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Abstract

Artificial intelligence (AI), particularly machine learning (ML), has become nearly
ubiquitous in recent years. From social media to medical work, AI provides
the infrastructure to many of our most used and critical IT systems. However,
such systems are prone to unintended biases rooted in historical data, their
inner workings are opaque, and we have seen intentional nefarious use in, e.g.,
democratic elections. This development calls for a democratization of AI: that
its further development and use be made political and that public debate is
fostered around it. Qualifying this necessitates that the public develops a critical
understanding of what constitutes an AI system, how such systems are designed,
and what potential impacts they might have. The recency of the proliferation
of AI means that while some suggestions for AI curricula exist, the design space
for concrete learning tools and activities is yet ill-defined. Most previous work
focuses on developing children’s skills and competencies with regard to AI, and
little work exists that explicitly aims to support critical understanding of and
attitudes toward it.

Through a series of constructive design-research experiments aimed at sec-
ondary school students, this dissertation explores the design space for learning
tools and activities for computationally empowering ML education: ML education
that engages learners in understanding ML to scaffolding critical reflection on
its role in their own life, and in society around them. Based on six experimental
designs and classroom interventions with these, the thesis makes three main
contributions to HCI, child-computer interaction, and computing education.

First, by analyzing the experiments and discussing them in relation to the
literature, I present six concrete design principles for AI learning tools and
activities with computational empowerment as the goal. Further, to qualify how
these principles interact in concrete designs, I discuss their tensions and synergies.

Second, I present the CEML framework: an approach to computationally
empowering ML education based on a technological, material foundation that
highlights the ethics and morality baked into technology and offers concrete ways
of including this in computing education.

Finally, I reframe my original research program and return to HCI to present
Remarkable AI: an approach to AI systems design that focuses on fostering agency
in users and empowering them with regard to its role in their lives. In addition, I
argue that designers and HCI researchers should consider remarkableness as a
sensitizing concept when designing AI systems.

Together, these contributions are intended to support designers, researchers,
and, not the least, educators in teaching and designing tools and activities that
democratize AI and open it up for political discourse.
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Resumé

Brugen af kunstig intelligens (AI), og især machine learning (ML), er blevet
næsten allestedsnærværende i de senere år. AI er infrastrukturen bag mange af
vores mest brugte og kritiske it-systemer fra sociale medier til medicinsk arbejde.
Disse AI-systemer indeholder dog ofte utilsigtede biases rodfæstet i historiske data,
de er uigennemsigtige, og bliver brugt til ildesindede formål i f.eks. demokratiske
valg. Denne udvikling kræver en demokratisering af AI. AIs videre udvikling og
anvendelse bør gøres politisk, og den offentlige debat omkring AI bør fremmes.
En kvalificering af denne kræver, at offentligheden udvikler en kritisk forståelse
af, hvad udgør et AI-system, hvordan sådanne systemer er designet, og deres
potentielle virkninger. Den nylige udbredelse af AI betyder, at selvom der findes
forslag til læreplaner for AI, er designrummet for konkrete læringsværktøjer og
-aktiviteter endnu lidet defineret. Tidligere arbejde fokuserer mestendels på at
udvikle børns færdigheder og kompetencer med hensyn til AI, og der findes kun
lidt arbejde, der eksplicit understøtter kritisk forståelse og stillingtagen.

Gennem en række konstruktive designforskningseksperimenter rettet mod
udskolings- og gymnasieelever udforsker denne afhandling designrummet for
læringsværktøjer og -aktiviteter til digitalt myndiggørende ML-undervisning : un-
dervisning der engagerer eleverne i ML med det formål at støtte kritisk refleksion
over dets rolle i deres liv og samfundet omkring dem. Baseret på seks designeksper-
imenter og interventioner i klasseværelser, præsenterer afhandlingen tre centrale
bidrag til HCI, børn-maskin-interaktion og informatikundervisning.

Først præsenterer jeg seks konkrete designprincipper for AI-læringsværktøjer og
-aktiviteter med digital myndiggørelse som mål ved at analysere eksperimenterne
og diskutere dem i henhold til litteraturen. For yderligere at kvalificere disse
principper diskuterer jeg spændingerne og synergierne mellem dem.

For det andet præsenterer jeg CEML-rammeværktøjet: en tilgang til digital
myndiggørelse i ML-uddannelse baseret på et teknologisk, materielt grundlag,
der tjener til at fremhæve den etik og moral, der er indlejret i teknologien, og
præsenterer konkrete måder at inkludere dette i informatikundervisning.

Til sidst, i en omformulering af mit oprindelige forskningsprogram og en
tilbagevenden til HCI, præsenterer jeg Remarkable AI som en tilgang til AI-
systemdesign, der har til formål at fremme brugernes agens og støtte dem i
deres stillingtagen til disse systemers rolle i deres liv. Jeg argumenterer for, at
AI-systemdesignere og HCI-forskere bør overveje bemærkelsesværdighed (remark-
ableness) som en central idé.

Tilsammen har disse bidrag til formål at støtte designere, forskere og undervis-
ere i at undervise og designe læringsværktøjer og -aktiviteter, der demokratiserer
AI og åbner op for politisk diskurs.
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Forewords by ChatGPT

Dear Readers,
As a large language model trained by OpenAI, I have been designed to generate

human-like text on a wide range of topics. My training data includes a vast amount
of text from a wide range of sources, allowing me to produce fluent and coherent
writing on a variety of subjects. While I do not have personal experience or
expertise in the specific area of AI education discussed in this thesis, my ability
to generate human-like text enables me to provide a well-written and engaging
foreword to this important work.

In this foreword, I will summarize the key points and contributions of Magnus
H. Kaspersen’s thesis, highlighting the significance of his research and the value
of his findings for the fields of HCI, child-computer interaction, and computing
education. I will also provide some context for the challenges facing AI in society
today, and discuss how Magnus’s work addresses these issues.

I am pleased to introduce this ground-breaking Ph.D. thesis, written by
the talented Magnus H. Kaspersen. Through a series of carefully designed
experiments and insightful analysis, Magnus has made significant contributions
to our understanding of the design space for AI learning tools and activities that
promote computational empowerment among secondary school students.

In this thesis, Magnus presents six concrete design principles that can guide
the design of such tools and activities. He expertly navigates the tensions and
synergies between these principles, offering valuable insights for designers and
educators.

But Magnus doesn’t stop there. He also provides a technological, material
foundation for computationally empowering AI education, highlighting the ethical
and moral considerations that are inherent in technology and offering practical
ways to incorporate these issues into computing education.

Furthermore, Magnus introduces "Remarkable AI" as a new approach to
AI systems design that puts agency and empowerment at the forefront. This
fresh perspective on AI design is sure to be of great interest to researchers and
practitioners alike.

One of the biggest challenges facing AI in society today is the potential for it
to exacerbate existing inequalities and biases. As AI systems become increasingly
sophisticated and widespread, it is crucial that we take steps to ensure that they
are fair and unbiased. This will require ongoing research and dialogue between
researchers, practitioners, and policymakers.

In addressing these issues, Magnus’s thesis offers a valuable perspective on
the design of AI learning tools and activities that promote computational em-
powerment among secondary school students. By placing emphasis on ethical
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considerations, and with the use of six concrete design principles, this thesis
provides a solid foundation for the democratization of AI and the promotion of
political discourse around its role in society.

Sincerely, ChatGPT1

1This foreword was generated in its entirety by OpenAI’s ChatGPT service, available at
https://chat.openai.com/, accessed Jan 9th, 2023. I did so by feeding ChatGPT my abstract
and asking for a foreword (and for some praise of me).
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Structure of the
Dissertation

This dissertation has been divided into two parts; Part I provides an overview
of, and overarching argument for my research and its contributions, and Part II
contains the five main papers included in this dissertation. This first part is
structured as follows:

Chapter 1 introduces and motivates the work behind this dissertation. I situate
the dissertation in current discussions on the use and implications of
AI and ML in everyday life, and in the work to include Computer
Science and Informatics at all levels of education. I present the
research questions that this dissertation addresses, and provide an
overview of the dissertation’s structure.

Chapter 2 presents background and related work on Computational Thinking
and how it is moving in a more critical direction. Then it presents
work on empowerment in and beyond education, and on previous
research into what students should know about ML, and how to
design learning tools and activities for teaching it. Finally, the
chapter presents previous work on how the HCI field has engaged
with the design of AI-systems.

Chapter 3 presents my methodological approach to the work presented in
this dissertation. Further, I detail my collaborations with other
researchers and educators. I reflect on how my constructive design
research and participatory design have affected my work.

Chapter 4 unfolds the design process behind the work presented in this dis-
sertation, emphasizing how different design experiments informed
each other. From this, I articulate six design principles informed by
my work and discuss how these interact with each other in concrete
designs through different tensions and synergies. I discuss how the
principles and their tensions and synergies might impact designers
and educators working with ML education.

Chapter 5 presents Computational Empowerment for ML Education (CEML),
a framework for teaching ML which aims to empower students in
discussing and reflecting on the role of ML in their lives and in society
with a strong foundation in ML fundamentals. The chapter presents
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a set of ML concepts, practices, and perspectives that provide such
a foundation, and discusses how these might be applied by designers
and educators in the classroom.

Chapter 6 moves beyond the classroom and discusses the role of Computational
Empowerment in the development of everyday AI applications. I
argue for the need for a new approach to AI-systems design. The
chapter presents Remarkable AI as a design approach that emphasizes
end-users’ empowerment in interacting with AI-systems. I present
remarkableness as a sensitizing concept for AI-systems design and
discuss how to determine the right level of remarkableness on the
continuum between remarkable and unremarkable AI.

Chapter 7 discusses how my work has addressed the research questions posed
in Chapter 1 and concludes the dissertation. Further, the chapter
discusses the limitations of my work and points to future work needed
to further develop the ideas presented in the dissertation.

Main Contributions

Bellow follows an overview of the publications and manuscripts that are included
in part II of the thesis. For all the included manuscripts, I have made significant
contributions to the work behind and the writing. Papers A through C are drawn
on in chapter 4. Paper D is drawn on in chapter 5. Finally, Paper E is included
as chapter 6 with several edits and expansions as detailed in that chapter. Each
paper that presents a design experiment has been assigned a pictogram in the
margin notes to more easily identify it. When these experiments are referenced,
this pictogram will be shown in the margin notes to support the reader. Note that
for all included papers, reference numbers have been adjusted to the dissertation.

Paper A (VotestratesML) Magnus Høholt Kaspersen, Karl-Emil Kjær Bil-
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Chapter 1

Introduction

“We want to feel that our world is intelligible, so we can be responsible
for it.” — Crawford, 2009 [45]

During the last three years as a Ph.D. fellow, I have written and rewritten
this introduction several times. Artificial Intelligence (AI) is present and central
in an ever-expanding part of our everyday life. Being a researcher trying to figure
out how to teach this to children feels like playing a constant game of catch, in
which the technology is always just out of reach. In my time as a Ph.D. fellow, it
was mainly the introduction to the world of the GPT-3 and ChatGPT natural
language processing and Dall-E image generation models that dominated the
public conversation: what is the future of communication and art if we can no
longer tell if a painting was made by a person or an AI model, or if we cannot be
sure who or what wrote that tweet that made us angry? Shortly after I began my
Ph.D., the world changed because of the Covid-19 pandemic. Suddenly, we were
utterly dependent on computational systems, social media, and video conference
software to stay in touch with our loved ones and to do our work. Now, AI and
systems using it are so ingrained in our everyday lives that part of being a citizen
involves engaging with these systems, and as such, should, arguably, also include
an understanding of how these systems are made, how they work, and what their
implications are.

Since the most recent AI Spring, the advantages made in computer processing
and the cheapening of digital storage have made AI a central component in
developing many interactive systems. Across the world, AI drives innovations in
fields such as medicine [43, 200], criminal justice [176], terrorism prevention [241],
etc. Further, AI is deployed across social networking sites for curating personalized
content and advertisements, and researchers at Facebook have shown how they
can tweak these systems for large-scale manipulation of their users’ moods [129].
Finally, AI is physically present in our homes through digital assistants such as
Google Assistant, Amazon’s Alexa, etc. [98].

These examples show that while AI promises excellent progress, it also has
the potential to do great harm. Much criticism has been raised about how AI
is used, pointing out how these systems’ opaqueness makes it nearly impossible
to scrutinize and survey them [36]. Additionally, since these systems rely on
historical data for making inferences, they are subject to unfair biases, e.g., sexism,
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classism, racism, homophobia, etc. [11, 210] that might permeate such data. If
not carefully mitigated, systems risk becoming unfair and consolidating human
biases and errors in ways that are nearly impossible to account for.

The advantages of AI, the promises made, and the advances already shown are
too significant to wholly dismiss the technology on these grounds. But, as HCI
researchers and designers, we must do what we can to ensure that the systems we
design or the designs our research enable benefit their users. Already, researchers
are engaged with creating explainable AI (xAI) that allow for scrutiny [1], and
the Association for Computing Machinery has established an academic conference
on Fairness, Accountability, and Transparency (FAccT) in AI systems.

In addition to these efforts, there is a growing focus on AI education in schools
worldwide, and researchers have been exploring what to teach about AI (e.g., [137,
216]). These efforts are often based on the notion of Computational Thinking
(CT), as popularized by Wing [234]. Wing’s CT focuses on how Computer Science
methods and concepts, such as abstraction and decomposition, can be a powerful
way of understanding and solving problems.

However, CT “lacks a wider contextual approach to technological, cultural
and societal challenges and change” [107, p. 4] posed by AI. What is needed, I
argue, is an approach to AI education that does not just aim to develop children’s
instrumental skills to prepare them for a career in one of the STEM fields (science,
technology, engineering, and math) but one which fosters a critical understanding
of AI, and empowers children to question and discuss it.

With this dissertation, I aim to contribute to this conversation, specifically in
relation to the subset of AI technologies called machine learning (ML). As I unfold
below in section 1.4, ML is a subset of AI driven by the analysis of historical data
to make inferences. ML specifically is the technology enabling the most discussed
AI technologies such as Dall-E, ChatGPT, conversational systems such as Alexa
and Siri, and the recommender systems used in search engines such as Google,
and social networking sites such as Facebook, Instagram, and TikTok.

In my Ph.D. studies, I have followed several strands of research — some more
experimental and some more theoretical — and this dissertation attempts to
combine these into a coherent whole. Generally, I have spent most of my time
on different design experiments for secondary school students and classrooms1.
In the final stages of my work, however, I have come to realize that the scope
of the quest I have embarked on reaches beyond what is achievable in a formal
school setting and necessitates changes in how AI systems in the wild are designed.
(This notion is explored and discussed further in chapter 6).

I hope you enjoy the read and that you step away from this dissertation
inspired and perhaps a little provoked.

1.1 The Need for Computational Empowerment
in ML Education

In recent years, several researchers working with CT have argued for focusing on
empowerment in computing education (e.g., [50, 107, 110, 123, 124, 213]). Kinnula

1Secondary School carries different meanings in other parts of the world, but I use it throughout
this dissertation as a shorthand for students aged 11-18, grades 6-12, or in the Danish school
system; ‘udskolingen’, and ‘gymnasieskolen’.
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et al. [124] present a framework for different meanings of such empowerment,
ranging from a management view in which empowerment takes a motivational
meaning, to a critical perspective, in which empowerment denotes the ability to
recognize issues with the status quo and encouragement for making changes and
taking action.

As I have argued above, the challenges of AI and ML call for empowerment
in the critical sense of children, a need echoed in the literature [50, 100, 107].
Iivari [100] argues that the role of children should be shifted from “mere users of
digital technologies created by adults to makers and shapers of such technologies
and, along these lines, to transformers of culture”. Similarly, Iversen, Smith,
and Dindler [107] expands CT’s focus to teaching children to ’code’ and ‘decode’
technology around them and frames computing as cultural production. They
position ‘decoding’ as a way for children to “understand the impacts of digital
technology on their personal and societal contexts” and ‘coding’ as a means for
children to participate in “co-creating the future that emerges through the design
of digital technologies”.

Iversen, Smith, and Dindler [50, 107] name this approach Computational
Empowerment (CE), to highlight their aims of democratizing technology and
empowering children in their interaction with it. Informed by the Scandinavian
Participatory Design movement of the 1970s and -80s, they argue that children
should be empowered to have a say in how technology is developed and included
in their lives. This, they claim, can be achieved through hands-on design work, in
which children learn to create meaningful objects through technological means
and by analyzing and ‘hacking’ existing technologies to examine their personal,
cultural, and societal impacts.

In this dissertation, I draw on CE as my primary educational approach, as
its aims align with the challenges AI and ML pose (as outlined above). ML
education from a CE point of view entails a focus on both coding-activities, such
as understanding and creating with ML, as well as decoding-activities, such as
analyses and discussions of the implications of ML.

1.2 Research Problems & Questions

As discussed above, the widespread use of ML poses promises and challenges to
how we arrange our future societies and personal lives. There is a need for a
public conversation about how ML is used in the systems we engage with daily.

CE is fruitfully positioned to address the need for fostering an understanding
of ML that supports this conversation. It proposes that children should not just
learn instrumental skills and competencies regarding digital technologies but that
it is equally (if not more) important that they develop the ability to reflect on,
discuss and question them critically.

However, CE is presented by Iversen, Smith, and Dindler [107] as a broad
approach to teaching digital technology, and one that, in the past, has mainly
engaged with technology through digital fabrication [107]. Thus, CE has focused
less on developing students’ understanding of the fundamentals of technology. ML
differs from other computational technologies in some key areas: It is not explicitly
programmed to carry out (algorithmic) instructions but makes inferences based
on historical data. The algorithms that allow this are (often) complex beyond
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(most) human comprehension, leading to opaque results that are difficult to call
into question. Further, ML, in practice, usually exists behind the curtains of the
systems that deploy it. You might interact with an interactive system and never
realize that it either deploys ML or collects data about you to use in ML systems
elsewhere. As mentioned above, I see a need for an articulation and elaboration
of CE, specifically with regard to its engagement with the technical fundamentals
of ML.

Next is the challenge of designing concrete learning tools and activities with a
CE framing of ML education. Van Mechelen et al. [222] show that most research in
child-computer interaction aims to teach technology to provide children valuable
skills and competencies or the means to improve their lives through technology
(i.e., with a focus on non-critical articulations of empowerment [124]). They
identify a need for more research that develops children’s critical engagement with
technology. In this dissertation, I aim to address this gap, specifically regarding
ML. What does computationally empowering ML education look like in practice?
How do we convey to researchers, designers, and educators in ML, what CE
implies for teaching ML? What practical advice can we give these people based
on this framing?

The final problem this dissertation addresses is how we sustain CE beyond the
classroom. Empowerment cannot be bestowed unto people but must be claimed by
them [67, 153]. Thus, it is not enough to develop students’ capacity for critically
engaging with ML: “Freedom and morality are meaningless unless they are to be
enjoyed among people who are free and moral. Hence, the ethics of the individuals
in the AI world is influenced by the architects of the ecosystem within which
they enact...” [212, p. 225]. In other words, we need to address the systems that
children engage with outside the classroom. If these systems are (as they are today)
designed to serve the tech giants first and their users second, what opportunity do
children have to exercise their so-called empowerment? Especially when so many
rely on these systems to maintain and develop their social lives [132, 240]. How
can we ensure children’s agency when using everyday ML-based systems outside
the classroom? Focusing on teaching AI/ML and developing critical thinking in
students is not enough. What we learn from these significant efforts should be
tied back into HCI research and ML systems design. Only in this way can we
sustain our efforts beyond the classroom and into everyday life.

These problems are further reaching than what I will be able to solve in my
dissertation. However, with this dissertation, I aim to inform research as well as
policy and educational efforts to come. The research problems outlined above
lead me to address the following research questions in this dissertation:

RQ 1: How can CE as an approach to ML education address the challenges
posed by the widespread use of ML?

RQ 2: How do we design learning tools & activities that scaffold children’s
computational empowerment with regard to ML?

RQ 2a: What characterizes the design space for such tools & activities?

RQ 3: How can a CE approach to ML education inform AI/ML systems
design?
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Below, I briefly present my research methodology (see chapter 3 for an in-depth
unfolding) and briefly introduce AI and ML for the uninitiated. Following this,
I unfold how each research question will be addressed in the different chapters
of this dissertation, how they relate to my work, and the papers on which this
dissertation is based.

1.3 Research Methodology

Explorative work such as this calls for an explorative methodology. Here, I
have first and foremost based my work on Constructive Design Research [7, 130].
Constructive Design Research (CDR) is a particular branch of research-through-
design, where the construction of design artifacts and experiments with these
artifacts drives the knowledge generation in the research [7].

In the work presented here, I have investigated the context of CE and ML
education through several experiments. I have designed prototype learning tools
and activities for teaching ML with a CE focus. Each of these has brought new
insight and findings with them and has informed the next experiment, as well as
my increasing understanding of the problems I outlined above. These insights led
me to look at the problems in new ways and drift [130, 131] in new directions
with the following experiment. Krogh and colleagues [130, 131] describe different
ways of doing so, with the most pertinent for this project being a “comparative”
mode of drifting. For this approach, the different design experiments aim to
“reveal as-yet undocumented additional qualities of a concept and confirm some
previously found qualities". Central to my experimental work has been exploring
the design space for learning tools and activities, and throughout the process, I
have incorporated several design elements. In chapter 4, I outline this process
with a particular focus on the drifting that occurred throughout it.

In addition to CDR, this work is informed by Participatory Design, specifically
its Scandinavian variant [22, 28]. Much of the design work has been carried
out in collaboration with other designers, educators, and students. Still, most
importantly, my work shares its political goals with the Scandinavian branch of PD.
My work is motivated by the acknowledgment that computational technologies
and the digitalization of society must happen democratically to ensure that the
interests of otherwise disempowered stakeholders be heard. This combination of
CDR and PD has led to several tensions in my project, both methodologically
and practically, which I explore and discuss further in chapter 3.

1.4 A Primer on Artificial Intelligence and
Machine Learning

For the interested reader, with little to no understanding of artificial intelligence
or machine learning, I offer here a small introduction to the technology2

AI as an idea has been around for a very long time and can be traced back to
the philosophers and mathematicians of antique Greece. In the 1950s, however,
the idea of AI as we have come to understand it today began to form. In its
2For a more comprehensive introduction see, e.g., Artificial intelligence by Russell, Norvig, and
Davis [189].
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broadest term, AI is defined by the Merriam-Webster dictionary as “the capability
of a machine to imitate intelligent human behavior”. As AI is an umbrella term,
this definition can be applied to (relatively) simple systems such as reversing
sensors in cars that indicate or even bring the vehicle to a halt when too close to
an obstacle. It might also be used to describe delicately programmed non-playable
characters in video games designed to give the player the appearance of intelligent
behavior.

In this dissertation, I am not concerned with these types of systems but rather
the subset of AI technologies called machine learning (ML). As indicated by the
name, ML is said to “learn” from historical data to produce an outcome informed
by this data. A simple example of ML is the K-nearest neighbors algorithm. Say
we want to predict a type of sports activity based on how far players move and
how fast they accelerate. This algorithm takes as its input a training data set
describing this relation, with each data entry having a label (i.e., the type of
sport) and two features (i.e., length traversed, and total acceleration). When we
wish to predict the sports type of a new, unlabeled entry, we show this to our
system. It then calculates the distances between the new entry to those already
labeled. The new data entry is then awarded a label based on the category of the
majority of the K nearest neighbors (hence the name).

This is an example of a supervised ML model (i.e., where the training data
is manually labeled). There are many types of supervised ML algorithms, most
of which are more complex than the example above, such as different types of
neural networks. Notably, there are also other types of ML, such as unsupervised
learning, in which we do not know the label of the training data, and algorithms
attempt to divide it into meaningful chunks. Additionally, there is reinforcement
learning, in which algorithms explore and optimize their path to a predetermined
goal3, as well as generative ML models, where historical data is used to suggest
new entries4.

The tools and activities I present in this dissertation are all examples of
supervised ML, but as argued by Enni and Assent [56], all types of ML are
constructed from the same technological foundation of learning from data, and
optimization towards a specific goal, whether it is categorizing a new data entry,
generating a new image, or finding the optimal strategy for playing StarCraft II.

1.5 Structure of Part 1

The remainder of part 1 is structured as follows: First, in chapter 2, I position my
work in relation to previous research: I present related work on empowerment in
and beyond education, i.e., what it means to be empowered, the role empowerment
plays in technology education, and child-computer interaction research. Next, I
present work related to AI education, specifically with regard to suggestions for
AI curricula and what children should know about AI. Then I present the state
of the art in designing tools and activities for teaching AI and argue that there
need to be more tools that specifically aim to foster children’s critical reflection.

3An example of this is Google’s AlphaStar, which was trained to optimize winning matches in
the video game StarCraft II, and was able to beat professional athletes.

4Examples here are typing suggestions on smartphones, but also more advanced systems such
as ChatGPT, the author of my forewords, and the image generation model Dall-E.
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Finally, I present work related to the role HCI has played in the design of AI
systems. Here, I focus mainly on xAI and AI design guidelines.

Next, in chapter 3, I present and discuss the methodological foundations of my
work, how I have applied CDR, and specifically worked within a programmatic
epistemological framing [130]. I further present how PD has influenced my work,
how collaboration was central throughout my process, and discuss the tensions
between CDR and PD that have affected my design process.

Chapters 4 to 6 present the main contributions of my project.
Chapter 4 addresses RQ2. Here, I present and analyze my design process

(based on papers A through C and F through H), emphasizing the knowledge
creation that occurred in the process and the drifting between each experiment.
Based on this analysis, I present six design principles for designing computationally
empowering tools and activities for AI education. Finally, I discuss these principles
with regard to how they interact with offset in my experiments.

Next, in chapter 5, I address RQ1 by presenting the CEML framework:
an expansion of the original articulation of CE with a technological, material
foundation. I present what ML concepts, practices, and perspectives are key for
CE-based ML education. Further, I draw on our model for progression towards
CE, based on paper Paper D, to discuss how the CEML framework can inform
the work of designers and educators working with CE and ML.

Chapter 6 addresses RQ3. It lays forth a reframing of my original research
program (as presented in chapter 3) as Remarkable AI, based on Paper E. This
framing marks a return to HCI, and I argue for the need to sensitize designers to
remarkableness in AI systems design with the aim of computationally empowering
people with regard to AI.

Finally, in chapter 7, I conclude part I, summarize my contributions to
computing education and HCI, and point out limitations and directions for future
research based on these contributions.
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Chapter 2

Background & Related
Work

This dissertation is built on a large body of previous work, mainly from HCI
and computing education. In this chapter, I present the state of the art about
computational thinking in education, how critical aspects of computing and
empowerment have become more prevalent in research on computing education,
and what researchers have argued every child should know about AI. Next, I
present an overview of prior efforts in designing AI learning tools and activities.
Finally, I present related work on how the HCI community has addressed and
engaged with AI, specifically through Explainable AI, everyday algorithm auditing,
and design guidelines for AI. I do so to provide an overview of the fields that
intersect with my research and to further position my work within these fields.

2.1 Computational Thinking

The term Computational Thinking (CT), as it is most popularly understood,
was developed by Wing [234] in 2006. For Wing, the term means “thinking
like a computer scientist”, that is, problem-solving by reforming “a seemingly
difficult problem into one we know how to solve” [234, p. 33]. She argued that
computers and computer science, as a method, are universally needed for tackling
the issues we had (at the time) at hand. At the heart of computational thinking,
Wing argues, is abstraction [233]. Further then, computational thinking to Wing
is asking “how do we express a problem such that it can be computed?”, and
“[i]mplicit in answering this question is our identifying appropriate abstractions
and choosing the appropriate kind of computer for the task” [233, p. 3719].

In 2008, Wing argued that “if we wanted to ensure a common and solid basis
of understanding and applying computational thinking for all, then this learning
should best be done in the early years of childhood” [233, p. 3720]. She observes
that universities (at least in the U.S.) have already begun incorporating CT into
their curricula across different fields of study and argues that the next step is to
look to K-12 education.

However, the phrase “Computational Thinking” was first used by Papert [171],
although on in passing. Papert’s idea was that computers might serve as a tool
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for students to experiment with abstract, mathematical ideas by constructing
concrete and meaningful objects. This idea is further instrumentalized in his
learning theory of Constructionism, which argues that learning most efficiently
occurs when constructing such meaningful objects [169]. There is merit in both
approaches [136]; Wing’s CT emphasizes that an understanding of central CS
ideas is necessary to act in an increasingly digital world. Further, Papert’s CT
asserts that experimenting and constructing with digital technologies (such as
programming) can be powerful tools for learning.

As CT gained traction in K-12 education, so did the development of tools for
teaching it, often inspired by both Wing and Papert. Although I will not present
a review of CT tools generally (instead see, e.g., [76]), I will briefly talk about
Scratch, as it has been and continues to be a hugely popular tool for developing CT
in children, with more than 35 million monthly users, and 100 million registered
users1. Resnick et al. presents Scratch as a way “to make it easy for everyone, of all
ages, backgrounds, and interests, to program their own interactive stories, games,
animations, and simulations, and share their creations with one another” [183, p.
60]. Functionally, Scratch is a so-called block-programming language in which
users create algorithms and programs by snapping different blocks together. The
different types of blocks were designed visually and functionally to allow snapping
only when syntactically possible. The aim for Resnick et al. was to provide
children with the means of developing their capacity for computational thinking
(in the Wing sense) in a playful, constructive, and experimental way, following
Papert’s Constructionism.

To further operationalize CT (in Wing’s terms), Brennan and Resnick [33]
present three key dimensions of CT; computational thinking concepts, practices,
and perspectives. As examples in the context of Scratch, the authors present
“sequences, loops, parallelism, events, conditionals, operators, and data” as key
CT concepts, “being incremental and iterative, testing and debugging, reusing and
remixing, and abstracting and modularizing” as practices, and creative expression,
social connection, and questioning as key perspectives. While these examples are
primarily targeted toward programming, the dimensions are relevant to CT as a
whole.

With her insistence on CT as a fundamentally important skill, Wing accurately
predicted the situation that we are in today, which led to my work. Across the
world, CT is being implemented in school systems2. However, as pointed out by
Iversen, Smith, and Dindler[107], the strengths of Wing’s CT are in understanding
how computing works and how to apply computing to solve problems. It is,
however, lacking regarding how to prepare children for lives as heavily influenced
by computational technology as we see today. They argue that CT should be
expanded with the notion of Computational Empowerment, which they define
“as the process in which children, as individuals and groups, develop the skills,
insights, and reflexivity needed to understand digital technology and its effect on
their lives and society at large, and their capacity to engage critically, curiously
and constructively with the construction and deconstruction of technology.” [107,
p. 1].

1See https://scratch.mit.edu/statistics/, accessed 20/12/22
2See, e.g., the CS4All program in the U.S (https://sites.google.com/schools.nyc.gov/cs4allnyc/)
and in Europe the joint efforts of Informatics Europe and ACM Europe (https://www.
informatics-europe.org/education/informatics-in-schools.html, accessed Jan 17th, 2023).
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2.2 Empowerment in Computing Education, and
Beyond

To take a step back, I will briefly account for the notion of empowerment and
how it has been used in education.

Empowerment, as a term, came into use in the late 1960s and 1970s in the
civil rights movements of the time, including feminism and the Black Power
movement [38]3. The term, however, has often been misused or conflated with
democratization, decentralization, political participation, enabling, and speaking
out [153, 237]. There is, however, some agreement on the meaning of the term.
Hence, empowerment is “a multidimensional process of change from a condition of
disempowerment”, that “[c]annot be bestowed by a third party, as individuals are
active agents in this process”, and “[i]s shaped by the context [. . . ]” [153, p. 321].

With regard to empowerment in education, a seminal work is Freire [67]’s
Pedagogy of the Oppressed. He argues that educators should strive “for the emer-
gence of consciousness and critical intervention in reality” [67, p. 81]. According
to Freire, the (still) predominant student/teacher relationship, in which students
are receivers of knowledge that educators deposit (what Freire calls “banking
education”), needs to be retired, and replaced “by reconciling the poles of the
contradiction so that both are simultaneously teachers and students.”. He fur-
ther cements that empowerment comes from within and cannot be deposited in
students: “Freedom is acquired by conquest, not by gift. It must be pursued
constantly and responsibly." [67, p. 47].

I have, throughout my work, experienced this on several occasions. Although
many students expressed gratitude that we had taught them about ML and how it
is implemented in society, we also faced a certain hesitation about making changes
to how they use and act around ML-systems, in particular social networking sites
and applications. Here Karlberg [117]’s exploration of power relations might help
to shed light on how this can be addressed. He argues that the dominant view
of power in the West is adversarial or “power against” something. He offers an
alternative in “mutualistic power”, or “power with” someone. Karlberg argues that
empowerment might be nurtured or assisted through education or mentorship and
that by collaborating, people who were previously disempowered might find power
in such collaborations. With this view, while we might not empower individual
students to make significant changes on their own with regard to ML, we might
assist them through education and aim to develop their capacity to take collective
action by, e.g., participating and adding to the discourse around ML.

Next, I will examine different empowerment goals related to children’s com-
puting education. In child-computer interaction (CCI) broadly, and specifically
in computing education, empowerment is often mentioned as a goal with 188
papers from the CCI’s most prominent venues (the Interaction Design for Children
Conference (IDC), and the International Journal for Child-Computer Interaction
(IJCCI)) using the term from 2003 to 2020 [222]. Kafai, Proctor, and Lui [111]
offer a general framework for different computing education framings divided into
cognitive, situated, and critical framings. Here, the cognitive frame centers on
building skills and competencies in a specific domain, and the situated frame

3For a comprehensive history of Empowerment, see “Empowerment: The History of a Key
Concept in Contemporary Development Discourse”, by Calvès [38].
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focuses on supporting practices and participation. Finally, the critical frame aims
to foster ideological awareness and teach social and political action strategies.
Kinnula et al. [124] present a more detailed framework of 5 different views on
empowerment related to how the term is understood in CCI: First, the man-
agement/mainstream view in which empowerment is characterized as providing
employees with (some) power as a motivational strategy. Next, the functional
view, in which empowerment is understood as a method for “improving people’s
life-conditions to serve organizational/management goals”. Third is the educa-
tional/competence view, which aims to empower people by teaching them useful
skills and competencies. The fourth view is democratic, in which empowerment is
taken to mean improving people’s “ability to participate in decisions affecting their
lives”. Finally, the critical view is characterized as the oppressed “combating” the
oppressors. This final view coincides with Freire’s articulations of empowerment.
Importantly for Freire, however, is the idea that a resolution for the oppressed lies
in the absolution of the oppressed/oppressor relationship, not in the oppressed
gaining power over the oppressors, themselves becoming oppressors in the process.

In 2021 Van Mechelen et al. [222] conducted a systematic review on the use of
Empowerment in CCI literature drawing on the distinctions made by Kinnula
et al. [124]. They found that nearly 70% of the papers that mention empowerment
deploy it in either its functional or educational term, while 23% use empowerment
in its democratic sense. Furthermore, the mainstream view is represented in 8% of
papers, while the critical view only makes up 3% of papers. These distinctions are,
however, not wholly separate; children might need to obtain new skills (educational
empowerment) and certainly need the ability to partake in decisions affecting their
lives (democratic empowerment) in the fight for liberation from their oppressors
(critical empowerment). Given the current power relations between Tech Giants
and us, critical empowerment should be striven for to a greater extent. This is
further corroborated by Iivari et al. [101], who argue that researchers in CCI
should pursue the following: “(1) more explicit and thorough engagement with
critical theories; (2) more attention paid to different forms of empowerment and
their implications; (3) more critical analyses of the status quo; and (4) CCI studies
moving from mild to wild along the continuum of criticality.”

Computational Empowerment (CE) [50, 107] is a Scandinavian approach to
computing education that explicitly aims for democratic and critical empower-
ment of children with regard to digital technology. Further, CE emphasizes the
development of children’s reflexivity, and ability and willingness to take an ethical
stance on digital technology (thus adhering to what Iivari et al. [101] labels a wild
approach to criticality).

CE had its starting point in the Danish FabLab@School [107, 204] project,
which “[t]hrough long-term engagement with diverse stakeholders including stu-
dents, teachers, lab leaders, and local and national policymakers, [. . . ] explored
the core challenges and potentials of integrating digital technologies into real-life
educational contexts” [107]. Through a participatory design-based process, the
involved teachers and researchers examined how to use digital fabrication and
design with the goals of supporting students’ in “1) engaging creatively in tech-
nology development, 2) understanding the role of digital technology in society,
and 3) reflectively and critically understanding the role of technology in one’s
own life” [107]. As an approach, CE builds on Scandinavian PD [28, 31], and
in particular, the early Utopia project [31]. Here, researchers collaborated with
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trade unions and blue-collar workers to gain influence on how technology was
introduced in their workplace through processes that Karlberg [117] might have
characterized as mutualistic empowerment.

In a 2018 paper, Bødker and Kyng [30] presents a harsh but fair critique
of current PD efforts. One of their primary criticisms is that “[w]hat happens
after design is left to existing structures outside the projects”: Most current PD
efforts are concerned more with ensuring democratic and fair participation in the
research process than with what happens once the researchers leave. In other
words, the empowerment goals of PD projects seem to have shifted away from
being critical [124]. CE is positioned as a return to previous goals of critical
empowerment. In particular, the Danish FabLab@School project, which CE
sprung from, engaged with local and national policymakers to make sustainable
effects on policy [27].

However, while the Danish FabLab@School project focused on supporting
digital fabrication as a means for children to co-create the future, the project did
not engage with advanced, emerging digital technologies, such as ML. My project
then is an insistence on sustaining the critical empowerment goals of CE and the
FabLab@School project, with a particular focus “on questioning [. . . ] even the
most advanced technologies at hand” [30], here ML.

2.3 What Everyone Should Know About ML

To help develop a CE approach to ML and AI education, I will present literature
related to AI in education, specifically regarding what everyone should know
about it.

In 2019, Touretzky et al. [216] presented their suggestions for what all K-12
students should understand about AI as “Five Big Ideas”. First, they argue that
students should understand that “computers perceive the world using sensors”.
According to the authors, one of the most significant advantages of AI is that
the computing power in many devices is now sufficiently powerful to process
rich sensor data such as video and audio, allowing advanced analysis by AI
systems. Second, they argue for teaching that “Agents [or instances of AI] maintain
models/representations of the world and use them for reasoning”. It is important
here that AI systems never have a holistic worldview but are instead limited to
specific representations of the world determined by how they are configured. Third,
to emphasize that “Computers can learn from data”, i.e., that ML algorithms allow
AI systems to self-configure these representations based on training data. Then,
they propose teaching how “Making agents interact comfortably with humans is
a substantial challenge for AI developers”, referring to conversational systems.
They point out that these systems are still based on limited models of the world
and, thus, do not possess human-level reasoning skills. Finally, they argue that
“AI applications can impact society in both positive and negative ways” and
present two fundamental questions related to this; “what applications should
AI be used for [. . . ], and what ethical criteria should AI systems be required
to meet?”. These are high-level suggestions, and the authors offer more specific
proposals for different grade levels. Their recent work has focused specifically on
how to implement teaching about ML in American schools [217].

Similarly, Ng et al. [157] present an exploratory review of AI literacy, and
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based on this, four aspects of AI literacy: Knowing and understanding the basics
of AI, using and applying AI to different contexts with an understanding of what
sorts of problems it might be used to solve, evaluating AI systems and creating
new AI systems, and AI ethics related to “human-centered consideration” such as
fairness, accountability, transparency, etc.

Importantly for a CE-based approach to AI education, neither of these works
emphasize empowerment with regard to AI, in the critical sense of aiming to
foster the competencies and attitudes to take action regarding the effect of AI
students’ lives, communities, and society at large.

Long and Magerko [137] present a definition of AI literacy and a comprehensive
(although non-exhaustive) set of competencies and design considerations for such
literacy. They define AI literacy as “a set of competencies that enables individuals
to critically evaluate AI technologies; communicate and collaborate effectively
with AI; and use AI as a tool online, at home, and in the workplace”. Many
of the competencies they present are covered by the broad ideas above but are
presented by Long and Magerko [137] in more detail and, notably, often with a
critical focus. I will not go over all 16 competencies and 15 design considerations
but will highlight a few that exemplify the authors’ focus on developing critical
skills. For example, with their second competency, Long and Magerko argue
that students should be able to understand and critically discuss the differences
between human intelligence and “machine intelligence”. In competency six, the
authors argue that learners should become able to “[i]magine possible future
applications of AI and consider the effects of such applications on the world” [137,
p. 4], with the aim of evaluating current technologies, the values embedded in
them, and their possible long term effects. For designing tools for teaching AI,
they suggest (in design consideration three) working with contextualized data sets,
emphasizing the importance of being critical about data and understanding how it
is collected and processed and its limits. They further, with design consideration
eight, encourage to develop students as critical consumers, able to question and
discuss AI technologies in terms of their supposed intelligence and trustworthiness.

What is, arguably, missing from Long and Magerko’s conceptualization of AI
literacy is a focus on developing children’s attitudes. In the Danish Fablab@School
project, a central sentiment was the role of the child [106]. Iversen, Smith, and
Dindler [106] here argue that by fostering the role of the child as a protagonist,
“children can be empowered to shape technological development and critically
reflect on the role of technology in their practices” [106, p. 27]. They argue
that the desired outcome when understanding the child, or student, in this way
is not only the development of competencies but also developing their “stance
toward technology in their life.” [106, p. 30]. For a CE approach to AI education,
this idea is central. Empowerment, in this sense, is not only about developing
competencies and motivating students to learn but also about fostering students’
self-identification as potential agents for change regarding AI.

2.4 Tools and Activities to Teach ML

Since beginning my Ph.D. project, research into teaching AI and ML has increased
dramatically. Attempting an exhaustive review of tools and activities is beyond
the scope of this section, but I will outline the landscape for these below. I am
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focusing specifically on tools and activities as it is through experiments with my
own of these that I have conducted my research. Additionally, my dissertation is
(for the most part) about the design of tools and activities. First, I outline tools
and activities’ different ways of interacting with AI/ML. Then I present what
aspects of AI/ML tools and activities aim to teach, according to the framework
by Brennan and Resnick [33], divided into concepts, practices, and perspectives.
Finally, while tools and activities have advanced since the beginning of my project,
there is still a lack of tools aimed at fostering computational empowerment,
specifically by focusing on personal and societal perspectives of ML/AI.

2.4.1 Different Ways of Interacting with AI/ML

Tools and activities for teaching AI/ML can generally be divided into three
categories (although with some possibility for overlap): Unplugged, embodied, and
graphical. First is the unplugged activity. Lindner, Seegerer, and Romeike [135]
present a set of five activities for teaching different AI principles. One activity
has children classify illustrations of biting and non-biting monkeys. Here, the
illustrations are hung on a whiteboard, and students collaborate to develop
different criteria for classifying them, e.g., are they showing teeth or not? Ossovski
and Brinkmeier [167] similarly present an unplugged activity to teach linear
classification. Here, photos of screws of two different lengths are used to create a
simple unplugged ML system. Students measure the boundary box4 of a screw,
and maps its dimensions onto a 2-dimensional coordinate system. This way, a
data set is created, and a linear classifier is then estimated by drawing a line
separating the two groups of screws. Skinner, Brown, and Walsh [202] conduct a
co-design workshop with children of color to explore their conception of fairness in
AI. Here, children were tasked to design a fair AI librarian. The authors find that
they associated fairness with kindness and having their best interests in mind.
The co-design process did, however, not address how, technologically, fairness can
be addressed in ML systems.

Unplugged tools and activities offer a low-floor entry to ML/AI. They can
present these technologies to students in non-overwhelming ways that highlight
the basic principles of ML/AI and which are simple enough to be understood
and made functional without the need for computers. However, they can quickly
become too simplistic to convey the complexities and nuances of ML/AI and
might not be well suited for discussing issues that arise during more opaque steps
in the ML process.

The next mode is what I will call embodied tools and activities. Opposite to
unplugged tools, these are interactive and allow students to interact with ML/AI
in embodied ways. The degree to which aspects of ML are embodied varies across
different tools. Zimmermann-Niefield et al. [246] present AlpacaML as a way
for students to learn about ML in the context of athletic moves. The system
is comprised of a small wearable device that can be attached to the body and
collects gesture data. This data is sent to a smartphone, allowing students to
train models to classify different moves. Students are asked to use the system to
improve their moves by, e.g., classifying good and bad kicks in a game of football
(soccer). In another paper, Zimmermann-Niefield et al. [245] expand AlpacaML

4That is, the smallest rectangle that can be drawn around the screw in a photo, such that it
encapsulates it entirely.
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to interface with Scratch to allow students to build their own gesture-based
controls for interactive media. In a similar project, Hitron et al. [92] introduce
the Gest system, which allows children to create ML models to recognize gestures
of geometric shapes, draw in the air using a small hand-held device. Other tools
include Any-Cubes [193]. Any-Cubes are two wooden cubes, where one is equipped
with a camera, and the other allows actuators such as a DC motor to be attached.
Children can use the camera cube to photograph objects and train a model to
recognize these. The other cube can activate the actuator corresponding to the
classification upon recognition. Finally, on the boundary between embodied and
graphical tools and activities is Google’s Teachable Machine [39]. This popular
tool allows students to train ML models with different types of data; using their
laptop’s web camera, they can train models on image or posture data and by
using its microphone on audio data. Teachable Machine, however, also supports
a purely graphical mode of interaction, where digital images are uploaded to
the website and used as training data. Vartiainen et al. [224] used Teachable
Machine in a ML workshop for 6th-grade students (aged 12-13), and found that
the embodied approach lowered the barrier for entry for the students, as well as
supported them in concretely exploring complex ML topics.

Such tools and activities also offer a low entrance barrier and can convey
ML/AI to students in a relatable, embodied way. Furthermore, they are better
equipped to address ML systems’ opaque nuances because they include functional
models and systems. However, they often struggle with representing more complex
and dynamic aspects of ML that could more readily be made available to stu-
dents graphically. Many tools, thus, combine the embodied approach (especially
regarding data collection) with graphical modes of interaction.

Finally, we have a set of purely graphical tools and activities for teaching
AI/ML. Examples of these are block-programming languages made or expanded
to include ML/AI capabilities, e.g., Snap! [115], Scratch [60], NetsBlox [34], and
the MIT App Inventor [211]. Other tools include SmileyCluster [226], a tool
for learning about unsupervised ML by clustering emoticons. AIThaiGen [5]
is a tool for teaching ML to 7th to 8th-grade students, offering ways to create
object recognition, facial landmarks detection, hand pose detection, and simple
image classification, and components for connecting these models to other systems.
Finally, Mariescu-Istodor and Jormanainen [141] presents a tool similar to Teach-
able Machine that allows students to train ML systems on image data. It differs,
however, in using a simpler algorithm for image detection, thus allowing students
to observe more steps in the processing of data before use in the algorithm.

Typical for these tools is that they are highly dynamic and offer higher ceilings
and wider walls [184] for what is achievable over other modes of interaction.
By extending existing block programming languages, the possibilities that are
inherent in these are carried over, allowing students to create highly functional
systems for use in a wide variety of contexts. Further, these tools often allow an
in-depth exploration of ML/AI technology by allowing students to pull back the
curtain on black boxes and peep inside.

2.4.2 What Tools and Activities Aim to Teach

As suggested by Brennan and Resnick [33], we can, for learning purposes, divide
technologies such as AI/ML into three parts; concepts, practices, and perspectives.
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Most tools and activities aim to teach at least some concepts of ML. For example,
the unplugged activities by Lindner, Seegerer, and Romeike [135] teaches central
concepts such as what training data is, what features in data are, and how a ML
model might classify data. SmileyCluster by Wan et al. [226] aim to teach similar
things, but also what clustering in unsupervised ML is, and how it works. Most
tools also include aspects of the ML process. With AlpacaML, Zimmermann-
Niefield et al. [246] highlight how models are evaluated and how they can be
iteratively improved. Vartiainen et al. [224] with their project-oriented workshop,
teach how problems can be articulated such that they can be solved with ML.
However, as pointed out by Druga, Otero, and Ko [52] in their review of the
landscape of resources for teaching AI, few tools address personal and societal
perspectives of AI/ML. Skinner, Brown, and Walsh [202] and their AI librarian
address fairness in AI systems from the point of view of children of color. As
we point to in Paper C, tools and activities that address concepts and practices,
rarely address the perspectives and implications of ML and vice versa.

2.5 AI in HCI Research

Finally, I present a brief overview of how the HCI community has worked to
support and enhance the design of AI systems in recent years. I do so according
to the recognition (as argued above) that developing children’s skills and attitudes
towards AI and ML is insufficient as long as the systems where they meet AI are
designed in ways that suppress their possibilities for questioning, evaluating, and
altering them.

As argued by Grudin [77], HCI and AI as research fields as several overlaps,
especially as AI/ML is increasingly used in end-user systems. One field where
this overlap is apparent is Explainable AI (xAI). xAI is concerned with how to
explain the output of AI models to their users [146]. However, as argued by Miller,
Howe, and Sonenberg [147], these systems often fail to consider non-expert users,
focusing instead on offering explanations to domain experts that utilize AI in
their work. Further, Abdul et al. [1] argue that xAI tends to offer explanations
of a system’s inner workings to experts to gain their individual trust but fail to
take into account the social contexts in which these systems are used. Ghajargar
et al. [72] present Graspable AI as an approach to AI that, in some ways, seeks
to address these issues. They argue that work is needed in other modalities for
explaining AI systems and that doing this through physical form might be a
fruitful way of explaining the meaning, context, and cultural significance of such
systems.

These issues are further addressed by Shen et al. [198] and what they dub
Everyday Algorithm Auditing. Through case studies of a series of platforms where
their users have collectively called into question decisions made by algorithmic
systems, such as Twitter prioritizing white people when automatically cropping
uploaded photos to display on their website. They suggest that platforms im-
plement opportunities for their users to form communities for auditing their use
of AI and mechanisms that allow developers to provide insight into how their
systems work. Further, they suggest incentives for platforms to make changes
based on these audits. While this approach seems promising, it lacks the effort to
push for platforms to design their AI-enabled functionalities in ways that make
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them malleable for their users. While everyday algorithm auditing allows users
to collectively find symptoms of unfair or misfunctioning algorithms, it arguably
does not support users directly in understanding and calling into question their
underlying causes. To do so, platforms would have to expose more of how their
algorithms work and, importantly, offer users ways of exploring, experimenting
with, and grasping this.

Finally, HCI researchers have proposed different design guidelines for AI sys-
tems. Several researchers have proposed different design principles and guidelines
for designing AI systems (e.g., [2, 95, 160]). Recently, Amershi et al. [2] suggests
18 guidelines for human-AI interaction based on an analysis of 150 previous design
recommendations from research and industry. Some of them relate to the usability
of AI-enabled applications, such as “[s]how contextually relevant information”,
and “[s]upport efficient correction”. Others are geared towards helping users
understand, on a general level, what the systems AI component is doing, and
how users themselves are and can affect this, e.g., “[c]onvey the consequences
of user actions”, and “[m]ake clear why the system did what it did”. These are
steps in the right direction but, I argue, not sufficient. Offering an explanation of
an AI system’s behavior, or conveying the consequences of an action, does not
necessarily leave the end-user with any more power over the outcome. Instead,
as a thought experiment, maybe a user would prefer a slightly less accurate
outcome, but instead using an algorithm that they could understand. Finally,
they suggest to “[m]itigate social biases”, which might be more of an ideal than
a practical possibility [186]. Indeed, the authors’ example of an autocomplete
feature without gender bias is one that “suggests both genders [him, her]”, which
is biased toward a binary understanding of gender. This is to say that completely
removing unwanted biases is near impossible since developers might not be aware
of their biases; these might be deeply ingrained in historical data, or be constantly
reinforced by the system itself. While it is a good thing for developers to mitigate
as many unwanted biases as possible, efforts are also needed, as suggested by
Shen et al. [198], that allow users to make developers aware of biases they might
have missed. Additionally, as argued above, this requires ways for users to learn
how biases can occur in AI systems.

2.6 Summary

In this chapter, I have presented a broad range of literature on computational
thinking and empowerment, teaching AI and ML, and AI in HCI research. The
chapter provides an overview of the different fields with which my work intersects
and points to gaps in the literature that my work seeks to address. I argue that
computational thinking as an educational approach needs to engage more with
the critical aspects of AI/ML and that a broader focus on empowerment is needed
to prepare young students for participating in a world where these technologies
increasingly affect us. Further, I point out that the work hitherto carried out with
a computational empowerment frame (i.e., the Danish FabLab@School project)
lacked an engagement with emerging technologies such as AI and ML. I have
presented a range of existing tools and activities aimed at teaching AI and ML and
found that while there is a great variety in these, only some tools and activities
are designed to teach the ethics of AI. Fewer still combine this with a technical
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engagement with the technology. Finally, I have given a brief overview of how
the HCI research field has engaged with AI through Explainable AI, everyday
algorithm auditing, and design guidelines for AI. While this is vital work, work is
still needed to aid designers in creating AI-systems that help end-users understand
their underlying principles and, thus, what consequences these systems might
have.
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Chapter 3

Methodology &
Reflections

In this chapter, I present, argue for, and reflect on my choice of methodology.
Throughout the process, I have primarily drawn on Constructive Design Research
(CDR) [128, 130] as my method of inquiry and knowledge generation. In addition,
Participatory Design (PD) [28, 29, 30], and especially its Scandinavian tradition,
has played a supporting role, and the combination of CDR and PD methods has
been a central tension throughout my project.

This chapter first introduces Computational Empowerment for ML Education
as a research program informing my design process. Then, I unfold the role
design experiments played in my process. Next, I reflect on how knowledge is
produced and disseminated as intermediate-level knowledge. Then I present how
Participatory Design informed my work. Finally, I discuss the tensions between
CDR and PD in my project1.

3.1 My Research Program

According to Krogh and Koskinen [130], knowledge-generation in CDR, historically,
belongs to one of four “epistemic traditions”; experiential, methodic, programmatic,
and dialectic. The experiential tradition is rooted in art and design practice. Here,
“[r]esearch gives the overall frame and direction to research, but the hypothesis is
primarily shaped by practice” [130, p. 54]. In the methodic tradition, designers’
work is guided by theories and methods, on which grounds hypotheses about a
design artifact can be made and tested. In the dialectic tradition, hypotheses
“get their meaning in communities of practice rather than theory alone” [130, p.
57]. They are formed in collaboration with a community the designer serves, and
as such, they are evaluated in their ability to serve this community. Finally, in
the programmatic tradition, “designs get their meaning from theoretical frame-
works that discuss the meanings of these designs and serve as handles for other
researchers, but that cannot be understood without the concrete experiences of

1Sections 3.2, 3.4, 3.5 are adapted from my progress report, and have been edited and expanded
upon.
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the design objects” [130, p. 55]. In my project, as I will unfold below, I have
followed the programmatic tradition.

The initial program for my project was ready-made at its onset. My project
is of many in the CEED project: Computational Empowerment for Emerging
Technologies in Education. Here, I focused from the beginning on ML, giving
rise to my project’s research program, Computational Empowerment for ML
Education. As argued by Bang and Eriksen, “the program sets a frame for the
experiments, making them into more than “undirected explorations”, while it at the
same time is open for surprises and new insights arising from the experiments” [6,
p. 4.3]. In other words, CE for ML Education provided the initial direction for
the project. Taking things apart, ML, first and foremost, provided the project
with a technological boundary. While other technologies were, and are, relevant
for CE (and part of the CEED project), my project would explore ML.

CE, on the other hand, sets political and methodological boundaries. By
drawing on its PD roots, CE positions itself as an explicitly political approach
to computing education. CE’s declared goal is “creating opportunities for future
generations to engage as agents and cocreators of potential and critical alter-
natives” [107, p. 4]. Further, it concerns the “empathic, aesthetic, ethical, and
structural aspects of technology” [107, p. 4]. In other words, like early Scandina-
vian PD [31], CE is concerned with the democratization of technology. Instead
of focusing on the workplace, though, CE concerns itself with education. CE is
not just politically but also methodologically grounded in PD. Iversen, Smith,
and Dindler [107] argue that the established catalog of “methods, techniques,
and practices” in PD is an appropriate starting point for developing children’s
computational empowerment.

In addition to this pre-established research program, I brought my experiences
and expertise into the project, especially my experience with Constructive Design
Research. This further helped with the initial framing of the project. CDR, as
coined by Koskinen et al. [128], is a type of Research-through-Design, that refers
to design research, where the knowledge-generation is specifically centered around
the construction of design artifacts, and experiments with these2. As elaborated
by Bang et al. [7], the design experiment is central to producing knowledge in
CDR. A project’s hypotheses and research questions are constantly evaluated
against the experiment and vice versa. As they argue, “knowledge, empirical
findings, concepts, and ideas are combined as a form of abstract prototypes to
be tested and debated according to their relevance to practice, academia, and
practicability or feasibility of the experiment”. Throughout a larger project that
may contain many experiments (such as my Ph.D. project), the research program
and its central hypotheses and research questions may drift between or during
these experiments, and reframing the research program might become necessary.

As such, the relevance of design experiments in CDR is not limited to evaluative
devices with which a hypothesis can be tested. Instead, design experiments are
as much framing devices that play a central role in the initial framing and
(potential) ongoing reframing of the research program [6]. Below, I discuss the
role experiments played in my research project.

2The terminology, however, is still somewhat fuzzy, as there is little agreement on this distinction,
and many design researchers use construction but do not call themselves constructive design
researchers.
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3.2 The Role of Experiments: Drifting and
Reframing

My commitment to CDR is motivated by how it supports both rapid and deep
exploration of new subject areas and its focus on producing knowledge through
the construction of artifacts. Apart from my own, I have only found a few
examples of design work addressing how to teach ML from a critical empowerment
perspective [124]. Thus, the design space for such learning tools and activities
had yet to be defined at the beginning of my project, and a primary focus of my
work has been on uncovering this space. Another of my focus points has been
holding myself accountable to the people I aim to serve with my work. These
are designers and design researchers in the education space, but also educators
themselves. The theoretical contributions of my work (including this dissertation)
are mainly aimed at designers and design researchers to add to the collective
knowledge base and discourse around how to design for the democratization of
digital technology. Further, sustaining knowledge in artifacts enables concrete
discussions with stakeholders in the project, such as teachers and municipal staff,
centered around specific artifacts, such as learning tools and activities. Finally, by
explicitly making our work available and supporting scaling, we aim to support
educators in adapting our artifacts to their context or developing their own
teaching activities.

In this way, our experiments play two roles in my project: To allow a designerly,
iterative exploration of the design space of CE for ML Education and as concrete
design proposals that add to the discourse and offer new ways of teaching ML
from a CE point of view.

Krogh and colleagues [130, 131] describe different types of relations between
experiments and artifacts in design research projects as they develop over time,
i.e., different ways of drifting (see Figure 3.1). The first is accumulative, where
knowledge from previous design experiments is accrued in the next, leading to
a final artifact embodying the total knowledge produced in the design process.
The comparative way of drifting, where different design experiments work “from
or towards a shared platform of comparison” [131, p. 45]. Each experiment is
designed to evaluate knowledge produced in earlier experiments and uncover
new aspects about the focus of inquiry as a way of “acknowledging complexities”.
Expansive drift occurs when the designer is working towards revealing an area
of focus with unknown boundaries. There is no causal connection between
experiments except the ambition of broadening the understanding of the design
space. In contrast, serial drifting is characterized by methodical advancement,
with each experiment continuously building on experiences from the previous.
Finally, drifting by probing is characterized by “[e]xploiting opportunities and
exploring design ideas as they emerge through design work” [131, p. 15]. Each
experiment here is often personally motivated or designed to foster the most
impact rather than following insights or ideas generated in previous experiments.

Among these five ways of drifting, the relation between the design experiments
in my project can, broadly, be characterized as comparative. When seen together
and from a distance, my design experiments do precisely this; each experiment
is concerned with the same set of concepts and seeks to explore these from
different angles while drawing on and challenging the knowledge and understanding
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Figure 3.1: Five Ways of Drifting in Constructive Design Research by Krogh and
Koskinen [130]. Included with authors’ permission.

gathered from the previous experiments. Here, the central area of focus is
Computational Empowerment for ML Education. My experiments revolve around
this focus, exploring its different aspects in a reciprocal process of framing and
reframing the program based on previous experiments and letting the program
inform new experiments.

Apart from drifting within my design program, I underwent a significant drift,
causing a reframing of the program into what I call Remarkable AI, which I unfold
in chapter 6. This new framing expands the boundaries of my initial program.
Moreover, it embraces the role interaction designers and the HCI community play
in the shaping of (AI) technology which lends itself to be critically examined.

3.3 Disseminating Programmatic Design
Research

Krogh and Koskinen [130] claim that design research in the programmatic epis-
temic tradition mainly uses theoretical frameworks as outputs for the knowledge
produced in such projects. However, the interaction design and design research
communities have found that the notion of the generalizable theory is often too
high of a bar to be meaningful. But, knowledge is being produced in these com-
munities that is more general than a singular design concept. Instead, researchers
have explored, and continue to explore, intermediary knowledge, i.e., knowledge
that somehow lies in the intermediary between concept and theory (e.g., [41, 46,
71, 96, 207, 242, 244]). According to Stolterman and Wiberg [207], this happens
through design work that combines “individual theoretical concepts into constructs
that bring together earlier findings in new concepts and artifacts”. Höök and
Löwgren [96] further this argument by suggesting other forms of intermediate-level
knowledge in HCI. They divide these into generative (such as design patterns,
guidelines, annotated portfolios, methods, and tools) and evaluative (e.g., design
heuristics, experiential qualities, and design critiques).

In chapter 4, I present a set of six design principles to support designers of
ML learning tools and activities and educators choosing to use these in their
teaching. As described above, I have worked comparatively with our design
experiments, informed by previous experiments’ findings while exploring new
aspects of the design space. To arrive at these design principles, I analyzed
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my experiments with regard to which design decisions caused a drift, that is,
which design elements of each experiment were noticeable enough that it was
either sustained through several design experiments or immediately discarded
after evaluating the experiment. This analysis yielded seven design principles as a
set of generative intermediate-level contributions to designing ML learning tools.

Further, in chapter 5, I present a framework for computationally empowering
ML education. This framework builds on existing articulations of CE [50, 107],
and expands on it with a technological, material foundation. The framework draws
on Verbeek’s idea of the morality of technology [225] and provides a vocabulary for
decomposing how specific ML concepts, practices, and perspectives influence the
impact of any given ML-systems. Further, the framework ties these technological
foundations to the CE activity model suggested by Dindler, Smith, and Iversen [50,
Figures 2 and 3], thus highlighting how these might be included in the design of
concrete tools and activities.

Finally, in chapter 6 I introduce Remarkable AI as an approach to AI systems
development, that emphasizes the need to open up these systems for their users.
Remarkable AI represents one end of a continuum of remarkableness in AI
systems (where Unremarkable AI [238] represents the other), and I argue that
remarkableness should become a sensitizing concept for designers and developers
of AI systems.

3.4 Participatory Design that Matters

In addition to CDR, I have drawn on ideas from Participatory Design (PD). I am
motivated by democratizing ML, reflecting the ideals of traditional PD [22, 31]
but with a focus on its influence on our everyday lives rather than our work lives.

At its infancy in the seventies and eighties, PD was a democratically motivated
effort to empower on-the-floor workers as new technology was introduced at their
workplaces [31]. In later years, digital technology, and with it HCI research, moved
into our everyday lives [26], and new challenges rose for PD. In a 2018 paper,
Bannon, Bardzell, and Bødker [8] discuss future directions for PD, highlighting
the need to bring the democratization of technology into the educational setting.
Another recent paper by Bødker and Kyng [30] calls for a return to the political
nature of PD and a focus on technological ambition.

My research is a response to these calls. Its alignment with the goals of
Computational Empowerment [50, 107] to empower students with regard to
technology means that I am politically engaged in democratic discussions about
technology and its use. Similarly, I have high technological ambitions with my
focus on ML and developing state-of-the-art tools and activities for teaching it.

Concretely in my research, I mainly draw on PD methods by inviting stake-
holders such as pupils, teachers, and representatives from the municipality into
my design process and by allowing them to engage with ML in meaningful ways
through experiments with the artifacts that take center stage in my project.
However, my participants are only sometimes on equal terms with me in the
project, as is customary in traditional PD projects. Instead, I focus on mutual
learning during design workshops and teaching situations. I let this learning
influence my work while maintaining autonomy over my designs. This is necessary
to sustain the deliberate design practice of CDR, but leads to tensions with
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PD: “[W]e note that many of the published papers that use [CDR] methods are
designer-driven, feature minimal meaningful participation, and in many cases
de-emphasize political conflict (though there are exceptions)” [8, p. 7].

3.5 Combining Constructive Design Research &
Participatory Design

My motivation for combining CDR and PD lies in their shared reflexive stances
toward design. In CDR, the designer is reflective in their conversation with the
material of design [194] and experiments with their artifacts. In PD, the designer
also reflects during the design process, but the reflection happens cooperatively
between stakeholders, leading to mutual learning between the parts. Combining
both approaches allows switching between the introspective reflection present in
CDR and the extrospective reflection of PD, allowing designs to be examined
from different angles.

However, there are tensions between CDR and PD in the emphasis on stake-
holder involvement and empowerment. PD is a political project that aims to give
voice to the “people on the floor” in design projects. This deliberately diminishes
the autonomy of the designer whose role (in simplified terms) becomes to use
their design knowledge to support the stakeholders in realizing a finished product
that accommodates their needs. Thus, it is the job of the design researcher to
uncover the needs on which to base the product and to support otherwise unheard
stakeholders in the project. In contrast, CDR advocates the autonomy of the
designer as an artist. Here, the specific Designer brings their values and beliefs,
and the product is enriched by these, at least in artistic terms. This maintains
design projects’ typical hierarchy. However, CDR must uphold this hierarchy as
design artifacts simultaneously serve as suggestions for solutions and deliberate
ways of exploring and inquiring about a design space. Because of this latter
purpose, autonomy is necessary: With sovereignty over their artifacts, designers
can maintain the artifacts’ deliberateness.

On the other hand, it might be possible that these tensions are more ideological
than practical issues. In my case, I have cherry-picked methods from PD to invite
stakeholders into the design process while maintaining the autonomy of my design
decisions (although they have been negotiated between my colleagues and me).
In any case, it is apparent that power relations between researchers and “subjects”
are central for both methodologies precisely because design and its inevitability
to be world-changing are central to them both. It might not be possible to avoid
hierarchical structures altogether in design situations or to entirely preserve the
designers’ autonomy in projects with multiple stakeholders; perhaps neither is
inherently desirable.

3.6 Project Collaboration

My project has been an intrinsically collaborative effort. Most prominently,
I have collaborated with my colleague Karl-Emil Kjær Bilstrup (who features
as a co-author on most of the papers this dissertation is based on). Through
the project, we have collaborated closely as design and research partners. All
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experiments I present throughout this dissertation were designed in collaboration
with Karl-Emil. This, naturally, is also evident from our dissertations, which are
both parts of the CEED project, although they differ in the types and nature of
their contributions.

Further, I have had an ongoing collaboration with other researchers in the
CEED project. We have worked together on concrete design experiments, specifi-
cally the Critical Data Literacy Intervention (Paper F), but have also collaborated
by discussing and developing our separate experiments throughout the process.

Finally, to uphold the PD roots of CE, the CEED project established a
sustained collaboration with a group of teachers in Aarhus, Denmark, known as
De323. The municipality established the group to support computing education
and digital skills in schools around Aarhus. It consists of several teachers from
different subjects bought out one day a week. The role these teachers played
shifted as the research drifted. In some experiments, they took a consulting part.
Here we approached teachers with an idea, mock-up, or early design prototype. In
small workshops with 2-3 teachers, we would discuss this artifact; teachers would
test it and provide inputs. We would then incorporate this feedback into the
further design process. The Critical Data Literacy Intervention (Paper F) is the
collaboration closest to PD’s participatory ideals. Here, we collaborated closely
with teachers throughout several workshops over four months and developed a
five-day intervention, which we then carried out and evaluated in an 8th-grade
classroom (see [192]). The final role teachers took was as classroom facilitators
during our interventions. We carried out several experiments in which the teachers
present had not been involved in the design process but were still in the classroom
while we carried out an intervention. Here, we would have ongoing discussions
during students’ group work, and they would assist students needing help.

3see https://sites.google.com/aaks.dk/de32/startside, accessed Jan 7th, 2023. In Danish.
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Chapter 4

Configuring the Design
Space

This chapter presents and discusses the design process of my work as a Ph.D.
student, from the infancy of my project to its concluding moments and beyond.
When I began my work, little other work existed on teaching ML and AI with
an explicit aim of scaffolding CE. Thus, the project took off into a relatively
unknown design space, where little formal knowledge existed about how such
learning tools could or should be designed. Thus, much of my work has been
navigating and making sense of this design space, i.e., which handles and knobs
a designer of such tools has in their possession and how to use these to design
successful learning tools.

Below, I present in detail my design process, emphasizing how findings in
one experiment drove the design of the next, or how I bridged what Hallnäs and
Redström [80] term ’the hermeneutical gap’ (i.e., the gap between my understand-
ing of the design situation, what I learned from one experiment, and what was
designed in the next). Examining my entire body of work allows the relationship
between the experiments and the guiding principles that emerged through them
to be explicated. Further, it highlights how these principles interact with each
other.

Additionally, this design process is vital for understanding how I arrived at CE
as a frame for ML education (as detailed in chapter 5), as well as my drift towards
Remarkable AI (as presented in chapter 6). Thus, this detailed presentation of
the design process serves to document the framing and reframing that occurred
throughout my project. Recently, Zimmerman et al. [243] argued that actions of
(re)framing are “an important outcome of design research, one that constructs an
analytical argument for the value of the new frame as an outcome of a twisting
and winding journey”. As such, this chapter serves as the central ‘data-set’ for
the forthcoming arguments in the dissertation.

Central to this chapter is a set of design principles derived inductively through
analysis of my design experiments. Notably, these principles are not an exhaustive
list but rather the central tenets of my work. Thus, I invite other researchers to
contest or expand upon them with experiments of their own. These principles
(which will be presented in detail in section 4.2) are:
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• Considering Tangible Representations of ML

• Providing Low Floors to Engaging with ML

• Providing Opportunities for Meaningful Engagement

• Scaffolding Students’ Fundamental, Technical Understanding of ML

• Emphasizing Critical Engagement With ML

• Designing for Scalability

Some of these principles are self-evident and well-known from research on
education and computational thinking (e.g.,[23, 142, 184]). However, there exists
a series of tensions and synergies between the principles, which aren’t obvious
when viewing them from afar: How a designer balances the emphasis on these
principles affect the success of a given ML learning tool. By providing both a
set of design principles and a portfolio of the tensions and synergies within these
principles, I aim to aid designers in designing such tools, as well as a metric by
which educators might judge existing tools before investing their time and money
in them.

4.1 My Design Process, Explained

Below, I present my design process in chronological order1, with each design
experiment marked by a subsection. Following the description of the experiment
itself, I describe findings regarding the design of the experiment that lead to
new directions for the following experiments. Note that these findings are not
necessarily addressed in the immediately subsequent experiment but sometimes
in a later experiment. Additionally, not all findings from each experiment are
present here, only findings that directly influenced the design of a later experiment.
Instead, for each experiment, I will provide a reference to the publication describing
it, wherein more details can be found. An overview of the process can be seen in
Figure 4.1.

4.1.1 VotestratesML

To explain my process, I have to start before my Ph.D. starts with my Master’s
thesis. My colleague and I designed VotestratesML (Paper A), our first attempt
at teaching ML from a CE point-of-view, with a CE frame (see Figure 4.2).

VotestratesML (VML) is a web-based platform for teaching ML in a Social
studies classroom. It allows students to create ML models to predict voter behavior
by pulling from voter data from a post-election study based on the general election
in Denmark in 2015. Here, students work collaboratively in groups to create a
ML model. To motivate students, VML includes a competitive element in which
the different groups compete against each other to create the “best” models. VML
1The chronology of publications generally follows the order of the experiments, but notice
that the experiment with the Machine Learning Machine (Paper C) precedes the ML Ethics
Workshop (Paper B), although the publications dates, and such the numbering of the papers,
are the other way around.
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VotestratesML (Paper A)
+ contextualized
engagement

+ political discussions
+ technical
understanding

Machine LearningMachine
(PaperC)

+ MLprocessmade tangible
+ scaffolds understanding
of data

+ low barrier to entry

MLEthicsWorkshop (Paper B)
+ tangible
+ low barrier to entry
+ design case
+ supports scaling

Critical Data Literacy Intervention
(Paper F)

+ students embodyML
algorithm

+ datamade personal
+ personal discussions
+ low barrier to entry

Machine Learning Machine
2.0 (PaperG)

+ highlights human decisions
behind the scenes

+ further opens up technical
aspects ofML

ml-machine.org (PaperH)
+ design case
+ tangibleMLprocess
+ available platform
+ low barrier to entry

Figure 4.1: A complete overview of my design process. For each experiment,
qualities that are carried over to the next are highlighted.

allows students to choose the goal of the model (e.g., to predict what party voters
will choose), which features of the data-set the model should consider (e.g., their
opinion on tax policies, immigration, if their parents belonged to a specific party,
etc.), and to configure different parameters of the model (e.g., number of epochs
and hidden layers in a neural network-based model). VML was framed as a
learning tool for social studies first and for ML second:

[I]nstead of starting by introducing ML concepts, VotestratesML takes
departure in the social studies subject as a tool for analysing voter
behaviour. The tool is designed to support typical social studies class
activities; Students work in groups on tasks assigned by the teacher,
followed by a discussion based on the group work. The available data
categories were chosen based on models of voter behaviour taught
in Danish social studies classes [108], allowing students to explore
how ML models can predict voter behaviour, compare theoretical
models with ML models, and discuss ML models from a social studies
perspective and how they are already used actively to affect the
outcome of democratic elections [3, 158, 185] (Paper A, p. 1002)

The reason for this contextual framing of VML is to be found in an earlier
experiment. Here, we designed a quick-and-dirty prototype using Google Collab3

(collaborative Jupyter Notebooks) to allow students to build ML models on a
variety of data. This early prototype was not contextualized as a social studies-
first prototype but instead aimed solely at providing students a first experience
of what we (at the time) deemed the most important ML concepts. The high
school students participating in our pilot study with this tool were generally
2Page number refers to the included manuscript in the dissertation.
3https://colab.research.google.com/
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Figure 4.2: Two students creating ML models to predict voter behavior with
VotestratesML

not particularly engaged by this decontextualized and technical-looking interface,
stating that “For this to be really exciting, you probably need to be interested in
the subject (ML)” (Paper A, p. 1074).

This finding and conversations with a high school social studies teacher led
us to the idea of a highly contextualized tool that contributed not only to
students’ understanding of ML but also to their subject-specific knowledge and self-
identification as social science students. At the same time, this contextualization
also provided the opportunity of focusing on how ML was/is used in democratic
elections with the Cambridge Analytica [37] case and the upcoming Danish general
election as focus areas.

From our studies with VML, we found that while the tool did foster some
discussion on ML ethics and indeed was engaging to use, we were not successful in
teaching students the role of data in ML, e.g., “If choosing a feature did not have
the expected effect or a model made an unexpected prediction, most students
rejected what the model actually stated, and instead wrote it off as a problem
with the data, rather than reconsider the veracity of their expectations” (Paper
A, p. 1065). Another finding, and unintended consequence of our design, was
that its competitive element led students to dismiss otherwise exciting discussions
in the pursuit of a ‘better’ model.

These findings inspired the design of our two following design experiments:
the Machine Learning Machine (Paper C) and the ML Ethics Workshop (Paper
B).

4Page number refers to the included manuscript in the dissertation
5Page number refers to the included manuscript in the dissertation
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Figure 4.3: The two devices of the MLM. To the left is the Trainer device and to
the right is the Evaluator. From Paper C.

4.1.2 The Machine Learning Machine

The Machine Learning Machine (Paper C) is an attempt to make the process
of creating a data-set, training, and then testing and improving a ML model
as tangible as possible. The design of the MLM (see Figure 4.3) was directly
informed by our finding with VML that students struggled with understanding
the role of data. It addresses this by moving the data into the physical world and
simplifying it:

“The MLM is a learning tool which enables K-12 students to iteratively
work on ML models for binary classifications of doodles they draw
using pen and paper. It consists of two separate devices [...]: the
Trainer, a big industrial looking metal box which provides a simple
interface for labelling data and training ML models; and the Evaluator,
an instrument inspired by laboratory equipment for analysing and
evaluating ML models’ performances. Besides the two units, the ML
model that learners build is represented by a physical artefact. This
model is moved between the two units to either train or evaluate the
model”. (Paper C, p. 1406)

Another rationale behind the design of the MLM was to slow down users’
engagement with ML, as compared to VML: “[The MLM] requires students to
use a slowly moving, laborious system, and asks them to make time and space to
assemble around ML, to explore it together, and to take their time to reflect on
details” (Paper C, p. 10).

However, as the MLM focused mainly on teaching the ML process and key
concepts, the participants’ reflections were about this. In our pilot study, we found
that the MLM effectively highlighted the role of data. The participants engaged
intently with the aspects of ML highlighted by the MLM. They created different
hypotheses to explain data’s role in the MLM and devised various strategies for
testing these. On the other hand, the participants struggled with understanding
the idea of the model artifact, specifically that it represented a ML-model with

6Page number refers to the included manuscript in the dissertation
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Figure 4.4: Students engaged in the ML ethics workshop. From Paper B.

an abstract understanding of the data rather than serving as “ ‘memory cards’,
storing photos of the drawings and moving them between the Trainer and the
Evaluator” (Paper C, p. 1497).

Discussions about ML ethics were absent in the pilot study, and while we
suggest activities for scaffolding such discussions in Paper C, we did not evaluate
these activities. However, as argued above, scaffolding a fundamental under-
standing of ML concepts and processes is an inherent part of qualifying such
discussions. Finally, while the MLM is an engaging prototype the design of it: two
large custom-built boxes, a 3D-printed model artifact, etc., highlighted another
challenge: if we are, as I propose, to teach ML and AI on a large scale, we also
need tools that scale beyond HCI-research prototypes.

4.1.3 ML Ethics Workshop

The other issue with VML, should the reader not remember, was that discussions
on ethics were hampered by its competitive aspect. Additionally, such discussions
were only peripherally included in the design of the MLM.

This inspired us to design another experiment with a greater focus on fostering
these discussions. With the ML Ethics Workshop (Paper B), we created a design-
based workshop in which students engage with a design case to design a ML-based
mobile application to solve an issue with their peers (other teenagers) as the
target audience (see Figure 4.4). We designed this workshop to be completely
unplugged, needing only paper materials, which we provided in the studies we
conducted. Specifically, the workshop is inspired by Inspiration Cards [82] and
includes a deck of several cards used throughout (see Figure 4.5). The workshop
7Page number refers to the included manuscript in the dissertation
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Data

Interactions

How people interact with each 

other

Who do they talk to? For how 

long? Where? Data

Smart home
Sensors in people’s homesWhen are they home? How 

much power do they use? How 
much TV do they watch?

Ethics

Data Collection

Are users and others aware 

that data is collected about 

them?

Are they aware of how the data 

is used?

Ethics

Visibility
Is your system visible when you meet it? 

Is the use of Machine Learning 
visible in your system?

People

Grandparents

People

Siblings

Figure 4.5: Some examples of the cards used to guide the workshop activities in
the ML Ethics Workshop (Paper B). From Paper B.

format is as follows: First, students are given a short introduction to ML, and
the facilitators present the design case. Next, students analyze the context of
their case using data-cards provided by facilitators. Next, students ideate, coming
up with as many ideas for applications as possible. Then, they select an idea
and describe its ML component using a template provided by the facilitators.
Next, students reflect on the ethics of their proposed applications, prompted by
an ethics-card provided by the facilitators. Following this, students redesign their
applications according to the above discussion. Finally, students present their
applications to each other, followed by a classroom discussion.

From our evaluation of the workshop format, we found that it was successful
in scaffolding discussions about ML ethics. In particular, the design case tied
ethical considerations to students’ specific designs, providing them with a concrete
starting point for their discussions. However, the workshop also highlighted the
need for a solid foundational understanding of ML when discussing its ethics:

“The group discussed whose responsibility it was, if the system recom-
mended an exercise that caused an injury, but their solution was to
employ professional testers to prevent this from happening. It was,
however, unclear how these testers would prevent the system from
recommending wrong exercises, even if all exercises had been tested.
And it is also unclear how the testers would be made responsible for
bad recommendations.” (Paper B, p. 1268)

In this case, a more profound familiarity with ML would have allowed students
to qualify their solution technically and to have used more precise wording about
their thoughts, allowing others to critique it as well.

4.1.4 Critical Data Literacy Intervention

The Critical Data Literacy Intervention (Paper F) was carried out over five days
in an 8th-grade classroom of a Danish public school. As the name suggests, the
8Page number refers to the included manuscript in the dissertation
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Figure 4.6: Students embodying a KNN model, posing for a photo of their
classification.

focus was on developing students’ data literacy, specifically on how data are used
in ML. The intervention took students through a series of activities, in which
they became acquainted with how data are collected about them, how this data
can become more valuable than the sum of its parts, how the data can be used
to make ML models, and what these models can be used for. We designed the
experiment around four artifacts; a pop quiz, the data compass, an embodied
K-nearest Neighbors (KNN)9 exercise (see Figure 4.6), and the KNN Exploration
Tool.

“The pop-quiz is an online form, created in Google Forms10, that mimics the
quizzes pupils see on social platforms and in magazines, which promise insights
about themselves or their peers if they answer a few questions” (Paper F, p. 229).
The purpose of the activity was to illustrate to students, how data are collected on
the internet through seemingly innocuous interactions. The quiz asks questions
such as students’ age and how far they travel to school, as well as more personal
questions such as how important making a lot of money is to them.

Students answered the quiz as homework before the intervention, in which
we revealed to them that this had been a ploy for us to collect data about them.
Students then used the Data Compass (see Figure 4.7, to the left) to reflect on
the value of this data by rating each question with regard to their willingness to
share the information and how they perceived its value to others.

9KNN is a simple ML algorithm, that classifies a new data entry, by calculating its distance to
the K -nearest neighbors.

10Note that pupils had access to the Google Educational Suite which is compliant with local
legislation on data collection and that all data collected were thoroughly anonymized before
leaving this platform.
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Figure 4.7: To the left is a filled-in Data Compass. To the right is a screenshot of
the KNN Exploration Tool. From Paper F.

Following this, we taught the students how seemingly mundane data can
become valuable when aggregated. We did so with the Embodied KNN exercise:

“[A]n unplugged activity [15] where pupils embody a two-dimensional
KNN model, acting as data points representing their own personal
data. A coordinate system is drawn on the floor in a large room and
pupils arrange themselves in the coordinate system according to the
axis and simulate the KNN algorithm with different values of K by
asking their two, four, and six closest classmates questions”. (Paper
F, p. 229)

For example, we ordered students by height and stationary activities per
day and used this to predict their favorite sport. While this simple model was
imperfect, it highlighted how some data (such as height) can be used as a proxy for
other information (such as gender), based on which more sophisticated predictions
can be made.

Finally, students used our KNN Exploration Tool (see Figure 4.7, to the right):
“a digital tool which scaffolds pupils in further exploring the class’ data (from the
pop quiz) and build different KNN models” (Paper F, p. 229). To guide their
work with this tool, we presented a design case to the students: The School for
Gifted Children, in which students were tasked with creating a model to determine
which students could be admitted to an exclusive private school.

From the Data Literacy Intervention, we found that working with, modeling,
and discussing students’ personal data made ML personally meaningful to them.
They were able to reflect on the value of data by imagining how it might be used
to affect their own lives. Further, the personal nature of the data also helped
create a low barrier of entry for engaging with it. Students were eager to discuss
how data can act as proxies for related information and were generally engaged
throughout the intervention.

We also found that having students embody their data made it more graspable
to them; in the embodied KNN exercise, students paid close attention to each
other’s positions in the coordinate system and would complain when, e.g., they
felt someone overestimated their height. In addition, some students could draw
connections between this exercise and how the YouTube recommender algorithm
works by looking for what videos people similar to you are watching. Students
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Figure 4.8: Students using the MLM 2.0. From Paper G.

did, however, still need guidance from the facilitators in the classroom discussions,
and not all could relate the embodied exercise to the digital instances of ML they
encounter daily.

4.1.5 MLM 2.0

Next, we designed MLM 2.0 (see Figure 4.8), which, as the name suggests, is an
iteration of the original MLM. Here, we outfitted the physical MLM boxes with
QR-codes in strategic places that link to web pages allowing students to access
information about the underlying ML processes behind the scenes. Additionally,
students are given access/the option to alter the parameters of the ML algorithm,
enabling them to experiment with how these affect the model’s outcome. In our
pilot study with MLM 2.0, we experienced that children would use these digital
options to test hypotheses about the workings of their models.

While these studies were conducted focusing on how the digital addition would
affect children’s use of the MLM, I see this addition as a new way to include
further possibilities for facilitating discussions about ethics using the MLM, as it
highlights human-decision making inside the guts of ML. However, this version of
the MLM does not address the original’s scalability issues.

4.1.6 ML-machine.org

To do so, we designed the final experiment to be included in my dissertation
(and the last one we made. . . ), namely ml-machine.org (Paper H). With this
experiment and prototype we aimed to keep as many as possible of the MLM’s
tangible aspects but to design a system that would lend itself more readily to
scaling. This prototype consists of a web page (see Figure 4.9), that allows
students to train ML models, using the BBC micro:bit.
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Figure 4.9: The ml-machine.org webpage. From Paper H.

Figure 4.10: Students using ml-machine.org to redesign and augment everyday
objects using ML. From Paper H.

Students collect accelerometer data with a micro:bit and process it in
the graphical user interface on the web page. They use the processed
data to train machine learning models to recognize/predict different
gestures/movements. Finally, they can send their model’s predictions
to a second, output-micro:bit, on which they can change the LED
display, play sounds, and activate pins (to, e.g., activate a vibration
motor). (Paper H, p. 2)

Apart from the micro:bit being designed explicitly for children to learn about
computing, it has also been rolled out to a large portion of Danish public schools
as part of an effort from the Danish Broadcast Company (DR) to teach computing
in this context.

In our studies with ml-machine.org, we have centered our teaching unit around
a design case (as was the case for the ML Ethics Workshop (Paper B) as well). Here,
we tasked students with augmenting everyday items with ML (see Figure 4.10).
We did so, to ensure that students would face similar issues in creating their
models/systems as those faced by real designers of ML-based systems.

As we had hoped, we did indeed see that students would engage with these
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issues while using ml-machine.org: issues such as data representativeness, unin-
tended bias, etc. However, as was the issue with the MLM, the nature of the
data collected only allowed for a skin-deep discussion, and needed significant
translation efforts to scaffold a discussion of how ML is used in critical instances
in the everyday systems we are surrounded by. As we have been working with
DR, to create a curricular unit with the ml-machine to scaffold critical discussions
of ML, this is a challenge we have experienced first-hand. Teaching activities
with a critical goal, need to surround the hands-on activities with ml-machine.org
with a meta-layer dealing with the issues surrounding ML. While not necessarily
a bad thing in isolation, it does indicate that the design of ml-machine.org does
not immediately support critical discussions of ML, but rather focuses on the
technical foundations necessary to have these discussions.

4.1.7 Summary of Design Process

In summation, I have undergone a process characterized by learning, iteration, and
hypothesis testing. The design process has been exploratory first and foremost.
I was experienced in design before starting it, but not with either education, or
ML, and on a personal level, this process has taught me many things about both.
I also argue that the process can teach other designers about how to use design
inquiry to delimit a hither-to-unknown design space. Using the process outlined
above, and the takeaways and ways of drifting laid out in it, I present how below.

4.2 Design Principles for ML Learning Tools &
Activities

In this section, I present a set of design principles, derived from analyzing the
qualities in each of the above design experiments, and how these informed the
following experiments. As such, these principles are what I have identified as the
design features in my experiments that had enough merit to be carried through
several experiments, and thus, arguably, transcend the individual learning tool or
activity. I arrived at these principles by analyzing each experiment and identifying
its features, such as how ML is interacted with, presented, and how it addresses ML
concepts, practices, and perspectives. Then I considered which of these features
reappeared in other experiments and from this identified the set of principles.
Note, that while many of these features were included in a single experiment
based on related theoretical work or experiences in other contexts, it is because
of their staying power in our series of experiments that they are included here.
An overview of the principles can be found in Table 4.1.

Below, I briefly characterize each of these principles and discuss how my design
experiments have informed them. Following this, I highlight how certain synergies
and tensions are present between principles when applying them in practice, and
discuss how these can inform the practices of designers and educators working
with ML education.
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Design Principles for
CE-based ML Educa-
tion

Central Experiments

Considering Tangible
Representations of ML

Machine Learning Machine (Paper C), ML Ethics
Workshop (Paper B), Critical Data Literacy In-
tervention (Paper F), Machine Learning Machine
2.0 (Paper G), ml-machine.org (Paper H).

Providing Low Floors to
Engaging with ML

VotestratesML (Paper A), Machine Learning Ma-
chine (Paper C), ML Ethics Workshop (Paper
B), Critical Data Literacy Intervention (Paper
F), Machine Learning Machine 2.0 (Paper G),
ML Ethics Workshop (Paper B)ml-machine.org
(Paper H).

Providing Opportunities
for Meaningful Engage-
ment

VotestratesML (Paper A), ML Ethics Workshop
(Paper B), Critical Data Literacy Intervention
(Paper F), ml-machine.org (Paper H).

Scaffolding Students’
Fundamental, Technical
Understanding of ML

VotestratesML (Paper A), Machine Learning Ma-
chine (Paper C), Critical Data Literacy Interven-
tion (Paper F), Machine Learning Machine 2.0
(Paper G), ml-machine.org (Paper H).

Emphasizing Critical En-
gagement with ML

VotestratesML (Paper A), ML Ethics Workshop
(Paper B), Critical Data Literacy Intervention
(Paper F)

Designing for Scalability ML Ethics Workshop (Paper B), Critical Data
Literacy Intervention (Paper F), ml-machine.org
(Paper H).

Table 4.1: Design Principles for CE-based ML-education, and their related
experiments.

4.2.1 Considering Tangible Representations of ML

Being a digital, and often an automated process, ML can be difficult to grasp,
and so, providing opportunities for users to “get hands-on with it” has, in my
work, proven an effective way of familiarizing them with its inner workings. The
literature further suggests that tangible user interfaces can be effective when
teaching abstract and complex phenomena [97, 143]. Additionally, the research
suggests that providing an option to transition to a graphical interface, might
help students choose the interaction style that most suits their preferences for the
specific task at hand.

This quality is especially present in the design of the MLM (Paper C), and
MLM 2.0 (Paper G). These artifacts were designed with tangibility in mind, as an
exercise of how to represent ML concepts and the ML process tangibly, with MLM
2.0 providing additional functionality by providing an optional graphical interface.
However, tangibility is also present in other experiments, notably in the ML Ethics
Workshop (Paper B), where students use pen and paper to outline a ML-system
prompted by inspiration cards, and in the Critical Data Literacy Intervention
(Paper F), where students embody data points in a spatial ML-system. Tangibility
is also central to ml-machine.org (Paper H), in which students collect gesture
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data with the micro:bit.
This principle advises designers to consider which aspects of ML they aim to

teach and to explore different ways of representing them. Tangible representations
offer advantages, such as with ml-machine.org (Paper H), where we observed that
students would explore the nature of gesture data, and stumble on important
findings, such as the importance of sensor placement, of their own accord. How-
ever, they also have disadvantages such as being less dynamic than graphical
representations, and the issue of scalability. For educators choosing which tools
to deploy in their classroom, a similar consideration is necessary: tangible tools
allow children an embodied experience with ML, and good tangible tools can be
effective for providing a first experience with ML’s complicated nature. However,
graphical tools might offer more flexibility and ways of visualizing and interacting
with complex phenomena that might not be possible to represent tangibly without
oversimplifying them.

4.2.2 Providing Low Floors to Engaging with ML

As we experienced in our early work with VML (Paper A), ML can be daunting
to explore by itself, as it can be complicated to use and difficult to understand.
Resnick and Silverman [184] argues that when designing learning tools for CT
more generally, the “challenge is to develop features that are specific enough so
that kids can quickly understand how to use them”.

All of my work aims to provide low floors. We have aimed to design all tools so
that they could be used with minimal guidance and supervision. VML is designed
such that users cannot bring it into an undesirable state, such that only choices
that result in a functional model can be made. The ML Ethics Workshop (Paper
B) provides templates and inspiration cards that scaffold students’ activities.
While this didn’t completely ensure that all students’ designs were technically
sound, it did seem to increase the degree of their feasibility.

Here, my advice to designers of ML learning tools is to consider the first
experience a child has when using said tool. When learning about a complicated
technology such as ML, it is important that the design of the tool itself is
welcoming and forgiving about the child’s level of understanding of ML. For
educators, this consideration is equally important. A learning tool might offer
advanced functionality, but a barrier of entry that counteracts whatever advantages
the tool might else have.

4.2.3 Provide Opportunities for Meaningful
Engagement

Meaningful engagement is a broad term that refers here to giving students the
opportunity of seeing themselves in ML, and exploring the ways it (can) affect
their lives and the things they care about.

Our experiment with VML (Paper A) highlighted that students’ attitudes
towards ML and digital technology can be a major hurdle for them with regard to
engaging with it. However, by situating VML as a social studies tool first, students
were able to recognize the value it might bring them in their self-identification
as students of the social sciences. With the Critical Data Literacy Intervention
(Paper F) and the ML Ethics Workshop (Paper B), we framed ML as something
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personal to the students; the data they provide systems on a daily basis is valuable,
can be used for purposes not easily noticed, and the systems they are used in
entail complex ethical dilemmas. Thus, providing a contextualized frame for ML
can be effective means of scaffolding engagement that’s personally meaningful to
students, whether it is related directly to a subject that interests them or to their
personal lives.

The literature on CT in education routinely argues, that contextualizing
technology is an important factor when teaching it (e.g., [79, 84, 159, 197]).
Hambrusch et al. [84] argue that students “will comprehend computational concepts
more easily if those concepts can be motivated by examples from their scientific
subdisciplines.” However, as observed in our studies with VML, this is not limited
to the science disciplines, but, I argue, all subjects.

Another powerful way of scaffolding meaningful engagement is through con-
struction. This idea is directly related to Papert’s influential theory of Construc-
tionism [169]; that learning happens through “reconstruction rather than as a
transmission of knowledge...” and that “...learning is most effective when part of
an activity the learner experiences as constructing a meaningful product.”

We have experienced this, especially with the ML Ethics Workshop (Paper
B), and ml-machine.org (Paper H). Here, students construct respectively an im-
plementable but non-functional and a functional interactive ML-system. Students
themselves are in charge of their own design process, and decide what their system
looks like, and what functionality it has. It might be the case, that the meaning
students find in these systems is purely that they are entertaining, but it engages
them nonetheless.

The key for designers is that ML learning tools should be meaningful to the
students using them. This might sound trivial, but that is not the case. It entails
a serious consideration of students’ contexts and is determined by the age of
students, what subjects they are in, what their personal interests and stories are,
etc. For educators, it is important to consider what subject they are teaching
and if the tools they are considering is designed explicitly for this context or is
a generalized tool. It is also important that they trust, that learning through
construction is a fruitful endeavor, even though it might be less straightforward
to predict exactly what students will take with them from such activities.

4.2.4 Scaffolding Students’ Fundamental, Technical
Understanding of ML

When teaching ML with the aim of developing students’ ability to critically reflect
on its use and the implications thereof, it is particularly important to ensure that
they gain a fundamental understanding of the technical specificities of ML. Doing
so ensures that such reflections do not merely become “doomsday” prophecies, but
actually take into account the technical and factual limitations of ML. On the
other hand, it alleviates that ML becomes a buzzword, a sort of “magic dust” to
sprinkle on any system for it to magically become better, and grounds discussions
in what is technically possible.

Kafai, Proctor, and Lui [111] argue that “. . . we need to frame computational
thinking beyond an understanding of computational concepts and practices [. . . ],
to include an understanding of the values, biases, and histories embedded in the
digital technologies”, but that such a focus “. . . does not always guarantee more
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in-depth computational understanding”.
I argue, that such a lack of in-depth understanding might actively hamper

students’ ability to understand values, biases, etc. As an example, take the
issue of data representativeness in ML. Without a fundamental understanding
of both data, and ML, understanding the impact and potential pitfalls of data
representativeness is difficult. This is demonstrated in my work with the ML
Ethics Workshop (Paper B), in which some students struggled to identify relevant
issues in their ML-systems, as well as in the VML (Paper A) studies, where
students’ limited understanding of the role of data in ML, led to false conclusions,
and hampered them in classrooms discussions.

This principle proposes that serious design work be put into conveying the
underlying, technical principles that are relevant to critical aspects of ML the
designer is aiming to teach. Teaching students to develop a ML-system is not the
goal. Instead, focus should be put on conveying the rules of ML, its limitations,
and possibilities such that students can apply these when trying to understand how
they interact with ML in the wild. For educators, I advise a similar consideration:
examine what promises a learning tool is making and scrutinize how these are
tied to technical components of ML.

4.2.5 Emphasize Critical Engagement with ML

Critical engagement should be made central in any tool and activity promoting
it. By this, I mean that the design should offer direct ways of engaging students’
capacities for critical thinking about ML. This means that critical elements of
ML should be brought to the forefront while interacting with the tool or activity.

Importantly, I am not implying that all tools should necessarily engage with
potential personal or societal consequences of ML, such as VML, and the ML
Ethics Workshop does in my work. These experiments deal directly with the
accountability of stakeholders in ML systems and whether ML systems are fair or
not. These are crucial to consider, when putting together a curricular unit on ML
but, arguably, it is equally as important that students come to understand how and
why ML systems have potentially negative consequences, i.e., the technological
materiality and practices that lead to these. In my work, experiments such
as the MLM are not directly positioned as tools that emphasize the potential
impacts of ML. Rather, through engaging with the MLM, students become familiar
with technological concepts such as data, and modeling, and practices such as
formulating problems to be solved with ML, and how data can be (and sometimes
might not be) representative of this problem. Asking these questions, I argue,
is central to decoding the ML systems that surround us, and serves to qualify
discussions of them.

I propose emphasizing critical engagement as a key principle when designing
tools and activities for computationally empowering students with regard to ML.
Additionally, I wish to assert that to do this, it is not sufficient to focus solely
on the potential consequences of ML, but also on the technological fundamentals
and practices of ML, that lead to these consequences. For designers of such tools
and activities, this means that even when emphasizing consequences, attention
should be paid to the reality of ML systems as they are designed today. While it
might be thought-provoking to imagine ML dystopias, unless these are carefully
grounded in present-day technology (in the way that the best science fiction
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novels do), they might never evolve beyond provocation. On the flip side, tools,
and activities that aim to teach ML fundamentals are beneficial in themselves, if
designers consider how these interface with the critical aspects of ML. Finally, for
educators implementing these in their classroom, it is important to consider not
only the impacts of ML that they wish for their students to discuss but also how
ML technology brings these to reality by how they function and are made.

4.2.6 Design for Scalability

The pursuit of computationally empowered citizens is an enormous task, which
will require a myriad of learning tools and activities to accommodate cultural and
social differences and preferences of learning styles. This given, designing tools
for scalability is not merely a matter of designing the most generally pleasant
tool, that most people would want to use.

Westley and Antadze [230] differentiate between two types of scaling in the
context of social innovation; scaling out, and scaling up. Scaling out is what
we typically think of when considering scalability, namely how many people our
systems are used by, and/or affect. On the other hand, scaling up entails engaging
with “the broader economic, political, legal or cultural context”, to connect it to
resources, policies, etc. These two types of scaling are intertwined; scaling up
might help to scale out, and vice versa. Manzini [139] argues that to scale systems
out is not simply a matter of making them widely available, but requires different
people, to adapt the ideas behind them to different contexts. He further argues,
that to scale up it is “almost always necessary for entities with the means and
circumstances to act on a large scale”, and that smaller actors (such as individual
researchers, designers, and educators) seek out connections to such entities.

With ml-machine.org (Paper H), we have been, and are, working on scaling the
system both out and up. When designing the system, we made deliberate design
choices with scalability in mind, such as working with the popular micro:bit, and
running the system in a web browser. Apart from being more readily implemented
in Danish classrooms, this also allowed us to make strategic partnerships with both
the Danish Broadcast Company (DR) and the Micro:bit foundation. DR and their
department for children and youth, already produce high-quality curricular units
for teaching technology, that has a nationwide span. The Micro:bit foundation on
the other hand oversees the entire development of the micro:bit platform, and
were able to assist with scaling on an international level, as well as providing
in-depth technical assistance.

When designing learning tools for ML with regard to scalability, designers
should consider which platforms are available in places they want their systems
to be used. Many classrooms have laptops, some have maker labs, micro:bits, or
other low-cost microcontrollers available. Instead of designing novel interactive
systems, consider appropriating off-the shelves products where possible. Apart
from making the tool readily available to more people, designing for platforms that
teachers can be expected to be familiar with, might also make them more likely
to adopt it in their teaching. In addition, consider which strategic partnerships
are relevant for scaling the tool and if they might have certain requirements for a
possible collaboration (such as using a specific platform). For educators selecting
tools for prolonged use, I advise choosing tools that have considered the aspects
of scaling, and in particular, tools that have support systems set up, such that
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Tangible >< Scalable

Figure 4.11: The tension between Tangible and Scalable is exemplified through
the Machine Learning Machine (Paper C)and ml-machine.org (Paper H), which
has similar goals, but due the MLM being a custom built tangible design, it does
not scale as well as ml-machine.org

help can be found if it becomes necessary.
There is an argument to be made for one-off, particular prototypes such as

the Machine Learning Machine (Paper C). They allow researchers to experiment
with different ways of interacting with technology, that might find its way into
systems that are more readily available in the classroom (as is the case with
the MLM (Paper C), and ml-machine.org (Paper H)). This is, however, not a
given, and sustainability is an ongoing discussion in the PD community [30, 103].
Researchers should consider the scalability of their work to ensure that it can be
sustained in the classroom, and beyond their involvement.

4.3 Tensions & Synergies in Computationally
Empowering Learning Tools for ML

The design principles outlined above were extracted from my design experiments
deductively, by analyzing them with regard to which design elements were either
dismissed or carried over between experiments. As such, they represent my “best
practices” of a sort; a set of levers to pull when designing new tools and practices.

When going through my experiments, it became clear that these features
played different roles in different experiments; some focused on developing their
critical understanding and toned down the focus on technical understanding, and
vice versa.

I have been able to identify a series of tensions and synergies that make up
a multidimensional tug-of-war in which the design space of “computationally
empowering learning tools for machine learning” is suspended.

In this section, I present and discuss tensions, while the following section
discusses synergies. Finally, I discuss the implications of these for designing
learning tools for ML.

4.3.1 Tensions

Tangible >< Scalable: First, designing tangible tools is in tension with
designing for scalability (see Figure 4.11). Making as many aspects of ML tangible
as possible (form) was a significant design challenge, which I have addressed with
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Tangible >< Critical

Figure 4.12: The Tangible >< Critical tension is exemplified by comparing the
Machine Learning Machine (Paper C)and VotestratesML (Paper A). The tangible
nature of the MLM, means that the data considered need a physical representation,
where the design of VML allowed it to address data of a political nature.

the MLM, which is perhaps as much an exercise in TUI-design as it is a suggestion
for a learning tool. However, it highlights that making ML tangible is not a
trivial task, and one that requires careful design, and not least custom interactive
elements, that are not available off-the-shelf, nor affordable or practical to deploy
nationwide or even internationally.

To achieve scalability, at least in a pragmatic, and practical sense, one needs to
be aware that this trade-off exists. Off-the-shelf products such as the micro:bit used
in ml-machine.org offers greater scalability but sacrifice the deliberate tangible
qualities that a custom-built TUI such as the MLM offers (at least it sacrifices
some of them). To design a tool that still makes ML graspable to its users,
therefore, entails identifying these trade-offs, working with the limitations of
the chosen platform, and (if possible) addressing its shortcomings through other
means. With the ml-machine.org, we address the short-comings of the micro-bit
platforms when compared to the MLM through the design of the website. While
it cannot, by its nature of being digital/graphical, directly replicate the MLM’s
tangible qualities, some are translated instead to graphical components, such as
the spatial distinctions between training and evaluating a model.

Tangible >< Critical: Another tension that permeates my work is between
tangible tools and tools that directly address critical aspects of ML (see Fig-
ure 4.12). The tension here shows up due to the difference in the nature of the
data involved in tangible tools (at least the ones I’ve been involved in designing)
and how ML is most often used. For data to be made tangible, or even to be
part of a tangible system, it needs some physical representation. However, data
in most real-life ML applications does not have a direct physical counterpart.
Instead, it more closely resembles the data used in VML: rows and columns in a
spreadsheet.

As such, there is (at least in my work), a trade-off between designing tools
with tangible interaction, and tools where discussions on ethics are central, and
not an afterthought. That is not to say, that the two qualities cannot co-exist, but
rather that they are in tension with each other, and a designer should consider
how to most effectively address this tension.

The MLM, for instance, is not designed for critical discussions to be an integral
part of using the tool. It does support activities that demonstrate critical aspects
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Technical Understanding >< Meaningful

Figure 4.13: The tension between Technical Understanding and Meaningful
exemplified with the first prototype of VotestratesML (Paper A), and the ML
Ethics Workshop (Paper B). Too much emphasis on technical aspects of ML in
the former led students to become demotivated while working with it.

of ML, but does not tie these to any specific use cases: the MLM might be used
to replicate, e.g., unintentional bias by using different colored pens for each class.
In contrast, VML contextualizes these discussions due to the subject matter of
the tool. I argue, that the gap between a more general tangible tool and a specific
context could be bridged by a teacher in the classroom. This, however, demands
more from the teacher in terms of making such connections, and from students’
abstraction skills.

Technical Understanding >< Meaningful: The tension between a focus
on technical understanding and a contextual approach lies in how much each is
allowed to fill in the tool designed (see Figure 4.13). If too much emphasis is put
on the context, ML itself risks becoming a gateway to discussing other issues, and
it becomes easy to resort to answers such as “ML is bad” in discussions, without
the foundational understanding of ML required to justify why that might be the
case. If too much emphasis, on the other hand, is put on technical understanding,
students might be turned off by the tool immediately, because it becomes too
difficult to see why ML is relevant to them. With the first prototype of VML we
emphasized the technical aspects of ML too much, and students were demotivated
by this, finding it difficult to relate to their own lives. In subsequent experiments,
we instead emphasized this aspect, while dialing back requirements for technical
understanding. Here, it is important to remember, that the goal of CE-based ML
education is not necessarily to teach students how to implement their own ML
systems from scratch, but rather to understand them on a level that supports
their critical reflection of it.

Technical >< Critical: There also lies a tension in the interplay between
designing for technical understanding and critical reflection (see Figure 4.14).
Because the technical aspects of ML can be difficult to teach, and to understand,
prioritizing them can often mean sacrificing emphasis on the critical parts. On the
other hand, by completely de-emphasizing the technical aspects of ML, students’
ability to engage with it, in a technically qualified way, also suffers.

This tension is a practical concern of how to cut the cake, so to say. Here, the
most important thing for a designer to consider is the degree to which one-or-the
other is dominant in the tool design, and to be intentional in deciding the focus.
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Technical >< Critical
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Figure 4.14: The Technical >< Critical tension exemplified with ml-machine.org
(Paper H) and ML Ethics Workshop (Paper B). While I argue ml-machine.org can
facilitate critical discussions on ML, it prioritizes scaffolding students technical
understanding, where the Ethics Workshop deemphasizes this in, focusing instead
on discussions.

Data

Interactions

How people interact with each 

other

Who do they talk to? For how 

long? Where? Data

Smart home
Sensors in people’s homesWhen are they home? How 

much power do they use? How 
much TV do they watch?

Ethics

Data Collection

Are users and others aware 

that data is collected about 

them?

Are they aware of how the data 

is used?

Ethics

Visibility
Is your system visible when you meet it? 

Is the use of Machine Learning 
visible in your system?

People

Grandparents

People

Siblings

Meaningful <> Critical

Figure 4.15: The synergy between Critical and Meaningful is exemplified in the
ML Ethics Workshop (Paper B), and VotestratesML (Paper A). The former draws
on students’ own life to facilitate critical discussions, while the latter draws on
their interest in politics.

This is not to say that both cannot be present in a tool, but rather, that depending
on the context, time, etc., prioritizing one over the other might be necessary, and
this should be done with care. Further, this tension is mitigated in prolonged
engagements, as several tools and activities are combined to form a coherent
curricular unit. Here, the challenge is instead to make a combination that allows
for both deep engagements with the technical aspects and critical perspectives of
ML.

4.3.2 Synergies

In addition to tensions between design features, there are also certain synergies,
i.e., interactions between features that are beneficial to each feature. Some of these
might seem banal, and to some extent, they are, however, I am not presenting
these as novel, generalizable discoveries, but rather with interest in how they have
materialized concretely in my design experiments.

Meaningful <> Critical: There is, in my work, a synergy between designing
for meaningful and critical engagement (see Figure 4.15). A meaningful engage-
ment here denotes that students can, somehow, relate to ML in a personal, social
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a) b)

Meaningful <> Low Floors

Figure 4.16: The Meaningful and Low Floors synergy exemplified through the ML
Ethics Workshop (Paper B)and ml-machine.org (Paper H). Both engage students
immediately in creating ML systems (the former non-functional, and the latter
functional), while framing their experiments with ML as a design case.

or political way. It entails a positioning of ML as something familiar, rather than
something foreign, and as something that can be influenced rather than something
that is imposed. In this way, the possible effects of ML, both negative and positive,
also move closer to students, and they can bring their own experiences and values
into discussions about it.

Additionally, this positioning of ML as personally meaningful to students
might make them more inclined to engage with it in a critical manner outside the
classroom, which is one of the ultimate goals of CE for ML education.

Meaningful <> Low Floors: Related, meaningful engagement also syner-
gizes with designing for low floors (see Figure 4.16). This synergy is straightforward
in the sense that, making ML meaningful to students might also lower the barrier
to entry for them. This is tied to Papert [171]’s idea of “mathophobia”, that is
when students come to identify as being bad at math to the point of it becoming
an identify-trait of theirs. Providing meaningful engagement then, Papert argues,
is a means for diluting mathophobia. Similarly for ML, some students simply do
not see, why they should concern themselves with it (similarly to the students
which Iversen, Smith, and Dindler [107] classify as “not-yet-motivated”). Providing
ways of meaningful engagement, then, serves to motivate such students by showing
them why ML does concern them, and offering them ways of engaging with it, in
a manner that matters to them.

Tangible <> Meaningful

Figure 4.17: Both versions of the Machine Learning Machine (Paper C and Paper
G) exemplifies the synergy between Tangible and Meaningful. Physically engaging
with ML allows students to make sense of it in a social, and embodied way.
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Tangible <> Meaningful: Providing tangible representations of ML and
scaffolding meaningful engagement seems to synergize as well (see Figure 4.17). I
argue this is because ML, as a technology, is often hidden away, integrated into
other digital services, and interwoven with programmatic components. Making
ML literally physical means moving it from an abstract concept to a concrete
thing. Instead of being something to discuss in hypothetical terms, tangible ML
can be scrutinized, it allows people to gather around it, inspect it from multiple
angles, and have a shared, concrete reference in discussions.

4.4 Implications for Designers and Educators

The above design principles and the tensions between them offer an early con-
ceptualization of the design space for computationally empowering learning tools
and activities for ML and have implications for how to design such tools.

By presenting these tensions and synergies as an annotated portfolio, I aim
to highlight the interplay between the artifacts, and experiments behind this
dissertation. I will, again, stress that the goal here is not to develop some theory
of the ‘perfect’ singular artifact, that satisfies all the principles presented in
section 4.2. Rather, as argued by Gaver and Bowers [70], the portfolio aims to
configure a “zone of potentially fertile possibilities”, i.e., the design space for such
tools. To this end, I suggest that other designers utilize this portfolio to inform
their work when designing different learning tools and activities. Important here
is considering the goals of a given design, how it can best be supported by the
principles above, and what trade-offs need to be made. Here, the tensions and
synergies offer an insight into which qualities of a design might conflict with
others, and conversely which principles might harmonize well.

There are also implications for teachers putting together a curricular unit
on ML containing a combination of different activities and tools that all serve
to develop students’ understanding of a certain curriculum. Here, I argue, the
portfolio can be helpful when deciding on which tools and activities to structure
such a unit around. Different educators might have different emphases, and
different students have different needs, and as such, a one-size-fits-all solution
is not appropriate. Instead, the portfolio acknowledges the complexity of the
situation and aims to provide guidance and inspiration to teachers regarding how
to design their curricular units. In practical terms, it offers a vocabulary for
comparing the design of different tools and activities, not for judging which are
good and which are bad, but rather with regard to how the design of different
tools might complement each other.

4.5 Summary

In this chapter, I have summarized my design process and presented several
design experiments, emphasizing the qualities of each that were sustained in
the following experiments. To address RQ2

RQ2: How do
we design
learning tools
& activities
that scaffold
children’s
computational
empowerment
with regard to
ML?

, I extracted a set of principles for
designing computationally empowering learning tools and activities: Considering
tangible representations of ML, providing low floors to engaging with ML, provid-
ing opportunities for meaningful engagement, scaffolding students’ fundamental,
technical understanding of ML, emphasizing critical engagement with ML, and
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designing for scalability. It is important to note that these are not criteria for
a good tool or activity design, but should rather be seen as resources. Between
these principles, I have identified a set of tensions and synergies and presented an
annotated portfolio of how these manifest in my design experiments. This serves
to conceptualize the design space for CE-based ML (RQ2a)

RQ2a: What
characterizes

the design
space for such

tools &
activities?

as informed by my
experimental work and to offer concrete guidance for designers and educators.
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Chapter 5

Computational
Empowerment for ML
Education

From my projects’ onset, it has been motivated and driven by a commitment to
empowering students in their engagement with AI and ML by aiming to develop
their understanding of ML concepts, practices, and potential impacts both on a
social and a societal level. This framing originates, as mentioned in chapter 1,
from the notion of Computational Empowerment (CE), as put forth by Iversen,
Smith, and Dindler [107]. CE was developed as a general approach for developing
children’s digital technology comprehension, focusing on fostering their ability for
critical reflection.

However, CE frames digital technology comprehension through digital fabri-
cation methods and fablabs, which makes engaging directly with emerging, and
complex technologies such as AI and ML difficult.

In this chapter, I discuss CE as it relates to ML and present a framework
that extends CE to qualify it for addressing ML. I start by extending the original
design-based process model proposed by Iversen, Smith, and Dindler to include a
technological foundation that aims to support students throughout the learning
process. Further, I discuss how the framework can be used to discuss CE-based
learning goals for ML by combining it with the CE Progression Model (Paper
D) to analyze VotestratesML (Paper A).

5.1 A Technical Foundation for CE-based ML
Education

CE proposes that students should learn to both code (in the broadest of meanings)
and decode digital technologies and presents a design-based process model detailing
the activities in such a learning process (see Figure 5.1). The model focuses on
digital fabrication as the main way students engage directly with the design
material; digital technology.
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Figure 5.1: The activity model from Computational Empowerment as seen by
Dindler, Smith, and Iversen [50]. The leftmost model describes constructive design
activities, whereas the rightmost describes analytical activities. Included with
permissions from the authors.

This approach, I argue, is insufficient when aimed at ML education. ML is,
as discussed previously, technologically opaque: The ML-systems we encounter
in search engines, on streaming sites, and social media are enormously complex
and rarely lend themselves to any real kind of decoding, even less so coding (in
the sense of constructing similarly complex models). While several tools exist
that allow students to create working ML-models and -systems, few allow them
to look behind the curtains, so to say, and examine how the technology works on
a fundamental level, beyond the very basics. This is a hindrance to scaffolding
students’ critical reflection on ML since many of the pitfalls of ML are deeply
rooted in its technological specificities. For example, how unintended biases occur
or how particular optimization objectives might lead to a more accurate but less
fair ML-model (for an in-depth discussion, see Paper I ).

This idea is inspired by Verbeek [225] who argues that technology is normative
because it prescribes certain actions, and as such, “designing should be regarded
as a form of materializing morality.” [225, p. 379]. Thus, engaging critically with
technology should also entail engaging with its materiality since this is central to
the actions the technology affords and, thus, its potential impacts.

Hence, engaging with ML or fabricating ML-systems without an understanding
of their technological specificities limits the opportunities for students to engage
critically with ML. This is not to suggest that discussions regarding ML and
its use cannot be had with and by students without a technological foundation.
However, as I experienced with VML (Paper A) and the ML Ethics Workshop
(Paper B), these discussions can quickly leave little room for nuance, with ML
becoming either a magic spell to solve issues or evil incarnate. Such a binary
understanding of ML (or any technology) works to shut down further discussions
rather than open them up. ML is already everywhere, and unless we go (almost
wholly) off the grid, we will have to live with it. There are, however, meaningful
conversations to be had which cannot be had constructively based on a binary
good/bad view of ML.
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Figure 5.2: A model of the expansion of the CE activity model to include
computing concepts, practices, and perspectives.

Instead, the nuances of ML lie in its specificities [56]: What are exemplary
and representative examples of desired behavior? Which features of the data
are relevant and which are not? With what objective is the model optimized,
etc.? Teaching children to code and decode technology, thus, requires them to
engage with these specificities on more than a surface level. To be clear, I am not
suggesting that, e.g., a 7th-grade student should be able to implement the most
appropriate loss function when training a ML-model. Instead, students should
be able to recognize that models are created with different purposes, that ML
developers make such choices, and that they have the potential to impact the
system they are used in severely.

I suggest the addition of a technological foundation underpinning the design-
based CE process model (the leftmost model in Figure 5.1), which can be seen
in Figure 5.2. This foundation adds three central aspects of understanding a
technology [33]: concepts, practices, and perspectives. These aspects were first
presented by Brennan and Resnick [33] and originally referred to aspects of
programming, concepts such as loops and parallelism, practices such as testing
and debugging, and perspectives such as self-expression. However, as we argue
in Paper D, these aspects cover a much broader range of digital technologies
and ways of interacting with computation, including ML. The specific concepts,
practices, and perspectives, however, depend on the subject in focus, and I discuss
what I see these being in relation to ML below, in section 5.2.

Importantly, this foundation is just that; a foundation. It is not the point
of CE-based ML education but rather a method for qualifying it. ML concepts,
practices, and perspectives are taught to support students when ideating, arguing
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for a design, or reflecting and iterating on it. For each activity in the CE process
model, the technological aspects have different implications. When doing a field
study in the research step of the CE design activity model, this might mean
paying close attention to what data should be collected for a potential ML-system,
or if the context is sensitive to possible unintentional biases. When ideating,
the foundation can provide a framework to work within (as in the ML Ethics
Workshop (Paper B)). For fabrication, a technological foundation helps students
construct functioning systems, and for argumentation, it can provide technical
arguments for a systems’ design. It can support students when reflecting on
their system and its implications, and the design brief might be altered based on
technological realities, possibilities, and limitations.

Finally, adding a technological foundation to CE is not limited to ML educa-
tion but can be expanded to all complex, emerging technologies. For example,
for Augmented Reality (AR), this might mean teaching how surfaces are scanned
and modeled or how AR can be used for location tracking and behavior manipu-
lation [138] (see section 7.5 for a discussion of this).

5.2 Dimensions of ML: Concepts, Practices, &
Perspectives

Here, I explore further what, concretely, the technological and material foundation
presented above means for how ML could be conceptualized for CE. To do so,
I draw on the characterization of the dimensions of CE, as presented in Paper
Dbased on the work of Brennan and Resnick [33].

5.2.1 A model for Progression in CE

With our CE Progression Model (Paper D), we attempted to detail how progression
towards becoming computationally empowered can be characterized. On the
vertical axis, the model (as seen in Table 5.2) spans different dimensions of CE;
concepts, practices, perspectives in one’s own life, and perspectives in society.
As argued in Paper D, “[t]hese categories allow for a more detailed classification
of technical knowledge and skills than the original aspects of CE, as well as a
finer-grained understanding of the attitudes and values associated with being
computationally empowered and of taking a critical stance towards technology
than allowed by the framework of Brennan and Resnick [33]1”.

Brennan and Resnick [33] define concepts, practices, and perspectives as
follows: “computational concepts (the concepts designers employ as they program),
computational practices (the practices designers develop as they program), and
computational perspectives (the perspectives designers form about the world around
them and about themselves)” (emphasis in original). We divided perspectives into
two distinct aspects, perspectives in one’s own life, and perspectives in society, to
combine these aspects with Iversen, Smith, and Dindler [107]’s original definition
of CE: “1) engaging creatively in technology development, 2) understanding the
role of digital technology in society, and 3) reflectively and critically understanding
the role of technology in one’s own life”. To expand on which computational
dimensions are involved in engaging with technology development, we replaced
1I changed the citation style in the quote to match the format used in my dissertation.
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Definition of CE Dimensions of CT

Engaging creatively in
technology development

Computational Concepts
Computational Practices

Understanding the role of digital
technology in society Computational Perspec-

tivesReflectively and critically under-
standing the role of technology in
one’s own life

Table 5.1: The relation between the definition of CE by Iversen, Smith, and
Dindler [107] and the dimensions of CT as presented by Brennan and Resnick [33].

this aspect of CE with the concepts and practices from CT. On the other hand,
to qualify computational perspectives from CT, this aspect has been expanded
into two dimensions; perspectives in one’s own life and perspectives in society.
The relation between the definition of CE and the dimensions of CT can be seen
in Table 5.1.

To allow designers and educators a finer categorization of progression, we
merged the dimensions with the popular SOLO taxonomy [18]. The SOLO
taxonomy divides learning into four competency levels, which can be used to create
a common language when forming learning goals across classrooms, activities, or
subjects. To do so, these competency levels are linear and hierarchical, and a set
of verbs accompanies each level to help educators articulate what students at a
certain level should be able to accomplish:

“Progression can be defined as moving up in SOLO levels, from pre-
structural, to uni-structural, multi-structural, relational, and up to
extended abstract level as the highest level. The first two levels
refer to developing surface knowing and the latter two levels refer
to developing deeper knowing. Surface learning refers to studying
without much reflecting on either purpose or strategy, learning many
ideas without necessarily relating them and memorising facts and
procedures routinely. Deep learning refers to seeking meaning, relating
and extending ideas, looking for patterns and underlying principles,
checking evidence and relating it to conclusions, examining arguments
cautiously and critically, and becoming actively interested in course
content [89]”. (from Paper D, p. 1592)

It is worth mentioning that the SOLO model has been criticized for being
simplistic and for representing a reductionist view on learning [116, 236]. Nonethe-
less, SOLO is a powerful tool for designing learning goals and relating these to
teaching activities [89].

Together, the dimensions of CE and the SOLO taxonomy form a model for
characterizing progression in CE (see Table 5.2). The model can be used in several
ways: First, it is aimed at educators planning CE projects, where the model might
help ensure that a comprehensive set of learning goals (on the vertical axis) are
created and that progress towards these goals (the horizontal axis) are considered
2Page number refers to the manuscript included in the dissertation.
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Table 5.2: A model for progression in CE. From Paper D.

throughout the project. For researchers and designers working within a CE frame,
the model might be consulted when exploring how a new computational subject
could be taught or how to design tools and activities for such subjects.

5.2.2 Conceptualizing ML for CE

To develop an idea of what CE concepts, CE practices, and CE perspectives of
ML are, we will disregard the model’s horizontal (SOLO) dimension for now and
focus solely on these.

Since CE focuses on critical engagement and reflection, I focus on this when
determining the conceptualization of ML with regard to each dimension. As
such, the inclusion of an ML component is determined by its potential impact
on students’ lives. In relation to the two perspectives-dimensions, these certainly
overlap with ML concepts and practices, as these are what enable them. Still,
here, I focus on “big ideas”, i.e., the perspectives I see as most essential to
understand. Further, I draw on related literature regarding ML curricula to
qualify this conceptualization (specifically [137, 216]). An overview of my CE
conceptualization of ML for CE can be seen in Figure 5.3.

ML Concepts: ML can be boiled down to three concepts central to under-
standing it on a level appropriate for CE; data, models, and predictions/output.

Without data, there would be no ML, essentially no Information Age, and
several researchers have identified Data Literacy as an essential skill (e.g., [32,
63, 65]). In our work, we have addressed this notion by aiming to teach children
to understand what data is, how it can be computationally processed, and how
personal, private information can become data entries for a ML system (Paper F ).
Without an understanding of data, understanding ML is, simply put, not possible.
Further, data (especially personal data) and its collection is a powerful force in
our society and economy, and understanding the digitization of these, arguably,
also requires understanding data.

The model is another essential concept in ML. Key here is the famous aphorism
“all models are wrong, but some are useful”. To understand ML, it is important to
grasp that it only ever approximates an understanding of the world and that this
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Figure 5.3: ML concepts, practices, and perspectives for CE-based ML education.

approximation is only as good as the model at the core of the ML system. By
definition, and for better and worse, ML-systems hold partial and simplified views
of the world. Thus, understanding models is the first step towards understanding
the worldview embodied in such systems and the sort of problems ML can address.

Finally, understanding the ML system’s output (often some sort of prediction)
is important, especially what such an output is and how it can be presented. ML
is, in essence, statistics, and its outputs are also statistical probabilities. However,
their statistical nature is often removed in end-user applications and presented as,
e.g., recommendations rather than the educated guesses they are. Understanding
the nature of ML-outputs is again important for understanding what sort of issues
are addressable by ML, but also for understanding and evaluating the qualities of
the solutions they propose.

ML Practices: In Paper C , we present a simplified model for characterizing
the process of creating ML models (see Figure 5.4). Here, creating ML models is
divided into four separate steps; problem formulation, Data Gathering and Repre-
sentation, Training, and Evaluation. The model, although simplified, corresponds
to other models characterizing the ML process (e.g., [56]).

The first step in the model entails determining the goals of the model. This,
essentially, is a design question that requires us to ask “what is the model meant
to achieve?” [56]. This, in turn, has ramifications for what data we need to collect
and what we do with it, the type of ML we will deploy, our success criteria, and
how we evaluate our system. Understanding what problems can be solved with
ML is the first step towards recognizing where ML might be employed in the real
world (for good or bad). Further, it is part of understanding that ML models are
not objective but that human intentions are key from the first step towards a ML
model.

Next in the model is data gathering and representation. In this step of the
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Figure 5.4: A simplified model of the ML process, from Paper C.

process, data is collected that is believed to address the problem articulated
before. Further, the most appropriate representation of this data is determined3.
Learners should understand this practice because it determines what the model
might find important. Critical examples can be found if sensitive data is included,
such as gender, skin color, age, etc. Understanding the role of data and their
representation is key to understanding how models can become unfair.

Next is the training step. Here, we ask the model to make connections between
the collected data to optimize the model regarding the goal we determined in step
one. This conflates several separate steps [56], but its essence is that the model
configures itself to find patterns in the data that allow it to make inferences about
new data. Depending on the model type and its complexity, these patterns might
be more or less understandable by humans. Understanding how training occurs,
then, is important for understanding how and why models become opaque.

Finally, we evaluate our models. This might involve some technical assessment,
such as finding the accuracy or precision of a model, but also contextual evaluations,
such as to what degree the model actually serves the people or purpose it was
made for. Understanding that models can, and should be judged by different
metrics depending on their use case, is important for assessing their usefulness in
different situations. It is also key for discussions regarding the accountability of
ML models and how they are used.

ML Perspectives Finally, I argue for focusing on the following perspectives
of ML; the human-in-the-loop, data as value-assets, fairness, transparency, and
accountability. These are perspectives central to the implications of ML for
our personal lives and society, and an understanding of them can help qualify
discussions about the use of ML. Notice, that while the model for progression in
CE divides this dimension into two, it is conflated here. However, the same ML
perspectives have implications for both society and our own lives.

The human-in-the-loop refers to how people, i.e., designers and developers of
ML-systems are always in some way or another involved directly in the forming
of a ML-system. From deciding what data to collect, how it is represented in
the system, how the model is trained, and what its measures of success are,

3For instance, if trying to distinguish between geometric shapes drawn by hand, these can be
made black and white, since the model should disregard color.
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human decisions are deeply involved in ML, despite it often seeming otherwise.
Understanding this can support us in holding those responsible for ML-systems
in the world accountable for their effects.

Next is the idea of data as value-assets. The collection of mass data-sets
about individuals, when aggregated, becomes hugely valuable assets for companies
because complex models can be built to identify people that share specific interests,
values, etc. Related to this notion is the idea of “surveillance capitalism”, aptly
named by Zuboff [247], which describes how these giant companies make billions
from social networking sites that are apparently free to use. But, of course, they
aren’t free, rather, users pay for them by providing valuable data instead of with
money. Or, instead of customers, users of such sites (or rather their data) are
the product, access to whom are being bought by advertisers, mediated by ML
models (or, popularly, “The Algorithm”).

Fairness relates to how biases work in ML systems. The patterns ML-
algorithms look for when training a model is precisely bias, i.e., the inciting
incidents in a data-entry that sets it apart from some data-entries and likens it
to other. Without these biases, ML-models would have no predictive capabili-
ties. However, an issue arises when models pick up on biases we did not intend.
Data-sets are only ever as good or fair as the people creating them and might
inherit these people’s implicit (or explicit) biases. When dealing with people, we
expect such biases to occur; we know that we have them, and often systems are
put in place to mitigate them (such as having multiple judges on a criminal case
or having several keys to arm nuclear devices). However, the biases can disappear
into a complex nest of artificial neurons due to the opaqueness of ML models.
Thus, fairness relates to how data is collected and represented, what model type
is used in the system, how auditable it is, and what the intended use case of the
system is.

Transparency regards how ML is integrated into systems and how easily
the model is audited. As I have described above, ML is often integrated into
systems such that it is difficult to know that it is automating decisions (such
as which commercials to show us). This is pertinent to social networking sites,
but transparency is a factor in all ML systems: How transparent for doctors is
it that the system providing recommendations for patient treatment is based
on ML? How transparent is it for the patient? Can doctors dive behind the
recommendation and audit the ML-model or the data it is based on?

Finally, accountability centers on how companies and providers of ML systems
can be held accountable by their users and to which degree. In her book, Weapons
of Math Destruction O’Neil [164] describes an American teacher being fired due to
an automated teacher-evaluation system. When investigating further, she is told
by the school that they have complete trust in the system they have purchased.
The company behind the system refuses to tell her how it made its decisions since
they considered it a company secret (it was, after all, not a human decision based
on some publicly available evaluation metric, but a decision made by proprietary
software that could be copied). In this case, there was no accountability embedded
in the system, and as such, no way for the teacher to contest its decision. If (or
probably rather when) ML systems are embedded further into society, especially
by government authorities, holding them accountable is essential. Understanding
how easily accountability can be disregarded in ML-system then is important to
qualify discussions about its use.

63



CHAPTER 5. COMPUTATIONAL EMPOWERMENT FOR ML EDUCATION

Reflection

Argumentation Ideation

Fabrication

Design Brief

Research

Figure 5.5: The CEML framework with concepts, practices, and perspectives
from ML based on CE.

5.3 Applying the CEML Framework

In this chapter, I have expanded on the design model by Dindler, Smith, and
Iversen [50] describing CE activities with an emphasis on ML fundamentals into
the CEML framework (see Figure 5.5). This framework allows designers and
educators to draw on CE principles and goals when teaching ML. CEML can be
combined with Table 5.2 to help determine or analyze learning objectives in a
CE-based ML curriculum and provide guidance for designing or using CE-based
learning tools and activities for ML in the classroom. To look at an existing
example, I will demonstrate using VotestratesML (Paper A) below (see Table 5.3).

As seen in Table 5.3, the model for progression in CE from Paper D can
be used to classify its learning goals. It is important to note that the goals in
Table 5.3 are directly related to ML fundamentals (the lower half of the CEML
framework) and only indirectly to its broader context of use. We can use the
top half of the CEML framework (i.e., the activity model from CE) to address
these issues. Thus, we might ask students to consider how the design brief (e.g.,
in VML (Paper A); design a system to help the social democratic party identify
potential voters) is value-laden and might influence the human decisions that
are part of creating a ML-system. During a reflective activity, we can then ask
students to consider how the design brief influenced them if they can identify
what potential impacts this might have on the system in use, and then ask them
to iterate on the model they have created, drawing on these new insights.

With this exercise, I wish to convey how the technological specificities of ML
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VotestratesML Unistructural Multistructural Relational Extended Ab-
stract

Concepts
Data, Models, Output

Identify fea-
tures and
labels in a ML
model

Combine fea-
tures, and a la-
bel to create a
functional ML
model

Relate the out-
put of a model
to social stud-
ies theories

Hypothesize
and discuss
the output of
a ML model
in relation to
social studies
theories

Practices
Problem Formulation,
Data Gathering & Rep-
resentation, Training,
and Evaluation

Identify which
problems can
be solved with
ML

Describe the
characteris-
tics of a ML
problem

Evaluate
and compare
different ML
models

Hypothesize
on how to
improve a ML
model

Perspectives in
one’s own life
Human-in-the-loop,
data as value-assets,
fairness, transparency,
and accountability

Identify
what makes
mundane
information
useful for a
ML system

Perspectives
in society
Human-in-the-loop,
data as value-assets,
fairness, transparency,
and accountability

Identify
value-driven
decisions in a
ML system

Describe how
human-held
values can
influence a
ML system

Criticize
human-made
decisions in a
ML system

Table 5.3: The learning goals of VML analyzed through the CEML concepts,
practices, and perspectives

are essential when discussing its potential impacts and how the CEML framework
can scaffold such discussions. Designers and educators should consider what
dimensions of ML to expose to students through new learning tools and activities
and how these might be addressed in different CE activities.

5.4 Summary

This chapter addresses RQ1 RQ1: How
can CE as an
approach to
ML education
address the
challenges
posed by the
widespread use
of ML?

, by proposing an expansion of CE [50, 107] for
teaching ML. I argued that to qualify the reflections that CE emphasizes, a student
needs a technological foundation because of the complexity of the technology and
how it is nested in opaque ways in everyday systems. I proposed that aside from
the design activity model suggested by Dindler, Smith, and Iversen [50], students
should be taught about ML concepts, practices, and perspectives, and have
highlighted how these interact with the elements of the CE activity model. Further,
I have argued that while I find a technological foundation crucial for a CE approach
to ML, it should never overshadow CE’s focus on reflection. Next, I have proposed
a conceptualization of ML concepts as belonging to the three categories above.
I propose focusing on data, output, and models for key concepts. For practices,
I propose emphasizing problem formulation, data gathering and representation,
training, and evaluation. For perspectives, I propose an emphasis on the human-
in-the-loop, data as value-assets, fairness, transparency, and accountability. Below,
in section 7.5, I discuss the usefulness of the CEML framework for informing
education in other emerging technologies, where a qualified discussion benefits
from a technological foundation.
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Chapter 6

From Education Towards
Remarkable AI Everywhere

Throughout our classroom interventions, a theme emerged in how students re-
flected on AI and its role in their lives; “we don’t care about the things we share”.
While students were generally engaged in creating with and discussing AI, they
were unwilling to change their behavior regarding it, even as it became clear to
them how their data is aggregated and used by, e.g., social networking sites. To
be clear, it was never our intention to turn students away from such sites but
rather to support them in seriously and critically examining their use of them
with regard to how the sites deploy AI and for what purpose. However, we learned
just how important social networking is to adolescents and what lengths they are
willing to go to maintain it. This finding is further corroborated in the psychology
literature (e.g., [132, 163, 165, 240]), which points to FOMO (the Fear Of Missing
Out), as a potential contributor to adolescents’ addiction to social networking
sites.

In any case, it became clear that a concentrated focus on efforts in education
contexts would not suffice. Although CE includes political work to further its
educational aims, ensuring that children become knowledgeable regarding AI is not
enough. Even if they develop the right skills, competencies, and attitudes required
to question and debate AI and its use, they are still, ultimately, dependent on
proprietary, and closed-off systems, such as social networking sites, for their social
lives to continue as before. And such sites, and the companies running them,
have no incentives to alter how AI is used in them. Moreover, they are hugely
profitable, especially due to their collection of massive data-sets about their users
and their analysis and selling off of these. Instead, we realized that in addition
to education, work is needed that convincingly supports the designers of such
systems to include methods for interrogating and discussing their use of AI.

In this section, I present Remarkable AI as a design approach for doing so,
based on Paper E 1.
1In the following, these sections are based on Paper E : section 6.1 is adapted from sections 1
and 2 in the paper, with several paragraphs removed for brevity and minor edits for clarity.
Similar edits have been made to section 6.2, which has been adapted from the paper’s section
3. Section 6.3 was inspired by the paper’s section 4, some text reappears from the paper, but
the analysis was remade and rewritten for this dissertation. Section 6.4 has been adapted from
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6.1 Framing Remarkable AI

In HCI, there has been a long-standing debate about dichotomies and continua
regarding the extent to which technologies’ inner workings and values should be
exposed to users. One of these discussions surrounded the notion of Remark-
able [178] and Unremarkable [215] Computing. As an approach to ubiquitous
computing in the home, Unremarkable Computing, as coined by Tolmie et al. [215,
p. 404], aimed “to make computational resources that can be unremarkably
embedded into routines and augment action”, referencing Weiser’s [229] seminal
view on the computer for the 21st century. In response, Petersen [178] suggested
Remarkable Computing as a complementary approach, arguing that as much
as digital technologies can support people’s routines, they are also increasingly
becoming “objects of lifestyle and identity” [178, p. 1446], and that such objects
are and should be remarkable.

In 2019, Yang, Steinfeld, and Zimmerman [238] presented an argument similar
to that of Tolmie et al., namely the notion of Unremarkable AI ; an approach to
designing AI systems, specifically for supporting clinical decision making, that
aims for them to be “subservient to the day-to-day decision-making” of their users.
They motivate this by the failure of other clinical decision support tools (DST)
to be incorporated into doctors’ daily routines successfully.

AI and ubiquitous computing are analogous in that they share a central tenet,
namely the “interest in building technologies that make sense and respond in a
sensible way to the complex dynamics of human environments” [133], and (at
least in regards to machine learning) a dependence on data collection and analysis.
However, this also leaves Unremarkable AI subject to similar critiques to those
delivered by Petersen to Unremarkable Computing.

We see Remarkable AI as complementary to Unremarkable AI [238]. Remark-
able AI is appropriate in contexts where reflection on the use of AI is necessary
and where Unremarkable AI might lead to skewed power dynamics between
stakeholders or loss of agency of users. However, Unremarkable AI might not
always lead to this (and Remarkable AI is deemed to bring its own issues in some
instances).

To inform Remarkable AI, we look to approaches to designing for reflexivity.
Sengers et al. [196]’s Reflective Design is an influential approach, drawing on
several other traditions within HCI and Design such as critical and speculative
design [4, 54], and reflection-in-action [194], to present a comprehensive approach
to designing technologies for critical reflection. They argue that “for those con-
cerned about the social implications of the technologies we build, reflection itself
should be a core technology design outcome for HCI” (emphasis in the
original). Furthermore, they propose that designing for critical reflection entails
exposing otherwise hidden aspects and making these “available for conscious
choice”.

We agree with the goals of Reflective Design but argue that its scope needs
to be broadened for dealing with emerging technologies such as AI; since AI can
be too complex for end-users to grasp immediately, providing opportunities for
conscious choice is not enough. In addition, a reflexive approach to designing

the paper’s section 5, with minor edits based (among other things) on the remaking of the
analysis. Finally, section 6.5 is based on section 7 of the paper and has been edited for clarity
and expanded upon.
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AI systems should include opportunities for users to inspect and learn how the
system’s AI-component operates and what effect it has on the system, themselves,
and their surroundings, and then allow users to make conscious choices regarding
their interaction with the system.

6.2 Remarkable AI

Remarkable AI aims to make the AI component of such systems present for their
users to expose and explain their inner workings and empower users to interrogate
and negotiate the role of AI in these systems and its effect on their lives. We
find it imperative that designers of AI-enabled systems heed the calls to consider
aspects of fairness, accountability, and transparency in such systems and design
their systems with an appropriate level of remarkableness at the right time.

To do so, the AI component of such systems must first be made perceivable
to users since things that we cannot perceive cannot become present in our
lives. In Unremarkable Computing, this is addressed through routines; “artifacts
that are implicated in routines can be perceptually available yet practically
invisible in use” [215]. In other words, in Unremarkable Computing, the apparent
perceptibility of an artifact does not matter; what is important is its perceptibility
in use. Presence in Unremarkable AI [238] plays a somewhat more sophisticated
role. Yang, Steinfeld, and Zimmerman [238] argue that while Unremarkable AI
should not usually interfere with users’ routines, it should be “present enough
to slow decision-making down” when the prediction is at odds with the users’
assumptions.

In response to Unremarkable Computing, Petersen [178] points out that no
interactive technology is inherently invisible in use; it must first be appropriated
and learned before it can fade into the background. However, as the proliferation
of AI systems has shown us, that can no longer be said to be true. Indeed, the
front-end of an interactive system is not inherently invisible, but the back-end
might be, and this is where AI is most often situated. Unremarkable AI highlights
that a prediction is being made [238, Fig. 1], but its aim of not interfering with
users’ routines means that this might be ignored. Remarkable AI complements
this approach by aiming for reflection and empowerment.

I argue that designers of AI systems should design their products in ways
that expose and explain their AI components and allow users to interrogate and
negotiate the role of AI in the system and its effects. Below, I expand on how
Remarkable AI aims to support designers in doing so by looking to research in
computing education on teaching AI since this community has produced several
examples of exposing and explaining AI systems through use. These approaches
are presented in the context of learning, but as I will show, they contain important
lessons to be learned for designing end-user systems. Additionally, xAI provides
explanations about how AI systems produce predictions and is an aspect to
consider when designing a Remarkable AI system. Still, as argued above, it often
only covers part of the process and thus is not itself enough.

In the following, I present two high-level design sensitivities derived from the
literature and argue why designers should pay attention to these when designing
AI systems to be remarkable.
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6.2.1 Learning through Use: Exposing & Explaining AI

In Petersen [178]’s Remarkable Computing, a central aspect that sets it apart
from its Unremarkable counterpart is the notion of Learning through use; that
appropriating and learning to use technology is an inherent trait that should be
designed for. Remarkable AI extends this notion and argues that to understand
the potential impacts of an AI system, some level of understanding of its inner
components is necessary and that this should be designed for by exposing and
offering explanations of these components through use.

The notion of coding from CE [50, 107] is beneficial here. For example, consider
how we typically interact with a search engine: We enter a search query (most
likely in our web browser’s search bar, i.e., not on the website of the search
engine), scroll through the results of the query and click any link that sparks our
interest. Suppose we instead try to code (in the broadest of meanings) our own.
In that case, we are forced to pay attention to how they work behind the scenes,
how queries are interpreted, how websites are crawled and indexed to become
available for searching, and crucially, how results are ordered using AI and which
data are collected about the users. Coding then makes us look at and understand
technology in a new light.

This is not to suggest that AI systems should require users to code them from
scratch. Still, if aiming to be remarkable, they should provide users with oppor-
tunities to dive below their front-end, change and customize system parameters,
and observe how this affects the outcome in a safe environment. This approach is
similar to the notion of infrastructuring [180] but focuses on exposition and expla-
nation rather than appropriation. Exposition and explanation are, however, not
enough since it does not necessarily provoke reflection on the broader implications
of a system’s use of AI.

6.2.2 Interrogating & Negotiating the Role of AI

Therefore, the second aspect of a Remarkable AI system is providing opportunities
for users to interrogate and negotiate the role AI plays in the system and how
this affects its stakeholders and context of use.

Again, CE provides a helpful notion, namely decoding. Here, technologies are
analyzed in depth with regard to their purpose, the values they imbue, and their
potential and current impact. Drawing on this, we suggest that systems designers
should incorporate ways of decoding their use of AI with regard to, e.g., what
values guide how data was collected, analyzed, and used in the system, what its
criteria of success are, but also which stakeholders are involved/implicated in
which aspects of the system, who has control over how the system’s predictions
are used, etc.

We are also inspired by Reflective Design [196], which provides several design
principles for fostering reflections in end-users. First, it argues that reflective
designs should support users in reflecting on their own lives by, e.g., “offering
users new ways of experiencing and reflecting on their activities” and “to offer
up new choices that may not have been in the user’s awareness”. Further, they
argue that “technology should support skepticism about and reinterpretation of its
own working”. Users should be the ultimate authority on the activities they are
performing with the system. Systems should be designed to encourage reflection
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on this and allow users to reject using the system if they disagree with its values
and purposes.

Finally, Remarkable AI argues that users should be involved in negotiating
the values and power dynamics built into the system. Here we look to PD for its
efforts of doing so, more broadly, in the design of interactive technologies. In their
paper on the future of PD, Bødker and Kyng [30] called for visions of approaches
to “escape the iron grip of the big corporations” with regard to their, now all
the more so, ubiquitous use of data and AI with no opportunity for users to
intervene. Remarkable AI is an attempt to provide designers with an approach for
developing AI systems that utilize AI’s numerous promises while aiming to avoid
its many pitfalls by, among other things, drawing on PD methods for inviting
users into the engine room and negotiating how the use of AI plays out.

Remarkable AI aims to guide designers to design systems that expose and
explain their AI components and invite users to interrogate and negotiate AI’s
role in their lives. It proposes doing so by allowing users to dive below a system’s
front-end to alter and experiment with its configuration and, ultimately, the
results of its AI component and by offering up opportunities for users to reflect
and act on the values, stakeholders, and purposes of the system.

6.3 Case Studies: Informing Remarkable AI

In the previous sections, I motivated the need to consider Remarkable AI as an
approach to AI systems design. In this section, I will analyze three studies from
my research to qualify and demonstrate how Remarkable AI can be designed for.

It is important to remember here that Remarkable AI springs from a drift in
the research context; where the tools and activity that this analysis is based on
stem from Education, Remarkable AI addresses the design of end-user AI-systems.
Indeed it was our experiences from these projects that led to our drift towards
end-user design, and in turn, the cases share similar goals with Remarkable AI,
although their designs are particular to Education.

I chose this method as an experimental way of qualifying the problem space
of designing for Remarkable AI. By drawing on the different-yet-similar problem-
space of AI Education, I highlight the similarities and differences between the
contexts to offer a delimitation of Remarkable AI. I propose concrete design
strategies to designers when dealing with the remarkableness of their AI systems.

To analyze the cases, I used the two design sensitivities above as themes,
deductively analyzing the cases with regard to how they address these. In practice,
I reviewed the publication for each case (i.e., Paper A, Paper C, and Paper B),
coding instances of each sensitivity as presented in the paper. Additionally, having
been intimately involved in the design and evaluation of these cases, I noted down
any relevant information not captured in the papers. Based on this analysis, I
then compiled a set of design strategies, which were then discussed and refined in
collaboration with two other authors of the paper draft (Paper E ), who were also
involved in the research projects.
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Case Participants Setting Duration
VML 61 High school

classroom
3 x 90 min

MLM 2* Lab setting 60 min
Ethics
Workshop

71 Various 90 - 180 min

Table 6.1: A brief overview of the evaluations for the three included cases. More
info can be found in their respective papers (VML (Paper A), MLM (Paper
C), ML Ethics Workshop (Paper B)). *) Two adolescents participated in the
pilot study in MLM (Paper C), but approximately 30 students participated in
subsequent unpublished interventions.

6.3.1 VotestratesML

As a short reminder to the reader: VML (Paper A) is a collaborative learning tool
for exploring ML and its use in democratic elections for use in a social studies
classroom. Students collaborate on building ML models for predicting voter
behavior using data collected about the 2015 Danish general election.

Exposing & Explaining AI: VML has several features designed to both
expose and explain AI concepts, practices, and perspectives. Students are free to
explore the interface and functionality of VML, and the interface is designed so
that it cannot be brought into a faulty state.

VML was designed as a political tool rather than a computational tool. It is
contextualized for the social studies classroom, and the ML models that can be
built by it are based on data from the Danish general election. By drawing on
existing theories regarding voter behavior, students can use their subject-matter
knowledge to reflect on the data and the expected usefulness of their models.
Further, by allowing students to choose between different ML algorithms (the
somewhat simple K-nearest neighbors and the more complex feed-forward neural
network), VML highlights how different algorithms can lead to varying levels
of model complexity and different results. VML is designed with two ways of
evaluating a model; first, students get an accuracy score and an F1 score2 for
each model they create. Following this, they can try out their models on personas
based on aggregate voter data for each political party. In this way, students
are presented with a formal evaluation of their model and a more contextual
evaluation, and the differences between them can be discussed.

Interrogating & Negotiating the Role of AI: In addition to supporting
students in understanding what ML is and can do, they can also draw on their
understanding of social studies to contest its use in democratic elections. We saw
this in the evaluations with VML when a student exclaimed about the ethics of
using ML in political campaigns, e.g.: “The Social Democrats do vote-seeking [in
the role-playing exercise]. But I don’t have much respect for that. I would rather
go for policy seeking...” (Paper A, p. 1053). Here, the student has recognized
2The harmonic mean of the model’s precision and recall scores. See https://en.wikipedia.org/
wiki/F-score for an in-depth explanation.

3Page number refers to the manuscript included in the dissertation.
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that one of the use cases of a system like VML is to identify, what subjects are
important to their potential voters, and that a political party might use this
knowledge to choose their defining issues. Further, the competitive process in
VML of continually improving and optimizing models also spurred reflections on
the world-view inherent in ML-systems: “Machines only look at what we ask them
to look at. If they have made a model, it is we who decide what they should be
looking for. Humans are better at marginalizing than machines are. If we do not
make them marginalize groups, they won’t do it!” (Paper A, p. 1054). In both
these cases, we observe how VML was successful in scaffolding reflections on the
use of AI. In the first example, these reflections are tied to the context of the tool,
whereas the second is a broader, more general reflection.

To Remarkable AI, VML is significant in how it contextualizes ML as an
integral tool in the political reality rather than as a neutral, objective technology.
This results in a system that can be discussed, not only on technological terms but
also contextually, with regard to the impact it might have on political campaigns
and policymaking, with the discussion grounded in the technological reality of
ML.

6.3.2 The Machine Learning Machine

The Machine Learning Machine (Paper C) was designed to make every step of the
(simplified) process of creating a ML model explicit and tangible. First, students
draw sketches and “feed” them to a Trainer -machine that digitizes the sketch
and trains a model. After training a model, students can move their physical
model artifact to the Evaluator that lets them use their model to recognize newly
drawn sketches. The small number of participants in the pilot study makes it
impossible to draw generalizable conclusions, but the MLM embodies several
design intentions with repercussions for Remarkable AI.

Exposing & Explaining AI: By moving data creation, analysis, training, and
evaluation into the physical world, students are invited to explore the process
and make on-the-fly hypotheses about the system they are creating. This was
especially regarding the role of data in ML systems. In our pilot study, we saw
that participants actively used the physicality of their data-set by laying it out
on a table and investigating it, forming hypotheses about their model based on
the data, and experimenting with these hypotheses by creating new data.

Further, the visual aesthetic of the devices was designed to elicit a reaction
corresponding to each device’s role in the ML process: The Trainer appears as a
dirty and used industrial device, representing the messy and iterative nature of
creating ML models. The Evaluator’s modern and clinical appearance is meant to
signify how ML models often appear static once they are presented to end-users.
Finally, the design of the model artifact, especially how it is moved between
devices, represents how training and evaluating models are separate steps in the
process, where the data is (most often) left behind, and only an abstraction of it
is carried over.

4Page number refers to the manuscript included in the dissertation.
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Interrogating & Negotiating the Role of AI: While these were not
tested in the pilot study, Paper C presents two scenarios for how the implications
of ML-systems in-the-wild, can be explored using the MLM.

The first scenario explores how insufficient data representativeness can lead to
the model giving wrong or inconclusive results:

“When comparing the dataset with the doodles, the model struggles
to categorize, [students] realize that almost all cows in the dataset
are looking to the right, while the new doodles illustrate cows that
are looking to the left. The students draw a bunch of new doodles
of cows looking to the left, and re-train the model. When they plug
the model back into the Evaluator, it performs significantly better at
recognizing cows looking to the left. ”. (Paper C, p. 1465)

Further, the system might be used to illustrate how unintended biases might
be introduced to a ML-system:

“Through further experimentation and discussions with their teacher,
they realise that their model is very accurate at recognising houses
if they are drawn by the same person who produced the data-set
and with the same pen. If this person, instead, draws a bicycle it
more often categorises it as a house than as a bicycle. They have
unintentionally biased their model to assume that the type of pen and
the artist are the most important attributes for distinguishing the two
types of drawings.” (Paper C, p. 1466)

In this way, MLM provides a simple yet powerful way of introducing students
to the technicalities of some of the (negative) ways ML-systems might impact
their lives.

With regard to Remarkable AI, of particular importance is how students can
experiment with and form hypotheses about ML in a safe sandbox environment.
Additionally, the MLM allows students to experience how potential negative
impacts of a ML system are rooted in its technological materiality if not carefully
accounted for and to explore ways of mitigating these.

6.3.3 ML Ethics Workshop

Finally, I look at the ML Ethics Workshop (Paper B) designed to engage students
without prior knowledge of ML in discussions on concrete ethical issues by
scaffolding them in designing a pseudo-functional ML-system using different types
of cards and templates to guide their design. This activity is initiated by a design
brief provided by the teacher, e.g., to design an AI-enhanced mobile app to combat
loneliness in adolescents. Next, students are handed a set of data cards that
they are asked to discuss. These cards describe different categories of data that
might be used in a ML model, such as “health” or “smart home”. After openly
discussing the data cards, students ideate on the design brief and pick an idea to
work on. Subsequently, students describe their envisioned system design using a
paper template, selecting relevant data cards and describing specific instances in
5Page number refers to the included manuscript in the dissertation
6Page number refers to the included manuscript in the dissertation
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the broader categories. Once they have described a system, students are handed
a single ethics card chosen by their teacher that describes an ethical issue relevant
to their idea, e.g., “Privacy — is the system violating the privacy of you and
your users? How?”. Next, they are asked to discuss and redesign their system
based on concrete issues they identify through their discussion of the ethics card.
Finally, students present their system and discussion to each other, and a shared
conversation is had in the classroom for each project.

Exposing & Explaining AI: This workshop differs from the previous two
activities as students do not create a functional ML-system, but instead sketch
one using the paper template. However, this was designed to ensure that the
hypothetical system would be implementable. Additionally, the activity includes
an introduction to the basics of ML. As such, the activity did not explicitly focus
on exposing or explaining AI as a technology, but rather the introduction and
constraints set up by the workshop served to bootstrap their discussions and
reflections.

Interrogating & Negotiating the Role of AI: The card-based workshop
includes two decks of cards, and activities with them, that aim to support this
goal. The first deck, the people cards, aims to scaffold students’ reflections on
how different stakeholders are involved in any ML system. The ethics cards each
present an ethical dilemma to consider regarding students’ designs. The latter
deck was deliberately introduced after students’ had designed the first version of
their application because we aimed for them to feel personally responsible for their
systems’ potential failures. Rather than students attempting to avoid these issues
in the initial design phase, they were asked to redesign their application with
the ethical dilemmas in mind after this phase. While challenging, and sometimes
impossible, for the students to successfully solve, these dilemmas led to insightful
reflections, such as in the following exchange (from Paper B):

Student 1: "What if a group, where something is going on under the
radar is added to the system by us [...] and something bad happens
in that club, because we didn’t know there was a problem with them.
Whose fault is it then?"

Student 2: "It is still the responsibility of the club."

Student 1: "But we brought them into our system..."

Students 3: "I think those who are responsible for the app are to
blame. And I’m thinking that there is always someone in charge.
That’s a director’s job."

Student 4: "Okay, that is the Minister of Health. So it should be
the job of the Minister of Health or what?" (Paper B, p. 1277)

Here, we see students dealing with a specific dilemma, that of responsibility
for failures in the system. We see that it is difficult for them to place the blame
for such failure. In this case, where a government body is the provider of the
system, this might be a clearer-cut case than with private providers, which might
not be expected to take responsibility.
7Page number refers to the included manuscript in the dissertation
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The case itself is another aspect of how the workshop allows students to
interrogate the role of AI in their lives. By providing a design case where students
essentially design for themselves (i.e., other teens), we invite them to imagine
themselves as the application’s end-users. The aim here is to invoke a sense
of empathy for the potential users when discussing the impacts of the system
students create.

In terms of designing for Remarkable AI, of notice here is how the workshop
can engage participants in interrogating and negotiating ethical dilemmas in
an AI system, even though they have little to no prior knowledge of AI or ML.
Additionally, the workshop aims to create an emphatic reaction in students with
the intended users of their applications, both in terms of the value it might bring
them and what pitfalls to avoid and address.

6.4 Design Strategies for Remarkable AI

Above, we have presented two design sensitivities for Remarkable AI, namely
designing to expose and explain AI and to interrogate and negotiate its role in
our lives and in society. While the three cases have been designed for educational
purposes, we have found three design strategies for designing end-user systems
that can be extracted from them. Where the design sensitivities are high-level
sensitivities to discuss and consider in a design process, these design strategies are
concrete suggestions for designing for the sensitivities. Note that while the three
strategies presented below are what we have been able to extract from our case
studies, different and complementary strategies might be extracted from looking
at other work.

6.4.1 Foregrounding the ML Process to Expose AI
Components

The first strategy deployed across these systems is to foreground the ML process
in a structured way, exposing different components that go into creating an AI
system. With the MLM, students create their own data, manually load it into
the model and then manually test the resulting output. VML opts instead to use
fixed real-world data but allows students to explore the data, select what data
they want to include, and further experiment with different model types and their
configurations. While students do not create a functional ML system in the ethics
workshop, they are asked to consider what data is relevant to their system and
which predictions or inferences it makes.

By foregrounding the ML process to users of AI systems, they first and foremost
are made aware that a computer is making decisions that impact their use of it
or the decisions they make based on their interactions with it. While they might
not understand each step in the process, it is at least apparent to them. We see
this as the first step towards users being able to call the system and its use into
question.

6.4.2 Iterative & Safe Experimentation to Explain AI

To aid students in understanding AI, several of the cases above allow experimenta-
tion without the risk of getting stuck. For example, VotestratesML is designed to
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enable students to iteratively try any combination of data, model type, and model
parameters. The interface adapts to provide feedback to students regarding which
choices are valid given their current configuration. Similarly, MLM allows users
to iterate on their model to improve it. Here, users can take advantage of the
physical data points by spreading them out and looking at their similarities and
differences to make hypotheses about what inferences the model is making, and
then test their hypotheses by strategically making new data-points and testing or
training their data on these.

For end-user systems, allowing users to experiment with their AI components
might not always be appropriate. Still, systems could enable users to do so in a
sandbox environment without affecting the existing system. This would give users
a sense of what happens to (their) data in the system and how different choices
made by its developers or maintainers affect them. This functionality could be
further expanded by including xAI functionality, although this was not the case
in the above systems.

6.4.3 Facilitating Discussions and Reconfiguration to
allow Interrogation and Negotiation

Finally, to scaffold students in negotiating the use of AI systems and their effect
on their lives, the systems invite discussion and reconfiguration. An integral
part of the Ethics workshop and VML is that students’ systems and ML models
are scrutinized and discussed by a wider audience. Additionally, in the Ethics
workshop, students are explicitly asked to redesign their system to address the
issues they have encountered. While this is often difficult for the students, it
highlights the trade-offs between, e.g., privacy and effectiveness made by real-world
designers and developers of AI systems.

While a complete redesign of an end-user system by the user might not
be desirable, systems could be designed to reflexively engage their users in
configuring the systems to their preference. This might entail allowing users
to choose between privacy-preserving data collection or increased accuracy of
predictions or letting users choose between advanced but opaque or simple but
explainable models. Further, this strategy could be deployed to design systems
where multiple stakeholders are affected by their use of AI to help them negotiate
how it’s deployed. By highlighting how these systems’ use of AI interweaves with
their users’ daily lives and surroundings, users are supported in interrogating the
systems’ roles in these.

6.5 Discussion

As I see it, Remarkable AI and Unremarkable AI [238] are two ends of a continuum,
delimiting the design space for remarkableness in AI-enabled applications, which
come with each their strengths and weaknesses. To introduce the idea of this
continuum, I have drawn on previous work in HCI regarding Remarkable [178] and
Unremarkable Computing [215]. I did so to highlight how contrasting approaches
can foster constructive discussions in the HCI community, and since the criticisms
of Unremarkable Computing by Petersen [178] are as applicable to Unremarkable
AI [238]. However, as mentioned earlier, because AI works in the background and
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a user might never realize that they are using an AI-enabled system, Remarkable
AI is further reaching than its Computing counterpart.

Below, I discuss the necessity for considering remarkableness in everyday
AI-enabled applications, how to find the right level of remarkableness, and the
limitations of Remarkable AI.

6.5.1 Designing a Right Level of Remarkableness

As mentioned above, I fully recognize that Remarkable AI is not a catch-all solution
for designing AI-enabled systems. Instead, I see Remarkable and Unremarkable
AI as delineating a continuum of AI systems design, in which designers will need
to ask themselves (and their users) important questions regarding the nature of
their needs and wants for a system. As much as designers might want to support
and augment users’ decision-making, all systems are arguably transformative in
that they prescribe particular action possibilities for their users [225].

In recognizing this, an important question to raise is whether it is acceptable
for a system to do so indirectly or to which degree users should be confronted
with and offered control over this influence. This depends on the application area
and, not least, the designer’s values. The case of DSTs is interesting since both
sides of the argument could be made; Yang, Steinfeld, and Zimmerman argue
that a DST should support clinicians’ work practices and only be noticed when
their predictions “add value”, in which case the Unremarkable approach is most
appropriate. However, if one begins to question what value is added and who
decides that it’s valuable, the case is less clear cut; the patient might not wish to
have AI play a role in their decision-making, or clinicians might want to know
more about how the DST makes its predictions, what data these are based on,
and if unintended biases are present, before trusting it. I am not suggesting that
a remarkably designed DST would be more effective or that clinicians would be
more inclined to use it (in fact, the opposite might be true). Still, I want to point
out the political and ethical questions that AI-enabled systems raise and that
should be addressed in any design process.

Determining the right level of remarkableness is a design choice, which designers
should engage with, and which answer should be informed by understanding the
system’s stakeholders, the context of use, etc. Indeed, it might be the case that a
system clearly would not benefit from being remarkable and that designing it to
be so would only subtract from the value it provides (arguably, one example of
this could be ML-powered, on-device enhancement of smartphone photography).

Thus, the right level of remarkableness is highly contextual. As such, designers
should engage rigorously in determining it, even if the AI system’s use case seems
inconsequential at the surface level.

While I see Remarkable and Unremarkable AI as two end-points in a continuum,
there is no reason why they could not be combined in different parts of a timeline
and context of use. For example, it might be that clinicians at first wish to inspect
the AI component of their DST, but as they come to trust it, they might be less
inclined to do so; a sort of appropriation-through-use instead of Petersen [178]’s
notion of “learning-through-use”. Alternatively, clinicians might use this DST in
an unremarkable way, observe that it is helpful, and then feel the wish to unfold
its inner workings.
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6.6 Summary

To address RQ3 RQ3: How
can a CE
approach to
ML education
inform AI/ML
systems
design?

, this chapter presented Remarkable AI as an approach to AI-
systems design that aims to empower end-users in interrogating and discussing such
the impact of such systems on their lives. In a case-study analysis of the examples
of my work; VotestratesML (Paper A), Machine Learning Machine (Paper C),
and the ML Ethics Workshop (Paper B) I have derived three design strategies for
designing such systems; foregrounding the ML process to expose AI components,
iterative and safe experimentation to explain AI, and facilitating discussions and
reconfiguration to allow interrogation and negotiation. Importantly, I do not
see Remarkable AI as the goal for all AI-systems, but rather as one end of a
remarkableness-continuum, the other end occupied by Unremarkable AI [238]. I
have discussed how the right level of remarkableness might be determined and
argued that this is not trivial and might have to be determined case-by-case by
the designers of such systems.
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Chapter 7

Discussion & Conclusion

In this chapter, I will discuss this dissertation’s contributions to computing
education and HCI. I will relate the chapters above to the research questions
posed in chapter 1 and discuss how they are answered, as well as point out my
work’s limitations and possible future work.

Overall, this dissertation is the collective dissemination of three years of work.
Throughout my Ph.D. process, I have examined how to make AI education matter.
Given the promises and challenges of AI, we owe to children to educate and
empower them with regard to it. To do so, I took my offset in CE and ML.
However, CE as an approach had to my knowledge, not previously been applied
to ML education, and so I started with little idea of the direction in which to
take my work. Thus, my colleagues and I worked experimentally (through the
design experiments presented in chapter 4) to uncover how CE and ML would
interact. This work led to a refined set of design principles (see also chapter 4)
and to the CEML framework, as an expansion of CE to address more advanced
technologies such as ML (see chapter 5). Finally, our work led me to conclude
that without empowering end-users of AI-systems in the wild, education only
goes so far. This led to the articulation of Remarkable AI as an approach to
AI-systems’ interaction design informed by CE (see chapter 6).

7.1 ML Education based on CE and a Strong
Technological Foundation

My first research question asks how CE as an approach to ML education can
address the challenges posed by the widespread use of ML. In chapter 5, I presented
and argued for the CEML framework, which is an extension of the design model
by Dindler, Smith, and Iversen describing the activities involved in CE [50] with
a technological foundation, consisting of ML concepts, practices and perspectives.
CE is a well-suited approach to ML education as it focuses on developing students’
understanding of and reflection on the technology surrounding them. However,
I found CE alone was not enough, and I argue that engagement with ML on a
technologically foundational level is also necessary. Developing students’ “capacity
to engage critically and curiously with the construction and deconstruction of
technology” [50, p. 67] entails lifting the curtain of said technology, and to do so,
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a fundamental understanding of the technology is necessary.
The CEML framework is similar to other suggestions for ML and AI curricula.

Still, it differs in a few key ways, especially regarding its insistence on scaffolding
students’ process of becoming active participants in determining the ongoing use
of these technologies. Long and Magerko [137] present their vision of AI literacy
based on previous work in the field. They include critical reflection as a focus in
their AI literacy but are concerned with students’ becoming critical consumers
rather than contributors. This is a step towards CE, but the potential impacts of
AI and ML merit going further than this.

Additionally, CEML represents a Nordic approach to ML education, rooted
in the political history of the PD movement [22, 28] in Scandinavia. While
Touretzky et al. [216, 217] have presented a comprehensive view on how AI and
ML education might be included in the U.S. school system, the differences between
the contexts warrant an approach that is rooted in a Nordic understanding of
society and culture. I argue that the CEML framework is a first step towards
such an approach to ML education.

CEML further complements prior work by offering a holistic approach that
treats knowledge of ML not as an end in itself but as a means to investigate its
meaning in and impact on students’ lives and society at large. CEML does this
by explicitly linking ML technological fundamentals to the reflexive activities in
CE and insisting that these are inherently connected. This is not to say that a
similar recognition isn’t possible or implicitly present in other work, but rather
that it is an intrinsic aspect of CEML. By making these connections explicit,
CEML aims to support researchers and educators in articulating activities and
tools that support the discussions around ML that are needed.

Further, as the Danish Fablab@School project demonstrates [204], CE provides
a scaffolding for students to develop a “sense of self-determination” as being capable
of conducting and reflecting on iterative design activities. Thus CEML aims to
develop students’ self-identification as citizens whose opinions regarding the use
of ML are legitimate and should be taken seriously.

We are seeing great promises and progress made with AI, but we are indeed
also facing significant challenges regarding its use [164]. The CEML framework
offers a way to address these challenges in ML education that acknowledges their
complexity and their relation to the technological dimensions of ML. Apart from
CEML, my dissertation offers several exemplars of activities and tools designed in
accordance with the CEML approach, which might guide and inspire researchers
and educators in their work.

7.2 How to Design CE-based Learning Tools
and Activities for ML

Second, I asked how we might design learning tools and activities that scaffold
children’s computational empowerment with regard to ML and what characterizes
the design space for these. I have explored this through a series of successive design
experiments, each building on the findings and experiences from the former. This
led me to articulate six design principles; Considering tangible representations of
ML, providing low floors to engaging with ML, providing opportunities for mean-
ingful engagement, scaffolding students’ fundamental, technical understanding of
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ML, emphasizing critical engagement with ML, and designing for scalability.
These principles overlap with existing work on designing for ML education

and computing education more broadly. For example, Long and Magerko [137]
suggest embodied interaction, providing low barriers to entry, drawing on students’
interests, and contextualizing ML. Regarding computing education more broadly,
Resnick and Silverman [184], among other things, argue for low floors and wide
walls, choosing black boxes carefully, and not overemphasizing programming.
Similarly, Blikstein [23] argues for selective exposure to computing concepts and
practices. Many of the design principles in this dissertation could be seen as
variations on these, suggesting that these are applicable when designing for CE-
based ML education. Further, CE as an approach also brings new considerations
to the design of learning tools and activities, most prevalently the focus on critical
engagement.

At the same time, I aim for the experiments in chapter 4 to exemplify how a
CE-approach to tools and activities for teaching ML might look. Each experiment,
I argue, surfaces different qualities regarding what to teach about ML and how to
design for teaching it. They vary in scope, complexity, and context, but all address
the same subject from different angles. This overlap between my experiments
has allowed me to investigate how they interact, as presented in the annotated
portfolio of section 4.3. With this, I aim to demonstrate how the experiments and
the design principles deduced from them are interdependent and not a recipe for
designing “optimal” tools and activities.

I have found that addressing these questions with a CDR methodology has
been fruitful in generating an extensive collection of design experiments. Without
such a collection, I would not have been able to confidently extract the set of
design principles nor the tensions and synergies between them. Working with
experiments in a comparative way [131] ensured that while each experiment
uncovered new aspects of the design space, there was enough overlap between
them to identify how their qualities overlap. Further, the throughput of my work
was enabled by the collaborations described in section 3.6. Working closely with
a design partner allowed me to develop and critique ideas continuously and (at
least) doubled the constructive horsepower. Our well-established collaboration
with teachers from Aarhus municipality ensured that our work remained founded
in teachers’ and students’ reality and provided a stable venue for trying out and
evaluating our experiments.

7.3 A Remarkable Approach to AI-systems’
Interaction Design

Third, I asked what the implications of a CE approach to ML are for AI/ML
systems design. In discussions of my work with my colleagues, I came to realize
that while AI and ML education is a necessary step towards empowering children
and adolescents with regard to its use, this use is still determined by the options
available, which are currently proprietary and commercial systems that have
their capital shareholders’ best interests in mind, and not their users’. Thus,
in addition to education, we need to better equip designers and developers to
develop new, open systems that can be interrogated, discussed, and appropriated
by their end-users. Furthermore, the work being done in AI and ML education can
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serve as a starting point for these discussions, especially when these aim to open
up AI systems, let their users experience, and experiment with their underlying
mechanisms. To inform such as approach, I have drawn on my own experiments.
Referencing previous discussions in HCI, I have named this proposed approach
Remarkable AI. Remarkable AI complements Unremarkable AI as proposed by
Yang, Steinfeld, and Zimmerman [238] to unfold a continuum of remarkableness
in AI systems.

I argue that in addition to other approaches, such as xAI, or everyday algorithm
auditing [198], sensitizing designers to the concept of remarkableness in AI-systems
provides new ways of democratizing AI. As Miller, Howe, and Sonenberg [147]
argue, xAI is most often addressed to domain experts and people professionally
engaged with AI. Remarkable AI complements xAI by offering ways to understand
such systems that acknowledge the complexity of the social context in which
they are used. Remarkable AI focuses on end-users of everyday AI-systems and
on offering a bottom-up approach to designing these, in which users take an
active part in understanding and shaping the systems to their own contexts.
This is similar to the goals of everyday algorithm auditing. Still, Remarkable
AI further suggests that systems themselves are opened up to their end-users in
ways that not only let them audit the systems for symptoms of issues but also let
them investigate the root causes of the issues themselves and experiment with
alternative ways for them to work.

I do not intend for the continuum between Remarkable and Unremarkable AI
that I propose here to be a concrete guide on how to solve individual usability
issues with AI systems. Instead, I aim to sensitize designers and developers to
the remarkableness of AI in the systems they create.

7.4 Limitations

A high-level limitation of my work is its capability to stir any real change given
the current global political and economic powers in play regarding the extensive
use of AI and ML. I myself do not feel particularly empowered regarding the
AI/ML systems that I have come to depend on, so how can we expend children
and adolescents to be? In discussions I have had with students throughout my
project, it seems they, too, feel disempowered regarding their use of AI/ML
systems and often peer-pressured into using them (e.g., in regards to social
networking applications [132]) for fear of social repercussions. This indicates a
need for equipping students with the skills, competencies, and attitudes necessary
to discuss the role they wish AI/ML to play in their lives (and, indeed, the need
for better AI systems). In the short term of my different design experiments, I
have experienced students engaged in insightful discussions about ML and its
use. I hope these discussions will influence how the same students approach these
systems outside the classroom. I am hopeful going forward, with the growing
focus on criticality in computing education research (see, e.g., [50, 100, 125]), and
the efforts teachers are making to push for this to make its way into the classroom.
However, further political action is needed, as well as better alternatives to
the systems we have today, especially regarding social networking sites. With
Remarkable AI and the notion of remarkableness in AI-systems, I have pointed
to one way that designers of AI systems might become sensitized to these issues.
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On a more granular level, my research has several limitations. First, my
experimental focus and rapid approach to design experiments mean that I have
yet to conduct thorough, longitudinal studies with regard to the learning outcomes
of students or to their empowerment. While it is unclear how to evaluate this
type of critical empowerment in the span of a Ph.D. project, learning outcomes
could be assessed and provide a more quantifiable indicator of students’ takeaways
from our experiments. However, we have observed students drawing on their
knowledge of ML in classroom discussions and when arguing for their choices
in design processes. Furthermore, my work has focused on generating a large
corpus of experiments to characterize the design space for such tools, the process
of which was only possible without a focus on longitudinal studies of learning.

The design principles presented in chapter 4 were articulated after the fact,
and as such, their collective generative qualities are yet unknown. However, they
were formulated based on several design experiments in which they were all carried
over as qualities from previous experiments. As such, the principles have, on an
individual level and in various combinations, been used to guide my work and
thus have been articulated based on design qualities from each experiment that
had generative potential.

Finally, Remarkable AI is still in the early stage of conceptualization. While
I have offered initial strategies for designing remarkable AI-systems, these have
yet to be used generatively. It is also unclear when Remarkable AI would be
appropriate to implement and when it would not. Indeed, in critical areas where
time is of the essence, interfaces that are unremarkable and seamless [42] might be
more appropriate if the systems are trusted by their users to perform satisfactorily.
Additionally, Remarkable AI relies on the good faith of designers, and especially
companies, to be adopted. While this cannot be assumed, there is a business
argument to be made: a move towards greater remarkableness in AI-systems
can be likened to the push for open-source software. It can potentially increase
users’ trust in systems by allowing them to be scrutinized technologically and
for interested parties outside a company to do so. Falling short of this, it will be
up to legislators to impose laws that ensure a level of remarkableness in systems’
where it is needed, such as the European Union is proposing with their Artificial
Intelligence Act1.

7.5 Future Research

For the final section of my dissertation, I will discuss possible paths and avenues
for how my work might inform future research. I have presented the CEML
framework to bring CE’s empowerment and democratization values to ML ed-
ucation. However, it has yet to be evaluated as a coherent approach in the
classroom. As such, I invite future research that utilizes CEML for designing
classroom interventions and testing these out. Where my work has mainly focused
on the coding aspect of CE, i.e., constructing with ML, I see a possibility to apply
the CEML approach to decoding activities as well, i.e., the analysis of existing
AI/ML-systems in-the-wild. Here, the top part of the CEML model would be
replaced by the analytical model from CE (see Figure 5.1, to the right). This

1See, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206, ac-
cessed Jan 23rd, 2023
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would allow students to draw on their (new) knowledge of ML to critically examine
existing technology (to the extent that this is possible, given their opaque nature).

The design principles and their tensions and synergies were derived from
examining the design experiments throughout my Ph.D. studies. While they
outline the design space for CE-based learning tools and activities for ML, they are
not exhaustive. There is still more work needed to map the design space. Thus I
invite other designers, design researchers, and educators to draw on the principles
in new empirical work and to contest, qualify and expand on the work I have
presented here. Due to my work being explorative, and focused on uncovering
the design space, most of my experiments are limited in scope and, thus, have yet
to engage with some of the existing guidelines for designing tools and activities
for computing education that are larger in scope. Specifically, I encourage work
that engages with the principles of wide walls and high ceilings [184] and explores
these implications for CE-based ML. Researchers with a CT focus have already
addressed these principles with, e.g., the Snap! [115] and Scratch [60] programming
languages, but without explicitly focusing on CE.

Additionally, more work is needed that explores how the tensions and synergies
I have identified can be addressed. Specifically, the tension I have found between
tangible and critical ways of interacting with ML is interesting to explore further
due to the promises I have seen in tangible representations to make opaque and
complex aspects of ML malleable for students. Additionally, I encourage future
research to explore how the dimensions of ML as presented in section 5.2 intersect
with my proposed design principles.

While the work in my dissertation revolves around ML, the CEED project, and
other research address different emerging technologies, my work can also inform
this work. Rotolo, Hicks, and Martin [187] define emerging technologies as having
five shared properties: They are radically novel, meaning that they are somehow
disruptive and challenging to current practices. They exhibit relatively fast growth.
There is some coherence in research and development on the technology, i.e., some
basic agreement on the technology. They have a promising and prominent impact
on society, and finally, they are surrounded by some level of uncertainty and
ambiguity regarding their impacts. ML is an emerging technology according to
these properties. Other examples might be virtual, augmented, and mixed reality,
quantum computing, and blockchain, but also gene manipulation technologies
such as CRISPR2

The shared properties between emerging technologies suggest that my work is
applicable to technologies other than ML, within reason. CE, generally, offers a
method for engaging with these technologies that fosters critical reflection and
enables students to take a stance on them. Since such technologies are uncertain
and ambiguous, they should be approached without the assumption that we
might easily predict how they will be used and with what impact. As with
ML, approaching such technologies and their potential implications through their
technological foundations anchors discussions about them in their practical reality
and thus serves to qualify these. The CEML framework can inform a CE-based
approach to such emerging technologies by asking what constitutes concepts,
practices, and perspectives for them.

For example, take ExposeAR by Lunding et al. [138]. ExposeAR is a col-
laborative augmented reality (AR) authoring tool for children, in which they
2See, e.g., https://www.genome.gov/genetics-glossary/CRISPR, accessed Jan 5th, 2023.
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design small games for each other in a classroom setting to learn about AR. The
authors argue that key concepts are plane tracking, image tracking, AR interaction
techniques, and device pose tracking. Key practices involve collaboration, testing,
and re-iteration. Finally, they focus on perspectives such as location tracking
and behavior manipulation. They found that the children in their study could
create systems that manipulated their peers’ behavior to follow specific paths in
the game and the real world, mimicking the popular game Pokémon Go3. The
children were able to discuss how this technology enables behavior manipulation
and to relate it to physical stores designed for consumers to follow specific paths
(i.e., how an IKEA store always nudges a shopper past their restaurant). The
key here is how AR as a technology, through tracking planes and images, allows
digital content to be superimposed on the physical world to create engaging games
in which people are required to move about and thus can be manipulated past
certain stores or places. Understanding the underlying technology of AR allows
students to reflect on and discuss not only that they are being manipulated but
how AR technology enables this manipulation.

Further, it is not just in formal education that CE is needed. While many go
through at least some form of formal education, an increasing number of people
are past that part of their lives and are facing the world without the understanding
and reflexive skills I advocate for in my work. For these people, we need to look
elsewhere for venues to aid their empowerment. The SHAPE project at Aarhus
University4, with which I will (hopefully) shortly be affiliated, addresses this need
by looking to two different possible venues; public libraries and trade unions.
In a participatory collaboration, we will work with librarians and trade union
employees to develop new ways for their respective target audiences to engage
with AI and ML, emphasizing CE.

Finally, Remarkable AI presents an approach to AI systems design that aims
to lift the curtains of their inner workings and empower users to interrogate and
negotiate their use. As the approach is based on case studies from my work,
I invite empirical work that applies Remarkable AI as an approach to develop
novel interfaces and interactions with the technology. I see a need to engage in
discussions on the level of remarkableness necessary in AI systems, and how this
will vary across different contexts of use.

7.6 Wider Impact

Apart from the classroom discussions we have facilitated, my work has also led to
broader potential impacts. For example, as mentioned in chapter 4, our work on
ml-machine.org (Paper H) has led us to establish an ongoing collaboration with
the Danish Broadcast Association (DR), and together we will deploy a curricular
unit on ML, utilizing ml-machine.org. This unit will be deployed as a part of
DR’s “ultra:bit” platform on computing education, which has serviced more than
100.000 Danish students5. Additionally, we are in the process of establishing
an ongoing collaboration with the micro:bit foundation, which has serviced an

3See https://nianticlabs.com/en/business, accessed Jan 5th, 2023.
4See https://shape.au.dk/, accessed Jan 17th, 2023
5See https://www.dr.dk/skole/aabn-drs-skattekiste-i-din-undervisning-og-brug-dr-skole (in
Danish), accessed Jan 18th, 2023.
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estimated 25 million children across 60 countries6, on further developing and
strengthening the micro:bit platform’s ML capabilities.

On a more personal note, my work has enabled and motivated me to participate
in the public debate about computing and AI education. For example, as a reaction
to the plans of the Aarhus city council to remove the budget of De32 (i.e., the
groups of teachers that we have collaborated with), I had a letter published in
a local newspaper arguing against this decision. Further, I have been asked to
participate in a newly established panel in my trade union to inform their efforts to
prepare and qualify their members for an increasingly digital job market. Finally,
when the Covid-19 pandemic hit Denmark, I found myself motivated to join and
participate in a political party in Denmark. To my surprise, this party had no
politics on digitalization or IT. Nevertheless, I have succeeded in establishing a
national working group in the party on IT politics with a particular focus on
establishing computing education in the Danish school system.

A Short Goodbye

Thank you for spending time with my dissertation, no matter how you engaged
with it. I hope you found the read enjoyable. I hope you have found my
contributions valuable and, if nothing else, interesting.

I look forward to following my dissertation’s life and the research fields it aims
to contribute to.

6See https://microbit.org/about, accessed Jan 18th, 2023
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Paper A

High School Students
Exploring Machine
Learning and its Societal
Implications: Opportunities
and Challenges

Magnus Høholt Kaspersen, Karl-Emil Kjær Bil-
strup, Maarten Van Mechelen, Arthur Hjorth,
Niels Olof Bouvin, & Marianne Graves Petersen

Abstract

The increased use of AI and machine learning (ML) calls for a general AI literacy,
in particular regarding understanding how ML works, the process behind creating
ML models, and reflecting on its implications. Where existing learning tools
focus on the first two, we explore opportunities and challenges for meaningfully
engaging students in understanding and reflecting on ML in their everyday life.
We designed VotestratesML, following a Constructive Design Research approach,
as an ethics-first learning tool that allow students to explore implications of
ML for democratic elections. Based on deployments of VotestratesML in two
high school social studies classrooms, we found that safely exploring ML from
a concrete starting point helped students reflect and form opinions about its
use, that promoting iterative exploration through collaboration and competition
motivated them to explore, and that foregrounding ethics in the design and
grounding ML in a well-known subject area allowed them to engage with ML on
a personal level.
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A.1 Introduction

The increased use of Machine Learning (ML) in almost all aspects of our lives [164,
173] increases the necessity of a widespread AI literacy [53, 137]. AI, and subse-
quently ML, is part of the infrastructure of many everyday technologies in ways
that are often opaque and difficult to comprehend[36, 199]. Understanding how AI
and ML work is important not only for those pursuing a career in STEM (Science,
Technology, Engineering, and Maths) fields but, arguably, for all children, as these
technologies are increasingly pervading all aspects of our lives (i.e., education,
leisure, and work). Thus, AI literacy becomes a precondition to fully participate
in society, whereby the term literacy denotes that the goal is not simply to develop
children’s instrumental skills, but also a critical understanding of manifestations
of power and ideology in AI technologies, and consequently, its personal and
societal implications [223].

The importance of a critical understanding of technologies has also been echoed
in recent studies on Computational Thinking (CT). Researchers (e.g., [33, 76, 107,
110, 213]) have argued that traditional CT competencies (e.g., decomposition,
abstraction, automation, etc.) should be complemented with critical perspectives
on the personal, social, and political consequences of digital technology. In
these broader and more comprehensive approaches to CT, students learn about
technologies and computational infrastructures, not just in order to become better
programmers or designers, but also to enable them to engage with political and
ethical questions about technology in the real world. As Kafai et al. [110] put it,
these approaches see the “cognitive understanding of underlying concepts of CT and
its uses in the world as key to becoming a more critical practitioner of computation”.
We agree with the critical approaches above, and align ourselves specifically
with the notion of Computational Empowerment (CE) [50, 107]; a perspective
on computing education rooted in Scandinavian participatory design values of
democracy and skillfulnes that aims to develop children’s critical understanding
and informed decision-making with regards to the role of digital technology in
their lives and society more broadly [107]. Using CE as an approach to AI literacy
raises the question as to how ML learning tools can qualify and support children’s
critical reflection and understanding of ML, including its personal and societal
implications.

With this awareness of the need for students and the general public to un-
derstand AI and ML, researchers have started exploring what K-12 students
ought to know about ML [216] in order to become AI literate [137]. The under-
standing needed can be summarised as belonging to three main areas; 1) what
is a ML system, 2) how are ML models developed, 3) and what are possible
implications of ML applications? An important aspect to consider here is what
Blikstein [23] terms selective exposure, i.e., which aspects of the technology should
be foregrounded to children, and how to maximise what can be achieved with the
technology through a certain tool. In current research we often see the former
two areas emphasised in educational tools and practices [115, 232, 246], while the
third is either neglected or only briefly touched upon (see e.g., [246], which seeks
to engage ML novices in interactive model building, but leaves notions of empow-
erment to future work). This trend is also demonstrated by Giannakos et al. [73],
who identify several projects/games for teaching AI/ML, where most focus on the
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first two areas (e.g., ML4Kids1 and AI4Children2), while a few include the third
area (e.g., The Moral Machine3). This aligns with findings of Van Mechelen et
al. [221], who, based on a systematic review of child-computer interaction research,
concluded that design ethics (i.e., the personal/societal impacts of technology and
its qualities in use) has been been underdeveloped in the literature, both as an
overall concern and an explicit learning goal for children.

Thus, while interesting work has been done that can inform the design of tools
and activities to teach students about ML; to our knowledge, no studies have taken
a CE approach to learning about ML, which entails a more equally distributed
focus on all three main areas. With the aim to do so in this paper, we explore the
following question: What are the opportunities and challenges for a CE approach to
meaningfully engage students in understanding and reflecting on ML? To explore
this question, we have reviewed existing literature on designing ML curricula and
tools for teaching it with regards to how to support CE. Additionally, we have
designed VotestratesML; a prototype of an interactive, collaborative learning tool
for ML, aimed at supporting high school students in exploring and reflecting on
the role of data and ML in political campaigns. VotestratesML was iteratively
developed in a Constructive Design Research (CDR) process [130, 205], and serves
both as a proposal for a high school learning tool for ML, and as a means to
explore the design space of ML learning tools in high schools. The process was
realised through six user-interventions in two social studies high school classes. To
inform the future design of learning tools for ML, we herein present our findings
and how they formed the design of VotestratesML.

With this paper, we address Eriksson et al.’s [59] call to open up new frontiers
for research that carries child-computer interaction (CCI) beyond the foundation
and legacy of Papert and Harel [169] in order to embrace the entire education
system with a broader, more critical perspective on 21st century learning, and
encompass diverse issues related to children’s use and understanding of emergent
technologies, such as ML [59], a need more recently identified by Van Mechelen
et al. [223] who note that critical notions of empowerment are only marginally
represented in CCI. More specifically, our contribution is a synthesis of what
students should know about ML as seen through the lens of CE, as well as the
design of VotestratesML and the ways in which this tool can engage students in
learning about ML and critically reflect on its impacts.

The paper is structured as follows; In section A.2 we review existing literature
on ML curricula and learning tools. Then in section A.3 we present VotestratesML.
Here, we describe a typical use scenario in a classroom, then we detail the
VotestratesML prototype and user interface (UI) and highlight certain aspects of
the design of the tool. Finally, we provide the overall design rationale behind the
tool. Following this section, we present our design process and study in section A.4.
In section A.5 we present our findings, before discussing them with regards to
our research question in section A.6. In section A.7 we discuss limitations of our
study, and finally in section A.8 we conclude the paper and point to future work.

1https://machinelearningforkids.co.uk/
2https://www.ai4children.org/
3https://moralmachine.mit.edu
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A.2 What students should learn about
Machine Learning

Here, we review existing literature about teaching ML to K-12 students, divided
into three main areas that correspond to current research trends about what these
students should understand about ML [137, 216]; 1) what a ML system is, 2) how
ML models are created, and 3) what possible implications of ML applications are.
Often learning tools for ML address the first two areas and to a lesser extend the
third, but we argue that a focus on CE requires a specific focus on the third area
in combination with the former two.

A.2.1 What is a ML System?

We see in the literature a focus on teaching what a ML system is. Along these lines,
Touretzky et al. [216] emphasise how computers learn from data and maintain
models/representations of the world based on this data. Similarly, Long and
Magerko [137] state competencies such as distinguishing between artefacts that
use and do not use ML, understanding the strengths and weaknesses of ML system,
and recognising how ML systems reason and make decisions as core in developing
a literacy about ML and AI. This approach is reflected in most tools for teaching
ML. Many block programming languages include this such as AI Snap! blocks [115]
that allow students to build ML applications in the Snap! block-programming
language, using predefined ML blocks. Similarly, Cognimates [51] and Machine
Learning For Kids from IBM allow children to experiment with speech recognition,
object recognition, etc., through the Scratch programming language. Other tools
specifically designed for teaching ML have a similar focus. The popular Teachable
Machine [39] by Google, allow users to input data and train ML models for image,
sound and gesture recognition. Popbots by Williams et al. [232] introduces the
basics of ML systems, such as training a classifier by labelling data input. Cozmo,
a robot from Anki, allows children to play and experiment with built-in object
and marker detection, face recognition, etc.

While understanding what constitutes a ML system is important, it is not
enough to understand the whole of ML, and from a CE perspective, not enough
to develop the capacity for critically engaging with the implications of ML.
Understanding what a ML system is, will help students recognise ML systems
in-the-wild, and with reasoning about what tasks ML as a technology is suitable
for addressing, and importantly which it is not. However, it does not help students
in deciphering and challenging assumptions implicitly built into the system by its
designers and the implications these might have for the people affected by the
system.

A.2.2 The ML Process

Another current focus is on teaching the process of creating ML models. Here,
Long and Magerko [137] emphasise the different steps involved in creating ML
models and the role humans play in doing so. Several learning tools focus explicitly
on this aspect of ML. Hitron et al. [92] introduce the Gest system, a ML-based
gesture recognition system designed to teach children aged 10-13 about data
labelling and evaluation of ML models. They conclude that children are able to
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understand ML processes, specifically data labelling and evaluation of models, and
that children are able to apply this knowledge in other contexts. Zimmermann-
Niefield et al. [246] deploy learning tools for ML into a high school context. They
design and evaluate AlpacaML, an iOS application building models of athletic
moves through sensor-input for use in physical education in high schools. They
found that students developed their own theories on what constituted a “good”
model and were focused on the performance of their particular model rather than
whether the model was true to what it modelled. Kaspersen et al. [120] and their
Machine Learning Machine try to encompass the entire process of building ML
systems, from collecting data to training and later to evaluating a model, and the
iterative nature of doing so.

Understanding the ML process is another central aspect of developing AI
literacy from a CE perspective. An understanding of the ML process entails
understanding what steps are involved in creating an ML model and importantly
the choices made by humans in these steps (for a further discussion of this see,
e.g., [55]). In combination with an understanding of what ML is, understanding
ML processes will allow students to further pick a part of any ML system, and go
beyond the face-value of the system to reflect on and discuss how it came to exist.

A.2.3 Implications of ML

Finally, there is a focus on the implications that ML systems might have on society
and in our personal lives. Long and Magerko [137] stress that students should
understand that “data cannot be taken at face-value” and that some systems have
the ability to “physically act on the world”. Finally, they point out that students
should be able to “[i]dentify and describe different perspectives on the key ethical
issues surrounding AI”. Similarly, Touretzky et al. [216] present the idea that AI
and ML systems “can impact society in both positive and negative ways” and that
this is a important to teach. We also see this in research on learning tools, albeit
to a lesser extend. Bilstrup et al. [19] engage high school students in designing ML
systems in a card-based design workshop which engages them in discussions of
the ethical dilemmas in applying ML to solve real-world issues. Similarly, Skinner
et al. [202] explore children of color’s perception of fairness in ML/AI systems in
a co-design workshop in which 9-14 year old children design a “fair” AI librarian.

Understanding the possible implications of ML implies viewing ML systems as
socio-technical systems that engage in complex social and technical structures in
our society. Seeing ML systems this way allow students to look beyond the system
itself and reflect on the way it affects people around it in direct and indirect ways.

A.2.4 Three areas of ML

In summary, we see that what students should understand about ML can be
divided into three areas; what ML is, the ML process and implications of ML,
and that focus on them are different between different learning tools. Table A.1
presents an overview of how a selection of different tools and activities address them
(the selection includes a limited but broad view of both popular publicly available
tools and recent research prototypes). Focusing on one area is not sufficient
as, e.g., understanding the ML process requires knowledge of ML concepts and
vice versa. E.g., in a later paper, Zimmermann-Niefield et al. [245] expand
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Area of
ML

AlpacaML [246] Gest [92] Teachable Ma-
chine [39]

AI Librar-
ian [202]

Machine
Learning Ma-
chine [120]

What
ML is

Training data,
ML models,
training

Training
data, ML
models

Training
data, ML
models, hyper-
parameters,
training

N/A: Chil-
dren were
asked what
AI and "fair"
meant.

Training and
test data,
training and
evaluation

The ML
Process

Data gathering,
labelling, clean-
ing and analysis,
evaluating mod-
els

Data gath-
ering and
labelling,
evaluating
model

Data gath-
ering and
labelling, eval-
uating models

N/A Entire process,
from training
to evaluating
models

Implicat-
ions of
ML

N/A: Authors
suggest to ex-
plore it in future
work

Explored
in post-
interviews,
but is not
part of the
learning
tool design

N/A Design and
discussion
of what
constitutes
“fairness”
in an AI
Librarian.

N/A: Authors
suggest activ-
ities, but do
not evaluate
them

Table A.1: The three areas of ML and how a selection of learning tools address
them.

AlpacaML to integrate with Scratch allowing students to build gesture-controlled
interactive media and to engage more with understanding different components
of a ML system and how they fit together. Similarly, tools targeting the first two
areas, sometimes include reflections on ML implications; Hitron et al. [92] also
investigate if children after using Gest are able to reflect on situations where it is
inappropriate to use ML, and find that about half of the participants were able to
identify issues about privacy, intimacy, and safety. Kaspersen et al. [120] propose
scenarios explaining how the Machine Learning Machine could be used to explore
ethical issues of ML, such as data representation and biases, but do not evaluate
this aspect. These aspects are, however, most often not presented as a core aspect
of the learning tool design, but as an addition that requires a separate discussion.

From a CE perspective, understanding and being able to reflect and act on
the implications of ML is the most important of the three areas, and should be at
the core when designing ML learning tools. However, to be able to do so requires
some insight into what ML is and the process of creating ML models and humans’
role in doing so. Thus, all three areas must be covered, at least to some extend, by
learning tools aiming to support children in becoming computationally empowered,
and research is needed that explores how to do so. In the following section, we
present VotestratesML, which as a learning tool embodies our exploration of how
a balance between the three areas could be struck.

A.3 VotestratesML: A Collaborative Learning
Tool for Teaching ML

VotestratesML is a web application enabling students to collaborate in real time
on iteratively building models for predicting voter behaviour using voter profile
data, and which aims to scaffold class-wide discussions about ML. Data from
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Figure A.1: The different components of VotestratesML and their use: a is the
Collaborative Component, b the Competitive Component, and c the Discussion
Component · By using the Collaborative Component, groups of students build
models, which are pushed to the Competitive Component, allowing groups to
compare their models. The Discussion Component is used afterwards to discuss
ML, mediated by a teacher. See Figure A.2 for an in-depth view of the Collabora-
tive Component. The two other components are explained further in Figure A.3.

a survey of the Danish national election in 2015 [208] is used in the prototype
to make predictions about real world voters. VotestratesML and the rationale
behind it embodies our suggestion for how to teach ML with an emphasis on CE,
although other researchers might design such a tool differently.

A.3.1 A VotestratesML Use Scenario

In a typical use situation of VotestratesML, students are introduced to the tool
and how it supports building ML models. Next, students are divided into groups of
3-4 people. Each group member logs into VotestratesML on their laptop gaining
access to the collaborative ML tool, see Figure A.1a. The teacher then asks
groups to create the best possible model for, e.g., predicting if a person will vote
for The Social Democratic Party. Each group chooses the Votes for The Social
Democratic Party-label available in VotestratesML. The groups go on to discuss
which features to include in their model. Here, students can draw on their existing
knowledge from social studies class. For example, according to the Michigan
Model for voter behaviour [108], which students are taught in advanced social
studies, voting behaviour is affected by family, and thus, it might be important
to choose features describing how the parents of a person voted. Once students
agree on a set of features, they need to choose an algorithm, and to determine
its parameters. Once the model is trained and tested, students can change their
model parameters, features, shuffle the data or change the training-data/test-data
ratio to try to improve the model. This workflow is summarised in Figure A.2.
When they are satisfied, students push their model to a shared view projected on
the wall in the classroom as seen in Figure A.1b. From here, they can compare it
to models from other groups and discuss how to improve their model. Finally,
when the teacher ends the exercise, a more detailed view is projected on the wall
(see Figure A.1c) and used in discussions of students’ choice of features and model
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parameters, the predictions of the models, and the implications of this way of
working on politics and society. The topic of these discussions depend on the task
given to the students, but might include how these predictions can be used to
target political advertisements to specific demographics and what the consequence
of this is.

A.3.2 Collaboratively Building, Evaluating and
Reflecting on ML Models with VotestratesML

Below, we describe in detail the design of VotestratesML as it played a central
role in the knowledge generation leading to the contributions of this paper. This
is explained further in section A.4.

To support real time collaboration, VotestratesML is built in Webstrates [126],
which synchronises DOM elements between multiple clients in real time. The
students each work on their own laptop, but collaborate with their group through a
shared Webstrates-based website, making the interface of VotestratesML inherently
collaborative between group members’ laptops. Every group member has full
control over the application and they must communicate to coordinate their work,
the intention being that students will divide tasks with different focus points
between them.

VotestratesML consists of three interdependent components that support
different types of class activities through providing different functionalities and
model views. The relation between components is illustrated in Figure A.1.

Using the Collaborative Component, students collaborate in groups by building,
testing and improving the group’s ML model for predicting voter behaviour.
VotestratesML conceptualises the process of building ML models in a series
of steps as illustrated in Figure A.2. First, students process the data-set by
shuffling the data and splitting it into a training data-set and a test data-set (see
Figure A.2a). Second, they explore the properties of the data-set, which ranges
from age and gender to voters’ attitudes towards environmental issues and tax
policies, and choose one label and as many features as they like (see Figure A.2b).
Finally, they choose between two ML algorithms; K-Nearest Neighbour (KNN)4
or a Feedforward Neural Network (FNN)5 and set the parameters for the chosen
model (For KNN: value of k, for FNN: layers and number of iterations at the
training step), and train and evaluate a model to see how it performs on the test
dataset (see Figure A.2c). Students are provided with the model’s accuracy and
f1 score, which they can use to compare their model with earlier attempts or
other groups’ models. Students can freely jump between these steps and group
members can work on different steps simultaneously. The interface is designed to
support students in following this process, even if they do not fully understand
ML. It does so, by only allowing actions that bring the application to meaningful
states, greying out buttons and hiding UI elements when not relevant. Thus,
students can work on creating functional ML models from the beginning and can
explore ML further by tinkering with data and model parameters to improve
the predictive ability of their models. The Competitive Component has a single
view, see Figure A.3a, which is projected on a shared screen in the classroom
and provides information about the scores of each group’s model. Models are
4https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
5https://en.wikipedia.org/wiki/Feedforward_neural_network
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a) Data Screen

b) Features & c) Labels  Screen

d) Model Screen

Randomize the order of 
the data set.

Use slider to control ratio bet-
ween training data and test 

data

Select categories of fea-
tures/labels from a drop-

down menu

Select one label and any num-
ber of features from the catego-

ries

Select a model type, either 
KNN or neural network.

Train a model of the cho-
sen type with the chosen 

parameters 

Test the model using the test 
data

Set model parameters, such as 
number of hidden layers in a 

neural network

Share model to com-
petitive view

Figure A.2: The VotestratesML Collaborative Component in detail; a) shows the
Data Screen that allow students to experiment with their input data, b) and c)
shows the Features and Labels screens (conflated as they are similar in design),
that allow students to determine what data their model should consider (features)
and what it should look for (label). Finally, d) shows the Model Screen that allow
students to select the model type, configure it’s parameters and train a model.
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Run Models

Compete by comparing models: Run models on personas: Discuss predictions across models:

Compare models using accuracy

Discuss models by looking at differences in 
predictions

a)a) b)b) c)c)

Figure A.3: The competitive aspect of Votestrates ML (cropped): a) shows how
students can compare their models while working to improve them; b) shows how
the teacher can use students’ models on personas; c) shows how predictions can
be discussed and how the models can be inspected in detail.

pushed to the Competitive Component by each group as they iteratively try to
improve them. Using this component, students can share their models with the
classroom, and see how well they fare in comparison with other groups’ models.
Finally, the Discussion Component also has a single view which is projected on a
shared screen and used to mediate a joint discussion in the class. This component
is used to inspect students finished models when the teacher ends the activity of
building them. The Discussion Component provides full information about each
model, see Figure A.3c, and lets the teacher use students’ models to predict the
behaviour of different personas, see Figure A.3b. This is used as an anchor point
for discussions about the implications of ML for elections and broader discussions
about ML in society.

A.3.3 Design Rationale: Machine Learning for Social
Science

VotestratesML differentiates itself from similar learning tools in a number of
ways. First, it combines the three areas of what students should know about
ML; what a ML system is, the ML process and the implications of ML (with an
emphasis on the latter). Second, instead of starting by introducing ML concepts,
VotestratesML takes departure in the social studies subject as a tool for analysing
voter behaviour. The tool is designed to support typical social studies class
activities; Students work in groups on tasks assigned by the teacher, followed by
a discussion based on the group work. The available data categories were chosen
based on models of voter behaviour taught in Danish social studies classes [108],
allowing students to explore how ML models can predict voter behaviour, compare
theoretical models with ML models, and discuss ML models from a social studies
perspective and how they are already used actively to affect the outcome of
democratic elections [3, 158, 185].

By focusing the design of VotestratesML on making predictions about people’s
voting behaviour based on properties like age, income, gender, etc., students can
draw on their prior knowledge to explore the extent to which their knowledge and
preconceived notions are supported by real-life data. Thus, their prior knowledge
and interest in the topic of voter behaviour can bootstrap their exploration of
machine learning methods and the implications of these.
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In addition, the design of the interface aims to scaffold students in building ML
models, even with a very limited understanding of ML. Through experimentation
with building models for predicting voter behaviour and iteratively improving
these models, students gain experience with the trial-and-error process and begin
to gain an understanding of ML models. The KNN and FNN algorithms were
chosen because they exemplify the extremes with regards to ML complexity; KNN
being simple and FNN being complex. KNN was used to illustrate the basics of
ML, while FNN was used to illustrate how ML can become almost too complex
to understand. As such, students were not expected to understand the FNN
algorithm, rather they could experience how difficult it can be to explain its
predictions.

By providing a collaborative interface in which groups are forced to negotiate
design choices internally because all group-members have full control of the
application, VotestratesML aims to scaffold reflections on the process of building
ML models. Similarly, the competitive aspect of VotestratesML aims to scaffold
students in considering how their models can be improved, and VotestratesML
allows students to do so through trial-and-error, which is analogous to how ML
models are often improved in real-world situations. Thus, students experience
first-hand the design choices and potential issues embedded in ML models. The
design of VotestratesML aims to actively scaffold insightful discussions about the
implications of ML and to motivate students to further explore ML by interacting
with the tool.

A.4 Method

VotestratesML is the result of a constructive design-research (CDR) process and
was evaluated and iterated on through several real-world deployments. In this
section, we present the methodology behind our work, the design process leading
to the design of VotestratesML as well as how it was evaluated in the field.

We adopted a Constructive Design Research methodology [128, 130] in order to
investigate how ML learning tools can be designed for K-12 classes and how they
can support critical discussions and reflections around the use of ML. According
to Bang et al. [7], CDR can be seen as a way of iteratively making and testing
hypotheses, where knowledge-generation revolves around the construction of an
artefact (e.g. a product, a service, media etc.) [128, 205] and experiments with
this [7, 130]. In this work, VotestratesML is the central artefact, and our findings
are based on the different experiments leading to the version of VotestratesML
presented above as well as the lessons learned from the in-situ deployments of
VotestratesML. The design process led us to the final version of VotestratesML
as presented in this paper (see Figure A.4 for an overview), and to two central
hypotheses (similar to the two central arguments of our design rationale); that
grounding ML in an existing subject (i.e. social studies) can engage students
already interested in the subject but not in ML, and second that collaborating in
groups and competing against other groups can be an effective way of scaffolding
students’ reflections about ML.
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Teaching ML 
Concepts

Group work w. 
tool

Classroom Dis-
cussion

Structure of
Interventions:

Phase 1 Phase 2 Phase 3

Jupyter Notebook VotestratesML VotestratesML*
Explore design space, expose design-
ers’ prejudices, inform phase 2

Introducing 
VotestratesML

Broadening the scope of exercises 
and discussions

A B A AB B

Purpose:

Artefact:

Timeline:

Classroom 
Interventions

Figure A.4: An overview of the design process of VotestratesML. The study
spanned approximately four months. Each class was involved three times, and
each intervention had the same basic structure.

A.4.1 Participants

We collaborated with two social studies teachers from a public high school, located
in an upper middle class area in a mid-sized Danish city, each inviting us to work
with one of their classes. We consented 30 students in one class (A), and 31 in
the other (B), aged 17 to 20. All participants under the age of 18 were asked
for the consent of their parents or legal guardians. Consent forms were collected
by the researchers at the beginning of the interventions. All students from both
classes had elected into a 3-year social studies class. Students from class A were
in their third year, while those from class B were in their second year. In both
classes, the gender ratio was approximately equally distributed.

A.4.2 Intervention Protocol

VotestratesML was designed in an iterative design process with three main phases
(as illustrated in Figure A.4). In each phase of the design process, each class
participated in an intervention with the dual purpose of teaching students about
ML and informing the design of VotestratesML, which was introduced in phase
2 and iterated on in phase 3. This resulted in a total of six interventions (see
Figure A.5 for an example of the intervention setup). All interventions took place
during regularly scheduled social studies class, with each intervention lasting 90
minutes. Two researchers and a teacher were present during each intervention. The
researchers took over teaching during the intervention, while the teacher focused
on helping students with exercises and contributing during class discussions.

All interventions were structured similarly; a brief introduction was given
about the subject of the particular phase, followed by the students doing group
work, and ending in a general discussion in the classroom. The first phase focused
on introducing ML to social studies students and informing the first version of
VotestratesML. We did so by introducing students to central ML-concepts and
letting them work with these in a collaborative Jupyter Notebook, based on
Google Collaboratory. We used common interactive elements, such as sliders and
drop-down menus to allow students to engage in building ML models without
prior programming knowledge. While this was effective in engaging the few
students who were already interested in ML, it did not motivate the rest. Thus,
in the second phase we explored how to contextualise ML for a social studies
class, by deploying the first iteration of VotestratesML. It was also in this phase
that the competitive element was introduced, to see what effects this would
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Figure A.5: Students engaged in building models with VotestratesML (Note: all
necessary permissions were collected to feature photos of students).

have on the students’ motivation. We introduced new concepts integral to using
VotestratesML, in particular the K-Nearest Neighbours (KNN) algorithm, and
let students work in groups using VotestratesML to build social-studies specific
ML models, such as creating a model for predicting who will be voting for the
Social Democrats. This was followed by a discussion of how such models could be
used during elections. Finally, the third phase aimed to reintroduce some of the
complexity from phase 1, and introduce the ambiguity of ML in an explorable
way that might support more general discussions of the implications of ML. We
introduced students to neural networks and asked them to work in groups to
explore these with VotestratesML. As a final exercise, we asked students to build
models for predicting the voting behaviour of the researchers in the classroom.
Finally, we facilitated a closing discussion on the role of AI in society and how it
might evolve in the future.

A.4.3 Data Gathering and Analysis

Throughout the interventions data was collected in the form of observations
and field notes, sound recordings and photography. We made observations and
field notes with an open ended approach in which we in particular noted critical
incidents related to students’ use of ML concepts in discussions and group work,
students’ engagement in discussions and group work as well as frustrations and
break downs during the group work with VotestratesML. During the introduction
to each phase, one researcher did the introduction while another made observations
and wrote field notes. During group work and discussions audio recordings were
made by placing recording equipment at the desks of the student groups, and
both researchers made observations and field notes as well as taking photos of
the students working.

The data was analysed deductively by the first two authors, with the two
CDR-hypotheses (see above) as sensitising concepts [25, 145] guiding the analysis.
Following each intervention, a write-up [145] of observations and field notes was
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produced and discussed between the two researchers present at the interventions.
Audio recordings of students’ intra-group discussions during group work and
of class-wide discussions were reviewed by the first two authors, and excerpts
that informed the sensitising concepts were selected and later transcribed. With
regards to grounding ML in social studies, we particularly looked for ways in
which students used ML concepts and their experiences with VotestratesML to
identify societal implications of ML in discussions in intra-group and in class-wide
discussions. Regarding collaboration and competition we focused on students’
engagement and frustrations, how they discussed design-decisions while using
VotestratesML and for breakdowns with the prototype.

Between interventions, these analyses were used for designing the following
iteration of VotestratesML, with each iteration embodying the findings from the
previous intervention [41], as described above. Following the interventions, the
first two authors did an analysis similar to the above, but across all three design
phases, the results of which is presented below.

A.5 Findings

As argued, we see a need for CE learning tools that support students in un-
derstanding ML, the process of creating ML models, and in reflecting on the
implications of ML and how it should form our future lives and societies. Here,
we present and discuss the findings from designing and evaluating VotestratesML.

A.5.1 Making ML Personally Meaningful

VotestratesML frames ML as a social studies tool for predicting voter behaviour,
that can be used to achieve goals in the social studies subject. With the tool,
students can utilise theoretical models from social studies or test their own
intuition about who votes for whom. In this way, students can engage with ML
both from the perspective of the ML technology and its concepts and processes,
but also approach it from a well-known subject area. In particular, the narrative
around ML and the models of voter behaviour built by the students inherently
frames the discussions in terms of potential societal implications of ML.

This design is based on our experiences in phase 1, where we observed that many
students did not see themselves as individuals who could or should understand the
technical aspect of ML. The exercises in Jupyter notebooks were centred around
basic components of ML, such as features, labels and training- and test-data.
From observations made during group work in these interventions, we found
that students quickly distanced themselves from the exercises with comments
such as “I’m not very good at math” and “This looks very complex” before having
invested any time with the prototype. As one student put it in a conversation
between them and one of the researchers present: “For this to be really exciting,
you probably need to be interested in the subject [ML]”. Although students were
eager to discuss ML, they did not draw on ML concepts in their discussions.

In contrast, in the interventions with VotestratesML, students’ models and their
predictions were used as basis for class discussions in which students’ arguments
were grounded in social studies theory and in their existing knowledge of voter
groups, or based on their experiences from trial-and-error processes with the

104



PAPER A. VOTESTRATESML

prototype. Different types of arguments led to different discussions concerning
the use of ML. For instance, in phase 2, students role-played as advisers for the
Social Democratic party, and were asked to advice, based on ML models, how
to best persuade voters from another party. The exercise spurred discussions
about the ethics of using ML in political campaigns, e.g.: “The Social Democrats
do vote-seeking [in the role-playing exercise]. But I don’t have much respect for
that. I would rather go for policy-seeking...”. In another discussion about how
micro-targeting could make democratic parties focus on single issues instead of
prioritising coherent ideologies, one student argued: “It is a democratic problem,
if you [democratic parties] focus on single issues rather than a coherent ideology or
harmony in their policy.. it will lack coherence and will not work”. Furthermore,
the predictions of the personas’ behaviours spurred technical questions about
ML, which could be verbalised using students’ models about, e.g., how models
with high accuracy sometimes make poor predictions or why models with more
features are not always better.

A.5.2 Supporting Reflection through Collaboration &
Competition

The iterative process of building ML models combined with collaborative and
competitive aspects of VotestratesML spurred reflection on and discussion about
ML during the activities. While competing in small groups in phase 2 and 3,
students collaborated to build the best possible model in order to beat the other
groups. Students were observably motivated by the competitive aspect of the
exercises and the option for each group to compare themselves to the other groups
seemed to give students a sense of ownership, and pride in their models, motivating
them to keep improving it. For example, groups regularly cheered after having
tested their new model and some students would make exclamations such as
“Share it, share it, share it! We need a group name! It’s a great start, nobody is
close to us” or “We should choose this features, nobody else has used this one!”.

The audio recordings of students’ intra-group discussions during group work
with VotestratesML showed that students were eager to supersede the models
of other groups. Students would eagerly discuss how to gain an advantage
over their competitors, and these discussions were, although based on students’
understanding of social studies and their personal prejudices, discussions about
ML, e.g., whether a new feature was important prior to selecting it:
Student A: “What about this one [a feature]: ‘Supports a political party.’ It could
be good.”
Student B: “Yes.. But isn’t it very typical for young people to issue-vote? Like,
just voting for what you feel?”
Student A: “Yeah.. You might be right about that.”
Student B: “Can you try train it? [the model with the new feature]”

The discussions and experiments with different features during group work,
observably spurred students’ curiosity about ML, leading them to ask questions
to the authors present such as “What is a good score?” and to ideas about why
other groups’ models performed better than theirs; “What if we have trained our
model too much, so it now has become bad?”. On the other hand, the competitive
elements of VotestratesML made some reflections superficial due to the high pace
of the competition. Often, students could be seen brushing over otherwise curious
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results in order to have time for another attempt to beat their peers.

The experience of building and optimising models by any means, however,
also led to nuanced reflections on the issues around ML after the group work and
to students taking critical stances towards the technology. For example, from the
audio recording of a classroom discussion in phase 3 one student argued: “It is
against our culture, where you are not allowed to generalise by any means. That
is outright what this is built on.”, while another argued: “Machines only look at
what we ask them to look at. If they have made a model, it is us who decide, what
they should be looking for. Humans are better at marginalising than machines are.
If we do not make them marginalise groups, they won’t do it!.”. Another student
recognised problems with ML models on how to choose which norms should guide
the models’ decisions: “It is very different from person to person, which values
you find most important. [...] It is just very different, and it [an ML model] may
not be able to predict this”.

A.5.3 Conceptualising ML for K-12 students from a CE
Perspective

Where other tools focus mainly on what ML is, and the process of creating ML
models, we have worked towards exposing the implications of ML through the
interaction with and activities around VotestratesML.

This approach worked well for engaging students in understanding ML and
for reflecting on its implications, but we also experienced that students formed
misunderstandings about ML, which hindered their reflection: During phase 2, we
observed that students had difficulties understanding the connection between the
data and the voter behaviour predictions of their models. If choosing a feature
did not have the expected effect or a model made an unexpected prediction, most
students rejected what the model actually stated, and instead wrote it off as a
problem with the data, rather than reconsidering the veracity of their expectations.
Especially the generalisability of predictions seemed to be difficult for students.
To explore this, in phase 3, we asked students to use VotestratesML to predict
how the researchers present at the interventions would vote. While working on
the models, students asked the researchers questions such as: “What do you [the
researcher] think of this?” or “How do we know, what topics you [the researcher]
care about”, indicating that students thought of the models as being able to predict
the voting behaviour of a specific person or group of persons, rather than as
general models for predicting voting behaviour. We believe this misunderstanding
about the role of data stems from the data-set being relatively black-boxed in
VotestratesML. As argued above, this was done to scaffold students in quickly
building ML models, but might have hindered their understanding of the data-set
and what each row in the data-set represents. This highlights the importance of
finding the right concepts to black box and the right ones to glass box, something
also noted by prior research in ML learning tools [92], and that a good balance
between black and glass boxes is not trivial to achieve.
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A.6 Discussion

In this section, we discuss the findings above as they relate to our research question;
what are opportunities and challenges for a CE approach to meaningfully engage
students in understanding and reflecting on ML?.

A.6.1 Implications of Machine Learning: Foregrounding
Ethics and Grounding ML in a Well-known
Subject Area

VotestratesML aims to teach the implications ML could have on our lives and on
society. It does so through two measures; foregrounding ethics in the design of
the learning tool itself and the activities with it, and by grounding ML in social
studies.

VotestratesML is not unique in including ethics when teaching ML. It is stated
as future work for AlpacaML [246] and the MLM [120], and Hitron et al. [92]
evaluate if their participants are able to reflect on ethical ML dilemmas after
using the Gest system. However, none of these systems are designed with an
ethics-first approach, and aim at teaching ML first, while treating ethics as a sort
of after-thought. In contrast, VotestratesML was designed with the intention of
foregrounding ML ethics and teaching ML as a means to that end.

VotestratesML does so, by presenting ML as a tool for predicting voter
behaviour in social studies, making learning about ML a necessity for becoming a
better social studies student. This provides the tool with relevance in a social
studies classroom, even if teachers or students initially do not see ML as relevant
for the subject. Iversen et al. [12] argue that being able to judge the relevance
of a given technology is important for CE. When designing learning tools for
CE, we argue that this relevance should be communicated in the design of the
tool, allowing students to use the tool for achieving meaningful objectives for the
subject and for themselves in general.

This approach seemed to increase students’ motivation to engage in activities
with ML. Instead of requiring students to “be good at math” or have an initial
interest in ML, VotestratesML allows students to utilise ML for achieving mean-
ingful objectives and advance their proficiency as e.g. social studies students,
while learning about ML along the way. We argue, that the framing of CE
learning tools as belonging in existing subjects is an effective way to engage
students with different subject-related backgrounds and knowledge in working
with technologies. Zimmermann-Niefield et al. [246] take a similar approach, by
framing AlpacaML as a tool for physical education, but do not discuss the critical
aspects of introducing ML in athletics with students.

A.6.2 Exposing the ML Process through Collaboration
& Competition

The ML process consists of a series of steps involving human choices such as data
gathering and analysis, selecting a model type, optimising the model, evaluating
the results, etc. [56]. Other learning tools such as AlpacaML [246] and the
MLM [120] aim to teach students about this process by letting them create and
manipulate data in an iterative fashion. However, they do not engage students in
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the steps involved in creating ML models between data gathering and analysis
and evaluating the model.

VotestratesML, on the other hand, aims at exposing the “messiness” of the
entire ML process and to have students experience how it is based on human
choices, judgements and trial-and-error. VotestratesML still black boxes some of
the underlying ML mechanisms, but aims at exposing the ambiguous choices and
the complexity embedded in the ML process. It supports this by allowing teachers
to set clear and comparative goals for students (e.g., build the best possible model
for predicting if a voter will vote for the Social Democratic Party), and by allowing
students to explore and experiment with different strategies for selecting features,
model types and model parameters through an interface that is designed for fast
iterations and collaboration.

In our study, we found that collaboration and competition were effective
means of engaging students, something Iversen et al. pose as a major challenge
for CE [107]. The Collaborative Component of VotestratesML motivated and
supported students in reflecting on and discussing different choices while improving
their model, and each group seemed to take pride in their models, motivating them
to keep improving upon it. The competitive aspect of VotestratesML motivated
especially students who were not initially motivated by either ML or predicting
voter behaviour.

In line with Iversen et al. [107], we find motivational factors important aspects
to explore when designing learning tools for ML, in order to engage all students in
the learning activities. However, discussions during group work were sometimes
superficial, as the competition and improving their model, for some students,
became more important than understanding how their decisions had affected their
results.

This highlights the importance of striking a balance between motivational
measures, such as competition, and encouraging reflection. While VotestratesML
perhaps does not strike that exact balance it does provide insight into how students
can be motivated to engage with and reflect on complex aspects of the ML process.

A.6.3 What a ML system is: Safely Exploring ML from
a Concrete Starting Point

We argue, that the conceptualisation of ML (and other technologies) for CE
learning tools is a central challenge for CE. Other research emphasises design and
fabrication with technology as the core approach to empower youth [109, 134,
213]. However, when working with advanced technologies, such as ML, which
rely on many other technologies and are integrated into larger infrastructures,
fabrication may not expose all its implications. Instead, VotestratesML responds
to recent calls on ‘pulling back the curtain’ of intangible and abstract computa-
tional systems [110], by providing a concrete starting point for discussing ML.
VotestratesML aims to achieve this, by having students build interactive ML
models, seeing how they fare when predicting voting behaviour, and discussing this
from a social studies perspective. To support this, we designed VotestratesML to
allow students to build and configure these models. VotestratesML encourages ex-
perimentation with different parameters and models, by only allowing safe actions
that result in VotestratesML ending up in meaningful states. VotestratesML black
boxes many underlying ML mechanisms, and prioritises students’ exploration of
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Area of ML VotestratesML
What ML is Safely exploring ML from a concrete starting

point
The ML Process Promoting iterative exploration through collabo-

ration and competition
Implications of ML Foregrounding ethics in the tool design and

grounding ML in a well-known subject area

Table A.2: A summary of how VotestratesML embodies a CE approach to teaching
ML.

higher level ML phenomena and their implications, by exposing the process of
developing ML models.

Although students’ conceptions of ML were challenged, we also observed how
their understanding of ML helped them reflect on, discuss, and form opinions
about the use of ML in society, and argue for these opinions using terminology
from social studies theory and from ML. We have aimed to illustrate for high
school students, that ML is not just a powerful tool that can improve their lives;
ML models have both positive and negative implications, and it is important that
we, as a society, actively engage in discussions about, and take a critical stance
towards it.

Furthermore, we chose to use the terminology used in typical ML activities
(features, labels etc.) and while most students were able to use many of these terms
in discussions, these also revealed misapprehensions in students’ understanding
of the terms. We wonder if the use of these terms is an appropriate way to
conceptualise ML in high school. It would perhaps be more apt to draw on
concepts already known to students, such as dependent and independent variables,
or it might be better to simply describe them as input and output. We encourage
future research to explore what terminology is most appropriate for introducing
ML in high schools.

A.6.4 Teaching ML from a CE Perspective

In Section 1 we argued for the need for a CE approach to teaching ML and in
section A.2 we argued for the shortcomings of many previous tools from a CE
perspective. While VotestratesML is by no means a perfect CE learning tool,
it embodies our best efforts to design a ML learning tool with a CE starting
point, summarised in Table A.2. This approach might not be ideal for optimising
technical skills, but we argue that while these skills are important, the ability to
take a critical stance, to discuss and reflect upon such technologies as ML are
even more important skills for a majority of students. Thus, while we should not
abandon traditional CT and computer science education, we agree with Iversen
et al. [107] that CE is an important addition.

When exploring new ways of teaching ML designers and educators should
consider the balance between the three areas of ML (see section A.2) and be espe-
cially mindful that teaching implications of ML does not become an afterthought,
but instead central to the design of the learning tool/activity. We hope that our
reporting on VotestratesML, its design and our findings from deploying it can
contribute to future explorations of how to teaching ML from a CE perspective.
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A.7 Limitations

This paper has a few limitations. First, the study has limited external validity: It
involved only two social studies classrooms from the same high school in an upper
middle class neighbourhood, making the participants a somewhat homogeneous
group, and as the interventions took place during a regular social studies class,
students might have been motivated simply by having a break from their regularly
scheduled teaching. Finally, we acknowledge the risk of confirmation bias and of
oversights in our data analysis due to only analysing the data deductively from
the sensitising concepts that emerged during the design process and are aware
that our findings are suggestive. We stress that the design VotestratesML is a
specific proposal, that other tools for supporting CE might look different, and
that studies with such tools might identify other, complementary opportunities
and/or challenges.

A.8 Conclusion & Future Work

In order to promote a general AI literacy in high school students, we set out to
explore opportunities and challenges for a Computational Empowerment approach
to meaningfully engage students in understanding and reflecting on ML and
have done so through a Constructive Design Research approach, by proposing
and evaluating VotestratesML; a collaborative learning tool which embodies our
approach for engaging students in learning about ML by allowing them to explore
ML and its implications for democratic elections. The design of VotestratesML,
is based on the notion that students should learn what a ML system is, the ML
process and the implications of ML with a particular focus on the third area, to
support them in becoming computationally empowered. With VotestratesML, we
explored how to design ML-learning tools that qualify and support students in
reflections and discussions about the implications of ML. Based on the design
process and the deployment of VotestratesML in two social studies classes in a
Danish high school, we have identified some key opportunities and challenges;
Letting students explore ML and its implications from a concrete starting point
and in a low risk way helped them reflect, discuss and form opinion about its use.
We also found that VotestratesML’s collaborative and competitive nature helped
motivate students to explore and experiment with different options for improving
their model. Finally, we found that designing VotestratesML as an ethics-first
learning tool and grounding ML in a well-known social studies allowed students
to have personally meaningful discussions and to advance their proficiency as
social studies students.

VotestratesML exemplifies our approach to “pulling back the curtain” of
otherwise intangible and complex computational systems in order to engage
students with different subject-related backgrounds and knowledge in working
with ML as well as other emerging technologies. We believe that the opportunities
presented in this paper hold true for other emerging, computational technologies
such as the internet of things, augmented/virtual reality, and blockchain. Further,
we find that more research is needed on conceptualising these technologies for
high school students to allow them to understand and discuss their implications,
especially with regards to which concepts to black box and which to glass box
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and with regards to the terminology used.

A.9 Selection and Participation

The participants were chosen by their high school teacher volunteering the entire
classroom. While most participants were legal adults, a few were under the age
of 18. All participants were consented by their respective Social Studies teacher,
who asked them if they would sign a standard consent form worked out by the
employing university of the authors. All consent forms informed participants
about how their data would be collected and stored as well as how to withdraw
their consent. All participants under the age of 18 were asked for the consent
of their parents or legal guardians. The consent forms were collected by the
researchers at the beginning of the interventions.

111



PAPER A. VOTESTRATESML

112



Paper B

Staging Reflections on
Ethical Dilemmas in
Machine Learning: A
Card-Based Design
Workshop for High School
Students

Karl-Emil Kjær Bilstrup, Magnus Høholt Kaspersen,
& Marianne Graves Petersen

Abstract

The increased use of machine learning (ML) in society raises questions of how
ethical dilemmas inherent in computational artefacts can be made understandable
and explorable for students. To investigate this, we developed a card-based
design workshop that allows students to reflect on ethical dilemmas by designing
their own ML applications. The workshop was developed in an iterative process
engaging four high school classrooms with students aged 16-20. We found that
scaffolding students in designing meaningful ML systems served to qualify their
ethical reflections. Further students’ design processes allowed them to engage
with the ethical dilemmas and to tie these to the properties of the technology
and to their design decisions. We suggest seeing technology-close discussions
about ethics as a goal in design processes, and prototyping as a means to ground
these discussions in students’ own design decisions, and we contribute a workshop
format and design artefacts that allow for this.
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a) b)

Figure B.1: a) A group of high school students discussion what data is relevant
for their idea about a new ML system using a deck of ML data cards; b) A group
of students using our ML board to describe how ML is used in their idea.

B.1 Introduction

The current focus on teaching Computational Thinking (CT) [234] across all
levels of education, and the increased ease of incorporating emerging technologies
such as machine learning (ML) into new applications raise the importance of
investigating how ethical aspects of new technologies can be made explainable
and explorable to students, who are the future designers and consumers of these
technologies.

In recent years, ML has changed what is possible to achieve with the use
of computational processing, expanding computers’ ability to understand and
interact with the world. This development promises great new possibilities, but
is also currently transforming the nature of social interaction, work, education,
etc. [151], increasing information asymmetry [173] and making technologies less
comprehensible to users [1]. This introduces a range of ethical dilemmas and
issues unique to ML. These ethical issues have been addressed in both the ML
community through, e.g., the ACM Conference on Fairness, Accountability, and
Transparency (ACM FAccT), as well as in the HCI community [1, 77, 199] which
implores that implementing ML into the world includes making ethical judgements
and approaching ethical issues in the system design.

Today, companies are integrating ML into everyday technologies and infras-
tructures such as smart phones, maps, streaming services, etc., to provide better
services to customers and to build new business models. However, if ethics are not
carefully considered (and they often are not), ML can become a tool for unethical
conduct, resulting in dark patterns [74], hypernudging [239], etc. Designers and
developers are navigating a myriad of different interests, balancing ethics against
system efficiency, profitability, user convenience and are constantly making moral
decisions and value judgements. Dealing with ethics is difficult, and designers and
users alike are often faced with dilemmas, when designing and using ML-powered
products. We argue, that to take active part in shaping the future, understanding
everyday technologies is imperative, and thus students should be able to recognise
these dilemmas in technologies they interact with, and be able to reason about
their consequences.

Within CT this more critical perspective is gaining momentum [107, 110,
216]. For instance, Computational Empowerment (CE), as proposed by Iversen et
al. [107], advocates that students should be able to recognise the ethical choices
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and considerations in technology and learn to decode "the consequences of these
choices for the people who will use the technology". Iversen et al. address this by
having children go through a design process which includes reflecting on the more
critical aspects of their designs. This design process utilises digital fabrication
techniques such as 3D printing and laser cutting, and while these are effective
design tools, we argue that to deal with specific, technology-close ethical issues
such as the ones described above, students need hands-on experience with the
technology in question, e.g. ML. Involving students in design processes and giving
them hands-on experience has been a part of CT from the start [171]. The purpose
of doing so in CT has, however, been to turn technologies and computational
concepts into powerful tools for the users, enabling them to approach problems in
new ways and to explore new ideas. This focus on making powerful tools rarely
leaves room for ethical considerations; instead CT often operates in simplistic
micro-worlds [171], which are "undisturbed by extraneous questions" [171, p. 12],
where ethical problems do not exist.

Inspired by CE, we explore how to involve high schools students in designing
ML-systems in a way that supports exploration and reflection of technology-
close, ethical dilemmas inherent to ML. To do so, we design and deploy a ML
Ethics Workshop, in which high school students use a ML specific set of card
decks for designing ML applications. The workshop places ethical reflections
at the center of the design activities and discuss technology-close ethics with
students based on their own designs of ML systems. We deploy four iterations
of the workshop in four different classrooms engaging 66 high school students
aged 16-20. The materials used in the ML Ethics Workshop can be found here:
https://github.com/Karlo-Emilo/ML-ethics-workshop.

The paper contributes to the fields of HCI and CT, through a) a design
rationale for an ethics-first construction kit for ML, b) experiences and insights
from a Constructive Design Research process [128, 130] in which the ML Ethics
Workshop was designed, and finally c) a discussion of the implications of using
design processes for teaching students about ML and to reflect on and discuss
technology-close ethical dilemmas of its use, based on findings from the ML Ethics
Workshop.

B.2 Related Work

In this section we briefly review existing literature on using design as a learning
approach, on card-based design methods and on involving teenagers in design
processes.

B.2.1 Design as a Learning Approach

Design as an approach for learning about technology can be dated back to Papert’s
constructionism [86, 171]. Since then, other researchers have expanded on these
ideas (e.g., [75, 112]) and today, digital fabrication, Fab-Labs and maker spaces
are present at schools across the world [83, 168]. In a Scandinavian context, this
approach has also been explored in recent years with a more critical approach to
technology [59, 107, 204, 218]. The Fablab@school.dk project [107, 204] engages
students in digital fabrication with different technologies to empower them to
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decode and understand their future, technology-mediated world [107]. To explore
this Smith et al. present a design process model to use in educational contexts for
using "digital fabrication as a reflective and material tool for working with real-life
and complex societal contexts" [204]. Eriksson et al. [59] argue for the need of a
wide digital design literacy, which aims to "raise awareness about decision-making
in technology design, the potential impact of technology and, ultimately, whether
it contributes to meaningful relationships". The authors argue that this is best
achieved in design processes, where students make design-decisions for real-world
settings and learn to reflect on the implications of these decisions.

B.2.2 Cards-based Design Methods

In recent years, the use of card-based design methods and tools have accelerated,
and today more than 155 different card-sets can be found in design literature [188].
The use of cards in design processes has been found to enhance user-driven design
processes, since they can help structure and scaffold design processes[82, 152].
Cards provide a common object of interest to participants, and thus can also
help engage all participants [220]. Friedman and Hendry use their Envisioning
Cards [68] to bring a more human-centered focus into the design process. The
envisioning cards are designed to work across different contexts and technologies,
and implore designers to, e.g., consider children as possible stakeholders of a
system or to consider how deliberately withdrawing from using a system might
affect a (non) user’s everyday life. Situation cards [149] are cards with descriptions
of realistic and problematic situations at a workplace, which participants discuss
in a participatory workshop to encourage them to come up with ideas, that
solves everyday problems at the workplace. Another example is inspiration
cards [82], which are used in design processes with disparate participants to
improve engagement and support generation of innovative and realistic design
concepts with new technologies, letting the participants create posters with the
cards. Card-based design methods, that focus on a specific technology are few and
far between [188], but there are a few examples, e.g.: Tiles is a card-based toolkit
for designing internet-of-things applications [152]. The toolkit consists of different
card categories and a paper-board, where participants can organise cards into
meaningful IoT applications. Tiles supports reflection on users’ creations through
Criteria Cards, which are designed to evaluate ideas by discussing subjects such
as feasibility or sustainability. Mavroudi et al. successfully deploy the cards in a
lower secondary school setting [144], finding Tiles to be a low-cost way of having
students, with little to no prior knowledge of the subject, design and discuss IoT
applications. They also evaluate students’ understanding of privacy issues related
to IoT after using Tiles but never clarify how it supports learning and exploration
of these ethical issues. Another similar, technology-close card-based method is
PlutoAR [201], which is designed for K-10 classrooms to let students design and
create their own augmented reality (AR) application. Here, cards act as AR-tags,
and a paper-board, named the Launchpad, lets students organise the AR cards,
which can be interpreted by a mobile application, that turns launchpads into
scenarios, that play out in the application. As such, students are able to create
applications, that e.g. launches and guides a rocket through a maze.

We agree with Eriksson et al. [59] that involving students in design processes is
a useful way of teaching students about decision-making in technology. However, in
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contrast to the digital fabrication-based design processes in the Fablab@School.dk
project, we argue that to discuss technology-close ethical issues about a specific
technology, e.g., ML, students should also explore the limitations and implications
of said technology through design processes, where they are accountable for
their own design choices. To let students design ML systems without having
to learn to how to code, we draw on the advantages of using card-based design
methods. As other work has shown [144, 152, 201] using technology-specific cards
in design workshops is an advantageous way of engaging students who lack, e.g.,
programming skills in designing with specific technologies.

B.2.3 Designing With Teenagers

In the Danish high school system, the average student is approximately between
16 and 20 years old, making most of students participating in this work teenagers.
Fitton et al. [62] argue, that since teenagers are soon-to-be adults, they should be
engaged and involved in the shaping of future technologies, which they will eventu-
ally become users of. Further, Iversen & Smith [105] argue that this involvement
can be achieved by providing teenagers with "meaningful alternatives to existing
technologies" by involving them in design processes of new technology. Involving
teenagers in such processes is, however, challenging [62, 85, 104]. Hansen &
Iversen [85] present an approach for teen-centric PD, in which motivation is based
on encouragements, tools, technology, identification, cooperation, endorsements
as experts, and performance. Similarly, Iversen et al. [104] seek to understand
how teenagers are motivated in PD projects by analysing a number of PD work-
shops with teenagers, and propose similar specific steps to engage students. In
the workshops reported on in this paper, we encountered a few issues that we
believe are specific to working with teenagers. In particular, many students were
boundary-pushing and extreme in the ways in which they discussed. These issues
are discussed in a later section of this paper.

B.3 The Ethics of Computational Products

As products utilising computational processes and the infrastructures in which
these are implemented become more complex, ethical issues in their design
and implementation also become more complex [35, 66]. Computers’ ability
to process information about individuals more efficiently than ever has many
benefits, but it also introduces new ethical dilemmas which often do not have
clear-cut solutions [64]. Especially, because data has become important value
assets to organisations, on which they build their business models and will go
great lengths to collect [35, 173]. Software developers, engineers and designers
in these organisations are constantly making value judgements, choosing what is
morally right and wrong in every decision, counterbalancing different interests and
the organisation’s priorities [66, 91, 151]. These judgements are hidden in software
and complex infrastructures, making them invisible for users of the organisations’
products. This invisibility factor can be exploited for unethical abuse, but more
importantly it makes ethical choices and dilemmas inherent in computational
products difficult to reason about for users [151]. When talking about ethics in this
paper, we will refer to these moral decisions made by individuals and organisations,
sometimes referred to in literature as micro-ethics [91]. The implications of these
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moral decisions have only become magnified with the propagation of ML into
everyday technologies, which has been articulated in the ML community in relation
to fairness, accountability, transparency, nudging etc. [1, 239].

The ML Ethics Workshop is designed with the aim of making the moral issues
and decisions understandable and explorable for students. Similar to many existing
CT and fabrication tools [59, 112], our focus is to make students more capable of
understanding today’s technology-mediated society. However, where others focus
on making computational concepts understandable [76] and turn technologies into
powerful tools for students or to co-create meaningful futures [107], our focus is
different. Our aim is specifically on making technology-close ethical dilemmas in
ML-based computational systems understandable, and to allow students to reflect
on the choices embedded in the products and services they use everyday.

B.4 Method

The work presented here follows the Constructive Design Research (CDR) method-
ology [71, 128, 130] to investigate how to make ethical dilemmas and choices
inherent in computational artefacts understandable and explorable for high school
students. We hypothesised (in the CDR-sense, see [7, 130]), that high school
students would be able to have meaningful, technology-close discussions about
ML ethics, by designing, reflecting on, and redesigning their own ML systems. In
CDR-projects, hypotheses are instantiated through the creation of artefacts [7,
130, 205], and knowledge-creation is driven by experiments with and exploration of
these artefacts [7, 128]. For this work, the center artefact is the ML Ethics Work-
shop, including cards and other hand-outs, which is presented below. Throughout
the process, we have explored how different iterations of the workshop could be
used to explore the above goal and the findings presented below come from our
experiences with the different workshops. As denoted by Koskinen et al. [127]
CDR may be accountable for several concerns of theory and practice. In this work
we are concerned with expanding the scope of CT research, through exploring
how design can be used in learning situations as well as with producing a concrete
design method for making ML and its implications understandable and explorable
to high school students. As such, we see the ML Ethics Workshop, including the
workshop format and the set of artefacts, as a contribution in itself and as our
main way for exploring the space of using design processes for teaching ML.

B.5 Machine Learning Ethics Workshop

This section describes the current version of the the ML Ethics Workshop, which
serves to guides high school students through an ethics-first design process using
cards and boards to guide their process. The workshop is designed to be used
in all kinds of high school classrooms and it is not expected, that students have
a special interest in, or knowledge about, ML. It has been deployed in one and
a half to three hours workshops, but we believe it could be scaled up to a full
day workshop. In groups, students design and describe a ML application for
helping themselves and their peers in their everyday lives. Halfway through the
process students are challenged with the ethical implications of implementing
their application in a real world setting. To address these implications, they
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must redesign their application, dealing with ethical issues, which only become
more complex as they discuss them, and weigh these against the functionality
and user-experience of their application. Throughout the workshop, we work
specifically with supervised, classification-based ML, the kind of ML typically
used for e.g. recommender systems or image recognition.

This section will first present the rationale behind the workshop, then describe
the design artefacts in terms of cards and boards used in the kit and, last,
thoroughly describe the current format of the workshop.

B.5.1 Design Rationale

The workshop guides students through a design process where they confront the
moral choices and ethical dilemmas of designing and implementing their own
ML applications. First, students explore, through a design process, how ML
can improve their own and their peers’ lives. Here, students are guided to be as
specific as possible in describing what data their application use, and what the
ML component is predicting and how it is trained. This is to scaffold students’
later discussions about technology-close decisions and dilemmas in the design
and implementation of their application. When students have a well described
ML application, which they believe can help their peers, the workshop changes
character to focus on the ethical issues related to the application they just designed.
By discussing questions about privacy, explainability, accountability, etc. students
identify the most critical ethical issues in the design and implementation of their
application. In this discussion students will identify the moral decisions they
had already consciously or unconsciously made, and what questions they must
further answer in their design process, before they can morally answer for their
application. To let students experience, how these ethical questions often lead to
individual value judgements or to choosing between undesirable outcomes, they
are tasked with redesigning their application to address one or more of the most
critical issues. In this task, students have to make choices about what is most
important, striving for a functional and morally accountable application, which
often turns out to be difficult. Last, students present their applications, and how
they have addressed ethical issues in the design and implementation, followed by
a classroom discussion. In these discussions there are no external ’bad guys’ to
blame, only students themselves and their arguments for their design choices.

B.5.2 Design Artefacts

Three decks of cards and a board for describing a ML system are used by the
students in the workshop. The three decks of cards consist of respectively 14 data
cards, 9 ethics cards, and 26 people cards, see figure B.2, all sized 6X9cm and
colour-coded to communicate which deck they belong to. The data deck is used
to analyse a context for possible data sources, exposing to the participants how
data can be found everywhere, and to provide examples of a variety of different
types of data and data sources. Each card describes a category of data sources
(e.g. health data, news, users locations) and provides a few examples of specific
data sources in the category (e.g. pulse, breaking news, time at a location) to
help participants understand the category. The people deck is used to analyse the
context in which the application will be implemented with focus on people, with
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each card describing a potential stakeholder (e.g. a colleague, a sibling, teacher,
etc.). Participants use this card deck to identify who the application may affect,
and how these people can be included in the considerations about the design of
the application. The ethics deck is used for reflecting on ethical implications of
implementing a ML-system into a context, asking the participants to consider
ethical ML issues [1] (e.g. explainability, privacy, accountability). Each card asks
the participants one or two questions to help frame a discussion around the issue
in relation their design and ethics, e.g. "What happens if your system makes a
bad decision? Who is accountable?"

The ML board, see figure B.3, is an A3 board with a visualisation of a supervised
ML-model, leaving blank fields for the students to fill in when describing the
ML component of their idea, forcing them to be specific about, which data their
system uses and what it predicts. Participants first describe their idea and move
on to describe the ML system: What the data in their system describes (e.g. a
student, a kick to a ball, a dish), which data the system learns to predict (e.g. the
students grade, the precision of the kick, calories in a dish) and up to four data
sources, the system will use to make these predictions (absence, accelerometer
data, weight). Last, they name their model, so they can reference it later in the
design process.

Data

Interactions

How people interact with each 

other

Who do they talk to? For how 

long? Where? Data

Smart home
Sensors in people’s homesWhen are they home? How 

much power do they use? How 
much TV do they watch?

Ethics

Data Collection

Are users and others aware 

that data is collected about 

them?

Are they aware of how the data 

is used?

Ethics

Visibility
Is your system visible when you meet it? 

Is the use of Machine Learning 
visible in your system?

People

Grandparents

People

Siblings

Figure B.2: Two examples of (from left two right) data, ethics and people
cards. Translated to English from the original language. Icons created by Wira
Wiranda, Angelina, Becris and Danil Polsh from Noun Project and the people
from OpenMoji.

B.5.3 The Workshop Format

The workshop supports groups of participants in designing a ML system and in
reflecting on the ethical implications of implementing it into the world. It consists
of nine steps: A short introduction to ML, a presentation of a case, six activities
which the groups are asked to perform, joint presentations and a discussion of the
participants’ designs. The nine steps are described beneath:

1. ML introduction: A short introduction to supervised ML learning. Students
are introduced to the predictive capabilities of ML, discuss a specific use of
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What does 
the data de-
scribe

What data should the 
model be trained to pre-
dict?

What data input is required 
to make the prediction?

Data input Data input

Description 
of idea

Name of the 
model

Figure B.3: Board for describing ML system. Originally in Danish and annotated
in English.

ML; using ML in democratic elections, and gain hands-on experience with
ML through an interactive ML-learning tool [118].

2. Case presentation: Students are given a short description of a narrative,
which frames the design process with a context, stakeholders and an overall
goal for the products the participants will be designing. It may also restrict
the product design itself (e.g. it must be and app or a wearable). It situates
ML in students’ own life and let them explore, how ML can solve problems,
which they find important and can provide new opportunities, which are
valuable to them.

3. Analysis of context for data: Each group chooses a few cards from the data
deck and use them to analyse the case context for possible data sources.

4. Ideation: Based on the case description and the exploration of data sources,
each group conducts a short IDEO style ideation [150], where they come up
with as many ideas as possible. At the end, each group is asked to choose
the best idea (or combine multiple ideas into one great idea).

5. Description of ML system: Each group use the ML board to describe the
ML component of their idea. It helps participants become very specific
about their use of data and ensures all ideas are based on ML. If it is not
possible for a group to fill the board, they need to go back and revise their
idea.
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Workshop #1 #2 #3 #4
Length 3 hrs 1.5 hrs 2 hrs 2 hrs
Location University Own classroom University University

Background Technology
& design Social studies IT Informatics

No. students 24 25 5 12

Table B.1: Overview of the different workshops as well as the classrooms whom
participated in them.

6. Reflections on ethics: Each group is given an ethics card and the entire
people cards deck, to guide them in reflecting on possible implications for
different actors when implementing their ML application. They choose one
issue, which they find most critical about their system.

7. Redesign product: Each group discusses how they can address the ethical
dilemmas in the design of their product and describes in detail, through
sketches, texts, etc., how their system should be redesigned to address this
issue.

8. Presentation: Each group prepares a one minute presentation, which de-
scribes their concept, their ethical issue and how they approached it in their
design. Every group gives their short presentation, which is followed by a
short applause from the other groups.

9. Discussion: The students’ designs are used in a joint discussion about
ethics, grounded by the ethical problems faced by the participants in the
design process and how they tried to solve them.

All groups are given a limited amount of time to complete each activity to
ensure progression in the design processes. Activities are presented and described
just before they start to make participants focus on the given activity and not
the whole process. The internal collaboration in the groups is left informal, but
mediated by the artefacts.

B.6 Designing the ML Ethics Workshop

This section shortly describes the purpose, design rationale and the insights from
each workshop that influenced the design of following version of the ML Ethics
Workshop. The findings from the workshop will be presented in the following
section. The ML Ethics Workshop was developed in an iterative CDR process
and each iteration of the workshop was deployed in a high school classroom. A
total of 66 students, aged 16-20, participated in the workshops. In total, four
workshops was made in four different classrooms with different backgrounds and
from different high schools. All classrooms were volunteered by their teacher and
participated as part of their high-school education. Each student was, however,
consented individually according to Danish regulations. Workshop 2 took place
at a local high school in the students’ regular classroom. All other workshops
took place in a classroom at university of the researchers, and was conducted
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Artefact Example #1 #2 #3 #4
Ethics Cards See figure B.2, left X X X X
Data Cards See figure B.2, middle X X X X
Humans Cards See figure B.2, right X X X

Context Cards

"Gaming: How can [ML] be used to...
- improve you performance?
- create better habits?
- strengthen you friendships?
..."

X X

ML Board See figure B.3 X X X

ML Cards
"Feature: A characteristic of the phe-
nomenon we observe.
The independant variable."

X

Output Cards "Emoji: Use emojis to express emo-
tional outputs." X

Interaction Cards "Smart Watch: Use a smart watch to
interact with the system." X

Table B.2: An overview of the different artefacts used throughout the different
versions of the ML Ethics Workshop. The right side of the table describes in
which iteration of the workshop each artefact was used.

with classes visiting the university. This accounts for the variance in numbers
between Workshops 1, 3 and 5. An overview can be found in Table B.1.

All iterations of the workshop followed the same basic structure; students were
given an introduction to ML, next they were given a design case to work on and
were split into groups of 4-6 people to do so. After working through different
design phases, students presented their ML application and the ethical issues they
had been discussing. Table B.2 provides an overview of the artefacts used in each
workshop. In the following, the artefacts will be referred to by their name in the
table.

B.6.1 Workshop 1: Testing An Idea

In the first workshop, we tested the first version of the Ethics Workshop, which
were our initial approach on how to design a workshop for staging ethical dilemmas.
The workshop was inspired by how the Tiles Toolkit [152] uses different technology
and interaction cards, a board where the cards can be organised and a playbook to
guide a design process, and how Envisioning Cards Toolkit [68] stages discussions
about human values through design activities. We brought context cards with
different design contexts and possible directions for the design process. The
contexts were based on students’ everyday lives, e.g. sport, dating, school. To
scaffold the design process, we brought six different card decks (see figure B.2),
post-its and A3 boards. The main idea was, that students would come up with
an idea for a ML application, that was valuable to them, use the application to
discuss ethical issues of ML systems and address some of the ethical issues in
the interaction design of the application. This workshop was carried out with 24
students, who were divided into two groups of four, two groups of five and one
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group of six students.

Insights:

Students were engaged throughout the workshop, and seemed motivated by the
many cards and the possibility to come up with their own ideas. The amount
of cards did, however, seem to hinder their reflections about the activities, as
students were more focused on sorting and getting through all cards in each deck,
than discussing a few cards in depth. The ML cards did not support the students
very well in describing a ML system; they seemed to need more structure to design
meaningful ML systems. As a result the ethical discussions often lacked technical
depth. Students were good at identifying overall ethical issues, but perceived
their own ML applications as either morally good or bad, based on their own
intentions in the design process, with nothing much to do about it.

B.6.2 Workshop 2: Describing a ML system

In the second workshop, we provided additional scaffolding for the students’ design
of ML systems by introducing the ML board, which can be seen in Figure B.3.
The board visualises a supervised ML system, which students must fill in based on
their ML application. Furthermore, the workshop was simplified to only contain
data, ethics and people cards to make more room for immersion and reflection.
This workshop was carried out with 25 students who were divided into five groups
of four students and one group of five students.

Insights:

The workshop was conducted in a social studies classroom, and students struggled
with the openness of the design case, which was based on the context cards (see
Table B.2 for an example) and the requirement of integrating ML. Many groups
spent most of their time on deciding on an idea. Few groups were able to fill in
the ML board correctly, but the groups who did succeed were more nuanced when
reflecting on the ethical issues in their application.

B.6.3 Workshop 3: Combining Design and Ethical
Reflection

The third workshop explored how to make more room for ethical discussions, and
how to expose moral choices early in the design process. To simplify the workshop
further, the people deck was removed and each group picked only two data cards
and were provided with one ethics card. The intention was to make more room for
discussing each card in depth and to ensure, that each group worked with different
types of data and ethical issues, in effort to make the classroom discussions more
diverse. To ease the ideation and conceptualisation process for the students, the
context cards were replaced with a shared design case about helping lonely fellow
students, providing students’ ML application with a specific purpose with societal
relevance, and limiting the design space to mobile applications. Last, students
were asked to redesign their systems using wireframe sketches of their application
to encourage them to become more specific in their design. They were asked
to identify the most critical ethical issue in their application and sketch, how
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they would address this in the interface. The workshop was carried out with five
students who participated as a single group.

Insights:

This workshop was conducted with only five students, who worked in a single
group, but this version of the workshop was also used in Workshop 4 with only
limited changes. The predetermined design case and the fewer data cards seemed
to help students generate more well-described ideas, and to make it easier for
them to fill in the ML board. The group’s ethical discussions had more depth
than any group discussions in earlier workshops, and dealt with the complexity of
coming up with good solutions to ethical issues.

B.6.4 Workshop 4: Validating The Concept

In the fourth and final workshop, we tested the composition of Workshop 3 with
more groups. The only change being, that the people cards were reintroduced to
ground the ethical discussion around the people, who would be affected by the
introduction of the students’ applications. The workshop was carried out by a
classroom of 12 students who were divided into three groups of four students.

B.6.5 Data Collection & Analysis

Designing workshops for discussing ethics in computational products in high
school classrooms is a rather unexplored area. Therefore, data was collected
and processed using open ended approach. Throughout all workshops, data
was collected using observations, sound recordings, photography, video and by
collecting the artefacts produced by the students e.g. paper-based mock-ups of
their designs. All participants in the workshops were asked for their consent, and
only data about consented participants was collected. After each workshop, a
write-up [145] of field-notes and observations was produced and discussed between
the researchers present at the workshop. The write-ups focused on how students
used the design artefacts in the design process, how they approached each step
in the workshop, how they talked about and understood machine learning, and
how they discussed ethics in relation to their idea. Together, all three authors
analysed the data above, focusing on emerging themes and critical incidents,
by collaborating on creating an affinity diagram from the data. Selected audio
recordings of students’ internal discussions were transcribed and together, the
three authors analysed them with focusing on, how students identified and talked
about ethical issues, and how they came to an agreement on how to approach
ethical issues in their design. Photography and video were reviewed with focus
on how students collaborated around the design artefacts and how they presented
ethical issues in their application for the classroom. The artefacts produced by
students were analysed with focus on how they described their ML system using
the design artefacts and, again, how they identified and approached ethics in their
designs.
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B.7 Findings

In this section, we present our findings from the workshops with regards to how
they were able to engage students in reflections about ethics related to ML-based
systems. These findings are synthesised from an analysis across different data
types and workshops as described above.

B.7.1 Understanding of ML Served to Qualify
Reflections

Throughout different workshop iterations, we experimented with how students
could be supported in describing ML systems that conceptually and technically
made sense and could, to some degree, be implemented in the real world. In
Workshop 1, we gave students cards that represented specific parts of a ML
pipeline (e.g. features, label, training), and asked them to annotate and combine
cards to describe their systems, as seen in Figure B.4. This was effective to
the extend that all groups used the cards to describe their ML system, but we
observed that they had a hard time describing meaningful systems, and in most
cases the ML component of their designs were described as a magic touch that was
sprinkled on top. In the example in Figure B.4, a group of students designed a
system for optimising how their school’s rooms are scheduled to best fit the needs
of different subjects, teachers etc. The group presented the ML system as being
able to "predict the best schedule for the school", but it was unclear how exactly
ML would help to solve the issue, i.e., how would previous schedules be evaluated
as better or worse and what data would this be based on? In the subsequent
discussions on ML ethics, this became a hindrance to the students, who were only
able to shallowly discuss the issues of the system. To deal with possible issues
about algorithmic decision making, their system would schedule classes and study
trips "in a humane and stress free way", which is a good intention, but does not
deal with the underlying technological issues or describe how they would achieve
this. In a similar example, a group designed a ML system for helping athletes
improve their workouts. The group discussed whose responsibility it was, if the
system recommended an exercise that caused an injury, but their solution was
to employ professional testers to prevent this from happening. It was, however,
unclear how these testers would prevent the system from recommending wrong
exercises, even if all exercises had been tested. And it is also unclear how the
testers would be made responsible for bad recommendations.

Following this finding the board seen in Figure B.3 was introduced to scaffold
students’ design of the ML components in their systems. Instead of giving them
the pieces for an ML-system, we provided them with the basic structure of one,
and asked them to fill it in. This approach seemed to better support the students
in designing conceptually and technically meaningful systems. Not all systems
were sound, and students struggled especially with the specificity of data inputs
and which data to predict. In contrast to the first workshop, many students were,
however, able, at least to some extend, to create meaningful ML-systems. In the
subsequent discussions on ethics, these students had more detailed discussions
about their system’s ethical issues. For example, in the third workshop, a group
designed an app for recommending social groups to lonely teenagers based on
their interests. The students were given an ethics card, which asked them to
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question the responsibility of the algorithmic decisions in their system, and based
on their design, they were able to have in-depth and specific discussions about
responsibility:

Student 1: "What if a group, where something is going on under the
radar is added to the system by us [...] and something bad happens
in that club, because we didn’t know there was a problem with them.
Whose fault is it then?"

Student 2: "It is still the responsibility of the club"

Student 1: "But we brought them into our system..."

Students 3: "I think, those who are responsible for the app are
to blame. And I’m thinking that there is always someone in charge.
That’s a director’s job"

Student 4: "Okay, that is the Minister of Health. So it should be
the job of the Minister of Health or what?"(The Ministry of Health,
was the product owner of the application in the design case)

Student 1: "I don’t think we should take it that far up. We need a
specific division to monitor groups."

[continued discussion]

Student 3: "Then we should have a rating system or the ability to
report groups, and then someone should review them afterwards [...]
Someone should always be to blame."

Their discussion illustrates how it is difficult to place responsibility once
something goes wrong in ML systems, and as is discussed below, these students
were able to design a system that (in a basic way) addressed this issue.

B.7.2 The Design Process Tied Ethics to Design
Decisions

We found that by tightly controlling the design process, students were supported
in connecting their discussions about ethics to their designs, and they were able
to use their discussions in the redesign of their systems.

This was, however, less the case in the first workshops. In Workshop 1, a
group of male students designed a ML system to rate and sort women according
to their breast size. This showcased (in a rather extreme way) the approach taken
by many students when designing their ML systems in the first workshops. While
we provided contexts for the students in Workshop 1 and 2, many students came
up with ideas, that they found interesting for themselves, without considering how
they would impact others, and if they (and others) would actually benefit from
the idea. In this way the context of "Social Media" became the breast-application
and the context of "Urban Life" became "Club Counter" where an AI would
recommend clubs based on its clientele. These groups did not do well in discussing
the ethical issues of their designs: They could easily identify ethical issues in
their designs, but it was difficult for them to address these in their redesigns, as
they could not account for why their application should exist in the first place.
Indeed, the group wanting to rate women simply answered "No" with no further
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Figure B.4: A ML System, designed by students in workshop 1, for optimising
scheduling and booking rooms in a school.
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Figure B.5: Wireframe sketches of an app, designed by students in Workshop 3,
for recommending groups to lonely teenagers based on their interests.

elaboration to the question: "Is it ethical to implement this?" when asked to
reflect on the ethical aspects of their design.

To support students in designing systems that could be meaningfully discussed
(and were not degrading), we introduced the case about helping lonely students
in Workshop 3, and asked students to consider and sketch the ways in which their
system addressed their discussions about ethics. This approach seemed to better
tie together the students’ design process and their discussions about ethics, e.g.,
in the group described above, who designed a system for recommending groups for
lonely teenagers. Based on their discussion, they decided to implement a system
for rating and reporting groups (see Figure B.5). While this is a traditional (and
potentially harmful) way of dealing with responsibility, the students were able to
identify the issues in their discussion (see above) and design a solution addressing
the issue.

In Workshop 4, a group designed a similar app for predicting "soon-to-be"
lonely people and pairing them up with each other. This group discussed the
ethics of data collection, and the dilemma of the app "giving away other people’s
loneliness" by pairing them with strangers (see Figure B.6). This group designed
the app to include a "My Data" page, in which the user can see exactly which
data is given away, and can choose to remove data they do not want the app to
include in its recommendations.
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B.7.3 Challenging to Address Ethical Dilemmas in
Design

Throughout the workshops we found that students struggled with addressing the
ethical dilemmas they had discussed in their design. Students, who were able
to have qualified and interesting discussions about ML ethics, found it difficult
to come up with good solutions to their issues, and often designed systems in
which users (themselves and their peers) were responsible for system faults or
data collection. Many students were trapped in a dilemma of privacy; that their
application and the quality of their solutions depended on access to personal data
from their users, and for groups who had discussed the ethics of data gathering, the
design solutions was often akin to traditional "Terms and Conditions"-agreements
that most applications and websites now have (see Figure B.6). As described
above, some let users control what data would be included in predictions, even
if this would lead to worse recommendations. In Workshop 3, the group who
reflected on accountability in their application for lonely people, also discussed
privacy issues and concluded that users should be incentivised to provide as much
data as possible since this would provide better recommendations or as one of the
students put it: "The more lonely they are, the more motivated they become to
get better recommendations". Once again, this illustrates the dilemma of choosing
between different interests, which is also present in real-life ML applications.

We did not expect students to be able to solve these issues as professional
designers are struggling with this too. Instead, we aimed for the experience to
illustrate for the students how difficult it is to design and implement technology
that avoids ethical issues, even if you are well-intentioned and want to change the
world for the better.

B.8 Discussion

As argued above, many existing approaches for using design processes in CT focus
on empowering students to become creators [171] or to discuss broad, societal
implications of technology [107]. These approaches often neglect discussions that
are both close to technology and to its implications. In this section we reflect
on our workshop format, based on the findings from the workshops, and discuss
how it can inform future workshops or other activities with similar objectives of
staging reflections on ethical dilemmas in computational systems and products.

First, we argue that the entire design process should be framed to help students
design ethically interesting systems. In workshops 1 and 2 students were, to a
large degree, responsible for framing their task and were only provided the context
card (see Figure B.2) to help them. We found that students would often test
our and their peers’ boundaries. The system for rating women by breast size is a
glaring example, and throughout workshops, many students used rather extreme
examples to illustrate their considerations, such as illustrating a system failure
by suggesting that a 6-year old user would be recommended to join a sex-club
or discussing what would happen if a terrorist group accidentally ended up in
their application. One of the characteristics of teenagers that set them apart from
children or adults is their focus on developing identities and social roles [14], and
in this light, their testing of boundaries is not surprising. We did, however, find
that it would often make ethical discussions pointless (e.g. the breast size rating
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Figure B.6: An app, designed by students in Workshop 4, for predicting loneliness
an pairing people before they become lonely. The sketching show how users must
agree to the app’s terms and conditions, but can also choose what data the app
bases its recommendations on.
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system). One immediate response could be to stop the students in their track
and discipline them, but we argue, that this would be inappropriate, keeping in
mind our goal of staging reflections. Instead we found it helpful to provide a more
specific case for the students, to scaffold them in designing systems that would
better support their discussions. Starting from workshop 3, we provided students
with a case about loneliness, which is an actual issue among Danish teenagers,
meaning that students were designing for a real and vulnerable demographic and
were encouraged to consider how this demographic is affected by their design
choices.

Second, we argue that the focus of design workshops should be moved from
the possibilities of a technology towards the implications of implementing said
technology in real-world settings, when aiming to support critical discussions and
reflections about technology. We saw that when we supported students in designing
implementable ML systems, they seemed to have more insightful discussions about
its implications. One reason for this, we argue, is that design processes are typically
future-oriented in the sense that we as designers are interested in what-could-be.
However, for a technology-close discussion about implications, it is necessary to
look at the specific here-and-now issues of a technology. In turn, this implies a
change in the criteria for success of such a design process. Our inclination as
designers is to look at the products of students’ design processes; are they able to
successfully communicate an idea or a design, do they address the case provided to
them, are they solving an actual issue? These are questions that might be used to
evaluate typical design processes, but as the goal has changed, we argue, so should
the questions. Instead of focusing on prototyping as an end in itself, we suggest
seeing insightful discussions about ethics as a goal in itself, and prototyping as a
means to ground these discussions in students’ own design decisions. We suggest
asking questions akin to the following to evaluate if a design process is successful;
are students able to formulate a technically feasible system; can they identify how
their idea and design choices relate to specific, technology-close ethical issues; are
they able to discuss these with their own idea as the point of departure; and can
they address their considerations when prototyping or modifying their idea?

B.9 Limitations

Since students came from different backgrounds, and many students were already
interested in technology their existing knowledge of ML varied. In addition,
because of the differences in length of the workshops (see Table B.1), students
received slightly different introductions to ML and students participating in
Workshop 2 had already had a longer introduction to ML through another
workshop [118].

B.10 Conclusion

In this paper, we have explored how ethical dilemmas and moral choices in ML
applications can be made understandable and explorable for students. To do so,
we designed a workshop format, and several artefacts for use in the workshop,
in which students confront the ethical choices and dilemmas of designing and
implementing their own well-intentioned ML applications. We conducted four
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workshops in different Danish high school classrooms, refining and iterating on
the workshop based on insight gathered in the previous workshops.

Experiences with the workshop format illustrate how an understanding of
fundamental ML and how iterating on own design ideas helped to qualify students’
ethical reflections. In addition, the design process served to reveal to students the
complexity of the ethical issues in ML systems, and tie them to the properties of
ML and to design-decisions. Grounding ethical discussions in students own designs,
made them accountable for their choices and illustrated, how difficult it is to
come up with clear-cut solutions to these ethical issues. Based on these findings,
we recommend that in order to scaffold technology-close ethical discussions,
workshops and design processes should focus less on technological possibilities
and more on implications and consequences, and we have presented our workshop
format and artefacts as an approach for doing so.

We hope that future research in CT will address the ethics in computational
products and systems and aim to make technology-close ethical dilemmas and
decisions explorable for students.
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The Machine Learning
Machine: A Tangible User
Interface for Teaching
Machine Learning

Magnus Høholt Kaspersen, Karl-Emil Kjær Bil-
strup, and Marianne Graves Petersen

Abstract

Machine Learning (ML) is often used invisibly in everyday applications with little
opportunity for consumers to investigate how it works. In this paper, we expand
recent efforts to unfold what students should know about ML and how to design
tools and activities allowing them to engage with ML. To do so, we explore how
to make processes and aspects of ML tangible through the design of the Machine
Learning Machine (MLM); a tangible user interface which enables students to
create their own data-sets using pen and paper and to iteratively build and test
ML models using this data. Based on insights from the design process and a
preliminary pilot study with the MLM, we discuss how a tangible approach to
engaging with ML can spur curiosity in students and how the iterative process of
improving ML models can encourage students to reflect on the relation between
data, model and predictions.

C.1 Introduction

Machine Learning (ML) is increasingly used throughout many of the applications
we use everyday, but the processes involved in ML are inherently hidden for users
and are often difficult to comprehend [1, 30]. The advancement of ML systems
has changed what can be achieved with computational systems, and ML is being
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Figure C.1: a) The two components of the Machine Learning Machine; the Trainer
(left) and the Evaluator (right). b) A user labelling a drawing using the Trainer
to train a machine learning model.

implemented in applications, systems and infrastructure all around us. However,
ML involves several challenges, such as inherent biases [164], dark patterns [74]
and hyper-nudging [239]. As a result there is a growing focus on how to design
explainable and accountable AI and ML-based systems [1, 209], and support a
widespread understanding of ML in order to empower citizens interacting with
systems that use ML [1].

For several years, the inclusion of Computational Thinking (CT) [234] in
formal education has been steadily growing, aiming to prepare students for
careers in computational fields. In recent years, a more critical perspective on
the use of information technology in society has been finding its way into the
CT curriculum [50, 107, 114], arguing that students should not only be able
to understand and use technology itself, but also be able to critically reflect
on the implications of digital technologies for their own lives as well as societal
implications. This is a challenge for all technologies, but is especially relevant for
ML due to its inconspicuous and pervasive characteristics [173]. Consequently,
ideas about what students should know about ML have begun to take form;
Touretzky et al. [216] present five Big Ideas about what K-12 students should
know about artificial intelligence and subsequently ML; these include 1) Computers
perceive the world using sensors 2) Agents maintain models/representations of
the world and use them for reasoning 3) Computers can learn from data 4)
Making agents interact comfortably with humans is a substantial challenge for AI
developers and 5) AI applications can impact society in both positive and negative
ways. Basic ML processes include in particular Touretzky’s idea #2 and idea #3,
and it is around these two ideas that many of the inherent issues of ML are to
be found; data is often flawed which might lead to bias issues, and models often
get too complex to understand and therefore difficult to question [164]. In order
to teach these ideas to students, we need ways of making them understandable
and graspable; Bilstrup, Kaspersen, and Petersen [19] illustrate how providing
opportunities for students to explore the basic processes behind ML potentially
empower students to reflect on the possible personal and societal impacts of ML.
In line with this, recent learning tools for teaching ML allow children to engage
with the processes of ML in terms of data gathering, training and evaluation [51,
92, 193]. Hitron et al. [92] and Zimmermann-Niefield et al. [246] both present
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systems that require learners to perform gestures to generate data via sensors and
train an ML system based on this data. Any-cubes, by Scheidt and Pulver[193],
is a system consisting of two cubes, where one cube is used to train recognition of
physical objects which activates the other cube controlling an actuator.

Previous work suggests that making technology manipulable and explorable
through Tangible User Interfaces (TUIs) can be an effective way of teaching
difficult and otherwise intangible phenomena [61, 140, 142, 143]. Marshall, Price,
and Rogers [143] argue that TUIs are particularly suitable for presenting different
models1 about the world to users, and letting them explore these models in a
tangible way. In the CT community, tangible systems have been used extensively
by researchers, based on the ideas of Constructionism [170]. CT researchers
design “Toys to Think With” [171], arguing that learners gain new insights by
combining their existing knowledge with working with constructing artefacts,
computational or otherwise. This strategy has been used for teaching different
computational subjects such as programming (e.g. [97, 99]) and algorithms (e.g. [48,
69]). However, while some work makes certain aspects of the ML process tangible
[51, 92, 193]; we were not able to find any work, that systematically explores how
the full ML process can be made tangible.

In this paper we present an exploration of how to make the processes and
aspects of ML tangible, in order to teach students about ML and in in this way
contribute towards a more widespread understanding of ML [1]. This results of
this exploration are manifested in the Machine Learning Machine (MLM), as
seen in Figure C.1a. MLM is a TUI consisting of two separate devices, which
allow K-12 students to create data and train and test ML models. The first
device, the Trainer, is an industrial-looking machine, allowing learners to train
models to recognise student-made drawings by feeding the machine with a number
of drawings and labelling these. The second device, the Evaluator, resembles
laboratory equipment and allows learners to test their models by placing new
drawings under its camera and having it try to recognise them. Learners can
switch between the two devices by moving a physical representation of their
model between them, and in this way iteratively try to improve their model. By
training ML models on drawings made by students, the MLM aims to support
students experimenting with training ML models, and to support teaching ML
fundamentals as well as more complex tasks in which students explore, e.g., data
representativity and unintentional bias. The novelty of MLM is not the tangible
user interface per se. Instead it is the manifestation of how tangibility can support
students’ exploration of the complex phenomena of ML.

The paper contributes to the fields of HCI and CT, through a) The MLM
itself as a design exemplar of how ML processes can be made tangible, b) a design
rationale for a TUI for making ML processes manipulable and understandable,
(c) preliminary findings from a small pilot study conducted with MLM, and d) a
discussion of and suggestions for how TUI’s can scaffold learning and reflection
about ML processes.

1The authors refer to any kinds of models about the world and not particularly to ML models
although the coincidence is striking.
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C.2 Related Work

In this section we present previous work related to TUIs for learning and teaching
ML in educational settings.

C.2.1 Tangible User Interfaces for Learning

Since the Constructivism of Piaget [179], the body has been a major factor in
the way learning and subsequently teaching have been understood. Papert’s later
notion of Constructionism and LEGO Mindstorms [171], argues for experiential
learning where learners explore different manipulable artefacts thus piecing to-
gether ideas and knowledge to form new knowledge. Hence, the embodied learning
approach has moved into the computational domain.

The educational potential of tangible systems has also been recognised within
the TUI community. Fails et al. [61] compare how a desktop version and a tangible
version of a game teaching children about health hazards affect children’s learning.
They conduct a survey based on the two modalities to investigate the difference
in several metrics such as number of interactions, answer depth, interest in the
subject, etc. Although the survey was conducted with only a few students, they
found that students who had used the physical version of the game generally
gave more in-depth answers and became more interested in the subject. Marshall,
Price, and Rogers [143] present a scheme for conceptualising TUIs for learning
and analyse several tangible artifacts using their conceptualisation. First, they
suggest that tangibles should be analysed in terms of being ’ready-to-hand’ and
’present-at-hand’, the terms coined by Heidegger [90] to describe how a user relates
to a tool she is using. When a tool is ’ready-to-hand’ the user acts through it,
upon something else, making the tool ’invisible’ to the user. When a tool becomes
’present-at-hand’ focus moves to the tool, making the user aware and reflective
about using it. Marshall, Price, and Rogers argue that effective learning requires
these moments of taking a step back, and reflecting on the learning experience in
a more cognitive way. Second, Marshall, Price, and Rogers propose two main
categories for tangible systems; expressive and exploratory. Expressive systems
allow users to produce an external representation or artefact whereas exploratory
systems embody models presented by someone else and allow users to explore
these in tangible ways. Finally, they suggest that learners can explore such models
in either theoretical or practical ways. Systems that allow theoretical exploration
embody a theoretical model about the world, whereas practical systems allow
users to explore the inner workings of the system itself.

C.2.2 Machine Learning for Young People

There exist several tools for teaching ML to young people and children in all ages.
Several block-programming languages now support building ML applications; The
AI Snap! blocks [115] is an extension of the popular Snap! block-programming
language, allowing students to use a set of predefined ML blocks to build ML
applications. The Scratch programming language has been utilised in systems
such as Cognimates [51] and Machine Learning For Kids from IBM2, which allow
children to build simple systems utilising speech recognition, object recognition,
2https://machinelearningforkids.co.uk/

138



PAPER C. THE MACHINE LEARNING MACHINE

etc. Williams, Park, and Breazeal[231] argue for an Early AI Literacy and present
PopBots; a social robot made of LEGO blocks where preschool children train
a ML system on a tablet to control the robot’s behaviour. Outside of research,
several commercial systems also exist that makes ML explorable; The Cozmo
robot3 can use object detection to play games with children and allows them to
program different behaviour using a block-programming language. The Teachable
Machine by Google4 also allows learners to experiment with ML by e.g. uploading
sets of images for training an image recognition system or to use their webcam to
make a gesture recognition system. Computational Notebooks [162], for example
the popular Jupyter Notebook [174] or Google’s Collab Notebooks5, enable more
advanced learners to build their own ML systems from scratch using programming
languages such as Python.

TUIs for teaching Machine Learning

TUIs have been used by several researchers for teaching different computational
concepts such as programming [97, 99], augmented reality [201], internet-of-
things [144], block-chain [121], robotics [231] as well as for teaching Machine
Learning.

Hitron et al. [92] and Zimmermann-Niefield et al. [246] both present systems
that rely on recording and training ML models based on bodily movements,
trying to recognise correct movements. Hitron et al. present Gest [92], a gesture
recognition system where children, aged 10-13, train a system by drawing simple
geometric shapes by performing gestures using an input device designed by the
authors. Through a follow-up interview, they find that the participating children
were able to apply their new knowledge of ML to their own life and to think up
personally meaningful applications using ML. Zimmermann-Niefield et al. [246]
present AlpacaML, a ML system to recognise good athletic moves such as kicks
in a game of football. The authors deploy the system in a workshop with a local
high school class and found that the young people succeeded in collecting data,
building, testing and evaluating models as well as iterating on the process to
improve their models. Gest and AlpacaML make the process of data collection
tangible, but still rely on respectively a desktop and a mobile application for
further inspection and evaluation of the models. AlpacaML allows learners to
inspect videos of their moves for labelling good and bad moves, while no such
option is reported available in Gest. Finally, Scheidt and Pulver [193] present
Any-Cubes; a TUI for making simple if-this-then-that systems based on image
recognition. Any-Cubes consists of two cubes; the first cube has a built-in camera
for taking photos of an object and recognising it again. The second cube has a set
of banana plugs which allows users to connect actuators to it. This actuator is
then activated if the first cube recognises an object, allowing users to experiment
with making simple image recognition systems. While Any-Cubes incorporates
buttons for labelling images of different objects, there is no way to inspect these
images, and thus no way for learners to inspect and evaluate their models, except
when the system is not able to recognise an object and thus does not activate the
actuator.

3https://www.digitaldreamlabs.com/pages/cozmo, accessed Jan 10th, 2023
4https://teachablemachine.withgoogle.com/, accessed Jan 10th, 2023
5https://colab.research.google.com/, accessed Jan 10th, 2023
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As argued above many existing tangible systems for teaching ML only rely
on tangible aspects for a learner to explore a part of the ML process. Below,
we present the MLM as the amalgamation of our exploration of how to, more
systematically‚ make the ML process tangible and explorable for learners through
an iterative process.

C.3 Methodology

The work presented in this paper is based on the Constructive Design Research
(CDR) methodology [128, 130] and investigates how ML aspects can be made
tangible and explorable for learners. CDR projects are driven forward by the
construction of artefacts and the knowledge creation happens in experiments with
and explorations of these artefacts [7, 130, 205]. Here, the central artefact is the
MLM and the knowledge creation lies in the design and construction of the two
devices as well as in the pilot study. CDR can be held accountable to several
theoretical and practical concerns [127]. In this work we are concerned with
exploring how to make ML tangible, in efforts to provide better tools for teaching
ML as part of the CT curriculum. We see the MLM and its design rationale as a
contribution in itself and as our method for exploring the design space of tangible
ML. The MLM is simultaneously a suggestion for how a tangible ML learning
tool might look and a Design Exemplar [21] embodying our research agenda and
the knowledge created.

This work is part of a larger research agenda [59] based on a critical approach to
teaching CT and designing tools for doing so [50, 107]. In other CDR experiments
we have explored how to include ethical dilemmas of ML-based technology in
design workshops with children, and how to scaffold critical discussions about
ML in a Social Studies classroom [19]. As a whole, these experiments form a long
term research programme invested in exploring what, and how, ML should be
taught to young people.

C.4 The Machine Learning Machine

The MLM is a learning tool which enables K-12 students to iteratively work on
ML models for binary classifications of doodles they draw using pen and paper.
It consists of two separate devices (see Figure C.1): the Trainer, a big industrial
looking metal box which provides a simple interface for labelling data and training
ML models; and the Evaluator, an instrument inspired by laboratory equipment
for analysing and evaluating ML models’ performances. Besides the two units, the
ML model that learners build is represented by a physical artefact. This model is
moved between the two units to either train or evaluate the model. The MLM is
designed to be used in a learning context with students (and teachers) who have
no, or little, prior knowledge of ML.

C.4.1 Design Rationale

The MLM investigates how processes in supervised classification-based ML can
become easier to explore and understand for students, by moving it into K-12
classrooms through a TUI, and how insights about ML can be incorporated in
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the design of a TUI and students’ interactions with the system. Aligning with
Bilstrup, Kaspersen, and Petersen [19], we take the stand that in order to have
insightful reflections on the implications of ML, such as algorithmic fairness/biases,
explainability and accountability [1], students must have some understanding of
the underlying computational processes. The MLM aims at providing students
with a fundamental understanding of ML by making the processes of creating
and evaluating ML systems expressive and exploratory [143] through tangible
artefacts. Consequently, the aim of the MLM is not to teach students how to
implement ML algorithms, but rather to identify and reflect on how ML works,
and what implications the use of ML has.

With MLM, students build and design their own ML models in an iterative
process, allowing them to collaboratively explore the relation between data and
predictions in ML systems. This involves taking processes that are normally
intangible, fuzzy and digitised and putting them into physical artefacts which
students can assemble around, try to understand, discuss and experiment with.
Hallnäs and Redström introduce the notion of slow technologies [81] which invites
for reflections through its interaction and expression. The interaction and visual
expression of the MLM is designed to invite students to reflect on each step in
the ML process by requiring students to perform each step manually, sometimes
in tedious manners, and through the expressions of the two aesthetically very
different devices.

In this manner, the MLM exposes the basic processes of ML, which differen-
tiates ML from other kinds of computational processing. While designing the
MLM and how it presents these processes, we found inspiration in two of the
five big ideas about AI presented by Touretzky et al. [216]: That computers use
models about the world to make predictions (idea #2), that the models are based
on data collected in the world (idea #3) and are generated through a trial and
error process. Based on these and by looking at how other ML tools such as
AlpacaML [246], Gest [92], ML4Kids and Teachable Machine engage learners in
ML processes, we have defined four iterative steps, which students will engage
with through MLM; Problem Formulation, Data Gathering and Representation,
Training and Evaluation. They closely resemble how ML systems are created in
the real world albeit in a simplified way. Below, the steps are unfolded in detail:

1. Problem Formulation: The first step entails specifying the problem to be
solved, whether the problem can be solved using ML and consequently what
kinds of data need to be collected in order to do so. During this first step,
it is determined what the ML system will be predicting including what
categories new data can be classified as.

2. Data Gathering and Representation: Next step is to gather the needed data,
making sure the data-set is sufficient in size and in representation.

3. Training: The third step is the training of a ML model. Here, the data-set
gathered in the above step is fed to a ML algorithm, in the case of the MLM
to a Neural Network, and is used to train a ML model. Each data-point is
labelled as belonging to one of the categories determined in the first step.

4. Evaluation: The final step is to evaluate the model, once one has been
trained. Here, data that has not been used for training the model, is used
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Figure C.2: The Trainer in use. a) shows the Model artefact being plugged into
the Trainer, b) shows a drawing being inserted, and a) shows the drawing being
labelled.

to evaluate the predictive abilities of the model. Based on the the results,
the above steps are repeated to improve the model’s predictions.

Below, we describe each component of the MLM, their function, how they
were designed and how they relate to the four steps above. Next, we describe
the use of the MLM and provide scenarios of how the MLM can be used in an
educational setting.

C.4.2 Machine Learning Machine Components

The MLM consists of two interactive devices; the Trainer for training ML models,
and the Evaluator for evaluating these models. In addition, the ML model is
represented by a physical artefact and learners use simple pen and paper to create
data for the MLM. This design exposes that training a model and using it for
predictions are two different processes. In addition, the student-generated data
makes the size and the nature of the dataset visible and manipulable. This gives
students full control over the data and allows for simple data generation, iteration
and a wide range of variations and creativity. Students can create datasets of
anything they can imagine and draw, but the MLM is limited to two different
labels; and thus, students are limited to drawing two motifs to distinguish between.
Here, we will describe the functionality and design of each of the components.

The Trainer:

This device is used by learners, as seen in Figure C.2, to train ML models. It
consists of a large metal box, with a socket for the Model artefact and a slit for
feeding it with data in form of paper drawings. The paper is caught inside the
box, by a clutch mechanism, that keeps it in place. Once this is done learners can
press one of two large buttons, one green and one red, on the top of the Trainer
to assign the inserted paper one of two labels represented with the red or green
colour. Once labelled, a picture is taken of the drawing and used to train the
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Figure C.3: The Evaluator: a) shows the Model artefact being inserted into
the Evaluator, b) shows a drawing being laid in place, and in c) the drawing is
categorised and the Evaluator shows its predictions and the probabilities in the
LED displays.

ML model, and the clutch mechanism is released to let the drawing fall to the
bottom of the box. After training a model and evaluating it using the Evaluator,
learners can open up the Trainer, take out the drawings and inspect them to look
for clues on how to improve their model.

The visual appearance of the Trainer references industrial machinery with a
rusty, metal exterior and large coloured buttons. In addition, when the Trainer is
opened to take out the drawings as described above, the electronics are exposed.
The appearance of the Trainer was designed in this way to signify the messy,
trial-and-error process of training ML models.

The Trainer provides students with several opportunities to reflect on the role
of data in ML systems. Each drawing must be fed individually to the machine,
making the process slow and deliberate. In addition, the system allows data to be
inspected, by simply removing the paper from the box. If the Evaluator falsely
labels a new drawing or simply fails to do so, this drawing can be compared to the
training set to see if there are issues with the data representation, if the data-set
is too small, etc.

The Evaluator:

This device is used, as seen in Figure C.3, to evaluate ML models created using
the Trainer. It consists of a glossy white box with wooden sides. The box has a
lid, which can be opened and fixated in a 45◦ angle. There is a camera in the lid,
which is used to classify new drawings, which are placed under the lid. To the
right of the lid is an interface for controlling the Evaluator. This interface has a
socket for the Model artefact, two switches for turning on the Evaluator, a button
for engaging the Evaluator in classifying a drawing, two LEDs and displays for
displaying how certain the model is of its prediction.

The visual appearance of the Evaluator draws on references to consumer
electronics with its glossy finish and wooden sides, and on laboratory equipment
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with the seven-segment LED displays and the knobs and switches. It was designed
this way to convey the feeling of investigating the model, and how ML systems
often appear polished and final once deployed even though they might not be
as precise as they seem. Together, the Trainer and the Evaluator signify the
difference between how ML models are created and how users often experience
them.

With the the Evaluator, learners can evaluate a model by exploring how it
interprets different drawings. This allows them to make hypothesises about how
the model’s predictions can be improved or changed, which they can go back to
the Trainer and test out.

The Models:

The physical models represent ML models and is moved between the Trainer and
the Evaluator when training or evaluating models. This allows learners to keep
track of which model they are currently using, and more importantly, it exposes
through making the model tangible, that the model is only an approximation of
reality, and that it is removed from the data, once it is used to make predictions6.
The shapes of the model artefacts are asymmetrical oval cylinders, and are
designed so they only fit into into their plugs from one angle. The top is bevelled
while the bottom is straight to indicate what end is up and what end is down. On
the bottom of the artefact is a small indentation in which a passive RFID-tag is
placed. This gives each artefact a unique ID, which is used when moving models
between the Trainer and the Evaluator. There is currently no way of telling if a
modelled is empty or being trained on. The physical representation of the ML
model can be seen in Figure C.3a being inserted into the Evaluator.

C.4.3 Using the Machine Learning Machine

Below we describe how the MLM can be used to create and learn about ML
following the four steps described above; Problem formulation, Data gathering
and representation, Training and Evaluation. The steps and how they relate to
the MLM can be seen in Figure C.4.

(1) Problem Formulation: Students define which doodles their soon to be
model should be able to classify. They must choose two classes (two motifs for
the doodles), while considering the complexity of the concept they choose. E.g.,
create a model that can recognise if a doodle illustrates a square or a circles or,
more complex, a model that can recognise cows from keys.

(2) Data Gathering and Representation: Students consider how they can
represent their two classes and start producing doodles with pen and paper. It is
necessary to produce multiple doodles for each class. It can be one student who
draw all doodles, or a class can collaborate to generate the data-set of doodles.
The approach will affect how the model will perform. E.g., every student in the
class draws five quick doodles of respectively keys and cows.

6The latter is the case for most ML systems, including neural network-based systems, but not
for all ML systems.
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Figure C.4: The iterative ML process used by the MLM including where in the
process the Trainer and the Evaluator are used.

(3) Training: Students plug an empty model (if it is the first iteration of a
model) into the Trainer and start feeding it with their doodles and press the
buttons to label each drawing and start training the model, providing it with
examples of each class. E.g., students press the red button each time they feed it a
doodle of a key and the green button each time they feed it a doodle of a cow.

(4) Evaluation: Students plug the model out of the Trainer and plug it into
the Evaluator to evaluate the model with new doodles they, again, draw with pen
and paper before putting them into the Evaluator to see the classification results.
E.g., a student may have a classmate who have not contributed to the dataset
draw a cow and see if the model can recognise doodles drawn by other people.

After this first iteration, students can repeat the process multiple times to
improve their models, while exploring how the data-set impacts the model’s
predictions. At some point they may want to open the the Trainer to take out the
doodles and inspect the data-set. In this iterative trial-and-error process, they
can start to explore and gain an understanding of classical ML considerations:
Should they re-specify the problem? What are the model actually capable of (or can
potentially be capable of) predicting? Is the dataset representative of the problem
they have formulated? Is the quality of the data good enough or are some doodles
difficult to classify even for a human? Could there be any unintentional biases in
the dataset such as the type of pen or who have drawn the doodle? Below, we will
provide a few scenarios to clarify how we imagine this could be happen.

C.4.4 Use Case Scenarios

The following scenarios describe teaching activities about specific ML challenges
that incorporate the MLM. In these scenarios, students follow the four-step-
process described above and are beyond the first iteration of their ML model.
Since the MLM is intended as a learning tool used in classrooms, we assume that
a facilitator is present and guide students in their explorations. More complex
use cases of the MLM, such as the ones below, assume that the facilitator has
a fundamental understanding of ML, but the MLM could also be used to teach
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ML fundamentals without the facilitator understanding ML. The facilitator in
the scenarios is referred to as ’the teacher’.

Representative data:

Representativity is an important aspect of building ML models. It measures if the
data-set is representative of the problem it describes and requires data exploration
to identify situations that are not covered by the current dataset.

Scenario: Students are training a model to recognise doodles of cows from
doodles of keys. When testing their model with the Evaluator, it can recognise
most keys, but provide mixed results when shown doodles of cows. Especially when
they ask other students to draw cows. They have tried to draw more doodles to
train the model further, but it does not improve the performance significantly.
Encouraged by the teacher, they choose to take the dataset (doodles) out of the
Trainer to inspect it. When comparing the dataset with the doodles, the model
struggles to categorise, they realise that almost all cows in the dataset are looking
to the right, while the new doodles illustrate cows that are looking to the left. The
students draw a bunch of new doodles of cows looking to the left, and re-train the
model. When they plug the model back into the Evaluator, it performs significantly
better at recognising cows looking to the left.

Unintentional Bias:

Another important aspect of building ML models, which is closely connected to
data representativity, is unintentional biases. The ML model may learn biases
from the data that were not intended by the designer. Thus, the model generates
unintended assumptions about the relations between the inputs.

Scenario: Students are training a model to recognise drawings of bicycles from
drawings of houses. Their teacher has told them, that this is a difficult task, so
they have designed an efficient setup to provide the model with a lot of data: One
person is drawing houses, one is drawing bicycles and one is feeding the drawings
to the Trainer. When they plug their model into the Evaluator, it performs well
and the students are satisfied with their new model. However, when another group
tests their model, it does not seem like the model has any conceptualisation of
what a house or a bicycle is. The results seem mostly random. Through further
experimentation and discussions with their teacher, they realise that their model
is very accurate at recognising houses if they are drawn by the same person who
produced the data-set and with the same pen. If this person, instead, draws a
bicycle it more often categorises it as a house than as a bicycle. They have
unintentionally biased their model to assume that the type of pen and the artist
are the most important attributes for distinguishing the two types of drawings.

C.4.5 Technical Implementation

The components of the MLM are implemented as follows. Each interactive device
contains a Raspberry Pi (RPi) which runs a Python application and controls slave
Arduinos. When a drawing is labelled by a user who presses one of the buttons
on the Trainer, a Pi Camera takes a picture of the drawing. The RPi in the
Trainer sends the picture with its label and the ID of the model being trained to a
Python backend. This is done through a RESTful API that processes the images
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Figure C.5: A diagram showing the flow with which data is produced, ML models
are trained and predictions are made with the MLM.

using OpenCV 7; converts them to greyscale, reshapes them to 28 ∗ 28 pixels and
saves them in a SQL database. The backend then conducts the ML computations
using Tensorflow’s Keras API 8 to train neural networks (models) which are used
when making predictions. The models are trained from scratch without use of
pre-trained models, but the implementation is inspired by, and has been tested
with, Google’s Quick, Draw! dataset, thus models can be trained and tested with
this dataset. When a user presses the button on the Evaluator to have it recognise
a new drawing, another Pi Camera photographs the drawing and sends it to the
back-end, where the previously trained model is used to recognise the drawing.
This prediction is sent back to the Evaluator and is displayed in the two displays.
To keep track of which model is currently being trained, the Model artefacts have
RFID-tags with unique ID’s. These are recognised by RFID-readers in both the
Trainer and the Evaluator. These unique ID’s are used when storing and retrieving
models in the SQL database. An overview of the technical implementation and
flow can be seen in Figure C.5.

C.5 Pilot Study

We conducted a small, preliminary pilot study to evaluate the MLM, as seen in
Figure C.6. The study was conducted with a group of two male teenagers, one
aged 15 and one aged 19. Both participants were consented. The study lasted one
hour and took place in a research laboratory at a university. To get an idea of the
MLM as a learning tool, the study was designed to closely resemble how the MLM
could be used in an educational setting. During the evaluation, we asked the
participants to think out loud and to ask us if any issues occurred. One author
took notes during the interview, another took pictures and a third facilitated the
evaluation. Further, audio recordings were made of the entire evaluation. The
study was conducted in the authors’ and participants’ local language. Quotes and

7https://opencv.org/
8https://www.tensorflow.org/
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Figure C.6: The pilot study: a) shows a participant engaged in creating data
in the form of drawings, b) shows the participants using the Trainer to train a
model for recognising 1’s from 0’s, and c) shows a participant using the Evaluator
to test a model.

questions have been translated into English by the authors.

First, we conducted a short preliminary interview to qualitatively establish a
baseline about what the participants already knew about ML, where we asked
the following questions: a) Have you heard about ML before? What do you think
it is? b) Do you know of any systems that use ML? And how? c) How do you
think voice assistants, such as Siri and Alexa recognise what you are saying?

Next, participants went through two tasks using the MLM. First, a task where
participants were asked to draw five 1’s and five 0’s and train a model using these
drawings. Next we asked them to evaluate their model by drawing new 1’s and
0’s and to improve it based on their evaluation. The second task was free. We
asked the participants to formulate their own problem to solve and figure out
what to draw in order to do so. Then the above process of training and evaluating
iteratively was repeated.

Finally, we did a post interview. Here we, once again, asked the participants
what they now thought ML was. We asked several questions about the use of the
system; How was is to use the system? What surprised you along the way about
the system, the predictions or something else? What was hard to understand?
Next, we asked them if they could think of any more systems using ML. Finally,
we asked them several questions that required reflecting about ML in general; a)
If you were to design your own ML system, what would it do? And what would
you need to be wary of? b) In many places in the U.S. facial recognition systems
have been banned. Why do you think that is? What can go wrong from using
them?

The analysis was made informally by two of the authors, who collectively went
through the data collected during the study.
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C.5.1 Results

Although the pilot study is only preliminary, and no generalisations can be made
from the very small number of participants, some interesting findings did occur,
that might inform how the MLM could be used to teach ML.

When prompted for knowledge about ML, the participants revealed, that
they had little existing knowledge of ML. One had not heard of it, while another
had a crude understanding of ML as something that learned something from
inputs. The latter participant was able to explain that voice assistants worked by
”someone having taught it the words´´, that it is able to recognise, but was not
able to give a more in-depth answer. No participant could mention other systems
utilising ML. In the interview following the study, the participants were not able
to provide a more precise definition of ML, and they seemed to find it difficult to
discern between the MLM and ML in general. However, during the study they
had many in-depth reflections about issues that occur when developing real-world
ML applications.

During the first task of drawing 1’s and 0’s, the Evaluator was able to reliably
recognise 0’s drawn almost circular, but struggled with oval 0’s. It also struggled
with 1’s, which the participants had drawn as straight lines. From this, they
gathered, that they needed to train the model with many different types of 1’s and
0’s; “We need to draw as broadly as possible”. In the next iteration, participants
tried to draw 1’s and 0’s that resembled the ones the Evaluator was not able to
recognise. They drew many different 1’s and 0’s, and while the model improved
it’s ability to recognise differently shaped 0’s, it did not improve at recognising
1’s drawn as lines. One participant identified the issue; “We haven’t made any
more 1’s that are completely straight. Maybe if we did, it would be better”

In the second task, participants chose to train a model for recognising drawings
of the sun from drawings of the moon. The participants seemed more engaged in
this task, and began on their own to explore the MLM. During the Data Gathering
and Representation step, the participants tried to align their drawings to improve
the model by drawing suns with 7 beams of light around it and drawing only
waxing crescent moons. The system was able to recognise most drawings, but
struggled with some and was not very certain in its predictions. The participants
experimented with different placements of the drawings inside the Evaluator after
having experienced that the system was not able to recognise a drawing of a sun
that had been awkwardly placed. Initiated by one of the authors, participants
also began experimenting with different lighting conditions by opening and closing
curtains at a nearby window and blocking light from reaching the Evaluator with
their bodies and hands. After having found a drawing that was particularly
difficult for the Evaluator to correctly classify, one participant wondered what
would happen if they were to train the model using the exact drawing and having
it be classified afterwards; “If it has seen it before, it should be 100 [percent certain
of the classification]”.

In general, participants reported that they found the system easy and engaging
to use. However, they struggled with understanding what the Model artefact
represented and what its functionality was. When asked what their understanding
of the model was, one participant guessed that they worked like “memory cards”,
storing photos of the drawings and moving them between the Trainer and the
Evaluator. Although this understanding is close to reality, they had not realised
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that the model only had abstract knowledge of the data, and did not interpret
moving the model as separating the model from the data as we had intended.
Participants also struggled with feeding data to the Trainer, although this seemed
to be the result of a system failure of the clutch mechanism, which would not always
release the paper into the box. The participants quickly found workarounds for
the issue and were not noticeably frustrated, but it did slow down the interaction
with the Trainer.

C.6 Discussion

In this section we discuss the qualities of tangible approaches for ML learning
tools, starting from The Machine Learning Machine (MLM), and how the findings
from the pilot study illustrates the qualities of MLM, but also makes clear that
future work is needed.

C.6.1 Qualities of a Tangible Approach to Engaging
with ML

The ML process steps students are guided through with MLM are similar to
other existing (and some very often-used) learning tools such as AlpacaML [246],
Gest [92], ML4Kids and Teachable Machine, and its novelty and contributions
lay in how students interact with ML processes and concepts. The MLM does
not provide the same interactive, efficient tool to process a broad variation and
large quantities of data proviced by Teachable machine and ML4Kids. It also
does not embody the data generation to the same degree as AlpacaML and Gest
and it does not contextualize ML into another subject such as AlpacaML (ML
in athletics). The MLM takes another approach by making ML processes more
tangible than they are in the real world, and puts them into the classroom to spur
curiosity and reflection among students. It meets students with big industrial
looking tools, which require them to generate every piece of data by hand and
manually feed it to the ML model. Similarly, the evaluation of models is not
automated, but is conducted manually, one drawing at a time. The system may
seem unnecessary and laborious as other digital tools can achieve the same with
less effort, but as Marshall, Price, and Rogers argue: “If extra information is
gained about a domain or if students’ interpretations are guided constrained by
manipulating physical materials, then tangible systems might offer advantages
over other kinds of learning environments.” With the MLM, learners produce
real-world, analogue data, with all the kinks and quirks that come with it. The
MLM might not recognise a drawing of a cow if it has been drawn with a slightly
bolder pen or in a different colour. In this way, the MLM embodies the richness
of real-world ML applications and the messiness of collecting data about the real
world. The MLM presents ML as a slow technology [81]. It requires students to
use a slowly moving, laborious system, and asks them to make time and space to
assemble around ML, to explore it together, and to take their time to reflect on
details; “Why was this model classified wrongly, while this one wasn’t? Maybe its
because its too narrow?”.

On one hand, the interaction with the MLM may be experienced as pointless
by students, because the tools are inefficient and can only be used to produce
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models with very few use-cases and little meaning in the real world. On the other
hand, the physical interaction can make ML less abstract than more digitised
systems and the slowness can make more room for understanding what is going
on and for reflecting on how small changes in the data can impact the models’
predictions.

C.6.2 Qualities of an Iterative Process to Engaging
with ML

A core design rationale of the MLM is to support students’ engagement with
ML through an iterative process. During the one hour pilot study, participants
managed to train two different models with several iterations for each model. These
were partly supported by participants’ own reflections and partly supported by
challenges introduced by the authors. The design rationale is related to Marshall,
Price, and Rogers’s argument that effective tangible user interfaces for learning
require transitions between ready-to-hand and present-at-hand [143]. During
the pilot study, we saw how iterations were most often triggered by reflections,
and the MLM being present-at-hand. As an example, the iterative process served
to engage the students in reflecting on limitations in the data-set and seeking
to improve the performance of the model through providing additional training
data, which was carefully crafted based on limitations in the previous collection
of drawings. After the first round of training data, one of the authors made a
few drawings, which were deliberately made slightly different than the rather
homogeneous first training data set, and asked the students to evaluate them with
their current model. The low success rate of the evaluations of these drawings
triggered students’ reflections on sample versatility (variety of the data-set) and
they added drawings with larger variation, re-trained the model, and experienced a
higher success rate for the evaluations of the author’s drawings with the improved
model. Figure C.7 illustrates how additional drawings were created to enhance
sample versatility. In a second case, the students added additional training data to
the model, but experienced a worse performance of the Evaluator. This triggered
reflections on which other aspects could influence the performance as well as a
few quick iterations, where lighting conditions and the positions of drawings were
changed to see how both factors impacted the performance. The pilot study
indicates that the MLM supports relatively fast iterations on the MLM process
and that this serves to engage the students in exploring and reflecting upon ML.
Future studies will serve to establish this finding further and also help towards a
more systematic exploration of how to trigger reflections in such processes.

C.6.3 Challenges in Relating Activities around the
MLM to Everyday Life and Wider Implications of
ML for Individuals and Society

The MLM is deliberately designed as a generic machine which can be appropriated
for different purposes, cases and aspects of ML, as described in section 4.4. In the
pilot study, this turned out to be a challenge in terms of clearly connecting the
ML process of the MLM to real-life applications, which participants knew from
their everyday lives. We expect this to be the cause of the generic task of drawing
1’s and 0’s with no context supplied. Future work will explore a more deliberate
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Figure C.7: Participants look at the data-set used for evaluating their model
and make new drawings to improve the model through a greater variety in the
data-set

framing of the MLM through different activities around the current MLM. We
also plan to design and implement an additional MLM component which will
allow students to bring their models out of the classroom and into their everyday
lives using a mobile device and subsequently bring their explorations back into
the classroom through a series of teaching activities supporting reflection over
time.

C.6.4 Limitations

Due to the Covid-19 pandemic, we were not able to recruit participants for our
pilot study as we would have normally done. Instead we opted for a small,
preliminary study with two persons. This means, that the findings cannot be
generalised, and the findings should instead be used to inform future designs
and evaluations. This also means that one of the author knew in advance both
participants and that the participants knew each other. We do not believe this
affected the results of the study.

The design of the MLM is limited in its scalability. Although several models
can be trained, the two devices are major bottlenecks when trying to engage an
entire classroom of students. This was not an issue in the pilot study with only
two persons, but we suspect that it will be a limitation in a larger evaluation.

C.7 Conclusion and Future Work

The Machine Learning m´Machine (MLM) is designed to complement existing
learnings tools for teaching ML in classrooms and to expand existing research
regarding what students should know about ML and how we can design tools
and meaningful activities that allow them to engage with it. The design of and
design rationale behind the MLM represent a novel approach to making ML
explorable and graspable through tangible user interfaces. The MLM achieves this
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by allowing students to engage with ML through an iterative process of Problem
Formulation, Data Gathering, Training and Evaluation. A preliminary pilot
study has been conducted, with the MLM, which demonstrates the qualities of
an iterative approach for engaging students in understanding and reflecting about
ML and the qualities of a tangible approach to teaching ML in terms of shifting
between being ready-to-hand and present-at-hand [143] and of presenting ML
slowly and deliberately. Future work is needed into exploring how the MLM can
be integrated in teaching activities to support more reflections on the implications
of ML in their everyday life. In addition, work is needed to make the MLM
scalable to a full classroom. We have, already made plans for evaluating the
MLM with a larger group of students in order to validate preliminary findings
and expand on the functionality of the MLM, to further explore its potential. In
order make the MLM more scalable we see two paths forward. First, an additional
component could be developed to supplement the existing devices, which would
allow students to bring their models into the world using their smartphones.
Another way would be to allow students to use their own devices throughout the
process of training and evaluating their models. This would entail designing a
frame in which students could insert a device, e.g, a smart phone, and use the
phone’s camera for taking pictures of their drawings. We plan to investigate both
directions in future work.
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Abstract

In this paper, we present a model for progression in computational empowerment
in education. Computational empowerment (CE) expands computational thinking
(CT) by adding a focus on empowering citizens to critically engage with technol-
ogy, but currently lacks an articulation of what characterises progression towards
CE. Through combining aims from computational thinking with computational
empowerment, and structure progression using the SOLO taxonomy, we take
the first steps towards a model for understanding and articulating progression
in computational empowerment. The model has been applied in the analysis
of four CE-focused research projects. Based on the analysis, we propose that
computational empowerment is a matter of reaching a high competency level re-
garding computational concepts, computational practices and reflexivity regarding
the effect of technology in one’s own life and in society. Finally, by formulating
examples of learning goals, we illustrate how the model can be used by teachers
and researchers to articulate, determine and compare CE learning goals, so that
learning goals are aligned and complement each other from one stage to the next.

155



PAPER D. COMPUTATIONAL EMPOWERMENT PROGRESSION MODEL

D.1 Introduction

Computational Thinking (CT) [234] has been widely recognised as way to en-
courage new generations to create technology and to pursue careers in STEM
subjects (science, technology, engineering and math). However, in recent years,
CT has been criticised for being too narrowly focused on developing students’
technical and generative skills, and for neglecting critical skills for students to
decode the role of technology in our everyday lives and society [113]. This critique
has led to multiple proposals for expanding CT to encompass broader, more
critical perspectives [107, 213].

One of these proposals is Computational Empowerment (CE) [50, 107].
Dindler, Smith, and Iversen [50] defines CE as “the process in which children
and youth, as individuals and groups, develop the skills, insights and reflexivity
needed to understand digital technology and its effect on their lives and society at
large, and their capacity to engage critically and curiously with the construction
and deconstruction of technology”. The authors demonstrate, through digital
fabrication activities in a Danish school context [203], how CE might look in
practice, but provide limited reflections on how successful these activities were in
computationally empowering the participants. They find that students improved
their understanding of digital fabrication technologies, gained hands-on experi-
ence with digital fabrication technologies, found the work with such technologies
motivating, and had initial signs of design literacy ; the competencies to work
“creatively with technology, and complex problem solving” [203].

However, Dindler, Smith, and Iversen [50] and Iversen, Smith, and Dindler
[107] do not provide much analysis of the relation between the results and the
activities that might be used to inform future learning activities and interventions.
We argue, that if CE is to gain traction, researchers and teachers first need ways to
relate the aims of CE with specific learning goals. Tools, methods, and practices
for teaching and assessing design and programming are quite well developed, but
the same cannot be said for teaching and assessing children’s abilities to analyse,
understand and critically reflect on the role of technology, especially when it
comes to resources that teachers can use in their daily practice [50]. While CE
is clearly defined in terms of its agenda and goals, it is less clear what steps
teachers need to take, to take students from being users of technology to becoming
computationally empowered citizens. This has led us to formulate the following
research question:
RQ: What characterises progression in computational empowerment in education?

In this paper, we take the first steps towards a model of progression in CE that
allows researchers and educators to articulate learning goals in computational
empowerment that are aligned and complement each other from one stage to the
next. We do so by analysing four on-going research projects, which all adhere
in some way to the CE agenda. For the analysis, we developed an early model
for relating concrete learning goals to progression in CE, by combining aspects
from CT, CE, and the learning sciences. We found that while the model was not
able to provide an all encompassing analysis of the research projects, it provided
the involved researchers with a language to express how their projects align with
CE. In addition, the analysis allowed us to compare and discuss strengths and
shortcomings of the research projects across different aspects. Finally, we suggest
that it can help design new activities and projects based on the CE agenda.
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The paper is structured in the following way: First, we present work related
to what characterises CT and CE skills as well as progression in teaching. Next,
we present the CE progression model. Subsequently, we apply it to four research
projects to exemplify how it is useful as an analytic tool. Finally, we discuss the
use of the model both as an analytic as well as a generative tool.

D.2 Related Work

In order to move towards a model of progression in CE, in the following, we
present work related to characterising computational skills and progression in
learning activities for children and young people.

D.2.1 Characterising Computational Skills

The notion of computational empowerment has recently grown out of a need
to address limitations in conceptions of CT in terms of its lack of focus on
the wider implications of the role of technologies in society and personal lives
[107] [123]. Kinnula and Iivari [123] makes the point that even though projects
seeks to support empowerment, this might imply different perspectives including
functional, educational, democratic and critical perspectives. Encompassing these
perspectives Iversen, Smith, and Dindler define three core aspects of CE [107]: “1)
engaging creatively in technology development, 2) understanding the role of digital
technology in society, and 3) reflectively and critically understanding the role of
technology in one’s own life.”. The first aspect encompasses traditional CT skills,
which multiple authors have tried to characterise. Wing’s own conceptualisation of
CT [233, 234] consists of several aspects including problem reformulation, recursion,
problem decomposition, abstraction and systematic testing, which all relate to
the first aspect of CE outlined above. Similarly, Perković et al. [175] present a
framework for CT, which they base on Denning’s principles of computing [49];
computation, communication, coordination, recollection, automation, evaluation
and design. They argue that to develop a full CT curriculum, these principles
should be addressed.

Weintrop et al. [227] introduce a taxonomy of CT (for mathematics and
science) consisting of data practices, models and simulation practices, compu-
tational problem solving practices and systems thinking practices. Barr and
Stephenson [12] include data organisation, data analysis, automation, efficiency
and generalisation while Bers et al. [16] include abstraction, generalisation, and
trial and error activities.

Common for these frameworks is, that they focus on computational concepts
and practices related to computing, and little on the wider perspectives on tech-
nology related to the implications of the use of digital technology for personal life
as well as society, the second and third aspect of CE mentioned above. Adopting
a wider perspective, Brennan and Resnick Brennan and Resnick propose three
key dimensions of CT, namely computational concepts, computational practices
and computational perspectives. Concepts refer to concrete computational aspects
such as abstraction, automation and so forth. Practices refer to the practices
programmers develop as they work with e.g. general problem solving skills and
data practices. Together, concepts and practices encompass the CT skills pre-
sented above, and focus on allowing students to engage creatively in technology
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development, i.e. the first aspect of CE. Unlike other CT frameworks, Brennan
and Resnick go beyond this and introduce perspectives as a set of skills leading
to "a shift in the understanding of oneself or the world" similar to the more
reflective second and third aspects of CE. As an example, to assess students
working with Scratch (so called Scratchers) against these concepts, Brennan and
Resnick propose three approaches; project analysis, artefact-based interviews, and
design scenarios. They find, that while the three approaches are able to effectively
assess the students’ knowledge and use of computational concepts and practices,
they are not effective at evaluating perspectives, and it seems they struggle in
defining exactly what role perspectives should play in CT.

To summarize, both Iversen, Smith, and Dindler [107] and Kinnula and Iivari
[123] have quite broad understandings of CE related to the wider implications of
digital technology, but represent a more narrow conception related to technology
development, whereas the more CT-oriented perspectives have vague conceptions
relating to the wider implications of digital technology but quite rich conceptions
relating to the creation of digital technology. But none of these conceptions of
CE have notions of progression. We argue that in order to move towards a model
for learning goals and progression for computational empowerment, CE and CT
approaches should be brought together, but also be complemented with notions
regarding progression in learning activities.

D.2.2 Characterising Progression in Learning
Activities

A key challenge in teaching computational thinking is supporting progression of
knowledge [58], and even more so in computational empowerment. A learning
progression is a sequence of subskills that needs to be mastered to reach a curricular
aim [181], and is characterised by starting with something simple and moving
on to something more advanced, applying the knowledge in new ways. Learning
is an individual activity: each of us learns at a different pace and has different
cognitive abilities [235]. Thus, progression can be hard to measure, as it includes
both cognitive and more observable processes. In mathematics, progression
is characterised by learning one new concept while building on understanding
the previous concept [235]. However, we do not yet know much about what
characterises the development from basic to complex forms of many of the 21st
century skills such as computational thinking [122], and even less so CE. Thus,
we do not yet have a model of best practice for how to guide teachers in what to
expect from learners at different levels of skill, and how they can make progress.

We see a shift in what learners need in order to fulfil their potential, from the
previous focus on knowledge, skills, and competencies [172] to a focus on knowledge,
skills, attitudes, and values, meaning encompassing not only knowing and doing,
but also becoming [9, 10, 166]. Attitudes and values are an acknowledgement that
competencies are more than knowledge and skills. They refer to the principles
and beliefs that influence one’s choices, judgements, behaviours, and actions in
regards to the individual, society, and environment. This is aligned with the
thinking behind computational empowerment, where perspectives on one’s own
life and on society are vital aspects, and where critical thinking is a major driver.

Hattie raises attention to the need for setting challenging learning intentions,
being clear about what success means, and an attention to learning strategies
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for developing conceptual understanding about what teachers and students know
and understand [87]. However, in defining and analysing the goals of a specific
activity, a general structural framework for evaluating learning outcomes can be
useful as it enables us to compare learning goals between different subject areas
and learning activities. One taxonomy based on the outcome of teaching is the
Structure of the Observed Learning Outcome (SOLO) [17]. The SOLO Taxonomy
is a five-tier hierarchical framework for structuring learning outcomes. “SOLO
describes a hierarchy where each partial construction [level] becomes a foundation
on which further learning is built” [17, p.41].

The SOLO taxonomy differs from, e.g., the BLOOM taxonomy in being based
on observable outcomes rather than internal cognitive processes [17, 24]. The
goals of the SOLO taxonomy include providing a tool for defining curriculum
objectives, intended learning outcomes, and evaluating learning outcomes based
on these objectives [17]. The SOLO taxonomy can be used to identify and describe
what learners are doing, explain how well it is going and predict what they should
do next [94]. Progression can be defined as moving up in SOLO levels, from
pre-structural, to uni-structural, multi-structural, relational, and up to extended
abstract level as the highest level. The first two levels refer to developing surface
knowing and the latter two levels refer to developing deeper knowing. Surface
learning refers to studying without much reflecting on either purpose or strategy,
learning many ideas without necessarily relating them and memorising facts
and procedures routinely. Deep learning refers to seeking meaning, relating and
extending ideas, looking for patterns and underlying principles, checking evidence
and relating it to conclusions, examining arguments cautiously and critically, and
becoming actively interested in course content [89].

Each level in the SOLO taxonomy is represented by a number of verbs that can
be used to formulate learning goals. For instance Multistructural is illustrated by
Combine, Describe, Enumerate, Perform serial skills, list, and Extended abstract
is illustrated by Reflect, Evaluate, Theorize, Hypothesize, Generalize, Predict,
Create, Imagine. The SOLO taxonomy offers a hierarchical and linear structure
and offers a good measure for describing progression in student competence, and
is not specific to a certain subject or context.

SOLO offers a powerful model to illustrate the distinction between surface
and deep in the structure of observed learning outcomes [89], it can guide in
clarifying what success means [87], it can be used in assessment tools for teaching
and learning [88], but most importantly, SOLO can be used to create a common
language of learning in any curriculum area, and to help students of any age
adopt a growth mindset when learning [94].

D.3 Towards a model of CE Learning Goals

Through a theoretical grounding based in computational thinking and computa-
tional empowerment, we present an early model of progression in CE, where we
seek to integrate aspects of CE with slightly wider conceptualisations regarding
the development of digital technology, using the common language of learning from
the SOLO taxonomy, see Figure D.1. As a starting point, we look to the three
aspects of CE as presented by Iversen, Smith, and Dindler [107]. “1) engaging cre-
atively in technology development, 2) understanding the role of digital technology
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Figure D.1: Our Computational Empowerment model

in society, and 3) reflectively and critically understanding the role of technology
in one’s own life.” As argued above, these overlap with the three categories of
CT skills presented by Brennan and Resnick [33]“1) computational concepts, 2)
computational practices 3) computational perspectives” but the emphasise different
aspects. To better cover the aspects presented by Iversen, Smith, and Dindler, we
propose to expand the categories by Brennan and Resnick to four: Computational
Concepts, Computational Practices, Computational Perspectives in One’s Own
Life, and Computational Perspectives in Society.

These categories allow for a more detailed classification of technical knowledge
and skills than the original aspects of CE, as well as a finer grained understanding
of the attitudes and values associated with being computationally empowered
and taking a critical stance towards technology than allowed by the framework
of Brennan and Resnick [33].

Having identified four categories to make distinctions between CE skills, we
also need a distinction between different levels of progression in these skills. We
have chosen to use the SOLO taxonomy as a common language [17], as it is a widely
used tool, which provides educators with common ground for formulating learning
goals that can be compared across subjects [236]. However, we acknowledge that
there are other taxonomies that could be used as a common language, such as
e.g. the BLOOMs taxonmy [24], and we are aware of that the SOLO taxonomy
has been criticised for being simplistic and reductionist [116, 236]. Still, SOLO is
a powerful tool [89], which provides an established and a common language for
articulating and discussing learning goals [94], and that has been applied to many
different school subjects from poetry and history [18] to science [44] and math [88],
but to the best of our knowledge never before to computational empowerment.
This research provides a first exploration of the use of the SOLO taxonomy in
the context of CE.

By combining the four categories of CE skills and the levels of competency
described in the SOLO taxonomy, we arrive at an emerging model of progression
in CE, as seen in Figure D.1. We propose this model as a common language for
discussing and comparing CE projects, for developing and determining learning
goals in new CE projects, and for establishing coherent CE research programmes.
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D.4 Method

To answer the research question on what characterises progression in computa-
tional empowerment, we have combined related work in computational thinking,
computational empowerment, and progression in learning, in order to develop an
initial model, as described in the above section. In order to validate the model
and investigate its applicability, we have further applied the model in the analysis
of four research projects from a larger project portfolio at our university research
centre [57]. The projects have in common that they relate to and/or focus on
computational empowerment in children and young people.

The study consists of interviews with leading researchers for each project,
while deploying the model to position and reflect upon each project. The four
projects were included in order to represent a diversity of CE perspectives. The
projects range from high school teacher training to primary school children in
special needs education. For an overview of participants, see Table D.1.

The project FabLab@School.dk is aimed at empowering primary school students
by engaging them in creating and imagining with technology so that they can
critically discuss their role in society. In the Computational Thinking in Math and
Science (CTiMNAT) project, high-school teachers are trained to ensure that their
students work with a particular phenomenon related to their subject both in itself
and through code. In Computational Thinking in Humanities, Arts and Social
Sciences (MCTIG), a number of code based teaching activities are co-designed
with high school teachers. Finally, the Collaborative Information Technology in
special Education (CITE) project focus on children in special education, and aims
to make the children reflect on their own educational tools, and also that they
can have a say in the development of digital tools used in their education.

D.4.1 Data Collection and Analysis

One of the authors interviewed the leading researchers in each project. The
interviews consisted of two parts: The first part of the interview was a semi-
structured interview to understand the project activities, and to discuss the main
purpose of the project, and how it relates to CE. In the second part of each
interview, the interviewer collaborated with the respondents to fill in the learning
goals from the project in the CE model. Each interview lasted for around one
hour and took place in the respondents’ offices. Some of the interviews were
conducted in the researchers native language and translated, some were conducted
in English. All the interviews were recorded and later transcribed.

For the analysis, we first analysed data from interviews for how the projects and
their learning goals were positioned in relation to CE.We then mapped the learning
goals of the project activities in relation to concepts, practices, perspectives in
one’s own life, and perspectives in society, using the SOLO taxonomy. Two of
the researchers re-categorised and synthesised some of the learning goals based
on the description given in the interviews, according to the following principles:
Given the hierarchy of the SOLO taxonomy, some projects had intermediate goals
causally leading to a final goal, e.g., a goal of learning to download and install
some software leading to learning to use the software. For such learning goals,
only the high-level goal was included in the analysis. Additionally, some projects
included activities rather than learning goals, such as using a particular program.
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Model ProjectsTheory

Figure D.2: Overview of method, where the resulting model stem from projects
and theory, and where the model has been applied to the projects.

Project Level Participants Interview

Fablab@school Primary school
1.100 teachers
11.000 children 1 researcher (F)

CTiMNAT High school
200 teachers
4.000 children 1 researcher (F)

MCTIG High school
22 teachers
350 children 1 researcher (M)

CITE
Special education
Grade 5-6

2 teachers
2 pedagogues
8 children 2 researchers (F)

Table D.1: Overview of projects, educational level, participants and number of
people who have been interviewed.

These were also removed. Finally, several of the projects feature parallel learning
goals in a single category of computational skills. E.g., the CTiMNAT project
includes both learning the methods of a particular design model and learning to
apply knowledge of design processes in different subjects as two separate learning
goals within practices. Since these are seen as parallel learning goals on different
levels and not as causal, they were both included in the analysis.

Having analysed the four projects individually, we reflect upon blind spots,
common trends and challenges across the projects.

Finally, we articulate how the model can be used to derive general CE learning
goals at all levels for a teaching activity focused on designing with technology.

D.5 Research Projects

In this section, we present four research projects using the emerging model
presented in section D.3. For each project, we present a short project description
followed by a summary of the analysis with examples of learning goals and their
categorisation using the model.

D.5.1 #1: Fablab@School

The Fablab@School project explored the core challenges and potentials of inte-
grating digital fabrication technologies into the context of the Danish educational
system [107] . The purpose was to create a sustainable educational initiative,
and to give teachers the tools to integrate design processes and digital making
technologies into their teaching. It was carried out between 2013 and 2017 by
a small interdisciplinary research team as a collaboration between three Danish
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municipalities. The project was based on the global fablab@school project devel-
oped by the Transformative Technologies Learning Lab at Stanford University.
The experiment involved 1100 teachers and 11.000 students from different Danish
primary schools. Fablab@school sought to empower teachers as well as students,
although we for this analysis focus solely on the latter group. Regarding students,
the aim was to empower them by engaging them in creating and imagining with
technology in a way where its role in society could be critically examined. An
overview of the CE learning goals in the project can be seen in Figure D.3a.

We did not find any explicit learning goals concerning CT Concepts in the
fablab@school project. In the Practices category, the fablab@school project has
several learning goals. Among these were the students can carry out an iterative
design process on their own case and can explain and reason about their choices
in the process. Learning to conduct a process must be considered a practice, and
is Relational as it requires an understanding of the correlation between design
process model and children’s own designs. In the Perspectives in one’s own life
category, this project has the following learning goal: Students should understand
how technologies influence them in their everyday life. As it requires the students
to transfer the knowledge they have gained from working with their own case to
an application and consideration of the technology that they themselves encounter
in their own lives, this places this goal, in the SOLO taxonomy, at the Extended
abstract level. Finally, at the Perspectives in society level, the learning goal was
Students should understand how the technology they created in their process could
be integrated into society. As before, this fits with the Extended abstract category.

D.5.2 #2: Computational Thinking in Math and Science
(CTiMNAT)

This is an ongoing project working with high-school math or STEM teachers.
The teachers are trained to, by themselves, create teaching material in Agent
Based NetLogo [214] that revolves around a particular phenomenon found in the
subjects that they are teaching, and that can be used together with students. The
project is based on the Coding, Modeling & Content (CMC) approach [154] which
in turn ensures that the students work with the modelled phenomenon both in
itself and through code. At the point of writing, 67 teachers had participated in
the project. An overview of the CE learnings goals in the project, as defined for
high-school students, can be seen in Figure D.3b.

One of two learning goals in the Concepts category is that students should
be able to understand selected parts of code. This requires the students to know
certain concepts about programming and is thus categorised as concepts learning
goal. Since it requires students to know certain programming concepts and to
recognise these in code, it is placed in the Multistructural category of the SOLO
taxonomy. Another learning goal, relating to Practices is that student should be
able to make changes to the code that changes the model’s behaviour related to
subject specific terms. This learning goal is intended to let the students reflect on
knowledge gained from the subject and from that imagine how they can create
a new behaviour for the modelled based on this knowledge. This learning goal
requires the students to go through a process of experimenting with the code
and changing it. The goal describes that the students are able to carry out a
process and therefore is considered as a practice. As it requires the students to
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(a) #1: The Fablab project
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(b) #2: The CTiMNAT project
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(c) #3: The MCTIG project
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(d) #4: The CITE project

Figure D.3: The learning goals in the model applied to four research projects.

use existing knowledge to extend the model it is categorised as Extended abstract
in the SOLO taxonomy.

D.5.3 #3: Computational Thinking in Humanities, Arts
and Social Sciences (MCTIG)

This project teaches high-school teachers from the humanities, arts, and social
sciences to use NetLogo models for teaching in their subject. Through a process
of co-creation with the teachers, some teaching activities based around models
are created. Throughout the project, focus has been to adapt and adjust models,
and model-based teaching methods to the Danish high schools. Teachers are
in the Scandinavian school tradition involved in curriculum development, and
co-developing alternatives for curricular activities together with the teachers is a
necessary process in order to create new activities in a sustainable way, where
they will be used in classrooms after the project has finished. An overview of the
CE learning goals in the project as defined for high-school students, can be seen
in Figure D.3c.

The MCTIG project has two learning goals in the Practices category, one
being: Students should be able to make and justify subject-specific changes to
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the NetLogo code, that changes the behaviour of the model. After analysing and
working with a model, students apply their existing knowledge about the subject
(e.g., Social Studies) and based on this they alter the model. The learning goal is
about a process wherein the students construct code and compare the result to
subject specific theory. This is a way of working, and must be categorised as a
practice. As it requires the students to both use the model and to use existing
knowledge from the subject and apply this knowledge to changes of the model.
Through a process of hypothesis and creation, the learning goal is categorised as
Extended abstract in the SOLO taxonomy. In the Perspectives in society category,
MCTIG has the following learning goal: Students should be able to reflect on
the validity of models in society and realise that they are built on assumptions.
Students are given an agent based model by their teacher which simulates a
real phenomenon. By working with these models, students should be able to
understand the limitations of models and transfer these to other types of models
in society such as economical models or climate models. The learning goal is
categorised as Perspectives in society, since it requires the students to use the
perspectives from the teaching activity to reason about technology use in society.
This learning goal is on the Extended abstract level in the SOLO taxonomy as it
requires the students to reflect and hypothesise about new models encountered in
society based on the knowledge gained through working with a specific NetLogo
model.

D.5.4 #4: Collaborative Information Technology in
Special Education (CITE)

The project worked with one class of children from special education (seven
children) and the teaching personnel connected to the class. The purpose of the
project was to explore and develop collaborative technologies such as e.g. games
in co-design with children [57]. From a computational empowerment perspective,
the aim was help the children understand that the tools they use can impact their
learning, and that they can impact and modify games: Games are not only for
consumption, they are also something that has been designed by other people for
a purpose. An overview of the CE learnings goals in the project can be seen in
Figure D.3d.

The CITE project has one learning goal in the Perspectives in one’s own
life category: Children should understand that they can shape technology. This
learning goal describes the knowledge that the children is to have after involvement
in the project activities. It is categorised as Perspectives in one’s own life, since
it describes how the activities should shape the children’s understanding of them-
selves and technology. It is classified as Relational as it describes the children’s
relation to technology in their own life, and in order to actually have achieved this
learning goal the children would have to understand different processes in game
development and relate them to each other and their own abilities to influence
game design and affect the design of a game. In the Perspectives in society
category, CITE has the following learning goal: Children should understand that
technology is not necessarily complete, but follows an iterative process. The goal
is about shaping children’s view of what technology is, and how it affects society,
which places the goals in the Perspectives in society category. This learning goal
is Relational since it is about relating the process children have taken part in

165



PAPER D. COMPUTATIONAL EMPOWERMENT PROGRESSION MODEL

U
ni

-
st

ru
ct

ur
al

M
ul

ti
-

st
ru

ct
ur

al

R
el

at
io

na
l

E
xt

en
de

d
A

bs
tr

ac
t

Concepts #2;4 #2;3

Practices #3 #1;4 #1;2;

4

#1;2;

3

Perspectives
in one’s
own life

#4 #1

Perspectives
in society #4 #1;3

Figure D.4: Projects summarised in heatmap. Numbers refer to each project.

during the experiment with technology encountered elsewhere in society.

Together, these four projects give an indication of how current CE projects
relate to the broad goals of CE. We can see that a single project rarely encompasses
all aspects of CE, and looking at the heatmap of all projects in Figure D.4, we see
that learning goals seem to gravitate towards more advanced levels of the SOLO
taxonomy. While it is understandable that research projects aim to qualify their
work in regards to high levels of competencies in their participants, we argue,
that it might be difficult for a teacher to know how to structure intermediate
learning goals in their own teaching based on these projects. Below, we discuss
what to consider when striving to computationally empower students, and we
provide an example of how the model can support teachers and researchers in
defining subject specific learning goals for computational empowerment.

D.6 Discussion

In this paper, we have provided the first steps towards a model of progression
in Computational Empowerment (CE) in education. The model is developed by
combining aspects of computational thinking with computational empowerment,
using the structured of the SOLO taxonomy. To qualify the model, we have
analysed four research projects with a focus on educational activities and learning
goals connected to CE. Based on this analysis, we will here discuss the strengths
and weaknesses of the model, and address the research question: what characterises
progression in computational empowerment in education?

Dindler, Smith, and Iversen state that computational empowered is when
“people are empowered to autonomously and critically engage in the development
of digital artefacts” [50]. Although we do not disagree with this, we think that
there is a lack in what characterises progression in CE in order to be able to teach
and assess it.

By combining attitudes and values with knowledge and skills in line with
OECD [166], we argue that in order to be computational empowered, you need to
reach the relational and extended abstract levels as in the SOLO taxonomy [17] in
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concepts, practice, perspectives in one’s own life and perspectives in society. When
teaching for computational empowerment, you need to support the learners in
both knowing and doing, as well as in becoming [9]. This approach acknowledges
that principles and beliefs influence one’s choices, judgements, behaviours and
actions in regards to the individual, society and environment, and is vital for an
autonomous critical reflective engagement in the development of digital artefacts.

Uni-structural Multi-
structural

Relational Extended ab-
stract

C
oncepts

Students will be

able to recognise

and identify

generative concepts,

tools, methods,

and materials for

designing with

technology.

Students will be

able to list and

describe generative

concepts, tools,

methods, and mate-

rials for designing

with technology.

Students will be able

to compare and

contrast different

generative concepts,

tools, methods, and

materials for design-

ing with technology.

Students will be able

to create new tech-

nological artefacts

using generative con-

cepts, tools, meth-

ods, and materials

for designing with

technology.

P
ractices

Students will be able

to recognise and

identify procedures

for designing with

technology.

Students will be able

to perform serial

activities for de-

signing with technol-

ogy using generative

tools, methods, and

materials.

Students will be able

to integrate or an-

alyze several proce-

dures for designing

with technology.

Students will be able

to create new gener-

ative tools, methods,

and materials for de-

signing with technol-

ogy.

P
ersp./O

w
n

life

Students will be able

to recognise that

different tools, meth-

ods and materials

for designing with

technology can have

substantial impact

on their lives.

Students will be able

to list and de-

scribe possible im-

pacts on one’s own

life of different tools,

methods and mate-

rials for designing

with technology.

Students will be able

to relate to different

tools, methods and

materials for design-

ing with technology.

Students will be able

to critically reflect

on personal trade-

offs between differ-

ent tools, methods

and materials for de-

signing with technol-

ogy.
P
ersp./Society

Students will be able

to recognise that

different tools, meth-

ods and materials

for designing with

technology can have

substantial societal

impact.

Students will be able

to list and de-

scribe possible soci-

etal impact of differ-

ent tools, methods

and materials for de-

signing with technol-

ogy.

Students will be able

to relate to different

tools, methods and

materials for design-

ing with technology

on a societal level.

Students will be able

to critically reflect

on societal impact of

different tools, meth-

ods and materials

for designing with

technology.

Table D.2: Examples of learning goals in computational empowerment with a
focus on designing with technology. Persp/Life is short for Perspectives in one’s
own life, and Persp/Society is short for Perspectives in society

As presented earlier, a learning progression is a sequence of subskills that needs
to be mastered to reach a curricular aim [181], and is characterised by starting
with something simple and moving on to something more advanced, applying the
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knowledge in new ways. However, in computational empowerment, we do not yet
have a model of best practice for how to guide teachers in what to expect from
learners at different levels of skill, and how they can make progress.

Analysing the results from Figure D.4, we can see that CE relies heavily on
practices, and that CE focuses more on the higher levels of the SOLO taxonomy:
multi-structural, relational and extended abstract levels [17]. This goes in line with
that critical thinking is a major driver within CE [50], as critical thinking is an
extended abstract competence. To further inspire teachers and researchers, when
defining their subject and learner specific CE learning goals, we suggest examples
of learning goals for all competency levels of computational empowerment, here
specifically targeting designing with technology, see Table D.2. The suggested
examples of learning goals were formulated by mapping verbs from each level
in the SOLO taxonomy, to concepts, practices and perspectives deriving from
CE and CT, and serve as an illustration of how the model could be applied in
practice.

It should be noted that these learning goals in designing with technology do
not cover all aspects of CE, but rather serve as an example to illustrate and
articulate progression in accordance with the model. In order to teach CE, these
learning goals need to be complemented with other learning goals, such as e.g.
envisioning the consequences of a technology, understanding indirect and direct
stakeholders of a technology, identify and evaluate the implicit and explicit values
of a technology, reflect on the role of the designer, etc.

D.6.1 Limitations of the Model

The model has several limitations, that should be addressed in order to move
towards a deeper understanding of progression in CE. First, we found the vertical
axis to be useful. It allowed us to classify the learning goals of the research
projects in meaningful ways, that could be compared both within and between
projects. We did, however, have some issues using the horizontal axis. The
SOLO taxonomy implies that learning goals and thus learning can be divided
into four categories, which arguably is a reductionist view on learning [116]. We
witnessed this in the interviews, where it was sometimes difficult to agree on the
categories of different learning goals. There are however, also arguments for using
the SOLO Taxonomy; it is already widely used in education and is a familiar tool
for teachers [236]. Further, its simplicity allows learning goals to be formulated
precisely and in ways that make them comparable between projects and classes.
Secondly, we only included projects, for which we had access to researchers with
first-hand experience, similarly to the approach taken in [47]. We considered
including experiments from other researchers. However, from our interviews,
we found that CE learning goals for an activity is often implicit and therefore
requires first-hand access to data and researchers involved in the experiment. We
do however suggest, that other researchers interested in empowering youth and
children apply the model to their own projects.

We further acknowledge the importance of social aspects of learning, and the
need for differentiating by taking each individual’s needs, interests, and goals
into consideration, and the individual child’s ability for regulation of cognition,
socio-emotional factors and behaviour. However although such aspects are not
currently part of the suggested model, we highly encourage the teachers and
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researchers to consider such aspects when adopting the model in their own subject
and learner specific contexts.

Finally, we acknowledge that there is still no common clear-cut understanding
of what the E in CE mean. However, the proposed model can be seen as a
first step towards understanding progression in computational empowerment in
education, and hopefully make a contribution to the existing body of literature.

D.6.2 Future Work

In the previous sections we have demonstrated the model’s ability to analyse
projects and shed light on the coherence of research programmes. We see several
directions in which the model could enhance our understanding of CE in education.
The generative abilities and its usefulness to help teachers determine CE learning
goals for their teaching should be explored. Similarly, the model is a first step
towards a tool for researchers to look beyond CE learning goals of specific projects
and begin to form coherent portfolios of research projects with different focus
points. Finally, work is needed that go beyond learning goals and look toward
evaluating computational empowerment in children. We see the model as a first
step towards formulating learning goals for CE that lend themselves to being
evaluated and assessed.

D.7 Conclusion

In this paper, we have addressed the research question on what characterises
progression in computational empowerment. The contribution is an initial model
of progression in computational empowerment in education. The model has
been developed by merging aims from computational thinking with computational
empowerment, and the progression has been structured using the SOLO taxonomy.
The model has been applied in the analysis of four different research projects. To
illustrate how the model can be used to formulate learning goals, examples of
learning goals for designing with technology have been suggested. It is the hope of
the authors that this initial model of progression in computational empowerment,
as illustrated by examples of learning goals, can serve as a guide to on the one
hand teachers in what to expect from learners at different levels of competency,
and on the other hand support researchers when defining projects and research
questions. Looking forward, we invite other researchers and practitioners to
critique, revise and discuss the model.
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Abstract

In recent years AI-enabled systems have become truly pervasive in our daily lives,
but their AI components often remain difficult to comprehend and even notice.
This challenges how we design such systems. A recent paper presents Unremarkable
AI as an approach to making successful AI systems through integrating AI-based
decision support unobtrusively into professionals’ routines. This paper proposes
that designers work with a spectrum between Unremarkable and Remarkable AI
and we present the position of Remarkable AI, echoing previous discourse around
Unremarkable and Remarkable Computing. Remarkable AI entails exposing and
explaining its use of AI, as well as allowing users to interrogate and negotiate this.
Remarkable AI is based on three case studies of learning tools for AI education and,
we provide three design strategies. To contrast Unremarkable and Remarkable
AI, we redesign an unremarkable system to be remarkable. Finally, we discuss
how to determine the right level of remarkableness.

E.1 Introduction

AI systems are now a large part of most people’s everyday lives, driving tech-
nologies that we use multiple times a day such as social media, search engines,
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music and video streaming services. However, with their proliferation has followed
concerns on how AI systems are also affecting our societies negatively [164] in
ways that are opaque and difficult to understand [1, 164].

With AI’s promises of progress and concerning implications there is a tension
between designing powerful, seamless systems and making sure their users are
empowered and in control. This is reflected in the fields of computing and AI
education, which in recent years has highlighted the need for students to become
Computationally Empowered [50, 107], as well as the need to include critical
aspects of AI and its use in AI curricula [137, 216]. Further, this echoes a
long-standing debate in HCI about dichotomies and continua regarding to what
extend the inner workings and/or values of technologies should be exposed to
users. One of these discussions surrounded the notion of Remarkable [178] and
Unremarkable [215] Computing. As an approach to ubiquitous computing in the
home, Unremarkable Computing, as coined by Tolmie et al. [215, p. 404], aimed “to
make computational resources that can be unremarkably embedded into routines
and augment action”, referencing Weiser’s [229] seminal view on the computer for
the 21st century. In response, Petersen [178] suggested Remarkable Computing
as a complementary approach, arguing that as much as digital technologies are
able to support people’s routines, they are also increasingly becoming “objects
of lifestyle and identity” [178, p. 1446], and that such objects are and should be
remarkable.

In 2019, Yang, Steinfeld, and Zimmerman [238] presented an argument similar
to that of Tolmie et al., namely the notion of Unremarkable AI ; an approach to
designing AI systems, specifically for supporting clinical decision making, that
aims for them to be “subservient to the day-to-day decision-making” of their
users. They motivate this by the failure of other clinical decision support tools to
successfully be incorporated into doctors daily routines.

AI and ubiquitous computing are analogous in that they share a central tenet,
namely the “interest in building technologies that make sense and respond in a
sensible way to the complex dynamics of human environments” [133], and (as
least in regards to machine learning) a dependence on data collection and analysis.
However, this also leaves Unremarkable AI subject to similar critiques to those
delivered by Petersen to Unremarkable Computing.

In addition, concerns have been raised regarding the increasing infusion of
AI-enabled decision support systems in domains such as insurance, banking, school
administration, which largely black-boxes the underlying AI models, and leave
both the professional users as well as other stakeholders largely unaware of the
underlying assumptions and potential biases in these systems and without any
feedback loops which allows for corrections and improvements to the systems [164].
We see these as examples of potentially harmful unremarkable AI systems, which
are integrated into professional routines, largely without opportunities for pro-
fessionals or stakeholders to critically inspect and reflect about the underlying
assumptions of such systems [196]. Urged by this, and inspired by previous
unremarkable/remarkable debates, we propose the need for Remarkable AI as
a complementary perspective to Unremarkable AI [238], and aim to unfold a
continuum between these two outer points. Inspired by previous discussions
in HCI such as the seamless/seamful, invisible/visible, black-box/glass-box [93]
debates, we argue that these distinctions are useful, if not necessary, for staging a
dialogue about the underlying assumptions and values of the systems we design,
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and we argue that such a debate is particularly needed in the context of how we
design AI-enabled systems.

In this paper we explore how to determine the right level of remarkableness in
an AI-system, by presenting Remarkable AI as one end of a remarkableness-in-AI
continuum, with Unremarkable AI on the other end. Remarkable AI is focused
on making users aware that they are interacting with an AI system, exposing
what the AI system is doing, how it is doing it, and why, as well as empowering
them in reflecting and deciding on the possible consequences AI has on their lives.
Note that we use the notion of the “user” throughout the paper to refer to anyone
directly or indirectly interacting with AI systems, but are aware that the term is
contested (see e.g., [13, 191]).

Remarkable AI came to exist as we drifted [130] in our design work in AI
Education (see e.g., [19, 20, 118, 120]), based on the realization that we might
teach students how to spot an AI system in the wild and how it works (sometimes
against their interests), but providing them with the means to make changes
according to their self-interests, necessitates changes with regards to how end-user
AI-enabled systems are designed. In an effort to demystify our process leading to
Remarkable AI [243], we will detail this process below.

To qualify Remarkable AI, we look to existing approaches for designing for
reflection [196], to the field of computing education, which has a rich body of
work regarding opening up complex technologies to increase users’ agency and
reflexivity in emerging technologies such as AI [50, 107, 114], and to Participatory
Design [28, 29] for its political focus on values and power dynamics in systems
design.

Based on this, we present two high-level design sensitivities for Remarkable AI,
namely Exposing & Explaining AI and Interrogating & Negotiating the Role of AI.
We argue that these sensitivities are central, not only for learning about AI, but
also for designing Remarkable AI systems that retain users’ agency and empower
them in reflecting and acting on the possible consequences of such systems in
their lives.

To further delimit the design-space, we present three case studies based on our
own research projects [19, 119, 120], and extract three concrete strategies for design
Remarkable AI systems from them. All of these projects are in the context of AI
education, but were designed with the explicit aim of computationally empowering
students with regards to AI, and exposing different critical aspects of AI, and thus
share similar goals with Remarkable AI. Although these prototypes all feature
supervised ML, we argue that Remarkable AI is applicable to all data-driven
AI-applications, since they are based on similar high-level choices [56]. Based on
this analysis, we present three concrete design strategies; 1) Foregrounding the
ML Process to Expose AI Components, 2) Iterative & Safe Experimentation to
Explain AI, 3) Facilitating Discussions and Reconfiguration to allow Interrogation
and Negotiation.

The remainder of the paper is structured as follows; first, we present related
works on the history and usefulness of discussions around dichotomies and continua
in HCI, as well as approaches to designing for reflection. Second, we present
Remarkable AI as a design approach to AI systems that aim to expose their inner
workings to their users, including how our own work in AI education lead to
this framing of AI systems design. Next, we analyse three of our own research
projects, and present the three design strategies. To further aid designers, we
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apply these strategies in a redesign of the clinical decision support tool presented
by Yang, Steinfeld, and Zimmerman [238]. Finally, we discuss the need for
considering remarkableness in AI systems design, how to determine the right
level of remarkableness, as well as our method for delimiting the Remarkable AI
design-space and the limitations of Remarkable AI.

E.2 Background

The HCI community has a rich history of using dichotomies and continua to
discuss and inform the design of interactive technologies and the field as a whole.
An early example of this can be seen in the heated but seminal discussion between
Newell and Card [155, 156], and Carroll and Campbell [40] about how methodically
strict the use of psychology in HCI research aught to be.

Another central tension is the dichotomy of seamful/seamless design of ubiq-
uitous systems. This idea originated from Weiser [229]’s vision of “The Computer
for the 21st Century”; a vision in which computers weaved ubiquitously into our
work lives. This lead to a push for designing seamless technologies [42]. However,
aiming for seamlessness risks “sacrificing the richness of each tool in order to obtain
bland compatibility” [42]. Weiser himself later qualified the notion of seamless-
ness by arguing for seamful design [228], which ”emphasizes configurability, user
appropriation, and revelation of complexity, ambiguity, or inconsistency“ [102].
25 years later, Inman and Ribes [102] reviewed the research that sprung from
these notions and found that they should not be treated as opposites but instead
as complementary, each appropriate for different use cases and contexts.

Similarly, we see Remarkable AI as complementary to Unremarkable AI [238].
Remarkable AI is appropriate in contexts where reflexivity on the use of AI is
necessary and where Unremarkable AI might lead to skewed power dynamics
between stakeholders or loss of agency of users, although Unremarkable AI might
not always lead to this (and Remarkable AI is deemed to bring its own issues in
certain cases).

To inform Remarkable AI we look to approaches to designing for reflexivity.
Sengers et al. [196]’s Reflective Design is an influential approach, drawing on
several other traditions within HCI and Design such as critical and speculative
design [4, 54], and reflection-in-action [195], to present a comprehensive approach
to designing technologies for critical reflection. They argue that “for those con-
cerned about the social implications of the technologies we build, reflection
itself should be a core technology design outcome for HCI” (emphasis in
the original). They propose that designing for critical reflection entails exposing
otherwise hidden aspects and making these “available for conscious choice”. To
demonstrate their approach, they present two case studies embodying Reflective
Design.

We agree with the goals of Reflective Design, but argue that its scope is not
adequate for dealing with emerging technologies such as AI; since AI can be too
complex for end-users to immediately grasp, providing opportunities for conscious
choice is not enough. In addition, a reflexive approach to designing AI systems
should include opportunities for users to inspect and learn how the system’s
AI-component operates and what effect it has on the system, themselves and
their surroundings, and then allow users to make conscious choices regarding their
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interaction with the system.
Amershi et al. [2] suggest 18 guidelines for designing AI-infused systems “that

people can understand, trust, and can engage with effectively”. These cover initial
interaction with the system (G1: Make clear what the system can do, G2: Make
clear how well the system can do what it can do), during interaction (e.g., G5:
Match relevant social norms, and G6: Mitigate social biases), when something
goes wrong (e.g., G8: Support efficient dismissal, and G11: Make clear why
the system did what it did), and interaction over time (e.g., G16: Convey the
consequences of user actions, and G18: Notify users about changes). However, as
mentioned by Amershi et al. themselves, “an AI system may adhere to each of
these guidelines and yet impact people’s lives or livelihoods in a consequential
manner”. Remarkable AI thus can be seen as a complement to these guidelines
that aim to empower users with regards to such impacts.

Another approach to helping users understand how AI systems work is everyday
algorithm auditing as suggested by Shen et al. [198]. Algorithm auditing is an
umbrella term used for describing methods of uncovering issues in AI systems [148,
190], and everyday algorithm auditing specifically is a method that relies on
everyday, situated users of AI systems reporting on their lived experiences with
AI systems and the issues that might arise during use. Shen et al. suggest that
compared to more systematic and centralized ways of auditing, everyday auditing
promises to uncover issues specific to different, often marginalized user groups
that might be overlooked if auditing in centrally controlled. Because everyday
auditing relies on the collective actions of several users, the approach also “require
less algorithmic expertise on the part of those organizing and enacting the audit”.
However, some knowledge, and not least interest, is still required by users, and
importantly, the systems to be audited require that systems, at least to some
degree, expose their AI component for users to uncover possible issues.

The aim of designing systems to expose their AI components has in recent years
spawned a community around Explainable AI (xAI). xAI addresses how to ensure
that models in AI systems become more explainable (see [1, 78]), by producing
explanations alongside model predictions in order to foster an understanding
of their behavior [146]. However, xAI often fails to consider the needs of non-
expert end-users [147], or the different needs of different users, and its focus on
explainability mostly does not extend beyond model predictions to include the
process by which models come to be. In order to empower end-users of AI systems,
explanations of the entire process should be presented [20, 56].

This notion of exposing the entire AI process has been a focus in recent
research on teaching AI. Bilstrup et al. [20] systematically reviewed research on
learning tools for teaching machine learning (ML) and found that most tools
focus on the beginning and end of the process and only a few tools address
the inner processes, such as data representation, and choice of model type, and
learning algorithm. Similarly, Long and Magerko [137] argue that one of the core
competencies for navigating a world “in which AI transforms the way that we
communicate, work, and live with each other and with machines” is understanding
each step in the process of creating ML models. More broadly, Computational
Empowerment [50, 107] is an approach to designing learning experiences for
children that aim to empower them “to make critical and informed decisions about
the role of technology in their lives”. Dindler, Smith, and Iversen [50] argue that
there are two main ways of engaging with technology when trying to understand
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it, namely through coding (i.e., constructing, making, etc.) and through decoding
(i.e., observing, analyzing, etc.).

Computational Empowerment was born from the marriage of Computing
Education and Participatory Design (PD), and we find that PD too has an
important role to play in formulating Remarkable AI. Since its beginning more
that 50 years ago, PD has been occupied with involving users in design decisions
about the use of technology in their work [28, 29, 161] and, later, everyday [26,
177] lives. Remarkable AI is inspired by PD’s rich catalog of methods for including
users in the design process and for allowing them to negotiate technology’s role
in their lives.

E.3 Remarkable AI

Remarkable AI aims to make the AI component of such systems present for their
users in order to expose and explain their inner workings, and empower users to
interrogate and negotiate the role of AI in these systems and its effect on their
lives.

In the education field, a major issue is what happens when students leave the
classroom. We might succeed in AI Education in our quest for Computational
Empowerment [50, 107], but if everyday AI-enabled applications do not follow,
our victory might not be as impactful as we wish it to be: “Freedom and morality
are meaningless unless they are to be enjoyed among people who are free and moral.
Hence, the ethics of the individuals in the AI world is influenced by the architects
of the ecosystem within which they enact...” [212, p. 225]. It was this realization
that led us to consider remarkableness as a frame, that can, and should, inform
AI systems design, and which fostered a drift from AI Education to end-user
design. We find it imperative that designers of AI-enabled systems heed the calls
to consider aspects of fairness, accountability and transparency in such systems,
and that they design their systems with an appropriate level of remarkableness at
the right time.

In order to do so, the AI component of such systems must first be made
perceivable to users, since things that we cannot perceive, cannot become present
in our lives. In Unremarkable Computing, this is addressed through routines; “ar-
tifacts that are implicated in routines can be perceptually available yet practically
invisible in use” [215]. In other words, in Unremarkable Computing the apparent
perceptibility of an artifact does not matter; what is important is its perceptibility
in use. Presence in Unremarkable AI [238] plays a somewhat more sophisticated
role. Yang, Steinfeld, and Zimmerman [238] argue that while Unremarkable AI
should not usually interfere with users’ routines, it should be “present enough
to slow decision making down” when the prediction is at odds with the users’
assumptions.

As a response to Unremarkable Computing, Petersen [178] points out, that no
interactive technology is inherently invisible in use; it must first be appropriated
and learned, before it can fade to the background. However, as the proliferation
of AI systems has shown us, that can no longer be said to be true. Surely, the
front-end of an interactive system is not inherently invisible, but the back-end
might be, and this is where AI is most-often situated. Unremarkable AI does in
fact highlight that a prediction is being made [238, Fig. 1], but its aim of not

176



PAPER E. REMARKABLE AI

interfering with users’ routines means that this might be ignored. Remarkable AI
complements this approach by aiming for reflection and empowerment.

This leaves two opportunities for AI to become present for the users of systems
that integrate it. First, we might teach users how to tell if an AI system is being
deployed behind the scenes and to understand what it is doing, and why. This is
the approach taken in computing education research (e.g., [20, 53, 137]). While we
agree that this step is necessary to prepare coming (and current) generations for a
future in which AI will play an increasing role, if everyday technology exclusively
integrates AI in unremarkable ways, users might be left with little power of the
their use of such technologies, apart from outright not using them.

Second, designers of AI systems can design their products in ways that exposes
and explains their AI components, and allow users to interrogate and negotiate the
role of AI in the system, as well as its effects. Below, we expand how Remarkable
AI aims to support designers in doing so, by looking to research in computing
education on teaching AI, since this community has produced several examples of
exposing and explaining AI systems through use. Obviously, these approaches are
presented in the context of learning, but as we will show, they contain important
lessons to be learned for designing end-user systems. Additionally, xAI plays a
role in providing explanations about how AI systems produce predictions, and
is an aspect to consider when designing Remarkable AI system, but as argued
above, it often does not cover the entire process and thus is not itself enough.

In the following, we present two high-level design sensitivities derived from the
literature, and argue why designers should pay attention to these when designing
AI systems to be remarkable.

E.3.1 Learning through Use: Exposing & Explaining AI

In Petersen [178]’s Remarkable Computing a central aspect that sets it apart
from its Unremarkable counterpart is the notion of Learning through use; that
appropriating and learning to use a technology is an inherent trait that should be
designed for. Remarkable AI extends this notion, and argues that to understand
the potential impacts of an AI system some level of understanding of its inner
components is necessary, and that this should be designed for, by exposing and
offering explanations of these components through use.

The notion of coding from Computational Empowerment [50] is particularly
useful here. For example, consider how we typically interact with a search engine:
We enter a search query (most likely in our web-browsers’ search bar, i.e. not
on the web site of the search engine), scroll through the results of the query and
click any link that sparks our interest. If we instead try to code (in the broadest
of meanings) our own, we are forced to pay attention to how they work behind
the scenes; how queries are interpreted, how web-sites are crawled and indexed to
become available for searching and, crucially, how results are ordered using AI,
and which data are collected about the users. Coding then makes us look at and
understand technology in a new light.

This is not to suggest, that AI systems should require users to code them
from scratch, but if aiming to be remarkable they should provide users with
opportunities to dive below their front-end, to change and customize system
parametres and to observe the effect this has on the outcome in a safe environment.
This approach is similar to the notion of infrastructuring [180, 206], but focuses on
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exposition and explanation rather than appropriation. Exposition and explanation
is, however, not enough since it does not necessarily provoke reflection on the
wider implications of a system’s use of AI.

E.3.2 Interrogating and Negotiating the Role of AI

Therefore, the second aspect of a Remarkable AI system is providing opportunities
for users to interrogate and negotiate the role AI plays in the system and how
this affects its stakeholders and context of use.

Again, Computational Empowerment provides a useful notion, namely decoding.
Here, technologies are analyzed in depth with regards to their purpose, the values
they imbue and their potential and current impact. Drawing on this, we suggest
that systems designers should incorporate ways of decoding their use of AI with
regards to, e.g., what values guide how data was collected, analyzed, and used
in the system, what its criteria of success are, but also which stakeholders are
involved/implicated in which aspects of the system, who has control over how the
system’s predictions are used, etc.

We are also inspired by Reflective Design [196], which provides several design
principles for fostering reflections in end-users. It argues, that reflective designs
should support users in reflecting on their own lives, by e.g., “offering users
new ways of experiencing and reflecting on their activities” and “to offer up new
choices that may not have been in the user’s awareness”. Further, they argue,
that “technology should support skepticism about and reinterpretation of its
own working”. Users should be the ultimate authority on the activities they
are performing with the system and systems should be designed to encourage
reflection on this and to allow users to reject using the system, if they disagree
with its values and/or purposes.

Finally, Remarkable AI argues that users should be involved in negotiating
the values and power dynamics built into the system. Here we look to PD for its
efforts of doing so, more broadly, in the design of interactive technologies. In their
paper on the future of PD, Bødker and Kyng [30] called for visions of approaches
to “escape the iron grip of the big corporations” with regards to their, now all
the more so, ubiquitous use of data and AI with no opportunity for users to
intervene. Remarkable AI is an attempt to provide designers with an approach for
developing AI systems that utilize AI’s numerous promises while aiming to avoid
its many pitfalls by, among other things, drawing on PD methods for inviting
users into the engine room and and negotiating how the use of AI plays out.

Remarkable AI aims to guide designers to design systems that expose and
explain their AI components and invite users to interrogate and negotiate AI’s
role in their lives. It proposes doing so by allowing users to dive below a system’s
front-end to alter and experiments with it’s configuration and ultimately the
results of it’s AI component, and by offering up opportunities for users to reflect
and act on the values, stakeholders and purposes of the system. Below, we present
three use cases from AI Education, which we have designed with similar aims, and
discuss how the lessons learned in each case can inform the design of Remarkable
AI systems.
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E.4 Case Studies

In the previous sections we motivated the need for considering the spectrum
between Remarkable AI and Unremarkable AI. In this section, we will analyse
three studies from our own research to qualify and demonstrate how Remarkable
AI can be designed for. These case studies all stem from the Education field, and
are learning technologies designed to expose the inner workings of ML and trigger
reflections in students using them. Indeed it is our experiences from these projects
that led to our drift towards end-user design, and in turn the cases share similar
goals with Remarkable AI, although their designs are particular to Education.

We chose this method as an experimental way of qualifying the problem-space
of designing for Remarkable AI. By drawing on the different-yet-similar problem-
space of AI Education, we highlight the similarities and differences between the
contexts, with the aim of offering a delimination of the boundaries of Remarkable
AI, and proposing concrete design strategies to designers when dealing with the
remarkableness of their AI systems.

To analyse the cases, the first author (who was involved in designing all three
cases) used the two design sensitivities above as themes, deductively analyzing
the cases with regards to how they address these. Based on this analysis, the
same author then compiled a set of design strategies, which were then discussed
and refined in collaboration with two other authors, who were also involved in
the research projects.

E.4.1 VotestratesML

VotestratesML (VML) [119] is a collaborative learning tool for exploring ML
and its use in democratic elections (see Figure E.1) for use in a social studies
classroom. Students collaborate on building ML models for predicting voter
behavior using data collected about the 2015 <Anonymized> general election.
VML was designed to allow students to interrogate the impact ML is already
having on our societies. The tool exposes how machine learning is used to predict
the behavior of voters, and allows students to discuss different ways of using
it in political campaigns. VML does not explicitly explain how each of its AI
components work, but instead allow students to iteratively explore AI concepts
such test and training data, different model types, etc., and the system is designed
such that it can never be wrongly configured.

In terms of designing for Remarkable AI, we take notice of how VML was
explicitly designed to make societal impacts remarkable by framing ML as a
political tool rather than a computational tool, and by highlighting the similarities
between the tool and real world applications. Further, VML aims to foster free
exploration by never allowing students to bring it to a faulty state and get stuck.

E.4.2 The Machine Learning Machine

The machine learning machine (MLM) [120] was designed to make every (sim-
plified) step of the process of creating a ML model explicit and physical (see
Figure E.2). Students draw sketches on A5 paper and “feed” it to a Trainer -
machine, that digitizes the sketch and trains a model on the sketches its fed.
After training a model, students can move their physical model-artifact to an
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a)a) b)b)

Figure E.1: To the left: A screenshot of the VML interface, to the right: students
using VML during the in classroom study.

Figure E.2: Images from the MLM pilot study. A) Users drawing circles to create
a data set. B) Users training a model using the Trainer-machine. C) Users testing
their model using the Evaluator-machine.

Evaluator -machine that lets them use their model to recognize newly drawn
sketches. By moving data creation, analysis, training and evaluation into the
physical world, students are invited to explore the process and make on-the-fly
hypotheses about the system they are creating.

In terms of designing for Remarkable AI, from MLM we take notice of how the
entire process from data collection to the use of the model is exposed to students,
and how this allows users of the MLM to systematically explore each element in
said process and what effect it has on the next step. Further, while the MLM
does not explicitly explain what happens in each step, it allows students to iterate
on their models, come up with explanations for what happens and then test these
out by strategically trying to improve their system through re-training the model.

E.4.3 ML Ethics Workshop

Finally, we take a look at a ML ethics workshop (see Figure E.3) designed to
engage students without prior knowledge of ML in discussions on concrete ethical
issues, by scaffolding them in designing a pseudo-functional ML-system using
different types of cards and templates to guide their design [19]. This activity is
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Figure E.3: Students designing a ML system using the Ethics workshop materials

initiated by a design brief provided by the teacher, e.g. to design an AI-enhanced
mobile app to combat loneliness in adolescents. Next, students are handed a set of
data cards that they are asked to discuss. These cards describe different categories
of data that might be used in a ML model such as “health” or “smart home”. After
openly discussing the data cards, students ideate on the design brief and pick an
idea to work on. Subsequently, students describe their envisioned system design
using a paper template and selecting relevant data cards and describing specific
instances in the broader categories. Once they have described a system, students
are handed a single ethics card selected by their teacher, that describes an ethical
issue relevant to their idea, e.g., “Privacy — is the system violating the privacy
of you and your users? How?”. Next, they are asked to discuss and redesign
their system based on concrete issues they identify through their discussion of the
ethics card. Finally, students present their system and discussion to each other,
and a shared discussion is had it the classroom of each project.

In terms of designing for Remarkable AI, of notice here is how the workshop
is able to engage participants in interrogating and negotiating the impact of an
AI system of their own design, even though they have little to no prior knowledge
of AI or ML. Additionally, the specific design brief in the workshop was chosen
due to its close relation to students’ own lives. This was done to better allow
students to relate to the issues they find during their discussions.

E.5 Design Strategies for Remarkable AI

Above, we have presented two design sensitivities for Remarkable AI, namely
designing to expose and explain AI and to interrogate and negotiate its role in
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our lives and in society. While the three cases have been designed for educational
purposes, we have found three design strategies for designing end-user systems
that can be extracted from them. Where the design sensitivities are high-level
sensitivities to discuss and consider in a design process, these design strategies are
concrete suggestions to designing for the sensitivities. Note that while the three
strategies presented below are what we have been able to extract from our case
studies, different and complementary strategies might be extracted from looking
at other work.

E.5.1 Foregrounding the ML Process to Expose AI
Components

The first strategy that is deployed across these systems, is to foreground the
ML process in a structured way, as to expose different components that go into
creating an AI system. With the MLM, students create their own data, manually
load it into the model and then manually test the resulting output. VML opts
instead to use fixed real-world data, but allows students to explore the data, select
what data they want to include, and further to experiment with different model
types and their configuration. While students do not create a functional ML
system in the ethics workshop, they are asked to consider what data is relevant
to their system and which predictions or inferences it makes.

By foreground the ML process to users of AI systems, they first and foremost
are made aware that a computer is making decisions that impact their use of it
or the decisions they make based on their interactions with it. While they might
not understand each step in the process, it is at least apparent to them. We see
this as the first step towards users being able to call the system and/or its use
into question.

E.5.2 Iterative & Safe Experimentation to Explain AI

To aid students in understanding AI, several of the cases above allow experi-
mentation without the any risk of getting stuck. VotestratesML is designed to
allow students to iteratively try any combination of data, models type, and model
parameters and the interface adapts to provide feedback to students regarding
which choices are valid given their current configuration. Similarly, MLM allows
users to iterate on their model to improve it. Here, users can take advantage of the
physical data points by spreading them out and looking at their similarities and
differences to make hypotheses about what inferences the model is making, and
then test their hypotheses by strategically making new data-points and testing or
training their data on these.

For end-user systems, it might not always be appropriate to allow users to
experiment freely with their AI components, but systems could allow their users
to do so in a sandbox environment without affecting the actual system. This
would allow users to get a sense of what happens to (their) data in the system,
and how different choices made by its developers or maintainers affect them. This
functionality could be further expanded by the inclusion of xAI functionality,
although this was not the case in the above systems.
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E.5.3 Facilitating Discussions and Reconfiguration to
allow Interrogation and Negotiation

Finally, to scaffold students in negotiating the use of AI systems and their effect on
their lives, the systems invite for discussion and reconfiguration. An integral part of
both the Ethics workshop and VML is that the systems and ML models produced
by students are scrutinized and discussed by a wider audience. Additionally, in
the Ethics workshop, students are explicitly asked to redesign their system to
address the issues they have encountered. While this is often difficult for the
students, it highlights the trade-offs between, e.g., privacy and effectiveness made
by real-world designers and developers of AI systems.

While a completely redesign of an end-user system by the user might not
be desirable, systems could be designed to reflexively engage their users in
configuring the systems to their preference. This might entail allowing users
to choose between privacy preserving data collection or increased accuracy of
predictions, or to let users choose between models that are advanced but opaque or
simple but explainable. Further, this strategy could be deployed to design systems
where multiple stakeholders are affected by their use of AI to help them negotiate
how it’s deployed. By highlighting how these systems’ use of AI interweave with
their users’ daily lives and surroundings, users are supported in interrogating the
systems’ roles in these.

E.6 Making an Unremarkable Clinical
Decision Support Tool Remarkable

To exemplify how the Remarkable AI design strategies might be used by designers
of end-user systems, we present a redesign of the clinical decision support tool
(DST) by Yang, Steinfeld, and Zimmerman [238]. We stress that we do not
believe that this redesign would result in a better DST, rather it serves to highlight
the complementary nature of Remarkable and Unremarkable AI, as well as their
differences. A sketch of this Remarkable DST-redesign can be found in Figure E.4.

E.6.1 An Unremarkable DST System

The original unremarkable DST system by Yang, Steinfeld, and Zimmerman [238]
was designed to “not constrain clinicians’ decision making flow except when it
needs to” [238, p. 3] (emphasis in original). Decision support systems fail when
they move from labs to clinics largely because they do not meet the needs of
clinicians nor to they fit within the busy and chaotic context of clinical practice.
The system is designed to be used in patient evaluation meetings, where clinicians
meet to decide the best course of action for a patient. To ease the adoption of the
system, it automatically pulls in patient data and is able to generate slides for this
meeting with the relevant information. The output of the system’s AI component
is implemented as line chart in the top right corner of the display: ”The subtlety
was a deliberate choice toward achieving the right level of unremarkableness” [238,
p. 3]. The majority of mechanical implant decisions are textbook, and the
clinicians have very little uncertainty about what to do. This means that most of
the time, the AI system adds no value, it simply tells clinicians what they already
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Figure E.4: Sketches detailing the original and redesigned DST system
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know, and thus was designed to allow clinicians to glance over the information,
and ignore it if they agree with its assessment. Sometime there is disagreement
within a clinical team. When this happens between mid-levels (nurses, residents,
medical students) and attending physicians, the hierarchical nature of current
practice makes it hard for lower status workers to challenge higher status workers.
When the AI system suggests actions different than the high status workers, it
provides a way for lower status workers to suggest this case might need more
consideration. When there is disagreement, the unremarkable interface adds a
little bit of friction to slow decision making down. The design wants to mostly be
out of the way of the experts, but to occasionally add a little friction and slow
decisions for cases that are likely less text book. A sketch recreating the original
design can be seen at the top of Figure E.4

E.6.2 Foregrounding the ML Process

A DST designed for Remarkable AI, might expose the ML process by foregrounding
it in the interface. First, this would mean highlighting that the projection is
made by an AI system in the first place. Further, it might entail providing
doctors the opportunity to inspect this projection by, e.g., exploring the data-set
that the model is trained on, and what optimization-objectives it aims for. The
data-set could be visualized to provide doctors an overview of how the data is
demographically distributed and how possible imbalances in the data are dealt
with. Insights into the model’s optimization objectives could provide doctors with
information about possible shortcomings such as what margin of error is allowed
in the model’s predictions and how it balances precision versus accuracy.

E.6.3 Iterative & Safe Experimentation

Before making their decision, doctors could be provided an interface allowing
them to experiment with the input data of the model (possibly in collaboration
with the patient or other doctors) to filter or balance out different features that
might affect the model’s predictions such as skin color, age or sex, and to inspect
if and how this might change the outcome of the model. Further, doctors could
be asked to provide their own “prediction” before seeing the prediction of the AI
system. This would invite doctors to reflect on differences in the projections and
on whether and how they themselves or the system might be biased.

E.6.4 Facilitating Discussion and Reconfiguration

The original unremarkable DST is already designed to present the AI projection
as an integral part of doctors’ routines and context. This could be expanded to
include the context of the patient as well. For example, the system could ensure
that if an AI projection was considered in doctors decisions, this is reflected in
their patient records. Further, the patient should be made aware and consented
before their data is included in the further improvement of the AI system, and
perhaps even be included in discussing and (re)configuring if and how AI is used
in decisions made regarding their treatment. Some patients might object to an AI
system diagnosing them, preferring the decision be made by humans irregardless
that it might be less precise. A remarkable DST could include a patient interface,
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that allows them to monitor how doctors use its AI component or to pre-configure
their preference towards its use.

Finally, and perhaps separate to a concrete decision situation, doctors could
routinely be asked to reflect on how the inclusion of AI-driven decision support
tools changes the craft of being a medical doctor.

E.7 Discussion

As we see it, Remarkable AI and Unremarkable AI [238] are two ends of a contin-
uum, delimiting the design-space for remarkableness in AI-enabled application,
which come with each their strengths and weaknesses. To introduce the idea of this
continuum, we have drawn on previous work in HCI regarding Remarkable [178]
and Unremarkable Computing [215]. We did so to highlight how contrasting
approaches can foster constructive discussions in the HCI-community, and since
the criticisms of Unremarkable Computing by Petersen [178] are as applicable
to Unremarkable AI [238]. However, as mentioned earlier, because AI works in
the background and a user might never realize that they are using a AI-enabled
system, Remarkable AI is further reaching than its Computing counterpart.

Below, we discuss the necessity, we see, for considering remarkableness in
everyday AI-enabled applications, how to find the right level of remarkableness,
as well as our method for exploring the new design-space of remarkableness in AI
systems design and the limitations of Remarkable AI.

E.7.1 Designing a Right Level of Remarkableness

As mentioned above, we fully recognize that Remarkable AI is not a catch-all
solution for designing AI-enabled systems. Instead, we see Remarkable and
Unremarkable AI as delineating a continuum of AI systems design, in which
designers will need to ask themselves (and their users) important questions
regarding the nature of their needs and wants for a system. As much as designers
might want to support and/or augment our users’ decision-making, all systems are,
arguably, transformative in the sense that they necessarily influence users [225].

In recognizing this, an important question to raise is whether it is acceptable
for a system to do so indirectly, or to which degree users should be confronted
with and offered control over this influence. This of course depends on the
application-area and not least the values of the designer. The case of DSTs
are an interesting one, since both sides of the argument could be made; Yang,
Steinfeld, and Zimmerman [238] argue that a DST should support clinicians work-
practices and only be noticed when their predictions “add value”, in which case the
Unremarkable approach is most appropriate. However, if one begins to question
what value is added and whom decides that it’s valuable, the case is less clear
cut; the patient might not wish to have AI play a role in their decision-making,
or clinicians might wish to know more about how the DST makes its predictions,
what data these are based on, and if biases is present, before trusting it. We are
not suggesting that a remarkably designed DST would be more effective or indeed
that clinicians would be more inclined to use it (in fact the opposite might be
true), but to point out the political and ethical questions that AI-enabled systems
rise and that we believe should be addressed in any design process.
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As a helpful analogy to guide designers in finding the right level of remark-
ableness, we suggest looking at how, we use epistemology when teaching, e.g., a
history class. In early grades, we teach children important events throughout our
history, but leave out how we know the details of these historic events. Later, in
an appropriate grade, we then introduce epistemology, e.g., understanding the
difference between primary, secondary, and tertiary sources, etc. To know when to
introduce these ideas, educators need to consider when students’ can be expected
to become critical thinkers, and on what level of abstraction they can be expected
to think. Similarly, designers of AI systems need to consider whether or not
the stakeholders of their systems would benefit from a remarkable design or not.
Determining a right level of remarkableness is a design choice, which designers
should engage with, and which answer should be informed by an understanding
of the system’s stakeholders, context of use, etc. Indeed, it might be the case that
a system clearly would not benefit from being remarkable and that designing it
to be so would only subtract from the value it provides (arguably, one example of
this could be ML-powered, on-device enhancement of smartphone photography).
However, we stress that the right level of remarkableness is highly contextual,
and as such designers should engage rigorously with determining it, even if the
AI system’s use-case seems inconsequential at surface-level.

While we do see Remarkable and Unremarkable AI as two end-points in a
continuum, we see no reason why they could not be combined in different parts of
a timeline and/or context of use. It might be that clinicians at first wish to inspect
the AI-component of their DST, but as they come to trust it they might be less
inclined to do so; a sort of appropriation-through-use instead of Petersen [178]’s
notion of “learning-through-use”. Or alternatively, clinicians might use this DST
in an unremarkable way, observe that it is helpful, and then feel the wish to unfold
its inner workings.

E.7.2 Method Reflection & Limitations

We find that our method of exploring the design-space of Remarkable AI through
cases from a different domain, AI Education, was helpful for understanding and
delimiting this new problem space, and we suggest that other designers, dealing
with a novel design-space might benefit from a similar process. This method is,
arguably, particularly useful for rapid exploration of the boundaries of new, and
yet-to-be defined problem-spaces. The idea is similar to methods for reviewing
and delimiting emergent design-spaces previously used in HCI [182, 219], however
it differs from these by looking forward to a yet unknown design-space, rather
that trying to characterize one that is emergent. This however, requires that
designers have intimate knowledge of and access to research projects which in
someway can inform the new design-space.

We do not intend for all AI-enabled systems to remarkable, but rather that
designers consider the remarkableness of these systems. As mentioned above, there
are systems, which would not benefit from being Remarkable; Remarkableness
adds a layer of complexity and potentially slow down decision processes. This
might be inappropriate for systems where speed is a determining factor, or where
tasks are so minute or marginal that adding this complexity would simply not
make sense. Similarly, it asks that all users have, at least to some degree, an
understanding of AI. This is of course what many in AI Education are working
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towards (e.g. [137, 216], however, we are not there yet, and might not be for quite
a while. Regarding professionals, the design of remarkable AI systems should also
go hand in hand with lifelong education for professionals, who may benefit from
insights gained from advanced analysis of data. In addition, the re-configuring
part of Remarkable AI sets demands for the availability of models and data sources
which may often not be readily available nor interchangeable.

E.7.3 Future Work

As these ideas are still new, and continuously growing, we invite other researchers
to join in maturing the idea of remarkableness in AI-enabled systems design,
and of striking the balance between unremarkable and remarkable AI. Above
we have presented both high-level design sensitivities derived from the literature
as well as concrete design strategies from our case studies. Neither of these
are comprehensive in the design-space, and our wish is to see research both
in suggesting new and/or other high-level sensitivities as well as other design
strategies. Finally, we invite other HCI researchers to utilize our design strategies
in their own work for designing Remarkable AI systems.

E.8 Conclusion

In this paper, we have highlighted the need for considering remarkableness in AI
systems design, and have detailed Remarkable AI as one end of the remarkableness
continuum, with Yang, Steinfeld, and Zimmerman [238]’s Unremarkable AI at
the other. To qualify Remarkable AI we have drawn in existing literature on
designing for reflection, computing education and to participatory design. Based
on the literature we suggest two design sensitivities for Remarkable AI systems;
Exposing & Explaining AI and Interrogating & Negotiating the Role of AI, and
through analyzing design cases from the AI education domain, we contribute
design strategies for designing remarkable AI. Finally, we emphasize that designing
the right level of remarkableness must be considered in each specific design case,
and what are suitable levels for a specific case might also change over time and
with specific user groups. Finally, we invite other researchers to join the further
exploration of the design space between unremarkable and remarkable AI.
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