence and domain expertise [78]. These are widely
understood as a general challenge to the decision-making process in

3.1 characterizing usefulness of partial visualizations in pva 27

Figure 7: Ten quality indicators for PVA (reproduced from Angelini et al. [5]).

VA [114], and by showing partial results, PVA in essence makes an
already uncertainty-laden process even more prone to biases.

Micallef et al. identify uncertainty bias, illusion bias, control bias,
and anchoring bias as additional potential pitfalls when working
with progressive visualizations [78]. Procopio et al. later studied the
impact of each of these biases on the analysis [94] in a series of
four crowdsourced user studies on Mechanical Turk. They found that,
while progressive visualization led to time savings (around 88% in
their case), it could also lead to a measurable reduction in accuracy,
indicative of the presence of these biases. Yet, even under the pres-
ence of uncertainty, even non-expert analysts were able to perform
their tasks. This was also shown in other work by Patil et al., who
studied the effect of four different encodings of uncertainty on bar
charts [90]. While they did not find either of these encodings to be
superior, they generally found that users were able to successfully
perform tasks under the uncertainty introduced by the progressive
visualization. Some work has also shown how analysts in PVA engage
with uncertainty in practice to alleviate their biases. Zgraggen et al.,
for example, quote analysts who purposefully decided to wait longer
to make sure that patterns they observe remain after more data is
processed [127]. These user studies suggest that appropriately incor-
porating quality metrics in the interface can nevertheless make an
uncertain visualization useful.

The takeaway from this characterization here is that usefulness of
partial visualizations in PVA literature refers to how well a visual-
ization supports analysts in completing their task. Usefulness itself
cannot be directly measured quantitatively, but requires that ana-
lysts assess it subjectively in the context of their specific analysis
scenario. PVA systems can support analysts in their assessment, for
example, through suitable encodings and metrics, which help reduce

28 improving the usefulness of partial visualizations in pva

the impact of cognitive biases on the assessment. At the same time,
improving the usefulness can only be achieved by allowing the ana-
lyst that actually uses a PVA system to configure it to their subjective
needs. This, of course, requires that the system is in fact configurable.
Moreover, as the partial visualization becomes increasingly complete
throughout the progression, analysts interests — and, therefore, their
assessment of usefulness — can shift, which requires that the system
must be dynamically configurable.

This theoretical goal stands in clear contrast to how many PVA sys-
tems are currently designed in practice, in that they often provide
hardwired solutions tailored to specific analysis scenarios, rather than
being flexible and tailorable. This is, of course, completely under-
standable, given that PVA as a research field is still relatively young
with many specific research challenges unanswered, but it limits use-
fulness to these scenarios. Nevertheless, partial visualizations in sys-
tems built on these solutions inherit their limitations and, thereby,
limit their usefulness.

3.2 proposing a criteria-based delineation of useful-
ness of partial visualizations in pva

To reduce the gap between theory and practice outlined above, this
thesis makes contributions towards improving the usefulness of par-
tial visualizations in PVA by giving analysts the ability to configure
the underlying PVA process to their interest.

As shown in the characterization above, quality metrics are cur-
rently used to assess the usefulness of partial visualizations based
on a quantitative value in terms of the stages proposed by Angelini
et al. [6]. This thesis expands on this notion by proposing means of us-
ing well-established quality criteria from VA literature to improve the
usefulness based on analysts’ subjective perspectives. This results in
two interpretations that can be applied independently of each other,
with metrics enabling an assessment based on quantitative values,
and the criteria providing qualitative support to improve it.

Based on earlier work, for example by Mackinlay [77], Card [19,
p.558], and Don Norman [84, p.97], Tominski and Schumann formu-
late three quality criteria for visualization: Expressiveness (usefulness
from a data perspective), effectiveness (usefulness from a task per-
spective), and efficiency (usefulness from a resource perspective) [108,
pp.17]. These criteria formulate how successful the visualization is
in supporting analysts in completing their tasks. This makes them
a good fit for improving usefulness of partial visualizations as well,
which in the words of Angelini et al. are “only useful [...] if it shows
what the analyst needs to see” [6]. The idea is, in short, to allow analysts
to improve the usefulness of partial visualizations by increasing their
expressiveness, effectiveness, and efficiency.

3.3 improving the expr . of part. vis . with tailorable sampling 29

There are many ways in which analysts can configure the PVA pro-
cess to influence these criteria (parameters, the analytic computation,
the visual encoding, . . .). This thesis focuses on contributions to con-
trolling the incoming data to be visualized as the central point of con-
trol, inspired by Tufte’s principle of good statistical graphics: “Above
all else show the data” [109, p.92]. Having control over the data is ar-
guably the most influential “set screw” on the usefulness of the vi-
sualization. In the remainder of this chapter, the three quality criteria
are characterized from the perspective of controlling the input data of
partial visualizations, and the contributions towards improving each
are outlined.

3.3 improving the expressiveness of partial visualiza-
tions with tailorable sampling

Tominski and Schumann characterize a visualization as expressive,
“if it communicates the desired information in the data, and only this in-
formation” [108, p.17] and that it “objectively reflects the information we
need to accomplish our task” [108, p.17]. Expressiveness, thus, can be
applied to improve usefulness along a data perspective. When con-
sidering expressiveness under the PVA lens, the obvious difference to
non-progressive VA is that not all data is available at once, and so
it may not even be possible to actually visualize that desired infor-
mation. The mechanism that controls the general order of the data
in the PVA process is called data partitioning [68], and the standard
method for partitioning the data is sampling. To improve the expres-
siveness of partial visualizations, analysts in PVA should tailor the
sampling, such that the data holding the information needed to ac-
complish the task is (in the words of Tominski and Schumann) “ob-
jectively reflected” as early as possible.

This is reflected in the literature through the following require-
ments [6, p.23]:

• Employ an adaptive sampling mechanism (convergence & tem-
poral constraints) [110]

• Allow efficient and deterministic query processing over progres-
sive samples, without the system itself trying to reason about
specific sampling strategies or confident estimation [21]

3.3.1 Research Background

The de facto default sampling method in PVA remains random uni-
form sampling without replacement [10, 61, 68, 110, 127], which sup-
ports overview tasks best. There also exist sampling approaches that
allow adjusting the data stream for specific user interests. One exam-
ple is pyramid-based sampling, which considers density- and outlier-
preservation, as well as temporal coherence between chunks as rep-

30 improving the usefulness of partial visualizations in pva

resentative characteristics for progressive scatter plots [23]. Pyramid
sampling achieves this by selecting those data points that will change
the visualization most noticeably, compared to data points that would
just overplot existing data. Other related approaches can be found in
the database community, in particular the field of approximate query
processing, where one challenge is to speed up analytic queries over
large, multivariate datasets, while maintaining the validity of the re-
sults. Li et al. present the Sampling Cube algorithm [69], which auto-
matically expands the data sample, whenever the confidence intervals
of a computation would exceed a certain limit. That way, the validity
of results can be kept consistent, by only processing as much data as
possible.

Other approaches sample streaming data, which similar to the data
in PVA is made available in partitions, yet in contrast to PVA is usually
analyzed in windows, i.e., only the most recent data is considered
relevant. The most widely used method is reservoir sampling [113],
which builds up a random sample progressively from all data pro-
cessed up to a particular point in time. While it discards data no
longer considered as relevant — which makes it unsuitable as a par-
titioning method in PVA — reservoir sampling has nevertheless been
used to support progressive analysis settings. For example, reservoir
sampling can be used for enabling progressive indexes, which in-
crease query performance on data that is not fully available at once.
Recent work by Hohenstein shows that a slight adjustment can be
made to this progressive indexing algorithm [56] to overcome sorting
biases in the partial data through reservoir sampling, making it fit for
overview tasks in PVA [54].

Overall, however, existing PVA-samplings are hard-wired to address
a specific analysis scenario, and tailoring them is generally not a con-
sideration — let alone while the computation is running. This clearly
limits analysts’ control over the incoming data stream, meaning that
the partial visualization may not be able to represent the information
needed to accomplish the task.

3.3.2 Research Challenge

The research challenge here is that a new approach is needed for that
provides analysts with tailorable sampling, requiring conceptual and
technical contributions. Since the user interest differs between sce-
narios, this new approach not only needs to be tailorable by analysts
before the analysis starts, but since that interest can also change during
the analysis, it needs to be tailorable without requiring a restart.

3.4 improving the effect. of part. vis . with doi functions 31

3.3.3 Contribution

To address this challenge, this thesis contributes tailorable sampling
for PVA. Tailorable sampling standardizes the sampling process along
three steps in a pipeline, such that this process becomes tailorable by
exchanging the operators used at each step. In contrast to approaches
for non-progressive VA where sampling is an operation performed
once before the analysis, tailorable sampling for PVA considers sam-
pling as a process that runs in parallel to the analysis, with both
influencing each other: Based on the insights gained from the sam-
ples, analysts can complete their task, and when analysts change their
task during the analysis, the sampling can be tailored to reflect this.
This means that the expressiveness of partial visualizations can be im-
proved throughout the progressive analysis. The manuscript included
in Chapter 6 presents tailorable sampling with a pipeline and evalu-
ates its modularity and versatility in a series of use cases.

3.4 improving the effectiveness of partial visualizations

with doi functions

Tominski and Schumann characterize a visualization as effective, “if
it is geared to the human sensory and motor systems, that is, our abilities
to observe and interact with our environment” [108, p.17]. Effectiveness,
thus, “captures how well we can extract the information needed for our task
from a visual representation” [108, p.17] and provides a task perspective
on improving usefulness. In the PVA context, an added challenge is
that the “information needed for the task” may not be available, or,
as time goes on and more data is processed, even if interesting data
is available, it may be obfuscated among all other data. Therefore,
to improve the effectiveness of partial visualizations, analysts in PVA

should ensure that the visual representation allows that interesting
information needed for their tasks can be extracted.

This is reflected in the literature through the following require-
ments [6, p.23]:

• Support the interpretation of the evolution of the results through
suitable visualizations [110]

• Use consistently visualized quality measures [10]
• Managing the partial results in the visual interface should not

interfere with the user’s cognitive workflow [107]

3.4.1 Research Background

Optimizing the inherent visual complexity from representing mil-
lions of points through visualization is an inherent challenge for VA,
as screen real estate is limited. Keim’s pixel-based visualizations [63]

32 improving the usefulness of partial visualizations in pva

approach this by minimizing the size of visual elements that repre-
sent each data point to the size of a single pixel, but even then, the
visualization is limited by the screen resolution, but also overplot-
ting quickly becomes a challenge. Another way of reducing the visual
complexity in VA is to assume that not all data is equally important
to the analyst, and to focus the analysis on interesting data and an
approach for ranking the data by its importance are so-called Degree
of Interest (DOI) functions. Furnas first proposed DOI functions for
visualization as early as 1981 [45]. In this early work on graph visual-
ization, per-node importance is computed from an inherent (apriori)
interest like the value of an attribute, and a dynamic (posteriori) in-
terest that changes as analysts interact with the data, for example the
distance to a focused node in a graph. This allows showing parts of
the graph to the user that are far apart, yet interesting to their current
focus point.

DOI functions have since been widely applied in VA across different
tasks and data types [1, 50, 135]. Elmqvist and Fekete, for example, ap-
ply the principle of DOI function for filling a visual entity budget [32].
The idea is to assign a budget based on a metric like rendering time
that describes how many items can be rendered. A DOI function can
be then be used to decide, which points to render within that budget,
selecting the most interesting items first until the budget is exhausted.
DOI functions are, thus, a candidate for making partial visualizations
more useful, since they allow emphasizing those parts of the data that
are most relevant to users. In particular, since the size of even the par-
tial dataset can quickly become massive, having a DOI function could
help prioritize interesting data in the rendering.

However, transferring DOI functions to PVA can be non-trivial. This
is because the “context” in which user interest is measured changes
over time, as more and more data gets processed. This could mean,
for example, that parts of the data change their interest scores over
time: An item that is of great interest in context with very little data
at early stages of the progression may become uninteresting, once
more data has been processed, or vice-versa. In other words, interest
scores computed previously need to be adjusted to the context of
incoming data, and interest scores computed on incoming data need
to be adjusted to the context of previous scores. To overcome this,
we would essentially need to recompute all interest scores every time
new data arrives in the visualization (and every time users perform
an interaction). As a result of this, DOI functions are only rarely used
in PVA. This is a clear limitation of PVA, as partial visualizations of
large datasets are a clear candidate for DOI-based improvements.

3.5 improving the effic . of part. vis . with steering 33

3.4.2 Research Challenge

The research challenge, thus, lies in providing analysts with means
to reduce the runtime of DOI functions by reducing their input to a
suitable subset of the data, requiring conceptual and technical contri-
butions. The difficulty here is that what is considered suitable requires
analysts’ subjective input: The subset should on one hand include as
many data items as possible to maintain valid interest values, but on
the other hand only include as few items as necessary to reduce the
computation time. In other words, a solution needs to be flexible to
account for different analysis scenarios.

3.4.3 Contribution

To address this challenge, this thesis contributes a catalog of strategies
for reducing the cost of recomputing the DOI functions. This is done
in two ways. First, rather than updating the interest value of all data
processed so far with each new incoming chunk, strategies are pro-
posed for limiting updates on items for which the interest most likely
changed. Secondly, rather than measuring the interest value of the
new data in context of all data, strategies are proposed for identify-
ing a small, but representative subset. The paper in Chapter 7 details
these strategies and evaluates them in a series of benchmarks, with
results suggesting that there does not exist one “silver bullet” combi-
nation of strategies, but that strategies instead should be chosen per
analysis scenario for the best results.

3.5 improving the efficiency of partial visualizations

with steering

Tominski and Schumann characterize efficiency as follows: “The gains
from using an interactive visual approach should outweigh the computa-
tional resources and human effort needed to carry out the analysis” [108,
p.18]. Efficiency, thus, can be applied to improve usefulness along
a resource perspective. To make a visualization more efficient, thus,
means either reducing its cost or increasing its gains. Its added costs
for actually using partial visualization is a general challenge for PVA,
as tool support is generally sparse (requiring additional implementa-
tion effort), and basically all steps along the VA pipeline need to be
reconsidered when things are to be used progressively (requiring ad-
ditional mental effort). At the same time, reducing human and com-
putational efforts by showing partial results is a central motivation
for using PVA in the first place. Giving analysts control over the data
stream through steering is a major factor in making this trade-off.
Therefore, to improve the efficiency of partial visualizations, analysts
in PVA should steer the progression towards data of interest, to re-

34 improving the usefulness of partial visualizations in pva

duce the computational resources and human effort needed to carry
out the analysis.

This is reflected in the literature through the following require-
ments [6, p.23]:

• Process interesting data early, so users can get satisfactory re-
sults quickly, halt processing, and move on to their next re-
quest [51]

• Allow users to focus the algorithm to subspaces of interest [107]
• Allow users to ignore irrelevant subspaces [107]
• Allow altering the sequence of intermediate results through pri-

oritization [82]
• Provide inner result control for steering a single ongoing com-

putation before it eventually returns a final result [82]

research background Computational steering can be major
advantage of PVA over non-progressive VA (see Figure 2.2.1), as it
allows analysts to focus computational resources on a particular sub-
space of interest, thus making the visualization more efficient. How-
ever, existing steering approaches pose certain restrictions on the anal-
ysis scenario, which means that steering cannot always be applied.

An early example for steering in PVA from 2004 was proposed by
Williams and Munzner, who use it to steer the dimensionality re-
duction method Multi-dimensional Scaling (MDS) [118]. MDS is often
used to project high-dimensional data into two dimensions, by main-
taining the relative Euclidean distances from high-dimensional data
in the projection. It provides a “human-readable” representation for
highly complex data by using the distance-similarity metaphor [36]
in that similar items are located closer together in the projection than
dissimilar items. The steering approach by Williams and Munzner al-
lows analysts to prioritize a data subspace in a progressive variant of
MDS, such that items from a selected bin are retrieved, first (see Fig-
ure 8). To achieve this, the approach maintains an index structure over
remaining items to continuously rebin those and to then prioritize

Figure 8: The steering mechanism presented by Williams and Munzner, pri-
oritizing data for progressive dimensionality reduction using con-
tinuous rebinning (reproduced from Williams and Munzner [118]).
Notice how bins (depicted as red rectangles) change throughout
the progression, indicating continuous updates over the remain-
ing data.

3.5 improving the effic . of part. vis . with steering 35

Figure 9: The Sherpa steering mechanism, allowing to prioritize data
from selected intervals in the progression (reproduced from Cui
et al. [27]). Interesting to note is the continuous “decay” of the
prioritization function after the analyst shifts their attention to a
different region between (2) and (3).

items from the selected bin. This rebinning step is the clear limitation
of this approach, in that it becomes too costly on the large datasets
often used in PVA, where looking at each data item is unfeasible.

Another approach called Sherpa was proposed by Cui et al. [27].
Sherpa allows analysts to steer the computation by prioritizing items
from intervals of interest, which they can select by brushing an axis in
their plots (see Figure 9). The approach then applies a boolean filter
to the data retrieval, limiting it to elements from that selected inter-
val. Sherpa, thus, does not require running expensive computations
over all data, but simply utilizing the 1-to-1 mapping from selection
in view space to an interval in the data. This is, however, a strict re-
quirement for using Sherpa, as it does not support any visualization
not relying on such a 1-to-1 mapping. For example, Sherpa does not
support the MDS-based visualization used in the work by Williams
and Munzer above, as the layout here is computed from multiple di-
mensions.

Yet, the inherent complexity and prerequisites of existing steering
mechanisms in PVA currently pose a limitation on the efficiency of the
partial visualization in cases where neither approach applies.

3.5.1 Research Challenge

To allow analysts to steer the computation whenever neither of the
existing steering mechanism applies, a new steering mechanism is
needed. The research challenge here is that this new approach must
pose as few limitations on the analysis scenario as possible, allowing
analysts to steer towards relevant subspaces across visualization tech-

36 improving the usefulness of partial visualizations in pva

niques, while also only using limited resources, requiring conceptual
and technical contributions.

contribution To address this challenge, this thesis contributes a
steering mechanism that poses only minimal constraints on the analy-
sis scenario. Concretely, the steering-by-example approach presented
only requires analysts to specify a small set of interesting data items
in order to steer the progression towards similar, yet unprocessed
items. Steering-by-example works by training a decision tree classifier
on the selected set of interesting items to identify those aspects that
distinguish this selection from the rest of the data. The decision rules
from that classifier are then combined into a boolean filter that can
be added to the query that retrieves the next chunk, thus prioritizing
similar data. This makes steering-by-example more flexible regarding
supported data types and visualization techniques than existing ap-
proaches. The paper in Chapter 8 presents steering-by-example and
evaluates it together with state-of-the-art steering methods across dif-
ferent use cases. Results indicate how this approach can be applied
to increase the efficiency of partial visualizations across analysis sce-
narios.

3.6 summary

This chapter outlined the thesis’ contributions towards improving the
usefulness of partial visualizations in PVA. First, the meaning behind
the term usefulness itself was characterized by reflecting on the re-
lated scientific literature, finding that usefulness is a subjective and
scenario-specific quality that analysts decide on based on the qual-
ity metrics. Then, means were proposed for increasing this subjective
usefulness of partial visualizations along three established quality cri-
teria in VA: expressiveness, effectiveness, and efficiency. The papers
detailing these contributions are found in the second part of this the-
sis.

4
D I S C U S S I O N A N D F U T U R E W O R K

This chapter summarizes the thesis contributions, provides reflections
on the research questions, and explores future research directions.

4.1 contextualizing the thesis contributions

Before considering how each addresses the research questions, this
section puts the contributions in context with each other, considering
them along the PVA process. Li and Ma derive a process model for
PVA from the conventional visualization pipeline, describing it as a
pipeline consisting of three transformations (partitioning, analytical
processing, and visualization rendering), which can be dynamically
updated based on user interactions [68].

In this model, tailorable sampling can be clearly situated at the
data partitioning step, while enabling DOI functions affects the visu-
alization rendering. Steering-by-example on the other hand can be
positioned in the interactive update of the partitioning step. Each
contribution, thus, adjusts a different part of the process. Figure 10

provides an overview on the process perspective. Below, some syner-
gies between the contributions are explored.

Steering-by-example and tailorable sampling both affect the data
partitioning, and can be used in concert with each other. The two can
influence each other, if analysts use sampling for getting an overview
and steering for exploring details, as outlined in the work on tai-
lorable sampling. In terms of the data stream, sampling defines a
“rough” general prioritization of data items based on an initial user
interest, and steering allows refining this order on-demand to explore
detailed patterns of interest that arise in the partial visualization. Fur-
thermore, the two can also influence each other vice-versa. As an-
alysts investigate patterns of interest using steering, they gain new
insights and may in turn adjust their tasks, which affects the tailoring

Analyst
Source

Data
Partial
Data

Partial
Analysis Results Partial Visualization

Partitioning
Analytical
Processing

Visualization
Rendering

Tailorable Sampling DOI functions for PVA

Steering-by-example

Automatic or Manual Update

Figure 10: Putting the contributions of this thesis in context along the PVA

pipeline adapted from Li and Ma [68].

37

38 discussion and future work

of the sampling. The two contributions, thus, benefit the progressive
explorer role described by Micallef et al., which describes analysts
whose main interest in PVA “is for its flexible, steerable nature that
allows adjusting an underlying computational process while it is run-
ning” [78].

Another potential for symbiosis exists between DOI functions and
steering. The steering-by-example approach requires analysts to sup-
ply a set of interesting data items as input. DOI functions on the other
hand can identify those items automatically, which means that the
output of an appropriate DOI function could be used to automati-
cally steer the progression towards interesting data. This, of course,
requires that the DOI function accurately captures the user interest,
in that the items identified as interesting are actually relevant to com-
pleting the analysis task. Otherwise, combining the two approaches to
automate steering could potentially steer the analysis away from the
task, thereby reducing the effectiveness of the partial visualization.
Yet, there may be still be merit in this, automatically providing ana-
lysts with data they do not expect to broaden their view on the data.
Actionable insights regarding the implications and implementation
of this symbiosis, however, requires future research in this regard.

A third connection can be drawn between the papers on tailorable
sampling and DOI functions in PVA, in that both define an order over
the data by some interest-driven metric. One potential way of combin-
ing the two is to use a DOI function in the linearization step of the sam-
pling pipeline. In terms of Furnas [45], the linearization step sorts the
data based on apriori interest, which remains static throughout the
analysis. Given that DOI functions can also capture posteriori interest
based on user interactions during the analysis, a challenge here is that
the linearized data would constantly change. The paper on tailorable
sampling conceptually explores mechanisms for progressively updat-
ing the linearization step, which could facilitate such an approach.
Combining the two approaches, thus, could provide valuable means
of automatically tailoring the sampling to the user interest in PVA.

4.2 reflecting on the research questions

This section sets the contributions in this thesis in context with the
research questions posed in the Introduction in Chapter 1.

RQ1: How can the sampling in PVA be tailored to bring out the desired
information in partial visualizations?

In response to RQ1, this thesis contributed tailorable sampling for
PVA, which allows fitting the data partitioning step to analysis sce-
narios to improve the expressiveness of partial visualizations. This
is achieved by conceptually modularizing the PVA sampling process

4.2 reflecting on the research questions 39

along a three-step pipeline. Each step of this pipeline can be cus-
tomized by analysts to adjust the sampling to their analysis scenario.
Tailorable sampling improves the expressiveness of partial visualiza-
tions in PVA, as it allows analysts to adjust the order in which the
dataset is processed, thus allowing to bring out those data that make
the visualization as useful as possible as early as possible. The utility
of this approach was demonstrated in a series of examples.

Furthermore, this thesis contributed a characterization of PVA sam-
pling, which distinguishes it from other sampling approaches, in par-
ticular sampling for non-progressive VA. In non-progressive VA, sam-
pling is a one-time operation that is performed once before running
the analytic computation on the resulting sample, whereas in PVA,
the sampling is a process that runs in parallel to the interactive vi-
sual analysis process. These two processes influence each other. On
one hand, the sampling is tailored to the analysis process, and on the
other hand, the sampling influences the order of the data shown in
the partial visualization. This also means that PVA sampling is not
static but an inherently dynamic process, which must be tailorable
to changes in the analysis scenario. As demonstrated in the work on
tailorable sampling, the modular structure of the sampling pipeline
accounts for this, in that it not only allows tailoring the sampling once,
but dynamically throughout the progression.

RQ2: How can DOI functions in PVA be continuously updated to allow
extracting the information needed for the task from partial visualizations?

In response to RQ2, this thesis contributed strategies for enabling
DOI functions in PVA, which help improve the effectiveness of partial
visualizations. This is done by increasing the scope of interest values
beyond the chunk they were computed in. On one hand, this entails
increasing the scope for the computation of the next chunk to also ac-
count for already computed values, and on the other hand increasing
the scope of already computed values to the data in the next chunk.
Rather than requiring an exhaustive recomputation of interest values
each time new data arrives, the proposed strategies allow reducing
the computational overhead by (1) selecting a representative subset
of data items for the computation of the next chunk and by (2) up-
dating the interest values only for data items that are outdated. As a
result of this optimization, those DOI functions that could previously
not be applied in the progressive use case due to long computation
times can now be used to make partial visualizations more effective
in PVA.

RQ3: How can steering be made more widely applicable across PVA scenar-
ios to reduce the mental and computational efforts of using partial visual-
izations?

40 discussion and future work

In response to RQ3, this thesis contributed steering-by-example, a
steering mechanism that allows focusing computational resources to
complete partial visualizations for a selected data subspace of inter-
est. Compared to existing steering mechanisms, steering-by-example
works independently of the used visualization technique and does
not require additional index structures to function. Steering-by-example
only requires a set of data items as input, which can be easily gener-
ated for most visualization techniques. A decision tree classifier is
then trained on this data to derive decision rules for distinguishing
those items from the rest of the data. Adding these rules to the query
that retrieves the next chunk then steers the progression towards sim-
ilar data. Keeping the “entry barrier” low means that steering-by-
example helps improve the efficiency of partial visualizations in PVA

that previously did not fit the demands of existing steering mecha-
nisms.

4.3 future research directions

There remain many open research questions regarding making partial
visualizations in PVA more useful, some particularly interesting ones
are outlined below.

4.3.1 Providing integrated library support to developers

One main challenge for adapting useful partial visualizations — and
PVA approaches in general — in the real world is efficiency, which is
impeded by its large “entry costs”. A working group at a Dagstuhl
seminar on Progressive Data Analysis and Visualization back in 2018

already identified increase in conceptual and algorithmic costs as a
clear “threat” to PVA [39, pp.36], in that the costs may outweigh the
benefits of the progressive approach. The authors specifically note the
increase in the design and implementation of progressive systems,
and the additional overhead in terms of computation and user effort
as potential fail criteria. Since then, new PVA approaches have been
proposed, but implementation costs remain large, as most implemen-
tations require ad-hoc solutions. Therefore, implementing dedicated
libraries for PVA and progressive analytic methods in general remains
an important field for future work. Libraries like ProgressiVis [37],
PV [68], and ProgressiveDB [13] are promising first steps in that di-
rection, but they remain research projects and are mostly used exper-
imentally.

One challenge will be integration, both internally to make already
existing PVA approaches useable in concert, but also externally in that
libraries for PVA should integrate with as little adjustment as neces-
sary into existing (non-progressive) VA workflows. Moreover, Fekete
et al. discussed open challenges for bringing PVA into the “real world”

4.3 future research directions 41

in a recent workshop paper [38] highlighting compressed bitmaps,
data sketching, and online algorithms as promising technologies to
build onto. PVA’s future usefulness from a practical standpoint strongly
depends on development efforts to lower the entry costs for scalable
analytics through progressive means.

4.3.2 Guidance for improving the usefulness in partial visualizations

Another future challenge is providing conceptual support for the de-
sign of useful partial visualizations. The contributions in this thesis
provide more control over the analysis process, but with more con-
trol comes more complexity: Analysts need to carefully consider how
to tailor each step of the sampling pipeline, with which DOI strate-
gies they want to identify interesting items, and supported by which
steering mechanism they want to perform their analysis to end up
with useful partial visualizations. In addition to the existing PVA ap-
proaches, this requires strong background knowledge from analysts,
while also baring the potential for misconfigurations.

Complexity is inherent to many VA approaches, and the scientific
literature has developed the concept of guidance in response. Guid-
ance aims to actively resolve analysts’ knowledge gap during interac-
tive VA sessions [20]. Thus, guidance not only refers to leading ana-
lysts to the data they are interested in, but also refers to supporting
the construction of the VA process itself.

A future research direction for improving the usefulness of partial
visualization is to develop guidance to support analysts at all stages
of the PVA process.

4.3.3 Increasing the efficiency with progressive parameter space visualiza-
tion

Another open challenge in VA is that the parameters used in ana-
lytic computation influence the usefulness of the visualization. Even
when running the computation progressively, it can take many at-
tempts to find suitable parameters that fit the analysis scenario, as
“getting it right” is non-trivial. One approach for reducing the num-
ber of restarts are parameter space visualizations, which provide a
visual overview of the effect of potential parameter combinations on
the computation result. This enables analysts to identify the suitable
parameter combinations before starting their interactive visual anal-
ysis. However, computing many parameter combinations for large
datasets can take a long time, making parameter space visualization
itself a clear candidate for PVA.

A step in this direction was done in work adjacent to the thesis
contributions together with Loeschcke et al. [74]. Therein, a matrix
visualization encodes the utility of parameter configuration through

42 discussion and future work

a scenario-specific quality metric. In particular, the paper explores
progressive parameter space visualization for time series data using
Symbolic Aggregate approXimation (SAX) along two input parame-
ters. The proposed approach also allows steering the progressive vi-
sualization, such that parameter combinations of interest can be pri-
oritized. In the presented use cases (analyzing weather data and light
curves), the visualization allowed identifying useful parameter com-
binations early on, thus making the parameter space visualization
more efficient.

While these first results are promising, more work is necessary in
that space. For example, one question is how to adapt the approach
to different and more complex parameter spaces than the two di-
mensions discussed in that paper. Another question is how to adapt
the approach to different data types and computations than those ex-
plored in that paper. The hope is that by addressing these questions
will allow for more efficient — and, thus, useful — partial visualiza-
tions in PVA.

Part II

PA P E R S

5
A P I P E L I N E F O R TA I L O R E D S A M P L I N G F O R
P R O G R E S S I V E V I S U A L A N A LY T I C S

Marius Hogräfer, Aarhus University, Denmark
Jakob Burkhardt, Aarhus University, Denmark
Hans-Jörg Schulz, Aarhus University, Denmark

Proceedings of the International EuroVis Workshop on Visual Analytics (Eu-
roVA), 2022, pp.49-53 doi:10.2312/eurova.20221079.

abstract

Progressive Visual Analytics enables analysts to interactively work
with partial results from long-running computations early on instead
of forcing them to wait. For very large datasets, the first step is to
divide that input data into smaller chunks using sampling, which are
then passed down the progressive analysis pipeline all the way to
their progressive visualization in the end. The quality of the partial
results produced by the progression heavily depends on the quality of
these chunks, that is, chunks need to be representative of the dataset.
Whether or not a sampling approach produces representative chunks
does however depend on the particular analysis scenario. This stands
in contrast to the common use of random sampling as a “one-size-
fits-most” approach in PVA. In this paper, we propose a sampling
pipeline and its open source implementation which can be used to
tailor the used sampling method for an analysis scenario at hand.

5.1 introduction

A common challenge for interactive visual analysis is bringing the
user into the loop during long-running computations [34, 82]. A promis-
ing solution to this challenge is Progressive Visual Analytics (PVA) [39,
107]. Therein, analysts are presented with intermediate, incomplete
results from these long-running computations, allowing them to gather
early insights rather than having to wait until all data is fully pro-
cessed. It has been shown that analysts in progressive systems of-
ten outperform those of non-progressive systems in terms of effi-
ciency [127].

One common way of generating partial results is by chunking up
the data into smaller pieces, and then incrementally computing and
visualizing results for these pieces over time. In practice, this seem-
ingly simple process turns out to be rather complex, since splitting

45

https://doi.org/10.2312/eurova.20221079

46 a pipeline for tailored sampling for progressive visual analytics

LinearizationDataset Linearized Data Subdivided Data Progressive Sample

shortest path

z-order

shuffle equal cardinality

equal density

equal attribute median element

first element

random element

Subdivision Selection

...

1 2 3

Figure 11: Our sampling pipeline for Progressive Visual Analytics, includ-
ing some exemplar operators used at each step: (1) The input
data is first normalized into linear order in the linearization step,
(2) then that data is structured into groups with the subdivision
step, and lastly, (3) elements from these groups are then picked
in the selection step to form a chunk that is representative in the
context of the analysis scenario.

up the data means that the interactive visual analysis process – inher-
ently an uncertain and often exploratory endeavor – becomes even
more uncertain: any patterns that analysts find in the visualization
could change in the future, once more data is processed.

The general goal for sampling in PVA is thus to produce represen-
tative samples of the data that reduce the likelihood of the visualiza-
tion changing over time. Yet, how exactly this “representativeness” is
characterized depends on the analysis scenario. Prior work has thus
proposed dedicated sampling methods that produce representative
samples in particular scenarios. For example, Chen et al. present a
method that preserves the local density and outliers in the visual-
ization, as well as temporal coherence of subsequent chunks when
progressively sampling for scatter plots [23]. Others have explored
sampling methods for spatio-temporal data [115] or for prioritizing
salient features of the visualization in the sampling [97]. Nevertheless,
the default sampling method for scenarios, for which no such dedi-
cated approach exists, remains random sampling. There are however
some downsides to drawing random samples: (1) it can produce mis-
leading visual artifacts on some visualizations [129], (2) it is a poor
fit for certain tasks such as outlier analysis [23], where the data users
look for are unlikely to be sampled early, and (3) it can fail to repre-
sent class distributions of imbalanced datasets.

We thus propose a sampling pipeline for PVA that can be config-
ured to better fit the particular analysis scenario than random uni-
form sampling, providing a fallback option for analysis scenarios not
yet covered by dedicated solutions. We introduce ProSample, a com-
parison tool for pipeline configurations, which allows comparing how
the progressive results differ between two pipelines. Using ProSam-
ple, we showcase our sampling pipeline for three scenarios.

5.2 related work 47

5.2 related work

Dividing a dataset into chunks is an integral part to the PVA process
and “getting it right” is important, since any flaws introduced by this
chunking will be present at any downstream operation. For instance,
Procopio et al. note the role sampling plays in reducing the error bars
in the visualization, i.e., the uncertainty of the analysis results that
analysts work on [94]. Given this importance, it is surprising that the
most commonly-used sampling method remains random sampling,
or shuffling the input dataset once and then chunking it in order, in
cases where the data size causes random sampling to take too long.

Some prior work in the field of PVA has looked at specific sam-
pling scenarios. Chen et al. present a progressive sampling method
that maintains outliers, avoids overplotting, and ensures that consec-
utive chunks are coherent in progressive scatter plots [23]. Turkay
et al. propose an adaptive sampling for progressive visualization of
high-dimensional data, which dynamically adjusts the size of the (in
their case random) sample to ensure that the computation produces
new results within a certain time interval [110]. Another example is
the selective wander join method proposed by Procopio et al., which
addresses the challenges of sampling for complex database queries
that contain data joins, i.e., the data is retrieved from multiple tables
at the same time [95]. The method also lends itself for progressively
sampling from groups of skewed data, which can be desirable for
prioritizing data of interest.

Under the term “approximate query processing” (AQP) and “on-
line sampling”, dedicated sampling methods have been developed to
better capture data qualities like skew or error bounds. Sample+Seek [30]
and BlinkDB [2] are examples of sampling methods for reducing or
bounding errors and response times of queries on large datasets. An
example for applying AQP in PVA is so-called optimistic visualiza-
tion [80], which helps analysts recover from false conclusions drawn
from the approximate data. This is done by visualizing the differ-
ence between the approximate result at the time analysts drew their
conclusions and the current state of the progressive computation, al-
lowing analysts to identify any discrepancies. Others use features of
the visualization to optimize the sampling. Rahman et al. present a
sampling method that aims to retrieve data for salient features in the
visualization first, then sampling less salient features [97]. Park et al.
present visualization-aware sampling, which uses prior knowledge
about the visual encoding (scatter plots or maps) to produce an ap-
propriate sample from large datasets, suggesting that running their
algorithm multiple times may be beneficial to incremental visualiza-
tion [89]. Wang et al. present STULL, a progressive sampling method
for spatio-temporal data that retrieves samples that show the same
distributions as in the full dataset [115].

48 a pipeline for tailored sampling for progressive visual analytics

5.3 a sampling pipeline for pva

On one hand, the related work shows how important it can be to
have specific sampling techniques tailored to a particular scenario at
hand. On the other hand, it also shows that we are far from having
such a specific sampling technique for all possible scenarios. This is
why we introduce a sampling pipeline for PVA, which is shown in
Figure 11. The main design goal of this pipeline is flexibility – i.e., to
be adaptable or configurable to fit a wide range of possible sampling
scenarios. Yet at the same time, we also want to be able to reuse
parts of a sampling technique across different scenarios. Hence, we
strive for a standardized process where we make as little assumptions
about the analysis scenario as possible apart from the format of the
inputs and outputs of each step in the pipeline. The pipeline steps
can then be concretized using different operators that are reusable
across different scenarios [49].

Our proposed sampling pipeline for PVA consists of three steps:
linearization (which normalizes the input data), subdivision (which
structures the linearized data), and selection (which generates the
chunks from that structure). We detail these three steps below and
provide general considerations for configuring each step.

5.3.1 Linearization

The linearization step normalizes the input data into a simple list
of elements. This is necessary, as the type of the dataset influences
the way it can be processed (e.g., graph data requires different algo-
rithms than tabular data or geospatial data). By normalizing the input
data, we essentially remove these specific characteristics from the in-
put dataset, reducing the assumptions we have to make about the
data at later stages in the pipeline. This increases both the flexibility
and reusability of downstream operators.

The proposed linear structure is conceptually simple and most data
types can be transformed into it: a graph can be linearized along its
shortest path, geospatial data can be linearized using a space-filling
curve like the z-order curve, hierarchies can be linearized using a
BFS or DFS traversal, and n-dimensional data can be linearized using
a knn-based heuristic to solving a traveling salesman problem over
the data. The concrete operators used in this step are thus very much
dependent on the type of the input data.

Once in linear form, it is further possible to reorder the data to ac-
count for requirements of the analysis scenario. For example, we can
randomly shuffle the list to overcome sorting biases, or purposefully
sort the list by some attribute value. Having the data in a certain or-
der can be beneficial for operators in later steps of the pipeline, yet it
comes at the cost of additional computation time.

5.3 a sampling pipeline for pva 49

5.3.2 Subdivision

The subdivision step takes the linearized data and partitions it. This
can be seen as cutting-up the long list of all data into a set of smaller
consecutive lists of data items.

This subdivision is very much dependent on the task to be carried
out. If the task is still unspecified, we can simply subdivide the data
into sets of equal cardinality – i.e., the same number of items in them.
For an overview task that is to first show the extent of the data and not
so much its density, we can subdivide the data into sets that maximize
coverage over a given value range. Depending on which attribute’s
value range is used, this puts additional focus on a data dimension
of interest. When exploring spatially clustered data items, we can run
Lloyd’s algorithm on the linearized data [73], essentially computing
a 1D k-means clustering on it.

The number of groups we subdivide the data into is scenario-specific.
For example, if analysts want to just get a rough overview of the data,
we can set the cardinality of the groups so that the progression pro-
duces results within acceptable response times. When using a nomi-
nal dimension to facet the data into groups, the number of facets is an
appropriate fit. When considering multiple dimensions, we might use
the number of classes found by the clustering algorithm as number
of groups.

A hierarchical subdivision (e.g., first dividing by coverage for one
data attribute and then subdividing each set further by another data
attribute) is possible.

5.3.3 Selection

The selection step then defines a strategy for constructing chunks
from the structured data that most benefit the analysis scenario. To
that end, it subsequently selects items from the subdivisions that best
match the user interest in the data.

The choice of a selection operator depends in many ways on the
user role as it is defined by Micallef et al. [78]. A progressive observer
who monitors an evolving progressive visualization is interested in
seeing a reasonable representative of the full dataset at any time. In
this case, the selection could thus simply draw the medians from each
subdivision. This is different for a progressive searcher, who uses the
progression to quickly find an answer without having to look at all
the data. If the searcher is interested in extreme values, the selection
should draw min/max values from each subdivision. If the searcher
is interested in the largest clusters, the selection operator should draw
exclusively from the largest subdivision generated by the k-means
operator mentioned above and then work its way downward to the
smaller clusters. Finally, the progressive explorer uses PVA to be able

50 a pipeline for tailored sampling for progressive visual analytics

to quickly switch between different configurations at runtime, de-
pending on observations and insights gained from the partial results.
Hence, it is not a single selection strategy in which the explorer is in-
terested, but in the ability to switch between different selections and
their parametrizations to adjust the incoming data chunks to their
current needs. For example, the size of the selection (and thus of the
resulting chunks) may need to be changed to meet a desired response
time.

5.4 usage example of the sampling pipeline

We showcase the versatility of our approach by first introducing its
implementation ProSample and then applying it to a use case for
which we configure and compare three sampling pipelines.

5.4.1 ProSample

We make available an open source implementation of our pipeline,
called ProSample, which allows analyzing the effect of different pipe-
line configurations on the PVA process. In ProSample, the user can
configure two sampling pipelines, which are then used to simulta-
neously process a dataset, showing the results in side-by-side views
as regular or binned scatter plots. An optional third view encodes
the delta between the two views in a binned scatter plot. The views
can be explored with zoom and pan, using linked navigation. The
interface of ProSample is implemented using D3 [14] and runs in
current browsers. Our implementation of the backend providing the
configurable pipelines is done in Python, using the numpy pack-
age [111]. The code for ProSample is publicly available at https:

//github.com/vis-au/prosample

5.4.2 Scenarios

The scenarios are based on a dataset of mountain peaks from Open-
StreetMap [88], which contains about 650, 000 items, providing longi-
tude, latitude, and number of edits. For comparability, we sample one
element from each group of an equal cardinality subdivision into
10, 000 items, and the selection operations consider only the dimen-
sion containing the number of edits. We precomputed linearizations.

We begin by configuring the sampling for an overview task. We use
the random linearization to normalize the spatial dataset and structure
it into groups using the equal cardinality subdivision, since we are
still unfamiliar with the underlying dataset. As selection method we
also set the random strategy, so that items per chunk are randomly
picked from each subdivision group. We can see how the progressive
visualization in ProSample early on shows the outlines of the conti-

https://github.com/vis-au/prosample
https://github.com/vis-au/prosample

5.4 usage example of the sampling pipeline 51

random equal cardinality

Scenario 1

Pipeline

Overview
~25k items

Details
~25k items

Scenario 2 Scenario 3

random z-order equal cardinality randomz-order equal cardinality median

Figure 12: The three scenarios discussed in the paper, showing the used
pipeline configuration in terms of linearization, subdivision, and
selection strategies, as well as an overview and detail view of
the mountain peaks dataset after processing around 25 thousand
items.

nents, and we can also quickly identify regions on the map that con-
tain many mountain peaks, such as Central Europe, the Himalayas,
and the Andes (see highlighted regions in Figure 12). If we were un-
familiar with the dataset, the first observation lets us quickly notice
that the dataset contains spatial data, collected on a global scale, and
the second observation allows us to identify that the measured points
are mountain peaks.

Based on these insights, we move on to the next scenario, were we
tailor the pipeline for a density analysis, in which we look first and
foremost for regions with many mountain peaks. We do so by using
a z-order linearization, which maintains spatial proximity between
items in the normalized order, meaning that subsequent points in that
list not are indeed located close to each other. Thus, when using the
median selection operator, we will sample dense regions of the data.

We notice that the data in early chunks is “clumped” into highly
dense regions – which is exactly what we wanted, but it misses the
contextual information of the sparser regions. To also yield this con-
text, we adjust the configuration again by exchanging the selection
step for the random operator, which selects items across the groups
defined by the subdivision. We can see the effect in the zoomed-in
views in Figure 12, in that the sampled items are less “clumped” as
before. With this context, we can for example identify the Alps in the
context of Central Europe.

52 a pipeline for tailored sampling for progressive visual analytics

5.5 conclusion and future work

We have presented a sampling pipeline for PVA, which can be used
to tailor the sampling process to the scenario at hand. We demon-
strated the flexibility of this pipeline in three scenarios, through the
comparison tool ProSample that is available as open source.

Having a framework for generalizable PVA sampling in place opens
up space for future applications. For instance, we want to explore
guidelines for choosing the most beneficial sampling strategy for a
particular PVA scenario, that go beyond general considerations as
we outlined in Section 5.3. This will require more qualitative, and
certainly more quantitative evaluation of our framework. Qualitative
evaluations could widen the scope to also consider the dedicated pro-
gressive sampling techniques presented mostly from database per-
spectives (see Section 5.2), while quantitative evaluations could mea-
sure the performance of progressive sampling using our framework,
compared to these existing techniques.

Future work also needs to improve the practical implementation
of our framework, extending the operators that are available so far
in ProSample. Tool support is a general challenge in PVA, with only
few research-focused frameworks like ProgressiVis [37] and P5 [68]
in existence, and therefore most research being conducted on custom
implementations. A progressive sampling library could however be a
starting point towards more reusable solutions.

Lastly, we also want to expand on the principal considerations of
sampling in PVA. In this paper, we have discussed sampling solely
as a method for dividing the input dataset into smaller chunks that
are then passed downstream to a PVA pipeline. However, given the
thread-based process model presented by Schulz et al. [102], dividing
the data into chunks could also happen at different points in the PVA
pipeline. In fact, their model suggests that each operator in the pro-
gressive pipeline can freely decide on when to process its input. This
raises research questions regarding appropriate sampling pipelines
dedicated for the view rendering step, best practices for combining
operators using different sampling pipelines, or even having more
than one pipeline per operator. Our framework provides parts of the
groundwork towards these questions.

acknowledgements

This work has been funded in part by the Innovation Fund Denmark
through the Grand Solution project Hospital@Night.

6
TA I L O R A B L E S A M P L I N G F O R P R O G R E S S I V E
V I S U A L A N A LY T I C S

Marius Hogräfer, Aarhus University, Denmark
Hans-Jörg Schulz, Aarhus University, Denmark

Submitted to IEEE Transactions in Visualization and Computer Graphics.

abstract

Progressive Visual Analytics (PVA) allows analysts to maintain their
flow during otherwise long-running computations, by producing early,
incomplete results that refine over time, for example, by running the
computation over smaller partitions of the data. Generally, these par-
titions are created using sampling. The goal for sampling in PVA is,
therefore, to draw samples of the dataset such that the progressive
visualization becomes as useful as possible as soon as possible. What
makes the visualization useful depends on the analysis task and, ac-
cordingly, some task-specific sampling methods have been proposed
for PVA to address this need. However, as analysts see more and more
of their data during the progression, the task in PVA often changes,
which means that analysts need to restart the computation to switch
the sampling method, causing them to lose their analysis flow. This
poses a clear limitation to the proposed benefits of PVA. To this end,
in this paper we propose a pipeline for PVA-sampling, which allows
tailoring the data partitioning to analysis scenarios by changing out
modules, and in a way that does not require restarting the analy-
sis. We for the first time characterize the problem of PVA-sampling,
and also formalize the pipeline in terms of data formats, discuss on-
the-fly tailoring, and present additional examples demonstrating its
usefulness.

6.1 introduction

Visual Analytics (VA) aims to combine the computational power of
modern hardware with the reasoning skills of human analysts for
data analysis through visualization, with analysts configuring the
analytic computation based on observations of the resulting visual-
ization. To be effective, VA requires that updates after an interaction
appear within interactive response rates of around 1s, as analysts oth-
erwise lose their analysis “flow” [33]. One challenge to interactivity in
VA is the increasing size of datasets, which slows down computation

53

54 tailorable sampling for pva

100

20

40

UniformFull dataset 1 Stratified3 Cluster inliers4Equal-density2

60

80

Figure 13: Depicted is a toy dataset containing 100k items with two numeric
attributes of normal distribution (encoded along the x and y axes)
and a Boolean attribute. On the left, the distribution of the x
and y attributes is depicted in a binned scatterplot. Four sam-
ples (||sample|| = 10k) are drawn from this dataset and depicted
in subfigures (1) to (4), each of which is tailored to fit a specific
analysis task. The Boolean attribute is encoded as the color. Each
sample brings out different aspects of the dataset, showing the
importance for tailored sampling in PVA.

times, thus making VA ineffective. To nevertheless bring the benefits
of the interactive visual analysis to large datasets, one approach is to
split the dataset into smaller partitions and to then run the analysis
on those smaller partitions, showing partial results to analysts. This
so-called Progressive Visual Analytics (PVA) approach [107], puts an-
alysts “back into the loop” of long-running computations, allowing
them to regain the flow. Benefits of this approach have, among others,
been highlighted by Zgraggen et al. [127] who show users of progres-
sive systems to clearly outperform those using traditional “blocking”
systems. Beyond early insights, additional benefits of PVA include the
interactive parametrization of long-running computations setting pa-
rameters on the fly, the ability to steer computations towards data sub-
spaces of interest, early termination (stopping a long-running com-
putation early on), and the ability to observe how otherwise intrans-
parent “black box” computations evolve (see the detailed review by
Angelini et al. [6]).

Nonetheless, for PVA to be beneficial, the partial results shown to
users need to reflect the final result, and any patterns in these partial
visualizations should also remain stable throughout the progression.
In turn, the goal for partitioning the data in PVA (which we refer to as
PVA-sampling) is to make the visualization as useful as possible as early as
possible. However, we identify two drawbacks in the current approach
to partition the data, which limit the effectiveness of PVA.

First, the notion of usefulness in the sampling goal stated above
highlights a relation to the analysis task: What data should be in a
“useful” sample depends on what analysts are going to do with it.
For example, we can consider the multivariate toy dataset depicted
in Figure 13, containing two normally distributed numeric attributes
(encoded as x and y positions) and a Boolean attribute (which is en-
coded as color). Depending on what task an analyst wants to perform
on that data, there are different ways for how to make the sampling
of that data most useful: For example, to gain an initial overview of
the data, it makes sense to draw a uniform sample that helps de-

6.1 introduction 55

pict the distribution of all three attributes. In the sample depicted in
subfigure (1), the densely populated region in the center of the plot
stands out. On the other hand, to analyze the local distribution of the
Boolean attribute, it is more useful to sample the data along a reg-
ular grid, such that the density in each grid cell is even throughout
the sample, which puts the focus on the Boolean attribute. In sub-
figure (2), we clearly notice the circular border between the two at-
tribute classes. Another task could involve training a classifier on the
Boolean attribute. Then, a stratified sample is more useful, such that
both attribute values are evenly represented in the training data, as
depicted in subfigure (3). Lastly, analysts may also focus their analy-
sis exclusively on one facet of the Boolean attribute, prioritizing these
items in the sample as in subfigure (4). The challenge in all this is
that the current state of the art sampling mechanism in PVA remains
random sampling, but, as we saw above, there are many cases where
this approach impedes the efficiency of PVA, as analysts would need
to wait before the results computed over random samples become
useful to them. While approaches have been proposed to provide
scenario-specific sampling, these generally do not translate well be-
yond the scope they were designed for, so more tailorable solutions
are needed.

In addition to the lack of tailorability and in contrast to sampling
for regular VA tasks, analysts in PVA can dynamically change the
course of their analysis mid-computation, accounting for insights gath-
ered from the partial visualizations rather than restarting the analysis.
This means that both the data type and the task may change. For in-
stance, an analyst may begin by passively observing the progression
over the multivariate dataset from our previous example to get a spa-
tial overview of their dataset, and then move on to analyze “inlier”
items along the Boolean attribute, once they identified that region
as interesting. In non-progressive VA, making this switch is not an
issue, as analysts can reconfigure and rerun the entire analysis when-
ever their task changes. However, in PVA, the analysis is an ongoing
process and, thus, configurations need to take place on-the-fly. This
is a challenge for the sampling, as the two tasks in the example above
require completely different data: For supporting the overview task,
samples should evenly represent geospace to bring out general pat-
terns in the data, while in the outlier task, the sampling needs to bring
out rare items along a numeric attribute. This shows that the tradi-
tional “fire-and-forget” approach to sampling, where the sampling is
configured once before starting the analysis, no longer applies in PVA,
exactly because analysts can now interact with that analysis. Yet, ex-
isting sampling techniques are generally tailored to specific tasks on
specific data types. Thus, when the task or the data type of interest
changes like in the example above, analysts need to restart to change
to a dedicated sampling technique, breaking exactly that flow that the

56 tailorable sampling for pva

progressive analysis was supposed to ensure in the first place. Thus,
a new approach is needed that fits the dynamic demands of PVA.

To this end, we identify two main challenges for the effectiveness
of PVA: (1) Current sampling algorithms cannot be tailored to the task,
requiring dedicated implementations whenever the standard method
of random sampling falls short, and (2) the sampling cannot be ad-
justed while the computation is ongoing, whenever analysts change
their task based on new insights, which reduces the effectiveness
of PVA. In this paper, we address these challenges by introducing a
new approach to PVA-sampling, which modularizes the sampling pro-
cess and thereby allows tailoring it to the requirements of tasks and
dataset in a way such that this tailoring can also take place without
stopping the computation.

This paper expands on our 2022 EuroVA workshop paper [52], in
which we first proposed the idea of a sampling pipeline for PVA. Con-
cretely, this extension consists of the following main contributions:

• We added a characterization of PVA-sampling along its unique
challenges that clearly distinguishes it from regular sampling.

• We added a formalization of the pipeline by defining its steps
as transformations between data formats along the operator de-
sign pattern for visualization.

• We added dynamic tailorability as an additional requirement
for PVA-sampling and show how the pipeline can be used to
this end.

• We added a series of new examples on a real-world dataset,
showing how the pipeline enables tailored sampling, but also
how it can be used to recreate existing approaches.

The remainder of this paper is structured as follows. First, we char-
acterize PVA-sampling by outlining its unique requirements and dis-
tinguish it from related sampling approaches. Then, we introduce the
modular sampling pipeline, using a running example to demonstrate
the effect that each step has on the final sample. Afterwards, we show
how the pipeline allows for on-the-fly tailoring of the sampling, and
discuss additional benefits and limitations.

6.2 characterizing pva sampling

PVA supplies analysts with early, partial visualizations to bring the
benefits of an interactive visual analysis to long-running computa-
tions. One approach for creating these partial visualizations is to par-
tition the data into chunks using sampling. Sampling for PVA (which
we refer to as PVA-sampling in this paper) is, however, quite different
from regular sampling. This is because in PVA, sampling is an on-
going process that runs in parallel to the visual-interactive analysis,
while regular, non-progressive sampling is an operation carried out

6.2 characterizing pva sampling 57

once. As a result, regular sampling determines if an item appears
in the sample and thus will become part of the analysis – a binary
selection –, whereas PVA-sampling determines when a data item be-
comes part of the analysis – a ranking of data that prioritizes data
items to be pushed through the analysis pipeline before others (see
Figure 14). This seemingly simple conceptual difference yields three
unique requirements for a useful PVA-sample:

The first requirement is the frequency at which the process runs
and draws new samples. PVA-sampling needs to continuously pro-
duce samples throughout the analysis, such that new updates to the
visualization arrive within the so-called human latency limits. An-
gelini et al. specify these limits depending on the task at three levels,
with under 1s for perceptual updates, 1s for immediate responses,
and up to 10s for task completion [6]. Achieving these update rates
is one of the main motivations for using PVA, as it allows analysts
to maintain their analytic flow even during long-running computa-
tions [33]. This stands in contrast to regular sampling, where a single
sample is drawn before the analysis, meaning that the human latency
limits are not a consideration for the sampling. A side effect of this re-
quirement is that PVA-sampling sometimes produces samples that are
too small to be statistically representative. It is because the sampling is
a process that these samples nevertheless become useful to analysts
eventually, once enough data has been sampled.

The second requirement is that priorities are given to different parts
of the data as to what to sample first and last. PVA-sampling defines
for all items, when they are selected, and so all data is eventually part
of the analysis – unless, of course, analysts terminate the computa-
tion beforehand. Regular sampling for VA, on the other hand, does

Regular sampling:

PVA-sampling:A

B

Interactive
Visual

Analysis

Figure 14: Demonstrating the difference between PVA-sampling and regular
sampling: Regular sampling (B) and the analysis of the data sam-
ple happen consecutively: The sample is drawn, and then ana-
lyzed. Thus, regular sampling defines for each item, whether it
is part of the analysis or not. In contrast, PVA-sampling (A) is
a continuous process taking place in parallel to – and potentially
also influenced by – the analysis. It draws new samples (so-called
chunks) from the full dataset up until the user stops this process
or all data has been sampled. Thus, PVA-sampling defines for each
item, when it becomes available to be shown and analyzed.

58 tailorable sampling for pva

not prioritize the data, but instead it defines for all items if they are
selected as part of the sample. All items that are not part of the sam-
ple are, therefore, also not part of the analysis. The way in which
PVA-sampling prioritizes certain data items depends on what makes
the visualization useful as soon as possible, meaning that it depends
on the analysis task (as outlined in the Introduction).

The third requirement for PVA-sampling is the flexibility of adjust-
ing the sampling process while it runs, in order to sync it with the
visual analytic process that is concurrently being carried out: as one
process changes, so must the other. One side of this dependency is
that sampling depends on the analysis, in that the task characterizes
what items are useful. But it also means that the analysis is influenced
by the sampling, as analysts gain new insights from the partial results
in the samples, which again influences their task. For PVA-sampling to
be flexible, this means that the process can be dynamically adjusted
(i.e., without restarting) to tailor the data prioritization to changing
tasks. This is not a requirement for regular sampling in VA: The sam-
pling terminates before the analysis. Thus, in order to tailor it to the
task, the sampling step must be rerun to create a more fitting sample.

6.3 related work

In this section, we compare PVA-sampling with related sampling meth-
ods in the literature.

6.3.1 Sampling as an operation

In Section 6.2, we distinguished PVA-sampling from regular sampling
for PVA, in that regular sampling is an operation that concludes, be-
fore the interactive visual analysis is run. Regular sampling for VA is
commonly used to reduce the complexity of large datasets, in cases
where approximate results are as useful as seeing the full picture [67].
This can be desirable for many reasons, including reduction of com-
putation time for complex analyses [67], and also clutter reduction in
view space [31]. In contrast to PVA-sampling, only one “final” sam-
ple is used to conduct the analysis. Therefore, it is generally impor-
tant that this sample is statistically representative of the dataset, so
that the insights gathered from it also apply to the rest of the data.
Olken and Rotem provided an early survey of sampling methods in
1990 [86], and since then, many more sampling algorithms have been
proposed. To the best of our knowledge, what they have in common,
though, is that tailorability beyond a particular analysis scenario is
generally not considered. This makes “regular” sampling algorithms
a poor fit for PVA, as switching the sampling method to tailor it to a
new task requires a complete restart of the computation.

6.3 related work 59

Another related method is active learning [104], where the goal is
to find a “best” training data subset, for which a model performs
best than when trained on all training data. Rather than selecting
“clear-cut” items far away from the decision boundary that clearly
belong to a class, active learning aims to sample borderline items
for which the prediction certainty is low. The goal is to sharpen the
decision boundary around those edge cases, as those have a stronger
impact on its performance. Active learning thus tries to make the
model as accurate as possible as early as possible. Human factors
including the latency limits are, however, generally not considered
for the sampling.

6.3.2 Sampling as a process

There are other examples of sampling processes, where the analysis
and the sampling are iterative, in that the sampling is adjusted based
on insights gained from the sample, and vice-versa. One method sim-
ilar – not only in name – to PVA-sampling is so-called progressive
sampling, where an increasingly larger sample is drawn until a qual-
ity metric computed with that sample is reached or until a metric
no longer improves. Usually, progressive sampling is used to reduce
model training times, by determining the smallest necessary training
sample from a large dataset, beyond which the prediction accuracy
no longer (noticeably) improves [96]. Starting from an appropriate
initial sample size [48], the model is fully retrained on a progressively
larger sample. Progressive sampling shares some similarities with
PVA-sampling, in that the goals it make the model as useful as possi-
ble as soon as possible. In contrast to PVA-sampling, though, progres-
sive sampling generally does not consider the human latency limits,
since it is an automated, metric-driven process that does not rely on
user input after it is launched.

Another approach using sampling as a process is streaming sam-
pling, where the goal is to run an analysis over a potentially infinite
data stream. One of the major challenge here is, thus, maintaining
the “ground truth” data the sample is drawn from. For example, the
well-established reservoir sampling method [113] from 1985 produces
a uniform sample over all data that has been processed so far, while
only requiring to keep a sample in memory. A more recent example is
the approach by Losing et al. [75], who use clustering to summarize
the data stream to a set of representatives. Similar to PVA-sampling,
we need to continuously sample, yet, analysts may not end up seeing
all data, as only some new elements land in the sample. Another dif-
ference to PVA-sampling is that the data stream may be infinite and
the result may not converge.

60 tailorable sampling for pva

6.3.3 PVA-Sampling approaches

Prior work has investigated some aspects of PVA-sampling as charac-
terized in Section 6.2. The standard sampling approach in PVA liter-
ature is arguably random sampling without replacement [10, 59, 68,
110, 127], as PVA is often proposed as an interactive method for the
overview task. Tailored approaches have also been proposed. Most re-
cently, Chen et al. presented sampling for progressive scatterplots [23],
using three criteria to define a useful sample: preserve temporal co-
herence between successive samples, preserve the relative density
and outliers, and achieve sufficient efficiency to retrieve samples within
the latency constraints of PVA. Another approach is the work by Turkay
et al., who introduced a method for adapting the size of the sample
dynamically, such that the visualization is updated within a specified
interval [110]. A common consideration for PVA-sampling is to reduce
the error in the partial visualization. One example is the work by Rah-
man et al. who present an algorithm that prioritizes salient features in
treemaps and line charts [97], or Sample+Seek [30] and BlinkDB [2],
two sampling approaches that reduce and bound errors and response
times of certain query types on large datasets. Another example is the
selective wander join method proposed by Procopio et al. [95], which
addresses the challenges of sampling for database queries containing
data joins that also apply a filter on the data, achieving interactive
sampling speeds in these cases.

The diversity of these techniques illustrates the benefit of (and need
for) having tailored sampling algorithms, yet, it also shows that exist-
ing sampling techniques use dedicated, custom implementations as
reusing parts of approaches to transfer them to other scenarios is gen-
erally not considered. Moreover, exchanging the sampling method
mid-analysis is generally not discussed. This is why we propose a
sampling pipeline for PVA, which modularizes the sampling process,
allowing to tailor it to the requirements of an ongoing analysis, while
increasing reusability of parts of the sampling process across scenar-
ios.

6.4 a pipeline for tailorable pva-sampling

Here, we introduce our tailorable sampling approach for PVA using
a pipeline. We first derive the steps of the pipeline from input and
output formats and then discuss each step in detail, demonstrating
their impact on the sampling with a running example.

6.4.1 Modularizing PVA-sampling along data formats

A suitable conceptual foundation for our purposes is the Operator
Pattern formulated by Heer and Agrawala, which enables “flexible

6.4 a pipeline for tailorable pva-sampling 61

Linearization

Dataset Linearized Data Subdivided Data Progressive Chunks

Subdivision Selection

Structure[Item] OrderedList[Item] Set[OrderedList[Item]] OrderedList[Set[Item]]

Figure 15: Enabling tailorable PVA-sampling using a pipeline that structures
the sampling process into three steps (linearization, subdivision,
and selection). The steps are depicted here along the data for-
mat they operate on: The linearization takes in the input data
structure and transforms it into linear format, which is then sub-
divided into bins in the subdivision step. The last step then pro-
duces the chunks forwarded into the PVA process by progressively
selecting appropriate items from each bin.

and reconfigurable” output [49]. We adapt their visualization-centric
idea to sampling, in that each step of the pipeline is a module “that
performs a specific processing action, updating the contents of the
[sample] in accordance with a data state model” [49]. Each step of
the pipeline, thus, applies a transformation on the input dataset an-
alysts are working with, transforming it to a specific output format
(i.e., the data state model in the above citation), finally leading to a
series of so-called chunks. In relying on the operator pattern, we can
make the complex PVA-sampling process tailorable to analysis tasks.
It also allows us to represent transformations of different complexity,
as well as intermediary operations that operate within one step (i.e.,
data state). Tailoring the sampling then means modifying these trans-
formations used along the pipeline, and because transformations con-
form to the same input and output formats, we increase reusability
between scenarios.

From a high-level perspective, PVA-sampling generally transforms
the input dataset into ordered chunks. These chunks are then for-
warded to the PVA process [68]. We can describe that input dataset as
an arbitrary structure defined over a set of items Structure[Item]. We
purposefully do not prescribe a particular data structure like table or
graph here to keep the sampling pipeline independent of them, and
we also keep the data type of Item arbitrary for the same purpose. On
the other end of the process, the chunks produced by the sampling
are a list of subsets of the input dataset OrderedList[Set[Item]]. These
chunks – that is, each Set[Item] – are disjoint and for every item in
the dataset, the sampling assigns a position in exactly one chunk. A
PVA-sampling method is a function that transforms data from this in-
put to that output format, and the sampling pipeline P must therefore
conform to the following high-level format:

P : Structure[Item] → OrderedList[Set[Item]]

In order to make the complex, monolithic transformation P tailorable,
we modularize it into three steps (linearization, subdivision, and selec-
tion). In the first step, the data is put into linear order, which is then

62 tailorable sampling for pva

Full Dataset
trip distance (in mi) trip distance (in mi)

Sample using base configuration

cardinality maximumshuffle

Figure 16: Left: Distribution of the trip distance attribute in the full dataset
used in the running example, showing a clear spike in short dis-
tance taxi rides. Right: The distribution of the same attribute in a
sample produced with the base pipeline (||sample|| = 10k), show-
ing a noticeable shift in the distribution towards longer trip dis-
tances.

subdivided into bins, from which the chunks are then assembled in
the last step, selecting the most appropriate item from each bin. The
data formats and steps are summarized in in Fig. 15.

running example : We introduce each step of the pipeline both
conceptually and practically using a running example, demonstrat-
ing the effect of different operators at a particular step on the final
sample. Concretely, we sample the 2018 Yellow Taxi trip dataset of
taxi rides in New York City. This dataset contains around 112 Million
items, each representing a taxi ride along numeric (e.g., trip distance),
categorical (e.g., pickup and dropoff zone codes), and temporal (e.g.,
pickup and drop-off time) attributes. For illustrative purposes, we en-
riched this dataset with geospatial attributes for pickup and drop-off
locations, by generating random locations in the polygons belong-
ing to each zone code. Its size makes this dataset a clear candidate
for a progressive analysis, and along its diverse attributes there are
many interesting patterns to explore, thus requiring (dynamically) tai-
lorable sampling. On this data, we use the following “base” pipeline
as a running example: random linearization → cardinality subdivision
→ maximum selection. The linearization strategy puts the data in ran-
dom order, the subdivision splits it up into bins of equal size, and the
maximum strategy selects the greatest value along the trip distance
attribute. This pipeline is configured to support an analyst interested
in spatial distribution of extremely long taxi rides across the dataset,
such that at every chunk it selects the maximum values of the trip dis-
tance attribute in the dataset. The ground truth distribution as well as
the distribution yielded by the base pipeline is depicted in Figure 16.
In the examples, we show how to further tailor the sampling to the
task by making adjustments to this base setup at every step. Specif-
ically, we demonstrate the impact on the first sample of 10k items
using a particular pipeline.

https://data.cityofnewyork.us/Traasportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc

6.4 a pipeline for tailorable pva-sampling 63

Random shuffle Numeric sort Z-order

Figure 17: Three examples for linearizing the same dataset: Random shuf-
fling, sorting by a numeric attribute, and sorting spatially along
a z-order curve.

The code for the pipeline implementation we used, the data pre-
processing we applied, as well as computational notebooks for repro-
ducing the figures included in this section can be found on GitHub1.

6.4.2 Linearization: Putting the data in order

In the first step, we harmonize and linearize the data into the stan-
dardized format OrderedList[Item]. This is necessary, as the type
of the dataset influences the way it can be processed (i.e., a graph
dataset needs to be treated differently than tabular data). Thus, by
harmonizing the data into the linear list format at the first step, we
allow the rest of the pipeline to be largely independent of the input
data structure, while also increasing the reusability and flexibility of
downstream operators.

How to appropriately linearize the dataset depends on the analysis
scenario. The harmonization aspect is mostly influenced by the data
structure. Because of the simplicity of the linear format, there often
exist multiple linearization algorithms for a particular data structure,
which means that as long as a fitting algorithm exist, we can harmo-
nize many data types into the pipeline. Hierarchical data, for exam-
ple, can be linearized using traversal strategies like depth-first search,
geospatial data can be linearized using space-filling curves like the
Hilbert [28, 131] or z-order curve [129, 133], and graphs can be lin-
earized along their shortest path using a traveling salesman heuris-
tic [87].

Once in linearized form, we can further reorder the items based
on its attributes. Depicted in Figure 17 are three examples of strate-
gies for sorting data based on their numeric values. The first strategy
shown there is random shuffling, which puts the data in random order.
Shuffling is widely applicable, as it does not use any item-driven met-
rics to sort the data, but instead makes as little assumptions about the
data as possible. This makes shuffling also a good option whenever
analysts’ interest in the data is not clear, yet, or whenever analysts
want to overcome unwanted sorting biases in the dataset. The second
strategy depicted is numeric sorting, which as the name implies, or-

1 https://vis-au.github.io/prosample

https://vis-au.github.io/prosample

64 tailorable sampling for pva

shuffle cardinality maximum z-order cardinality maximum numeric cardinality maximum

+ more than ground truth

- less than ground truth

(c)
(b)(a)

trip distance (in mi) trip distance (in mi) trip distance (in mi)

Figure 18: Impact of the linearization strategy on the sampling (||sample|| =

10k). Depicted in the first row is the distribution along the trip
distance attribute for random shuffling, sorting with a z-order curve
along the pickup location attribute, and sorting numerically by
the trip distance. The second row shows the relative difference
in % compared to the distribution in the full dataset. We notice
how the pipelines using shuffling and z-order linearizations pro-
duce samples that are clearly skewed towards larger values (a, b),
while the numeric linearization maintains the original distribu-
tion (c).

ders the data by a numeric attribute of interest. Sorting means that
similar items appear after one another in linearized format, which
makes it easier to tailor the sampling to patterns found along that at-
tribute, for example by sampling for similar values or by prioritizing
outliers. For spatial data, we can use space-filling curves to put it in
order, for example in z-order as depicted in the third example. Ana-
lyzing data based on spatial proximity is an important requirement
in the analysis of spatial and geographic data, so space-filling curves
allow tailoring the sampling accordingly.

example : Depicted in Figure 18 are the effects of these three lin-
earization strategies on the base pipeline. In the first configuration,
we want to make as little assumptions about the underlying data
in the linearization which is useful for analysts unfamiliar with a
dataset, thus we use random shuffling in the linearization step. Com-
paring the resulting sample to the ground truth by the trip distance
distribution, we notice a clear skew towards larger values. This makes
sense, as every item has the same probability for appearing in a subdi-
vision bin, and therefore, when selecting maximum values from each
bin, the sample will contain mostly larger values. To focus the anal-
ysis on the spatial distribution of the trip distance attribute, we can
use the z-order linearization, resulting in items to appear after one an-
other in the linearized data if their ride pickup locations are located
close to each other. Thus, the subdivision bins created from this lin-
earization are spatially ordered, and again, we see that the depicted
sample distribution is skewed towards larger values, suggesting that
longer rides are spatially spread out throughout the dataset. In our
third configuration we sort the data by the attribute of interest, which
means that the bins created by the subdivision contain items of simi-
lar values. The effect on the distribution is that the sample largely re-

6.4 a pipeline for tailorable pva-sampling 65

Cardinality

Cohesion X

Coverage Y

Linearized data, sorted by attribute X:
X
Y

Figure 19: Examples for subdivision strategies over the same, two-
dimensional linearized data: cardinality (splitting into equal-
sized bins), cohesion (splitting at greatest differences in succes-
sive values, along the same attribute as used for the linearization),
and coverage (splitting every time min and max values are found,
along a different attribute than as used for the linearization).

sembles the ground truth distribution of trip distance, meaning that
the sample is not skewed towards larger values. This configuration
is useful when analysts want to prioritize other parts of the dataset
while ensuring that the distribution for the trip distance attribute is
representative.

6.4.3 Subdivision: Splitting the data into bins

To construct useful chunks from this now sorted, but otherwise un-
structured and therefore difficult-to-query data, we next define a scenario-
specific structure on top of this list by splitting it up into bins. We ex-
press these bins as Set[OrderedList[Item]], where each list OrderedList[Item]

is a section of the linearized data, keeping the order defined in the
linearization step. Rather than already producing the chunks at this
stage, this intermediate step instead constructs a “search structure”
of the data that we in the next step then query for the most relevant
data at a certain point in time. Essentially, we take a “divide-and-
conquer” approach to the search problem for useful items, shifting
from a global scope to the scope of smaller bins.

There are many ways in which one may subdivide the linearized
data. The two extreme approaches are to put all data into one bin
or every item into its own bin. The former can be used to model
a sequential read, taking the first n items from the bucket at every
chunk, while the latter allows to directly query the data, for instance
to find the top-k largest values. For all cases in between, we need to
define a metric for comparing consecutive items that subdivides the
data in a desired manner. In Figure 19, we outline three strategies.
One simple metric is to divide the data by cardinality, subdividing it
in regular intervals so that every bin contains the same number of
items. This strategy makes little assumptions about the underlying
data, making it a good fit for cases where analysts are unfamiliar

66 tailorable sampling for pva

cardinality maximum cohesion maximumshuffleshuffle coverage maximumshuffle

+ more than ground truth

- less than ground truth

(a) (b) (c)

trip distance (in mi)trip distance (in mi) trip distance (in mi) trip distance (in mi)

Figure 20: Impact of the subdivision strategy on the sampling (||sample|| =

10k). Depicted in the first row is the distribution along the trip
distance attribute for subdivision by cardinality (||bins|| = 1, 000),
by cohesion (splitting at the top 1, 000 biggest differences), and by
coverage, with the latter two considering the trip distance attribute.
The second row shows the relative difference in % compared to
the distribution in the full dataset. We can clearly see all three
samples being skewed towards larger values, with interesting dif-
ferences in which values become most frequent: In the cardinality
case, most values are found around 20mi (a), cohesion around
30mi (b), and coverage produces peaks at 10 and 20mi (c).

with a dataset or where they want to explore it. For cases where the
user interest is more clearly defined, we can, for example, increase the
cohesion within bins by subdividing the linearized data whenever we
measure a large difference between successive items. This provides
us with a subdivision where each bin contains a set of similar items,
which in turn allows us to tailor the sampling based on that similarity
metric.

Yet, measuring the similarity may not always be possible, desirable,
or useful and so another strategy is to increase the coverage over an
attribute of interest. This means that, rather than making the items
similar to each other per bin, we create bins that have similar statis-
tic properties. This allows controlling for the probability of selecting
certain values from a bin. In the example in Figure 19, we create bins
for every successive pair of min and max values along an attribute in
the data.

example : Exchanging the subdivision strategy has a noticeable
effect on the distribution in the samples we draw, as depicted in Fig-
ure 20. Dividing the data by cardinality (here ||bins|| = 1k), subdivides
the data into bins that evenly subdivides the linearized (i.e., randomly
shuffled) data. Thus, a “dense” region in the input where the lin-
earization metric finds many similar values are spread out over many
bins, while “sparse” regions are spread over few. The linearization
used in the base pipeline, however, randomly distributes the data, so
each bin potentially contains the entire value range for all attributes.
Since we are selecting the maximum value from each bin, the distri-
bution depicted in the figure is skewed towards larger values for this
case.

6.4 a pipeline for tailorable pva-sampling 67

Subdivided data Sample

Maximum value per bin

Median value per bin

Random item per bin

Figure 21: Exemplar selection strategies used on on the same subdivided
data: Maximum value, median value, and selecting a random el-
ement.

Looking at the cohesion strategy in the second plot, we can see how
the distribution differs from the first. This strategy further skews the
sample towards larger values, because we can utilize two character-
istics of our scenario: the trip distance attribute contains relatively
few large values, and these values are randomly distributed because
of the shuffling linearization. As a result, large values are likely to
lie close to smaller values in the linearized data, and therefore, this
subdivision creates new bins for the largest values in the data. As a
result, this configuration allows analyst to prioritize extreme values.

Likewise, the distribution yielded by the coverage strategy in the
third plot is also skewed towards larger values. Bins here are created
by matching pairs of successive upper and lower values (0.05 and 0.95
quantile), which means that the rare, large values are also likely to
appear in many bins, and therefore are likely to appear in the sample.
As a result, the two samples yielded by the cohesion and coverage
strategies in this configuration are rather similar.

6.4.4 Selection: Placing items into chunks

In the third and last step, we then construct chunks by selecting
the most relevant items from the subdivided data using a scenario-
specific prioritization strategy. Following the high-level input and
output formats of progressive sampling, this step outputs the chunk
format OrderedList[Set[Item]]. In the selection step, the goal is to
construct a useful sample of the entire dataset by selecting the most
appropriate items per bin from the subdivided data.

Given what data analysts are interested in, they can choose an ap-
propriate selection strategy. Three examples are depicted in Figure 21.
Analysts interested in extreme values, for example, may choose the
maximum strategy, which selects the largest value along an attribute
of interest. Analysts who want to get an overview over the dataset
may select the median element for each bin to get a useful element at
each chunk, or select items randomly to increase the spread of the
data. For cases where the user interest is not clear, yet, analysts can

68 tailorable sampling for pva

shuffle shuffle shufflecardinality maximum cardinality median cardinality random

+ more than ground truth

- less than ground truth
(a)

(b) (c)

trip distance (in mi) trip distance (in mi) trip distance (in mi)

Figure 22: Impact of the selection strategy on the sampling (||sample|| =

10k). Depicted in the first row is the distribution along the trip dis-
tance attribute for selecting the maximum value, the median value,
and selecting randomly. The second row shows the relative differ-
ence in % compared to the distribution in the full dataset. We
can clearly see how the selection step affects the sample: The
maximum selection skews the sample towards larger values (a),
while the median strategy selects mostly small values (b), since
most taxi rides in the data are short distance. The sample pro-
duced with random selection mostly stays true to original distri-
bution (c).

use the random strategy, which does not consider the values of the
data but picks elements randomly from each bin.

How many items to select per chunk also depends on the anal-
ysis scenario. One heuristic is to select as many items as possible,
while still ensuring that the progressive computation produces results
within interactive response times [41], which can even be dynamically
adjust to account for fluctuations in recent computation steps [110].
Another option is to always select a fixed number of items per bin,
thus guaranteeing a fixed chunk size in the computation.

example : When comparing the effects of changing the selection
strategy on the base pipeline, we notice clear differences in the dis-
tribution of the trip distance attribute in the plots in Figure 22. Over-
all, the selection strategy arguably provides the most “direct” way
of controlling the output distribution in our example: Selecting the
maximum value skews the distribution of the trip distance attribute
in the sample towards larger values, selecting the median prioritizes
average items (since a vast majority of taxi rides in New York City
are relatively short distance, this strategy yields mostly short trips),
and picking randomly means that we approximate the global distribu-
tion of the attribute. Thus, depending on the task, we can find clear
use for all three: When looking for extreme values, analysts should
choose a min/max strategy, while analysts interested in getting a rep-
resentative sample may either select representative points from each
bin using the median strategy, or get a representative distribution
instead by selecting randomly.

6.5 tailoring pva-sampling on-the-fly 69

Configuration B

Dataset

sampled
Items:

not sampled

Subdivision

LinearizationConfiguration A

Figure 23: By storing pointers to the original input data, the pipeline config-
uration can be tailored at runtime using precomputed lineariza-
tion and subdivision structures.

6.5 tailoring pva-sampling on-the-fly

The second challenge for PVA-sampling we outlined in the Introduc-
tion is that PVA is an inherently dynamic process, in that the analysis
task may change while the computation is ongoing, the input dataset
may grow over time, or analysts may want to prioritize interesting
subspaces of the data. Rather than having to restart the analysis to ad-
just the sampling (and thereby breaking the flow of the analysis [33]),
the sampling should be tailorable dynamically. In this section, we
demonstrate how the modular architecture of the pipeline allows us
to just that, showing how it accounts for changes in task, dynamic
input data, and changes in scope.

6.5.1 Dynamically tailoring to changing tasks

In contrast to non-progressive VA, the task a user performs on the
data in PVA may change mid-analysis, as new insights arise from the
partial results. Analysts in the progressive explorer role in particular,
who use PVA to “gain a comprehensive understanding of the data
and process” [78] may repeatedly switch their task.

The impact that changing the task has on the sampling is evident,
as the task influences the pipeline’s configuration as different parts
of the data become most useful. Dynamically changing the task ef-
fectively means that we need to be able to exchange any parts of the
pipeline at any point in time. The challenge here is that – as with the
long-running computation on the data that is made interactive by the
sampling in the first place – the complexity of the data increases the
complexity of processing the pipeline steps.

Both the linearization and subdivision step access the entire dataset,
and depending on the complexity of the chosen strategy, exchang-
ing (recomputing) them can cause noticeable delays in the analysis.
One way to nevertheless enable dynamic exchange is by precomput-
ing combinations of linearization and subdivision operations, thus
paying the computation cost ahead of the analysis. To account for
changes in the analysis scenario at runtime, we can then simply use ei-
ther of the precomputed data structures as input to the selection step
(see Figure 23). For example, by storing pointers to the input dataset,

70 tailorable sampling for pva

3) update linearization2) update subdivision1) new data:

ti+1subdivsiontisubdivsion tisubdivsion

Figure 24: An incremental variant of the pipeline concept, showing how us-
ing dynamic data structures for representing linearized and sub-
divided data allows including new data to the pipeline, thus al-
lowing to incrementally update the sampling on-the-fly without
accessing the entire dataset.

we can keep track of which data has been sampled so far, even when
exchanging the subdivision. To be economically viable, however, ana-
lysts need to consider how much precomputation is “worth it”. When
gaining a first overview for a new, unfamiliar dataset, this preprocess-
ing may in fact not be worth the wait, yet for these cases, relying on
one pipeline may suffice. For analysts working in a professional con-
text, on the other hand, who often analyze the same dataset multiple
times, having a catalog of linearizations and subdivisions to tailor
their sampling can be particularly useful.

The selection step on the other hand can be evaluated on a per-
chunk basis. Rather than naïvely running it exhaustively over the en-
tire dataset to preemptively set a chunk for each item, we can instead
construct the next chunk on-demand, significantly reducing its com-
plexity. That way, we essentially use the selection step as a query over
the subdivided data, allowing for efficient on-demand retrieval. It
also means that we can dynamically exchange the selection operation
at runtime by simply changing what query we use here.

6.5.2 Dynamically tailoring to incremental input data

Next, we look at how the pipeline can accommodate changes in the
input dataset. Up until now, we took an “upstream”, global perspec-
tive on PVA-sampling, where sampling is positioned at the beginning
of the PVA process with access to the full dataset, and where all other
operators in the PVA process wait for the chunks produced by it. This
perspective is also rather common in the literature [68, 107]. However,
as noted by Schulz et al. [102], it falls short in capturing dynamics in
PVA. This is because different operators along the PVA process have
different requirements to the input data, with some operators like
clustering requiring broad data than a progressive scatter plot. Thus,
using only one sampling ahead of the process is insufficient. The solu-
tion proposed by Schulz et al. is a buffer/sequencer model for incre-
mental visualization, where each operator gets to manage their own
priority queue. To integrate dynamic input data with the pipeline, we
essentially need to make the sampling itself incremental, such that

6.5 tailoring pva-sampling on-the-fly 71

whenever the input of dataset of the pipeline changes, the chunking
can reflect that as well. In other words, we need to incrementally com-
pute the linearization, subdivision, and selection steps.

To make the first two steps of the pipeline incremental, we can
simply maintain incremental data structures for linearized and sub-
divided data, into which we can insert new and from which we can
remove processed data. For example, for an incremental linearization
of tabular data, we can use a sorted index structure like a binary
search tree over List[Item]. Whenever the input data changes, we can
efficiently remove or insert those items using that index, and in effect
make the linearization incremental. Similarly, we can adopt incremen-
tal subdivisions by using data structures like incremental segment
trees [123]. A tree structure is compatible with Set[OrderedList[Item]],
in that leaf Items are grouped by nodes of the tree, and this structure
can be also efficiently updated incrementally. For complex subdivi-
sion operations like 1-dimensional clustering, dedicated incremental
algorithms can be utilized, which are discussed in the database com-
munity [103]. Lastly, as discussed in the previous section, the selec-
tion step already can be run on-demand per chunk, rather than ex-
haustively over the entire dataset, thus it is inherently fit for incre-
mental updates.

6.5.3 Dynamically tailoring to changing scope

A big advantage when progressively analyzing data compared to ana-
lyzing it in one step is that analysts can steer the computation towards
data subspaces that currently interest them, while that computation
is still ongoing. In other words, the scope of the analysis scenario can
change dynamically (from the entire dataset to a subspace of inter-
est). Steering generally means to prioritize data inside a user-selected
region of interest in the sampling while the analysis is running, re-
trieving other data later [53]. As a result, the visualization of that
subspace is “completed” earlier, allowing for more certain decisions
on the data, making steering a powerful mechanism for rapidly ex-
ploring emerging patterns in the visualization. An example of this is
a progressive searcher [78] zooming into a visualization to see details
about the region that interests them: The computation can then focus
on data that lies inside the zoomed-in region, rather than spending
resources on data that lies outside of it. Below, we show how steering
can be integrated into the pipeline (see also Figure 25).

Chunking during steering differs from regular sampling in multi-
ple ways. One difference is that chunks during steering are no longer
samples of the entire dataset, but they are instead skewed by the
subspace of interest. When steering the progression, the chunks an-
alysts see may exclusively contain data from that subspace, while
after the steering, i.e., once that subspace is exhausted, items from

72 tailorable sampling for pva

Prioritizeif () not empty
Chunks, steered to

“Regular”
Selection

Subdivided Data

otherwise

Selection

Figure 25: Integrating computational steering with the sampling pipeline:
Computational steering can be expressed as an extension of the
selection step. This selection prioritizes a subspace of interest by
moving those data to the front of the chunking and then applies
the “regular” selection strategy on the remaining data.

that subspace will not appear in chunks at all. Another difference
is that steering is situation-dependent, in that interesting subspaces
arise while the computation is running, and analysts often change
what subspace they steer towards multiple times in the same progres-
sion (see the progressive observer role [78]). As a result, steering can
rarely be configured before the sampling starts, unlike the conditions
for representative sampling.

In the context of PVA, it is therefore necessary to be able to model
steering as part of the pipeline, to leverage the full potential of PVA.
We can do so by considering the data format steering operates on. Ef-
fectively, steering reorders the items in the chunking, such that items
from the subspace of interest appear in early chunks, while the re-
mainder of the data is sampled afterwards. In terms of the data for-
mat in the pipeline, steering is, thus, a transformation with the format
OrderedList[Set[Item]] → OrderedList[Set[Item]]. This means that
we can model steering as a substep of the selection, such that we can
integrate it with any existing selection operation.

One way to achieve this integration is to focus the selection step on
a single or at least a subset of bins that contain interesting data. A
requirement here is, however, that the data is linearized and subdi-
vided by a suitable similarity metric, such that bins group data that
are similar, such that interesting items appear in similar bins. In our
running example from Section 6.4, for instance, an analyst may be
interested in taxi rides that take place around midnight. If the data
is subdivided into hourly intervals, we can steer the progression by
selecting items only from the respective bins from that interval.

In cases where the similarity metric does not match the user inter-
est, we can integrate steering by adjusting the selection strategy used
for each bin. For example, to prioritize taxi rides around a certain time
of day over all bins, we can select items from that interval for bins that
contain such items, and otherwise select items that happened as close
as possible to that interval. Thus, we need to essentially adjust the se-
lection strategy per bin, based on what data it contains. To achieve
this steering, we can maintain simple descriptive metrics for each bin

6.6 utilizing the pipeline’s modularity for tailored sampling 73

trip distance (in mi)

(a)

trip distance (in mi) trip distance (in mi)

LL
HL
LH

HH

0 1,000 2,000 3,000 4,000 5,000 6,000 0 1,000 2,000 3,000 4,000 5,000 6,000 0 1,000 2,000 3,000 4,000 5,000 6,000

(c)

Stratified sampling Autocorrelation samplingRandom sampling

(b)

z-order cardinality autocorr.numeric interval medianrandom cardinality random

Figure 26: Examples of existing sampling methods recreated using the pipe-
line: Random sampling, stratified sampling, and spatial autocor-
relation sampling. (a) Random sampling maintains the distribu-
tion along the trip distance attribute, while stratified sampling
purposefully samples the value range evenly (b). Autocorrelation
sampling on the other hand ensures that the autocorrelation cate-
gories are equally distributed in the sample (c).

(such as min/max/mean per attribute) and then switch the selection
strategy for each.

An even more dynamic option to integrate steering is to combine
the previous two approaches, adjusting the number of items selected
per bin, based on whether it contains items or not (as outlined in
Figure 25): Then, the selection greedily selects all items from the sub-
space of interest from all bins, until the chunk is “full” or the subspace
is exhausted. Again, this can be achieved rather straightforward man-
ner by maintaining descriptive metrics for all bins, this time basing
the number of selected items on them.

Thus, depending on how accurate the steering should be and how
much effort is viable, the sampling pipeline can be fit to these needs.
As a result, any tailored sampling pipeline following the input and
output formats outlined in Sec. 6.4 can benefit from steering. Second,
we can vice-versa integrate any steering mechanism with the pipeline,
as long as it supports the format of the selection step. This means
that, regardless of how exactly a subspace is prioritized (e.g., based
on a one-to-one mapping [27], iterative rebinning [118], derived from
decision trees [53]), it can be combined with the sampling pipeline
through the query filter it defines over the remaining data.

6.6 utilizing the pipeline’s modularity for tailored sam-
pling

Having formalized task-tailorable PVA-sampling into a modular pipe-
line, we next provide examples of how this pipeline can be used to
benefit analysts, again considering the taxi dataset for reference.

74 tailorable sampling for pva

6.6.1 Recreating existing samplings

By formalizing PVA-sampling along a pipeline our goal is not to re-
place nor outperform scenario-specific samplings, but we want to sup-
plement them. In the previous section, we showed how analysts can
configure custom samplings with the pipeline. Here, we want to ex-
emplify another advantage of the pipeline, which is that we can also
use it to recreate existing sampling approaches in terms of lineariza-
tion, subdivision, and selection strategies. The idea is that, whenever
the qualities of a particular sampling algorithm are required, they
cannot only be expressed in the pipeline format, but then also fur-
ther tailored and adjusted, because they are in the pipeline format. To
demonstrate this, we model well-known sampling algorithms using
the pipeline, with their output depicted in Figure 26.

• random sampling: random shuffling linearization → cardinality-
based subdivision → random selection.

• stratified sampling: numeric sort-by-attribute linearization →
interval-based subdivision → median selection.

• sampling for balanced spatial autocorrelation: z-order lineariza-
tion → cardinality-based subdivision → balancing autocorrela-
tion selection.

This highlights expressiveness of the sampling pipeline, in that we
can create both simple approaches like random sampling, but also
rather specialized approaches as in the spatial autocorrelation exam-
ple. This sampling controls the distribution of four categories (called
LL, HL, LH, and HH), which express whether a local value is greater
than neighboring values (yielding H* or L* categories) and the global
mean value (yielding *H or *L categories) of a spatial variable. This
is inspired by the approach by Zhou et al [132], who demonstrate
that sampling using spatial autocorrelation allows for effective explo-
ration of large (and therefore often cluttered) geospatial datasets.

6.6.2 Recomposing sampling pipelines

Modular design reduces implementation efforts by increasing reusabil-
ity of partial solutions, in that we can compose the operators from
existing sampling methods to create a new approach. For example,
we can recompose operators from the pipelines in the previous sec-
tion into a new sampling approach. In the example depicted in Fig-
ure 27, which is inspired by z-order sampling proposed by Zheng et
al. [130], we use the z-order linearization from the autocorrelation
sampling, a cohesion-based subdivision, and the median selection
from stratified sampling. Linearization and subdivision both tailor
the sampling towards the spatial location of the data points, in that
the linearization places points in successive order if they are close to

6.6 utilizing the pipeline’s modularity for tailored sampling 75

(a)

Random sampling Recomposed sampling

pickup location pickup location

(c)

(b)

z-order cohesion mediancardin. randomrandom

Figure 27: Example of tailored sampling created by recomposing the opera-
tors used in Figure 26 for a distinct sampling on the taxi dataset
(||sample|| = 10k). The tailored sampling depicted on the right
noticeably preserves sparse regions (a), outliers (b), as well as lo-
cal structures (c) compared to the random sample on the left.

each other in the pickup location attribute, and the subdivision splits
up this data whenever there is a large distance between values. This
results in bins that contain items from distinct regions in view space,
and their cardinality depends on the spatial density of that region:
densely populated areas are contained in large bins, while sparse re-
gions are contained in small bins. In turn, when selecting elements
from all bins, this increases the visibility of outlier points in the sam-
ple, while maintaining sparse regions as well as dense structures in
the sample, which is clearly visible in Figure 27.

This demonstrates the modularity benefits of the pipeline, which
allows reusing existing modules for tailored sampling rather than
requiring a completely new implementation.

6.6.3 Tailoring the sampling towards multiple attributes

The modularity also allows to independently tailor each step of the
pipeline to account for a different aspect of the analysis scenario, cov-
ering complex analysis scenarios. As an example, we here configure a
sampling tailored for analysts exploring the relationship between the
spatial distribution of long taxi rides in December of 2018. Accord-
ingly, we configure a pipeline tailored towards three attributes at the
same time: The linearization sorts the data along a z-order curve over
the pickup location, the subdivision increases coverage over the trip
distance attribute, and the selection picks the maximum value along
the pickup time attribute. The linearization ensures that items within
the same bin are also located close to each other in geospace, which

76 tailorable sampling for pva

(d) trip distance (in mi)

+
-

+
-

(a) (b)

pickup location

z-order cohesion maximumcardin. randomrandom

Random sampling Multi-attribute sampling

(c) pickup time (month)

pickup location

Figure 28: Example of sampling tailored to multiple attributes on the taxi
dataset (||sample|| = 10k). The pickup location in the tailored
sample better maintains both outliers (a) and dense regions (b)
than a random sample, albeit not as clearly as in the sampling tai-
lored only to the spatial distribution in Figure 27. The histograms
show that the sampling is also clearly skewed to pickup times late
in the year (c), while the distribution of the trip distance matches
the overall distribution in the dataset (d).

helps to preserve outliers and dense regions in the sample when se-
lecting items from all bins. The subdivision then ensures that all bins
contain both long and short trips, which ensures that this distribution
is maintained in the sample. The selection then skews the sample to-
wards trips that are latest in the year. The effect is visible in Figure 28.

This example demonstrates the flexibility of the pipeline in two
ways: First, we can consider multiple data attributes in the sampling.
This means that the sampling can be tailored to address some of the
more complex analysis scenarios, controlling the sample distributions
for more than one attribute. The second benefit is that we can consider
multiple data types in the sampling. This is noteworthy, as many ex-
isting sampling algorithms are geared towards a particular data type
(sampling for spatial data, temporal sampling, sampling multivariate
data, ...).

6.7 limitations

Since the pipeline works on the general PVA-sampling input and out-
put format that inputs an arbitrary structure and transforms it to
chunks of items from that structure, we can (at least in theory) sup-
port a wide range of analysis scenarios: As long as we can find a

6.8 conclusion and future work 77

linearization algorithm for the data structure, the data can be trans-
formed into chunks along the pipeline steps. Nevertheless, this flexi-
bility brings some caveats, which we discuss below.

One limitation is that, because of its generality, the pipeline can-
not formally guarantee optimal performance across scenarios, mean-
ing that in cases where the sampling cannot be expressed along the
three steps of the pipeline, a dedicated implementation may be re-
quired. For example, when the qualities of an existing PVA-sampling
(see Section 6.3.3) are needed, it can make sense to rely on these
“off-the-shelf”, optimized solutions, rather than recreating them with
the pipeline steps. This poses a trade-off, though, as using tailored,
task-specific solutions may come at the cost of losing future tailorabil-
ity, once the task changes. Its generality also means that the pipe-
line cannot guarantee usefulness: Analysts need to carefully consider
the strategies and parameters used at the three steps in context of
the task they want to support, as the sampling may otherwise be
inefficient. In our running example, for instance, we configured the
pipeline to skew the sampling towards maximum values along the
trip distance attribute. This tailored sampling is only useful, if these
long-distance trips are actually relevant to the task. As with any task-
tailored PVA-sampling approaches, the pipeline requires analysts to
actively choose a sampling that is useful to their analysis, but in con-
trast to those existing approaches, analysts need to do the tailoring
themselves.

In the same spirit, another consideration before using the pipeline
is whether it makes sense to invest time and effort into tailoring the
sampling, rather than using a sampling that is slightly subpar. One
aspect to this economical question is the task that analysts perform
on the data, and in particular how critical it is that chunks are tailored
to the task. After all, for analysts casually visualizing a dataset to de-
velop a first impression, random sampling might suffice, even if that
is not the best fit for their data. Yet, cognitive biases like the uncer-
tainty bias (“misjudging the uncertainty of intermediate results” [94])
or illusion bias (“reading something into incomplete results that is
not there” [94]) as studied by Procopio et al. [94] are an inherent chal-
lenge to PVA. Reducing their impact is “part of the deal” when using
PVA over non-progressive analytics in any analysis task beyond casual
observation. The sampling pipeline, then, provides a flexible tool to
that end, helping to reduce the impact of biasing analysts at the root
of the PVA process.

6.8 conclusion and future work

In this paper, we introduced the notion of tailorable PVA-sampling,
which differs from “regular” sampling in VA, in that it is a continu-
ous process rather than a computation step, leading to a unique set

78 tailorable sampling for pva

of requirements. Tailorable PVA-sampling allows to fit the sampling
mechanism to the task, to make the progressive visualization as use-
ful as possible as early as possible. We achieved this by providing a
pipeline consisting of three consecutive modules (linearization, sub-
division, and selection), which allow tailoring the data distributions
in chunking to fit the needs of the analyst. We demonstrated the flex-
ibility of this pipeline in a series of examples, both taking a step-by-
step perspective, where we demonstrate how exchanging each mod-
ule affects the output, but also by taking a holistic view, showing how
the modularity allows recreating existing sampling methods, reusing
operators, and tailoring to complex user interests at once. We then
showed how the pipeline can be dynamically exchanged at runtime,
to account for highly dynamic user interests common to PVA, changes
in the input data, and the scope of the analysis. Our approach allows,
for the first time, to tailor PVA-sampling to the needs of the analyst
without requiring dedicated reimplementations, while also allowing
to adjust the sampling on-the-fly without restarting the analysis.

A next step for tailorable PVA-sampling is to provide tool support
to make our conceptual work widely usable. To produce the figures
in this paper, we used our Python-based proof-of-concept implemen-
tation ProSample (see Figure 6.4.1 for more details). In the future, we
want to make use of our experiences along this early implementation
and introduce additional requirements like performance, scalability,
and wider applicability into our design. This will require careful con-
sideration for choice of implementation language and API design to
future-proof and integrate our pipeline with other frameworks. While
tool support in PVA remains sparse, general-purpose frameworks like
ProgressiVis [41] are on the horizon. Therefore, integrating a future
PVA-sampling library with these approaches will not only help make
tailored sampling more widely available, but also to make PVA itself
more usable in general.

acknowledgements

The authors wish to thank Jakob Burkhardt for his help with the
implementation in early stages of the project. We gratefully acknowl-
edge funding of this research by the Innovation Fund Denmark (IFD)
through the Grand Solution project Hospital@Night.

7
S T R AT E G I E S F O R E N A B L I N G
D E G R E E - O F - I N T E R E S T F U N C T I O N S F O R
P R O G R E S S I V E V I S U A L I Z AT I O N

Marius Hogräfer, Aarhus University, Denmark
Dominik Moritz, Carnegie Mellon University, United States
Adam Perer, Carnegie Mellon University, United States
Hans-Jörg Schulz, Aarhus University, Denmark

In preparation for submission to EuroVis 2023.

abstract

Degree of interest functions are an important tool for interactive vi-
sual analysis, as they express the relevance of data to analysts’ tasks.
However, degree of interest functions currently are only being used
on relatively small datasets that can be processed in one step. For
larger data that require a progressive, chunk-by-chunk processing,
current degree of interest computations are of limited use, as the in-
terest values can only be computed within each chunk and are thus
not valid for the scope of all data seen so far. As a result, common
visualization mechanisms building on top of degree of interest com-
putations – such as visual guidance towards data of interest, preferen-
tial labeling of high-interest visual objects, or information hiding of
uninteresting data – can also not be employed to their fullest extent,
posing a major limitation to progressive visual analysis. In this pa-
per, we address this limitation by proposing strategies that increase
the scope of interest values beyond the chunk they were computed
in. These strategies reduce the error of progressively computing in-
terest values over the data seen so far by providing context from the
processed data to the next chunk, and by recomputing outdated in-
terest values. In a series of benchmarks, we show these strategies out-
performing regular, chunk-based computation in terms of the error
they make. Our results suggest selecting scenario-specific strategies
to reduce the error and thus increase the utility of degree of interest
computations on progressive visualization.

7.1 introduction

Degree of Interest (DOI) functions are an important tool in the visual
analysis toolbox. They express the relevance of each data item to the
current user task relative to the rest of the data, which allows differen-

79

80 strategies for enabling degree-of-interest functions for prog . vis .

tiating highly interesting from less interesting parts of the data. Once
computed, these interest values can then be used to drive visual anal-
ysis methods like guidance [45], focus+context [50], or labelling [1].
In turn, DOI functions allow analysts to focus on those data that are
actually of relevance to them, which is particularly useful when the
dataset is complex (e.g.,, in size or dimensionality).

While they thus make it easier to analyze large datasets, DOI func-
tions are currently not used in the context of progressive visualiza-
tion, a relatively new visualization paradigm for large datasets [107].
In progressive visualization, the dataset is processed and visualized
in chunks rather than in one go, allowing analysts to view early,
incomplete visualizations their data. Through progressive visualiza-
tion, it becomes possible to achieve responsive interaction latencies
on large datasets and long-running computations, for which tradi-
tional approaches would take minutes or hours. As a result, analysts
of progressive visualization have been shown to outperform analysts
of traditional “monolithic” systems in terms of task completion time,
while being just as effective in producing insights [127]. Progressive
visualization and DOI functions thus share the goal of facilitating the
interactive visual analysis of large datasets.

One reason why the two are currently not used together is that
when computing the interest value for individual items in the con-
text of the rest of the data, DOI functions require the dataset to be
available all at once, while in progressive visualization, the data is
only available in chunks. Due to this limited context, DOI functions
inherently produce misleading results. An item that is interesting in a
small chunk may in the context of the entire dataset not be interesting
for the task at all, and vice-versa, and thus, interest values computed
over chunks generally differ from interest values computed over the
entire dataset. Due to this disparity, any analytic method enabled by
DOI functions will also produce a misleading outcome, inhibiting the
analysis: guidance for example may lead the user to data that in the
global scope of the dataset is not interesting, and focus+context may
erroneously hide interesting data. Another reason why the two are
not yet used in symbiosis is that DOI functions are highly scenario-
dependent, and analysts may frequently adjust the parameters used
by the DOI function based on new insights. In progressive visualiza-
tion, this is a challenge, because this scenario-dependency means that
precomputing DOI functions for all parameter combinations is gener-
ally unfeasible. At the same time, developing a dedicated, incremen-
tal algorithm that learns the structure of the dataset from chunks over
time is also non-trivial and a time-consuming endeavor, and therefore
also generally unfeasible. Thus, none of the analytic methods enabled
by DOI functions are currently used in progressive visualization. This
is a major limiting factor to the interactive visual analysis of complex

7.2 running example 81

data, since it is exactly this complexity that these analytic methods
could help alleviate.

In this paper, we address this limitation by identifying the con-
ceptual barriers that lead to errors in progressive DOI functions, and
by proposing generally applicable strategies for overcoming them. In
sum, we make three contributions in this paper:

1. We formulate the research challenge of progressively visualiz-
ing results of context-dependent computations like DOI func-
tions, which relate individual data items to the rest of the dataset,
thus inherently producing errors when only parts of the data
are available.

2. We propose conceptual strategies for reducing the error of DOI

functions on progressive visualization by extending the context
of these functions beyond the scope of the chunk, first by en-
hancing the DOI function’s context with already processed items,
and second by recomputing those items whose DOI values have
become outdated with the arrival of new data.

3. We report on the results of a series of benchmarks evaluating
these strategies, which suggest that by selecting scenario-specific
strategies, we can reduce the error of DOI functions on progres-
sive visualization.

7.2 running example

Throughout the paper, we will refer to a motivating example around a
particular dataset and DOI function, that demonstrates the challenges
of using DOI functions with progressive visualization.

As a dataset, we use the New York City taxi data, which for the
year of 2018 contains data of around 77 million taxi rides in the city1.
This dataset has three characteristics that are important in the context
of this paper: (1) its size makes it a good candidate for progressive
visualization, (2) its complexity in terms of dimensionality and its
use of multiple data types means that analyzing it is not trivial [42],
suggesting the need for supportive tools enabled by DOI function to
facilitate the analysis, and (3) its rows are ordered temporally, which
can lead to sorting bias when processing it in order, which means that
what data is most interesting can change over time.

On that dataset, we use a DOI function that measures the “outlier-
ness” of data items, processing and visualizing the data in chunks.
Outlierness describes how irregular a data item is in the context
of other items in the dataset, i.e., the more different that item is
in relation to the overall distributions in the dataset, the higher its
interest value. Finding outliers is a common analysis task on high-
dimensional data like the taxi dataset, allowing analysts to detect

1 https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/

t29m-gskq

https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq

82 strategies for enabling degree-of-interest functions for prog . vis .

items that do not follow the general trend of the data. It is also com-
putationally complex, meaning that precomputing it over the entire
dataset is not feasible. Moreover, what items are considered outliers
depends on all other items in the dataset, which in turn makes it chal-
lenging for progressive visualization, where that data context changes
over time. There are many ways of computing the outlierness includ-
ing dedicated implementations for streaming data [128], yet for sim-
plicity, in our example we will compute outlierness based on algo-
rithms from the widely used machine learning library scikit-learn2, in
particular Elliptic Envelope (EE), One Class SVM (OCS), Isolation
Forest (IF), and Local Outlier Factor (LOF). For our running ex-
ample, we consolidate the outputs of multiple algorithms into an av-
erage value for a more complex outlierness score, as each algorithm
produces a slightly different interpretation of what data to consider
an outlier.

Specifically, we use the following DOI function based on the modu-
lar DOI function operators proposed by Abello et al. [1]:

DOI(d) =
∑
i

1

|i|
× inter(compi(d)) (1)

In this function, compi refers to the scikit-learn implementations of
the algorithms of each DOI computation, which are averaged. The
interest function inter(d) = 1/(1+ e−2) maps their outputs to a [0, 1]
range.

Computing that DOI function over the entire taxi dataset takes mul-
tiple hours, and therefore, it makes sense to instead process the data
progressively in chunks, with new chunks arriving on average ev-
ery 1.2 seconds enabling an interactive visual analysis of the data.
Nevertheless, as the individual computations do not consider the full
dataset, the interest values noticeably differ between the full and the
chunked computation.

In response to this challenge, we present strategies for adjusting
the DOI function such that a progressive interest computation can
benefit the user. The remainder of this paper is structured as follows:
First, we present the literature on related approaches, then we de-
tail the conceptual challenges that introduce the disparate results in
progressive DOI functions, followed by the strategies to resolve the
issue. Lastly, we present benchmarks for evaluating the applicability
of these strategies.

7.3 related work

In this section, we situate our work within three related domains,
namely degree of interest functions on complex data, incremental
learning, and progressive visual analytics.

2 https://scikit-learn.org/

https://scikit-learn.org/

7.3 related work 83

7.3.1 Degree-of-Interest Functions

DOI functions were first introduced by Furnas as a way to optimize
the limited display space available at that time, to show those parts
of a document that are most relevant to that part a reader currently
works with [45]. The concept was later adapted to the visual analysis,
for example by Heer et al. in DOITrees [50], a focus+context technique
for prioritizing those nodes for display in large tree datasets that are
currently relevant to the user, based on what nodes the user selected.
There are some related approaches in the literature, where DOI func-
tions are used in a somewhat similar fashion to what we use them
in this work, in that either the dataset is large or changing dynami-
cally. Van Ham and Perer, for example, adapt DOI functions on large
graphs, utilizing an interactive text search to influence the interest
of nodes [134]. Moreover, Abello et al. [1] present a modular design
space for defining DOI functions over dynamic graphs, where the val-
ues assigned to one node in a graph differ when computing it along
a temporal attribute. In these and other examples, the DOI function
terminates fast enough for interactive updates, which means that a
progressive approach and thus the optimization techniques we dis-
cuss here are not necessary.

In contrast to this and more similar to the progressive use case is
the work by Hu et al. [57], who use DOI functions on streaming data,
which similar to the progressive scenarios we discuss here arrives
and is processed in chunks over time. To keep computation times
low, their approach limits the DOI function to the newest data that has
arrived, discarding data that is considered too old to be of relevance
to the user. However, unlike streaming, in progressive visualization it
is assumed that the chunks of data are part of a whole, finite set of
items that accumulate, and thus we cannot generally exclude items
from the computation based on their “age”.

7.3.2 Incremental Learning

Another related field of research is incremental (or “online”) learning,
which looks at the algorithmic challenges of analyzing large datasets
that do not fit into memory or where the computation is otherwise
limited by complexity. Algorithms that are incremental approximate
the result of running the original “batch” algorithm over the entire
dataset, building up a partial model as more data becomes avail-
able, thus becoming increasingly more accurate in the predicted re-
sults. The field has produced many incremental variants for many
common analytic problems, such as clustering [122], dimensionality
reduction [118], and even outlier detection [128]. The conceptual chal-
lenges of incremental learning are similar to the challenges of run-
ning a DOI function over chunks of data, as we also need to approxi-

84 strategies for enabling degree-of-interest functions for prog . vis .

mate the result of a monolithic computation on partial data. Yet, each
implementation “making” an algorithm incremental requires special
consideration of the data structures and procedures of that algorithm,
so to the best of our knowledge, no generalizing solution exists. DOI

functions, however, are scenario-specific to support a particular task
on a particular dataset, which requires specialized solutions, so pro-
gressive variants are generally not available for DOI functions. More-
over, even if an incremental implementation exists that can compute
the DOI function in chunks in a way that ensures that is consistent
with a computation over all data seen so far, we still need to up-
date outdated interest values computed previously. In our work, we
present strategies for minimizing the error when computing DOI func-
tions in chunks, and solutions to update outdated values.

7.3.3 Progressive Visual Analytics

There also exists prior work dealing with progressive visualization of
computations that are context-dependent like DOI functions, wherein
the value computed for one item is relative to other data. Namely,
these can be found in the field of Progressive Visual Analytics (PVA) [41,
107], which aims to use interactions on incomplete visualizations
to control the parameters of the underlying algorithm. Examples of
context-dependent computations in PVA are relatively sparse, and
each implementation uses a dedicated unique solution to visualize
results progressively. For instance, Badam et al. use a progressive vi-
sualization for t-sne dimensionality reduction [10] by rerunning that
computation on individual chunks. Pezzotti et al. instead use t-sne it-
eratively by visualizing intermediate steps of the computation on all
data, rather than by chunking the data [93]. Turkay et al. use an incre-
mental version of PCA to show high-dimensional data [110] in a pro-
gressive scatter plot, training its model incrementally but projecting
all data based on that model each time. Another example are aggre-
gation functions from SQL as seen in ProReveal [61], which algorith-
mically allow updating the “global” aggregate by incorporating the
intermediate result with the next chunk. In our work, we present so-
lutions to enhancing the context of context-dependent computations,
which can be used whenever no such dedicated implementation is
available.

7.4 degree-of-interest functions on chunked data

7.4.1 Problem Description

Next, we characterize the challenge that prevent us from using DOI

functions in progressive computations.

7.4 degree-of-interest functions on chunked data 85

The strategies we present in this paper specifically address those
DOI functions that are context-dependent, i.e., the interest values put
parts of the data in context with the rest. For context-dependent DOI

functions, the same data item can thus both be of great or low inter-
est to the current user task, given two different data contexts, as de-
scribed in our running outlierness example in Section 7.2. As a conse-
quence, interest values computed on a subset of the entire dataset of-
ten differ from interest values computed on the entire dataset. While
this on one hand means that a DOI function produces misleading re-
sults when run in chunks, it also means on the other hand that even
if we run the DOI function over all data that has been processed so
far (i.e., essentially a bigger subset of the data), the interest values
are still likely to differ from a computation over all data. To overcome
this, we would essentially need to predict, what other data there will
appear in the progression, which is at least an error-prone, if not fu-
tile endeavor (in that if we could predict future data accurately, we
wouldn’t need the progression). For a more data-driven approach, we
rely on the expectation that the more data we process, the more sim-
ilar to the full computation the result would get if we ran the DOI

function over all data processed so far.
Therefore, the challenge that our strategies address is to ensure

that interest values computed for each data item at every point in
the progression are as similar as possible to the hypothetical interest
value computed over the data processed so far.

7.4.2 Solution Outline

Here, we outline our approach for addressing the challenge described
above. To increase the similarity between the interest values com-
puted progressively in chunks and the hypothetical full computation,
we consider two perspectives: On one hand, the DOI function for the
next chunk requires context of the data that was processed before,
and on the other hand, the interest values computed before requiring
the context of the data in the next chunk. Since including all data
in the DOI function can quickly lead to computation times that are
no longer fast enough for interactive analysis, we need strategies for
reducing the size of these contexts while guaranteeing useful results.
To provide context to the DOI function of the next chunk, we present
strategies that generate an appropriate representation of the data pro-
cessed so far. Then, to introduce the new data into the result set, we
present strategies for selecting those elements in the data that are out-
dated and need to be recomputed. To account for the scenario-specific
needs of a particular DOI functions, we provide a catalog of strategies
that apply different heuristics to select data items, thus providing a
selection of options to choose from, rather than a one-size-fits-all so-
lution. This general procedure is depicted in Figure 29. We would

86 strategies for enabling degree-of-interest functions for prog . vis .

processed data

progressive visunprocessed data
...

fnext chunk

computation

provide context to next chunk
update outdated data

Figure 29: General approach for enabling DOI functions for progressive vi-
sualization: items from the processed data are selected as context
for the computation, and “outdated” items are selected and their
values recomputed in light of the latest data.

like to point out here that strategies addressing one part generally
cannot be transferred to address the other, since they have inherently
different goals: The context we provide to the next chunk should be
representative of all processed items, while the outdated items do not
inherently have to be. Nevertheless, there may exist some edge cases
in which the two steps can be unified to increase the productivity of
the DOI function, which we discuss separately.

7.5 enabling doi functions for progressive visualiza-
tion

In this section, we present concrete strategies to implement the gen-
eral strategies for enabling context-dependent computations for pro-
gressive visualization laid out in Section 7.4.2. We present the strate-
gies in two parts: The first part is concerned with providing context to
the computation of the next chunk, such that the new interest values
approximate running the DOI function over all data seen so far. The
second part is then concerned with ensuring that previously com-
puted interest values remain consistent with the new data. We de-
scribe the general procedure behind each strategy and then discuss
different approaches for implementing them.

7.5.1 Strategies for Providing Context to DOI Functions in Progressive
Visualization

The first consideration is how to provide context to the DOI function
for the next chunk to ensure consistency with previous data. As out-
lined in Section 7.4.2, our general approach here is to include a repre-
sentation of the processed data as context.

A naïve approach is to include no processed data at all, which,
while it maximizes the number of novel data processed at each step,

7.5 enabling doi functions for progressive visualization 87

processed processedprocessed selection
Clustering-based context3Chunk-based context1 Sampling-based context2

selection selection

Figure 30: Strategies for selecting data as context for the next computation,
at the example of a scatter plot. The colored dots in the scatter
plots represent those parts of the processed data that are selected,
while black dots represent those parts that are not. The first strat-
egy is to select the oldest data at every step (1). To generate a rep-
resentative set of items from all previous chunks, the processed
data can be sampled (2). Lastly, representative points can be com-
puted using clustering (3).

as outlined in Section 7.4.1 also leads to inconsistent interest values.
The opposite naïve approach that in theory guarantees perfect con-
sistency is to include all processed data in every DOI function. As
this is generally not feasible, strategies are needed to determine what
data best to include in the next computation to provide sufficient con-
text to that computation. The strategies we present in this section are:
chunk-based selection, in which one or multiple previous chunks are
selected as context, sampling, in which a subset is drawn from the
processed data, and clustering, in which representative candidates are
computed using unsupervised learning (see Figure 30). The general
trade off lies in the potential quality of the context a method yields
and the required computational overhead to achieve it. We summa-
rize considerations for choosing context strategies in Table 2.

chunk-based context The first strategy for selecting context
data is to extend the DOI function with chunks retrieved previously.
The idea is that instead of using a complex computation to find a
representative subset, we can make use of the fact that the chunks
themselves are (to a certain degree) representative subsets of the en-
tire dataset. The chunk-based approaches below then differ in the
way they select which chunks to include as context, namely the most
recent or random chunks.

The first approach is to select the most recent chunks as context,
under the assumption that those are the data most relevant to ana-
lysts. A major benefit of this approach lies in its conceptual simplicity.
While all other context strategies require users to comprehend more
complex selection algorithms, looking at the most recent data ensures
that the progression simply considers data the user has most recently
been introduced to. Moreover, this approach can be implemented
rather efficiently into progressive systems, by using an appropriate
variant of the queue data structure available in many programming
languages. The drawback of this approach is that older data is not

88 strategies for enabling degree-of-interest functions for prog . vis .

Context Strategy Considerations

Chunk-based • Rather than revisiting already processed data, can the
chunk size be increased instead?

• Is the analysis task focused largely on the most recent
data? Include the most recent data as context.

• Is there a sorting bias in the data? Include older or random
chunks to provide “historic context”.

Sampling-based • What sampling method is most beneficial to the
computation? Can this method be achieved within the
required response time?

• Is there a data subspace, the analyst is most interested in?
In that case, prioritize data from that subspace (i.e., steer
the computation).

Clustering-based • What groupings of data would supply the best context to
the DOI function, and is there a clustering method that
finds these patterns?

• Does an incremental variant exist for this clustering
method or do we need to recluster every time?

• Can this clustering be provided within the required
response time?

Table 2: Considerations for using context strategies.

part of the context, which can be problematic if those data are more
relevant to the user task. The alternative is thus to select previous
chunks randomly as context. That way, we can reduce ordering bi-
ases in the chunking at the cost of simplicity.

sampling-based context The next strategy for selecting con-
text data is to draw a representative sample from the processed data.
In contrast to chunk-based context, the sampling-based strategy gen-
erates context across chunks.

In this approach, we select a representative subset of the processed
data that resembles its characteristics. The idea is that the DOI func-
tion then “sees” the same data characteristics in the next chunk as it
would in the entire dataset. One way to draw a representative sample
is to run random uniform sampling over the processed data at every
computation step. This can, however, become computationally costly
in later stages of the progression, as the processed dataset increases
in size and may not fit into memory anymore. We can instead main-
tain a progressive random sample of the processed data, for instance
using reservoir sampling [113]. Reservoir sampling guarantees that
the probability of an item to appear in that progressive sample is at
all times constant for all items seen so far, regardless of the chunk an
item was processed in. This makes reservoir sampling a good fit to
maintain a representative subset of the processed data in progressive
visualization. However, for analysis tasks for which random uniform
sampling would not be a good fit, neither is reservoir sampling, mean-
ing that more specialized sampling methods are necessary. One exam-

7.5 enabling doi functions for progressive visualization 89

ple here is progressive pyramid-based sampling, which is specifically
designed to preserve outliers particularly well [23].

clustering-based context The third strategy for selecting con-
text for the DOI function is to compute representative points using
clustering. The main difference to the previous strategies is that the
clustering-based strategy aims to find structures in the actual data val-
ues to get an optimal representation. However, the clustering-based
strategy is more computationally demanding than the previous ones.
We discuss two examples of the clustering-based context strategy,
namely representative-based clustering, in which the context is extracted
from points that best represent a part of the data, and density-based
clustering, in which the clusters of similar density are sampled for
context data.

The first approach is to compute the context using representative-
based clustering, such that each context element represents the sub-
set of items in the processed data with the closest Euclidean distance.
While representative-based clustering algorithms like k-means are
relatively simple, this approach, nevertheless, often produces “good-
enough” interest values in many use cases. Losing et al. for example
have shown how the k-means algorithm can be used to efficiently
summarize the processed data, when computing with the k Nearest
Neighbor classifier over streaming data [75]. Alternatively to k-means,
other representative-based algorithms like k-medoids can be used, to
overcome well-known shortcomings of k-means, for instance its sen-
sibility towards outliers, which for some tasks can be detrimental.

An alternative approach is to use density-based clustering, where
groups of similar data are found based on the data density. This better
captures the structure of clusters with varying cardinality, since the
representatives computed with the previous approach do not con-
sider cluster sizes. This can be an issue when the data contains a
highly dense region, since the clustering will produce representatives
for other parts of the data as well that are essentially outliers, leading
to a skewed context. To ensure that the most frequent trends in the
data are also represented as such in the context, we can select the
context as a sample of the clusters, with cluster size deciding on how
many elements are sampled. Since this approach does not require the
clustering to produce a set of representatives, other families of cluster-
ing algorithms are feasible alternatives. Many clustering algorithms
exist, each with its own strengths in capturing different types of pat-
terns in the data [122], covering which lies outside the scope of this
work.

90 strategies for enabling degree-of-interest functions for prog . vis .

Chunk-based update1 Result-based update2 Interaction-based update3

Figure 31: Strategies for selecting outdated data for update: One strategy is
to select data based on a probabilistic metric, for instance with
random uniform sampling (1). The second strategy is to base the
selection on a metric in result space, for instance by selecting bins
from view space with the most changes in the previous step (2).
The third strategy is to use interactions made by analysts, for
instance the last brush in view space, to select those data that are
most relevant to the analysis task (3).

7.5.2 Strategies for Updating Outdated Interest Values

The second consideration is then to ensure that previously-computed
interest values remain consistent with data that was retrieved later on.
The strategies we present in this section, therefore, present different
means of detecting outdated data (see Figure 31).

As with the context selection above, the naïve strategies to either
update none or all interest values are not useful options here as well.
Updating none of the previous data would lead to an inconsistent vi-
sualization that can mislead analysts, while updating all data quickly
becomes unfeasible as too much data accumulates. Thus, dedicated
strategies are necessary to select a suitable subset of the processed
data to update it. Moreover, we cannot reuse the strategies we pro-
posed in the first part above, since we want to specifically find those
data for which the interest values are outdated, i.e., the subset we select
is not representative. We present three general strategies: chunk-driven
update, in which we recompute interest values based on their “age”,
result-driven update, in which we update those data for which the lat-
est interest value lies in a certain value range, and user-driven update,
in which we use knowledge about the user attention for selecting
the most relevant data. We summarize considerations for choosing
between the strategies in Table 3.

chunk-based update The first strategy for selecting outdated
data for updating is to use its “age” as a heuristic, i.e., the last time
they were updated by the computation. The general idea here is that
interest values lose their validity over time as more and more new
data accumulates, meaning that running the DOI function again on an
“old” data item given the latest context will likely produce a different
interest value. To achieve this strategy, the “age” of the interest values
— meaning the last time they were computed — must be maintained,
for example as a timestamp. This strategy prioritizes consistency, in

7.5 enabling doi functions for progressive visualization 91

Update Strategy Considerations

Chunk-based • Do results of the DOI function become outdated per
chunk or per item? If the entire chunk is likely to lose its
validity, use this strategy.

• How many times should the same chunk be updated, i.e.,
what is the maximum age per chunk?

Result-based • Does the DOI function benefit from seeing data from all
different value ranges?

• Can results be binned progressively or should they be
rebinned anew with every update?

• How many items should be included per bin? Should it
match the distribution observed in the results, or should
the every bin be represented by the same number of
items?

Interaction-based • Are the interactions in view indicative of current analysis
focus?

• What items are affected by which interaction technique,
and which of these items are currently the most relevant
for the analysis?

• What items outside that focused set should also be
updated?

Table 3: Considerations for using update strategies.

that all data is kept equally “up to date”, i.e., we can guarantee that
all interest values are of a certain maximum age.

The first example for chunk-based update is to select data in a first-
in-first-out manner, in that at every chunk, the data that has not been
updated the longest is selected. The intuition here is to keep all data
equally “up to date” by recomputing the interest values for those
items for which the last computation lies the furthest in the path. By
selecting “the oldest” chunk at every step i guarantees that interest
values are at most i/2 steps old. While this approach is conceptually
simple, it comes with the drawback that this maximum age increases
linearly over time regarding the number of processed chunks. There-
fore, an alternative is to update data in regular intervals. That way,
we can set an upper limit to the interest value age based on that in-
terval. The drawback is that the number of chunks that require an
update identified by this approach equally grows linearly per chunk.
Instead of updating all interest values in regular intervals, a prag-
matic solution is to draw an as-big-as-possible random sample from
all “update candidates”.

An alternative to selecting data for update based on their chunk
is to instead use a probabilistic approach. At every chunk, we select
items randomly based on some probability distribution. If an item
is not selected for update, its probability to be picked in the next
chunk increases. While this ensures that all items are equally likely
to be updated after a certain threshold, it requires additional data
maintenance.

92 strategies for enabling degree-of-interest functions for prog . vis .

result-based update The second strategy is to update those
interest values, that lie within a certain value range that is deemed
outdated. The motivation behind this approach is that interest values
often shift locally, rather than uniformly over the entire dataset; for
instance when a local region in the data crosses the density-threshold
from being considered inliers to outliers, or a new greatest value re-
places the old one. A benefit here is that we can specifically select
those data whose interest values actually have become outdated. To
achieve this, we divide the space of interest values into non-overlapping
groups of items. Then, whenever a metric computed for a group ex-
ceeds a threshold, the group’s items are selected for update. The chal-
lenge thus lies in finding appropriate metrics that trigger the update.
There are different methods for computing these groups, which we
distinguish by the type of data they best fit.

If the data is distributed uniformly and the value range is known
upfront, we can divide the result space into equal-ranged bins and
then assign each item to its bin. Under these assumptions, we can
sample the data for including in the update by randomly selecting
items from every bin at every computation step. If, however, the value
ranges are not known upfront, the total range values change through-
out the progression. Then, whenever new minimum or maximum
values arrive, we can recompute the binning and include those items
for update, for which the bin has changed.

If the data follows a non-uniform distribution, we can divide the
data into equal-sized groups, such that every group contains the
same amount of items. Then, when new items are assigned more
frequently into one bin, we select the items in that bin.

Lastly, if the data does not apparently follow either distribution,
we can run clustering over the ranges, in order to group the stored
data based on similarity. A simple way to achieve this is k-means
clustering [73], which divides the data such that every item in every
group has the lowest Euclidean distance to one of k center points.
Whenever an item changes the group it is assigned to, it becomes a
candidate to be included in the next computation step.

interaction-based update The third strategy is to use ana-
lysts’ interactions as a heuristic for selecting data currently in the
user’s focus, to then prioritize those for regular updates. The moti-
vation is to effectively steer the updates towards data the user pays
attention to. As such, the interaction-based update strategy inherits
benefits as well as drawbacks from computational steering, in that
it potentially increases the efficiency of the analysis, since computa-
tional resources are focused on those data that are relevant to the
analyst. However, this approach can also potentially cause analysts
to overlook certain parts of the data they were not interacting with,

7.6 benchmarks 93

as these are not updated. The approaches presented here differ in the
way they determine, what data the user is currently focusing on.

One way is to use the current selection a user makes in view
space as an indicator of their current focus. This is inspired by the
Sherpa method presented by Cui et al. [27], where the data chunking
is steered toward data that matches the filter defined by a brush in
view space. Whenever no selection is active, the filter defined by any
previously active selections slowly “decays” by increasing its bounds,
until the remaining data is sampled randomly. As reported in the
Sherpa paper, the benefit of this strategy is that analysts intuitively
understand this principle, since their last selection is what the com-
putation will focus on. A limitation is that only the latest selection is
considered and previous interactions have no effect on the selection.

An alternative is thus to build a more comprehensive model of
the user attention by considering also older interactions. The motiva-
tion here is that the analyst’s interest evolves over time and cannot
be captured by just considering the latest interaction. Additionally,
modeling the user interest as interactions with data over time also al-
lows us to detect data the analyst has not interacted with, yet, which
can be similarly indicative of their interest. A pragmatic way to build
a model of the user interest is to count the number of times, an in-
teraction in view space has affected an item, and to rank the data
by that count. Then, data with the highest (or lowest) scores are in-
cluded in the next computation step. While using a broader picture
of analysts’ interest to inform the selection of context data, this strat-
egy does come at the cost of introducing more complexity into the
system, while also being less transparent to analysts.

7.6 benchmarks

Following Munzner’s nested model [83], we evaluated our algorith-
mic contribution with benchmarks. We evaluated the strategies across
five datasets and four DOI functions, comparing them in terms of their
accuracy and speed against two baselines. Given the number of test
cases that this entails, we here report on the main takeaways from
these experiments. All benchmarks were conducted on common lap-
top hardware (Intel Core i7 8550U with 1.8 to 4.0GHz, 16GB RAM,
512GB SSD) running Windows 10. The strategies were implemented
in Python 3.9, using the pandas, numpy, and scikit-learn libraries for
implementing the test cases. The code for the benchmarks is publicly
available on GitHub3.

3 https://github.com/vis-au/prointerest

https://github.com/vis-au/prointerest

94 strategies for enabling degree-of-interest functions for prog . vis .

7.6.1 Setup

test cases We compare DOI functions using the strategies with
two baselines: (1) only computing the DOI function on new items (re-
ferred to as no-strategies), and (2) computing the DOI function on new
items, but increasing the chunk size to the number of items that the
context strategy provides (referred to as bigger-chunks). The first base-
line corresponds to “doing nothing”, i.e., using the DOI function pro-
gressively in chunks without reducing the error. The second baseline
corresponds to the state-of-the-art adjustment to the analysis pipeline
for reducing the error of DOI functions whenever no dedicated algo-
rithm exists, by simply increasing the number of items retrieved with
each chunk.

We compared these baselines with our approach of using strate-
gies (we refer to strategies by the labels in parentheses in later parts
of this section). We evaluated the following strategies for selecting
context items. To evaluate chunk-based context, we tested the random
chunk (RC) strategy that randomly selects processed chunks as con-
text for the next computation and most recent chunk (MRC) that selects
chunks that were processed previously. To evaluate sampling-based
context, we tested random sampling (RS), which uses random uniform
sampling over the processed data, DOI-binning (DB), which divides
the processed data into 10 bins along their interest values and then
evenly selects items from these bins as context. We also tested the
clustering (C) strategy, which computes a k-means clustering over the
processed data and selects items from each cluster, with k = 10, to be
comparable to the binning case.

For selecting outdated items from the processed data, we tested
the chunk-based strategies regular intervals (RI) that updates items
based on their chunk periodically, and last chunks (LC) in which we
update the most recent chunks, oldest chunks (OC), in which we con-
sequently update the chunks that have not been updated the longest.
For result-based updates, we tested the bin-based strategy (BB), in
which items are selected for update based on bins, using again 10

bins. Input-based update strategies were not evaluated, as they pur-
posely limit the selection of items that are updated to regions analysts
interact with, rather than covering the entire data space like the other
strategies.

As parameters for computations using the strategies, we used a
chunk size of 2, 000 items and retrieved 1, 000 context items per chunk.
Computations using the bigger-chunks baseline thus used a chunk size
of 3, 000 items, while no-strategies effectively used 2, 000 items, thus
requiring different numbers of chunks to process the input data. We
ran update strategies in an interval of 10 chunks, retrieving 3, 000
items each time.

7.6 benchmarks 95

test conditions Overall, we conducted our benchmarks on five
datasets. As real-world dataset, we used the dataset of New York
City cab rides (containing 7 numeric dimensions and about 77 million
items). We also used three synthetic datasets of different Gaussian dis-
tributions, and one synthetic dataset containing sorted integer values
ranging from 1 to 1 million. To reduce the runtime of our bench-
marks due to the sheer number of test conditions, we reduced the
per-benchmark complexity by only retrieving the first 12, 000 items
per datasets.

The benchmarks used the following DOI functions: Outlierness (mea-
suring how unique an item is compared to the rest of the data as per
our running example in Section 7.2), greatness (the greater a value
across n dimensions, the more interesting it is), and denseness (the
more neighbors an item has in feature space, the more interesting it
is). Each function computes interest values on a range between 0 and
1, where 0 is assigned to the least interesting item in a computation,
and 1 to the most interesting item.

performance metrics We assess the performance of each test
case based on two metrics. The first metric expresses the error that
the test case introduces into the analysis in terms of the computed
value compared to running the same DOI function over the entire
dataset. The closer that error to 0, the more accurate the prediction.
The second metric is the computation time, which measures the time
for processing the data. The lower this value, the better we consider
the performance of a test case.

7.6.2 Results

Here, we discuss the main results of our benchmarks, depicted in
Figure 32 and Figure 33. The code for reproducing our benchmarks
can be found in our GitHub repository3.

general observations The first insight from our benchmarks
is that no combination of strategies significantly outperforms either
of the two baselines. Scenario-specific combinations of strategies can,
however, help reduce the disparity between ground truth and chunk-
based DOI values. For every test case, we can find at least one combi-
nation of context and update strategies, which reduces the DOI error
in terms of median or standard deviation (see Figure 33). However,
none of the strategy combinations was a “silver bullet” that always
outperformed the rest, and instead the performance depended on
the particular combination of DOI function and dataset. This makes
sense, since the strategies serve as a heuristic for providing the best
possible context to the DOI function, which depends on the particular-
ities of that computation. We also observed how some combinations

96 strategies for enabling degree-of-interest functions for prog . vis .

Figure 32: Summary of the runtime performance for the different strategies
compared to the bigger-chunks and no-strategies baselines on the
NYC taxi dataset. We can see that the test cases terminate at dif-
ferent points in time, since using bigger chunks means that the
dataset is fully sampled earlier, while using the update strategies
adds additional computation steps. We can also see the increase
in runtime per step for the bigger-chunks and strategies test cases.

increased the error, for instance when using k-means-based cluster-
ing (C) as context strategy on a dataset that contained less than k

clusters of data. Thus, picking the right strategies for enabling a DOI

functions in progressive visualization requires careful consideration
of the analysis task.

A second insight is that neither the strategies nor the two baselines
can fully remove the difference to the ground truth DOI values to
zero. As expected, we observed that when processing DOI functions
in chunks, they always produce different results compared to com-
puting that same function over the entire dataset, due to them being
context-dependent (see Section 7.4.1). These differences are apparent
both in the difference in the overall distribution of interest values af-
ter the computation completes, and the difference in the individual
values produced per item in the data. Moreover, while in some cases
the overall distribution computed in chunks exactly matches the dis-
tribution of the ground truth, the difference per item can be quite
apparent. For example, when f=greatness, the per-chunk distribution
exactly matches the ground truth, yet the values computed per item
differ. This confirms that some DOI functions in progressive visualiza-
tion produce an intrinsic error, which at the same time shows that
evaluating chunk-based computations based on histograms of DOI

distributions is an insufficient analysis tool for their quality.
Another insight from our benchmarks is that the strategies were

able to alleviate sorting bias in the data (see results for the sorted
dataset). Compared to no-strategies, most strategies produced better
results in terms of median error and standard deviation in the f =

7.6 benchmarks 97

Sampling-based

Context Strategies

U
pdate Strategies

Latest C
h

u
n

k
N

o
 U

p
d

ates
O

ld
est C

h
u

n
k

B
in

-b
ased

R
egu

lar In
tervals

La
te

st
 C

h
u

n
k

N
o

 U
p

d
at

es
O

ld
es

t
C

h
u

n
k

B
in

-b
as

ed
R

eg
u

la
r

In
te

rv
al

s

Random ChunkNo ContextMost Recent ChunkDOI bin basedClustering-based

Sampling-basedRandom ChunkNo ContextMost Recent ChunkDOI bin basedClustering-based

Using the Strategies

Test cases:How to read the results:

No strategies

0

1

same DOI value as ground truth

large difference to ground truth

worse performance

worse performance

outlierness denseness greatness

-1 large difference to ground truth

Bigger Chunks

strategies outperform
baselines

Figure 33: Benchmark results for the DOI error, showing the difference to the
ground truth DOI values when running all three DOI functions on
a sample of the NYC taxi dataset. Each cell in the matrix shows
the error made by a particular combination of context (columns)
and update (rows) strategies for all DOI functions, compared to
the two baselines no-strategies and bigger-chunks. The closer a dis-
tribution around the 0 line in the center, the better. Highlighted
in magenta are test cases, in which our strategies outperformed
the baselines.

98 strategies for enabling degree-of-interest functions for prog . vis .

greatness,D = sorted case. This is due to the fact that providing con-
text from past computations allow the computation to keep a “mem-
ory” of minimum values it has seen before, beyond the data in the
chunk, and updating prior results allows incorporating knowledge
about the new maximum. While the strategies thus helped reduce
the error of this chunk-based DOI function, they did not fully remove
it, for instance as not all values were updated after the final chunk.

A general assumption in progressive computations and an obser-
vation throughout our benchmarks is that increasing the number
of items in a chunk-based DOI function increases the quality of the
results, in that median error and standard deviation are reduced.
This was evident in the improvements that using a context strategy
case brings compared to no-strategies. Similarly, the results for bigger-
chunks indicate that increasing the number of items that are processed
per chunk in itself improves the computation, without the computa-
tional overhead of our context strategies. In fact, bigger-chunks out-
performs some combinations of context and update strategies in our
tests, yet for all combinations of datasets and DOI functions, there ex-
ist combinations of context and update strategies that further improve
on bigger-chunks. The implication here is that when implementing a
DOI function for progressive visualization, increasing the chunk size
can already be a good solution to reduce the error, yet, by adding ded-
icated context and update strategies, the best results can be achieved.

doi error An overview of results regarding the DOI error is de-
picted in Figure 33. Some context strategies in our tests reduced the
median error of chunk-based DOI functions and also reduced errors’
standard deviation. However, the intensity of this effect for a strategy
varied between datasets and DOI functions. The MRC context strat-
egy in particular performed comparable to bigger-chunks, yet only pro-
cessing |itemchunk| new items per computation. Different context strate-
gies did, however, show different variance in performance: Some con-
sistently show small improvements over both baselines (MRC, RS),
while other strategies in some cases show large improvements, but in
other cases also diminishing results (C).

Update strategies also reduced the error of chunk-based DOI func-
tions and consistently outperformed no-strategies. However, their ef-
fects in most cases mostly affected the standard deviation of errors,
and where not as noticeable as context strategies in terms of the me-
dian error. Update strategies were most effective in cases where the
dataset was sorted, in which case they often outperformed bigger-
chunks in terms of error median and standard deviation. The OC
strategy in particular performed well on sorted data. As with con-
text strategies, update strategies’ performance also depended on the
dataset and DOI function and no strategy consistently outperformed
others.

7.6 benchmarks 99

These observations again reflect that, just as the DOI functions them-
selves are designed for particular scenarios, so must be the choice of
strategies used to reduce their disparity to the ground truth.

runtime An overview of results regarding the DOI error is de-
picted in Figure 32.

The three test cases completed at different points in time. This is
simply due to the different number of items processed at each step.
Accordingly, the bigger-chunks case required the lowest number of
steps (6), followed by no-strategies (12). Since update strategies were
run as separate computation steps to the computation of new chunks
every other step, test cases using the strategies needed the most steps
(17).

Both context and update strategies also noticeably increased the
per-chunk computation time over both baselines (see Figure 32). There
are three main factors causing that increase: an increased computa-
tion time of the DOI function due to larger input compared to no-
strategies, additional accesses to the database, and the additional com-
putational overhead for computing each strategy.

7.6.3 Threats to Validity

In the benchmarks, we evaluated the strategies we proposed over a
set of datasets, parameters, and degree of interest functions. Natu-
rally, there are some limitations in terms of generality of the results.
First, our tests were run exclusively on numeric, multivariate data,
which means that we cannot draw any conclusions regarding cate-
gorical data, graphs, or temporal data. Moreover, in order to keep the
total number of test cases manageable, our benchmarks are limited to
a few representative implementations of the strategies we discussed
in Section 7.5, which, nevertheless, resulted in many strategy com-
binations. This means that some of the strategies we proposed were
not included in our benchmarks, and at the same time, not all poten-
tial variations of each strategy were implemented. For instance, for
the clustering-based context strategy C we chose the k-means algo-
rithm to generate groups of data for its conceptual simplicity, in lieu
of methods like density-based or subspace clustering that may have
performed differently in the tests. Lastly, our benchmarks were run
with a fixed set of input parameters to the algorithms used in each
strategy, for instance all bin-based methods (DB, BB) used a fixed
number of 10 bins for simplicity. Thus, there exists some potential
for tweaking the performance of the presented strategies, which we
purposefully omitted to keep results comparable between benchmark
configurations.

100 strategies for enabling degree-of-interest functions for prog . vis .

7.7 discussion and future work

In this section, we critically reflect on the results of our evaluation and
propose future research directions for DOI functions in progressive
visualization.

7.7.1 Increasing the Chunk Size vs. Using the Strategies

A takeaway from the benchmarks is that increasing the chunk size
generally improves the results of progressively computing the DOI

function, while using context and update strategies improve particu-
lar use cases, but also add computational complexity. This seems like
a clear limitation, and a natural question to ask is whether the strate-
gies are at all practically useful, or whether one should just always
increase the chunk size instead to get the best results. This notion
places our strategies as direct competitors to sampling more data per
chunk, yet we see them more as complementary enhancements. We
discuss three ways in which our strategies can enhance the DOI com-
putation below.

First, context strategies allow us to increase the scope of the DOI

function, whenever we cannot increase the chunk size, as it is fixed
by external factors. For example, when using DOI functions to inform
the visualization of Progressive Visual Analytics (see Section 7.3), the
chunk size is often dictated by the time it takes to retrieve and pro-
cess the data with a complex analytic computation, as update rates
should be kept within interactive intervals [41]. Thus, the scope of
the progressive DOI function is limited by that chunk size, yet we
can enhance that scope using context strategies. The runtime of the
strategy then however also needs to match the interactive interval,
for instance by dynamically adapting the context size using adaptive
sampling [110].

Second, even when we can increase the chunk size, context strate-
gies can nevertheless reduce the error the DOI function makes, assum-
ing that the strategy fits the particular dataset and the DOI function.
This is indicated in the benchmark results, where we found that no
single “best” combination of strategies exists, yet there was always a
combination of strategies that reduced the DOI error. In practice, this
means that analysts need to consider, which items are best for im-
proving the results of the DOI function, while also avoiding unwanted
biasing. Analysts already consider, which data is of interest to them,
when they define the DOI function for their progressive visualization,
and considering how to provide appropriate context can be seen as
an extension of that thought process. However, whether this process
is intuitive and integrates well with the design process of progressive
visualization requires further investigation.

7.7 discussion and future work 101

Lastly, while increasing the chunk size and using an appropriate
context strategy both aim at improving the DOI values of the next
chunk, update strategies improve past errors. Therefore, they address
a completely different challenge and can thus enhance the computa-
tion of DOI values independently of how new chunks are processed.
Again, one needs to consider the characteristics of the DOI compu-
tation to select an appropriate update strategy, as well as when to
update. In our benchmarks, we applied update strategies in regular
intervals, yet that may not always be optimal. In fact, the more data
we process, the less we can expect DOI values to change based on
new data, so reducing the update interval may provide good results
as well. More research is necessary to provide more detailed guide-
lines on how to choose and configure the strategies

7.7.2 Applicability Limitations

The strategies we propose in this work enable DOI functions for pro-
gressive visualization that relate single items to the rest of the data,
which causes errors when computing these functions only over small
chunks of the data. However, there are many ways to compute the
interestingness of data items and not all computations are context-
dependent, i.e., not all DOI functions relate individual items to the
rest of the data. For instance, a simple DOI function is to compute
the path length to the root node in a tree structure, or whether an
item value inside a pre-defined range of interest. Such DOI functions
that are not context-dependent do not benefit from the strategies we
propose, as they already have perfect accuracy.

Another limitation of the strategies is that they introduce additional
complexity into the visual analysis process, both in terms of compu-
tational overhead, but also conceptually. In some scenarios, it may
simply not be “worth it” to wait longer and spend more time on
selecting and implementing a particular strategy, as even incorrect in-
terest values are helpful. When analysts simply want to get a rough,
first picture of an unknown dataset for example, they may choose
to accept the errors in their analysis, just to get to see the data as
fast as possible. In other scenarios, even the erroneous interest values
may be useful enough for their intended purposes. The strategies are
the most beneficial, when the error in the chunk-based computation
poses a risk to the success of the visual analysis. This again confirms
that strategies must be selected purposefully for the particular analy-
sis task, which means that using no strategies may be the best option.

7.7.3 Using interest values in Progressive Visualization

The focus of this work were the computational challenges in bringing
DOI functions to progressive visualization, so a natural next step is to

102 strategies for enabling degree-of-interest functions for prog . vis .

look at the other side of the coin, i.e., the challenges of actually using
DOI function to support progressive visualization. A central differ-
ence to existing approaches is that interest values with the strategies
change over time. DOI functions from their inception in visualization
have been proposed as dynamic values, often consisting of a static
a priori part that measures importance in the data and an a posteri-
ori part that changes with user input [46]. However, using DOI func-
tions progressively with the strategies means that the a priori part can
change over time as well. This difference affects the way in which we
can use the interest values in visualization, as we need to take into ac-
count this inherent uncertainty introduced by the progression. While
recent work by Procopio et al. [94] suggests that non-expert users can
effectively incorporate uncertainty into their analysis, it, nevertheless,
harbors the potential for error. A potential solution could be to take
into account the stability of the interest values, or as Angelini et al.
put it, the “quality” of these values [5]. For example, when using in-
terest values to enable guidance, in addition to evaluating the DOI

function, only those values that have not changed in the last five it-
erations could be used. However, one observation we made in our
benchmarks is that chunk-based DOI functions generally tend to over-
estimate the interestingness of items, meaning that it is exactly those
interesting values that will change the most, as update strategies “fix”
them over time. Further research is thus necessary on how to effec-
tively make use of progressive DOI functions.

As a first step in this direction, we have implemented ProInterest,
a progressive, interactive visualization tool that utilizes DOI functions
based on our strategies. It is designed for progressively analyzing the
NYC taxi dataset as discussed in our running example, based on web
technologies. ProInterest will allow us to identify practical challenges
for bringing degree of interest functions to progressive visualization
in practice, and can serve as a platform to conduct user studies on.
The code to ProInterest is available under open source licenses on our
GitHub repository together with the code to our benchmarks.

7.8 conclusion

In this paper, we discussed the challenges that arise when using DOI

functions in progressive visualization. We formulated the research
challenge of effectively updating context-dependent DOI functions for
progressive visualization. We then discussed strategies for reducing
the inherent error in chunk-based interest computations under con-
siderations of the particular task and dataset of analysis scenarios.
These strategies provide context to the next computation from previ-
ously processed data and find and update outdated interest values. In
our benchmarks, we showed how scenario-appropriate strategies ef-
fectively reduce the error for different dataset and DOI functions. Our

7.8 conclusion 103

contributions enable further research in the use of degree of inter-
est values in progressive scenarios, paving the way for analysis tools
that rely on interest values, such as guidance, information hiding, or
labelling to support analysts in interpreting complex results.

acknowledgements

This work has been funded in part by the Innovation Fund Denmark
through the Grand Solution project Hospital@Night.

8
S T E E R I N G - B Y- E X A M P L E F O R P R O G R E S S I V E
V I S U A L A N A LY T I C S

Marius Hogräfer, Aarhus University, Denmark
Marco Angelini, Sapienza University Rome, Italy
Giuseppe Santucci, Sapienza University Rome, Italy
Hans-Jörg Schulz, Aarhus University, Denmark

ACM Transactions on Intelligent Systems and Technology (TIST), Volume
13, Issue 6, 2022, pp.96:1–96:26 doi:10.1145/3531229.

abstract

Progressive visual analytics allows users to interact with early, par-
tial results of long-running computations on large datasets. In this
context, computational steering is often brought up as a means to
prioritize the progressive computation. This is meant to focus compu-
tational resources on data subspaces of interest, so as to ensure their
computation is completed before all others. Yet, current approaches to
select a region of the view space and then to prioritize its correspond-
ing data subspace either require a 1-to-1 mapping between view and
data space, or they need to establish and maintain computationally
costly index structures to trace complex mappings between view and
data space. We present steering-by-example, a novel interactive steer-
ing approach for progressive visual analytics, which allows priori-
tizing data subspaces for the progression by generating a relaxed
query from a set of selected data items. Our approach works inde-
pendently of the particular visualization technique and without addi-
tional index structures. First benchmark results show that steering-by-
example considerably improves Precision and Recall for prioritizing
unprocessed data for a selected view region, clearly outperforming
random uniform sampling.

8.1 introduction

Progressive visual analytics (PVA) is a way to bring the user into
the loop of long-running computations by visualizing intermediate
results well before the final result is available [6]. This is particularly
helpful when the dataset under analysis is either very large, the com-
putation run over that data is very complex, or even worse when
both are true; in short, whenever running the entire analysis would
take too long. PVA allows not only monitoring the running compu-

105

https://doi.org/10.1145/3531229

106 steering-by-example for progressive visual analytics

tation, but also canceling it ahead of time once a good-enough result
is shown [78], which user evaluations have shown to significantly
outperform using “blocking”, non-progressive systems in terms of in-
sights gathered [127]. One of the most promising uses of PVA is for
computational steering where the intermediate results are used by an
analyst to identify subspaces of interest on which to focus the com-
putational resources so as to prioritize their computation [82, 107].

From early on when computational steering was proposed, it was
inherently tied to direct manipulation [70, 119]. Yet when wanting
to use direct manipulation to steer a running computation in a PVA
scenario, one quickly discovers a problem: Say, for example, we want
to steer the computation by brushing a region in the still unfinished
visualization of all computation results. Brushing that region would
then mean to prioritize the data items inside, so as to focus com-
putational resources on that region and to complete the processing
and rendering of the data items inside before all other parts of the
visualization. Yet in order to give them this preferential treatment,
we already would need to know which data items will in the end
be mapped into that region – i.e., we would need the visualization
already to be completed to determine those data items.

Existing computational steering approaches for PVA deal with this
conundrum either by circumventing it using a 1-to-1 mapping be-
tween data space and view space, or they maintain a spatial index
structure over the data to perform such a reverse-lookup from view
space region to data subspace. A 1-to-1 mapping is used by the SHERPA
system [27] that limits itself to chart types, which employ data at-
tributes as axes – e.g., scatterplots and line charts. Whereas the spa-
tial index is used for progressive multidimensional scaling [118]. The
index structure provides a binning of data items – those that are al-
ready rendered are binned based on their position in view space and
those not yet rendered are binned based on their distance to the al-
ready rendered items in data space. Every now and then, a rebinning
occurs that (1) updates the bins of newly rendered data items based
on their now available position in view space, (2) subdivides over-
crowded bins into smaller ones, and (3) recomputes the binning of
the remaining unrendered data items based on these changes. As the
bins are defined in view space, they can be overlaid as a grid-like
structure on the projection and the user can select individual bins
to prioritize their associated, unrendered data items in the progres-
sion. Both of these approaches pose considerable limits: The 1-to-1
mapping greatly reduces the visualization possibilities to only those
visual representations that use data dimensions as visual dimensions.
Whereas spatial indexing requires periodic updates to keep current
with respect to any newly rendered data. As each of these updates
incurs a full pass over the data, this limits the applicability of this
approach to only moderately sized datasets.

8.2 related work 107

In this paper, we propose a third approach to this problem that can
be utilized for progressive computations over multivariate, numerical
data whenever other steering approaches fail – i.e., when no 1-to-1
mapping between view and data space exists and when the dataset is
too large for periodic updates. This third approach relies on the idea
of “query by example”, where we use the data items already inside
a selected region to find those that are similar and thus likely to be
drawn in the selected region as well. To that end, we make use of deci-
sion tree classifiers, which have already proven useful for estimating
user interest in data subspaces in non-progressive scenarios [29, 47].
The main idea is to train a decision tree that discerns between those
data items already rendered inside the selected region and those out-
side of it. We then use the tree’s decision rules to form SQL queries
that return more, unrendered items of the “inside” case. To this end,
we make the following contributions to the field of PVA:

• We introduce steering-by-example as an application of query-
by-example for prioritizing data subspaces of interest based on
selections in view space during incremental computations.

• We present a quantitative validation of steering-by-example in a
series of benchmarks, showing that it significantly outperforms
random uniform sampling in retrieving data for a given selected
region in view space.

• We present ProSteer, an experimental visual environment for ex-
ploring steering-by-example, which is available as open-source.

8.2 related work

PVA divides long-running computations into small steps. As a result,
analysts using PVA can interact with this ongoing process and adjust
it while it is still running, facilitating progressive data exploration.
According to Mühlbacher et al. [82], such interactions with an ongo-
ing computation can be distinguished into two groups: result control
(what the computation does) and execution control (how the computa-
tion does it).

Result control is defined as any “interaction with the ongoing com-
putation in order to steer the final result” [82]. This encompasses, for
example, the early validation of a result being computed and a poten-
tial reparametrization of the computation if the result does not meet
the analyst’s expectations. One type of result control is the inner result
control, which is based on partial results being generated by an ongo-
ing computation that can then be adjusted on the fly. The existing
literature in PVA has particularly looked at the implications for UI
design incurred by adjusting the parameters of a computation while
it is running [10]. Complementary to this type of result control, there

108 steering-by-example for progressive visual analytics

can also be outer result control, which is based on final results gener-
ated by multiple computations. Instances of this type are TPFlow [71]
and the work by Xie et al. [121], which gradually lead analysts from
a computation that produces an overview visualization towards com-
putations that bring out increasingly more detailed patterns in data
subspaces.

Execution control is defined as “any kind of control of the execu-
tion of the ongoing computation of the process as such” [82]. The
first type of execution control and often cited benefit of PVA is the
ability to cancel the computation early on, once a good-enough re-
sult has been obtained. Early cancellation has been an integral part
of PVA from its inception [107] and has subsequently been shown to
increase analysts’ efficiency in the analysis [127]. Its main challenge is
the potential to cancel a computation too early while larger changes
to the result are still inbound. PVA research has thus looked at ap-
proaches to recover from such situations [59, 80]. A second type of
execution control is prioritization, which refers to adjusting the order
in which data is processed by a progressive computation. The idea
is that data of higher interest to the user should be processed before
data of lesser interest, so that the generated partial results will re-
flect data of interest as early as possible. This form of control is also
called interactive steering. State-of-the-art steering approaches include
SHERPA [27] and MDSteer [118].

Outside the field of PVA, there exist some approaches to facilitate
prioritization. ForeCache [12] and IncVisage [97] are examples of in-
teractive approaches for prioritizing data, while explore-by-example [29]
is used to steer queries in a progressive context. In particular the latter
is of interest because of its general applicability: It extracts decision
tree rules from a set of exemplars denoted by the user as being of
interest. It then uses these rules to prioritize similar data elements.

Putting our approach of steering-by-example in this context, it is
a method for execution control – specifically for prioritization of rel-
evant data in the processing order. To do so in a generic way that
does not depend on the type of visual mapping (as SHERPA [27]
does) or on the ability to compute and maintain a spatial index (as
MDSteer [118] does), our steering-by-example approach follows the
idea put forth in the explore-by-example approach [29] and employs
decision trees for prioritizing data items of interest.

8.3 the steering-by-example approach

Next, we present steering-by-example as an approach for prioritizing
subspaces of data in progressive visualization based on selections in
view space. The following sections first introduce the scenario that
steering-by-example addresses and then outline the algorithmic steps
of our approach. Finally, some practical extensions to the general ap-

8.3 the steering-by-example approach 109

proach are discussed, which become relevant when implementing
steering-by-example in a PVA system.

8.3.1 The Steering-by-Example Scenario

In the following, we denote the situations that benefit from our ap-
proach. To that end, we assume a function f that transforms a dataset
D into D ′ with D ′ ⊂ R2. As we are specifically proposing steering-
by-example for PVA, the computation of f should be complex enough
to warrant the use of progression for a dataset of size |D|. Apart from
this basic setup, steering-by-example makes no further assumptions
about f. This makes steering-by-example a good fit for scenarios in
which the details of f are either unknown due to the use of closed
source software, or unspecified as would be the case when imple-
menting a generic PVA library that is to work with any conceivable
user-defined visualization technique. In its generality, the steering-by-
example scenario specifically includes the following three cases:

1. The dataset size |D| is too large to iterate over D multiple times,
effectively prohibiting its binning and re-binning into a spatial
index, as it is done for the steerable, progressive MDS [118].

2. The function f−1 : D ′ → D is unknown or does not exist at all
(for instance when f’s bijective property cannot be guaranteed
due to dimensionality reduction), effectively prohibiting the di-
rect lookup of all data items in a selected region of interest of
D ′, as it is done for 1-to-1 mappings [27].

3. The function f is governed by a set of changing query param-
eters {p1, . . . ,pk} – e.g., user location or date and time – that
makes it impossible to precompute f for a wide range of possi-
ble data values from D and store the results for a table-based,
reverse look-up of D ′ → D.

Steering-by-example is able to handle these scenarios by (1) touch-
ing each data item at most once, (2) being agnostic about the used
visualization, and (3) being computationally inexpensive enough to
be used for highly context-dependent, ad-hoc analysis scenarios. Or
even more succinctly: When all existing methods fail, steering-by-
example is still applicable.

8.3.2 Description of the Approach

Next, we describe the steering-by-example method along its four phases.
Each phase corresponds to a distinct state of the underlying decision
tree classifier that drives our approach. We use a decision tree as un-
derlying classification model, which work by Dimitriadou et al. [29]

110 steering-by-example for progressive visual analytics

SteeringActivation TrainingNon-Steering

view region
selected

new view region selected

approximate query
generated

sufficiently many
items labeled

sufficiently many new
items labeled (optional)data subspace is exhausted

Figure 34: State diagram depicting the four phases of steering-by-example
and the transitions between them.

has shown to perform well for data exploration, due to the following
properties: (1) It can be trained quickly for interactive use, (2) it pro-
duces sufficiently powerful classification models from relatively small
inputs, allowing its use early on during the progression, and most im-
portantly, (3) its model can be easily translated into SQL rules. Other
classification techniques like SVM or deep neural networks do not
fulfill these requirements, in particular the latter. A state diagram of
the approach is depicted in Figure 34. The four phases are:

1. The non-steering phase is the default phase in which the user
has either not yet selected a view region of interest or no further
data items in the dataset D match the last steering query.

2. The activation phase is when data items are labeled for training
based on whether they are located inside or outside a selected
region of interest.

3. The training phase is when the decision tree classifier is trained
based on the labeled data items.

4. The steering phase, in which a query approximating the char-
acteristics of data items inside the selected view region is con-
structed from the decision tree rules and used to retrieve more
data items likely to fall into that region.

We describe these phases in more detail below, explaining the main
goal of each phase and the conditions for transitioning between them.

1) non-steering phase : Initially, the PVA system does not have
any indication by the user what data is of interest, as no selection has
been made in the view space.

The goal of this initial phase is thus to give the users a first look at
the data, allowing them to identify interesting regions that should be
prioritized. Since the user interest is open at this point, this phase of
steering-by-example uses a default sampling method of the dataset
D based on the query parameters {p1, . . . ,pk} in order to retrieve the
next chunk of data, and the retrieved data items are not yet labeled as
relevant or not. In our case, this default sampling method is random
uniform sampling. In addition to being the first phase a PVA system

8.3 the steering-by-example approach 111

runs after launch, the non-steering phase also functions as fallback for
the steering phase, once all data items that match the approximate
steering query have been retrieved. Then, the system will continue
to retrieve further data items from D using default sampling. This
“falling back” essentially resets the steering-by-example algorithm.

2) activation phase : Once the user selects a region of interest,
the system enters the activation phase. This selection can be made
through any interaction in view space that identifies a region that
the user is interested in. In our case, we use brushing directly on a
two-dimensional rendering pane, notwithstanding that the approach
could also work for other selection methods nor for higher dimen-
sions, such as three-dimensional volumetric renderings provided a
suitable brushing mechanism [66, 125]. As the user can perform the
selection at any time during the progression, this phase can be reached
from any other phase in the steering-by-example algorithm.

The goal of this phase is to gather a sufficient number of data the
user is interested in, to guarantee an adequate quality of the classi-
fication model for steering later on. All newly retrieved data items
are thus labeled as relevant or not, based on whether they lie inside
or outside the indicated region of interest. In cases where data from
previous iterations is still available, this data can also be considered
for labeling, yet the steering-by-example algorithm does not require
any caching. The system remains in this phase until sufficiently many
data items are labeled as relevant. The training of the classification
model has not yet been started, thus the system continues to use
default sampling to retrieve the next chunk of data while in the acti-
vation phase.

3) training phase : Once enough data items have been labeled
as relevant, the training phase begins.

The goal of this phase is to produce a query representing the ap-
proximate inverse mapping from the selected data items of interest to
data properties they, and only they have in common. These properties
are then to be used to query for more data having the same proper-
ties and prioritizing their computation – thus effectively steering the
progression towards other relevant data. As these properties are still
being established, the system continues to use its current query while
training. All data items newly retrieved during this phase continue to
be labeled as relevant or not. The system remains in this phase until
the training of the classification model is completed. In practice, the
training phase lasts only for a short period of time, depending on the
complexity and size of the training dataset, due to the low computa-
tional complexity of training the decision trees.

112 steering-by-example for progressive visual analytics

Note that the system can also enter this phase from the steering
phase, if enough new data items are located inside the selection to
trigger a refinement of the classification model based on that newly
available data. Re-entering the training phase is however optional, as
rebuilding the model often will lead to only marginal improvements
of the steering quality once large portions of the dataset are already
computed.

4) steering phase : Once the used classification model is con-
structed, the system enters the steering phase.

The goal in this phase is to provide the user with all relevant data
items from the dataset D that match the approximate query, by re-
trieving data items that will be likely plotted close to those in the
view selection. In contrast to all previous phases, the system thus
uses the steering query extracted from the decision tree to retrieve
the next chunk of data, thus steering the progression towards inter-
esting data subspaces. For decision trees, an SQL query for steering is
constructed from the classification model as follows: Each path from
the root to a leaf node in the decision tree model represents a set of
decision rules that must be satisfied in order for the decision tree to
classify it as relevant. Thus, the generated steering query is equal to
the logical disjunction of conjunctions of these sets of rules. During
the steering phase, all retrieved data items continue to be labeled as
relevant.

The system exits the steering phase for two reasons: The first rea-
son is that the data subspace indicated by the approximate query is
exhausted, in which case it falls back into the non-steering phase. The
second reason is that enough new data items from the steering query
fell inside the region of interest to trigger further refinement of the
query, in which case the system returns to the training phase.

8.3.3 Extension to the Basic Approach

The basic approach outlined above assumes that the user selection in
view space (at some point in time) contains sufficiently many data
items to train the decision tree classifier. Yet, this is not necessarily
always the case. Specifically, there are two cases in which not enough
relevant items can be collected: Either, the region is temporarily too
sparse, but sufficiently many data items of the data will land inside
the selection in the future, or the region will always be too sparse,
even when waiting until the progression completes.

One strategy for addressing this challenge is that the threshold for
what counts as “sufficient” could be a user-definable hyperparame-
ter to the algorithm. Then, experienced users could lower this value
based on their particular use case and thus increase the chance of
engaging the steering. However, this is always a trade-off with the

8.4 benchmarks 113

quality of the classification model, which usually benefits from hav-
ing a larger training dataset.

An additional, automated strategy is to artificially increase the size
of the user selection each time no data item from the newest chunk
of data falls into the selection, thus also considering data outside the
original selection for training. Intuitively, this approach is intended
to “broaden” the range of data that is considered interesting, thereby
increasing the chance that sufficiently many data items can be col-
lected. Conceptually, this approach resembles a query relaxation of
the steering query [81]. The motivation here is that data inside this
“broadened” selection remains at least somewhat interesting to the
user, as it is rendered close to the region of interest. However, this
approach will generally lead to a worse Precision during the steer-
ing phase compared to a model trained without increasing the selec-
tion, but nevertheless remain more beneficial to the user’s analysis
than random uniform sampling. The degree to which the extent of
the selection is increased is another hyperparameter to steering-by-
example, for instance using a percentage-based increase in size. One
could also make the growth proportional to the number of chunks
that contained no data items located inside the selection. Then, the
chance of “getting a hit” could increase with every chunk without a
data item inside the selection, as the selection grows at a greater rate.

Another extension for this is to wait for a certain number of itera-
tions before the size is increased, instead of increasing the size with
every “fruitless” iteration. The idea here is to avoid reducing the steer-
ing quality for selections that only as an artifact of sampling remain
empty for a single iteration, but generally are densely populated. The
number of chunks before the box increases would be an additional
hyperparameter for steering-by-example.

8.4 benchmarks

This section reports the results about the performance of steering-
by-example for progressive visual analytics. In order to test the pro-
posed solution, we defined a set of automatic test cases on which we
collected evaluation metrics. We first describe the overall obtained re-
sults, and then we detail the testing environment and the measures
we collected with it.

8.4.1 Test Results

We evaluated steering-by-example on a sample of the AirBnB dataset
for Paris which consists of 64, 216 data items for listings of housing
options, with each listing being described by 47 dimensions, contain-
ing both numerical and categorical values. The dataset was obtained

114 steering-by-example for progressive visual analytics

from InsideAirBnB 1. While this dataset is relatively small, the addi-
tional computations we run on each chunk make the incremental use
case worthwhile, as a full pass over the entire dataset could take up
to ten minutes.

We compared steering-by-example with random uniform sampling,
in which the progression is not steered, and the data space is uni-
formly sampled, serving as the average case. While more sophisti-
cated sampling algorithms exist [126], we chose random uniform sam-
pling as our baseline, as it still remains the de facto standard sam-
pling approach in PVA literature, since it is widely available across
programming languages and frameworks, and performs reasonably
well on large datasets. We tested the two approaches on more than
1000 test cases, evaluating the performances with respect to Average-
Precision and Recall metrics.

We measured a clear advantage of the steering-by-example approach
over random uniform sampling, both in terms of average Precision
(ca. 10 times higher) and Recall (ca. 4 times higher). Additionally,
our results show independence of performance from chunk size and
identify a good threshold for starting the activation phase and obtain-
ing good performances in just 20 items. We show that the steering-
by-example approach converges to the expected results much faster
than random uniform sampling, similar to the hypothetical, perfect
performance of direct lookup, with only negligible overhead with re-
spect to both per-chunk computation time and overall time. Finally,
our benchmarks show how steering-by-example scales even to large
datasets.

Figure 35 reports a summary of the whole experiment, showing the
Average Precision and Recall box-plots for steering-by-example and
random uniform sampling, clearly showing how steering-by-example
outperforms random uniform sampling in both metrics.

8.4.2 Test Cases

In order to test the effectiveness of the steering-by-example solution
in a systematic way, we instrumented a fully automated benchmark
with the goal of producing a large and significant set of test cases.
We use the following mapping function f for any given listing x

in the AirBnB data: f(x) = (priceSavings(x),walkingDistance(x)).
This function thus produces a tuple, containing the price difference to
other listings and the walking distance to a fixed location of interest
in the city. To reduce the precomputation overhead of the first part,
we limit the benchmarks to a subset of the AirBnB data to include
only listings within in a 60 to 90 Euros price range, limiting the total
query size to 25, 922 items.

1 http://insideairbnb.com/get-the-data.html

http://insideairbnb.com/get-the-data.html

8.4 benchmarks 115

We evaluated steering-by-example against two baseline conditions.
Random uniform sampling forms the lower baseline condition, which
retrieves the data in random order, regardless of the selection. As up-
per baseline we use the state-of-the-art approach of direct lookup
that is also implemented by SHERPA [27] and that will behave like
a perfect predictor: it always exclusively retrieves items inside the
selection, until all data for the selection is processed. It should be
noted that, because direct lookup requires a 1-to-1 mapping between
data and view space which is not available for the mapping function
we use in our scenario, we have to precompute all values needed to
build a 1-to-1 mapping w.r.t. the user selections used in the test (lati-
tude, longitude, min price, max price, and range of walking distance
among alternative hotels). The time for precomputing this data for
a single user test is about 15 minutes (on a quad core i7 and using
indexed relational tables in MySQL). Obviously, it is not possible to
precompute all data for all possible user selections of the five parame-
ters of latitude, longitude, min price, max price, and walking distance.
Even partitioning the user’s selection domains in discrete intervals
(e.g., selecting latitude and longitude in steps corresponding to 500

meters, the price range in intervals of 5 US$ between 60 and 100, and
the walking distance in a range of 100 meters between 100 and 500)
makes the computation time not feasible (about 70 months if limited
to a 15× 15 km square region in Paris). Moreover, the results of these
precomputations must then be stored in a lookup table that allows
to directly retrieve the data items inside a selected screen region. The
size of this additional data is about 225, 000 attributes per AirBnB
listing.

We considered as parameters of this benchmark:

• Chunk size: the chunk size of the progressive process on three
levels (50, 100, and 150 items per iteration)

• Activation threshold: the minimum number of items that must be
inside the selected view region to trigger the training phase of
steering-by-example (10, 20, 40, 60, 80, and 100 items each)

• Query result cardinality. We split the test cases into three groups
based on the cardinality of each selected view region with re-
spect to the full query:

– Low cardinality: this set is formed by selected view regions
containing a number of items ranging from 1% to 4.5% of
the full query

– Medium cardinality: this set is formed by selected view re-
gions containing a number of items ranging from 4.5% to
22.5% of the full query

116 steering-by-example for progressive visual analytics

– High cardinality: this set is formed by selected view regions
containing a number of items ranging from 22.5% to 50%
of the full query

The rationale behind this choice is to characterize the perfor-
mance of steering-by-example for different cardinalities. More
in detail, we do not go over 50% of the query cardinality be-
cause at that point the probability to correctly identify a point
as part of the actually selected view region or not is equal (or
higher) than chance, and results’ validity would be affected. For
this reason, even if the theoretical upper limit is 50%, the ran-
domly generated selected view regions have a maximum car-
dinality of ∼ 40%. We randomly generated 20 view selections
per group without repetition. This results in 60 selected view
regions tested, that cover in a good way the variability of the
region size and position on the screen (details can be found in
the supplemental materials).

The combination of these benchmark parameters (3 chunk sizes,
6 thresholds) led to 18 runs per selected view region, and given the
60 query cardinalities resulted in 1, 080 runs for steering-by-example
and 1, 080 for random uniform sampling. The data needed for the
direct lookup approach was precomputed one time for each <selected
view region, chunk size> combination, given its independence from
any other parameter. We let each run execute until 100% Recall was
obtained. These test cases included selected view regions of different
sizes, aspect ratios, and density of the contained points in order to
capture many different scenarios.

8.4.3 Detailed Measures

We tested the three approaches on all the test cases, evaluating the
performances with respect to Precision, Average Precision, and Re-
call metrics. These metrics were computed from the standard binary
classification variables with regards to whether an approach classi-
fies or misclassifies a data item as inside or outside the selected view
region.

Figure 35 reports the high-level comparison between steering-by-
example and random uniform sampling for Average Precision (Pre-
cision computed on average for a single run) and Recall: specifically,
we collected those data at the iteration in which steering-by-example
ends its effects (when the system switches from Steering phase to
Non-Steering phase), which can vary depending on each run and on
the cardinality of the tested query. For example, for the medium car-
dinality group, we collected the statistical median at iteration 32. For
steering-by-example, the median value of the Recall is at 0.84 and the
median value of Average Precision is at 0.77, both much higher than
the respective values for random uniform sampling (Avg-Precision

8.4 benchmarks 117

(a) steering-by-example

Overall Results Recall for medium cardinality

(b) random uniform sampling

Figure 35: Left: Average Precision and Recall comparison for steering-by-
example and random uniform sampling on the full set of test
cases. The figure shows that steering-by-example clearly outper-
forms random uniform sampling for both metrics. Right: Recall
results for medium cardinality group split by chunk size (100, 150,
and 50 items respectively) and activation threshold (10, 20, 40, 60,
80, and 100 items respectively). The figure shows that chunk size
has little to no effect on the Recall behavior. Conversely, activation
threshold shows that from 20 items value the results tend to satu-
rate, with only 10 values showing a consistent decrease of perfor-
mance due to higher variability. Precision and Recall of the direct
lookup approach are omitted, as these are – given that all the
data for the 1-to-1 mapping is precomputed – consistently at the
maximum values, performing better than steering-by-example.

median=0.08, Recall median=0.18). While the Recall box for steering-
by-example is very compact, showing that the effects of steering-by-
example are valid for the majority of the test cases, the Average Preci-
sion box is more spread. This effect can be explained by runs in which
the cardinality of items included in the selected view region is lower
(specifically for the low cardinality group). Additional charts show-
ing the performances split by query cardinality groups are present
in the supplemental material. Even looking at the split group per-
formances confirms that the steering-by-example solution achieves
results much better than the random uniform sampling. Finally, the
outliers present for the steering-by-example Recall are all relative to
configurations in which the query result cardinality is very low (near
300 items) and the activation threshold is at the minimum (10).

Nonetheless, even for those “more difficult cases”, steering-by-example
obtains better performances than random uniform sampling in the
same extent of the other cases, even if with overall lower values for
Recall. For those reasons, we claim that, independently of the query
cardinality, steering-by-example obtains much better results than ran-
dom uniform sampling for both Average Precision and Recall.

We then inspected the obtained results with respect to the chunk
size and activation threshold. Figure 35 shows Recall values for the
medium cardinality group (the other groups’ performances are re-

118 steering-by-example for progressive visual analytics

Figure 36: Comparison of Precision trends for the direct lookup, steering-by-
example, and the random uniform sampling cases. Comparison
of median values shows that steering-by-example outperforms
random uniform sampling for all the iterations belonging to the
steering phase, with median at 0.8 less than 20% distant from the
perfect predictor. In the Non-steering phase, the Precision values
are very similar, with random uniform sampling slightly better
due to a higher number of items left (resulting in a higher proba-
bility of finding the remaining data items). Precision of the direct
lookup approach is consistently at 1, provided that the necessary
1-to-1 mapping has been precomputed.

ported in the supplemental material). We can observe that results do
not show a significant effect of chunk size: in fact, the box-plots show
a similar trend with respect to the three chunk sizes with which we
experimented. This led us to discard this parameter for further analy-
sis and consider it set up by default at 100 items. The chunk size only
affects the speed of the progressive process and not its quality. On the
other hand, the activation threshold shows a slight effect on both the
median values and the compactness of the resulting box-plot, with
higher thresholds yielding slightly more compact plots. Median val-
ues are meanwhile less affected, ranging (similarly) between values
of 0.78 to 0.84, confirming what evidenced for the general case. On
the lower end of the results, only test cases with an activation thresh-
old set to 10 show degradation of results, with a minimum slightly
below 0.4 for Recall. Even if those worst cases are still comparable
to random uniform sampling best cases, we suggest setting up the
steering-by-example with an activation threshold greater than 10 for
maximizing the performances.

Having discussed all the parameters, we move on to comment on
the temporal trends, considering the medium cardinality group and
chunk size set at 100 items. For all the approaches we report for all
the experiments the trends of Precision and Recall metrics per iter-
ation. Figure 36 shows statistically aggregated results on the Preci-
sion metric. The median values trend for each curve is reported with
full color hue, while the alpha blended areas identify the variations
between the upper and lower quartile values. In this way the statis-

8.4 benchmarks 119

Figure 37: Comparison of Recall trends for the direct lookup, steering-by-
example, and the random uniform sampling cases. The figure
shows how the steering-by-example Recall trends rise with simi-
lar speed to direct lookup during the steering-phase, and clearly
outperforms the random uniform sampling with median = 0.77
for steering-by-example and median = 0.12 for random uni-
form sampling at the median iteration in which the steering-
phases end (iteration 32). The Recall of direct lookup (delimited
by magenta dashed lines for reference) is consistently better than
steering-by-example, given that a suitable 1-to-1 mapping has
been precomputed.

tical variability is reported for all curves. Two vertical black dashed
lines report respectively the median value of the starting iteration and
the median value for the ending iteration for steering-by-example:
those lines identify the statistical extension of the steering phase for
steering-by-example.

We can observe how Precision values are consistently high in the
Steering phase, with median values just lower than 20% with re-
spect to the flat line representing direct lookup. Additionally, it shows
how steering-by-example is consistently better than random uniform
sampling. In the Non-steering phase, the performance of steering-by-
example becomes worse than random uniform sampling, even if at
that moment both techniques are the same (random uniform sam-
pling). We explain this behavior due to a lower residual probability
of finding the (few) items left in the steering-by-example case.

The good performances of steering-by-example are confirmed by
evaluating the Recall trend reported in Figure 37 for direct lookup. It
is interesting to note how the steering-by-example Recall trend rises
similarly to the perfect predictions of direct lookup, reaching very fast
(a little more than 20 iterations, eventually lower if the chunk size is
raised) the 0.8 level of Recall. After that point, the remaining 0.2 are
achieved by reactivating random uniform sampling, which creates
the long tail that at some point (slightly before the random uniform
sampling) converges to the Recall 1.0. This slow convergence towards
full Recall after the steering phase could be sped-up by executing a

120 steering-by-example for progressive visual analytics

new training and steering phases immediately after the end of the
previous steering phase.

Overall the benchmark demonstrated how steering-by-example out-
performs the random uniform sampling with respect to Precision, Re-
call, and speed for all the tested cases. Full Benchmark results are
available in the supplemental materials.

8.4.4 Implementation Details

Here we briefly outline our implementation underlying the bench-
marks. More details, as well as source code of all components includ-
ing the code used for benchmarking is publicly available as open-
source on GitHub2.

Our implementation of steering-by-example is written in Python
3.8 around the scikit-learn machine learning library [92] for its imple-
mentation of CART decision trees [15, ch. 2.3], as well as the Pandas
and numpy libraries [112]. The datasets we use in our benchmarks
are stored and accessed from a MySQL 83

8.4.5 Threats to Validity of Benchmarks

Our benchmarks demonstrate the applicability of the steering-by-example
approach under certain assumptions. Here, we want to explicitly state
the particularities of our evaluation that need to be taken into account
when interpreting the results.

A first consideration is the data type used in the benchmarks. We
have evaluated steering-by-example on a dataset containing numeri-
cal dimensions. While decision trees can generally also be trained on
categorical data, we cannot make any conclusions about their perfor-
mance for this data type.

Another consideration is that our evaluation relied on rectangular
selections in view space. This design decision was made for consis-
tency between benchmarks and to reduce the controlled variables in
our testing, ensuring that all benchmarks use regularly-shaped se-
lection boundaries. Generally, steering-by-example does not rely on
any particular selection mechanism. All the decision tree requires for
training is a set of data items labeled as relevant. In a series of infor-
mal primary tests using the lasso selection tool in ProSteer, we also
observed that our implementation can handle more complex selec-
tion shapes. Nevertheless, our benchmarks cannot guarantee that the
performance of steering-by-example also applies to more complex se-
lection boundary shapes.

2 https://vis-au.github.io/prosteer

3 https://www.mysql.com database. All tests were run on an Intel Core i7 processor,
running at 2.7 GHz, with 16 GByte of RAM. The data was stored on a 1 TByte SSD.

https://vis-au.github.io/prosteer
https://www.mysql.com

8.4 benchmarks 121

items

100

150

200

250

300

350

400

450

500

recall

0.852.1ms 73ms

2.5ms 110ms

3.3ms 163ms

4.3ms 224ms

4.5ms 248ms

5ms 342ms

5.8ms 395ms

6ms 426ms

6ms 494ms

0.82

0.85

0.84

0.83

0.87

0.87

0.86

0.86

training rules

ite
m

s

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

0 50 100 150 200 250 300 350 400 450500
time (ms)

0.0 0.5 1.0
recall

0.85

0.82

0.85

0.84

0.83

0.87

0.87

0.86

0.86

rules training

Figure 38: Testing the impact of the number of items used for training the
decision tree classifier on average training time and average time
to extract the conditional rules, as well as the average Recall of
the generated query, based on N = 20 runs. The concrete values
are shown on the left, and a visualization of that data on the right.
The results show that, while the time needed to extract an SQL
query increases linearly with the number of items, the Recall does
not increase noticeably and remains at around 0.85.

A third consideration concerns the evaluation of computation time
for the tested approaches. Under our settings, processing a single
chunk requires 0.4 seconds to complete for all three approaches. The
steering-by-example approach is the only one that requires additional
time to train the decision tree classifier and extract from it the decision
rules (training phase). To assess the impact on the overall retrieval
time, we conducted a series of experiments in which we measured
the impact of the number of items on the time it takes to train the de-
cision tree classifier, the time it takes to extract the conditional rules in
the training phase, and finally the Recall that the query produces. Fig-
ure 38 gives an overview of the results. Our observations are in line
with previous work evaluating the impact of training dataset size on
the performance of decision trees [85], in that the size of the training
dataset did not benefit performance, while increasing the complexity
of the tree structure. Overall, we conducted 20 runs for 9 different
numbers of items, ranging from 100 to 500 in increments of 50. Av-
erage training times ranged from 2ms for the 100 items cases to 6ms
for 500 items. This makes the training time not significant with re-
spect to the overall time needed for both one iteration (400ms) and
the overall process length (220 iterations × 0.4sec = 1 minute and
28 seconds). Regarding the rule extraction time, we report 73ms for
100 items. Again, this time represents 18.25% of the iteration time,
as it is “paid” only once when the steering phase is activated, and
0.82% of the overall time. Therefore, the cost introduced by training
the decision tree is negligible in the scope of a full computation, with
a progression using steering-by-example terminating only impercep-

122 steering-by-example for progressive visual analytics

tibly later than a progression using random uniform sampling. Over-
all, rather than being limited by long training times from selections
on very dense data, these findings suggest that we can keep training
and extraction times of our approach consistently low, by drawing
a fixed-size sample from those selections, and still provide a good
steering performance.

For reproducibility, we removed any dependency from computing
and network communication performance by precomputing the walk-
ing distances from the actual user-selected location in Paris to the
relevant listings using Euclidean distance and simulating a call to
the Google API introducing a delay of 0.04 seconds for each call, as
well as the saving opportunity for each, by computing the difference
between its price with listings within a radius of 300 meters. The re-
spective values were stored as the Distance and Savings opportunity
attributes for each listing in the database. As the main design goal
for our interactive environment was primarily benchmarking our ap-
proach, it thus does not allow producing listings for any arbitrary
place on a map. Yet, computing the relevant listings for a single lo-
cation on-demand can take hours, which was therefore not feasible
to evaluate our method without precomputing the two measures. In
addition to saving time, precomputation also isolates any potential
fluctuations due to differing computation times from the results.

8.5 prosteer : an experimental visual environment for

steering-by-example

Here we present ProSteer, our interactive visual demonstrator for
steering-by-example, which can be used to experiment and test-drive
our approach. ProSteer is a client module to steering-by-example, in
which the data is visualized and regions of interest can be defined
in view space. ProSteer is not intended as a stand-alone, general-
purpose visual analytics tool, but is instead designed for demonstrat-
ing steering-by-example. Thus, while the automated, “command-line”
benchmarks reported in the next section provide a numerical per-
spective for assessing the performance of the approach, ProSteer can
be used to illuminate the user perspective of utilizing steering-by-
example in visual analytics.

More specifically, ProSteer is designed to support the following
tasks: (1) Compare the progression using steering-by-example with a
progression using random uniform sampling, (2) make selections in
view space, (3) explore the progression at one point in time, (4) com-
pare the progression at different phases of the algorithm, (5) compare
data inside the selection with the remaining dataset. ProSteer is im-
plemented using the D3 visualization library [14], together with the
React4 and TypeScript frameworks. In the following, we will describe

4 https://reactjs.org

https://reactjs.org

8.5 prosteer : an experimental visual environment for steering-by-example 123

2random sampling view1 steering-by-example view

delta encoding between both views

metric over time

 indicator light

recent datum
(outside)

5 histograms

3 selected region

6 UI controls
7

Progression
controls

evaluation metrics4

recent datum
(inside)

Figure 39: Screenshot of ProSteer.

the interface of ProSteer along these requirements, using the labels 1⃝
- 7⃝ from the screenshot in Figure 39 to refer to its visual components.

The center of the interface is split in half, showing the progression
on the same dataset in two views: The steering-by-example view 1⃝
shows the progression using our steering mechanism, while the ran-
dom sampling view 2⃝ shows the baseline case. A heatmap in the
background encodes the delta in the number of items that were re-
trieved in a grid cell of the view, and individual data points are ren-
dered on top of that, with recent points rendered larger to highlight
new data inside and outside the selected region 3⃝. Evaluation met-
rics 4⃝ show how steering-by-example performs over time in a line
chart based on the current phase, and histograms 5⃝ show the distri-
bution of data inside vs. outside the selection. Interface 6⃝ and pro-
gression 7⃝ can be controlled through widgets at the bottom.

8.5.1 Comparing steered with non-steered progressions

The first question we want to answer in ProSteer is whether and by
how much the user gets to see interesting data faster using steering-
by-example. ProSteer addresses this question through its central view
that takes up most of the screen space. Data items retrieved by the
steered progression (1⃝) are visualized in a side-by-side view with
a non-steered progression (2⃝) over the same dataset. Through this
juxtaposition, one can compare how steering-by-example affects the
overall distribution of individual data items across regions of the view
space. Other visual encodings of ProSteer rely on this side-by-side
view to facilitate further comparisons.

For instance, as the changes in data layout become less apparent
in later stages of the progression, when many data items are already
plotted and new ones do not stick out as much, the latest chunk of
items retrieved from the computation module is additionally high-
lighted as larger, fully opaque points. If a point is located inside the

124 steering-by-example for progressive visual analytics

Figure 40: Enlarged screenshot of the delta encoding in ProSteer (see 1⃝ and
2⃝ in Figure 39): color values in a heatmap encode the difference
in the number of items between the progression using steering-by-
example and using random uniform sampling per grid cell. The
darker the red tone, the more items lie in that cell in this view,
and the darker blue, the less data in that cell. If the number of
items is equal, grid cells have a neutral gray tone. The number in
the top left corner shows the absolute delta value per cell. On top
of each cell, individual data items are encoded as dots along axes
of a scatterplot (X: price saving in the neighborhood, Y: walking
distance to a point of interest on the map), which are computed
from the data after they are retrieved from the database and thus
cannot be directly used for building an SQL query.

selection, its fill color is either blue or black depending on the view,
and it is white otherwise. This encoding allows to assess qualitatively,
how the currently sampled region of the view space differs between
the two progressions. In both views, the selection in view space of a
region of interest is shown, indicating the number of data items con-
tained in each. Additionally showing the numeric value of data items
supports the quantitative assessment of steering on the one progres-
sion compared to the unsteered progression.

In addition to showing individual data items, ProSteer renders a
grid-based heatmap in the background of the scatterplots (see Fig-
ure 40). Each cell of the heatmap encodes the difference in the num-
ber of data items that are rendered inside the particular region of
the view space compared to the same position in the respective other
view. A diverging color scale is used that encodes negative values as
blue, positive values as red, and the neutral point where both progres-
sions are equal as grey color hues. This encoding helps to get a quick
impression about how much a region in view space differs in the
steered and non-steered progressions, for instance during the steer-
ing phase. In addition to a qualitative assessment of the differences
based on color, each cell in the heatmap also shows the numeric value
that it encodes in its top-left corner.

Implicitly, encoding the difference in this way also carries uncer-
tainty information, i.e., it informs the user that the fact that a region
currently appears to be dense in the steered visualization may in-
deed be an artifact of the steering, that could in later iterations “even
out”, as more data lands in other regions. Uncertainty about observed
patterns in regions targeted by the steering is closely related to the

8.5 prosteer : an experimental visual environment for steering-by-example 125

general challenge of uncertainty caused by the progression that con-
stitutes a research challenge in its own right [59]. Our focus lies on
testing algorithmic aspects of the steering-by-example, so future work
is necessary to evaluate whether our encoding is an effective uncer-
tainty encoding.

8.5.2 Make selections in view space

Another central design goal for ProSteer is the ability for user-driven
selections of regions of interest, to support an interactive, customized
evaluation of steering-by-example beyond the pre-defined test cases.

To this end, the interface supports direct brushing on the view
space (3⃝). ProSteer allows defining both rectangular selections like
those used in the benchmarks as well as custom shapes using a lasso
tool. Alternatively, the exact selections used in the benchmarks can
be recreated using the dropdown menu in the top right. Moreover,
ProSteer implements an extension to the basic steering-by-example
approach, in that the size of that selection is increased with every
chunk for which no data item was located inside the selection. As
described in Section 8.3.3, one can define a custom number of chunks
that should be waited, before the size is increased, using the text box
in the bottom row of the interface.

8.5.3 Explore a progression at one point in time

Another question for our benchmarks is how steering-by-example it-
self performs at a certain point in time. The ways in which ProSteer
supports this task visualizing the state of the progression, visualizing
evaluation metrics, providing widgets for customizing the UI, and
controlling the progression.

The state of the progression is shown both in terms of the phase
of the steering-by-example module and in terms of the progress of
the computation. The phase for the latest chunk retrieved is shown
as a small “indicator light” in the bottom-left corner of the interface.
A progress bar (7⃝) in the bottom-right corner of the interface in turn
shows the percentage of data that has so far been processed by the
progression. Next to that progress bar are widgets for temporarily
pausing and resuming, and for fully resetting the progression.

To support exploration with steering-by-example, three evaluation
metrics (4⃝) are shown in small text boxes next to the indicator light:
The number of retrieved items, the number of items that are located
inside the view selection, and the resulting Precision of the latest
chunk. These metrics give a quantitative view of the latest data chunk
of the progression.

ProSteer also allows customizing the visual encoding for different
analysis goals. Control widgets in the bottom row of the interface (6⃝)

126 steering-by-example for progressive visual analytics

1 2 3 4 5 6

steering non-steeringactivation

Figure 41: Screenshot series showing how the heatmap that encodes the dif-
ference in regional data density goes from cells in gray during
the activation phase (1) to red cells around the selected region
during the steering phase (2-4). When entering the non-steering
phase, the heatmap equalizes to gray again (5-6).

for this purpose allow changing the encoding of the heatmap between
absolute and delta values, toggling the side-by-side view on and off,
and controlling how many data chunks without a data item from the
selected region are permissible before the user selection is automati-
cally grown in size. The top row allows setting the dimensions that
are used for the visual encoding in the central view.

8.5.4 Comparing a progression between different points in time

Another question for our benchmarks is how the phases of steering-
by-example affect performance over the duration of the progression.

For qualitative comparison, the locations of data items from the lat-
est chunk are highlighted as opaque dots. In combination with the
“indicator light”, one can monitor how the distribution of the latest
data items changes once the system goes in and out of the steering
phase. Additionally, the heatmap encoding that visualizes the differ-
ence to a non-steered progression shows how during the steering
phase, the sampling of the data gets skewed towards the selection
in view space. As the progression continues, one can also observe
how regional differences between the two progressions equalize (see
Figure 41).

For quantitative comparisons, the system records the evaluation
metrics over time as well as the phase of the algorithm that the sys-
tem was in at each point. Line charts (4⃝) that show the evolution of
the metrics can be toggled when clicking on either of the text labels
in the bottom left corner of the interface (see Figure 42). Below the
line chart, colors indicate the phases of steering-by-example for each
measurement. When hovering the mouse cursor over the line chart,
individual values are shown in a tooltip.

8.5.5 Comparing data inside the selection with the rest of the data

The last question we can address with ProSteer is how data items
inside the selection differ from the rest of the dataset.

8.6 use cases 127

Precision(b)(a) Points in selection activation steering non-steering

Figure 42: Enlarged screenshots from ProSteer’s evaluation metrics (see 4⃝
in Figure 39) visualizing the items inside the user selection (a) and
the Precision of retrieved items being located inside that selection
(b). The colored line below the line charts indicates the state of the
steering module at a certain time.

To qualitatively answer this question, the top row of the interface
contains histograms (5⃝) that can be created for each dimension of
the data. Each bar in a histogram shows the percentage of data items
that lie inside the selection. Based on these histograms, one can com-
pare whether the selection is equally distributed across a dimension,
which indicates a representative sample, or whether the selection is
skewed towards certain values (see Figure 43). The latter case is often
beneficial to a better performance of steering-by-example, as it allows
the decision tree to better separate the class of relevant data items
from irrelevant data.

For quantitative comparisons, the view space selection shows the
number of data items that are currently located inside it. In combina-
tion with the “Points received” metric, one can compare whether the
sample contains large or small portions of the dataset.

8.6 use cases

In this section, we assess the generality of steering-by-example for
two use cases, applying the approach to a different, larger dataset
and on a different visualization using dimensionality reduction.

8.6.1 Steering-by-Example on Large Datasets

To assess scalability towards large datasets, i.e., considering the case
in which the complexity of the f function comes from the dataset
size |D| (see Section 3.1) and not by the computation, we have chal-
lenged ProSteer against the 112 million items dataset of the New York

Steering phase completed Progression completed

Figure 43: Enlarged screenshot of histograms in ProSteer (see 5⃝ in Fig-
ure 39) showing the overall distribution of the data compared
to the data in the selected view region. The left pair shows the
histograms after the steering phase is completed and the right
pair shows the data when the entire progression is completed.

128 steering-by-example for progressive visual analytics

Figure 44: Screenshot from ProSteer, applying steering-by-example to the
NYC taxis dataset.

City 2018 Yellow Taxi Trip 5. As a mapping function for each ride x,
we used f(x) = (tripDuration(x), tipRatio(x)), investigating the re-
lationship between the duration of the trip (i.e., tripDuration(x) =

xendTime − xstartTime) and the amount of the tip with respect to
the fare (i.e., tipRatio(x) = xtipAmount/xtotalAmount). The size of
the dataset prohibits us from performing a full benchmark on it: pro-
cessing the whole dataset to compute the ground truth for a single
use case requires 15 hours and replicating the full analysis done for
AirBnB (about 1000 configurations explored) will require more than
one year of computation. According to that, we just report on a qual-
itative test of the system, showing a comparison between steering
and random sampling and terminating the analysis after the steer-
ing phase has been completed. Being the complexity of the plotting
only associated with the size of the data, we have used a chunk size of
10, 000 whose elaboration lasts about 5 seconds; processing the whole
dataset requires about 15 hours. The results are quite similar to those
observed for the AirBnB dataset: the steering outperforms the ran-
dom sampling with a significantly higher Precision. Figure 44 shows
an example of one of the qualitative experiments we have performed
with the system, after having plotted about 380, 000 trips.

The X axis shows the duration of the trip, the Y axis the ratio
tip/fare. The steering phase handled about 350, 000 taxi trips, show-
ing a consistent Precision of about 0.82; the Recall is not available due
to the time needed to precompute the ground truth. At the end of the
steering phase the steered approach (left side) shows about 280, 000
items in the user-selected area (yellow box) against the about 5, 000 of
the random approach (right side). Moreover, the heat-map of the ran-

5 https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-
gskq

8.6 use cases 129

Precision:

Figure 45: Screenshot from ProSteer, using steering-by-example with the
RadViz dimensionality reduction technique, compared to the
same progression that uses random uniform sampling for re-
trieval. The selected region on the left contains 976 points after
the steering phase, while the same region in the plot on the right
contains only 595 points. The line chart in the foreground shows
how the Precision metric increased during the steering phase
from about 0.1 on average to about 0.45.

dom sampling shows that, according to the actual sample size (about
400, 000 random items), the user-selected area has a very low density,
making more evident the advantage of the steering phase.

8.6.2 Steering-by-Example on Dimensionality Reductions

We further assessed the generality of steering-by-example regarding
the visual encoding. While the progressive visualization used for
benchmarks placed the data along two computed axes, in dimen-
sionality reduction the 2D position of a data item is computed from
multiple dimensions, to make high-dimensional features of the data
interpretable to the user [35]. In other words, the mapping function
f is implemented as a complex algorithm. In particular, we used the
RadViz dimensionality reduction method [4], which uses a spring-
based model to compute the position of items along n dimension in
a radial layout. Using the NYC taxis dataset we introduced above in
Section 8.6.1 on a RadViz-viewer for ProSteer, we let the progression
run under the same conditions as in the benchmarks and selected a
region of interest. We found that in comparison with our benchmarks
on the scatter plot, steering-by-example performed worse in terms of
the average Precision, yet still produced a noticeable increase in data
in the selected region from a (subjective) user perspective when com-
pared to the baseline scenario. For instance, Figure 45 shows screen-
shots from an exemplar run after the steering phase ended, indicating
how the progression using steering-by-example produces almost dou-
ble the number of items in the selected regions, with an average Pre-
cision of around 0.45 during the steering phase. Nevertheless, these
results are only a preliminary indication of the utility of steering-by-

130 steering-by-example for progressive visual analytics

example when combined with dimensionality reduction techniques,
and further evaluations are necessary to measure (and improve) its
performance in that regard.

8.7 user study

To assess the usability of steering-by-example, we conducted a user
study with VA experts, to evaluate how users would apply the ap-
proach to address an analysis goal, and what their experience is in
doing so. Note, that the purpose of this study was to collect expert
feedback on steering-by-example as a conceptual approach, rather
than to evaluate ProSteer as a practical visual analytics tool. We first
report on the setup and procedure used, followed by an evaluation of
collected results.

8.7.1 Setup

We recruited five participants (3m and 2f, aged between 24 and 33)
from our departments, who actively work in the research field of vi-
sual analytics as Ph.D. students, PostDocs, and research assistants.
On a 7-point Likert scale, participants reported strong expertise with
PVA (median: 6), a strong familiarity with data science (median: 6),
and with visualization (median: 6). Most were familiar with compu-
tational steering (median: 4). User studies lasted between 40 and 80

minutes and were conducted in a quiet environment, using either the
participants’ or experimenters’ laptop computers.

8.7.2 Procedure

The experiment was split into four distinct phases:

positioning questionnaire : In this phase, participants were
tasked to read and sign a consent form, followed by a questionnaire
concerning their expertise on the subjects of steering-by-example. The
questionnaire consisted of three positioning questions (Age, Gender,
and Role) and of five questions for self-assessing their expertise, based
on a 7-point Likert scale (Q4: How familiar are you with data analy-
sis?, Q5: How familiar are you with visual analytics?, Q6: How famil-
iar are you with visualization?, Q7: How familiar are you with what
is called “progressive visual analytics”?, and Q8: How familiar are
you with what is called “computational steering”?). Participants had
up to 15 minutes to complete this phase.

introduction to prosteer : In this phase, participants followed
a live demonstration of ProSteer. We illustrated its main functionali-
ties and the available user interactions. Participants were able to inter-

8.7 user study 131

ject at any moment and ask questions about any part of the approach
and the software prototype that remained unclear. The demonstra-
tion lasted from a minimum of 20 minutes up to the time to which
participants explicitly confirmed to have understood everything and
did not have additional questions.

interactive usage of prosteer : In this phase, we tasked par-
ticipants to load ProSteer in their environment (participants were pro-
vided materials and assistance in setting up the ProSteer prior to the
user study), load the NYC taxi and AirBnB datasets, and solve the
following task: “Find all apartments that are close by, which in this
neighborhood allow you to save as much money as possible.” This
task and its intentionally vague formulation was designed to maxi-
mize exploration of alternatives in order to find a potential solution,
implicitly asking for steering support to explore these alternatives
faster. There was no fixed time span allotted to this phase, but a sug-
gested time of 20 minutes was communicated to the participants. Par-
ticipants could end this phase prior to this limit, if they found their
analysis results to be sufficient.

evaluation questionnaire : Finally, in this phase the partici-
pants were asked to fill out an evaluation questionnaire on their us-
age experience of ProSteer. The questionnaire was composed of eight
open questions (Q9: Do you understand what is going on in the in-
terface? What questions arise?, Q10: Change blindness of new points
arriving in the interface during progression. Is that confusing to you?,
Q11: Does focusing the progression on a certain region help?, Q12: Do
you find it challenging that you do not fully understand the steering
mechanism (i.e., that it is a black box)?, Q13: What are your consid-
erations with respect to the shape of the selection? Is it good? Is it
enough?, Q14: What are your considerations with respect to making
multiple selections?, Q15: Steering means biasing the progression to-
wards a certain part of the data. What are your thoughts on that,
having used ProSteer for a bit?, and Q16: Can you see where this
would fit into your data analysis workflow? Is this helpful to you?.
A final question (Q19) was asking for any additional notes or com-
ments from the participants. The time dedicated to this phase was 20

minutes.

8.7.3 Results

user behavior : In terms of the usability of steering-by-example,
all participants in our user study successfully used our approach to
steer the progression towards interesting data and were able to com-
plete the task. We generally observed an iterative interaction proce-
dure: First, participants monitored data arriving in the progressive

132 steering-by-example for progressive visual analytics

visualization, then they identified a region of interest, and afterward
steered the progression towards that region by making a selection,
returning to the observation step. This procedure matches well with
the states of our steering-by-example approach, as discussed in Sec-
tion 8.3. We did, however, also observe deviations from this general
procedure. For instance, sometimes participants (E1, E2) began at the
second stage, selecting a region of interest before any data had ar-
rived and thereby skipping the initial non-steering phase in our ap-
proach. Essentially, this behavior likens the steering based on a 1-to-1
mapping as used by the state-of-the-art approaches we reported on in
Section 8.2. This similarity suggests the need for future experiments,
to determine the impact of different steering methods on the user
experience, e.g., whether participants would actually notice that the
steering mechanism differs between analysis scenarios. Other devia-
tions we observed were participants (E1, E2) trying to make multiple
selections corresponding to multiple regions of interest in the data.
This behavior is characteristic for PVA, as analysts at any point in
time can choose to adjust the ongoing computation to new insights
gained from the latest data [78]. Thus, to further improve the usabil-
ity of steering-by-example, future iterations on the approach should
consider this flexibility as a design goal. A challenge that needs to
be considered is whether to treat items from different selections to-
gether or separately during the training phase, i.e., whether to train
one or multiple models. We also observed participants being unsure
about the current phase of the steering. For instance, E3 at one point
did not consider the steering phase indicator when looking at the in-
terface, suggesting to make the current phase of the approach more
prominent in the user interface. One adjustment to this end could be
to adjust the visual style of the selection box, such that it changes
color based on the current phase and its border thickness based on
the current Precision.

user experience : All participants reported that they found steer-
ing helpful in general, and could see the potential for long-running
analyses that PVA is used for, in particular if users have a clear goal
in mind. Expert E2 for example stated that “it is intuitive to sup-
port steering if the user has identified a region they are interested in”
and E1 found it “helpful when you want to test a hypothesis on a
very large dataset”, while E4 noted that it might not be helpful for
pure exploration of the data without a clear goal. When prompted,
participants stated that highlighting the most recent points is useful
for overcoming change blindness, and that the matrix in the back-
ground was useful in indicating that steering affected the sampling
of the data in that region. All participants generally found ProSteer’s
interface helpful and appropriate for understanding the impact that
steering has on the analysis. Some participants (E3, E4, E5) however

8.8 discussion 133

noted that the encoding of recent points on the Taxi dataset could be
improved, as points inside the selection became difficult to identify
at later stages, and they reported on the issue of overplotting. They
also suggested extending ProSteer to allow for adjusting the selected
region during or after the steering phase to refine the selected region
(E1, E2, E5).

Overall, participants agreed that the steering-by-example approach
could potentially be of use for their own data analyses. These prelim-
inary interviews provide a first impression of the utility and accessi-
bility of steering-by-example. While the results are generally positive,
our interviews can only serve as initial impressions and further eval-
uations are necessary to this end

8.8 discussion

Steering-by-example allows prioritizing data subspaces for progres-
sive computations for a variety of use cases. In this section, we want
to take a step back and discuss the generality of the approach, looking
at implicit assumptions and limitations.

8.8.1 Implicit Assumptions of Steering-by-Example

selections are sensible : Steering-by-example requires a set
of data items as input, which are assumed to be of interest to the
user. The underlying assumption here is that these items share some
characteristic in data space that makes them interesting compared to
the rest of the data, and that steering-by-example can identify these
characteristics and translate them into an SQL query. Only if the selec-
tion of items is thus sensible can the query produced by steering-by-
example retrieve other items sharing these interesting characteristics.
A challenge is that if the selection is arbitrary, the decision tree would
learn a similarly arbitrary set of decision rules that yields items that
are potentially not interesting to the user. That assumption is based
on the idea that an overarching goal of analyzing data through visu-
alization is to use sensible mappings to encode that data, such that
similar values in data space are represented close to each other in
view space. Therefore, visualizations inherently support users when
interactively creating sensible selections. An exception to this rule is
bubble charts, in which the position is decided purely based on a
circle packing algorithm, rather than the data. Beyond the visual en-
coding, we can also support the user through statistical approaches
like active learning [104], automatically suggesting rendered items
that may be of interest to the user based on data characteristics that
distinguish them in the dataset.

134 steering-by-example for progressive visual analytics

selections are permanent : In addition to selections being
sensible, another implicit assumption to steering-by-example is that
selections are permanent, i.e., an item of the data that lies inside
the selection will remain inside the selection until the steering phase
concludes. This assumption is based on the idea that users are ex-
pected to wait until the progressive visualization has stabilized (i.e.,
the “quality” of the visualization is high enough [5]), before they form
an interest in the data. In our implementation and evaluation, this as-
sumption manifests in that items do not change their position in the
scatter plot, since axis extents were known upfront, and thus items
are static, while the selection itself cannot be moved around by the
user during steering. In some progressive scenarios, item locations
are however not stable and thus items move into and out of the selec-
tion. For example, in progressive dimensionality reduction methods
like incremental PCA discussed by Ross et al. [101], the location of
rendered items needs to be updated as the model is trained on incre-
ments of the data, thus the computed axes change. Therefore, items
that were previously inside the selection are potentially located out-
side that selection after updating positions. To address this, we in
essence need to monitor the selection’s “fluctuation” and retrain the
decision tree, once the number of items in the selection that changed
reaches a threshold.

8.8.2 Limitations of Steering-by-Example in PVA

steering may cause control bias : A general challenge in
PVA is appropriately representing the uncertainty of the visualization
data caused by the use of partial results. When also allowing users to
steer the computation – which causes some regions of the data to be
more “certain” than others – this representation becomes more com-
plicated. When steering a progressive computation towards a region
of data the user selected as interesting using any steering mechanism,
the visualization is more "refined" in those regions, which can mis-
lead users in their interpretation of the overall data distribution. The
visualization is no longer “evenly incomplete”, and so the visualized
data needs to be interpreted under consideration of that unevenness,
which users need to be (made) aware of. Micallef et al. call this phe-
nomenon “control bias” [78]. Even though recent work by Procopio et
al. has shown that the effect of control bias in PVA through steering
usually does not affect users’ performance, but in fact increases their
certainty in the conclusions they draw [94], implementing steering
mechanisms like steering-by-example into a visual analytics system
nevertheless requires careful consideration of how completeness is en-
coded. In ProSteer, we use the heatmap in the background of the data
to indicate the difference in sampling caused by steering, to immedi-
ately inform users about these effects. Furthermore, by highlighting

8.9 conclusion and future work 135

the location of the latest data, changes in the data spread per chunk
during steering become clearly noticeable.

steering requires adequate data density : In order for steering-
by-example to generate a query that yields appropriate results, our
approach needs a certain number of interesting representatives as
input. This number has both an upper and a lower bound. If the
number of items in the selection is too low and will never reach the
threshold of items needed for training even if the progression com-
pletes, the decision tree cannot adequately capture the characteristics
that make data interesting, as evident in some test cases of our bench-
marks with sparse selections (see Section 8.4). Consequently, if the
number of items is too high, training the decision tree classifier can
take too long. A potential solution to the former challenge that we
discuss in Section 8.3.3, is to artificially increase the scope of the se-
lection to also include neighboring regions. While this reduces the
accuracy of the steering query, it can nevertheless increase the over-
all relevance of the retrieved items. For very sparse regions however,
even widening the scope of the selection in this way may not be suf-
ficient, meaning that steering-by-example simply cannot support the
user. For example, when users are interested in finding outliers and
thus select a single item, extending that selection may select enough
other data to trigger the training, yet it is exactly those data that the
user was not interested in when selecting the outlier. Vice versa, a so-
lution addressing selections with too many items in them is to train
the decision tree on a smaller sample. This can potentially reduce the
accuracy of the steering query, yet we can avoid training times be-
coming too long. Supporting this approach, prior work [85] as well
as our own tests (see Figure 38) suggest that decision trees do not
necessarily benefit from having more data in the training sets, and so
sampling may be sufficient.

8.9 conclusion and future work

In this paper, we presented steering-by-example, a novel approach
to prioritizing data subspaces during progressive computations that
are of interest to the user, based on a user selection in view space.
We evaluated our approach with a series of benchmarks, which show
steering-by-example significantly outperforming random uniform sam-
pling in terms of Precision and Recall for relevant items in the se-
lected view region. To demonstrate steering-by-example, we provide
the open-source visual benchmarking interface ProSteer.

Beyond extending the benchmarks towards more generalizable re-
sults (see Section 8.8), further questions arise for further developing
the steering-by-example approach conceptually.

136 steering-by-example for progressive visual analytics

One field of future work is to use a continuous degree-of-interest
function defined over the items in a selection rather than a strictly bi-
nary distinction between inside/relevant and outside/irrelevant. Steering-
by-example currently expects that all data items inside the view selec-
tion are of equal interest to the user. However, view space selections
are usually made in a fuzzy, approximate manner, rather than with
surgical Precision. That means that the training data for the decision
tree contains both items that are of high interest to the user as well
as items that are of lesser interest. Yet, both contribute equally to the
model. We want to address this in future work, by defining a degree-
of-interest function over the data inside a selection, which assigns a
continuous value to each data item instead of making a binary dis-
tinction. This function could for example consider how close to the
center and how close to the boundary of the selection a data item lies.
Then, we want to use regression trees [8] trained on these continuous
values for building the model of the approximate inverse mapping
function from view to data space. By increasing the expressivity of
the model, the idea is that the performance of steering-by-example
can be further improved.

We see a second potential field for future work in adapting steering-
by-example for iterative progressions. In the introduction section, we
have discussed PVA as a way for bringing the user into the loop
of long-running computations through iterative or incremental ap-
proaches. We presented steering-by-example for incremental computa-
tions, in which the result of the computation progressively includes a
larger subspace of a dataset, eventually ending up at the same result
as were the computation run on the entire dataset. This naturally begs
the question, how to adapt the approach for iterative computations
such as node-link layouts or iterative clustering, where a computa-
tion instead progressively refines the result computed over the entire
dataset, eventually converging towards a stable output. One potential
steering-by-example approach could be described as focused refine-
ment, i.e., instead of iterating over the entire dataset, the computation
could prioritize subspaces similar to those selected by the user, pro-
ducing a stable result first for these spaces before refining the rest of
the data. Another way to involve the user in iterative computation
is to let them provide examples of what they expect the final com-
putation to look like. For instance, in the case of clustering, such an
approach could be utilized as initialization of the computation: The
user could manually define the clusters for a subset of the data based
on their domain knowledge, and the system could then transfer this
to the entire dataset, assigning similar data to similar clusters as in
the user’s selection. For both adaptions of steering-by-example, the
research challenge lies in solving the inherent algorithmic and com-
putational challenges.

8.9 conclusion and future work 137

Finally, while for practical reasons our benchmark used only a sin-
gle box as user selection shape, it would be interesting to explore both
multiple selections and other selection shapes like circles and lassos.
Indeed, while our approach is generally independent of the way in
which data items for the training phase are gathered, investigating
not rectangular shapes or multiple selections in view space could
both confirm the result presented in this paper for the box-based se-
lector and push for exploring different steering methods. That can
lead to tailoring decision trees for specific selection shapes or using
multiple decision tree models, each trained on one selection of the
view space. Then, the steering query could be constructed by dis-
juncting the individual predicates extracted from each tree. Yet, the
implications and side-effects of these solutions need to be further in-
vestigated.

acknowledgements

We are indebted to Heidrun Schumann, Georg Fuchs, Chris Weaver,
and Davide Mottin with whom we discussed the steering-by-example
problem in the inception phase of this work.

Part III

A P P E N D I X

B I B L I O G R A P H Y

[1] James Abello, Steffen Hadlak, Heidrun Schumann, and Hans-
Jörg Schulz. “A Modular Degree-of-Interest Specification for
the Visual Analysis of Large Dynamic Networks.” In: IEEE
Transactions on Visualization and Computer Graphics 20.3 (2014),
pp. 337–350. issn: 1077-2626. doi: 10.1109/TVCG.2013.109.

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Mil-
ner, Samuel Madden, and Ion Stoica. “BlinkDB: Queries with
Bounded Errors and Bounded Response Times on Very Large
Data.” In: Proc. of EuroSys. ACM, 2013, pp. 29–42. doi: 10 .

1145/2465351.2465355.

[3] S. Albers. “Online algorithms: A Survey.” In: Mathematical Pro-
gramming 97 (2003), pp. 3–26. doi: 10.1007/s10107-003-0436-
0.

[4] Marco Angelini, Graziano Blasilli, Simone Lenti, Alessia Palleschi,
and Giuseppe Santucci. “Effectiveness Error: Measuring and
Improving RadViz Visual Effectiveness.” In: IEEE Transactions
on Visualization and Computer Graphics (2021), pp. 1–1. doi: 10.
1109/TVCG.2021.3104879.

[5] Marco Angelini, Thorsten May, Giuseppe Santucci, and Hans-
Jörg Schulz. “On Quality Indicators for Progressive Visual An-
alytics.” In: Proc. of EuroVA. Eurographics Association, 2019,
pp. 025–029. doi: 10.2312/eurova.20191120.

[6] Marco Angelini, Giuseppe Santucci, Heidrun Schumann, and
Hans-Jörg Schulz. “A Review and Characterization of Progres-
sive Visual Analytics.” In: Informatics 5.3 (2018), 31:1–31:27.
issn: 2227-9709. doi: 10.3390/informatics5030031.

[7] F. J. Anscombe. “Graphs in Statistical Analysis.” In: The Amer-
ican Statistician 27.1 (1973), pp. 17–21. doi: 10.1080/00031305.
1973.10478966.

[8] Chidanand Apté and Sholom Weiss. “Data mining with deci-
sion trees and decision rules.” In: Future Generation Computer
Systems 13.2 (1997), pp. 197–210. doi: 10.1016/S0167-739X(97)
00021-6.

[9] B. P. Welford. “Note on a Method for Calculating Corrected
Sums of Squares and Products.” In: Technometrics 4.3 (1962),
pp. 419–420. doi: 10.1080/00401706.1962.10490022.

141

https://doi.org/10.1109/TVCG.2013.109
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1007/s10107-003-0436-0
https://doi.org/10.1007/s10107-003-0436-0
https://doi.org/10.1109/TVCG.2021.3104879
https://doi.org/10.1109/TVCG.2021.3104879
https://doi.org/10.2312/eurova.20191120
https://doi.org/10.3390/informatics5030031
https://doi.org/10.1080/00031305.1973.10478966
https://doi.org/10.1080/00031305.1973.10478966
https://doi.org/10.1016/S0167-739X(97)00021-6
https://doi.org/10.1016/S0167-739X(97)00021-6
https://doi.org/10.1080/00401706.1962.10490022

142 bibliography

[10] Sriram Karthik Badam, Niklas Elmqvist, and Jean-Daniel Fekete.
“Steering the Craft: UI Elements and Visualizations for Sup-
porting Progressive Visual Analytics.” In: Computer Graphics
Forum 36.3 (2017), pp. 491–502. doi: 10.1111/cgf.13205.

[11] Wesam Barbakh and Colin Fyfe. “Online Clustering Algorithms.”
In: International Journal of Neural Systems 18.03 (2008). PMID:
18595148, pp. 185–194. doi: 10.1142/S0129065708001518.

[12] Leilani Battle, Remco Chang, and Michael Stonebraker. “Dy-
namic Prefetching of Data Tiles for Interactive Visualization.”
In: Proc. of SIGMOD. New York, NY, USA: ACM, 2016, pp. 1363–
1375. doi: 10.1145/2882903.2882919.

[13] Lukas Berg, Tobias Ziegler, Carsten Binnig, and Uwe Röhm.
“ProgressiveDB: Progressive Data Analytics as a Middleware.”
In: Proc. VLDB Endow. 12.12 (2019), pp. 1814–1817. doi: 10 .

14778/3352063.3352073.

[14] M. Bostock, V. Ogievetsky, and J. Heer. “D3 Data-Driven Doc-
uments.” In: IEEE Transactions on Visualization and Computer
Graphics 17.12 (2011), pp. 2301–2309. doi: 10.1109/TVCG.2011.
185.

[15] Leo Breiman, Jerome Friedmann, and Charles J. Stone. Classifi-
cation and Regression Trees. Monterey: Chapman and Hall/CRC,
1984.

[16] Frederick P. Brooks. “The Computer Scientist as Toolsmith II.”
In: Communications of the ACM 39.3 (1996), pp. 61–68. doi: 10.
1145/227234.227243.

[17] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Read-
ings in Information Visualization: Using Vision To Think. Academic
Press, 1999.

[18] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay.
“The Information Visualizer, an Information Workspace.” In:
Proc. of CHI. ACM, 1991, pp. 181–186. doi: 10.1145/108844.
108874.

[19] Stuart Card. “The Human-Computer Interaction Handbook.”
In: ed. by Julie E. Jacko and Andrew Sears. Lawrence Erlbaum
Associates, 2003. Chap. Information Visualization, pp. 544–583.

[20] Davide Ceneda, Theresia Gschwandtner, Thorsten May, Silvia
Miksch, Hans-Jörg Schulz, Marc Streit, and Christian Tomin-
ski. “Characterizing Guidance in Visual Analytics.” In: IEEE
Transactions on Visualization and Computer Graphics 23.1 (2017),
pp. 111–120. doi: 10.1109/tvcg.2016.2598468.

[21] Badrish Chandramouli, Jonathan Goldstein, and Abdul Qua-
mar. “Scalable Progressive Analytics on Big Data in the Cloud.”
In: Proc. of VLDB Endow. 6.14 (2013), pp. 1726–1737. doi: 10.
14778/2556549.2556557.

https://doi.org/10.1111/cgf.13205
https://doi.org/10.1142/S0129065708001518
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.14778/3352063.3352073
https://doi.org/10.14778/3352063.3352073
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/227234.227243
https://doi.org/10.1145/227234.227243
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874
https://doi.org/10.1109/tvcg.2016.2598468
https://doi.org/10.14778/2556549.2556557
https://doi.org/10.14778/2556549.2556557

bibliography 143

[22] Min Chen, Luciano Floridi, and Rita Borgo. “What Is Visual-
ization Really For?” In: The Philosophy of Information Quality.
February. 2014, pp. 75–93. doi: 10.1007/978-3-319-07121-
3_5.

[23] Xin Chen, Jian Zhang, Chi-Wing Fu, Jean-Daniel Fekete, and
Yunhai Wang. “Pyramid-based Scatterplots Sampling for Pro-
gressive and Streaming Data Visualization.” In: IEEE Transac-
tions on Visualization and Computer Graphics (2021), pp. 1–11.
doi: 10.1109/TVCG.2021.3114880.

[24] William S. Cleveland and Robert McGill. “Graphical Percep-
tion: Theory, Experimentation, and Application to the Devel-
opment of Graphical Methods.” In: Journal of the American Sta-
tistical Association 79.387 (1984), pp. 531–554. doi: 10.1080/
01621459.1984.10478080.

[25] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris
Jermaine. “Synopses for Massive Data: Samples, Histograms,
Wavelets, Sketches.” In: Foundations and Trends in Databases 4.1–
3 (2011), pp. 1–294. issn: 1931-7883. doi: 10.1561/1900000004.

[26] Mihaly Csikszentmihalyi. Flow: The psychology of optimal experi-
ence. Harper & Row, 1990.

[27] Z. Cui, J. Kancherla, H. C. Bravo, and N. Elmqvist. “Sherpa:
Leveraging User Attention for Computational Steering in Vi-
sual Analytics.” In: Proc. of VDS. IEEE, 2019, pp. 48–57. doi:
10.1109/VDS48975.2019.8973384.

[28] Ismail Demir, Christian Dick, and Rüdiger Westermann. “Multi-
Charts for Comparative 3D Ensemble Visualization.” In: IEEE
Transactions on Visualization and Computer Graphics 20.12 (2014),
pp. 2694–2703. doi: 10.1109/TVCG.2014.2346448.

[29] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao.
“Explore-by-Example: An Automatic Query Steering Frame-
work for Interactive Data Exploration.” In: Proc. of SIGMOD.
New York, NY, USA: ACM, 2014, pp. 517–528. doi: 10.1145/
2588555.2610523.

[30] Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti,
and Chi Wang. “Sample + Seek: Approximating Aggregates
with Distribution Precision Guarantee.” In: Proc. of SIGMOD.
ACM, 2016, pp. 679–694. doi: 10.1145/2882903.2915249.

[31] Geoffrey Ellis, Enrico Bertini, and Alan Dix. “The Sampling
Lens: Making Sense of Saturated Visualisations.” In: Extended
Abstract Proc. of CHI. Portland, OR, USA: ACM, 2005, pp. 1351–
1354. isbn: 1595930027. doi: 10.1145/1056808.1056914.

https://doi.org/10.1007/978-3-319-07121-3_5
https://doi.org/10.1007/978-3-319-07121-3_5
https://doi.org/10.1109/TVCG.2021.3114880
https://doi.org/10.1080/01621459.1984.10478080
https://doi.org/10.1080/01621459.1984.10478080
https://doi.org/10.1561/1900000004
https://doi.org/10.1109/VDS48975.2019.8973384
https://doi.org/10.1109/TVCG.2014.2346448
https://doi.org/10.1145/2588555.2610523
https://doi.org/10.1145/2588555.2610523
https://doi.org/10.1145/2882903.2915249
https://doi.org/10.1145/1056808.1056914

144 bibliography

[32] Niklas Elmqvist and Jean-Daniel Fekete. “Hierarchical Aggre-
gation for Information Visualization: Overview, Techniques,
and Design Guidelines.” In: IEEE Transactions on Visualization
and Computer Graphics 16.3 (2010), pp. 439–454. doi: 10.1109/
TVCG.2009.84.

[33] Niklas Elmqvist, Andrew Vande Moere, Hans-Christian Jetter,
Daniel Cernea, Harald Reiterer, and T. J. Jankun-Kelly. “Fluid
interaction for information visualization.” In: Information Visu-
alization 10.4 (2011), pp. 327–340. doi: 10.1177/1473871611413180.

[34] Alex Endert, M. Shahriar Hossain, Naren Ramakrishnan, Chris
North, Patrick Fiaux, and Christopher Andrews. “The human
is the loop: new directions for visual analytics.” In: Journal
of Intelligent Information Systems 43 (2014), pp. 411–435. doi:
10.1007/s10844-014-0304-9.

[35] Mateus Espadoto, Gabriel Appleby, Ashley Suh, Dylan Cash-
man, Mingwei Li, Carlos E. Scheidegger, Erik Wesley Ander-
son, Remco Chang, and Alexandru Cristian Telea. “UnPro-
jection: Leveraging Inverse-Projections for Visual Analytics of
High-Dimensional Data.” In: IEEE Transactions on Visualization
and Computer Graphics (2021), pp. 1–15. doi: 10.1109/TVCG.
2021.3125576.

[36] S. I. Fabrikant, D. R. Monteilo, and D. M. Mark. “The distance-
similarity metaphor in region-display spatializations.” In: IEEE
Computer Graphics and Applications 26.4 (2006), pp. 34–44. doi:
10.1109/MCG.2006.90.

[37] Jean-Daniel Fekete. “ProgressiVis: a Toolkit for Steerable Pro-
gressive Analytics and Visualization.” In: Proc. of the Workshop
on Data Systems for Interactive Analysis. Chicago, United States,
2015, pp. 1–5. url: https://hal.inria.fr/hal-01202901.

[38] Jean-Daniel Fekete, Qing Chen, Yuheng Feng, and Jonas Re-
nault. “Practical Use Cases for Progressive Visual Analytics.”
In: DSIA 2019 - 4th Workshop on Data Systems for Interactive
Analysis. Vancouver, Canada, Oct. 2019, pp. 1–5. url: https:
//hal.inria.fr/hal-02342944.

[39] Jean-Daniel Fekete, Danyel Fisher, Arnab Nandi, and Michael
Sedlmair (Eds.) “Progressive Data Analysis and Visualization.”
In: Dagstuhl Reports 8.10 (2018), pp. 1–40. doi: 10.4230/DagRep.
8.10.1.

[40] Jean-Daniel Fekete, Danyel Fisher, and Michael Sedlmaier, eds.
Progressive Data Analysis – Roadmap and Research Agenda. (in
preparation). Springer, 2022.

https://doi.org/10.1109/TVCG.2009.84
https://doi.org/10.1109/TVCG.2009.84
https://doi.org/10.1177/1473871611413180
https://doi.org/10.1007/s10844-014-0304-9
https://doi.org/10.1109/TVCG.2021.3125576
https://doi.org/10.1109/TVCG.2021.3125576
https://doi.org/10.1109/MCG.2006.90
https://hal.inria.fr/hal-01202901
https://hal.inria.fr/hal-02342944
https://hal.inria.fr/hal-02342944
https://doi.org/10.4230/DagRep.8.10.1
https://doi.org/10.4230/DagRep.8.10.1

bibliography 145

[41] Jean-Daniel Fekete and Romain Primet. “Progressive Analyt-
ics: A Computation Paradigm for Exploratory Data Analysis.”
In: CoRR (2016). eprint: 1607.05162. url: http://arxiv.org/
abs/1607.05162.

[42] Nivan Ferreira, Jorge Poco, Huy T. Vo, Juliana Freire, and Cláu-
dio T. Silva. “Visual Exploration of Big Spatio-Temporal Ur-
ban Data: A Study of New York City Taxi Trips.” In: IEEE
Transactions on Visualization and Computer Graphics 19.12 (2013),
pp. 2149–2158. doi: 10.1109/TVCG.2013.226.

[43] Danyel Fisher, Igor Popov, Steven Drucker, and m.c. schraefel.
“Trust Me, i’m Partially Right: Incremental Visualization Lets
Analysts Explore Large Datasets Faster.” In: Proc. of CHI. ACM,
2012, pp. 1673–1682. doi: 10.1145/2207676.2208294.

[44] Yaniv Frishman and Ayellet Tal. “Online Dynamic Graph Draw-
ing.” In: IEEE Transactions on Visualization and Computer Graph-
ics 14.4 (2008), pp. 727–740. doi: 10.1109/TVCG.2008.11.

[45] G. W. Furnas. “The FISHEYE view: a new look at structured
files.” In: Readings in Information Visualization: Using Vision to
Think. Ed. by S. K. Card, J. D. Mackinlay, and B. Shneiderman.
Morgan Kaufmann Publishers, 1981, pp. 312–330.

[46] G. W. Furnas. “Generalized Fisheye Views.” In: Proc. of CHI.
ACM, 1986, pp. 16–23. doi: 10.1145/22627.22342.

[47] Kiran Gadhave, Jochen Görtler, Zach Cutler, Carolina Nobre,
Oliver Deussen, Miriah Meyer, Jeff M. Phillips, and Alexander
Lex. “Predicting intent behind selections in scatterplot visual-
izations.” In: Information Visualization 20.4 (2021), pp. 207–228.
doi: 10.1177/14738716211038604.

[48] Baohua Gu, Bing Liu, Feifang Hu, and Huan Liu. “Efficiently
Determining the Starting Sample Size for Progressive Sam-
pling.” In: Proc. of ECML. Springer, 2001, pp. 192–202. doi:
10.1007/3-540-44795-4_17.

[49] Jeffrey Heer and Maneesh Agrawala. “Software Design Pat-
terns for Information Visualization.” In: IEEE Transactions on
Visualization and Computer Graphics 12.5 (2006), pp. 853–860.
doi: 10.1109/TVCG.2006.178.

[50] Jeffrey Heer and Stuart K. Card. “DOITrees Revisited: Scal-
able, Space-Constrained Visualization of Hierarchical Data.”
In: Proc. of AVI. Gallipoli, Italy: ACM, 2004, pp. 421–424. isbn:
1581138679. doi: 10.1145/989863.989941.

[51] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston,
V. Raman, T. Roth, and P. J. Haas. “Interactive data analysis:
the Control project.” In: Computer 32.8 (1999), pp. 51–59. doi:
10.1109/2.781635.

1607.05162
http://arxiv.org/abs/1607.05162
http://arxiv.org/abs/1607.05162
https://doi.org/10.1109/TVCG.2013.226
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1109/TVCG.2008.11
https://doi.org/10.1145/22627.22342
https://doi.org/10.1177/14738716211038604
https://doi.org/10.1007/3-540-44795-4_17
https://doi.org/10.1109/TVCG.2006.178
https://doi.org/10.1145/989863.989941
https://doi.org/10.1109/2.781635

146 bibliography

[52] M. Hogräfer, J. Burkhardt, and H.-J. Schulz. “A Pipeline for
Tailored Sampling for Progressive Visual Analytics.” In: Proc.
of EuroVA. Eurographics Association, 2022.

[53] Marius Hogräfer, Marco Angelini, Giuseppe Santucci, and Hans-
Jörg Schulz. “Steering-by-Example for Progressive Visual Ana-
lytics.” In: ACM Transactions on Intelligent Systems and Technol-
ogy 13.6 (2022). To appear, 96:1–96:26. doi: 10.1145/3531229.

[54] Michael Hohenstein. “Progressive Indexing for Interactive An-
alytics.” In: Proc. of GI-Workshop on Foundations of Databases.
2021, pp. 1–7. url: http://ceur-ws.org/Vol-3075/paper5.
pdf.

[55] Steven C. H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. “On-
line Learning: A Comprehensive Survey.” In: CoRR abs/1802.02871

(2018). url: http://arxiv.org/abs/1802.02871.

[56] Pedro Holanda, Mark Raasveldt, Stefan Manegold, and Hannes
Mühleisen. “Progressive Indexes: Indexing for Interactive Data
Analysis.” In: Proc. VLDB Endowments 12.13 (2019), pp. 2366–
2378. doi: 10.14778/3358701.3358705.

[57] Meishan Hu, Aixin Sun, and Ee-Peng Lim. “Event Detection
with Common User Interests.” In: Proc. of WIDM. ACM, 2008,
pp. 1–8. doi: 10.1145/1458502.1458504.

[58] Peter J. Huber. “Robust Statistics.” In: International Encyclope-
dia of Statistical Science. Ed. by Miodrag Lovric. Springer, 2011,
pp. 1248–1251. isbn: 978-3-642-04898-2. doi: 10.1007/978-3-
642-04898-2_594. url: https://doi.org/10.1007/978-3-
642-04898-2_594.

[59] J. Jo, J. Seo, and J. Fekete. “PANENE: A Progressive Algorithm
for Indexing and Querying Approximate k-Nearest Neighbors.”
In: IEEE Transactions on Visualization and Computer Graphics 26.2
(2020), pp. 1347–1360. doi: 10.1109/TVCG.2018.2869149.

[60] Jaemin Jo. “Designing Progressive Visualization Systems for
Exploring Large-scale Data.” PhD thesis. Seoul National Uni-
versity, Feb. 2020.

[61] Jaemin Jo, Sehi L’Yi, Bongshin Lee, and Jinwook Seo. “ProRe-
veal: Progressive Visual Analytics With Safeguards.” In: IEEE
Transactions on Visualization and Computer Graphics 27.7 (2021),
pp. 3109–3122. doi: 10.1109/TVCG.2019.2962404.

[62] Jaemin Jo, Jinwook Seo, and Jean-Daniel Fekete. “A progres-
sive k-d tree for approximate k-nearest neighbors.” In: Proc. of
DSIA. 2017, pp. 1–5. doi: 10.1109/DSIA.2017.8339084.

[63] D. A. Keim, C. Panse, M. Sips, and S. C. North. “PixelMaps: a
new visual data mining approach for analyzing large spatial
data sets.” In: Proc. of Data Mining. IEEE, 2003, pp. 565–568.
doi: 10.1109/ICDM.2003.1250978.

https://doi.org/10.1145/3531229
http://ceur-ws.org/Vol-3075/paper5.pdf
http://ceur-ws.org/Vol-3075/paper5.pdf
http://arxiv.org/abs/1802.02871
https://doi.org/10.14778/3358701.3358705
https://doi.org/10.1145/1458502.1458504
https://doi.org/10.1007/978-3-642-04898-2_594
https://doi.org/10.1007/978-3-642-04898-2_594
https://doi.org/10.1007/978-3-642-04898-2_594
https://doi.org/10.1007/978-3-642-04898-2_594
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TVCG.2019.2962404
https://doi.org/10.1109/DSIA.2017.8339084
https://doi.org/10.1109/ICDM.2003.1250978

bibliography 147

[64] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten
Görg, Jörn Kohlhammer, and Guy Melançon. “Visual Analyt-
ics: Definition, Process, and Challenges.” In: Information Visual-
ization: Human-Centered Issues and Perspectives. Ed. by Andreas
Kerren, John T. Stasko, Jean-Daniel Fekete, and Chris North.
Springer, 2008, pp. 154–175. doi: 10.1007/978-3-540-70956-
5_7. url: https://doi.org/10.1007/978-3-540-70956-5_7.

[65] Hyung-Kwon Ko, Jaemin Jo, and Jinwook Seo. “Progressive
Uniform Manifold Approximation and Projection.” In: Proc. of
EuroVis Short Papers. Eurographics Association, 2020, pp. 133–
137. doi: 10.2312/evs.20201061.

[66] Marcel Köster and Antonio Krüger. “Screen Space Particle Se-
lection.” In: Proc. of CGVC. Manchester, United Kingdom: Eu-
rographics Association, 2018, pp. 61–69. doi: 10.2312/cgvc.
20181208.

[67] Bum Chul Kwon, Janu Verma, Peter J. Haas, and Çagatay
Demiralp. “Sampling for Scalable Visual Analytics.” In: IEEE
Computer Graphics and Applications 37.1 (2017), pp. 100–108. doi:
10.1109/MCG.2017.6.

[68] J. K. Li and K. Ma. “P5: Portable Progressive Parallel Process-
ing Pipelines for Interactive Data Analysis and Visualization.”
In: IEEE Transactions on Visualization and Computer Graphics 26.1
(2020), pp. 1151–1160. doi: 10.1109/TVCG.2019.2934537.

[69] Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, and Yizhou
Sun. “Sampling Cube: A Framework for Statistical Olap over
Sampling Data.” In: Proc. of SIGMOD. ACM, 2008, pp. 779–790.
doi: 10.1145/1376616.1376695.

[70] Robert van Liere, Jurriaan D. Mulder, and Jarke J. van Wijk.
“Computational steering.” In: Future Generation Computer Sys-
tems 12.5 (1997), pp. 441–450. doi: 10.1016/S0167-739X(96)
00029-5.

[71] Yang Liu, Eunice Jun, Qisheng Li, and Jeffrey Heer. “Latent
Space Cartography: Visual Analysis of Vector Space Embed-
dings.” In: Computer Graphics Forum 38.3 (2019), pp. 67–78. doi:
10.1111/cgf.13672.

[72] Zhicheng Liu and Jeffrey Heer. “The Effects of Interactive La-
tency on Exploratory Visual Analysis.” In: IEEE Transactions on
Visualization and Computer Graphics 20.12 (2014), pp. 2122–2131.
doi: 10.1109/TVCG.2014.2346452.

[73] S. Lloyd. “Least squares quantization in PCM.” In: IEEE Trans-
actions on Information Theory 28.2 (1982), pp. 129–137. doi: 10.
1109/TIT.1982.1056489.

https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.2312/evs.20201061
https://doi.org/10.2312/cgvc.20181208
https://doi.org/10.2312/cgvc.20181208
https://doi.org/10.1109/MCG.2017.6
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1145/1376616.1376695
https://doi.org/10.1016/S0167-739X(96)00029-5
https://doi.org/10.1016/S0167-739X(96)00029-5
https://doi.org/10.1111/cgf.13672
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489

148 bibliography

[74] Sebastian Loeschcke, Marius Hogräfer, and Hans-Jörg Schulz.
“Progressive Parameter Space Visualization for Task-Driven
SAX Configuration.” In: Proc. of EuroVA. Ed. by Cagatay Turkay
and Katerina Vrotsou. Eurographics Association, 2020, pp. 43–
47. isbn: 978-3-03868-116-8. doi: 10.2312/eurova.20201085.

[75] Viktor Losing, Barbara Hammer, and Heiko Wersing. “KNN
Classifier with Self Adjusting Memory for Heterogeneous Con-
cept Drift.” In: Proc. of ICDM. 2016, pp. 291–300. doi: 10.1109/
ICDM.2016.0040.

[76] Viktor Losing, Barbara Hammer, and Heiko Wersing. “Incre-
mental on-line learning: A review and comparison of state of
the art algorithms.” In: Neurocomputing 275 (2018), pp. 1261–
1274. doi: 10.1016/j.neucom.2017.06.084.

[77] Jock Mackinlay. “Automating the Design of Graphical Presen-
tations of Relational Information.” In: ACM Transactions on
Graphics 5.2 (1986), pp. 110–141. doi: 10.1145/22949.22950.

[78] Luana Micallef, Hans-Jörg Schulz, Marco Angelini, Michaël
Aupetit, Remco Chang, Jörn Kohlhammer, Adam Perer, and
Giuseppe Santucci. “The Human User in Progressive Visual
Analytics.” In: Proc. of EuroVis Short Papers. Eurographics As-
sociation, 2019, pp. 19–23. doi: 10.2312/evs.20191164.

[79] Robert B. Miller. “Response Time in Man-Computer Conver-
sational Transactions.” In: Proc. of AFIPS. ACM, 1968, pp. 267–
277. doi: 10.1145/1476589.1476628.

[80] Dominik Moritz, Danyel Fisher, Bolin Ding, and Chi Wang.
“Trust, but Verify: Optimistic Visualizations of Approximate
Queries for Exploring Big Data.” In: Proc of CHI. Denver, Col-
orado, USA: ACM, 2017, pp. 2904–2915. isbn: 9781450346559.
doi: 10.1145/3025453.3025456.

[81] Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das,
Themis Palpanas, and Yannis Velegrakis. “IQR: An Interactive
Query Relaxation System for the Empty-Answer Problem.” In:
Proc. of SIGMOD. New York, NY, USA: ACM, 2014, pp. 1095–
1098. doi: 10.1145/2588555.2594512.

[82] Thomas Mühlbacher, Harald Piringer, Samuel Gratzl, Michael
Sedlmair, and Marc Streit. “Opening the black box: Strategies
for increased user involvement in existing algorithm imple-
mentations.” In: IEEE Transactions on Visualization and Com-
puter Graphics 20.12 (2014), pp. 1643–1652. doi: 10.1109/TVCG.
2014.2346578.

[83] T. Munzner. “A Nested Model for Visualization Design and
Validation.” In: IEEE Transactions on Visualization and Computer
Graphics 15.6 (2009), pp. 921–928. doi: 10.1109/TVCG.2009.
111.

https://doi.org/10.2312/eurova.20201085
https://doi.org/10.1109/ICDM.2016.0040
https://doi.org/10.1109/ICDM.2016.0040
https://doi.org/10.1016/j.neucom.2017.06.084
https://doi.org/10.1145/22949.22950
https://doi.org/10.2312/evs.20191164
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/3025453.3025456
https://doi.org/10.1145/2588555.2594512
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2009.111
https://doi.org/10.1109/TVCG.2009.111

bibliography 149

[84] Donald Norman. Things that make us smart: defending human
attributes in the age of the machine. Addison-Wesley, 1993.

[85] Tim Oates and David Jensen. “The Effects of Training Set Size
on Decision Tree Complexity.” In: Proc. of ICML. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1997, pp. 254–
262. doi: 10.5555/645526.657136.

[86] Frank Olken and Doron Rotem. “Random sampling from database
files: A survey.” In: Statistical and Scientific Database Manage-
ment. Springer, 1990, pp. 92–111. doi: 10.1007/3-540-52342-
1_23.

[87] Melih Onus, Andrea Richa, and Christian Scheideler. “Lin-
earization: Locally Self-Stabilizing Sorting in Graphs.” In: Proc.
of the ALENEX Workshop. SIAM, 2007, pp. 99–108. doi: 10 .

1137/1.9781611972870.10.

[88] OpenStreetMap. Mountain Peaks Data. downloaded 01-May-2021.
url: https://wiki.openstreetmap.org/wiki/Tag:natural=
peak.

[89] Y. Park, M. Cafarella, and B. Mozafari. “Visualization-aware
sampling for very large databases.” In: Proc. of ICDE. IEEE,
2016, pp. 755–766. doi: 10.1109/ICDE.2016.7498287.

[90] Ameya Patil, Gaëlle Richer, Christopher Jermaine, Dominik
Moritz, and Jean-Daniel Fekete. “Studying Early Decision Mak-
ing with Progressive Bar Charts.” In: IEEE Transactions on Visu-
alization and Computer Graphics (2022). to be published, pp. 1–
11. url: https://hal.inria.fr/hal-03738461.

[91] Philippe Pierre Pébay. Formulas for robust, one-pass parallel com-
putation of covariances and arbitrary-order statistical moments. Tech.
rep. U.S. Department of Energy – Office of Scientific and Tech-
nical Information, Sept. 2008. doi: 10.2172/1028931.

[92] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python.”
In: Journal of Machine Learning Research 12.85 (2011), pp. 2825–
2830. url: http://jmlr.org/papers/v12/pedregosa11a.html.

[93] N. Pezzotti, B. P. F. Lelieveldt, L. v. d. Maaten, T. Höllt, E. Eise-
mann, and A. Vilanova. “Approximated and User Steerable
tSNE for Progressive Visual Analytics.” In: IEEE Transactions
on Visualization and Computer Graphics 23.7 (2017), pp. 1739–
1752. doi: 10.1109/TVCG.2016.2570755.

[94] M. Procopio, A. Mosca, C. Scheidegger, E. Wu, and R. Chang.
“Impact of Cognitive Biases on Progressive Visualization.” In:
IEEE Transactions on Visualization and Computer Graphics (2021),
pp. 1–13. doi: 10.1109/TVCG.2021.3051013.

https://doi.org/10.5555/645526.657136
https://doi.org/10.1007/3-540-52342-1_23
https://doi.org/10.1007/3-540-52342-1_23
https://doi.org/10.1137/1.9781611972870.10
https://doi.org/10.1137/1.9781611972870.10
https://wiki.openstreetmap.org/wiki/Tag:natural=peak
https://wiki.openstreetmap.org/wiki/Tag:natural=peak
https://doi.org/10.1109/ICDE.2016.7498287
https://hal.inria.fr/hal-03738461
https://doi.org/10.2172/1028931
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2021.3051013

150 bibliography

[95] Marianne Procopio, Carlos Scheidegger, Eugene Wu, and Remco
Chang. “Selective Wander Join: Fast Progressive Visualizations
for Data Joins.” In: Informatics 6.1 (2019), pp. 1–21. issn: 2227-
9709. doi: 10.3390/informatics6010014.

[96] Foster Provost, David Jensen, and Tim Oates. “Efficient Pro-
gressive Sampling.” In: Proc. of SIGKDD. San Diego, California,
USA: ACM, 1999, pp. 23–32. isbn: 1581131437. doi: 10.1145/
312129.312188.

[97] Sajjadur Rahman, Maryam Aliakbarpour, Ha Kyung Kong, Eric
Blais, Karrie Karahalios, Aditya Parameswaran, and Ronitt Ru-
binfield. “I’ve Seen "Enough": Incrementally Improving Visu-
alizations to Support Rapid Decision Making.” In: Proc. VLDB
Endowment 10.11 (2017), pp. 1262–1273. doi: 10.14778/3137628.
3137637.

[98] Vincent Raveneau. “Interaction in Progressive Visual Analyt-
ics: Application to Progressive Sequential Pattern Mining.”
PhD thesis. Université Nantes, Nov. 2020. url: https://tel.
archives-ouvertes.fr/tel-03106201.

[99] René Rosenbaum and Heidrun Schumann. “Progressive re-
finement: more than a means to overcome limited bandwidth.”
In: Proc. of VDA. Vol. 7243. International Society for Optics and
Photonics. SPIE, 2009, pp. 145–156. doi: 10.1117/12.810501.

[100] René Rosenbaum, Jian Zhi, and Bernd Hamann. “Progressive
parallel coordinates.” In: 2012 IEEE Pacific Visualization Sympo-
sium. 2012, pp. 25–32. doi: 10.1109/PacificVis.2012.6183570.

[101] David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan
Yang. “Incremental Learning for Robust Visual Tracking.” In:
International Journal of Computer Vision 77 (2008), pp. 125–141.
doi: 10.1007/s11263-007-0075-7.

[102] H. Schulz, M. Angelini, G. Santucci, and H. Schumann. “An
Enhanced Visualization Process Model for Incremental Visu-
alization.” In: IEEE Transactions on Visualization and Computer
Graphics 22.7 (2016), pp. 1830–1842. doi: 10.1109/TVCG.2015.
2462356.

[103] D. Sculley. “Web-Scale k-Means Clustering.” In: Proc. of WWW.
ACM, 2010, pp. 1177–1178. doi: 10.1145/1772690.1772862.

[104] Burr Settles. Active Learning Literature Survey. Tech. rep. De-
partment of Computer Sciences, UW-Madison, 2009. url: http:
//digital.library.wisc.edu/1793/60660.

[105] Ben Shneiderman. “Direct Manipulation: A Step beyond Pro-
gramming Languages.” In: Proc. of CHI. ACM, 1981, p. 143.
doi: 10.1145/800276.810991.

https://doi.org/10.3390/informatics6010014
https://doi.org/10.1145/312129.312188
https://doi.org/10.1145/312129.312188
https://doi.org/10.14778/3137628.3137637
https://doi.org/10.14778/3137628.3137637
https://tel.archives-ouvertes.fr/tel-03106201
https://tel.archives-ouvertes.fr/tel-03106201
https://doi.org/10.1117/12.810501
https://doi.org/10.1109/PacificVis.2012.6183570
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1145/1772690.1772862
http://digital.library.wisc.edu/1793/60660
http://digital.library.wisc.edu/1793/60660
https://doi.org/10.1145/800276.810991

bibliography 151

[106] Ben Shneiderman. “Response Time and Display Rate in Hu-
man Performance with Computers.” In: ACM Computing Sur-
veys 16.3 (1984), pp. 265–285. doi: 10.1145/2514.2517.

[107] C. D. Stolper, A. Perer, and D. Gotz. “Progressive Visual An-
alytics: User-Driven Visual Exploration of In-Progress Analyt-
ics.” In: IEEE Transactions on Visualization and Computer Graph-
ics 20.12 (2014), pp. 1653–1662. issn: 2160-9306. doi: 10.1109/
TVCG.2014.2346574.

[108] Christian Tominski and Heidrun Schumann. Interactive Visual
Data Analysis. AK Peters Visualization. CRC Press, Apr. 2020.
isbn: 9780367898755.

[109] Edward R. Tufte. The Visual Display of Quantitative Information
(2nd edition). Graphics Press, 2007. isbn: 978-1930824133.

[110] C. Turkay, E. Kaya, S. Balcisoy, and H. Hauser. “Designing Pro-
gressive and Interactive Analytics Processes for High-Dimensional
Data Analysis.” In: IEEE Transactions on Visualization and Com-
puter Graphics 23.1 (2017), pp. 131–140. doi: 10.1109/TVCG.
2016.2598470.

[111] Stéfan Van Der Walt, S. Chris Colbert, and Gaël Varoquaux.
“The NumPy array: A structure for efficient numerical com-
putation.” In: Computing in Science and Engineering 13.2 (2011),
pp. 22–30. issn: 15219615. doi: 10.1109/MCSE.2011.37.

[112] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python.” In: Nature Methods 17 (2020),
pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[113] Jeffrey S. Vitter. “Random Sampling with a Reservoir.” In: Trans-
actions on Mathematical Software 11.1 (Mar. 1985), pp. 37–57.
issn: 0098-3500. doi: 10.1145/3147.3165.

[114] Emily Wall, Leslie M. Blaha, Celeste Lyn Paul, Kristin Cook,
and Alex Endert. “Four Perspectives on Human Bias in Visual
Analytics.” In: Cognitive Biases in Visualizations. Ed. by Geoffrey
Ellis. Cham: Springer, 2018, pp. 29–42. doi: 10.1007/978-3-
319-95831-6_3.

[115] Guizhen Wang, Jingjing Guo, Mingjie Tang, José Florencio de
Queiroz Neto, Calvin Yau, Anas Daghistani, Morteza Karimzadeh,
Walid G. Aref, and David S. Ebert. “STULL: Unbiased On-
line Sampling for Visual Exploration of Large Spatiotempo-
ral Data.” In: Proc. of VAST. 2020, pp. 72–83. doi: 10.1109/
VAST50239.2020.00012.

[116] Colin Ware. Information Visualization: Perception for Design (3rd
edition). Morgan Kaufmann, 2012. isbn: 978-0-12-381464-7.

https://doi.org/10.1145/2514.2517
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2016.2598470
https://doi.org/10.1109/TVCG.2016.2598470
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3147.3165
https://doi.org/10.1007/978-3-319-95831-6_3
https://doi.org/10.1007/978-3-319-95831-6_3
https://doi.org/10.1109/VAST50239.2020.00012
https://doi.org/10.1109/VAST50239.2020.00012

152 bibliography

[117] Ethan Waterink, Jiri Kosinka, and Steffen Frey. “Visual Analy-
sis of Popping in Progressive Visualization.” In: Proc. of STAG.
Eurographics Association, 2021, pp. 151–162. doi: 10.2312/
stag.20211485.

[118] M. Williams and T. Munzner. “Steerable, Progressive Multidi-
mensional Scaling.” In: Proc. of VIS. IEEE, 2004, pp. 57–64. doi:
10.1109/INFVIS.2004.60.

[119] Helen Wright, Robin H. Crompton, Sanjay R. Kharche, and
Petra Wenisch. “Steering and visualization: Enabling technolo-
gies for computational science.” In: Future Generation Computer
Systems 26.3 (2010), pp. 506–513. doi: 10.1016/j.future.2008.
06.015.

[120] Y. Wu, N. Cao, D. Archambault, Q. Shen, H. Qu, and W. Cui.
“Evaluation of Graph Sampling: A Visualization Perspective.”
In: IEEE Transactions on Visualization and Computer Graphics 23.1
(2017), pp. 401–410. doi: 10.1109/TVCG.2016.2598867.

[121] Peng Xie, Wenyuan Tao, Jie Li, Wentao Huang, and Siming
Chen. “Exploring Multi-dimensional Data via Subset Embed-
ding.” In: Computer Graphics Forum 40.3 (2021), pp. 75–86. doi:
10.1111/cgf.14290.

[122] R. Xu and D. Wunsch. “Survey of clustering algorithms.” In:
IEEE Transactions on Neural Networks 16.3 (2005), pp. 645–678.
doi: 10.1109/TNN.2005.845141.

[123] J. Yang and J. Widom. “Incremental computation and mainte-
nance of temporal aggregates.” In: 12 (2003), pp. 262–283. doi:
10.1007/s00778-003-0107-z.

[124] S. Young, I. Arel, T. P. Karnowski, and D. Rose. “A Fast and
Stable Incremental Clustering Algorithm.” In: Proc. of ITNG.
IEEE, 2010, pp. 204–209. doi: 10.1109/ITNG.2010.148.

[125] Lingyun Yu, Konstantinos Efstathiou, Petra Isenberg, and To-
bias Isenberg. “CAST: Effective and Efficient User Interaction
for Context-Aware Selection in 3D Particle Clouds.” In: IEEE
Transactions on Visualization and Computer Graphics 22.1 (2016),
pp. 886–895. doi: 10.1109/TVCG.2015.2467202.

[126] Jun Yuan, Shouxing Xiang, Jiazhi Xia, Lingyun Yu, and Shixia
Liu. “Evaluation of Sampling Methods for Scatterplots.” In:
IEEE Transactions on Visualization and Computer Graphics 27.2
(2021), pp. 1720–1730. doi: 10.1109/TVCG.2020.3030432.

[127] E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska.
“How Progressive Visualizations Affect Exploratory Analysis.”
In: IEEE Transactions on Visualization and Computer Graphics 23.8
(2017), pp. 1977–1987. doi: 10.1109/TVCG.2016.2607714.

https://doi.org/10.2312/stag.20211485
https://doi.org/10.2312/stag.20211485
https://doi.org/10.1109/INFVIS.2004.60
https://doi.org/10.1016/j.future.2008.06.015
https://doi.org/10.1016/j.future.2008.06.015
https://doi.org/10.1109/TVCG.2016.2598867
https://doi.org/10.1111/cgf.14290
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1007/s00778-003-0107-z
https://doi.org/10.1109/ITNG.2010.148
https://doi.org/10.1109/TVCG.2015.2467202
https://doi.org/10.1109/TVCG.2020.3030432
https://doi.org/10.1109/TVCG.2016.2607714

bibliography 153

[128] Ji Zhang. “Advancements of Outlier Detection: A Survey.” In:
EAI Endorsed Transactions on Scalable Information Systems 1.1
(Feb. 2013), e2:1–e2:26. doi: 10.4108/trans.sis.2013.01-
03.e2.

[129] Y. Zheng, Y. Ou, A. Lex, and J. M. Phillips. “Visualization of
Big Spatial Data using Coresets for Kernel Density Estimates.”
In: Proc. of VDS. 2017, pp. 23–30. doi: 10.1109/VDS.2017.
8573446.

[130] Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, and Feifei Li. “Qual-
ity and efficiency for kernel density estimates in large data.”
In: Proc. of SIGMOD. ACM, 2013, pp. 433–444. doi: 10.1145/
2463676.2465319.

[131] Liang Zhou, Chris R. Johnson, and Daniel Weiskopf. “Data-
Driven Space-Filling Curves.” In: IEEE Transactions on Visual-
ization and Computer Graphics 27.2 (2021), pp. 1591–1600. doi:
10.1109/TVCG.2020.3030473.

[132] Z. Zhou, C. Shi, X. Shen, L. Cai, H. Wang, Y. Liu, Y. Zhao,
and W. Chen. “Context-aware Sampling of Large Networks
via Graph Representation Learning.” In: IEEE Transactions on
Visualization and Computer Graphics (2020), pp. 1–10. doi: 10.
1109/TVCG.2020.3030440.

[133] Zhiguang Zhou, Xinlong Zhang, Zhendong Yang, Yuanyuan
Chen, Yuhua Liu, Jin Wen, Binjie Chen, Ying Zhao, and Wei
Chen. “Visual Abstraction of Geographical Point Data with
Spatial Autocorrelations.” In: Proc. of VAST. IEEE, 2020, pp. 60–
71. doi: 10.1109/VAST50239.2020.00011.

[134] F. van Ham and A. Perer. ““Search, Show Context, Expand on
Demand”: Supporting Large Graph Exploration with Degree-
of-Interest.” In: IEEE Transactions on Visualization and Computer
Graphics 15.6 (2009), pp. 953–960. doi: 10.1109/TVCG.2009.
108.

[135] F. van Ham and B. Rogowitz. “Perceptual Organization in
User-Generated Graph Layouts.” In: IEEE Transactions on Visu-
alization and Computer Graphics 14.6 (2008), pp. 1333–1339. issn:
2160-9306. doi: 10.1109/TVCG.2008.155.

https://doi.org/10.4108/trans.sis.2013.01-03.e2
https://doi.org/10.4108/trans.sis.2013.01-03.e2
https://doi.org/10.1109/VDS.2017.8573446
https://doi.org/10.1109/VDS.2017.8573446
https://doi.org/10.1145/2463676.2465319
https://doi.org/10.1145/2463676.2465319
https://doi.org/10.1109/TVCG.2020.3030473
https://doi.org/10.1109/TVCG.2020.3030440
https://doi.org/10.1109/TVCG.2020.3030440
https://doi.org/10.1109/VAST50239.2020.00011
https://doi.org/10.1109/TVCG.2009.108
https://doi.org/10.1109/TVCG.2009.108
https://doi.org/10.1109/TVCG.2008.155

	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	Acronyms
	Overview
	1 Introduction
	1.1 Motivation
	1.2 Main Challenges
	1.2.1 Expressiveness: The sampling cannot be tailored dynamically
	1.2.2 Effectiveness: DOI functions can be infeasible in PVA
	1.2.3 Efficiency: Steering mechanisms are restricted to certain scenarios

	1.3 Thesis Statement
	1.4 Research Questions and Contributions
	1.5 Research Approach
	1.6 Authorship Statement
	1.7 Thesis Outline

	2 Background
	2.1 Visual Analytics
	2.1.1 Interactive Information Visualization
	2.1.2 Ensuring Fluid Interaction in VA
	2.1.3 Reducing Interaction Latency with Sampling in VA

	2.2 Progressive Visual Analytics
	2.2.1 Benefits of PVA
	2.2.2 Analytical Computations in PVA
	2.2.3 Partial visualizations in PVA
	2.2.4 Interaction in PVA

	2.3 Summary

	3 Improving the Usefulness of Partial Visualizations in PVA
	3.1 Characterizing Usefulness of Partial Visualizations in PVA
	3.2 Proposing a Criteria-Based Delin. of Usefulness of Part. Vis. in PVA
	3.3 Improving the Expr. of Part. Vis. with Tailorable Sampling
	3.3.1 Research Background
	3.3.2 Research Challenge
	3.3.3 Contribution

	3.4 Improving the Effect. of Part. Vis. with DOI Functions
	3.4.1 Research Background
	3.4.2 Research Challenge
	3.4.3 Contribution

	3.5 Improving the Effic. of Part. Vis. with Steering
	3.5.1 Research Challenge

	3.6 Summary

	4 Discussion and Future Work
	4.1 Contextualizing the Thesis Contributions
	4.2 Reflecting on the Research Questions
	4.3 Future Research Directions
	4.3.1 Providing integrated library support to developers
	4.3.2 Guidance for improving the usefulness in partial visualizations
	4.3.3 Increasing the efficiency with progressive parameter space visualization

	Papers
	5 A Pipeline for Tailored Sampling for Progressive Visual Analytics
	5.1 Introduction
	5.2 Related Work
	5.3 A Sampling Pipeline for PVA
	5.3.1 Linearization
	5.3.2 Subdivision
	5.3.3 Selection

	5.4 Usage Example of the Sampling Pipeline
	5.4.1 ProSample
	5.4.2 Scenarios

	5.5 Conclusion and Future Work

	6 Tailorable Sampling for PVA
	6.1 Introduction
	6.2 Characterizing PVA Sampling
	6.3 Related Work
	6.3.1 Sampling as an operation
	6.3.2 Sampling as a process
	6.3.3 PVA-Sampling approaches

	6.4 A Pipeline for Tailorable PVA-Sampling
	6.4.1 Modularizing PVA-sampling along data formats
	6.4.2 Linearization: Putting the data in order
	6.4.3 Subdivision: Splitting the data into bins
	6.4.4 Selection: Placing items into chunks

	6.5 Tailoring PVA-Sampling on-the-fly
	6.5.1 Dynamically tailoring to changing tasks
	6.5.2 Dynamically tailoring to incremental input data
	6.5.3 Dynamically tailoring to changing scope

	6.6 Utilizing the pipeline's modularity for tailored sampling
	6.6.1 Recreating existing samplings
	6.6.2 Recomposing sampling pipelines
	6.6.3 Tailoring the sampling towards multiple attributes

	6.7 Limitations
	6.8 Conclusion and Future Work

	7 Strategies for Enabling Degree-of-Interest Functions for Prog. Vis.
	7.1 Introduction
	7.2 Running Example
	7.3 Related Work
	7.3.1 Degree-of-Interest Functions
	7.3.2 Incremental Learning
	7.3.3 Progressive Visual Analytics

	7.4 Degree-of-Interest Functions on Chunked Data
	7.4.1 Problem Description
	7.4.2 Solution Outline

	7.5 Enabling DOI Functions for Progressive Visualization
	7.5.1 Strategies for Providing Context to DOI Functions in Progressive Visualization
	7.5.2 Strategies for Updating Outdated Interest Values

	7.6 Benchmarks
	7.6.1 Setup
	7.6.2 Results
	7.6.3 Threats to Validity

	7.7 Discussion and Future Work
	7.7.1 Increasing the Chunk Size vs. Using the Strategies
	7.7.2 Applicability Limitations
	7.7.3 Using interest values in Progressive Visualization

	7.8 Conclusion

	8 Steering-by-Example for Progressive Visual Analytics
	8.1 Introduction
	8.2 Related Work
	8.3 The Steering-by-Example Approach
	8.3.1 The Steering-by-Example Scenario
	8.3.2 Description of the Approach
	8.3.3 Extension to the Basic Approach

	8.4 Benchmarks
	8.4.1 Test Results
	8.4.2 Test Cases
	8.4.3 Detailed Measures
	8.4.4 Implementation Details
	8.4.5 Threats to Validity of Benchmarks

	8.5 ProSteer: An Experimental Visual Environment for Steering-by-Example
	8.5.1 Comparing steered with non-steered progressions
	8.5.2 Make selections in view space
	8.5.3 Explore a progression at one point in time
	8.5.4 Comparing a progression between different points in time
	8.5.5 Comparing data inside the selection with the rest of the data

	8.6 Use Cases
	8.6.1 Steering-by-Example on Large Datasets
	8.6.2 Steering-by-Example on Dimensionality Reductions

	8.7 User Study
	8.7.1 Setup
	8.7.2 Procedure
	8.7.3 Results

	8.8 Discussion
	8.8.1 Implicit Assumptions of Steering-by-Example
	8.8.2 Limitations of Steering-by-Example in PVA

	8.9 Conclusion and Future Work

	Appendix
	Bibliography

