
Complexity of Total Search Problems:
Equilibria and Fair Division

Kasper Høgh

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark





Complexity of Total Search Problems:
Equilibria and Fair Division

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by

Kasper Høgh
May 31, 2023





Abstract

In this thesis, we study the computational complexity of various total search problems.
A search problem being total means that for any instance of the problem a solution is
guaranteed to exist. Totality typically follows from some underlying principle, such
as the existence of a sink in a directed graph or the existence of a fixed point of a
continuous map from the unit disk to itself. One approach to studying the difficulty of
computational problems is to classify them into a hierarchy of complexity classes. In
the area of total search problems, these classes correspond to the underlying principles
guaranteeing existence of solutions.

In the first part of this thesis, we present a useful technique for proving mem-
bership in the complexity classes PPAD and FIXP, both related to Brouwer’s fixed
point theorem. Applying this tool we greatly simplify the proofs of many known
containment results, and we also manage to prove novel ones. Notably, we are able to
prove that the exact CakeCutting problem is FIXP-complete.

Secondly we study problems related to the Borsuk-Ulam theorem. Previous
work has shown that the ConsensusHalving problem is contained in the class BU,
corresponding to the aforementioned theorem, but the question of hardness remained
open. We present a hardness result for the problem of computing a strong approximate
consensus halving.

Finally, we study the EFX problem from fair division of indivisible items. In
this problem one has to divide a set of indivisible goods among a set of agents in
a fair manner. We study this problem in the case of two agents and characterize
its difficulty by identifying the classes of utility functions for which the problem is
tractable. Specifically, we give a polynomial-time algorithm that works for a large
class of utility functions, including gross substitutes and budget-additive valuations,
and we prove that the problem is PLS-hard for submodular valuations.

i





Resumé

I denne afhandling studerer vi kompleksiteten af forskellige totale søgeproblemer. Et
søgeproblem siges at være totalt hvis enhver instans af problemet har en løsning. En
sådan garanti følger ofte af et mere fundamentalt eksistensresultat: for eksempel at
enhver orienteret acyklisk graf har et dræn eller at enhver kontinuert afbildning fra
enhedskuglen til sig selv har et fikspunkt. En fremgangsmåde i projektet om at beskrive
den relative sværhedsgrad af forskellige beregningsproblemer er at klassificere disse
i et hierarki af kompleksitetsklasser. I studiet af totale søgeproblemer svarer disse
klasser til de underliggende principper, som sikrer eksistens af løsninger.

I den første del af denne afhandling præsenterer vi en ny teknik der har vist sig
nyttig i beviser for medlemskab i klasserne PPAD og FIXP, der begge er relateret
til Brouwer’s fikspunktssætning. Ved at anvende dette redskab giver vi væsentligt
enklere beviser for kendte resultater, og vi formår også at klassificere problemer hvis
kompleksitet tidligere var ukendt. Her kan for eksempel nævnes at den eksakte version
af KageDelings problemet er FIXP-fuldstændigt.

Dernæst studerer vi problemer, der relaterer sig til Borsuk-Ulams sætning. Tidligere
arbejde har placeret KonsensusHalverings problemet i klassen BU, som ikke overrask-
ende svarer til Borsuk-Ulams sætning. De lod imidlertid spørgsmålet om hårdheden af
problemet stå uløst hen. Vi præsenterer et hårdhedsresultat for problemet at beregne
en såkaldt stærk approksimation af en konsensus halvering.

Endeligt studerer vi EFX-problemet der omhandler retfærdig fordeling af udelelige
goder blandt en grupper personer. Vi studerer dette problem i tilfældet hvor der er
to personer, og vi formår at karakterisere dets sværhedsgrad i forhold til hvor kom-
plicerede agenternes nyttefunktioner er. Mere specifikt giver vi en effektiv algoritme
som beregner en EFX-allokering for en bred klasse af nyttefunktioner, og vi viser at
problemet er PLS-fuldstændigt for submodulære valuationer.

iii





Acknowledgments

First of all, I would like to thank my advisor Kristoffer Arnsfelt Hansen for sharing
his ideas with me and always being available for having discussions and answering
questions. Had it not been for him guiding me in a sensible direction, this thesis would
never have materialized.

I would also like to thank my other collaborators Aris Filos-Ratsikas, Alexandros
Hollender, and Paul Goldberg. I started working with Aris and Alex soon after starting
my PhD. The many meetings we had were a pleasure and have resulted in work
making up a large portion of this thesis. Paul and Alex also hosted me for a very
enjoyable and inspiring stay in Oxford during the spring of 2022. I would also like
to thank everyone in the algorithms group and complexity group here in Aarhus for
creating a good environment.

Finally, I thank my parents and my brother for their love and support throughout
the years.

Kasper Høgh,
Aarhus, May 31, 2023.

v





Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

I Overview 1

1 Introduction 3
1.1 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 7
2.1 Search Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Fixed Point Computation . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Consensus Halving and Borsuk-Ulam . . . . . . . . . . . . . . . . 15
2.4 Fair Division of Indivisible Items . . . . . . . . . . . . . . . . . . . 20

II Publications 27

3 FIXP-membership via Convex Optimization: Games, Cakes, and Markets 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 The OPT-gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Applications to Game Theory . . . . . . . . . . . . . . . . . . . . . 58
3.5 Applications to Cake Cutting . . . . . . . . . . . . . . . . . . . . . 66
3.6 Applications to Markets . . . . . . . . . . . . . . . . . . . . . . . . 75
3.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 87

4 PPAD-membership for Problems with Exact Rational Solutions: A
General Approach via Convex Optimization 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



viii Contents

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3 A Powerful Tool for PPAD-membership: The linear-OPT-gate . . . 115
4.4 Concave Games, Nash Equilibria and Other Equilibrium Notions . . 133
4.5 Congestion Games . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.6 Competitive Equilibria in Arrow-Debreu Markets . . . . . . . . . . 163
4.7 Pacing Equilibria in Auto-Bidding Auctions . . . . . . . . . . . . . 212
4.8 Fair Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
4.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 235

5 Strong Approximate Consensus Halving and the Borsuk-Ulam Theorem237
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
5.3 Structural Properties of FIXP . . . . . . . . . . . . . . . . . . . . . 254
5.4 Definition and Structural Properties of BU and BBU . . . . . . . . 256
5.5 Relation between ℓp−BU and ℓp−BBU . . . . . . . . . . . . . . . 263
5.6 Consensus Halving . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6 The Frontier of Intractability for EFX with Two Agents 273
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
6.3 Polynomial-time Algorithm for Weakly Well-Layered Valuations . . 278
6.4 PLS-completeness for Submodular Valuations . . . . . . . . . . . . 282

Bibliography 291



Part I

Overview

1





Chapter 1

Introduction

In Economics and Game Theory, one studies the interaction between rational agents.
A fundamental question that arises in these settings is whether the behavior of the
agents will eventually converge to some stable state. For instance, in the case of
games, one may ask if each player can pick a strategy in such a way that no player
has an incentive to deviate if given the opportunity to do so unilaterally; in the case
of markets, one may wonder if it is possible to price the available goods in such a
way that supply equals demand. Such balanced states, which the game or the market
should eventually converge toward, are known as equilibria. Several major results in
the study of Economics and Game Theory amounts to establishing the existence of
equilibria in various different settings. A common theme in the proofs of these and
many similar results is the application of general mathematical existence theorems.
For instance,

• Nash’s theorem [175] that every finite game admits an equilibrium was initially
proved by applying Kakutani’s fixed point theorem [149] (and, soon thereafter,
the simpler fixed-point theorem of Brouwer [39]).

• Arrow and Debreu [8] established the existence of an equilibrium in their market
model by applying a fixed point theorem of Debreu [68].

• Several problems in fair division, such as the problem of cutting a cake, divvying
up the rent for a shared apartment, or dividing an inheritance between two
families, can also be attacked using some of the fixed point theorems mentioned
above and others such as the Borsuk-Ulam theorem [34].

One goal of computer science is to study the inherent difficulty of interesting com-
putational problems. One strong indication that a given problem is hard is that it is
NP-complete. However, the theory of NP-completeness is phrased in terms of decision
problems: does a Boolean formula have a satisfying assignment? If a given game has
an equilibrium is not a very interesting decision problem, because we know that this
is always the case by Nash’s theorem. Of course, one can make the question more
interesting by asking if a game has an equilibrium satisfying some further conditions.

3



4 Chapter 1. Introduction

Instead we will study search variants of the questions above: given some game, com-
pute an equilibrium! In this thesis, we study the difficulty of various search problems
by placing them in appropriate complexity classes.

1.1 Outline of Thesis

In this thesis, we study various total search problems. In Part I we survey the wider
research area and describe how our results contribute to the field. Part II consists of
the following publications:

• Chapter 3

FIXP-Membership via Convex Optimization: Games, Cakes, and Markets [97]
A. Filos-Ratsikas, K. A. Hansen, K. Høgh, and A. Hollender.
62nd IEEE Symposium on Foundations of Computer Science (FOCS 2021)

• Chapter 4

PPAD-membership for Problems with Exact Rational Solutions: A General
Approach via Convex Optimization.
A. Filos-Ratsikas, K. A. Hansen, K. Høgh, and A. Hollender.
Manuscript

• Chapter 5

Strong Approximate Consensus Halving and the Borsuk-Ulam Theorem [22]
E. Batziou, K. A. Hansen, and K. Høgh.
48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021)

• Chapter 6

The Frontier of Intractability for EFX with Two Agents [130]
P. Goldberg, K. Høgh, and A. Hollender.
Manuscript

The papers are all included in a largely unedited state except for containing minor cor-
rections and changes to formatting. For the two articles that have been published, we
include the full arXiv versions. I have had a proportional impact on the development
of arguments in all of the articles. In chapter 3, I have written most of section 5 on
cake cutting and the part of section 6 about the Hylland-Zeckhauser mechanism. In
chapter 4, I wrote preliminary versions of the sections on markets. The presentation in
the current paper is slightly changed, but the proofs are essentially the same. This is
also the case for the section on pacing equilibria. In chapter 5, I wrote parts of section
4 (except subsection 4.2), and sections 5 and 6. In chapter 6, I wrote a large portion of
all sections except for the introduction.

Chapter 3 and Chapter 4 are closely related. In the former, we develop a novel
technique for proving membership results in the complexity class FIXP, originally



1.1. Outline of Thesis 5

introduced by Etessami and Yannakakis [85] in order to capture problems for which
a solution is guaranteed to exist by Brouwer’s fixed point theorem. Our main con-
tribution is the construction of a so-called pseudogate for computing solutions to,
for example, linear optimization problems. Applying this general tool, we obtain
FIXP-membership results for a wide range of problems, including the envy-free cake
cutting problem and the problem of computing an equilibrium in an Arrow-Debreu
market. In the latter chapter, we present a similar technique for proving membership
results in the class PPAD. One may view PPAD as the linear fragment LinearFIXP
of FIXP. However, the class LinearFIXP is more restrictive than FIXP, and so more
care has to be taken in the constructions. In Chapter 5, we study total search prob-
lems related to the Borsuk-Ulam theorem. The Borsuk-Ulam theorem has several
equivalent formulations. We introduce a complexity class related to one of these
formulations and show how this class relates to the computational problems related to
the other formulations studied in previous work. Further, we show that the problem of
computing a strong approximation of a solution to the Consensus Halving problem is
complete for the class BUa. In Chapter 6, we study the problem of dividing a set of
indivisible goods among identical agents such that the allocation is envy-free up to any
good (EFX). We characterize the hardness of the problem in terms of well-known val-
uation classes. In the positive direction, we introduce the class of weakly well-layered
valuation functions and present a simple greedy algorithm that solves the problem
for this class. On the other hand, we show that the problem is PLS-complete for
submodular valuations. The main technical contribution is showing that the problem
of computing a local optimum on a Kneser graph is PLS-hard.





Chapter 2

Preliminaries

In the first section of this chapter, we describe some preliminaries on search problems
common to the remaining sections in which we describe our results. The main
objectives of this chapter is to (1) present our results and put them into context, and
(2) give an intuitive overview of our arguments.

2.1 Search Problems

A search problem Π has a set of instances I given as strings over some finite alphabet
Σ. It is assumed that when confronted with some string I over Σ, one may decide
whether I is a valid instance of Σ in polynomial time in the input length |I|. Every valid
instance I has a domain DI in which one has to search for a solution. In this thesis we
consider both discrete search problems, where DI ⊆ {0,1}dI , and real-valued search
problems, where DI ⊆ R

dI . In either case, it is assumed that dI can be computed in
polynomial time in the length of the instance. We denote the set of solutions to the
instance by Sol(I) ⊆ DI . The complexity class NP consisting of decision problems
that can be solved by a polynomial-time nondeterministic Turing machine has a search
analogue called FNP. This class consists of all discrete search problems Π, where
there exists a polynomial time Turing machine that given I and w ∈ {0,1}dI checks
whether w ∈ Sol(I). In analogy with P, the class FP consists of all NP search problems
for which there exists a polynomial-time Turing machine that given an instance I
computes a solution w from Sol(I) if this set is non-empty and rejects otherwise.
Because of the self-reducibility of SAT (meaning that search reduces to decision), it
holds that P = NP if and only if FP = FNP.

In this thesis, however, we will consider total search problems exclusively, mean-
ing that Sol(I) , ∅ for any valid instance I. Such problems are typically based on
some general existence result, for instance Brouwer’s fixed point theorem or the fact
that any directed acyclic graph has a sink.

7



8 Chapter 2. Preliminaries

2.1.1 TFNP

The class TFNP, short for total function nondeterministic polynomial, consists of all
problems Π in FNP that are total, meaning that Sol(I) , ∅ for every instance I of Π.
The study of TFNP is related to the question of P versus NP. Indeed, on the one hand
TFNP contains problems that are widely believed to not be solvable in polynomial
time. For instance, because of the fundamental law of arithmetic, TFNP contains
the problem of computing prime factorizations. On the other hand, Megiddo and
Papadimitriou [170] showed that TFNP is unlikely to contain any FNP-hard problems.
Indeed, a reduction from the search version of SAT to a total NP search problem
would imply the existence of certificates of unsatisfiability for unsatisfiable Boolean
formulas, which would imply that NP = coNP.

Reductions. Let Π1 and Π2 be two TFNP problems. One says that Π1 many-one
reduces to Π2 if there exists a pair of polynomial-time computable functions f and g
such that (i) the function f : Σ∗→ Σ∗ maps any instance I of Π1 to an instance f (I) of
Π2, and (ii) the function g : Σ∗×Σ∗→ Σ∗ maps solutions y ∈ Sol( f (I)) to the instance
f (I) of Π2 to a solution g(I,y) ∈ Sol(I) to the instance I of Π1.

PPAD

Papadimitriou [182] introduced the class PPAD to capture computational problems
associated with path-following algorithms. Before providing the formal definition
of PPAD, we illustrate the underlying existence principle through a proof Sperner’s
lemma in two dimensions [204]. This result concerns triangulations of the 2-simplex
where every vertex has one of three possible labels subject to the following rules: (1)
the corners of the triangle have distinct labels, and (2) every vertex on the boundary
has a label that is different from that of the opposite corner. If a labeled triangulation
of ∆2 satisfies these properties, then there exists a fully labeled sub-triangle. For an
example of a valid labeling, see the figure below:

Figure 2.1: Proof of Sperner’s lemma.



2.1. Search Problems 9

In the figure above, we have added a number of edges between the vertex correspond-
ing to the first standard basis vector and all vertices on the red/green face. This does
not introduce new fully labeled triangles, and it amounts to assuming that there are
no vertices on the red/green face. We now initiate a walk, moving from the exterior
into the triangle via the red/green edge. If the triangle we just entered is not fully
labeled, then it must have another red/green edge. In this case, we walk through it
and continue this procedure until a fully labeled triangle is reached. Note that this
walk cannot exit the large triangle, because of the auxiliary edges we added in the
beginning. Hence, in order to argue that this procedure succeeds in finding a fully
labeled triangle, it suffices to prove that this walk does not enter a cycle. If this were
the case, consider the first triangle which is entered twice. The second time around,
we must enter through the unused edge, because otherwise this would not be the first
triangle to be entered twice. However, this would require the triangle to have three
red/green edges, which is obviously not possible. In conclusion, the described path
must reach a fully labeled triangle. We note that there are two other fully labeled
triangles in the figure above, corresponding to the source and sink of another path.

The proof above indicates that Sperner’s lemma may be thought of as a general
statement concerning graphs. Consider namely a graph that has one vertex for every
sub triangle (including the exterior one) and where there is a directed edge between
two triangles if they share a red/green edge (the direction is fixed by stipulating that
one must cross the edge while having the green vertex on one’s left). Such a graph
consists of simple paths and cycles. Importantly, the vertex corresponding to the
exterior has no incoming edge, so there exists at least one simple path, leading to the
existence of at least one sink. In analogy with the proof above, the vertices that we
wish to find are the sink of the path originating in the exterior vertex or any other
source or sink. This general structure leads to the definition of PPAD. Formally,
PPAD consists of all TFNP problems that many-one reduce to the following search
problem: End-of-Line. A valid instance I of this problem encodes two Boolean
circuits S I ,PI : {0,1}n → {0,1}n, where n is a natural number that is polynomial in
the instance size, such that PI(0n) = 0n , S (0n). These two Boolean circuits define
a directed graph where the successor and predecessor of every vertex is computed
efficiently by the circuits S I and PI . Specifically, the vertex set of the graph is {0,1}n

and (u,v) is a directed edge if and only if S I(u) = v and PI(v) = u. Note that the in-
and out-degree of every vertex is at most one. Hence, the graph consists of cycles and
simple paths. Furthermore, 0n has in-degree zero, meaning that it is a source. Hence,
if we start at vertex 0n and repeatedly apply the successor function S I , then we will
eventually end up in a sink, i.e., a vertex that has out-degree zero. This sink could
potentially be 0n itself. A solution to the instance I is a sink in this graph or a source
different from 0n, that is, Sol(I) = {x ∈ {0,1}n : PI(S I(x)) , x or S I(PI(x)) , x , 0n}. It
is clear that a candidate solution may be verified efficiently, and the problem is total
by the previous discussion. Hence, End-of-Line is a TFNP problem.

In this thesis, we will mainly be proving PPAD-membership results. Instead
of reducing to End-of-Line, it may be more convenient to reduce to some other
problem contained in PPAD. The previous discussion shows that the computational



10 Chapter 2. Preliminaries

problem associated with Sperner’s lemma is in PPAD, and it is, in fact, complete
[52, 182]. In section 2.2.1, we describe how Sperner’s lemma can be thought of as a
discrete version of Brouwer’s fixed point theorem. Using this Daskalakis et al. [67]
showed that computing an ε-Nash equilibrium is PPAD-complete for ≥ 3 players,
and Chen et al. [55] proved that computing exact Nash equilibria in bimatrix games
is PPAD-complete. Other notable results include PPAD-completeness of computing
an ε-approximate envy-free cut of a cake [76], and problems related to computing
equilibria in various different market settings [53, 56, 59, 118, 119, 220].

Polynomial Local Search (PLS)

Johnson et al. [147] introduced the class PLS to capture local search problems in
settings where local improvements, if they exist, can be computed in polynomial
time. More formally, PLS consists of all TFNP problems that reduce to certain basic
PLS problems Π. An instance I of such a basic problem is specified by a domain
DI ⊆ {0,1}p(|I|), an initial solution s0 ∈ DI that can be computed in polynomial time,
and two polynomial-time Turing machines, CI and NI , for computing the objective
value CI(x) ∈N and the neighborhood NI(x) ⊆ DI of any feasible solution x ∈ DI . It is
assumed that membership in DI can be decided in polynomial time. The solution set
of I then consists of all feasible solutions that are locally optimal. For instance, in the
case of a minimization problem, Sol(I) = {x ∈ DI : CI(x) ≤CI(y) for all y ∈ NI(x)}.

2.2 Fixed Point Computation

In this section we discuss our contributions to proving FIXP- and PPAD-membership
results as described in the papers [96, 97]. Before moving on to a discussion of these
papers and their relation to the literature, we begin this section with a description of
these complexity classes, motivated through the computational problem Nash. Both
FIXP and PPAD are related to the following well-known existence theorem:

Theorem 2.2.1 (Brouwer’s fixed point theorem [39]). Let X ⊆ Rn be a compact and
convex set. If f : X→ X is a continuous map, then there exists a point x∗ ∈ X such
that f (x∗) = x∗. We say that x∗ is a fixed point of f .

Using this theorem Nash [175] gave a proof that any finite normal form game admits
an equilibrium. In a finite normal form game Γ with n players, every player i has a
finite set of pure strategies S i = {1,2, . . . ,mi}, and for every tuple of pure strategies
( j1, . . . , jn) ∈ S 1× · · · ×S n it has a payoff ui, j1,..., jn ∈ R≥0. While there might not exist
a stable state where the players use only pure strategies, Nash proved that such a
state is guaranteed to exist if the players are allowed to play according to mixed
strategies, i.e., probability distributions over their pure strategies. In this case, the
payoff of the players is given as the expected payoff, denoted u, when the agents
play according to their mixed strategies. Let ∆(S i) = {x ∈ R

mi
≥0 :

∑mi
j=1 x j = 1} denote

the set of mixed strategies of player i, and let D =
∏n

i=1∆(S i). A tuple of mixed



2.2. Fixed Point Computation 11

strategies (x1, . . . , xn) ∈ D is an equilibrium of the game if, for every agent i, it holds
that xi ∈ argmaxx∈∆(S i) ui(x, x−i), where (x, x−i) := (x1, . . . , xi−1, x, xi+1, . . . , xn). In this
case, we say that xi is a best response to the mixed strategies of the other agents.
As mentioned previously, Nash proved that an equilibrium point is guaranteed to
exist by constructing a continuous map D→ D whose fixed points are in one-to-one
correspondence with equilibria of the game and then appealing to Brouwer’s fixed
point theorem. As we shall see soon, this proof immediately implies that the problem
of computing an exact mixed Nash equilibrium is contained in FIXP.

Nash, however, gave a considerably simpler proof for the existence of equilibria
in finite games in a previous paper of his [177]. This proof, which we describe below,
makes use of a different fixed point theorem due to Kakutani [149]. However, as we
shall see, it is not immediately clear how this proof can be converted into a FIXP-
membership result. Kakutani’s fixed point theorem, which is a generalization of that
of Brouwer, concerns correspondences X⇒ X, that is, maps X→P(X) from X to its
powerset, where X is a convex and compact subset of Euclidean space. Generally, one
says that the graph of a correspondence f : X⇒ Y is closed if {(x,y) ∈ X×Y : y ∈ f (x)}
is a closed set. We can now state the theorem:

Theorem 2.2.2 (Kakutani’s fixed point theorem [149]). Let X ⊆ Rn be a compact and
convex set. Let f : X⇒ X be a nonempty- and convex-valued correspondence whose
graph is closed. Then there exists a point x∗ ∈ X such that x∗ ∈ f (x∗).

With notation as above, Nash defined a correspondence f : D⇒ D by (x1, . . . , xn) 7→
×n

i=1 argmaxx∈∆(S i) ui(x, x−i). Note that, by definition, if x is a fixed point of f , then the
mixed strategy xi is a best response to x−i for every player i. Hence, the fixed points
of f are exactly the equilibria of the game. As argmaxx∈∆(S i) ui(x, x−i) is the set of
optimal solutions for a feasible linear program, it is easy to verify that f is nonempty-
and convex-valued. Furthermore, by continuity of the payoff functions, the graph of f
is closed. As such, Kakutani’s fixed point theorem applies to prove the existence of a
fixed point, and therefore of an equilibrium.

The main result of our papers, which we shall describe in the remainder of this
section, gives a method for converting this proof into a FIXP-membership result.
Before we get to that, however, we introduce the relevant complexity classes.

2.2.1 The classes FIXP and LinearFIXP

Etessami and Yannakakis [86] introduced the class FIXP as a class of real-valued
search problems where solutions can be realized as fixed points of suitably defined
functions. They define the class by (1) introducing a family of canonical FIXP-
problems, and (2) closing the class under a suitable type of reductions. A search
problem Π is one of these canonical, or in our terms basic, FIXP-problems if (i) for a
given instance I of Π one may in polynomial time compute a description of a linear
feasibility problem with rational coefficients defining a domain DI ⊆ R

dI and a de-
scription of a circuit CI with rational coefficients and gates from {+,−,∗,÷,max,min}
defining a continuous function FI : DI → DI , and (ii) the set of solutions of I is the



12 Chapter 2. Preliminaries

fixed points of FI , i.e., Sol(I) = {x ∈ DI : FI(x) = x}. We note that Etessami and
Yannakakis defined FIXP using a different set of gates, but they proved that the one
chosen here defines the same class.

The class is then closed under SL-reductions, that is, FIXP consists of all real-
valued search problems that SL-reduce to a basic FIXP-problem. An SL-reduction
fromΠ1 toΠ2 is a many-one reduction ( f ,g) where the solution mapping g is separable
linear. This means that for an instance I of Π1 one may compute an map of indices
π : {1, . . . ,dI} → {1, . . . ,d f (I)} and rational coefficients ai,bi such that for y ∈ Sol( f (I))
the solution mapping is given as follows: g(I,y) = x, where xi = aiyπ(i) + bi for i =
1 . . . ,dI . In particular, by choosing ai = 1 and bi = 0, it is possible to simply project
away some of the coordinates of y.

LinearFIXP. Etessami and Yannakakis [85] also considered the subclass LinearFIXP
consisting of problems that reduce to basic FIXP problems where the circuits CI are
restricted to only use gates from the set {+,max,∗ζ}. They gave the following char-
acterization: PPAD = LinearFIXP. For us, it is the inclusion from right to left which
is useful. The basic idea of this inclusion is that given some circuit computing a
continuous map F, one may use Scarf’s algorithm to find a point x∗ in the domain
such that ||F(x∗)− x∗||∞ ≤ ε for some sufficiently small ε > 0. Because F is repre-
sented by a piecewise linear circuit, one may then round x∗ to an exact fixed point
by solving a linear program. The upshot is that in order to show that a problem is in
PPAD, it suffices to produce piecewise linear circuits whose fixed points correspond
to solutions.

2.2.2 Pseudogates and optimization

Note that in the proof of Nash’s theorem via Kakutani, every agent finds a best
response by solving a linear program where the coefficients of the objective function
are parameterized by the mixed strategies of the other players. In order to convert
this proof into a FIXP-membership statement, we would therefore seemingly have
to construct an algebraic circuit computing an optimal solution to a linear program
parameterized by its input. However, this is impossible even for very simple problems.
Consider for instance the following LP parameterized by c ∈ R:

maximize cx

subject to x ∈ [0,1]
(2.1)

The optimal solution makes a discontinuous jump from being x = 0 when c < 0 to
being x = 1 when c > 0. As well-defined algebraic circuits compute continuous
functions, it is therefore impossible to construct an algebraic circuit which on input
c ∈ R computes an optimal solution to LP 2.1. Note that when c = 0, any x ∈ [0,1]
is an optimal solution. Hence, the set of optimal solutions defines a correspondence



2.2. Fixed Point Computation 13

H : R⇒ [0,1] reminiscent of the Heaviside function:

H(c) =


{0} if c < 0,
[0,1] if c = 0,
{1} if c > 0.

The realization that makes it possible for us to circumvent this problem of discon-
tinuity is the following:

Observation 1. In order to prove that problem is contained in FIXP, it suffices to
construct a well-defined algebraic circuit C whose fixed points correspond to solutions
of the problem. Hence, given that C is well-defined, one only has to reason about its
behavior in fixed points.

This observation leads us to the following central definition. Let f : Rn⇒ Rm be some
correspondence. We say that an algebraic circuit G f defining a map Rn × [0,1]ℓ →
Rm× [0,1]ℓ is a pseudogate computing f if for any x ∈ Rn, z ∈ Rm, and y ∈ [0,1]ℓ, the
following holds:

G f (x,y) = (z,y)⇒ z ∈ f (x) (2.2)

The content of this implication is that if the auxiliary y-variables are fixed then G f

correctly computes the correspondence f . Figure 2.2 below illustrates how such a
pseudogate can be used when constructing a FIXP-circuit. If at some point one has
to compute f (a), where a is some vector depending on the input x, then one simply
adds auxiliary variables y to the circuit and inserts the construction of G f . One then
uses the output z of G f in all the places where one would want to use f (a). If (x,y)
is a fixed point of the entire circuit, then one has that z ∈ f (a) by definition. One can
then use this fact to reason about the behavior of the circuit in fixed points. Finally,
because of the choice of reductions, one can project away the auxiliary variables.

x

x′

y

y′ ∗= y

a

G f

f (a)
∗
∋ z

Figure 2.2: Pseudogate.



14 Chapter 2. Preliminaries

In order to illustrate this notion, we give a construction of a pseudogate computing the
Heaviside function. Consider a map G : R× [0,1]→ R× [0,1] with one auxiliary vari-
able given by G(x,y) = (y,min{1,max{0, x+ y}}). Clearly, we may define an algebraic
circuit computing G. Furthermore, one may verify that G is a pseudogate computing
the Heaviside correspondence. Suppose that the auxiliary variable is fixed, that is,
y =min{1,max{0, x+ y}}, and note that:

• If x < 0 then x+ y < {1,y}, and so the assumption implies that y = 0.

• If x = 0, then clearly any y ∈ [0,1] is fixed.

• If x > 0 then x+ y < {0,y}, and so the assumption implies that y = 1.

In any case, it holds that y ∈ H(x). We conclude that G is a pseudogate computing
the Heaviside correspondence. This gate is instrumental in our construction of a
pseudogate for solving convex optimization problems, which we sketch below in the
case of linear programs. Suppose that we are constructing a FIXP-circuit with input x
from which we have obtained parameters A,b,c,R specifying a linear program:

maximize cT y

subject to Ay ≤ b

y ∈ [−R,R]n

(2.3)

For instance, in the case of markets, the matrix A could specify prices of goods and b
could be the budgets of the agents. To compute a solution, we add auxiliary variables
from [0,1]n and scale it to a vector x ∈ [−R,R]n. In order to check if z is feasible,
we add m auxiliary variables to compute µi := H(aT

i x−bi) using our Heaviside gate.
Subtracting

∑m
i=1µiai from x has the effect of moving x closer to the set of feasible

solutions. To ensure that an optimal solution is computed, we also add µ0c to x,
where µ0 = 1−max{µi : 1 ≤ i ≤ m}, which has the effect of increasing the objective
value. One then projects x back onto the cube z := ΠR

(
x+µ0c−

∑m
i=1µiai

)
∈ [−R,R]n

and scales it back into y′ = (z+R)/2R ∈ [0,1]n. The auxiliary variables being fixed
essentially implies that µ0c−

∑m
i=1µiai = 0, which under certain assumptions on the

feasible domain implies that z is an optimal solution.
A similar construction works for LinearFIXP. However, there is one major

obstacle which is the lack of a multiplication gate, meaning that we cannot compute
the products µ0c and µiai. For the constraints we handle this by assuming that A
is constant. This, however, would be too restrictive for the objective function, and
circumventing this problem requires more work. We refer to chapter 4 for the details.

2.2.3 Applications and comparison to previous work

Applying our pseudogate for computing optimal solutions to optimization problems,
we are able to recover, and in some cases extend, a wide array of FIXP- and PPAD-
membership results. Especially in the case of games and markets, it is clear how
to apply the OPT-gate. For instance, in the case of games, one may under certain



2.3. Consensus Halving and Borsuk-Ulam 15

conditions construct a circuit which when given a strategy profile as input computes
a best response mixed strategy for each individual player. The circuit then outputs
this tuple of best responses, ensuring that fixed points correspond to equilibria. This
construction illustrates a typical feature of applying the OPT-gate in that it essentially
mimics Nash’s original simple proof of his theorem using Kakutani’s theorem [177].

Our construction also has less obvious applications. Note that a network flow
problem may be formulated as a linear program. Note also that in the cake cutting
problem, a division of the cake is envy-free precisely if the bipartite graph with edges
between agents and preferred pieces admit a perfect matching. Using these two obser-
vations in conjunction, one may, again under various conditions, construct circuits
whose fixed points correspond to envy-free divisions of CakeCutting instances. Our
proof makes crucial use of a theorem due to Hall [134], also used by Woodall [228]
in his proof of the existence of an envy-free division of a cake.

However, there are notable limitations to our approach, especially for PPAD-
membership results. While we do recover the PPAD-membership of 2-player Nash,
this is not the case for the 3-player case. Indeed, in 3-player Nash, the coefficients
in the best-response LP for any one agent will be quadratic expressions in the mixed
strategies of the remaining agents. Hence, a Linear-FIXP-circuit cannot make the
computations required by the construction described in Section 3.3.2. This is no
accident: whereas 2-player Nash is guaranteed to have rational solutions (the input
describes a game where all the utilities are rational numbers), all solutions of a
3-player game may be irrational [175]. Instead Daskalakis et al. [67] proved that
ε-approximate n-player Nash, which is the problem of computing a strategy profile
where no player can increase his payoff by more than ε by unilaterally changing
strategy, is PPAD-complete for n ≥ 3. Similar concessions have to be made for many
problems where the existence of a rational solution is not guaranteed. An interesting
questions is whether one may construct some sort of approximate OPT-gate capturing
such problems.

2.3 Consensus Halving and Borsuk-Ulam

This section contains a description of our paper [22]. We consider the consensus
halving problem of fairly dividing a resource, modeled by the unit interval A = [0,1],
into two equally valued pieces. Specifically, each of n agents has a continuous
measure µi on A, and the goal is to partition A into two pieces A = A+⊔A− such that
µi(A+) = µi(A−) for all i. Using the Borsuk-Ulam theorem Simmons and Su [201]
proved that a consensus halving exists. Recall:

Theorem 2.3.1 (Borsuk-Ulam [34]). Let S n and Bn denote the unit sphere and unit
ball with respect to some norm p-norm, p ≥ 1. The following statements hold:

1. If F : S n→ Rn is continuous there exists x ∈ S n such that F(x) = F(−x).

2. If H : Bn→ Rn is continuous and odd on ∂Bn there exists x ∈ Bn with H(x) = 0.



16 Chapter 2. Preliminaries

More than just establishing existence of a consensus halving, their proof also shows
that only n cuts is required, dividing the resource into n+1 pieces each having a label
indicating if it belongs to A+ or A−. In their proof, it is useful to restrict our attention
to spheres with respect to the 1-norm S n

1 = {x ∈ R
n+1 :

∑n+1
i=1 |xi| = 1}. They interpret a

point x ∈ S n
1 as a partitioning of A into two parts by letting |xi| be the length and sgn(xi)

the label of the ith piece. For instance, the point x = (0.2,−0.7,0.1) corresponds to a
partitioning into the pieces A+(x) = [0,0.2)∪ [0.9,1] and A−(x) = [0.2,0.9). Observe
that −x corresponds to the same partitioning, except for the labels being reversed. That
is, A+(−x) = A−(x). Upon defining f : S n

1→ R
n by f (x) = (µ1(A+(x)), . . . ,µn(A+(x))),

one now sees that a point x satisfying the equality f (x) = f (−x) defines a consensus
halving. Indeed, if f (x) = f (−x), then it holds that µi(A+(x)) = µi(A+(−x)) = µi(A−(x))
for all i. Hence, the Borsuk-Ulam theorem applies to show the existence of a consensus
halving using only n cuts. Considering the case where agent i only has positive
measure in the interval ((i− 1)/n, i/n), i = 1, . . . ,n, one sees that there does exist
examples where n cuts are required.

As with Brouwer’s fixed point theorem having a discrete analogue in Sperner’s
lemma, the Borsuk-Ulam theorem also has an analogue known as Tucker’s lemma. The
latter gives rise to a computational problem which is complete for the complexity class
PPA contained in TFNP. Using Tucker’s lemma, one may compute an approximate
solution to the consensus halving problem where |µi(A+) − µi(A−)| ≤ ε for some
small ε > 0. Filos-Ratsikas and Goldberg [94] and Filos-Ratsikas and Goldberg [95]
proved that the problem of computing such an approximate consensus halving is a
complete problem for PPA. They also used this to show PPA-completeness of other
problems such as, for instance, the ham sandwich theorem, which can be proven by
an application of Borsuk-Ulam. Deligkas et al. [71] introduced the complexity class
BU in order to capture total real-valued search problems whose totality is guaranteed
by the Borsuk-Ulam theorem. They showed that their class contains the exact version
of the consensus halving problem CH. Inspired by the argument of Filos-Ratsikas
et al. [98] that the ε-CH problem is PPAD-hard, they also proved that CH is hard
for FIXP, but left open the question whether it is complete for BU. The main result
of our paper is that the problem of finding a strong approximate solution to the CH
problem is complete for the strong approximate version of the class BU. We describe
the meaning of this in the following subsection.

2.3.1 Borsuk-Ulam, Consensus-Halving and Strong Approximation

In this section we briefly introduce the computational classes, problems and solution
concepts central to our results. We define two complexity classes BU and BBU
corresponding to the two formulations of the Borsuk-Ulam theorem. As is the case
for FIXP, the classes are defined as consisting of all real-valued search problems that
reduce to canonical problems under some suitable choice of reduction.

Definition 2.3.1. A real-valued search problemΠ is a basic BU-problem if an instance
I describes an algebraic circuit computing a continuous map FI : S dI

1 → R
dI such that



2.3. Consensus Halving and Borsuk-Ulam 17

the solution set Sol(I) = {x ∈ S dI
1 : FI(x) = FI(−x)}. Similarly, Π is a basic BBU-

problem if an instance I describes an algebraic circuit forming a continuous map
FI : BdI

1 → R
dI that is odd on ∂BdI

1 such that Sol(I) = {x ∈ BdI
1 : FI(x) = 0}.

Before specifying our choice of reductions, let us define the computational search
problem CH of finding a consensus halving. An instance I consists of a list of
{+,−,∗,÷,max,min}-circuits C1, . . . ,Cn computing cumulative distribution functions
F1, . . . ,Fn on A. Inspired by Simmons and Su, the search space is DI = S n

1, and the
set of solutions Sol(I) consists of all x ∈ S n

1 satisfying, for every i,∑
j : x j>0

Fi(t j)−Fi(t j−1) =
∑

j : x j<0

Fi(t j)−Fi(t j−1)

where t0 = 0 and t j = t j−1 + |x j| for j = 1, . . . ,n+ 1. Because we have chosen the
domains of the basic BU-problems to be spheres with respect to the 1-norm, it is now
easy to see that CH belongs to BU by following the proof of Simmons and Su [201],
even for a very limited class of reductions. Deligkas et al. [71] defined the consensus
halving problem slightly differently. For them a solution to the CH problem is given
as a vector (t1, . . . , tk) of cuts points dividing A into pieces [ti, ti+1) of alternating labels.
Thus, because successive coordinates in a solution to the Borsuk-Ulam problem may
have equal sign, one has to be able to detect the sign of a real number when recovering
a solution to the consensus halving problem in their phrasing. As such, they allowed
for the use of a discontinuous comparison gate, which outputs 1 if its input is strictly
positive and 0 otherwise, in their solution mapping. In our phrasing, this type of gate
is not needed. Instead, we consider what we call PL-reductions. A PL-reduction from
Π to Γ is a many-one reduction ( f ,g) from Π to Γ satisfying the added property that
for any instance I of Π one may in polynomial time in |I| construct a circuit with
gates in {+,∗ζ,max} (where ζ represents rational constants) that computes the function
g(I, ·). This notion of reductions is stronger than SL-reductions used for the class
FIXP. However, it maintains the property that for any instance I of Π the solution
mapping g(I, ·) is Lipschitz continuous with a Lipschitz constant that is of polynomial
bit length in the size of I. The class BU (BBU) now consists of all real valued search
problems that PL-reduce to a basic BU (BBU) problem.

A real valued search problem Π has an associated strong approximation version
Πa. An instance of Πa consists of a pair (I, ε) where I is an instance of Π and ε > 0
is a rational number. The search space remains DI , but the set of solutions becomes
Sol(I, ε) = {x ∈ DI : ∃x∗ ∈ Sol(I), ||x− x∗||∞ ≤ ε}. We may consider Πa to be a discrete
search problem by letting the search space be given by the vertices of a sufficiently
fine triangulation of DI . Note that if Π ≤ Γ under PL-reductions then Πa ≤ Γa under
PL-reductions. Indeed, let ( f ,g) be the PL-reduction from Π to Γ. As we noted above,
for any instance I of Π, there exists a Lipschitz constant L of polynomial bit size in
|I|. Define the instance mapping from Πa to Γa by setting f̃ (I, ε) = ( f (I), ε/L) and
the solution mapping by g̃((I, ε),y) = g(I,y). Now if y ∈ Sol( f̃ (I)) = Sol( f (I), ε/L),
then there exists a y∗ ∈ Sol( f (I)) such that ||y− y∗||∞ ≤ ε/L. Because y∗ ∈ Sol( f (I)),



18 Chapter 2. Preliminaries

we have that g(I,y∗) ∈ Sol(I). Further, ||g(I,y)−g(I,y∗)|| ≤ L||y− y∗||∞ ≤ L · εL = ε. We
conclude that g(I,y) ∈ Sol(I, ε). Hence, ( f̃ , g̃) constitutes a reduction from Πa to Γa.

We may now state our main result:

Theorem 2.3.2. CHa is BUa-complete.

By the discussion above, the membership result follows immediately from the con-
tainment of CH in BU. Now, we will give a brief overview of the proof of hardness.

2.3.2 Description of the Reduction

Instead of reducing from a basic ℓ1-BUa problem, it suffices to reduce from a basic
ℓ∞-BBUa problem. The proof of this can be found in the full paper. Suppose then that
we are given an instance of an ℓ∞-BBUa problem as a circuit computing a continuous
map H : Bn

∞→ R
n that is odd on the boundary ∂Bn

∞ and an approximation parameter
ε > 0. One now has to map this to a CHa-problem whose solutions correspond to
strong approximations of zeros of H. Before delving further into the details, we give
a brief overview of the reduction:

1. Construct a consensus halving instance such that an exact solution z∗ encodes a
vector x∗ ∈ Bn

∞ such that ||H(x∗)||∞ ≤ δ for some very small δ > 0. The number
δ will be small enough that the inequality ||H(x∗)||∞ ≤ δ implies the existence
of some x∗∗ ∈ Bn

∞ such that H(x∗∗) = 0 and ||x∗− x∗∗||∞ ≤ ε/2.

2. Pick ε′ > 0 such that if some cuts z,z∗ ∈ S m
1 satisfy the inequality ||z− z∗||∞ ≤ ε′,

then the vectors x, x∗ ∈ Bn
∞ that they encode satisfy ||x− x∗||∞ ≤ ε/2.

3. Apply the triangle inequality to show that a solution z to the CHa instance just
described encodes a vector x that is an ε-strong approximation of a zero of H.

We now describe the consensus halving instance of step (i) that should, in some sense,
simulate the map H. The paper of Filos-Ratsikas et al. [99] gives a simplified proof of
PPA-hardness for the problem of computing a weak approximate consensus halving,
and our construction is inspired by theirs.

We describe the consensus halving instance as being defined on an interval [0,M],
where M is a polynomially large integer, which may then be scaled to [0,1]. At the
very left of the interval [0,M] are placed n unit intervals which for any cut encodes a
vector x ∈ Bn

∞. Specifically, given some cut z, the interval Ii := [i−1, i] encodes the ith
coordinate of a vector x as xi := µ(I+i )−µ(I−i ), where µ denotes the Lebesgue measure
and I±i denotes the subset of Ii with the corresponding label. We call this the label
encoding. After that we will have 2n+1 circuit simulation regions. Each of these
simulators will first read in x or −x, depending on the label immediately before the
simulator, and then simulate the computation of H on this input. The output of every
gate will be represented by a cut in an interval.

Let us briefly describe figure 2.3 below. Assume that the value encoded in the
coordinate encoding region is x1 = 0.8, meaning that µ(I+1 ) = 0.9 and µ(I−1 ) = 0.1.



2.3. Consensus Halving and Borsuk-Ulam 19

x1 = 0.8
· · · +

−

− +

+ −

Figure 2.3: Reading in a value from the coordinate encoding region.

Every circuit simulator has one agent that reads in this value. We simulate this by
constructing an agent that has a measure with density indicated by the blue blocks
above. In front of every circuit simulator, we place an agent that has positive measure
corresponding to the red block in the figure. The purpose of this agent is flipping
the label. Now, if the label before the circuit simulator is +, the agent with the blue
blocks will force a cut in the point 0.9 of the second blue block. We interpret this
as encoding the value 0.9−0.1 = 0.8 = x1, the length of the interval before the cut
minus the length of the interval after the cut. On the other hand, if the label in front
of the circuit simulator is −, then the blue agent will force a cut in the point 0.1 of
the second blue block. We interpret this as encoding the value 0.1−0.9 = −0.8 = −x1.
We call this the position encoding. Using this encoding, we may construct agents
that simulate all gates required for computing H. Here it is important that for every
agent the labeling sequence of the input and output interval are identical. This may
be ensured by placing agents with measures consisting of a single block. For the
construction of agents implementing the required gates, we refer to the full paper.

However, it does not suffice that the CH-instance we construct is able to simulate
H. Recall that we want an exact consensus halving z∗ to encode a vector x∗ ∈ Bn

∞

such that x∗ is ε/2-close to a zero of H. For this it was sufficient that ||H(x)||∞ ≤ δ
for some very small δ > 0. In fact, one may show that it is sufficient that δ ≤ ε−2p(|H|)

where p(|H|) is some polynomial in the size of the circuit computing H. Hence, a
sufficiently small δ may be computed by a circuit of size polynomial in the bit length
of ε and the size of H via repeated squaring. Thus, for every coordinate i, we may
construct a feedback agent fi that has a very narrow Dirac block of width δ centered
in the ith output interval of every circuit simulator. All other agents will force a cut
in a particular interval, but this is not the case for the feedback agents. Ideally, all of
them will place their cut in the coordinate encoding region. In this case, all the circuit
simulators will read in the same x∗ and output H(x∗) into the feedback region. In order
for the feedback agents to agree that A+ and A− have the same value, this forces the
cuts to be in the centers of the output intervals, meaning that Hi(x∗) = 1/2−1/2 = 0
for all i. However, some circuit simulators may produce stray cuts, i.e., cuts not in the
coordinate encoding region. Each such stray cut may corrupt one circuit simulator,
meaning that at most n circuit simulators can become corrupted, leaving n+1 that work
as intended. Furthermore, if there is a stray cut, then at least one of the unit intervals
in the coordinate encoding region does not contain a cut, meaning that ||x∗||∞ = 1.



20 Chapter 2. Preliminaries

Hence, the boundary condition on H implies that H(x∗) = −H(−x∗). Suppose toward
contradiction that there exists an i such that |Hi(x∗)| > δ. If we now consider some
uncorrupted circuit simulator where the preceding label is positive, then it will read in
x∗ and output the value Hi(x∗) into the feedback region corresponding to the ith output.
Because Hi(x∗) > δ, all of the Dirac block will be contained in the part with negative
label. This is also the case if the label preceding the circuit simulator is negative.
Hence, in all of the at least n+1 uncorrupted circuit simulators all of the Dirac block
corresponding to the ith feedback agent will receive negative label. However, this
implies that z∗ cannot possibly be a consensus halving. Hence, if z∗ is a consensus
halving, then ||H(x∗)||∞ ≤ δ. This finishes the argument that CHa is BUa-complete.

+ −
− +

Hi(x∗) > δ

+ −

Hi(−x∗) = −Hi(x∗) < −δ

Figure 2.4: Illustration of the argument above. Taken from Batziou et al. [23].

2.3.3 Related work

As mentioned, Deligkas et al. [72] prove that CH is FIXP-hard. Central to their proof
is also the construction of a consensus halving instance simulating an algebraic circuit.
For FIXP, however, a solution is an input vector which is fixed by the circuit. As such,
the feedback agents are constructed so as to force a cut in the coordinate encoding
region. In the case of BU we are not looking for a fixed point, but instead a zero that
is seemingly unrelated to the input. As such we cannot force the feedback agents to
place their cuts in the coordinate encoding region, leading to a possibility of them
corrupting the circuit simulators. As such it would seem that a different approach
is required. Another possible direction would be to consider other search problems
related to the Borsuk-Ulam theorem. For instance, Filos-Ratsikas and Goldberg [95]
prove that a discrete version of the ham sandwich problem is complete for PPA, and
Deligkas et al. [75] proved that problems related to sharing a pizza is contained in BU
and PPA-hard, leaving open the question of BU-hardness for the exact version.

2.4 Fair Division of Indivisible Items

In this section we introduce the background and discuss the contributions of our
paper [130]. In contrast with problems discussed previously, such as cake cutting and
consensus halving, we will now be considering fair division of indivisible items.

Model. The problem that we consider is given by a set of indivisible goods M and a
set of agents N. Every agent i ∈ N has a utility function vi : 2M→ R≥0 that is assumed
to be normalized, i.e., vi(∅) = 0, and monotone, i.e., vi(S ) ≤ vi(T ) for every pair of



2.4. Fair Division of Indivisible Items 21

subsets such that S ⊆ T ⊆ M. Our results classify the the hardness of computing a fair
allocation in terms of the strength of the utility functions. We recall some of the, for
our purposes, most relevant valuation classes below:

1. A utility function v : 2M → R≥0 is additive if for every subset S ⊆ M the follow-
ing equality holds: v(S ) =

∑
g∈S v({g}).

2. Before defining the notion of gross substitutes, we introduce some notation. For
a utility function v : 2M → R≥0 and any price vector p ∈ RM

≥0 define the quasi-
linear utility function vp by vp(S ) = v(S )−

∑
g∈S pg and define the demand set

D(v, p) = argmaxS⊆M vp(S ). The utility function v satisfies the gross substitutes
property if for all p ≤ p′ (the inequality being coordinate-wise), it holds that if
S ∈ D(v, p), then there exists S ′ ∈ D(v, p′) such that {g ∈ S : pg = pg′} ⊆ S ′.

3. A utility function v : 2M → R≥0 is submodular if for every pair of subsets
S ⊆ T ⊆ M and all g ∈ M it holds that v(T ∪{g}))− v(T ) ≤ v(S ∪{g}))− v(S ).

Submodular valuations may be thought of as satisfying the law of diminishing returns.
Gross substitutes were introduced by Kelso and Crawford [152] in their study of
matching firms and workers. One interesting feature of GS valuations is that they
ensure the existence of a Walrasian equilibrium. The basic idea is to run the tâton-
nement process due to Walras [225]. At first, all prices are set to zero and all the
goods are allocated to one person. The agents are then allowed to take turns choosing
a bundle from their demand set, and the prices of overdemanded goods are increased.
The GS property is defined so as to ensure that all goods will be allocated at the end
of this process. We refer to Paes Leme [180] for a nice exposition. It should also be
noted that the GS property is in some sense necessary for ensuring the existence of a
Walrasian equilibrium by theorem 2 of Gul and Stacchetti [133].

Fairness notions. An allocation is a partitioning M = A1⊔A2⊔· · ·⊔An of the goods
into n subsets, where player i receives the bundle Ai. One notion of fairness, analogous
to the cake cutting setting, is the following: an allocation (A1, . . . ,An) is envy free if for
every i, j ∈ N it holds that vi(Ai) ≥ vi(A j). However, it is easy to see that an envy-free
division need not exist. For instance, in the case of two agents and a single good, it is
impossible to devise an envy free division under the assumption that both agents value
the good positively. Bouveret and Lang [36] proved that the problem of deciding if a
given instance admits an envy free division is NP-complete. Indeed, one may reduce
the Partition problem to the problem of deciding whether an envy free division exists
for two agents with identical additive valuations.

As a result, various weaker notions of fairness have been studied. For instance,
Budish [40] introduced the notion of envy being bounded by a single good, now
commonly referred to as envy-freeness up to one good (EF1). An allocation is said to
be EF1 if for any pair of agents i and j, if i envies the bundle of j, then there should
exist a g ∈ A j such that vi(Ai) ≥ vi(A j \ {g}). Such an allocation is guaranteed to exist,
and it can be computed in polynomial time. Namely, using the envy-cycle elimination



22 Chapter 2. Preliminaries

algorithm of Lipton et al. [163] one may maintain a partial EF1 allocation such that at
least one agent is not envied by anyone. One then adds a good to the bundle of this
agent, eliminates potential envy cycles, and continues. The fairness notion which we
will consider is similar to but stronger than EF1. Instead of envy being bounded by one
item (which could potentially be very valuable), we study a fairness notion where envy
is required to be bounded by the removal of any item. Gourvès et al. [131] introduced
the notion of near jealousy-freeness, which is identical to the following fairness
notion defined by Caragiannis et al. [43]. An allocation (A1, . . . ,An) is envy-free up
to any good (EFX) if for any pair of players i and j it holds that vi(Ai) ≥ vi(A j \ {g})
for all g ∈ A j. If this is not satisfied for some agents i and j, then we say that i
EFX-envies agent j. In this paper, we study the computational hardness of finding an
EFX allocation. We characterize the difficulty of computing EFX allocations for two
agents in terms of the generality of their valuation functions by establishing the point
at which the problem becomes hard in the standard complement-free hierarchy

additive ⊆ OXS ⊆ gross substitutes ⊆ submodular ⊆ XOS ⊆ subadditive

of Lehmann et al. [159]. Specifically, we provide a greedy polynomial-time algorithm
for GS utility functions and prove that the problem is PLS-hard for submodular
valuations. These results are described in the following two subsections.

2.4.1 A polynomial time algorithm

Plaut and Roughgarden [185] introduced a total ordering, the leximin++ ordering, on
the set of allocations and proved that when all the agents have identical monotone
valuations, the maximum with respect to this ordering is an EFX-allocation. However,
this does not provide an efficient algorithm for finding an EFX-allocation, because
computing the optimal leximin++ allocation is NP-hard. Again, one may see this by
reducing from the Partition problem.

We now describe our algorithm in the case of identical additive valuation functions.
Assume that the goods g1, . . . ,gm are sorted in order of decreasing utility, and initialize
a partial allocation with Ai = ∅ for all i ∈ N. The algorithm proceeds in m rounds,
where in the jth round, the good g j is allocated to one of the agents that currently
has minimal utility. One may show that after any round, the allocation is a partial
EFX-allocation. Indeed, this holds true in the beginning as the bundle of every agent
is empty. Suppose then that the current partial allocation is EFX and that agent i
receives good g j in the current round. By definition of the algorithm, this means that
no agent envies agent i after removing g j from its new bundle. Furthermore, if another
good from the bundle of agent i is removed, then this good must be at least as valuable
as g j due to the goods being allocated in order of decreasing utility. We conclude that
the allocation obtained after adding g j to the bundle Ai is still EFX. Hence, after the
m rounds have concluded, the algorithm will output an EFX-allocation. Essentially,
the important property of additive valuations that makes this proof work is that the
problem of computing an optimal bundle of a given size can be solved by the greedy
algorithm. In the full paper we prove the following result:



2.4. Fair Division of Indivisible Items 23

Definition 2.4.1. A valuation function v : 2M → R≥0 is weakly well-layered if for any
M′ ⊆ M the sets S 0,S 1,S 2, . . . obtained via the greedy algorithm (that is, S 0 = ∅ and
S i = S i−1∪{xi} where xi ∈ argmaxx∈M′\S i−1 v(S i−1∪{x}) for 1 ≤ i ≤ M) are optimal in
the sense that v(S i) =maxS⊆M′ : |S |=i v(S ) for every i ≤ |M′|.

Theorem 2.4.1. If the agents have a common valuation function v which is weakly
well-layered, then one may compute an EFX-allocation in polynomial time.

Note that our algorithm does not produce the leximin++ solution. Indeed, consider
the following example of an additive valuation with five goods a,b,c,d,e having
values 5,4,3,2,2. Our greedy algorithm could produce the allocation ({a,d,e}, {b,c}),
whereas the maximum leximin++ allocation is ({b,d,e}, {a,c}). The exact definition
of the leximin++ ordering is given in the next subsection.

Earlier, we mentioned that gross substitutes is the largest class of valuation
functions guaranteeing the existence of a Walrasian equilibrium. One might wonder
if a similar statement can be made in terms of weakly well-layered valuations and
EFX-allocations. However, it is unclear exactly how this should be phrased, seeing
as an EFX allocation is automatically guaranteed to exist when the number of agents
exceeds the number of goods.

2.4.2 PLS-completeness

The leximin++ ordering of Plaut and Roughgarden [185] is defined as follows. For
any allocation A = (A1, . . . ,An), let πA be a permutation on {1, . . . ,n} ordering the
bundles by increasing utility (if bundle i and j have the same utility and i < j then
choose πA such that πA(i) < πA( j)). Define

L(A) = (v(πA(1)), |XπA(1)|, . . . ,v(πA(n)), |XπA(n)|) (2.4)

The leximin++ ordering is now defined by saying that A ≺++ A′ if L(A) ≺ L(A′) where
≺ refers to the lexicographic ordering on R2n

≥0. That is to say, when comparing two
allocations one first compares the utility of their least valued bundles, then the size of
their least valued bundles, then the utility of their second to least valued bundles, then
the size of their second to least valued bundles, and so on. Plaut and Roughgarden
show that if A is not an EFX-allocation, then it is possible to construct an allocation A′

from A by moving a single good from one bundle to another such that A ≺++ A′. More
than just proving existence, this essentially shows that the problem of computing an
EFX-allocation for identical agents is contained in PLS.

Our proof that this problem is also PLS-hard is more involved. Plaut and Rough-
garden gave an exponential query lower bound by reducing the problem of local
optimization on an odd Kneser graph to the problem of finding an EFX allocation
for two identical agents with a submodular valuation. Therefore, it suffices to ar-
gue that local optimization on an odd Kneser graph is PLS-hard. This is shown by
reducing from the Min-Circuit/Flip problem. An instance of this problem consists
of a Boolean circuit C with n input-nodes and m output-nodes defining a function



24 Chapter 2. Preliminaries

f : {0,1}n → N by interpreting the output-nodes as the bit representation of a num-
ber. The domain of such an instance is D = {0,1}n, and the neighborhood of any
x ∈ D consists of all the Boolean vectors whose Hamming distance to x is one, i.e.,
N(x) = {x′ ∈ D : ∆(x, x′) = 1} where ∆(x, x′) = #{i ∈ {1, . . . ,n} : xi , x′i }. That is, as
indicated by the name Min-Circuit/Flip, x′ ∈ N(x) if x′ can be obtained from x by
flipping a single bit. A solution to the instance given by C is then an x ∈ {0,1}n such
that f (x) ≤ f (x′) for all x′ ∈ N(x). The Kneser problem is defined by a Boolean circuit
C′ having 2k+1 input-nodes for some k ∈N defining a function as above. The domain
D′ = {x ∈ {0,1}2k+1 : ∆(x,0) = k} consists of Boolean vectors of Hamming weight k,
and the neighborhood of any x ∈ D is the set N′(x) = {x′ ∈ D′ : ∀i, xi · x′i = 0}. The
domain and neighborhood corresponds exactly to the odd Kneser graph K(2k+1,k),
which is a graph with one vertex for every size k subset of {1,2, . . . ,2k+1} and edges
between disjoint subsets.

Figure 2.5: K(5,2) taken from wikipedia.org/wiki/File:Kneser-5-2.svg.

When reducing from Min-Circuit/Flip to Kneser, it is natural to think of some
x ∈ {0,1}n as the vertex xx0 in the Kneser graph (where x is the bitwise complement).
Note that if x and y are neighbors in the Min-Circuit/Flip instance, then there is a
simple path from xx0 to yy0 in the corresponding Kneser instance. First, if we are in
the case where y can be obtained from x by flipping one bit from 1 to 0, then the path
is xx0→ xy1→ yy0. In the other case x could be obtained from y by flipping a single
1, and a valid path would be the reverse of yy0→ yx1→ xx0. For instance, supposing
that x = 111 and y = 110, we have that 1110000→ 0001101→ 1100010 is a valid
path. One now has to define a cost function on the Kneser graph such that if y is an
improving neighbor of x in the Min-Circuit/Flip instance, then there is an improving
path from xx0 to yy0 in the Kneser instance. We refer to the full paper for the details.

2.4.3 Further related work

As explained above, Plaut and Roughgarden [185] proved existence of an EFX alloca-
tion in the case that all the agents share a common utility function. Later, Amanatidis



2.4. Fair Division of Indivisible Items 25

et al. [6] gave a polynomial time algorithm for computing an EFX allocations for
agents with additive valuations in two cases: (1) when the agents can only have one
of only two possible values for any good, and (2) when for every agent, the utilities of
all the goods are in the interval [Ri,2Ri] for some Ri ≥ 0. Garg and Murhekar [111]
later extended the former result to obtain an allocation that is both EFX and Pareto
optimal in the case of bi-valued additive utility functions. Moving beyond two agents,
Chaudhury et al. [45] proved that an EFX allocations exists for three agents with
additive valuations. Their proof goes via a potential function, so it might be possible
to obtain a PLS-membership result in this case. Of course, an intriguing open problem
is proving existence of an EFX allocation for any number of agents, even for additive
utility functions.





Part II

Publications

27





Chapter 3

FIXP-membership via Convex
Optimization: Games, Cakes, and
Markets

Abstract

We introduce a new technique for proving membership of problems in FIXP
– the class capturing the complexity of computing a fixed-point of an algebraic
circuit. Our technique constructs a “pseudogate” which can be used as a black
box when building FIXP circuits. This pseudogate, which we term the “OPT-
gate”, can solve most convex optimization problems. Using the OPT-gate, we
prove new FIXP-membership results, and we generalize and simplify several
known results from the literature on fair division, game theory and competitive
markets.

In particular, we prove complexity results for two classic problems: com-
puting a market equilibrium in the Arrow-Debreu model with general concave
utilities is in FIXP, and computing an envy-free division of a cake with very
general valuations is FIXP-complete. We further showcase the wide applica-
bility of our technique, by using it to obtain simplified proofs and extensions
of known FIXP-membership results for equilibrium computation for various
types of strategic games, as well as the pseudomarket mechanism of Hylland
and Zeckhauser.

3.1 Introduction

Equilibria, i.e., stable states of some dynamic process or environment [230], appear in
several classic applications in economics and computer science. Prominent examples
include the Nash equilibrium [177], which captures the stable outcome of deliberation
between strategic agents, as well as the competitive equilibrium [8], which corresponds
to a market-clearing outcome after the adjustment of prices based on demand and
supply. These equilibria can most often be captured by fixed points of functions, i.e.,
points x for which f (x) = x. For instance, Nash’s existence theorem, i.e., that every

29



30 Chapter 3. FIXP-membership via Convex Optimization

strategic game has a mixed Nash equilibrium, was famously proven using Brouwer’s
fixed point theorem [39].

The computational class FIXP was defined by Etessami and Yannakakis [85]
to capture the complexity of fixed point problems, and in particular those related
to Brouwer’s fixed point theorem. These problems are total search problems, i.e.,
problems for which a solution is guaranteed to exist via Brouwer’s (or some other)
fixed point theorem, and for which we aim to find such a solution. Indeed, the class
has been successful in that regard, with interesting problems related to game theory
[85] and competitive markets [56, 85, 118] among others, being either members of
FIXP, or complete for the class.

At the heart of the definition of FIXP lies the notion of an algebraic circuit, used
to represent a continuous function mapping a domain to itself. This representation
effectively allows for the study of exact fixed points of the function, including ir-
rational ones, and therefore can be used to capture the exact complexity of these
types of equilibrium problems. In contrast, in the usual Turing model of computation,
sometimes the best one can hope for is approximate solutions (e.g., ε-Nash equilibria).
The counterpart of FIXP in the Turing model is the class PPAD of Papadimitriou
[182] which famously captures the complexity of computing an ε-Nash equilibrium
in strategic games [54, 67]. Indeed, for several of the aforementioned problems,
computing approximate equilibria is in PPAD, whereas computing exact equilibria
is in FIXP. Another interpretation of FIXP in the Turing model of computation is in
terms of strong approximations, i.e., computing points that are close in the sense of
distance (e.g., in the max norm) to equilibrium points. In contrast, PPAD typically
captures weak approximations, i.e., points that are approximately equilibrium points,
but not necessarily close to an exact equilibrium point in the geometric sense.

Contrary to the case of decision problems in NP, for which the membership
in the class is often immediate, proving membership of a total search problem in
the corresponding computational class is typically much more involved, and often
requires “transforming” an existence proof into a computational reduction. This
poses certain challenges, but it has been largely successful for problems in PPAD.
For example, the PPAD-membership of Nash equilibrium computation incorporates
Nash’s existence proof (e.g., see [127, Section 3.2]), and the PPAD-membership
of the approximately envy-free cake cutting problem [38, 76, 190] is essentially a
modification of an existence proof due to Simmons [212].

In the case of FIXP however, the aforementioned challenges are much more
pronounced; for an existence proof to be used as a basis for a membership result, it
has to display several characteristics. First, it has to go via Brouwer’s fixed point
theorem, and more importantly, it has to avoid using any “discontinuous” components,
precluding the use of several types of discrete steps and limit arguments. For this
reason, FIXP-membership results tend to be much more ad-hoc, using inventive but
often rather involved techniques, which do not necessarily follow the known existence
proofs. Even worse, for certain problems like the envy-free cake cutting problem for
instance, the literature has not managed to produce any FIXP-membership result for
the reasons mentioned above.



3.1. Introduction 31

A closer inspection into the several proofs of existence for versions of strategic
games or competitive markets reveals that they often exhibit a common characteristic:
they all include one or multiple optimization problems as subroutines. For example,
at the heart of the Nash equilibrium notion is an agent’s utility maximization problem,
which can be expressed as a linear program (see Equation (3.1) in Section 3.3.1). An-
other example comes from competitive markets, where the market equilibrium notion
includes convex optimization programs for maximizing the utilities of consumers
and producers given a set of prices. This offers a possible explanation as to why the
literature has fallen short of producing a systematic and unified approach for proving
FIXP-membership results: Up until now, it was not known how to actually compute
these optimization programs in FIXP, or more specifically, how to incorporate these
programs as part of a FIXP circuit, as required for a membership result.

Our paper remedies this situation: We show how to compute convex optimization
programs, which can be used as black-box components of FIXP circuits. Simply put,
under some mild assumptions, whenever such an optimization program is encountered
in an existence proof, it can be effectively substituted by such a component in the
FIXP-membership proof. Using our newly introduced technique, we manage to
generalize and simplify several FIXP-membership proofs in the literature of game
theory and competitive markets, as well as prove for the first time the seemingly
elusive FIXP-completeness result for the envy-free cake cutting problem. We present
our contributions in more detail below.

3.1.1 Our Contribution

Our main contribution is the introduction of the OPT-gate, a new “plug and play” com-
ponent which can be used as a black-box in FIXP-membership proofs for computing
Linear Programs or more general convex optimization programs. The OPT-gate is a
special kind of gate, with the following crucial property:

The OPT-gate is a “pseudogate”, in the sense that its correct operation
is only ensured at a fixed point of the function encoded by the algebraic
circuit; with regards to a FIXP-membership proof, it operates as a normal
gate for all intents and purposes.

More specifically, the OPT-gate can solve any convex program with convex inequality
constraints, explicit equality constraints and an explicit bound on its feasible region,
as long as it satisfies a “FIXP-appropriate” variant of the well-known Slater condi-
tion [202] for convex programs (see Sections 3.3.3 and 3.3.4, and Definitions 3.3.3
and 3.3.4). Having programs of this form is in fact necessary (see the discussion
in Section 3.3), but at the same time it is sufficient for capturing the rather general
optimization problems that appear in the existence proofs mentioned above.

To demonstrate the effectiveness of our technique, we present a host of different
applications related to the envy-free cake cutting problem, to computing different types
of equilibria in various strategic games, and to computing competitive equilibria in
markets. Our results advance the state of the art in three different ways: (a) we provide



32 Chapter 3. FIXP-membership via Convex Optimization

results for problems for which the complexity was previously entirely unknown, (b)
we provide results that generalize known special cases in the literature to domains
which are as general as possible, and (c) we provide proofs which are conceptually
simpler and reminiscent of the known proofs of existence for those problems.

Applications to Game Theory

First, we discuss the application of our technique to the problem of computing exact
equilibria in strategic games. Already in Section 3.3.1, we use the case of normal
form games as a motivating example to demonstrate the strength of the OPT-gate. The
FIXP-completeness of the problem was established by Etessami and Yannakakis [85],
in the same paper where they defined the class FIXP. We show that via the employment
of our technique, the membership problem essentially boils down to simply writing
the standard utility-maximization linear programs for the players and substituting
them by the OPT-gate in the FIXP circuit, making the proof entirely straightforward.

Then, in Section 3.4, we move on to present more general classes of games
and different equilibrium concepts, for which we also obtain FIXP-completeness or
FIXP-membership results. In particular:

- FIXP-completeness of concave games. In Section 3.4.1, we prove the FIXP-
completeness of concave games [192], a class of games which generalizes the class
of normal-form games. Rosen [192] showed via the employment of Kakutani’s
fixed point theorem [149] that a Nash equilibrium of these games always exists.
Our FIXP-membership proof defines a Brouwer function that uses the agent’s
utility-maximization program, now a convex program, as a subroutine, substituted
by the OPT-gate. Similarly to the case of normal form games described above, our
proof is very simple and intuitive.

- FIXP-membership of ε-proper equilibria. In Section 3.4.2, we consider a Nash
equilibrium refinement notion due to Myerson [174], that of an ε-proper equilib-
rium.1 Hansen and Lund [135] showed that approximating a proper equilibrium
(i.e., a limit point of ε-proper equilibria) is complete for FIXPa [85], the class of
discrete total search problems that reduce to (strong) approximate Brouwer fixed
points. We show that computing an ε-proper equilibrium is in FIXP. To obtain
the result, we first develop a more general method based on solving systems of
conditional convex constraints (see Section 3.4.2), making use of our OPT-gate,
which might have applications beyond the ε-proper equilibrium result.

- FIXP-completeness of n-player Stochastic Games. In Section 3.4.3, we consider
n-player stochastic games, which generalize the classic 2-player stochastic games
of Shapley [200]. The existence of a stationary λ-discounted equilibrium for
any discount factor λ was proven by Takahashi [214] and Fink [102] using a

1We remark here that the ε parameter is not the same type of approximation as in an ε-Nash
equilibrium mentioned earlier; see Definition 3.4.1 and the “approximate” vs “almost” discussion in [84,
Section 2].



3.1. Introduction 33

generalization of Kakutani’s fixed point theorem. For 2-player zero-sum games,
Etessami and Yannakakis [85] showed that computing a stationary λ-discounted
equilibrium is in FIXP. We generalize this membership result to n-player general
stochastic games. Our proof is based on an enlarged domain of triples consisting
of valuation profiles and pairs of stationary strategies, and constructs a Brouwer
function from this domain to itself, for which the fixed points “contain” fixed points
of the correspondence defined in Takahashi’s proof on the original domain. The
FIXP-hardness follows from [85], by noting that a normal form game may simply
be viewed as a stochastic game with a single state.

Applications to Cake Cutting

Next, in Section 3.5, we prove our main result for the well-known envy-free cake
cutting problem [108] (see also [38, 188, 190]). In this problem, the cake serves as
a metaphor for a divisible resource, which needs to be divided fairly among a set of
agents. The agents have different preferences over how to divide the resource, and an
envy-free division is one which guarantees that each agent would rather have their
own piece than any other agent’s piece. The existence of an envy-free division was
proven by Stromquist [209], even for the case where each agent receives a single piece
(known as the contiguous version or the version with connected pieces). An alternative
proof was provided by Simmons (cited in [212]). Both proofs employ a discretization
of the space of possible divisions and then apply some topological lemma (either a
variant of the K-K-M lemma [156] or Sperner’s lemma [204]), together with a limit
argument.

In terms of the complexity of the problem, results were only known for the
approximate version of the problem: Deng et al. [76] proved that for agents with
very general valuations, computing a contiguous envy-free division of the cake is
PPAD-complete. Deng et al.’s proof closely follows Simmons’ proof [212], which,
without the limit argument, obtains the existence of an approximately envy-free
division. However, before our paper, the complexity of the exact envy-free cake
cutting problem was not known. To this end, we provide the following result.

The (contiguous) envy-free cake cutting problem with very general valua-
tions is FIXP-complete.

By “very general valuations” we mean valuations that are not necessarily additive
measures or even monotone over subsets of the cake, and which can assign different
values to different divisions for an agent, even if the agent receives the same piece in
all of those. The aforementioned existence proofs apply to this very general case as
well, and therefore our FIXP-membership result is as strong as possible. We discuss
this in more detail in Section 3.5 (see Remark 4).

In order to obtain the FIXP-membership result, we develop a new proof of exis-
tence for envy-free cake cutting, one which is not based on discretizations and limit
arguments. Our proof constructs a bipartite graph between agents and preferred pieces



34 Chapter 3. FIXP-membership via Convex Optimization

and computes a maximum flow on this graph. This computation can be immediately
substituted by our OPT-gate, effectively turning this new existence proof into a FIXP-
membership result. This proof is somehow reminiscent of another existence proof by
Woodall [229], but as we explain in Section 3.5, Woodall’s proof uses discontinuous
steps and therefore cannot conceivably be “turned” into a FIXP-membership proof.

For the FIXP-hardness, we construct a very simple reduction from a generaliza-
tion of Brouwer’s fixed point problem due to Bapat [19]. The very same reduction
also shows that Bapat’s Brouwer fixed point problem is in FIXP. This in turn has
implications for the rainbow K-K-M problem [105], a generalization of the K-K-M
problem [156], which we show to be FIXP-complete via reductions from and to
Brouwer’s fixed point problem. These results, which are included in Section 3.5.2,
develop a potentially useful machinery for proving FIXP-completeness results for
more general cake cutting and fair division problems. For example Aharoni et al.
[3] establish the relation between K-K-M-type theorems and envy-free divisions of
multiple cakes; whether these can yield FIXP-membership results for those problems
as well is something to be explored in the future.

Applications to Markets

Our last application domain is that of competitive markets. Here we provide results
for general Arrow-Debreu markets [8], as well as for the pseudomarket mechanism of
Hylland and Zeckhauser [142].

- Arrow-Debreu markets. In Section 3.6.1 we prove a very general result, namely
that computing competitive equilibria in Arrow-Debreu markets with concave
utilities is in FIXP. The Arrow-Debreu market is the most fundamental market
model, proposed and studied by Arrow and Debreu [8]. It consists of a set of
consumers with utilities, consumption sets and endowments, and a set of producers
or firms with production sets. A competitive or market equilibrium is a stable state
in which supply equals demand, and all participants maximize their utilities or
profits at the current set of prices. Arrow and Debreu [8] proved that under mild
assumptions, every market has a competitive equilibrium.

FIXP-membership results were only previously known for special cases of Arrow-
Debreu markets. Etessami and Yannakakis [85] in their original paper already
proved the FIXP-membership of a setting where there are no explicit utilities, and
the aggregate demand is a given function, rather than a correspondence which is
typically the case in these markets. Garg et al. [117] proved a FIXP-membership
result for markets with Piecewise Linear Concave (PLC) utilities, straightforward
consumption sets (i.e., where consumption is only constrained to be non-negative),
and production sets that are also given by PLC functions.

Our result for Arrow-Debreu markets generalizes2 the aforementioned results as
it considers (a) more general utility functions (i.e., general concave functions)

2To be precise, our result applies to any class of concave utility functions, as long as we have access
to the supergradients of those functions or when we can compute them given access to the functions.



3.1. Introduction 35

and (b) more general consumption and production sets (i.e., general convex sets).
Additionally, compared to the proofs in these papers, our membership proof is
arguably simpler and follows rather easily from the original existence proof of
Arrow and Debreu. Essentially, the only difference is that we “organically” devise
a Brouwer function rather than a fixed point correspondence, and we substitute the
various convex optimization programs that appear in the proof (for the consumers’
and producers’ optimality) by our OPT-gate.

- The pseudomarket mechanism of Hylland and Zeckhauser [142]. In Sec-
tion 3.6.2 we consider the problem of computing equilibria of the pseudomarket
mechanism of Hylland and Zeckhauser [142]. This mechanism solves the random
assignment problem (e.g., see [32]) by allocating to each agent a unit of artificial
currency, and by then setting up a “pseudomarket” where agents buy probabil-
ity shares of the different items. The Hylland and Zeckhauser pseudomarket is
not a special case of the Arrow-Debreu market, because of additional allocation
constraints that ensure that each agent receives exactly one item in expectation.
Hylland and Zeckhauser employed Kakutani’s fixed point theorem to prove that an
equilibrium of this market is always guaranteed to exist.

The complexity of computing a Hylland and Zeckhauser equilibrium was an open
problem since the definition of the mechanism in 1979 and certainly since the
introduction of the relevant complexity classes for equilibrium computation prob-
lems. Very recently, Vazirani and Yannakakis [221] showed that the problem lies in
FIXP, leaving the FIXP-hardness as an open question. We employ our OPT-gate
to obtain the same membership result, via, what we believe to be, an easier proof.
Again, like most of our results, the proof resembles strongly the existence proof
of Hylland and Zeckhauser [142], except that it constructs a Brouwer fixed point
function (rather than a Kakutani fixed point correspondence) and substitutes the
agents’ utility maximization Linear Programs by instances of the OPT-gate.

3.1.2 Related Work

Below we present some further related work related to our applications, as well as to
fixed point computation problems.

Strategic games. The field of game theory was developed in the late 1920s by the
works of von Neumann [223, 224] and then notably in the 1950s with the concept
of Nash equilibrium, guaranteed to exist by Nash’s theorem [177]. The theorem can
be proven by either using Brouwer’s fixed point theorem [176] or Kakutani’s fixed
point theorem [177]. The complexity of Nash equilibrium computation was firstly
considered by Papadimitriou [182], who actually defined the class PPAD with this
problem as the central consideration. More than a decade later, the celebrated results

This is possible for the PLC utilities of [117] as we explain in Section 3.7, but not for the CES utilities
of [56], since these are non-superdifferentiable at 0 coordinates. See Remark 5 in Section 3.6.1 for more
details.



36 Chapter 3. FIXP-membership via Convex Optimization

of Daskalakis et al. [67] and Chen et al. [54] showed the PPAD-completeness of the
approximate version of the problem, followed by the definition of FIXP and the FIXP-
completeness result of Etessami and Yannakakis [85] for exact equilibria. Since then,
several variants of the main normal form game setting and several refinements of the
standard equilibrium notions have been considered, with corresponding complexity
results being obtained (e.g., see [69, 70, 138, 194]). Out of these refinements, the
most relevant to us is the notion of proper equilibria defined by [174]. These equilibria
were studied by Hansen and Lund [135] as we explained above, and it was shown that
approximating them is complete for the class FIXPa, a discrete variant of FIXP also
defined by Etessami and Yannakakis [85].

Stochastic games were defined by Shapley [200] in the early 1950s, and they
constitute one of the most fundamental models of repeated games in the literature,
which can capture very general scenarios; we refer the reader to [171, 178] for
more details on different types of stochastic games and their definitions. Our FIXP-
membership result establishes the FIXP-completeness of the problem for n-player
games; for 2-player games, besides the FIXP-membership shown in [85], the authors
also show that the problem is at least as hard as the Square Root Sum problem,
defined therein; whether the 2-player problem is FIXP-complete is still an open
question. Exponential or superexponential time algorithms for the 2-player problem
were developed by Hansen et al. [139] and Oliu-Barton [179].

Cake cutting. The cake cutting problem was introduced by Steinhaus [206] in the
late 1940s and has since been studied extensively in the literature of mathematics,
economics and computer science. The problem of finding an envy-free division was
introduced by Gamow and Stern [108] about a decade later. The existence of an
envy-free division was shown in several proofs, but perhaps the most famous are those
by Stromquist [209] and Simmons [212] that we mentioned earlier, which in fact
guarantee the existence of contiguous divisions. The computational complexity of
the approximate problem was considered by Deng et al. [76] who proved a PPAD-
completeness result for the case of general continuous preferences, which is equivalent
to the setting of very general valuations we consider here. As we explained earlier, our
paper provides the first computational complexity results for the problem of finding
an exact envy-free division. For the usual case of additive valuation functions (e.g.,
see [38, 190]), the FIXP-hardness for exact equilibria, or even the PPAD-hardness for
approximate equilibria is still a major open problem.

In a related, but, in a sense, orthogonal line of work, several discrete protocols
for finding an envy-free solution were proposed over the years, starting from the
cut-and-choose protocol for 2 agents and the Selfridge-Conway protocol for 3 agents
(e.g., see [190]), leading to recent breakthrough results from the literature of computer
science [11]. These protocols interact with the agents via a set of queries, in the
so-called Robertson-Webb (RW) model (see [227]). The RW model is not inherently
a computational model, and RW queries can in fact return irrational points as answers.
In that regime, the goal is to come up with a protocol that finds an envy-free solution



3.1. Introduction 37

using the smallest number of such queries possible. Even for the non-contiguous
version, the discrepancy between the lower bound of Procaccia [187] and the upper
bound of Aziz and Mackenzie [11] is astronomical.

Competitive Markets. The fundamental principles of competitive markets and
equilibrium theory date back to the 1870s and the works of Walras [225]. Walras
described a process of adjusting the market prices based on supply and demand, the
so-called “tâtonnement process”, which would eventually lead to the stable outcome
that was later known as the competitive equilibrium. Foundational in the establishment
of the associated equilibrium theory were the contributions of Arrow and Debreu
[8] and McKenzie [168],3 who proved the existence of an equilibrium. The proof of
Arrow and Debreu uses a fixed point theorem due to Debreu [68], whereas McKenzie
used Kakutani’s fixed point theorem to obtain the result. An alternative proof via
Brouwer’s fixed point theorem was given by Geanakoplos [122].

In computer science, much work has been devoted to the question of computing
exact or approximate equilibria of different markets, which are special cases of the
general Arrow-Debreu market that we study. There are several works that developed
polynomial-time algorithms for finding or approximating equilibria for some classes
of utility functions, e.g., see [77–79, 114, 116, 121, 143, 144]. For more complex
utility functions, besides the results that we mentioned earlier, the approximate equilib-
rium computation problem for additively separable piecewise linear concave (SPLC)
functions was shown to be PPAD-complete by [53, 220], where the approximation
notion is a “weak approximation” in the market clearing and utility-maximization
conditions, see [196]. For exact equilibria, Garg and Vazirani [113] showed the
PPAD-completeness of Arrow-Debreu markets with linear utility functions and SPLC
production sets; in this case, it turns out that there always exist rational exact equi-
libria, and they can be computed in PPAD. An interesting class of utility functions
is that of Leontief utilities, which are simultaneously subcases of the PLC utilities
studied in [117, 118] and limit cases of the CES utilities studied in [56]. For this
class, Codenotti et al. [59] showed a PPAD-hardness result. Garg et al. [118] showed
hardness results for a market model with Leontief utilities, but their FIXP-hardness
does not quite yield a FIXP-completeness result together with our membership proof,
or even the membership proof of Garg et al. [117], because it is obtained for markets
with different sufficiency conditions for equilibrium existence, and not for the market
model as presented by Arrow and Debreu [8] that we study in Section 4.6.

Fixed point computation. Besides the applications above, the class FIXP also
captures the complexity of other problems, such as branching process and context-free
grammars [85], equilibrium refinements [84, 87], and more recently the complexity of
computing a Bayes-Nash equilibrium in the first-price auction with subjective priors
[100]. Besides FIXP, there are some other computational classes that capture the

3In fact, sometimes the fundamental market model is referred to as the “Arrow-Debreu-McKenzie”
market.



38 Chapter 3. FIXP-membership via Convex Optimization

complexity of different fixed point problems, namely the classes BU [74] and BBU
[23] which correspond to the Borsuk-Ulam theorem [34], and the class HB [128],
which corresponds to the Hairy Ball theorem [186].

3.2 Preliminaries

In this section, we provide some definitions and theorems that we will use or reference
throughout the paper, as well as the formal definition of the class FIXP.

3.2.1 Fixed Point Theorems

We start with the definition of Brouwer’s fixed point theorem [39], one of the most
widely used fixed point theorems in economic applications, such as game theory or
market theory.

Theorem 3.2.1 (Brouwer’s Fixed Point Theorem [39]). Let A ⊆ Rn be a nonempty,
compact, and convex set. Let f : A→ A be continuous. Then there is x ∈ A such that
f (x) = x.

The next fixed point theorem that we will present is Kakutani’s fixed point theorem
[149], a generalization of Brouwer’s fixed point theorem. Importantly, this fixed point
theorem applies to correspondences rather than functions; we provide the definition
of a correspondence below.

Definition 3.2.1 (Correspondence). A correspondence f (or multi-valued function)
between sets A and B is a function f : A→P(B), where P(B) denotes the powerset
of B. We denote this by f : A⇒ B. In case f (a) = {b} we use the function notation
f (a) = b for notational simplicity. In a similar way, if for all a ∈ A we have | f (a)| = 1,
we may think of f simply as a function f : A→ B.

For the statement of the theorem, we need the definitions of upper and lower hemi-
continuous correspondences.

Definition 3.2.2 (Upper and lower hemicontinuous correspondence). Let A ⊆ Rn,
B ⊆ Rm, and f : A⇒ B.

1. f is upper hemicontinuous (uhc) at a ∈ A if and only if for all open sets V ⊆ B
for which f (a) ⊆ V there is an open set U ⊆ A with a ∈ U such that f (x) ⊆ V
for all x ∈ U.

2. f is lower hemicontinuous (lhc) at a ∈ A if and only if for all open sets V ⊆ B for
which f (a)∩V , ∅ there is an open set U ⊆ A with a ∈U such that f (x)∩V , ∅
for all x ∈ U.

We say that f is uhc (lhc) if f is uhc (lhc) at every a ∈ A. If f is both uhc and lhc we
simply say that f is continuous.



3.2. Preliminaries 39

We are now ready to state the fixed point theorem.

Theorem 3.2.2 (Kakutani’s Fixed Point Theorem [149]). Let A ⊆ Rn be a nonempty,
compact, and convex set. Let f : A⇒ A be uhc as well as nonempty-, compact- and
convex-valued. Then there is x ∈ A such that x ∈ f (x).

Kakutani’s fixed point theorem is often used in conjunction with the following theorem,
called the maximum theorem, proven in 1963 by Berge [25]. For this to be possible,
it is additionally needed that the maximizer-correspondence g∗ is convex-valued.
This is in particular ensured if f is quasi-concave in its second variable and g is
convex-valued.

Theorem 3.2.3 (Berge’s Maximum Theorem [25]). Let A ⊆ Rn and B ⊆ Rm. Let
f : A× B→ R be continuous and g : A⇒ B continuous as well as nonempty- and
compact-valued. Define f ∗ : A→ R and g∗ : A⇒ B by f ∗(a) =maxb∈g(a) f (a,b) and
g∗(a) = argmaxb∈g(a) f (a,b). Then f ∗ is continuous and g∗ is uhc as well as nonempty-
and compact-valued.

3.2.2 The Class FIXP

As we said in the introduction, the class FIXP captures the complexity of real-valued
search problems associated with Brouwer’s fixed point theorem. We provide the
formal definition of the class below.

A search problem Π with real-valued search space is defined by associating to any
input instance I (encoded as a string over a finite alphabet Σ) a search space DI ⊆ R

dI

and a set of solutions Sol(I). We assume there is a polynomial time algorithm that
given I computes a description of DI . In order to define FIXP, we first introduce a set
of basic FIXP-problems corresponding to the formulation of Brouwer’s fixed point
theorem. Afterwards, we explain how the class is closed with respect to a certain type
of reductions. We start with the definition of an algebraic circuit.

Definition 3.2.3 (Algebraic Circuit). An algebraic circuit C is a circuit using gates in
{+,−,∗,÷,max,min} as well as rational constants. We let size(C) denote the size of
the circuit, including the description of the rational constants.

Next, we define the notion of a basic FIXP problem.

Definition 3.2.4 (Basic FIXP problem). A search problem Π is a basic FIXP problem
if every instance I describes a nonempty compact convex domain DI described by a
set of linear inequalities with rational coefficients and a continuous map FI : DI → DI

given by an algebraic circuit CI ,4 and the solution set is Sol(I) = {x ∈ DI | FI(x) = x}.

4Note that given an algebraic circuit, it is not clear how to check that it is indeed well-defined (i.e.,
does not divide by zero), and that it indeed represents a function FI with FI(DI) ⊆ DI . For that reason,
we assume that it is promised that the algebraic circuit CI indeed satisfies these two properties (in other
words, we only consider instances where this is the case). Furthermore, note that as long as the circuit is
well-defined, the function will be continuous, since all gates perform continuous operations.



40 Chapter 3. FIXP-membership via Convex Optimization

We now discuss reductions between search problems. Let Π and Γ be search problems
with real-valued search space. A many-one reduction from Π to Γ is a pair of maps
( f ,g). The instance mapping f maps instances I of Π to instances f (I) of Γ, and for
any solution y ∈ Sol( f (I)) the solution mapping g maps the pair (I,y) to a solution
g(I,y) ∈ Sol(I) of Π. In order to avoid meaningless reductions, it is required that
Sol( f (I)) , ∅ if Sol(I) , ∅. We require that the instance mapping f is computable in
polynomial time. Etessami and Yannakakis [85] defined the notion of SL-reductions
where the solution mapping g is separable linear. This means there exists a map
π : {1, . . . ,dI} → {1, . . . ,d f (I)} and rational constants ai,bi, i = 1, . . . ,dI , such that for
y ∈ Sol( f (I)) one has that x = g(I,y) is given by xi = aiyπ(i)+bi for all i.5 The map π
and the constants ai,bi should be computable from I in polynomial time.

We are now ready to define the class FIXP.

Definition 3.2.5 (FIXP). The class FIXP consists of all search problems with real-
valued search space that SL-reduce to a basic FIXP problem for which the domain DI

is a convex polytope described by a set of linear inequalities with rational coefficients
and the function FI is defined by an algebraic circuit CI .

In our definition of basic FIXP problems, we have assumed that the domains of
the functions are polytopes. However, the definition of the class FIXP is robust
to modifications of the definition of basic FIXP problems [85]. For example, the
basic FIXP problems could have been defined as having for instance unit-balls Bd

p as
domains, p ∈ [1,∞], and one could have allowed the functions FI to be computed by
circuits over {+,−,∗,÷,max,min, k

√
}.

Note that if we only allow the gates {+,−,∗c,max,min} (where “∗c” denotes
multiplication by a constant) in the definition of FIXP, then we instead obtain the
class Linear-FIXP. It is known that Linear-FIXP = PPAD [85]. In other words, the
difference between FIXP and PPAD comes from the added power of the general
multiplication gate.

3.3 The OPT-gate

In this section, we present a new technique for proving membership in FIXP. Namely,
we introduce the OPT-gate: a gate that can essentially solve Linear Programs, under
some minor conditions. This gate can be used like any other gate for the purpose of
proving FIXP-membership. We begin with a motivating example in Section 3.3.1 and
then present some obstacles to constructing the OPT-gate, which lead us to define the
notion of a pseudogate in Section 3.3.2. Using this notion we show how to construct
an OPT-gate that solves LPs (Section 3.3.3) and even more general convex programs
(Section 3.3.4).

5This allows one, for example, to project away auxiliary variables.



3.3. The OPT-gate 41

3.3.1 A motivating example: Nash equilibrium computation

To provide an example of how the OPT-gate could be used, we consider the classical
problem of computing a Nash equilibrium in a normal form game.

Normal form game. There are n players and every player i ∈ [n] := {1,2, . . . ,n}
has a finite set of pure strategies S i = [mi] and a payoff function ui : S → R, where
S := S 1× · · ·×S n. A mixed strategy of player i is a probability distribution on S i. We
let Σi := ∆(S i) denote the set of all such distributions, i.e., Σi := {y ∈ Rmi

≥0 :
∑

j y j = 1}.
In other words, Σi is the (mi−1)-dimensional unit simplex. A mixed strategy profile
is a vector x ∈ Σ := Σ1× · · ·×Σn, where xi ∈ Σi is the mixed strategy played by player
i in the strategy profile x. For j ∈ S i = [mi], the jth coordinate of xi is denoted xi, j

and it corresponds to the probability that player i plays its pure strategy j. The payoff
function ui can be extended to all mixed strategy profiles to obtain the expected payoff
function ũi : Σ→ R where

ũi(x) = E
ji∼xi

[ui( j1, . . . , jn)] =
∑

( j1,..., jn)∈S

x1, j1 · · · xn, jnui( j1, . . . , jn).

For a mixed strategy profile x ∈ Σ and a mixed strategy x′i ∈ Σi for player i, we
let (x′i , x−i) ∈ Σ denote the mixed strategy profile where xi has been replaced by x′i .
A mixed strategy profile x ∈ Σ is a Nash equilibrium if for every player i and every
mixed strategy x′i ∈ Σi it holds that ũi(x) ≥ ũi(x′i , x−i). In other words, no player can
improve its expected utility by unilaterally modifying its strategy.

Computational problem. We consider the problem of computing a Nash equilib-
rium of a normal form game, where the payoff functions ui are given explicitly, i.e., for
every i ∈ [n] and every ( j1, . . . , jn) ∈ S , the value ui( j1, . . . , jn) is provided as a rational
number. By Nash’s theorem such an equilibrium always exists [177].

The simplest proof of Nash’s theorem uses Kakutani’s fixed point theorem (The-
orem 3.2.2). However, prior to our work, it was not known how to use this proof to
prove membership of the computational problem in FIXP. Instead, the membership
in FIXP was shown by relying on an alternative proof of Nash’s theorem that uses
Brouwer’s fixed point theorem [85].

Now assume for an instant that we allow an extra gate in the definition of FIXP,
namely the OPT-gate: a gate that can solve a Linear Program (LP). To be more precise,
assume that the gate takes as input the description of an LP of the form

maximize cTx

subject to Ax ≤ b

namely, it takes as input c,A,b and it outputs an optimal solution of the LP.
If such a gate was allowed in the construction of a FIXP-circuit, then the FIXP-

membership of the Nash problem would essentially follow immediately. Indeed,
note that at a Nash equilibrium x, every player maximizes its utility given the mixed



42 Chapter 3. FIXP-membership via Convex Optimization

strategies chosen by the other players. In other words, the mixed strategy xi played by
player i is an optimal solution of the following LP, where the variables are y ∈ Rmi :

maximize ũi(y, x−i)

subject to
mi∑
j=1

y j = 1

y j ≥ 0 j = 1, . . . ,mi

(3.1)

Note that this is indeed an LP, since ũi(y, x−i) is linear in y.
In more detail, the FIXP-circuit F for this problem would be constructed as follows.

On input x = (x1, . . . , xn), it outputs F(x) = (F1(x), . . . ,Fn(x)), where Fi(x) ∈ Rmi is an
optimal solution of the corresponding LP (3.1). Since the LP (3.1) can be put in the
form needed for the hypothetical OPT-gate above by replacing the equality constraint
by two inequality constraints, we can use the hypothetical gate for solving an LP for
this. In more detail, the inputs to the gate will be A and b that encode the inequality
constraints, and the vector c for the objective function, which will depend on the
values of the other inputs x−i. Clearly, any fixed point of F is a Nash equilibrium of
the game.

This simple example already shows how such a gate could make some FIXP-
membership results very easy to prove. Importantly, the technique also feels very
“natural”, because it can be applied almost immediately given the description of the
problem, without the need to reformulate the problem in any way. Indeed, in this
example, the FIXP-membership is essentially immediately obtained from the simple
proof of Nash’s theorem based on Kakutani’s fixed point theorem.

Unfortunately, this “ideal” gate described above is in fact too good to be true.
Indeed, there are some fundamental obstacles to constructing such a gate using the
standard gates allowed in FIXP-circuits.

3.3.2 Pseudogates: Circumventing obstacles to the construction of an
OPT-gate

We consider the task of constructing a gate that solves LPs. To be more precise, we
would like to use the standard algebraic gates allowed in a FIXP-circuit to construct,
for any n ∈ N and m ∈ N0 (where N0 = N∪{0}), a new gate Gn,m that takes as input
c ∈ Rn, A ∈ Rm×n and b ∈ Rm, and outputs an optimal solution to the following LP:

maximize cTx

subject to Ax ≤ b
(3.2)

Obstacle 1. Any function mapping the description of an LP to an optimal solution of
the LP cannot be continuous everywhere. This holds even for very simple LPs.



3.3. The OPT-gate 43

As an example for this obstacle, consider the following very simple LP:

maximize x1v1+ x2v2

subject to x1+ x2 = 1

x1, x2 ≥ 0

(3.3)

where the variables are x1, x2, and v1,v2 ∈ R are external parameters. Clearly, our gate
should be able to solve the following task: given v1,v2 as input, output any optimal
solution of the LP. However, note that this function is not continuous: when v1 > v2 it
outputs (x1, x2) = (1,0), but when v1 < v2 it outputs (x1, x2) = (0,1). Thus, there is no
hope of implementing a gate computing this function by using the gates allowed in a
FIXP-circuit, which are all continuous.

Pseudogates: The power of fixed point computation. The crucial observation that
allows us to go beyond this impossibility result is the following: when the gate is used
inside a FIXP-circuit F, it does not have to work correctly for all inputs x to F; it
suffices if it works correctly whenever the input to F is a fixed-point x∗ of F. Indeed,
in order to prove the membership of some problem in FIXP using F, we have to show
that any fixed point x∗ of F yields a solution to the problem. Thus, we only care about
the behavior of the gate when the input to F is some fixed point x∗. Of course, the
gate should remain well-defined for all inputs x, namely not divide by zero, etc.

This observation essentially allows us to use an additional—very powerful—tool
in the construction of the gate: fixed point computation. In order to illustrate this
point, we show how this tool can be used to construct a “gate” that computes the
so-called Heaviside step function. For our purposes, we define the Heaviside function
as the correspondence H: R⇒ [0,1] with

H(x) =


1 if x > 0
[0,1] if x = 0
0 if x < 0

.

We would like a gate that on input x, outputs any y ∈ H(x). Clearly, a gate that is
constructed using only the standard FIXP-gates cannot compute H, which is discon-
tinuous at x = 0. Indeed, note that the Heaviside function is closely related to the
example LP (3.3) above. If we had a gate computing the Heaviside function, then
by computing y ∈ H(v1− v2) and then outputting (y,1− y), we would simulate a gate
solving (3.3). Similarly, if we had a gate solving the LP (3.3), then by computing a
solution (x1, x2) to the LP (3.3) with parameters (v1,v2) = (x,0), and outputting x1, we
would simulate a gate for H.

Let us now see how we can construct a “gate” computing the Heaviside function H.
Consider the function G : R× [0,1]→ [0,1] given by G(x,y) =min(1,max(0, x+ y)).
Let us examine the fixed points of G, where we think of x as being fixed or an external
parameter. If x > 0, then the fixed point condition G(x,y) = y implies that y must be
equal to 1. If x < 0, then the fixed point condition implies that y = 0. Finally, when



44 Chapter 3. FIXP-membership via Convex Optimization

x = 0, the fixed point condition implies that y can take any value in [0,1]. In particular,
note that we always have y ∈ H(x).

How can we use this to prove membership in FIXP? Imagine that we can reduce
our problem of interest to the problem of finding a fixed point of a correspondence
F : D⇒ D, i.e., a point x ∈ D with x ∈ F(x). Imagine, further, that we can construct a
circuit computing F that uses the standard gates, but also a gate computing H. Then,
we can construct a FIXP-circuit F̃ for this problem by replacing the gate for H in F by
the function G defined above. In more detail, if we want to use a gate computing H with
some input x, we instead compute G(x,y), where y is an additional input to F̃. We also
add this value G(x,y) as an additional output to F̃ (namely, the output corresponding
to the new input y). As a result, we obtain a FIXP-circuit F̃ : D× [0,1]→ D× [0,1]
that only uses the standard gates and is such that any fixed point (z,y) of F̃ satisfies
z ∈ F(z). In other words, finding a fixed point of the correspondence F reduces to
finding a fixed point of the function F̃, which is a standard FIXP-circuit. In the
case where F makes use of multiple gates computing H, every occurrence of the
gate will be replaced by the construction above using G. In particular, if the gate
for H is used ℓ times, then we will obtain F̃ : D× [0,1]ℓ → D× [0,1]ℓ such that
F̃(z,y1, . . . ,yℓ) = (z,y1, . . . ,yℓ) =⇒ z ∈ F(z).

As a result, when constructing a FIXP-circuit for some problem, we can assume
that we also have access to a gate computing H. However, one should keep in mind
that the gate is only guaranteed to work correctly at a fixed point of the circuit. In
order to stress this limitation, we say that we have a pseudogate computing H. Note
that for the purpose of proving membership in FIXP, a pseudogate is just as good as a
normal gate. We now present these ideas more formally.

Definition 3.3.1. Let A ⊆ Rn, and let B ⊂ Rℓ be a nonempty, compact, and convex set.
For any continuous function G : A×B→ Rm×B we let FixB[G] denote the correspon-
dence induced by G with fixed-point constraints on B. Formally, the correspondence
FixB[G] : A⇒ Rm is defined as

x 7→ {z ∈ Rm : ∃y ∈ B G(x,y) = (z,y)}.

When f = FixB[G] we will say that G is a fixed-point representation of f . We will
often have B= [0,1]ℓ for some ℓ ∈N, in which case we will use Fixℓ as an abbreviation
for Fix[0,1]ℓ .

Example 1. The function GH : R×[0,1]→R×[0,1], (x,y) 7→ (y,min(1,max(0, x+y))),
is a fixed-point representation of the Heaviside function H, i.e., Fix1[GH] = H. Now
let us consider a function similar to the Heaviside function, but which will require us
to have the first output of G be something other than just y itself. Let f : R⇒ R be
defined by

f (x) =


x+1 if x > 0
[0,1] if x = 0
x if x < 0

.



3.3. The OPT-gate 45

Then a fixed-point representation of f is given by

G f : R× [0,1]→ R× [0,1], (x,y) 7→ (x+ y,min(1,max(0, x+ y)))

i.e., Fix1[G f ] = f .

Definition 3.3.2. Let A ⊆ Rn and let f : A⇒ Rm be a correspondence. We say that
there is a pseudogate computing f if there exists ℓ ∈ N0 and an algebraic circuit
computing G : A× [0,1]ℓ→ Rm× [0,1]ℓ such that for all x ∈ A, Fixℓ[G](x) ⊆ f (x).

The algebraic circuit computing G can use any of the standard gates allowed in
FIXP-circuits, and should be well-defined, in the sense that it never divides by zero,
never takes the square root of a negative number, etc. Note that by Brouwer’s fixed
point theorem, Fixℓ[G](x) is never empty. Thus, if there is a pseudogate computing
some correspondence f , then f must be nonempty-valued. For a discussion about why
Definition 3.3.2 uses “Fixℓ[G](x) ⊆ f (x)” instead of “Fixℓ[G](x) = f (x)” see Remark 1
at the end of the section.

Using this terminology we can now formally state:

Lemma 1. There exists a pseudogate computing the Heaviside function H: R⇒ [0,1].

Proof. The function GH : R× [0,1]→ R× [0,1], (x,y) 7→ (y,min(1,max(0, x+ y))),
can be represented by an algebraic circuit using the gates +,max,min and rational
constants 0 and 1. Furthermore, it is easy to see that Fix1[GH] = H. □

The pseudogate for the Heaviside function will be a crucial building block for
the construction of the OPT-gate. In fact, as mentioned above, the pseudogate for H
essentially immediately yields a pseudogate solving the simple LP (3.3).

Note that a (potential) pseudogate for our general LP (3.2) will necessarily depend
on n and m, namely the number of variables and constraints, respectively. As a result,
we say that a pseudogate solves such an LP, if, given n,m we can, in polynomial time
in n and m, construct a pseudogate solving the LP for fixed n and m.

Can we construct a pseudogate for the general LP (3.2)? Unfortunately, there are
a few more obstacles.

Obstacle 2. A pseudogate cannot solve a general LP without some explicit bound on
the feasible region.

As an example, consider the following LP, which corresponds to letting n = 1,
m = 2, c = 1, A = (a,−1)T and b = (1,0) in (3.2):

maximize x

subject to ax ≤ 1

x ≥ 0

where the variable is x ∈ R. The solution to this LP is x = 1/a when a > 0, and the LP
is unbounded when a ≤ 0.



46 Chapter 3. FIXP-membership via Convex Optimization

Assume that we have a pseudogate solving the LP (3.2) and we use it to solve the
LP above. It is reasonable to only demand that the pseudogate solve the LP correctly
when a > 0. However, the pseudogate—or, to be more precise, the continuous function
G implementing it—should be well-defined for all a ∈ R. In particular, it should never
divide by zero or take a square root of a negative number. This is to ensure that the
pseudogate can really be used like a normal gate without a second thought.

Unfortunately, this means that no pseudogate can be constructed for LP (3.2).
Indeed, by Definition 3.3.2, the existence of such a pseudogate would imply the
existence of an algebraic circuit G : R× [0,1]ℓ → R× [0,1]ℓ such that Fixℓ[G](a) =
{1/a} for all a > 0. In particular, Fixℓ[G](a) would be unbounded when a tends to 0
from above. However, this is a contradiction to the continuity of G, which says that
G([0,1]× [0,1]ℓ) must be compact and thus, in particular, bounded.

Explicitly bounded domain. This issue can be resolved by introducing an explicit
bound on the feasible region, namely by replacing (3.2) by:

maximize cTx

subject to Ax ≤ b

x ∈ [−R,R]n

(3.4)

where R ∈ R>0. Note that the notation “ x ∈ [−R,R]n ” is used for convenience here;
this constraint can equivalently be rewritten as “−R ≤ xi ≤ R,∀i ”.

Importantly, the parameter R is not fixed, but is just another input to the gate, like
c, A and b. As a result, this explicit bound is not a significant limitation, since in
most applications it is straightforward—or even trivial—to provide such a bound. For
example, in the problem of computing a Nash equilibrium, the LP (3.1) that we used
is clearly bounded with R = 1.

If we are only interested in finding a feasible point of the LP (3.4), or equivalently
in solving the LP when c = 0, then indeed there exists a pseudogate for that! However,
there is still one last obstacle to constructing a pseudogate that solves (3.4).

Obstacle 3. A pseudogate cannot solve a general LP without some constraint qualifi-
cation.

A constraint qualification is some property that the constraints must satisfy. Impor-
tantly, it is a property of the constraints and not of the feasible region. In other words,
when a feasible region can be represented by various different sets of constraints,
some of them may satisfy the constraint qualification, and others not.

As an example for this obstacle, consider the following LP:

maximize x2

subject to x1+ax2 ≤ 0

x1 ≥ 0

x ∈ [−1,1]n



3.3. The OPT-gate 47

Note that for a = 0 the optimal solution is (x1, x2) = (0,1), while for a > 0 it is
(x1, x2) = (0,0). Clearly, this LP can be expressed in the form (3.4) by letting n = 2,
m = 2, and

c =
(
0
1

)
, A =

(
1 a
−1 0

)
, b =

(
0
0

)
, R = 1.

Thus, a pseudogate for (3.4) should in particular correctly solve this LP for any
a ∈ [0,1]. According to Definition 3.3.2, this would mean that there exists an algebraic
circuit G : [0,1]× [0,1]ℓ→ R2× [0,1]ℓ such that Fixℓ[G](a) = {(0,0)} for all a ∈ (0,1],
and Fixℓ[G](0) = {(0,1)}. However, this contradicts the continuity of G.

Indeed, consider the sequence (an)n where an = 1/n > 0. For any n ∈ N, let
yn ∈ [0,1]ℓ be a fixed point of the function h : [0,1]ℓ→ [0,1]ℓ, y 7→G2(an,y), where
G2(an,y) ∈ [0,1]ℓ denotes the second output of G on input (an,y). Recall that such a
fixed point must exist by Brouwer’s fixed point theorem. Since (yn)n is a sequence in
the compact set [0,1]ℓ, it has a subsequence (ynk )k that converges to some y ∈ [0,1]ℓ.
Note that for all k ∈ N we have G(ank ,ynk ) = ((0,0),ynk ), because Fixℓ[G](ank ) =
{(0,0)}. Now, since ank → 0, ynk → y, and by the continuity of G, it follows that
G(0,y) = ((0,0),y). However, this implies that (0,0) ∈ Fixℓ[G](0), a contradiction to
Fixℓ[G](0) = {(0,1)}.

The issue in this example essentially stems from the fact that, when a = 0, the
two inequality constraints are equivalent to a single equality constraint. In fact, it
is possible to construct a pseudogate for (3.4) that works as long as this does not
happen, i.e., as long as the constraint qualification {x ∈ (−R,R)n : Ax < b} , ∅ holds
(where < is componentwise). However, this rules out equality constraints, which we
would clearly like our pseudogate to be able to handle, in particular for the Nash
problem. To address this issue, in the next section we consider a modified formulation
of our LP that allows explicit equality constraints and we show that we can construct
a pseudogate that solves it as long as a well-known constraint qualification holds.

In particular, our constraint qualification will require the equality constraints to be
linearly independent. As an example for why the linear independence of the equality
constraints is needed, consider the following LP:

maximize x2

subject to x1+ax2 = 0

x1 = 0

x ∈ [−1,1]n

By the same arguments as above, it can be shown that a pseudogate cannot solve this
LP correctly for all a ∈ [0,1].

Remark 1. The attentive reader might look at the definition of a pseudogate (Defini-
tion 3.3.2) and wonder why the condition “Fixℓ[G](x) ⊆ f (x)” is not simply replaced
by “Fixℓ[G](x) = f (x)”. Indeed, the pseudogate presented above for the Heaviside
function does satisfy the condition with equality. In fact, using Brouwer’s fixed point
theorem, it is not too hard to show that any pseudogate computing H will satisfy the



48 Chapter 3. FIXP-membership via Convex Optimization

condition with equality. However, consider now the following modification of the
Heaviside function:

Ĥ(x) =


1 if x > 1
[0,1] if x ∈ [0,1]
0 if x < 0

.

Note that the pseudogate GH we provided above for H is also a pseudogate for Ĥ,
but we now have Fix1[GH](1) ⊊ Ĥ(1). This begs the question of whether we lose
anything by allowing the pseudogate to only compute a subset of the output of the
initial correspondence. For the purpose of proving membership in FIXP the answer
is no. Ultimately, we only want to show that any fixed point of the circuit that we
construct satisfies some conditions (e.g., is a Nash equilibrium). Using a pseudogate
that enforces a stronger condition than actually intended will not make this any harder.
The important thing to note is that the constructed circuit will always have a fixed
point, and thus, even if we use pseudogates that enforce stronger conditions than
intended, there is no risk of the conditions being “too strong.” Thus, in this context,
there is no reason to require equality in Definition 3.3.2, since we only really care
about the containment in one direction. Is there any setting where we would care about
having equality? The only setting that comes to mind is if one is not only interested
in proving FIXP-membership, but wants to construct a circuit such that there is a
one-to-one correspondence between its fixed points (perhaps after projecting away
some coordinates) and the solutions of the problem that is studied.

3.3.3 The OPT-gate for Linear Programming

We consider the following LP formulation, which includes explicit equality constraints
and an explicit bound on the feasible region:

maximize cTx

subject to Ax = b

Cx ≤ d

x ∈ [−R,R]n

(3.5)

where x ∈ Rn is the vector of unknown variables, c ∈ Rn defines the objective function,
and the constraints are given by A ∈ Rm×n, b ∈ Rm, C ∈ Rk×n, d ∈ Rk, and R ∈ R>0.

We introduce the following constraint qualification for our LP formulation.

Definition 3.3.3. We say that the explicit Slater condition is satisfied by the LP (3.5)
if the following two conditions hold:

1. non-empty interior: there exists x ∈ (−R,R)n with Ax = b and Cx < d (compo-
nentwise),

2. linear independence: the rows of A are linearly independent.



3.3. The OPT-gate 49

The Slater condition [202] is very popular in convex optimization, where it is
usually defined using only the first condition. This is without loss, because the
second condition can always be enforced with some additional preprocessing (namely,
eliminating redundant equality constraints). For our purpose, however, the second
condition is required because we cannot perform the usual preprocessing inside an
algebraic circuit. To avoid any confusion, we thus refer to the two conditions above as
the explicit Slater condition.

The main result of this section can now informally be stated as:

The OPT-gate for Linear Programs

There exists a pseudogate for the LP formulation (3.5). This pseudogate has the
following guarantees:

• when the feasible region of the LP is non-empty, it outputs a feasible point.

• when the LP satisfies the explicit Slater condition, it outputs an optimal
solution.

This pseudogate can be used like any other algebraic gate for the purpose of
proving membership in FIXP.

The informal statement above is formally stated in Theorem 3.3.1 below. Note that
with the OPT-gate we can in particular directly prove the FIXP-membership of the
Nash problem (Section 3.3.1), since the explicit Slater condition is trivially satisfied
by all the LPs in question.

To formalize the statement, we think of the LP (3.5) as being parameterized by
the tuple (c,A,b,C,d,R). Thus, after fixing n ∈ N and m,k ∈ N0, we can define the
parameter space

Pn,m,k = R
n×Rm×n×Rm×Rk×n×Rk ×R>0.

For any choice of parameters p = (c,A,b,C,d,R) ∈ Pn,m,k we let LP(p) denote the
corresponding LP formulated in (3.5). We will use Feas(LP(p)) and Opt(LP(p)) to
denote its set of feasible and optimal solutions, respectively. The main result of this
section can be stated formally as follows.

Theorem 3.3.1. Given n ∈ N and m,k ∈ N0 we can construct an algebraic circuit
G : Pn,m,k × [0,1]ℓ → Rn × [0,1]ℓ in time poly(n,m,k) such that for any parameters
p = (c,A,b,C,d,R) ∈ Pn,m,k it holds:

• if the feasible region of LP(p) is non-empty, i.e., Feas(LP(p)) , ∅, then

Fixℓ[G](p) ⊆ Feas(LP(p)).



50 Chapter 3. FIXP-membership via Convex Optimization

• if LP(p) satisfies the explicit Slater condition (Definition 3.3.3), then

Fixℓ[G](p) ⊆ Opt(LP(p)).

Theorem 3.3.1 follows from the more general Theorem 3.3.2, which is stated and
proved in the next section.

3.3.4 The OPT-gate for Convex Optimization

We can apply the approach presented above to the more general setting of convex
optimization. Consider a Convex Program (CP) of the following form:

minimize f (x)

subject to Ax = b

gi(x) ≤ 0 i = 1, . . . ,k

x ∈ [−R,R]n

where f : Rn→ R and gi : Rn→ R, i = 1, . . . ,k, are convex functions, and, as before,
the remaining constraints are given by A ∈ Rm×n, b ∈ Rm, and R ∈ R>0.

For this setting we can again define the appropriate explicit Slater condition.

Definition 3.3.4. We say that the explicit Slater condition is satisfied by the Convex
Program (3.6) if the following two conditions hold:

1. non-empty interior: there exists x ∈ (−R,R)n with Ax = b and gi(x) < 0 for
i = 1, . . . ,k,

2. linear independence: the rows of A are linearly independent.

The main result of this section can now informally be stated as follows:

The OPT-gate for Convex Optimization

There exists a pseudogate for the Convex Program (CP) (3.5). This pseudogate
has the following guarantees:

• when the feasible region of the CP is non-empty, it outputs a feasible point.

• when the CP satisfies the explicit Slater condition, it outputs an optimal
solution.

This pseudogate can be used like any other algebraic gate for the purpose of
proving membership in FIXP.

For a formal statement, see Theorem 3.3.2 below.



3.3. The OPT-gate 51

Parameters. On the way to making this statement formal, we need to allow various
parts of the optimization problem to depend on a set of parameters (which are going
to be the inputs to our pseudogate). Clearly, A, b and R are such parameters—as
before—but we would also like the objective function f and the inequality constraints
gi to be parameterized (even just to be able to encode the LP (3.5) from the previous
section). To address this, we introduce an additional parameter w ∈Rs and reformulate
the optimization problem as follows:

minimize f (x ;w)

subject to Ax = b

gi(x ;w) ≤ 0 i = 1, . . . ,k

x ∈ [−R,R]n

(3.6)

where f : Rn ×Rs → R and gi : Rn ×Rs → R, i = 1, . . . ,k, are continuous functions
such that f (· ;w) and gi(· ;w) are convex functions for any w ∈ Rs. Note that x ∈ Rn is
still the vector of unknown variables and w is simply an additional external parameter,
just like A, b and R, and is thus treated as completely fixed when optimizing.

After fixing n ∈N and m,k, s ∈N0, as well as the functions f and gi, i = 1, . . . ,k, we
can define the parameter space Pn,m,k,s, f ,g =R

s×Rm×n×Rm×R>0. To simplify notation
we write Pn,m, f ,g to mean Pn,m,k,s, f ,g, since k and s are, in a certain sense, also implicitly
given by f and g = (g1, . . . ,gk). For any choice of parameters p = (w,A,b,R) ∈ Pn,m, f ,g

we let CP(p) denote the corresponding CP formulated in (3.6). As before, we will
use Feas(CP(p)) and Opt(CP(p)) to denote its set of feasible and optimal solutions,
respectively. As above, the parameters p = (w,A,b,R) ∈ Pn,m, f ,g will be the inputs of
the pseudogate we construct.

Representation of functions and subgradients. For computational purposes, we
assume that the functions f and gi are given as algebraic circuits. However, we will
also need access to subgradients of these functions.

Definition 3.3.5. Let A ⊆ Rn be a convex set and let f : A→ R be a convex function.
A vector v ∈ Rn is a subgradient of f at the point x ∈ A if, for all y ∈ A,

f (y)− f (x) ≥ v · (y− x).

We let ∂ f (x) denote the subdifferential of f at x, namely the set of all subgradients of
f at x.

If f is a concave function instead, then the superdifferential of f at x is given by
∂ f (x) := −∂(− f )(x). In that case, the elements of ∂ f (x) are called supergradients.

The subdifferential has the following well-known properties (see, e.g., [191]).

Lemma 2. Let A ⊆ Rn be a convex set and let f : A→ R be a convex function. Then
it holds that:

• ∂ f (x) is a closed convex set for all x ∈ A,



52 Chapter 3. FIXP-membership via Convex Optimization

• ∂ f (x) is nonempty for all x ∈ rel int A,

• if f is differentiable at x, then ∂ f (x) = {∇ f (x)},

• x⋆ ∈ A is a global minimum of f on A, if and only if 0 ∈ ∂ f (x⋆).

Note that since f (· ;w) and gi(· ;w), i = 1, . . . ,k, are convex functions defined
over Rn, the subdifferentials ∂ f (· ;w), ∂gi(· ;w) : Rn⇒ Rn, i = 1, . . . ,k, are guaranteed
to exist and be nonempty. For our purposes we will assume that we are given
pseudogates computing these subgradients. In other words, we assume that we are
given algebraic circuits G∂ f ,G∂gi : Rn ×Rs × [0,1]ℓ → Rn × [0,1]ℓ, i = 1, . . . ,k, such
that Fixℓ[G∂ f ](x,w) ⊆ ∂ f (x ;w) and Fixℓ[G∂gi](x,w) ⊆ ∂gi(x ;w), i = 1, . . . ,k, for all
x,w ∈ Rn ×Rs. See Section 3.7 for an example of how such pseudogates can be
constructed.

Example 2. As an example, let us see why our convex optimization setting (3.6)
is indeed a generalization of our LP setting (3.5). To go from (3.5) to (3.6) we set
s = n+ kn+ k and decompose w = (c,C,d) ∈ Rn×Rk×n×Rk accordingly. Then we let
f (x ;w) = −cTx and gi(x ;w) = CT

i x−di for i = 1, . . . ,k, where Ci denotes the ith row
of C. As a result, it is easy to see that the subdifferentials are in fact gradients, namely
∇ f (x ;w) = −c and ∇gi(x ;w) = Ci. Clearly, the functions are convex for any fixed
value of w, and both the functions and their subdifferentials can easily be expressed
as algebraic circuits. In particular, this means that Theorem 3.3.2 below implies
Theorem 3.3.1.

We can now formally state the main result of this section.

Theorem 3.3.2. Given n ∈ N, m,k, s ∈ N0 and G∂ f , gi, G∂gi , i = 1, . . . ,k, we can con-
struct an algebraic circuit G : Pn,m, f ,g× [0,1]ℓ→ Rn× [0,1]ℓ in polynomial time in the
input length poly(n,m,k, s,size(G∂ f ),size(g),size(G∂gi)) such that for any parameters
p = (w,A,b,R) in Pn,m, f ,g it holds:

• if the feasible region of CP(p) is non-empty, i.e., Feas(CP(p)) , ∅, then

Fixℓ[G](p) ⊆ Feas(CP(p)).

• if CP(p) satisfies the explicit Slater condition, then

Fixℓ[G](p) ⊆ Opt(CP(p)).

Remark 2. First of all, note that according to the statement of Theorem 3.3.2, the
construction does not actually need access to an algebraic circuit computing f , but
only to a pseudogate for ∂ f . However, it requires both a circuit for gi and a pseudogate
for ∂gi. Furthermore, a careful examination of the proof of Theorem 3.3.2 below
reveals that the construction also works if the functions f and gi are pseudoconvex,



3.3. The OPT-gate 53

instead of convex. A differentiable function f : A→ R, where A ⊆ Rn is an open
convex set, is said to be pseudoconvex if for all x,y ∈ A it holds that

f (y) < f (x) =⇒ ∇ f (x) · (y− x) < 0.

Any differentiable convex function is pseudoconvex, but every pseudoconvex function
is not necessarily convex. Furthermore, every convex function is not necessarily
pseudoconvex, because it might not be differentiable. It is possible to define a notion
that generalizes both convexity and pseudoconvexity, and to state Theorem 3.3.2 with
this notion, but for simplicity we have stated it only for convex functions above.

3.3.5 Proof of Theorem 3.3.2

High-level idea. We want to construct a circuit G that takes as input (w,A,b,R) ∈
Pn,m, f ,g and y ∈ [0,1]n, and outputs z ∈ Rn and y ∈ [0,1]n, such that if y = y, then z is
an optimal solution of CP(w,A,b,R) (when CP(w,A,b,R) satisfies the explicit Slater
condition). The circuit G will roughly perform the following computations:

1. Compute x := 2Ry−R, i.e., scale y ∈ [0,1]n into a point x in [−R,R]n.

2. Compute µi ∈ H(gi(x ;w)) and λ j ∈ 2H(a j · x− b j)− 1 for i = 1, . . . ,k, and j =
1, . . . ,m, where H denotes the Heaviside function.

3. Compute µ0 := 1−max(µ1, . . . ,µk, |λ1|, . . . , |λm|).

4. Compute v0 ∈ ∂ f (x ;w) and vi ∈ ∂gi(x ;w) for i = 1, . . . ,k.

5. Compute

z := ΠR

(
x−µ0v0−

k∑
i=1

µivi−

m∑
j=1

λ ja j

)
where ΠR denotes projection to [−R,R]n.

6. Compute y := (z+R)/2R, i.e., scale z ∈ [−R,R]n back into a point y in [0,1]n.

7. Output (z,y).

Note that steps 2 and 4 compute correspondences and will actually be implemented by
pseudogates, which will require us to add more auxiliary variables (which we denote
by y′ in the full construction).

Now assume that y = y. By construction of the circuit, it follows that x = z. For
simplicity, assume that x ∈ (−R,R)n (the case where x lies on the boundary is handled
in the full proof below). Then, from x = z it follows that

µ0v0−

k∑
i=1

µivi−

m∑
j=1

λ ja j = 0.



54 Chapter 3. FIXP-membership via Convex Optimization

Using this equation, we show that by construction of µ and λ, it must be that x ∈
Feas(CP((w,A,b,R))), if this feasible region is non-empty. Furthermore, again by
construction, we additionally have that (µ,λ) , (0,0), µ ≥ 0 (componentwise), and
gi(x ;w) < 0 =⇒ µi = 0 for all i = 1, . . . ,k. Taking all these conditions together, it
follows that x satisfies the so-called Fritz John conditions [146, 164], which are
necessary conditions for optimality of x. Now, by using the explicit Slater condition,
we can show that µ0 = 0. In that case, the Fritz John conditions become the well-known
Karush-Kuhn-Tucker (KKT) conditions [151, 158]. Given that we have a convex
program, the KKT conditions are also sufficient for optimality. Thus, it follows that x
is an optimal solution, i.e., x ∈ Opt(CP((w,A,b,R))). The full proof that we present
below does not assume any knowledge of the various optimality conditions mentioned
here.

Notation. Let GH : R× [0,1]→ R× [0,1] denote the algebraic circuit which imple-
ments the pseudogate computing the Heaviside function H, as given by Lemma 1, i.e.,
such that Fix1[GH](x) ⊆ H(x) for all x ∈ R.

For i = 1, . . . ,k let gi : Rn ×Rs→ R denote the algebraic circuits computing the
functions for the inequality constraints. For i = 1, . . . ,k let G∂gi : Rn×Rs× [0,1]t →

Rn × [0,1]t denote an algebraic circuit which implements a pseudogate computing
the subdifferential ∂gi, i.e., such that Fixt[G∂gi](x,w) ⊆ ∂gi(x ;w) for all (x,w) ∈ Rn×

Rs. Similarly, let G∂ f : Rn ×Rs × [0,1]t → Rn × [0,1]t denote an algebraic circuit
which implements a pseudogate computing the subdifferential ∂ f , i.e., such that
Fixt[G∂ f ](x,w) ⊆ ∂ f (x ;w) for all (x,w) ∈ Rn ×Rs. Note that we have assumed that
G∂ f , G∂g1 , . . . ,G∂gk all use the same number t of auxiliary inputs/outputs. This is
without loss of generality, because additional auxiliary inputs/outputs can be added to
such a circuit without altering the represented correspondence.

Construction of the algebraic circuit G. We now describe in detail the construction
of the algebraic circuit G : Pn,m, f ,g× [0,1]ℓ→ Rn× [0,1]ℓ. The circuit G has exactly
ℓ = n+ k+m+ t(k+1) auxiliary inputs/outputs. We denote the input to circuit G by
(w,A,b,R,y,y′) where (w,A,b,R) ∈ Pn,m, f ,g are the parameters for the convex program
(i.e., the inputs to the pseudogate we are constructing), y ∈ [0,1]n are the first n
auxiliary inputs, and y′ ∈ [0,1]ℓ−n are the remaining ℓ−n = k+m+ t(k+1) auxiliary
inputs. The output of the circuit is denoted by (z,y,y′), where z ∈ Rn is the primary
output (i.e., the actual output of the pseudogate we are constructing), y ∈ [0,1]n are
the first n auxiliary outputs, and y′ ∈ [0,1]ℓ−n are the remaining n− ℓ auxiliary outputs.
We now describe how the outputs of the circuit are computed using the inputs and
standard algebraic gates.

The circuit G begins by computing the vector x ∈ [−R,R]n as x := 2Ry−R. This
simply corresponds to scaling y ∈ [0,1]n to a vector in [−R,R]n, and can clearly be
computed using the standard algebraic gates. Next, G uses the given algebraic circuits
gi to compute g1(x ;w), . . . ,gk(x ;w). Then, for each i = 1, . . . ,k, the circuit computes
µi ∈H(gi(x ;w)) by using the pseudogate computing H. To be more precise, the circuit



3.3. The OPT-gate 55

computes (µi,y′i) :=GH(gi(x ;w),y′i), using the algebraic circuit GH. Note that when
y′i = y′i , we indeed have µi ∈ H(gi(x ;w)), as desired.

For j = 1, . . . ,m let a j ∈ R
n denote the jth row of the matrix A. In particular,

the jth equality constraint can be written as a j · x = b j. The next step is to compute
λ j ∈ 2H(a j · x−b j)−1 for each j = 1, . . . ,m, again by using the pseudogate computing
H. Formally, this means that the circuit sets (λ′j,y

′
k+ j) :=GH(a j · x−b j,y′k+ j) and then

λ j := 2λ′j−1. Note that the computation of the µi’s and the λ j’s has used up exactly
k+m coordinates of the auxiliary inputs/outputs y′,y′, which means that t(k+1) are
still available at this point.

Next, the circuit computes v0 ∈ ∂ f (x ;w) and vi ∈ ∂gi(x ;w) for i= 1, . . . ,k. Formally,
this is achieved by setting (v0,y′(0)) :=G∂ f (x,w,y′(0)) and (vi,y′(i)) :=G∂gi(x,w,y′(i)) for
i = 1, . . . ,k, where y′(i) = (y′k+m+it+1, . . . , y

′
k+m+it+t) for i = 0,1, . . . ,k, and y′(i) is defined

analogously.
We summarize some properties of the construction up to this point in the following

claim.

Claim 1. If y′ = y′, then we have:

• µi ∈ H(gi(x ;w)) for i = 1, . . . ,k,

• λ j ∈ 2H(a j · x−b j)−1 for j = 1, . . . ,m,

• v0 ∈ ∂ f (x ;w),

• vi ∈ ∂gi(x ;w) for i = 1, . . . ,k.

We are now ready to finish the construction of G. The circuit computes

µ0 := 1−max(µ1, . . . ,µk, |λ1|, . . . , |λm|).

Note that |λ j| can simply be computed as max(λ j,−λ j). We let ΠR : Rn→ [−R,R]n

denote the projection onto [−R,R]n. The function ΠR can easily be computed using
algebraic gates, since it suffices to apply the function α 7→max(−R,min(R,α)) to each
coordinate separately. The primary output z of G is computed as

z := ΠR

(
x−µ0v0−

k∑
i=1

µivi−

m∑
j=1

λ ja j

)
(3.7)

and the auxiliary output y ∈ [0,1]n of G is then computed as

y :=
z+R
2R

which, in particular, implies that y ∈ [0,1]n. Note that here it is important that we
always have R > 0.

This completes the construction of the circuit G. Clearly, the construction can be
performed in time poly(n,m,k, s,size(G∂ f ),size(g1), . . . ,size(gk),size(G∂g1), . . . ,size(G∂gk )).
Note that, in particular, we have not used a circuit computing f at any point in the
construction.



56 Chapter 3. FIXP-membership via Convex Optimization

Fixed-point properties. In Claim 1 we have already noted some properties that
must hold when y′ = y′. Now we consider the implications of y = y. First of all, when
y = y, it follows that x = z, since x = 2Ry−R and z = 2Ry−R. From (3.7) we then
obtain:

Claim 2. If y = y, then x = z and the vector

ν := µ0v0+

k∑
i=1

µivi+

m∑
j=1

λ ja j (3.8)

satisfies, for r = 1, . . . ,n,
νr > 0 =⇒ xr = −R

and
νr < 0 =⇒ xr = R.

Next, we prove the following technical result, which will be useful for the remainder
of the proof.

Claim 3. If (y,y′) = (y,y′) and u is a feasible point, i.e., u ∈ Feas(CP(w,A,b,R)), then

• νr(ur − xr) ≥ 0 for r = 1, . . . ,n,

• µivi · (u− x) ≤ 0 for i = 1, . . . ,k,

• λ ja j · (u− x) ≤ 0 for j = 1, . . . ,m.

Furthermore, if µ0 = 0, then all these terms are equal to zero.

Proof. Since u ∈ Feas(CP(w,A,b,R)), it holds that u ∈ [−R,R]n, Au = b and gi(u ;w) ≤
0 for i = 1, . . . ,k. It follows that νr · (ur − xr) ≥ 0 for r = 1, . . . ,n, because

νr > 0 =⇒ xr = −R =⇒ ur ≥ xr

and
νr < 0 =⇒ xr = R =⇒ ur ≤ xr

where we used Claim 2 and the fact that u ∈ [−R,R]n.
By Claim 1 we know that µi ≥ 0 for i = 1, . . . ,k. Now, if µi > 0 for some i,

then it must be that gi(x ;w) ≥ 0. But this means that gi(x ;w) ≥ gi(u ;w), because
u is feasible. Since vi ∈ ∂gi(x ;w) (Claim 1), and by the definition of subgradients
(Definition 3.3.5), it follows that vi · (u− x) ≤ gi(u ;w)−gi(x ;w) ≤ 0. As a result, we
obtain that µivi · (u− x) ≤ 0 for all i = 1, . . . ,k.

If λ j > 0 for some j, then by Claim 1 we have a j · x−b j ≥ 0. Since u is feasible,
we have a j ·u−b j = 0 and thus a j · (u− x) ≤ 0. Similarly, if λ j < 0 for some j, then by
Claim 1 we have a j · x−b j ≤ 0, which by feasibility of u yields a j · (u− x) ≥ 0. As a
result, we obtain that λ ja j · (u− x) ≤ 0 for all j = 1, . . . ,m.



3.3. The OPT-gate 57

Finally, consider the case where µ0 = 0. Taking the inner product of (3.8) with
(u− x), we obtain

n∑
r=1

νr(ur − xr) =
k∑

i=1

µivi · (u− x)+
m∑

j=1

λ ja j · (u− x)

which, together with the above, implies that all the terms must be zero. □

We are now ready to prove the desired properties of G in the following two claims.
Recall that z is the primary output of the circuit G, i.e., the output of the pseudogate it
computes.

Claim 4. If (y,y′) = (y,y′) and Feas(CP(w,A,b,R)) , ∅, then z ∈ Feas(CP(w,A,b,R)).

Proof. We will show that x ∈ Feas(CP(w,A,b,R)), which suffices to prove the claim
since x = z by Claim 2. Since Feas(CP(w,A,b,R)) , ∅, there exists a feasible vector u,
i.e., u ∈ [−R,R]n such that Au = b and gi(u ;w) ≤ 0 for i = 1, . . . ,k.

Now, towards a contradiction, let us assume that x < Feas(CP(w,A,b,R)). Since
x ∈ [−R,R]n, this means that there exists i⋆ with gi⋆(x ;w) > 0, or j⋆ with a j⋆ · x , b j⋆ .
In both cases, it follows that µ0 = 0, since by Claim 1, µi⋆ = 1 or λ j⋆ ∈ {−1,1},
respectively. By Claim 3, it follows that µivi · (u− x) = 0 for all i, and λ ja j · (u− x) = 0
for all j.

If there exists i⋆ with gi⋆(x ;w) > 0, then by Claim 1 we have that µi⋆ = 1 >
0. Furthermore, since vi⋆ ∈ ∂gi⋆(x ;w) (Claim 1), it follows by the definition of
subgradients (Definition 3.3.5) that vi⋆ · (u− x) ≤ gi⋆(u ;w)−gi⋆(x ;w) < 0, since u is
feasible. But this means that µi⋆vi⋆ · (u− x) < 0, a contradiction.

It remains to consider the case where there exists j⋆ with a j⋆ · x , b j⋆ . If a j⋆ · x >
b j⋆ , then λ j⋆ = 1 > 0 (Claim 1), and a j⋆ · (u− x) < 0, since u is feasible. On the other
hand, if a j⋆ · x < b j⋆ , then λ j⋆ = −1 < 0 (Claim 1), and a j⋆ · (u− x) > 0, since u is
feasible. As a result, in both cases we obtain that λ j⋆a j⋆ · (u− x) < 0, a contradiction.

Since we have obtained a contradiction in all cases, it must be the case that x is in
Feas(CP(w,A,b,R)). □

Claim 5. If (y,y′) = (y,y′) and CP(w,A,b,R) satisfies the explicit Slater condition,
then we have z ∈ Opt(CP(w,A,b,R)).

Proof. By Claim 2, x = z, and thus it suffices to show that x ∈ Opt(CP(w,A,b,R)). By
Claim 4, we already know that x is feasible for CP(w,A,b,R).

By Claim 1, we always have µ0 ≥ 0. Let us first consider the case where µ0 > 0.
Let u ∈ [−R,R]n be any feasible point. Taking the inner product of (3.8) with (u− x)
we obtain

µ0v0 · (u− x) =
n∑

r=1

νr(ur − xr)−
k∑

i=1

µivi · (u− x)−
m∑

j=1

λ ja j · (u− x).



58 Chapter 3. FIXP-membership via Convex Optimization

By Claim 3, all the terms on the right hand side are non-negative. This implies
that µ0v0 · (u− x) ≥ 0 and thus v0 · (u− x) ≥ 0. Since v0 ∈ ∂ f (x ;w) (Claim 1), by the
definition of subgradients (Definition 3.3.5), it follows that f (u)− f (x)≥ v0 · (u− x)≥ 0.
Since this holds for any feasible point u, this means that x is an optimal solution, i.e.,
x ∈ Opt(CP(w,A,b,R)).

It remains to handle the case where µ0 = 0. We will show that this case cannot
occur. Towards a contradiction, assume that indeed µ0 = 0. Since CP(w,A,b,R) satis-
fies the explicit Slater condition, there exists u ∈ (−R,R)n with Au = b and gi(u ;w) < 0
for i = 1, . . . ,k. In particular, u is feasible and since µ0 = 0, by Claim 3 we obtain that
νr(ur − xr) = 0 for all r, µivi · (u− x) = 0 for all i, and λ ja j · (u− x) = 0 for all j.

If νr > 0 for some r, then, by Claim 2, we have xr = −R. Since ur ∈ (−R,R), it
follows that ur − xr > 0, and thus νr(ur − xr) > 0, a contradiction. If νr < 0 for some r,
then, by Claim 2, we have xr = R, and thus again νr(ur − xr) > 0, a contradiction. As a
result, we obtain that νr = 0 for all r = 1, . . . ,n.

If µi > 0 for some i, then by Claim 1 it must be that gi(x ;w) ≥ 0. Since vi ∈

∂gi(x ;w) (Claim 1), it follows by the definition of subgradients (Definition 3.3.5)
that vi · (u− x) ≤ gi(u ;w)− gi(x ;w) < 0, because gi(u ;w) < 0. Thus, we obtain that
µivi · (u− x) < 0, a contradiction. As a result, we have µi = 0 for all i = 1, . . . ,k.

Now, since µ0 = µi = νr = 0, the equation in Claim 2 just yields
∑m

j=1λ ja j = 0. But
CP(w,A,b,R) satisfies the explicit Slater condition, so the vectors a j, j = 1, . . . ,m, are
linearly independent. It follows that λ j = 0 for all j = 1, . . . ,m. However, note that
this is a contradiction, because according to the construction of µ0, if µi = 0, for all
i = 1, . . . ,k, and λ j = 0, for all j = 1, . . . ,m, then µ0 = 1. □

The proof of Theorem 3.3.2 is thus completed.

3.4 Applications to Game Theory

In this section, we discuss further applications of our technique to equilibrium compu-
tation in strategic games. In Section 3.3.1, we already demonstrated how the employ-
ment of our OPT-gate can make the FIXP-membership proof of normal form games
essentially straightforward. In this section, we provide further FIXP-membership
results, namely:

- Computing equilibria in concave n-player games [192]. In these games, which
generalize the normal form games mentioned above, the players have continuous
strategy spaces and continuous payoff functions. Again via a relatively simple proof
based on convex programs rather than Linear Programs, we show that computing
equilibria of these games is in FIXP; the FIXP-completeness follows from the
FIXP-hardness of normal form games due to Etessami and Yannakakis [85].

- Computing ε-proper equilibria in normal form games, an equilibrium refinement
due to Myerson [174]. We show that the corresponding problem is in FIXP. Our



3.4. Applications to Game Theory 59

proof first shows how to compute solutions to systems of conditional convex con-
straints (Section 3.4.2) using our OPT-gate, and then employs this to show the
FIXP-membership result for ε-proper equilibria.

- Computing stationary λ-discounted equilibria in n-player stochastic games [200].
We show that this problem is FIXP-complete. The FIXP-membership could techni-
cally already be achieved via the machinery used by Etessami and Yannakakis [85]
to achieve the FIXP-membership of the 2-player problem, but our proof uses the
OPT-gate here as well. The FIXP-hardness follows from [85] by viewing a normal
form game as a stochastic game consisting of a single state.

3.4.1 Concave n-player games

In this section, we generalize the FIXP-membership result from normal form games
to concave games, a class of games studied by Rosen [192], which we define below.
Together with the FIXP-hardness result for normal form games [85], we obtain the
following result.

Theorem 3.4.1. Computing an equilibrium of a concave n-player game is FIXP-
complete.

An n-player game G consists of n players, with each player i ∈ [n] having a compact
and convex strategy space Σi ⊆R

mi and a continuous payoff function ui : Σ→R, where
Σ := Σ1× · · ·×Σn. For a strategy profile x ∈ Σ, let (y, x−i) = (x1, . . . , xi−1,y, xi+1, . . . , xn)
denote the strategy profile where player i unilaterally changes strategy. The game G is
concave if for any player i and fixed x ∈ Σ, the function ui(y, x−i) is concave in y.

A strategy profile x ∈ Σ is an equilibrium if ui(x) = maxy∈Σi ui(y, x−i) for every
player i, that is, no player can increase its payoff by a unilateral change of strategy.
Rosen [192] provides a proof that every concave game admits an equilibrium point by
constructing an upper hemicontinuous correspondence F : Σ→ 2Σ mapping any x ∈ Σ
to the set {y ∈ Σ | ∀i : yi is a best response to x−i}. One then applies Kakutani’s fixed
point theorem to show the existence of some strategy profile x ∈ Σ with x ∈ F(x). As
xi is a best response to x−i for all players by construction, x is an equilibrium.

Computational problem. In the computational problem, we assume that each
strategy space Σi is given as the set of all x ∈ [−Ri,Ri]mi satisfying equality constraints
Aix = bi and inequality constraints gi j(x) ≤ 0 for some Ri > 0, matrix Ai ∈ R

di×mi ,
vector bi ∈ R

di , and convex functions gi j, j = 1, . . . ,ki. As Ai is given as input, we may
apply preprocessing to eliminate linear dependence among the rows, so we just have
to assume that the constraints satisfy the general Slater condition. We also assume that
we are given algebraic circuits for gi j and pseudogates computing their subdifferentials
∂gi j, as well as the superdifferentials ∂ui.

In order to prove FIXP-membership, we construct a circuit F : D→ D, where
D = ×i[−Ri,Ri]mi . On input x, the ith output of the circuit F will be a best response of



60 Chapter 3. FIXP-membership via Convex Optimization

player i to x−i. Namely, the i-th output of F is simply set as the output of the OPT-gate
for the following convex program:

minimize −ui(y, x−i)

subject to Aiy = bi

gi j(y) ≤ 0 j = 1, . . . ,ki

y ∈ [−Ri,Ri]mi

Note that the explicit Slater condition is satisfied by assumption. Thus, the OPT-gate
correctly solves the convex program. As a result, if x is a fixed point of F, then
x ∈ Σ and xi is a best response to x−i for every player i, meaning that x is indeed an
equilibrium of the game.

Remark 3. Rosen [192] actually considers a more general setting where the space
of strategy profiles Σ is not assumed to be equal to the product space of the players’
individual strategy spaces. Rather, he just assumes that the space of strategies is a
compact and convex subset Σ ⊆ Σ1× · · ·×Σn. Let us assume that Σ is given as the set
of all x ∈ [−R,R]m that satisfy Ax = b and g j(x) ≤ 0, j = 1, . . . ,k, where, as per usual, A
is a matrix, b a vector and the g j are convex functions. We may write A = (A1 | · · · | An)
as a concatenation of block matrices. For fixed x ∈ Σ, player i would then maximize its
utility ui(y, x−i) subject to the constraints Aiy = bi(x−i) := b−

∑
j,i A jx j and g j(y, x−i) ≤

0 for all j. As Ai is given in the input we can apply preprocessing to it and remember
the linear combinations required to eliminate potential linear dependence in the rows
of Ai. Applying these same linear combinations to the Ai and bi, we obtain constraints
Ãiy = b̃i. It suffices to require that the constraints Aiy = bi(x−i) and g j(y, x−i) ≤ 0,
j = 1, . . . ,k, satisfy the general Slater condition for all i ∈ [n] and x ∈ Σ.

3.4.2 Computing an ε-proper equilibrium via systems of conditional
convex constraints

In this section we consider the Nash equilibrium refinement of proper equilibrium due
to Myerson [174]. First, we define the notion of ε-proper equilibrium and then define
a proper equilibrium as a limit point of ε-proper equilibria.

Definition 3.4.1 ([174]). Let Γ be a finite n-player game in strategic form. Given
ε > 0, a mixed strategy profile x is an ε-proper equilibrium in Γ if it is fully mixed
and satisfies xik ≤ εxiℓ whenever ui(k, x−i) < ui(ℓ, x−i) for all players i and all pairs of
actions k, ℓ of player i.

A mixed strategy profile x is a proper equilibrium if and only if it is a limit point of a
sequence of ε-proper equilibria with ε→ 0+.

It was proved recently by Hansen and Lund [135] that the task of approximating a
proper equilibrium is complete for the class FIXPa of [85]. This work follows a line
of similar results [84, 87] for approximating other notions of equilibrium refinements,
e.g. Selten’s trembling hand perfect equilibrium [199], that are, like proper equilibria,



3.4. Applications to Game Theory 61

defined as limit points of certain ε-equilibria. These previous results were proved by
showing that the problems of computing the ε-equilibria are in FIXP. In fact they
can be computed by a reduction to a basic FIXP-problem (Definition 4.2.4) where
ε is an input variable of the algebraic circuit. This additional property is exploited
to prove that approximating the equilibrium refinement notions is in FIXPa by using
the ability of an algebraic circuit to compute a “virtual infinitesimal” by means of
repeated squaring that then takes the place of ε.

Hansen and Lund [135] did not prove that computing an ε-proper equilibrium is
in FIXP, but instead proved that computing a so-called δ-almost ε-proper equilibrium
is in FIXP. These equilibria can in fact be computed by reducing to a basic FIXP-
problem where δ and ε are inputs of the algebraic circuit. It is then shown that
approximating a proper equilibrium is in FIXPa by substituting “virtual infinitesimals”
for both δ and ε. The question of whether computing an ε-proper equilibrium is in
FIXP was left as an open problem. Using our technique we resolve this question, and
thereby significantly simplify the proof of Hansen and Lund [135] that approximating
a proper equilibrium is FIXPa-complete.

Theorem 3.4.2. The problem of computing an ε-proper equilibrium of a given finite
game n-player game in normal form is in FIXP.

To establish existence of ε-proper equilibria, Myerson [174] made use of Kakutani’s
fixed point theorem (Theorem 3.2.2). Suppose that Γ is a given n-player game in
strategic form and ε > 0. Let S i = [mi] and ui be the set of strategies and utility
function of Player i. Define ηi(ε) = εmi/mi and let

Σ
ηi
i =

{
y ∈ Rmi

∣∣∣∣∑
j

y j = 1;∀ j : y j ≥ ηi
}

be the set of ηi-perturbed mixed strategies for Player i. Let η = (η1, . . . , ηn) and define
Ση =

∏n
i=1Σ

ηi
i to be the set of all η-perturbed mixed strategy profiles for Γ. Define the

correspondence F : Ση⇒ Ση by F(x) =
∏n

i=1 Fi(x), where

Fi(x) = {y ∈ Ση | ∀k, ℓ ∈ S i : ui(k, x−i) < ui(ℓ, x−i)⇒ yik ≤ εyiℓ} .

Clearly any fixed point of F is an ε-proper equilibrium of Γ. Myerson concluded his
proof by showing that F satisfies the conditions of the Kakutani fixed point theorem.
In particular, Fi is nonempty since we have yi ∈ Fi(x) where

yik = ε
ρi(k)/

∑
ℓ∈S i

ερi(ℓ)

and ρi(k) = |{ℓ ∈ S i | ui(k, x−i) < ui(ℓ, x−i)}|.

Computing a fixed point of F is a special case of the result of the following subsection
(see Theorem 3.4.3).



62 Chapter 3. FIXP-membership via Convex Optimization

Solving Systems of Conditional Convex Constraints

In this section we consider the task of solving systems of what we refer to as con-
ditional convex constraints by finding fixed points. We make use of the main result
of the section (Theorem 3.4.3) to prove Theorem 3.4.2, but it could be applicable to
other problems as well, and therefore it could be of independent interest.

Definition 3.4.2. A conditional convex constraint on n variables is a pair ( f ,g) of a
continuous function f : Rn→ R and a convex function g : Rn→ R. A point x ∈ Rn

satisfies ( f ,g) if f (x) > 0⇒ g(x) ≤ 0.

A system of conditional convex constraints naturally defines a search problem,
where the task is to find a point x that satisfies all constraints of the system. A system
of conditional convex constraints also defines a correspondence in a natural way. We
shall further restrict our attention to correspondences with nonempty, compact, and
convex domain.

Definition 3.4.3. Let D⊆Rn be a non-empty, compact and convex set. Let ( f1,g1), . . . , ( fm,gm)
be conditional convex constraints on n variables. The correspondence F : D⇒ D
defined by D and ( f1,g1), . . . , ( fm,gm) is given by

F(x) = {y ∈ D | ∀i : fi(x) > 0⇒ gi(y) ≤ 0} .

Note that there is a one-to-one correspondence between fixed points of F and
solutions of the system of constraints contained in D.

Except for the property of nonempty-valued, such correspondences satisfy the
conditions of Kakutani’s fixed point theorem.

Proposition 1. Let F be a correspondence defined by a non-empty, compact and
convex set D ⊆ Rn and conditional convex constraints ( f1,g1), . . . , ( fm,gm). Then F is
uhc as well as compact and convex-valued.

Proof. Let x ∈ D and let V ⊆ D be an open set such that F(x) ⊆ V . By continuity
of the functions fi we may find an open set U containing x such that if x′ ∈ U and
fi(x′) > 0 then we have fi(x) > 0 as well. It follows that F(x′) ⊆ F(x) ⊆ V , which
means that F is uhc. We also have that F(x) is an intersection of closed and convex
sets, and F(x) is thus closed and convex as well. □

Thus if we had a guarantee that F was nonempty-valued as well, a fixed point
would be guaranteed by Kakutani’s fixed point theorem. We can associate a total
search problem with F where the task is to find x ∈ D such that either x ∈ F(x) or
F(x) = ∅. For the computational problem, we assume that D is given as a set of linear
constraints x ∈ [−R,R]n and Ax = b, and convex constraints hi(x) ≤ 0, i = 1, . . . ,k, that
satisfy the explicit Slater condition. We also assume that we are given algebraic
circuits computing fi,gi and hi, and pseudogates computing the subgradients of gi and
hi.



3.4. Applications to Game Theory 63

The idea is that the function G in the proof below is derived from a system of
convex constraints in variables y that are parameterized by variables x. We consider
the constraints given by max(0, fi(x))gi(y) ≤ 0. When fi(x) > 0 this is equivalent to
the constraint gi(y) ≤ 0. When fi(x) ≤ 0, the constraint becomes trivial.

Theorem 3.4.3. The problem of solving systems of conditional convex constraints is
in FIXP.

Proof. Define a circuit G : [−R,R]n×[−R,R]n→ [−R,R]n×[−R,R]n, by letting G(x,y) :=
(x,y). Here y is computed as the output of our convex OPT-gate for the following
feasibility problem (parameterized by x)

maximize 0

subject to Az = b

hi(z) ≤ 0 i = 1, . . . ,k

z ∈ [−R,R]n

max(0, fi(x))gi(z) ≤ 0 i = 1, . . . ,m

and x is the projection of y onto D, which can be obtained by using the OPT-gate to
solve

minimize ∥y− z∥22
subject to Az = b

hi(z) ≤ 0 i = 1, . . . ,k

z ∈ [−R,R]n

Suppose that (x,y) is a fixed point of G. We argue that x is a solution to the search
problem described above. First of all, note that x ∈D, because x= x is the projection of
some point (namely, y) onto D. Now there are two cases. If the set of feasible solutions
to the first convex program is empty, then it follows that F(x) = ∅, and so x ∈ D is
indeed a solution to our search problem. If, on the other hand, the set of feasible
solutions is non-empty, then it follows from the first part of Theorem 3.3.2 that y = y
is a solution to the first convex program. The first three constraints show that y ∈ D,
and from the inequalities max(0, fi(x))gi(y) ≤ 0 it follows that fi(x) > 0⇒ gi(y) ≤ 0,
i.e., y ∈ F(x). But since x is the projection of y onto D, and y ∈ D, it must be that x = y,
and thus x ∈ F(x). □

3.4.3 n-player Stochastic Games

Stochastic games, as first introduced by Shapley in his seminal work [200], model
dynamic interaction between players in an environment whose state is changing
according to a stochastic process influenced by the actions of the players. We shall
here consider discrete-time finite games, where players receive immediate payoffs in
each round of play and discount future payoffs. Shapley’s model then corresponds to
the special case of two-player zero-sum games.

The main result of this section is the following.



64 Chapter 3. FIXP-membership via Convex Optimization

Theorem 3.4.4. Computing a stationary λ-discounted equilibrium of an n-player
stochastic game is FIXP-complete.

Next, we first define n-player stochastic games formally, as well as the equilibrium
notion which appears in the statement of Theorem 3.4.4 above. Then we present the
proof of FIXP-membership for the problem; the FIXP-hardness follows from [85], by
considering a single-state stochastic game, i.e., a normal form game.

An n-player finite stochastic game Γ is given as follows. The game is played on a finite
set of states S . Every player i has a finite set of actions Ai. Let A = A1×· · ·×An denote
the set of action profiles and P = {(s,a) : s ∈ [n],a ∈ A} the pairs of states and action
profiles. The immediate payoffs to player i are then given by a function ui : P→R and
the state transitions are given by a function q : P→ ∆(S ). Let M =maxi,(s,a)∈P|ui(s,a)|.

A play of Γ is an infinite sequence h ∈ P∞. A finite play up to stage t is a sequence
ht ∈ Pt−1×S . LetH = ∪̇∞t=1

(
Pt−1×S

)
denote the set of all finite plays. A behavioral

strategy for player i is a function σi : H → ∆(Ai). A stationary strategy is a behavioral
strategy that depends only on the last state of a finite play. A stationary strategy xi

may thus be viewed as a function xi : S → ∆(Ai). Behavioral strategies σi for each
player i form a behavioral strategy profile σ = (σ1, . . . ,σn). In the same way, stationary
strategies for each player form a stationary strategy profile. A behavioral strategy
profile σ and an initial state s1 ∈ S define by Kolmogorov’s extension theorem a
unique probability distribution Prs1,σ on plays (s1,a1, s2,a2, . . . ), where the conditional
probability of at = a given the play up to stage t, ht = (s1,a1, . . . , st), is equal to∏n

i=1 Pr[σi(ht) = ai], and the conditional probability of st+1 given st and at is equal to
q(st,at). We denote by Es1,σ the expectation with respect to Prs1,σ.

For every discount factor 0 < λ ≤ 1, the λ-discounted payoff to player i is defined to
be

γλi (s1,σ) = E
s1,σ

λ ∞∑
t=1

(1−λ)t−1ui(st,at)

 . (3.9)

A behavioral strategy profile σ is a λ-discounted equilibrium if

γλi (s1,σ) ≥ γλi (s1, (σ′i ,σ−i)) , (3.10)

for all states s1 ∈ S , all players i ∈ [n], and all behavioral strategies σ′i for player i.
It was proved by Fink [102] and Takahashi [214] that any finite discounted stochas-
tic game has a λ-discounted equilibrium in stationary strategies for any discount
factor λ. In the case of two-player zero-sum games, Shapley proved existence of the λ-
discounted value vλ ∈ RS , as well as optimal stationary strategies, for the λ-discounted
payoff.

The results of Shapley, Fink, and Takahashi lead to a natural real-valued total search
problem. Etessami and Yannakakis [85] proved the FIXP-membership of the problem
of finding the λ-discounted values and optimal stationary strategies in two-player
zero-sum stochastic games with discounted payoffs.



3.4. Applications to Game Theory 65

Now let Γ be an n-player stochastic game. The proofs by Fink and Takahashi
of existence of λ-discounted equilibrium in stationary strategies both make use of
Kakutani’s fixed point theorem (Theorem 3.2.2).6 Let us now consider the approach
of Takahashi, specialized to finite stochastic games.

Valuations of states vi : S → Rn by every player i now form a valuation profile v =
(v1, . . . ,vn). Given a discount factor λ and a valuation profile v, we can form associated
n-player normal form games Γs,λ(v), generalizing the case of two players. For every
state s ∈ S , the utility function us,λ,v

i : A→ R of player i in Γs,λ(v) is given by

us,λ,v
i (a) = λui(s,a)+ (1−λ)

∑
s′∈S

q(s′ | s,a)vi(s′)

A stationary strategy profile x = (x1, . . . , xn) in Γλ induces strategy profiles x(s) =
(x1(s), . . . , xn(s)) in the games Γs,λ(v), and corresponding valuations of states us,λ,v

i (x(s)).
Let

D = ([−M,M]S )n× (∆(A1)S × · · ·×∆(An)S )

be the set of valuation profiles v and stationary strategy profiles x. Takahashi defines
a correspondence F : D⇒ D whose fixed points are pairs of valuation profiles and
stationary strategy profiles such that the stationary strategy profiles are λ-discounted
equilibria in Γλ. Letting F(v, x) = (G(v, x),H(v, x)), Takahashi defines

G(v, x)i,s = max
y(s)i∈∆(Ai)

us,λ,v
i (y(s)i; x(s)−i)

and
H(v, x)i,s = argmax

y(s)i∈∆(Ai)
us,λ,v

i (y(s)i; x(s)−i)

By Berge’s maximum theorem (Theorem 3.2.3), the correspondence F satisfies the
requirements of Kakutani’s fixed point theorem (Theorem 3.2.2) which in turn yields
existence of a fixed point (v, x). Takahashi then proves that the stationary strategy
profile x is a λ-discounted equilibrium in Γλ.

We obtain FIXP-membership by replacing these correspondences by OPT gates,
obtaining a circuit computing a function F′ : D′→ D′, where D′ := ([−M,M]S )n ×

([0,1]|A1 |)S × · · ·× ([0,1]|An |)S . On input (v, x), simply consider for every player i and
every state s the linear program computing best replies for player i in the game Γs,λ:

maximize us,λ,v
i (z, x(s)−i)

subject to
|Ai |∑
j=1

z j = 1

z ∈ [0,1]|Ai |

6More accurately, the proof by Takahashi [214] applies to stochastic games with infinite action
spaces, and as a consequence uses a generalization of Kakutani’s fixed point to locally convex spaces
due to Fan [90] and Glicksberg [123].



66 Chapter 3. FIXP-membership via Convex Optimization

Denote by x(s)i the output of the OPT gate. Then v(s)i = us,λ,v
i (x(s)i, x(s)−i) is com-

puted and we let F′(v, x) = (v, x). The set of fixed points of F and F′ clearly coincide
and the result follows.

3.5 Applications to Cake Cutting

In this section, we discuss the applications of our main technique to the area of
fair division, and in particular to the complexity of the well-known envy-free cake
cutting problem [108] (see also [38, 188, 190]). In this problem, the cake serves as
a metaphor for a divisible resource—represented without loss of generality by the
interval [0,1]—which needs to be divided among a set of n agents, such that every
agent receives a piece of cake she prefers compared to any piece assigned to any other
agent. In the general formulation of the problem, a “piece” can be a collection of
possibly disconnected subintervals. In the contiguous version, each piece is a single
interval (and hence the cake is divided using n−1 cuts), and in that case any division
of the cake can be represented as a point x in the simplex ∆n−1, with x j denoting the
j-th coordinate.

Formally, the valuation of agent i for the j-th piece is given by a map ui j : ∆n−1→

R≥0. Given a division x, we say that agent i prefers the j-th piece if ui j(x) ≥ uik(x)
for every k. We say that a division x is envy-free if there exists a permutation π of
{1, . . . ,n} such that for every i, agent i prefers piece π(i). For the computational version
of the problem, we will assume that the valuations are given by means of an algebraic
circuit as defined in Definition 3.2.3.

Stromquist [209] proved that an envy-free division of the cake is guaranteed to
exist, even for the contiguous version, as long as the valuations ui j are continuous
functions and the agents are hungry, that is no agent prefers an empty piece of cake.

Theorem 3.5.1 (Stromquist [209]). When the valuations are continuous and the
agents are hungry, an envy-free division of the cake always exists.

Stromquist’s proof considers the simplex of divisions as described above, and applies
a variant of the K-K-M lemma of Knaster et al. [156] (see Lemma 5 in Section 3.5.2),
which regards the covering of the simplex by sets. While this lemma is defined on
a continuous domain (the unit-simplex), Stromquist [209] actually applied it after
constructing a subdivision of the simplex into “cells”, first obtaining the existence
of an approximately envy-free division, and then invoked a limit argument to prove
the existence for exact envy-freeness. Another proof of existence was developed
independently by Simmons in 1980 (published for the first time in [212] and attributed
to Simmons as “private communication to Michael Starbird”). This proof made use
of the well-known Sperner’s lemma from topology [204], and therefore also works
on a subdivision (a “triangulation”) of the unit-simplex. Similarly to the proof of
Stromquist [209], the proof first establishes the existence of an approximately envy-
free division, and then applies a limit argument to obtain the existence for the exact
version.



3.5. Applications to Cake Cutting 67

Given their nature as described above, these existence proofs cannot be turned into
a membership in FIXP. Indeed, the related literature has only gone as far as proving
the membership of the approximate version of the problem in the class PPAD of
Papadimitriou [182], a result due to Deng et al. [76]. PPAD is fundamentally related
to an approximate computational version of Brouwer’s fixed point theorem, and in
that sense can be seen as a discrete, approximate analogue of FIXP. Before our paper,
the complexity of the exact envy-free cake-cutting problem was not known. To this
end, we provide the following theorem.

Theorem 3.5.2. The envy-free cake cutting problem with very general valuations is
FIXP-complete.

In order to obtain the FIXP-membership result above, in the process we (implicitly)
develop a new existence proof for the envy-free cake cutting problem, one which
is not based on discrete subdivisions of the unit-simplex and limit arguments. Our
proof is based on maximum flow computation on a network given by a bipartite graph
with the agents on one side and the pieces of cake on the other side, as given by a
division x. Using our OPT-gate from Section 3.3, we can turn this existence proof
into a FIXP-membership result rather easily. Our approach is somewhat reminiscent
of the only markedly different proof for envy-free cake cutting that we know of, that
of Woodall [229]. This proof constructs a similar bipartite graph and uses Brouwer’s
fixed point theorem to prove the result, but crucially, it uses a discontinuous step (see
Stage 2 of the construction in [229]) which impedes its applicability as a potential
argument for a FIXP-membership proof.

Remark 4 (Very general valuations). The statement of Theorem 4.8.2 regards the
case of very general agents’ valuations. Note that according to the definition of the
problem in the beginning of the section, an agent has a possibly different valuation for
each possible division of the cake. In this generality, the setting captures scenarios
in which an agents’ value for a piece is not necessarily the sum of her values for the
subpieces that comprise the piece (i.e., the valuations are not necessarily additive), or
even where an agent’s value for a piece could be smaller for her value for a subset of
that piece (i.e., the valuations are not necessarily monotone), and also scenarios that
exhibit externalities, as an agent might value differently two allocations that assign her
the same piece. In several fair division textbooks (e.g., see [38, 190]), the problem is
typically presented for the case where the valuations are simply additive measures. On
the other hand, the aforementioned existence proofs apply to the case of very general
valuations.

Ideally of course, we would like to obtain a FIXP-hardness result for the version
of the problem with additive valuations, and this is in fact a major open problem in the
literature of computational fair division. That being said, our FIXP-hardness result is
in fact in line with the PPAD-hardness result of Deng et al. [76] for the approximate
version of the problem, which only holds for very general valuations, in the same
generality as we have defined them here. Besides, our focus in this paper is primarily
establishing the FIXP-membership of interesting problems via our newly introduced



68 Chapter 3. FIXP-membership via Convex Optimization

technique in Section 3.3, and clearly the FIXP-membership result is stronger for the
case that we consider, i.e., that of very general valuations.

Before we proceed with the proof of Theorem 4.8.2, we remark that in Section 3.5.2,
we prove that the computational versions of several well-known topological lemmas
and theorems, very much related to the cake cutting problem and its generalizations
are also FIXP-complete. In particular, we show that the computational versions of
the K-K-M lemma of Knaster et al. [156] that we mentioned above, its “rainbow”
generalization due to Gale [105], as well as a “rainbow” generalization of Brouwer’s
fixed point theorem due to Bapat [19] are also FIXP-complete. These results could
be useful for showing FIXP-completeness for more general versions of the envy-free
cake cutting problem, or other “multi-label” problems in fair division (e.g., see [3]).

3.5.1 Envy-free cake cutting is FIXP-complete – The proof of
Theorem 4.8.2

FIXP-membership

We start with showing the membership of the problem in FIXP. Given a division
x ∈ ∆n−1 of the cake, consider the bipartite graph with agents on the left and pieces of
cake on the right and an edge between agent i and piece j if and only if agent i prefers
piece j. It is clear that x is an envy-free division if and only if this bipartite graph
admits a perfect matching.

Construction of the circuit. Using the above idea we construct a circuit whose
fixed points are envy-free divisions. The domain of the circuit is ∆n−1, namely the set
of all possible divisions of the cake into n pieces.

We now construct F : ∆n−1→ ∆n−1. On input x ∈ ∆n−1, the circuit F outputs x ∈ ∆n−1,
which is computed as follows. First, for each agent i, we compute capacities ci ∈ ∆

n−1

for the edges incident on i in the bipartite graph by solving the following LP using the
OPT-gate:

maximize
n∑

j=1

z j ·ui j(x)

subject to
n∑

j=1

z j = 1

z ≥ 0

Next, we compute a maximum flow y ∈ ([0,1]n)n in the bipartite graph with edge-
capacities given by the previously computed ci’s by solving the following LP using



3.5. Applications to Cake Cutting 69

the OPT-gate:

maximize
∑

1≤i, j≤n

z′i j

subject to 0 ≤ z′i j ≤ ci j+
1
n3 , ∀i, j

n∑
i=1

z′i j ≤ 1, ∀ j

n∑
j=1

z′i j ≤ 1, ∀i

Finally, the circuit computes rk = max(0,1−
∑n

i=1 yik) for every k. Then the output
x ∈ ∆n−1 of the circuit is computed as follows

x :=
( x j+ r j

1+
∑n

k=1 rk

)
1≤ j≤n

We note that both linear programs satisfy the explicit Slater condition (Definition 3.3.3)
that is required for the OPT-gate to output an optimal solution by Theorem 3.3.1. In
particular, for the second LP this is ensured by the nonzero term “1/n3” in the first
constraint. Furthermore, the term 1/n3 is picked to be sufficiently small so that the
arguments in the proof go through (namely, Lemma 3). Any sufficiently small nonzero
quantity would also work.

Fixed points. Suppose that x is a fixed point of F, i.e., x = x, where x is computed
as described above. In the following we argue that x is an envy-free division. First,
we argue that it is sufficient to show that the total flow y is n.

Lemma 3. If the total flow (yi j)i, j is n, then x is an envy-free division.

Proof. We argue by contradiction, so suppose that x is not an envy-free division.
This means that there is no perfect matching in the bipartite graph described at the
beginning of this subsection. For a set of agents A, let N(A) denote the set of pieces
that is preferred by some agent i ∈ A. By Hall’s theorem [134], there must exist some
set of agents A with |N(A)| < |A|. In particular the y-flow from A to N(A) is at most
|A| −1.

Now note that the first linear program implies that ci j = 0 for any i ∈ A and
j < N(A), because piece j is not preferred by agent i (i.e., there exists piece j′ such
that ui j′(x) > ui j(x)), and hence we always have z j = 0 at any optimal solution of this
LP. As a result, by the first constraint of the second linear program, yi j ≤ 1/n3 for
any i ∈ A and j < N(A). We conclude that the total flow from A to {1, . . . ,n} \N(A) is
bounded by 1

n3 · |A| · |{1, . . . ,n} \N(A)| ≤ n2

n3 < 1. Since, as shown above, the flow from
A to N(A) is at most |A| −1, it follows that the total flow out of A is less than |A|. We
conclude that the total flow is strictly less than n. □



70 Chapter 3. FIXP-membership via Convex Optimization

By Lemma 3, it now suffices to show that the total flow is n. This is the same as
saying that r j = 0 for all j. Since x = x, we have that x j = (x j+ r j)/(1+

∑n
k=1 rk) for

all j. This implies that

x j ·

n∑
k=1

rk = r j for all j. (3.11)

We have the following lemma.

Lemma 4. There exists some j with r j = 0 and x j > 0.

Proof. Suppose towards a contradiction that for all j we have that r j > 0 or x j = 0.
Because x j > 0 for some j, this means that the total flow is less than n. Therefore,
there exists some agent i whose out-flow is less than 1. We claim that there exists some
j ∈ N(i) with r j = 0. Suppose towards a contradiction that r j > 0 for all j ∈ N(i). Then
we can send more flow along the edge (i, j) for some j ∈ N(i), because

∑n
k=1 yik < 1

and
∑

k∈N(i) cik = 1. This contradicts the fact that y is an optimal solution to the second
second linear program. Hence, there exists some j ∈ N(i) with r j = 0. This concludes
the proof, since x j > 0 holds by the hungriness-condition. □

Combining Lemma 4 and Equation (3.11), we conclude that rk = 0 for every k. Hence,
the total flow is n, and it follows from Lemma 3 that x is an envy-free division. Hence,
we have shown the following.

Proposition 2. The envy-free cake cutting problem with very general valuations is in
FIXP.

FIXP-hardness

We now turn our attention to showing FIXP-hardness. Since we are considering very
general valuations, the FIXP-hardness result is rather straightforward. For the proof,
we will use the following generalization of Brouwer’s fixed point theorem due to
Bapat [19], which we refer to as Bapat’s Brouwer fixed point theorem.

Theorem 3.5.3 (Bapat’s Brouwer fixed point theorem [19]). Let fi : ∆n−1→ ∆n−1 be
continuous functions for i = 1, . . . ,n. There exists some z ∈ ∆n−1 and a permutation π
of {1, . . . ,n} such that zπ(i) ≥ fi,π(i)(z) for all i.

Theorem 3.5.3 implies Brouwer’s fixed point theorem by choosing all the fi’s to be
equal. The computational version of the problem is defined similarly to the computa-
tional version of Brouwer’s fixed point theorem (see Definition 4.2.5). Since Bapat’s
version is a generalization of Brouwer’s fixed point problem, its FIXP-hardness is
immediate.

Let continuous functions f1, . . . , fn : ∆n−1→ ∆n−1 be given, represented by alge-
braic circuits. To show FIXP-hardness of the cake cutting problem, we define an
instance with n players such that an envy-free division corresponds to a solution for



3.5. Applications to Cake Cutting 71

the Bapat problem given by f1, . . . , fn. For our definition of the valuations of the
agents to satisfy the hungriness-condition, we need to make an assumption about the
fi, namely that fi j(x) ≥ 1

2n for all i, j ∈ [n] and x ∈ ∆n−1. We first show that we may
assume this without loss of generality.

Preprocessing. We now show how to make new functions g1, . . . ,gn : ∆n−1→ ∆n−1

such that 1) a solution to the Bapat problem for g1, . . . ,gn easily translates into a
solution for f1, . . . , fn, and 2) the functions satisfy gi j(x) ≥ 1

2n for all i, j ∈ [n] and
x ∈ ∆n−1. Let x ∈ ∆n−1 be given. As in [85], we may use a sorting network to
compute a value t ≥ 0 such that

∑n
i=1 max(xi − t, 1

2n ) = 1. We now define π(x) by
π j(x) =max(x j− t, 1

2n ) and gi j(x) = 1
2 fi j(2(π(x)− 1

2n ))+ 1
2n . Note the following:

(i) For all i, j ∈ [n], gi j(x) ≥ 1
2n .

(ii) If x is a Bapat solution for g1, . . . ,gn, then 2(x− 1
2n ) is a solution for f1, . . . , fn.

Suppose that x is a solution for g1, . . . ,gn. Then there is a permutation π such
that xπ(i) ≥ gi,π(i)(x). In particular, we get from (i) that xπ(i) ≥ 1

2n for all i. This
implies that the value t computed by the sorting network is t = 0, which implies
that π(x) = x. Now the inequalities

xπ(i) ≥ gi,π(i) =
1
2

fi,π(i)

(
2
(
π(x)−

1
2n

))
+

1
2n
=

1
2

fi,π(i)

(
2
(
x−

1
2n

))
+

1
2n

for all i, imply that 2(xπ(i) − 1
2n ) ≥ fi,π(i)(2(x− 1

2n )) for all i. This says that
2(x− 1

2n ) is a solution to the Bapat problem for f1, . . . , fn.

Now (i) says that the gi satisfy the required inequalities and (ii) says that given any
solution for g1, . . . ,gn, we may (very easily) compute a solution for f1, . . . , fn.

Reduction to cake cutting. Due to the preprocessing step, we may assume that the
functions f1, . . . , fn satisfy fi j(x) ≥ 1

2n for all i, j ∈ [n] and x ∈ ∆n−1. The valuation of
player i for the j-th piece is defined to be ui j(x) = max(0, x j − fi j(x)) for any point
x ∈ ∆n−1. We now show that the agents are hungry. Suppose that x ∈ ∆n−1 with
x j = 0 for some j. This implies that ui j(x) = 0 for all j. As x j = 0 < 1

2n ≤ fi j(x) and
x, fi(x) ∈ ∆n−1, we get that there exists some k with fik(x) < xk. This implies that
uik(x) > 0 = ui j(x). In particular, no agent prefers an empty piece.

If x is an envy-free division and π is the corresponding permutation, we obtain for
any i that

max
(
0, xπ(i)− fi,π(i)(x)

)
≥max

(
0, x j− fi j(x)

)
for all j, (3.12)

because of the inequalities ui,π(i)(x)≥ ui j(x) for all i, j. We claim that xπ(i) ≥ fi,π(i)(x) for
all i. Suppose that there exists some i for which this is not the case, i.e., xπ(i) < fi,π(i)(x).
This implies that the left-hand side of ?? 3.12 is equal to 0. However, we also have
that

x j, fi j(x) ≥ 0, xπ(i) < fi,π(i)(x), and
n∑

j=1

x j =

n∑
j=1

fi j(x) = 1,



72 Chapter 3. FIXP-membership via Convex Optimization

which implies that x j > fi j(x) for some j. This implies that the right-hand side of
?? 3.12 is strictly positive, leading to a contradiction. From this, we obtain the
following.

Proposition 3. The envy-free cake cutting problem with very general valuations is
FIXP-hard.

3.5.2 The K-K-M Lemma

As we mentioned in the beginning of the section, our technique also has implications
to the FIXP-membership of some known topological problems which are related to
the cake cutting problem, in the sense that they have been, or can be used to prove the
existence of an envy-free division. Here, we present those results.

The Knaster–Kuratowski–Mazurkiewicz (K-K-M) lemma [156] is a basic result con-
cerning certain covers of the unit simplex by closed sets, related to Brouwer’s fixed
point theorem. First we present the definition of a K-K-M covering and then the
statement of the lemma.

Definition 3.5.1 (K-K-M covering). Let T1, . . . ,Tn ⊆ R
n be a collection of closed sets.

We say that T1, . . . ,Tn form a K-K-M covering of ∆n−1 if conv({ei : i ∈ S }) ⊆ ∪i∈S Ti,
for any set S ⊆ [n].

Lemma 5 (K-K-M lemma [156]). Let T1, . . . ,Tn be a K-K-M covering of ∆n−1. Then
∩n

i=1Ti , ∅.

We can derive a corresponding total search problem that applies to any collection
T1, . . . ,Tn of closed sets as follows.

Corollary 1. Let T1, . . . ,Tn ⊆ R
n be a collection of closed sets. Then there exists

x ∈ ∆n−1 such that exactly one of the following conditions holds.

1. x ∈ ∩m
i=1Ti

2. x < ∪i∈Supp(x)Ti

In case the second condition never holds we say that the sets T1, . . . ,Tn satisfy the
K-K-M condition.

Proof. Let us note that for any x ∈ ∆n−1 we have that x =
∑

i∈Supp(x) xiei ∈Conv({ei : i ∈
Supp(x)}). Thus, if the second condition does not hold for any x ∈ ∆n−1 it follows that
T1, . . . ,Tn form a K-K-M covering. By the K-K-M lemma we have ∩n

i=1Ti , ∅, which
means that there exist x ∈ ∆n−1 satisfying the first condition. □

Knaster et al. [156] gave a proof of Brouwer’s fixed point theorem from the K-K-
M lemma, whereas Gale [106] conversely gave a proof of the K-K-M lemma from
Brouwer’s fixed point theorem. To adapt these proofs to a computational setting, we
need to settle on the generality of closed sets we would like to consider and how to



3.5. Applications to Cake Cutting 73

represent those. It is natural to restrict attention to closed semi-algebraic sets definable
in the first order theory of the reals using polynomials with integer coefficients.

Definition 3.5.2 (Basic closed semi-algebraic set). A set S ∈Rn is a basic closed semi-
algebraic set if there exists polynomials P1, . . . ,Pk such that S = {x ∈ Rn | ∧k

i=1Pi(x) ≥
0}.

Any closed semialgebraic set S is a finite union of basic closed semialgebraic sets,
see e.g. [31], and if S is definable using polynomials with integer coefficients, this
holds also for the basic closed semialgebraic sets whose union is S . Disregarding
complexity concerns, all such sets can be represented as an inverse image F−1(0) of a
nonnegative function F computed by an algebraic circuit as shown in the following
lemma.

Lemma 6. Let S ⊆ Rn be a closed semialgebraic set definable using polynomials with
integer coefficients. Then there exists an algebraic circuit C computing a nonnegative
function F such that S = {x ∈ Rn | F(x) = 0}.

Proof. We may write S as a union S = ∪s
i=1S i of basic closed semialgebraic sets

S i = {x ∈ Rn | ∧
ki
j=1Pi j(x) ≥ 0}, where each polynomial Pi j have integer coefficients.

Note that S i j = {x ∈Rn | Pi j(x)≥ 0}= {x ∈Rn |max(0,−Pi j(x))= 0}, which means in
particular that S i j may be represented by as the inverse image F−1

i j (0) of a nonnegative
function Fi j computed by an algebraic circuit. We complete the proof by showing that
the collection of sets representable in this way is closed under intersection and union.

Suppose F1 and F2 are nonnegative functions computed by algebraic circuits
and let S 1 = F−1

1 (0) and S 2 = F−1
1 (0). Then the two functions max(F1(x),F2(x))

and min(F1(x),F2(x)) are nonnegative functions computed by algebraic circuits that
represents S 1∩S 2 and S 1∪S 2, respectively. □

We note that if S is any closed set, then the distance d(x,S ) is a nonnegative continu-
ous function that assumes the value 0 precisely in the set S . We may thus think of F
as a stand-in for the distance d(x,S ) from x to S .

We can now define a search problem based on Corollary 1 and the representation of
closed semialgebraic sets used in Lemma 6.

Definition 3.5.3 (K-K-M problem). Given algebraic circuits C1, . . . ,Cn computing
non-negative functions F1, . . . ,Fn : Rn → R, a point x ∈ ∆n−1 is a solution of the
associated K-K-M problem if one of the following conditions holds.

1. ∀i : Fi(x) = 0.

2. ∀i : xi > 0⇒ Fi(x) > 0.

In case the second condition never holds we say that the functions F1, . . . ,Fn satisfy
the K-K-M condition.



74 Chapter 3. FIXP-membership via Convex Optimization

Let us note that while the condition that the functions Fi are non-negative is a semantic
condition, it can be enforced syntactically when computed by algebraic circuits by
considering either (Fi(x))2 or max(Fi(x),0) depending on whether we wish to represent
the set F−1

i (0) or the set {x ∈ Rn | Fi(x) ≤ 0}.
We can now adapt the proof by Gale [106] to show that the K-K-M problem is in

FIXP, and the proof of Knaster et al. [156] to show that the K-K-M problem is also
FIXP-hard. We have the following theorem.

Theorem 3.5.4. The K-K-M problem is FIXP-complete.

Proof. We first prove FIXP-membership of the K-K-M problem. Define the function
G : ∆n−1→ ∆n−1 by

G(x)i =
xi+Fi(x)

1+
∑n

j=1 F j(x)

Given algebraic circuits for all functions Fi, an algebraic circuit computing G can
clearly be constructed in polynomial time. Suppose now that x ∈ ∆n−1 such that
G(x) = x. It follows that xi

∑n
j=1 F j(x) = Fi(x) for all i. If Fi(x) = 0 for all i, x is a

solution satisfying the first condition of the K-K-M problem. Otherwise, suppose
there is i such that Fi(x) > 0. Then

∑n
j=1 F j(x) > 0 as well and it follows that

xi =
Fi(x)∑n

j=1 F j(x)

for all i. Hence xi > 0 implies Fi(x) > 0, for all i, and x is a solution satisfying the
second condition of the K-K-M problem.

To prove FIXP-hardness we reduce from the basic FIXP problem with domain
∆n−1. Suppose that G :∆n−1→∆n−1 is a continuous function computed by an algebraic
circuit. We may then in polynomial time construct algebraic circuits computing the
functions Fi(x) = max(0,G(x)i − xi), for i = 1, . . . ,n. We claim that these functions
satisfy the K-K-M property. Suppose for the contrary that x ∈ ∆n−1 such that Fi(x) > 0
whenever xi > 0. Letting S = Supp x we then have G(x)i > xi for all i ∈ S , leading to
the contradiction

1 =
∑
i∈S

xi <
∑
i∈S

G(x)i ≤

n∑
i=1

G(x)i = 1 .

Thus if x ∈ ∆n−1 is a solution of the K-K-M problem it satisfies that Fi(x) = 0, for all i,
which implies that xi ≥G(x)i, for all i. Since also G(x) ∈ ∆n−1 it follows that in fact
xi =G(x)i, for all i, which means that x is a fixed point of G. □

The rainbow K-K-M lemma and Bapat’s Brouwer fixed point generalization

Several years after his proof for the K-K-M lemma in [106], Gale [105] also proved a
generalization of the K-K-M lemma, commonly referred to as the rainbow K-K-M
lemma.7

7Sometimes in the literature the term “colorful” is used instead of “rainbow”.



3.6. Applications to Markets 75

Lemma 7 (Rainbow K-K-M lemma [105]). Let T n
i, j=1 ⊆ R

n be a collection of closed
sets such that for every i, the collection Ti,1, . . . ,Ti,n form a K-K-M covering of ∆n−1.
Then there exists a permutation π of [n] such that ∩n

i=1Ti,π(i) , ∅.

Bapat [19] provided a proof of the rainbow K-K-M lemma via the introduction
of a generalization of Sperner’s lemma. In the same paper, he also provided his
generalization of Brouwer’s fixed point theorem (Theorem 3.5.3), which we used in the
proof of Proposition 3. Our reduction in Section 3.5.1 also proves the membership of
the computational version of Bapat’s Brouwer fixed point theorem in FIXP (henceforth
Bapat’s Brouwer fixed point problem), since envy-free cake cutting is in FIXP by
Proposition 2.

The reduction of Theorem 3.5.4 from the K-K-M problem to the computational
version of Brouwer’s fixed point theorem generalizes immediately to the case of
reducing from the rainbow K-K-M version (henceforth the rainbow K-K-M problem)
to Bapat’s Brouwer fixed point problem, thus establishing the FIXP-membership of
the rainbow K-K-M problem as well. In fact Bapat’s proof uses the rainbow K-K-M
lemma in the same way as Knaster et al. [156] do to prove Brouwer’s fixed point
theorem from the K-K-M lemma. Therefore, we have the following theorem.

Theorem 3.5.5. The rainbow K-K-M problem and Bapat’s Brouwer fixed point
problem are FIXP-complete.

3.6 Applications to Markets

In this section, we show how our main technique can be used to prove the FIXP-
membership of computing equilibria in competitive markets. Our first result here is
a rather general one, namely that the problem of computing a market equilibrium in
Arrow-Debreu markets with concave utilities is in FIXP. This generalizes previously
known results, on markets with specific utility functions [117] but at the same time is
conceptually easier, as long as our OPT-gate is used as a black box. We state the main
theorem below.

Theorem 3.6.1. The problem of computing a market equilibrium in an Arrow-Debreu
market with concave utilities is in FIXP.

Our second result regards the problem of computing an equilibrium in the pseudomar-
ket mechanism of Hylland and Zeckhauser [142], which was shown to be in FIXP
quite recently by Vazirani and Yannakakis [221]. We obtain the same result, via a
conceptually simpler proof based on our general technique.

Theorem 3.6.2. The problem of computing an equilibrium of the Hylland-Zeckhauser
mechanism is in FIXP.

The crucial ingredient that allows us to obtain proofs which are conceptually simpler
and often more general is in the utility-maximizing optimization program of the



76 Chapter 3. FIXP-membership via Convex Optimization

agents, which appears in the corresponding proofs of existence. Generally speaking,
given a set of prices, an agent computes a utility-maximizing allocation given a set of
constraints on consumption and endowment. Then, market clearing is ensured by the
fixed point condition on the prices. Using our OPT-gate, we can directly “simulate” the
utility-maximization program in these proofs, which makes our membership results
look very similar to the existence proofs themselves, which rely on some fixed point
correspondence theorem, most often Kakutani’s fixed point theorem (Theorem 3.2.2).
Note however that proving FIXP-membership using the OPT-gate implicitly also
yields a proof of existence based on Brouwer’s fixed point theorem (Theorem 3.2.1).

3.6.1 Arrow-Debreu Markets

The fundamental model of competitive markets was established in the pioneering
work of Arrow and Debreu [8], formalizing some ideas of Walras [225]. Arrow
and Debreu showed that under relatively mild assumptions, every market has an
equilibrium, i.e., a set of prices and allocations such that supply equals demand, and
every market participant is maximally satisfied with their assigned commodities at
the given prices. We present the formal setting of the Arrow-Debreu market below,
following closely their original paper. When < and ≤ are used for vectors, they are
applied componentwise.

Arrow-Debreu Market. An Arrow-Debreu market consists of

- A set L of commodities (i.e., divisible resources or items); let ℓ = |L|.

- A set N of production units or firms; let n = |N |.

For each firm j ∈ N, there is a set Y j of possible production plans. An element
y j ∈ Y j is a vector in Rℓ, i.e., y j = (y j,1,y j,2, . . . ,y j,ℓ), where y j,h is the output (i.e.,
the produced amount) of commodity h according to plan y j. The production can
also be negative, where y j,h < 0 is interpreted as the commodity h being an input to
the production plan, rather than an output. Let Y =

∑n
j=1 Y j.

The production sets Y j satisfy the following assumptions:

I.a. For all j ∈ N, Y j is a closed convex subset of Rℓ containing 0, (non-increasing
returns to scale)

I.b. Y ∩Rℓ
≥0 = {0}, (no output without input)

I.c. Y ∩ (−Y) = {0}. (irreversible production)

- A set M of consumption units or consumers; let |M| = m.

For each consumer i ∈ M, there is a set Xi of possible consumption vectors, indi-
cating the set of resources that a consumer could possibly consume, if there were
no budgetary constraints. We use xi = (xi,1, xi,2, . . . , xi,ℓ) to denote the consumption



3.6. Applications to Markets 77

of agent i, where xi,h denotes the consumer’s consumption of commodity h. The
consumption can also be negative, where xi,h < 0 is interpreted as a labor service
provided by the consumer to the market. The consumption sets Xi satisfy:

II. For all i ∈ M, Xi is a closed, convex subset of Rℓ which is bounded from
below, i.e., there is a vector ξi such that ξi ≤ xi for all xi ∈ Xi.

Each consumer has a utility function ui : Xi→ R, that satisfies the following proper-
ties:

III.a. ui(xi) is a continuous function on Xi, (continuity)

III.b. For any xi ∈ Xi, there is an x′i ∈ Xi such that ui(x′i) > ui(xi), (non-satiation)

III.c. If ui(xi) > ui(x′i) and 0 < t < 1, then ui
(
txi+ (1− t)x′i

)
> ui(x′i). (convexity of

preferences)

Each consumer i ∈ M is also endowed with a vector ζi = (ζ1,i, ζ2,i, . . . , ζℓ,i) ∈ Rℓ

of initial holdings of the different commodities, which we will refer to as the
endowment of consumer i. The following assumption is made:

IV.a. For all i ∈ M, there exists some xi ∈ Xi with xi < ζi.

Additionally, consumer i has a share αi j of the profit of the j-th production unit, for
each j ∈ N. Shares are non-negative and the profits are entirely shared among the
consumers, i.e.,

IV.b. For all i ∈ M and j ∈ N, αi j ≥ 0; for all j ∈ N,
∑m

i=1αi j = 1.

Before we proceed, we provide a brief discussion on some of the assumptions of
the model above.8 For the production plans, Assumption I.a. corresponds to non-
increasing returns to scale, i.e., when all production variables are increased by an
amount, the output is increased by an “at-most-proportional” amount. Assumption I.b.
states that it is not possible for the production to have output without having some
input. Finally, Assumption I.c. asserts that it is not possible to have two production
vectors that exactly “cancel” each other, since some labor is necessary for production,
and labor cannot be produced. For the consumers’ utilities, Assumption III.a. is a
standard assumption in consumer and market theory. Assumption III.b. asserts that
there is no “saturation point”, i.e., a consumption vector that the consumer prefers to
all others. A related sufficient condition would be that the utility function is strictly
monotone, although non-satiation is a weaker condition which is still sufficient for the
existence of a market equilibrium by Theorem 3.6.3. Assumption III.c. is a standard
assumption on the convexity of the indifference curves. Assumption IV.a. asserts that
each consumer could feasibly consume from their endowment and still have leftover
stock to trade in the market. Finally, Assumption IV.b. simply states that the profits

8The reader is referred to the original paper by Arrow and Debreu [8] for an extensive discussion on
the assumptions of the model.



78 Chapter 3. FIXP-membership via Convex Optimization

are non-negative and are shared entirely among the consumers, i.e., there are no profits
supplied to outside entities.

At the center of competitive markets is the concept of competitive or market equilib-
rium, i.e., a set of prices, production plans and consumption vectors such that supply
equals demand and all agents maximize their individual utility at the given set of
prices. We provide the formal definition below.

Definition 3.6.1 (Arrow-Debreu Market Equilibrium). A tuple of vectors (x∗1, x
∗
2, . . . , x

∗
m,y
∗
1,y
∗
2, . . .y

∗
n, p
∗)

is a (Arrow-Debreu) market equilibrium if the following conditions are satisfied:

1. y∗j ∈ argmaxy j∈Y j p∗ · y j, for all j ∈ N, (firm profit
maximization)

2. x∗i ∈ argmaxxi∈S i ui(xi), where (consumer utility maximization)
S i = {xi|xi ∈ Xi, p∗ · xi ≤ p∗ · ζi+

∑n
j=1αi j p∗ · y∗j}, for all i ∈ M,

3. p∗ ∈ P = {p|p ∈ Rℓ, p ≥ 0,
∑ℓ

h=1 ph = 1}, (non-negative,
normalized prices)

4. z∗ ≤ 0 and p∗ · z∗ = 0, where z∗ =
∑m

i=1 x∗i −
∑n

i=1 y∗j −
∑m

i=1 ζi. (market clearance)

Again, we briefly discuss the four conditions of the Arrow-Debreu market equilibrium
definition above. Condition 1 requires that at the given set of prices, the firms
maximize their profits within their production plans. Condition 2 requires that at the
given set of prices, the consumers maximize their utility within their consumption
vectors that satisfy their budget constraint. Condition 3 stipulates that the prices are
non-negative, and can be normalized to sum to 1 without loss of generality. Finally,
Condition 4 is the market clearing, the “supply equals demand” condition. The
condition states that (a) the total consumption of each commodity minus the sum
of the total production and the consumers’ endowment of that commodity has to be
non-positive (i.e., consumers cannot consume more than what is available) and (b)
this difference is actually zero (i.e., consumers consume exactly what is available),
for commodities for which the price is non-zero. Commodities which are priced at
zero are allowed to not be entirely consumed. We remark that in the related literature
(e.g., see [166, Chapter 10]), Condition 4 is often replaced by the strong condition of
“supply equals demand” for all commodities, regardless of the price, namely

m∑
i=1

x∗i,h =
n∑

i=1

y∗j,h+
m∑

i=1

ζi,h, for h = 1, . . . , ℓ.

Then, in order to guarantee the existence of a market equilibrium as in Theorem 3.6.3,
the extra assumption of free disposability needs to be added to the list of Assump-
tions I.a. to I.c. for the production sets (e.g., see [166, Chapter 5]), namely:

I.d. Y −Rℓ
≥0 ⊆ Y . (free disposability)



3.6. Applications to Markets 79

The property asserts that it is always possible to absorb additional inputs without
producing any extra output (i.e., the inputs can be “freely disposed”). Our approach
still works even if one requires this stronger clearing condition, see Remark 6.

Arrow and Debreu [8] proved that for any market as defined above, a market equilib-
rium always exists.

Theorem 3.6.3 ([8]). Every instance of the market above admits a market equilibrium.

One important observation is that Conditions 1 and 2 are essentially convex programs
whereas Conditions 3 and 4 are essentially sets of constraints. Using our OPT-gate
from Section 3.5.2, we can “substitute” these optimization programs by pseudogates,
effectively transforming an existence proof into a FIXP-membership proof. Indeed,
the proof of Theorem 3.6.3 as presented in [8] uses these conditions essentially as
optimization programs to construct a fixed point correspondence for the consumption,
the production and the prices. Then the existence of an equilibrium is proven via a
fixed point theorem due to Debreu [68]. Subsequent proofs used Kakutani’s fixed point
theorem (Theorem 3.2.2) to obtain the same existence result. Our FIXP-membership
result essentially devises a proof via Brouwer’s fixed point theorem instead, similar in
that regard to the proof of Geanakoplos [122].

Our result in Theorem 3.6.1 generalizes some membership results that were al-
ready presented in the literature, for markets with specific utility functions, production
and consumption sets. Etessami and Yannakakis [85] proved the FIXP-membership
of a setting where there are no explicit utilities, and the aggregate demand is a given
function, rather than a correspondence which is typically the case in these markets.
Garg et al. [117] provided a FIXP-membership result for Arrow-Debreu markets with
Piecewise Linear Concave (PLC) utility functions, and PLC production sets. The
authors consider straightforward consumption sets, namely that the consumption of
an agent is non-negative. For the formal definition of PLC functions, we refer the
reader to Section 3.7.

Remark 5. Besides the FIXP-membership results mentioned above, Chen et al. [56]
proved a FIXP-membership result for markets with CES utilities, only non-negativity
constraints on consumption and no production. While these are a special case of
the Arrow-Debreu market that we consider, strictly speaking, our result does not
generalize theirs. This is exclusively due to technical reasons, which we highlight
below.

As we explain in Section 3.6.1 below, we assume that access to the utility functions
is given to us via the supergradients of those functions; this is clearly necessary when
dealing with general concave functions without any additional structure. In the case
of explicit utility functions however, like PLC utilities or CES utilities, ideally we
would like to be able to compute the supergradients given the utility functions, rather
than assume access to them. For PLC utilities (and actually much more general
utility functions) we can do that, and we show how in Section 3.7. In that sense, our
FIXP-membership result is a strict generalization of the corresponding membership



80 Chapter 3. FIXP-membership via Convex Optimization

result proven in [117]. On the other hand, CES utilities are not superdifferentiable
when some coordinate is 0, and therefore we cannot claim the same for the results of
Chen et al. [56]. We believe that it is possible to adapt our approach in Section 3.6.1
to capture the case of CES utilities, but we leave that for future work.

The computational Arrow-Debreu market problem

In some of the applications that we have presented so far, deriving the corresponding
computational problems from the existence theorems has been relatively straightfor-
ward, and thus not explicitly stated. In the market domain, due to the generality of
the utility functions, as well as the production and consumption sets, some additional
discussion is in order.

- For the utility functions ui, we will assume that we are given a pseudogate com-
puting the supergradients ∂ui (see Sections 3.3.2 and 3.3.4). This is in a sense
necessary, since we are concerned with general concave utility functions, with no
further particular structure. In the case of specific utility functions, such as the
PLC utilities studied in [117], we can easily construct pseudogates computing the
supergradients. In Section 3.7, we explain how to compute the supergradients for a
general class of utility functions that subsumes PLC utilities, which we refer to as
Piecewise Differentiable Concave (PDC) functions, rather than assuming that they
are given to us as inputs.

- For the consumption and production sets, we will assume that they are given to us
as sets of convex inequalities and linear equations that satisfy the (standard) Slater
condition, see Section 3.3.4. Note that here we do not need them to satisfy the
explicit Slater condition of Definition 3.3.4; this is because the consumption and
production sets are part of the input to the problem, and therefore we can apply
preprocessing to the corresponding constraints to eliminate any linear dependence.
For the convex inequalities, we also assume that we are given pseudogates com-
puting their subgradients, as explained in Section 3.3.4. We further assume that
the endowments ζi, the shares αi j, and the lower bounds ξi on the consumption are
given in the input as rational numbers.

- For the production sets, the assumptions in the Arrow-Debreu model ensure that
the set of all (y1, . . . ,yn) ∈ (Rℓ)n that satisfy

y j ∈ Y j, for j = 1, . . . ,n and
m∑

i=1

ξi−

n∑
j=1

y j−

m∑
i=1

ζi ≤ 0 (3.13)

is bounded. This is proved by Arrow and Debreu [8, pp. 276-277] and, from a
technical standpoint, one of the main purposes of the various assumptions on the
production sets is to ensure that this property indeed holds. Note that any production
plan (y1, . . . ,yn) that satisfies the market clearing condition must necessarily satisfy
the inequality constraint above. Thus, in any market equilibrium, the production
plan lies in this bounded set.



3.6. Applications to Markets 81

For the definition of the computational problem, we assume that the input to the
problem contains an explicit bound C on the set above (in the ℓ∞-norm). This
is needed to ensure that solutions can be bounded with some bound that has
polynomial bit-complexity. We remark that in the case of the PLC production sets
used in [117], the constraint y ∈ Y j corresponds to a set of linear equalities and
inequalities. As a result, the bound C does not need to be provided in the input in
that case, since it can easily be obtained by solving an LP.

Membership in FIXP – the proof of Theorem 3.6.1

Bounding the domain of allocations. Consider any (x1, . . . , xm) ∈ (Rℓ)m and (y1, . . . ,yn) ∈
(Rℓ)n that satisfy xi ∈ Xi for i = 1, . . . ,m, y j ∈ Y j for j = 1, . . . ,n, and

z :=
m∑

i=1

xi−

n∑
j=1

y j−

m∑
i=1

ζi ≤ 0.

By Assumption II., we have ξi ≤ xi, and as a result (3.13) is satisfied. It follows that
∥y j∥ ≤C for j = 1, . . . ,n, where ∥ · ∥ denotes the ℓ∞-norm. Now, z ≤ 0 also implies that
for any i ∈ [m]

xi ≤

n∑
j=1

y j+

m∑
k=1

ζk −
∑
k,i

xk ≤

n∑
j=1

y j+

m∑
k=1

ζk −
∑
k,i

ξk

where we used ξk ≤ xk again. Together with ξi ≤ xi, it follows that ∥xi∥ ≤ nC +
mmaxk ∥ζk∥+mmaxk ∥ξk∥ =: C′.

We let K :=C′+1. From the above, we have that if (x1, . . . , xm,y1, . . . ,yn) satisfies
xi ∈ Xi, y j ∈ Y j, and z ≤ 0, then xi,y j ∈ (−K,K)ℓ for all i, j. In particular, this must be
satisfied at any equilibrium. Note that K can be computed in polynomial time from
the inputs to our problem.

Construction of the circuit. We construct a circuit F : D→D, where D= ([−K,K]ℓ)m×

([−K,K]ℓ)n×[0,1]ℓ. We let (x1, . . . , xm,y1, . . . ,yn, p) denote the input to F, and (x1, . . . , xm,y1, . . . ,yn, p)
denote the output of F.

We set y j as the output of the OPT-gate for the convex optimization problem:

maximize p · v

subject to v ∈ Y j

v ∈ [−K,K]ℓ
(3.14)

We set xi as the output of the OPT-gate for the convex optimization problem:

maximize ui(v)

subject to v ∈ Xi

p · v ≤ p · ζi+
m∑

j=1

αi j p · y j

v ∈ [−K,K]ℓ

(3.15)



82 Chapter 3. FIXP-membership via Convex Optimization

The inequality constraint p · v ≤ p · ζi+
∑m

j=1αi j p · y j is called the budget constraint.
Finally, we set p as the output of the OPT-gate for the LP:

maximize v · z

subject to
ℓ∑

h=1

vh = 1

v ∈ [0,1]ℓ

(3.16)

where z :=
∑m

i=1 xi−
∑n

j=1 y j−
∑m

i=1 ζi.

Fixed points. Consider any fixed point of F, i.e., (x1, . . . , xm,y1, . . . ,yn, p) ∈ D such
that

(x1, . . . , xm,y1, . . . ,yn, p) = (x1, . . . , xm,y1, . . . ,yn, p).

We begin by showing that the explicit Slater condition holds at (x1, . . . , xm,y1, . . . ,yn, p)
for all three optimization problems, and thus they are solved correctly by the OPT-gate.
Then, we show that (x1, . . . , xm,y1, . . . ,yn, p) is indeed a market equilibrium, as desired.

Explicit Slater condition. Clearly, the constraints of (3.16) satisfy the explicit
Slater condition. As a result, the OPT-gate functions properly and p = p is indeed an
optimal solution of this LP.

The constraints of the convex optimization problem (3.14) also satisfy the explicit
Slater condition. To see this, note that, by assumption, the constraints describing Y j

satisfy the explicit Slater condition, i.e., there exists v ∈ Y j that satisfies the inequality
constraints of Y j strictly. Since 0 ∈ Y j∩ (−K,K)ℓ (Assumption I.a.) and by convexity
of the inequality constraints of Y j, there must exist v′ ∈ Y j ∩ (−K,K)ℓ that satisfies
the inequality constraints of Y j strictly as well. As a result, the OPT-gate functions
properly and y j = y j is an optimal solution of (3.14). In particular, y j ∈ Y j.

By Assumption IV.a., there exists v ∈ Xi with v < ζi (componentwise). Since ξi ≤ v
(Assumption II.), it also follows that v ∈ Xi∩ (−K,K)ℓ, by construction of K. Since
y j is an optimal solution of (3.14), we have p · y j ≥ 0, because 0 ∈ Y j∩ [−K,K]ℓ is a
feasible point of (3.14). Thus,

∑m
j=1αi j p · y j ≥ 0, since αi j ≥ 0. Now, since v < ζi and

since there exists h ∈ [ℓ] with ph > 0 (by optimality of p for (3.16)), it follows that
p ·v < p ·ζi+

∑m
j=1αi j p ·y j, i.e., v ∈ Xi∩ (−K,K)ℓ strictly satisfies the budget constraint

in (3.15).
Recall that the constraints describing Xi are assumed to satisfy the explicit Slater

condition, i.e., there exists v′ ∈ Xi that satisfies the inequality constraints of Xi strictly.
By the convexity of the inequality constraints of Xi, it follows that there exists v′′

on the segment [v,v′] such that v′′ ∈ Xi ∩ (−K,K)ℓ, v′′ strictly satisfies the budget
constraint in (3.15), and v′′ strictly satisfies the inequality constraints of Xi. This
means that the constraints of (3.15) satisfy the explicit Slater condition and thus the
OPT gate for (3.15) works correctly. As a result, xi = xi is an optimal solution of
(3.15). In particular, xi ∈ Xi and xi satisfies the budget constraint for consumer i.



3.6. Applications to Markets 83

Market equilibrium. By summing up the budget constraints satisfied by each xi,
and using the fact that

∑m
i=1αi j = 1 (Assumption IV.b.) we immediately obtain that

p · z ≤ 0. Now, since p is an optimal solution of (3.16), it must be that z ≤ 0. But then,
by construction of K, it follows that xi,y j ∈ (−K,K)ℓ for all i and j. As a result, y j is
also an optimal solution of (3.14) without the constraint v ∈ [−K,K]ℓ. Similarly, by
convexity of preferences (Assumption III.c.), which in particular holds for concave ui,
xi is also an optimal solution of (3.15) without the constraint v ∈ [−K,K]ℓ. We have
thus shown that Conditions 1 and 2 hold.

Recall that we have z ≤ 0 and p · z ≤ 0. In order to prove that Condition 4 holds, it
remains now to show that p · z = 0. Clearly, if the budget constraint for each consumer
i is tight, then indeed p · z = 0. Assume that for some i, the budget constraint is not
tight, i.e., p · xi < p · ζi +

∑m
j=1αi j p · y j. By non-satiation (Assumption III.b.), there

exists x′i ∈ Xi with ui(x′i) > ui(xi). By convexity of preferences (Assumption III.c.),
there exists x′′i ∈ Xi ∩ (−K,K)ℓ with ui(x′′i ) > xi and such that x′′i also satisfies the
budget constraint. This is a contradiction to the optimality of xi for (3.15). Thus,
Condition 4 also holds.

Finally, note that Condition 3 trivially holds, since p is a feasible point for
(3.16). It follows that any fixed point (x1, . . . , xm,y1, . . . ,yn, p) of F is indeed a market
equilibrium.

Remark 6. If we also assume free disposability (Assumption I.d.), then there exists
a market equilbrium that also satisfies z = 0, i.e., supply equals demand for all
commodities, even those with zero price. We briefly sketch how F can be modified to
yield FIXP-membership for this problem too.

Instead of outputting (y1, . . . ,yn), F outputs (y′1, . . . ,y
′
n), which is set as the output

of the OPT-gate for the convex feasibility problem:

maximize 0

subject to
n∑

j=1

v j =

m∑
i=1

xi−

m∑
i=1

ζi

p · v j = p · y j,∀ j

v j ∈ Y j,∀ j

v j ∈ [−K,K]ℓ,∀ j

Furthermore, in (3.15) and (3.16), we replace y j by y j, including in z.
Using the same arguments as above, it follows that p = p is an optimal solution of

(3.16), y j is an optimal solution of (3.14), and xi = xi is an optimal solution of (3.15).
As before, this implies that z ≤ 0 and p · z = 0.

Recall that we have redefined z :=
∑m

i=1 xi−
∑n

j=1 y j−
∑m

i=1 ζi. By free disposability
(Assumption I.d.), and since z ≤ 0, it follows that w :=

∑n
j=1 y j+ z ∈ Y . This means that

we can write w =
∑n

j=1 w j where w j ∈ Y j, and it holds that z′ :=
∑m

i=1 xi −
∑n

j=1 w j −



84 Chapter 3. FIXP-membership via Convex Optimization

∑m
i=1 ζi = 0. In particular, w j ∈ (−K,K)ℓ by construction of K. Furthermore,

n∑
j=1

p ·w j = p ·w =
n∑

j=1

p · y j+ p · z =
n∑

j=1

p · y j

since p · z = 0. This implies that p ·w j = p · y j for all j, because y j is an optimal
solution of (3.14), and w j is feasible for (3.14). As a result, (w1, . . . ,wn) is feasible for
the feasibility problem above. In particular, the feasible region is nonempty, and thus
the OPT-gate ensures that (y′1, . . . ,y

′
n) is indeed feasible for the feasibility problem.

Since xi satisfies the budget constraint with y j, it also satisfies it with w j instead.
It follows that (x1, . . . , xm,y1, . . . ,yn, p) is a market equilibrium where supply equals
demand for all commodities, even those with zero price.

3.6.2 The Hylland-Zeckhauser pseudomarket mechanism

In 1979, Hylland and Zeckhauser [142] introduced the random assignment problem
(also known as the randomized house allocation problem, e.g., see [1, 32]). In this
problem, the goal is to assign a set of indivisible goods G = {1, . . . ,n} to a set of agents
A = {1, . . . ,n}, who have preferences over the goods. These preferences are expressed
via cardinal utilities values, i.e., every agent i has a utility vector ui, where ui j denotes
the utility of agent i for good j.

Together with the introduction of the problem, Hylland and Zeckhauser [142]
also proposed a mechanism for coming up with an allocation that satisfies several
desirable properties, namely ex-ante envy-freeness and ex-ante Pareto efficiency. The
mechanism works by assigning every good a price p j ≥ 0 and every agent i, endowed
with one unit of artificial currency, buys probability shares xi = (xi1, . . . , xin) of the
goods in a manner that maximizes the agent’s expected utility

∑n
j=1 ui jxi j subject to

a budget constraint
∑n

j=1 p jxi j ≤ 1 and a feasibility allocation constraint
∑n

j=1 xi j = 1.
We require that every good is entirely assigned to the agents, that is

∑n
i=1 xi j = 1 for

every j, and if this is not the case, the mechanism reacts by adjusting the prices. A
set of prices and an allocation for which all the items are entirely allocated (and the
artificial budgets are exhausted) is an equilibrium point of the mechanism, which we
refer to as a HZ-equilibrium.

Definition 3.6.2 (HZ-equilibrium). A pair (p, x) of a price vector p and an allocation
matrix x form a HZ-equilibrium for the pseudomarket described above if:

i. For every good j ∈G :
∑n

i=1 xi j = 1.

ii. For every agent i, the allocation xi maximizes
∑n

j=1 ui jxi j subject to the con-
straints

∑n
j=1 p jxi j ≤ 1 and

∑n
j=1 xi j = 1. Also, if there are multiple allocations

for i that satisfy this, then xi must be the cheapest such allocation.

From the definition above, it is clear why the Hylland-Zeckhauser mechanism
is often referred to as a pseudomarket. The HZ-equilibrium clearly resembles the



3.6. Applications to Markets 85

Competitive Equilibrium from Equal Incomes [104, 219], except for the allocation
constraints which restrict a buyer’s allocation to be a total of one unit. This constraint
turns out to be rather crucial, as computing a CEEI can be done in polynomial time,
whereas the complexity of computing exact HZ-equilibria is still an open problem.

The reason for requiring that the xi are the cheapest utility-maximizing allocations
is that this ensures that a HZ-equilibrium (p, x) is ex-ante Pareto optimal. We note
that p j ≤ n for all j, because of the budget constraints. Using Kakutani’s fixed point
theorem, Hylland and Zeckhauser proved the following result.

Theorem 3.6.4 (Hylland and Zeckhauser [142]). Every instance of the pseudomarket
above admits a HZ-equilibrium (p, x). Also, p may be chosen such that p j = 0 for
some j.

Membership in FIXP – the proof of Theorem 3.6.2

Vazirani and Yannakakis [221] recently provided a proof of membership in FIXP for
the problem of computing a HZ-equilibrium. Their proof defines a map of prices
and allocations F = (Fp,F1, . . . ,Fn). Each of the coordinate functions is defined by a
straight-line-program consisting of various steps. For instance, in one of the steps of
Fi the allocation xi is altered in the case that agent i has not exhausted its budget and
xi j > 0 for some good j with ui j <maxk uik. Using a potential function argument, they
argue that if (p, x) is a fixed point, then none of the steps of the coordinate functions of
F will alter (p, x). With this in mind, they then argue that if (p, x) is not an equilibrium,
then there must be some step of F that causes a change, implying that (p, x) cannot
be a fixed point. Next, we present a different proof which makes use of our general
technique and which we believe to be conceptually simpler.

The domain of our map F is D = [0,n]n× ([0,1]n)n. The basic idea of the map is
that, on input (p, x), we first compute an allocation x′i for each agent i that maximizes
the expected utility (but not necessarily the cheapest among those) given prices p.
Then, using x′i , we compute an allocation yi on n+ 1 goods, which achieves the
same utility as x′i , but also minimizes the cost. The extra “dummy” good is carefully
constructed in such a way that it is never chosen (i.e., yi,n+1 = 0) at a fixed point of F.
The function F outputs (p, x), where xi is equal to π(yi), namely the projection of yi

onto the first n coordinates, and p is obtained as the solution to a simple LP which
ensures that overallocated goods get maximum price, and underallocated goods get
price 0. We note that the input x is not used in the computation of the circuit; the only
reason why it is included in the domain of F is so that a fixed point (p, x) of F also
includes an optimal allocation.



86 Chapter 3. FIXP-membership via Convex Optimization

Description of the map. On input (p, x), F : D→ D first computes an allocation x′i
as a solution to the Linear Program:

maximize
n∑

j=1

ui jzi j (3.17)

subject to
n∑

j=1

zi j = 1

n∑
j=1

p jzi j ≤ 1

zi j ≥ 0,∀ j

Before describing the Linear Program computing yi, we introduce the dummy good
that we mentioned earlier. For every agent i, we let δi denote the difference in utility
between its most preferred and second most preferred good (if the agent prefers all
goods equally, we let δi = 1). The utility of agent i for the dummy good is now defined
as ui,n+1 = uimax+δi. Furthermore, we let pn+1 = 3n. Now, yi is computed as a solution
to the Linear Program:

minimize
n+1∑
j=1

p jzi j (3.18)

subject to
n+1∑
j=1

zi j = 1

n+1∑
j=1

ui jzi j ≥

n∑
j=1

ui jx′i j

zi j ≥ 0,∀ j

The second output of F is obtained by setting xi := π(yi), where π(·) denotes projection
onto the first n coordinates. Finally, we compute a solution p∗ to the following Linear
Program:

maximize
n∑

j=1

q j
( n∑

i=1

yi j−1
)

(3.19)

subject to 0 ≤ q j ≤ n, ∀ j

and we put p̄ = p∗− (min j p∗j) · e where e = (1, . . . ,1).

Fixed points. Suppose that (p, x) is a fixed point of F, i.e., (p, x) = ( p̄, x̄). Since by
construction p̄ = p∗− (min j p∗j) · e, there exists some j with p j = p̄ j = 0. As a result,
there exists a feasible solution to LP (3.17) that satisfies the inequality constraints
strictly: let zik = ε for all k , j and zi j = 1− (n− 1)ε for a sufficiently small ε > 0.



3.7. Conclusion and Future Work 87

Also, the equality constraints are clearly linearly independent. This implies that the
explicit Slater condition is satisfied for LP (3.17), and therefore x′i is indeed an optimal
solution to this LP. Similarly, using that ui,n+1 > ui j for all j ≤ n we may show that
there exists a feasible solution to LP (3.18) that satisfies all the inequalities strictly.
Again, this means that the explicit Slater condition is satisfied for this LP and thus yi

is an optimal solution.

Lemma 8. For every i we have yi,n+1 = 0.

Proof. Suppose towards a contradiction that yi,n+1 > 0. Because yi is a cost-minimizing
allocation and pn+1 > p j for all j ≤ n, there exists some j with yi j > 0 and ui j < uimax,
where uimax =max j ui j. Otherwise, one could achieve a better allocation that consists
of only one of the goods that has maximal utility for agent i.

Let k denote a good of maximal utility for agent i, and pick 0 < ε < yi j,yi,n+1. Now,
define a new allocation y′i by y′iℓ = yiℓ for ℓ , j,k,n+1, y′ik = yik +2ε, y′i j = yi j−ε, and
y′i,n+1 = yi,n+1−ε. We claim that y′i is a strictly better allocation. Clearly, y′i is still a
stochastic vector. Also, using the definition of δi, we have that ui j ≤ uimax−δi, so we
may bound the change in utility as

∆u = 2εuimax−εui j−εui,n+1 = ε(2uimax−ui j− (uimax+δi)) ≥ 0

We conclude that y′i also satisfies the utility constraint. Using that p j, pk ∈ [0,n] and
pn+1 = 3n, we may bound the change in price of the allocation as

∆P = 2εpk −εp j−εpn+1 ≤ 2εn−3εn < 0

We conclude that y′i is a strictly better solution, contradicting the optimality of yi.
Therefore we have that yi,n+1 = 0. □

By the lemma above, we obtain that π(yi) is a cheapest utility-maximizing allo-
cation for agent i at prices p. In particular, it satisfies the budget constraint. What
remains to show is that every good j ≤ n is allocated fully. If that was not the case,
we would have that there is some j with

∑n
i=1 yi j < 1. This means that a solution

p∗ to LP (3.19) must have p∗j = 0. There must also exist some k with
∑n

i=1 yik > 1
which implies that p∗k = n. As p∗j = 0, we obtain that pk = pk = n. However, pk = n
together with

∑n
i=1 yik > 1 implies that

∑n
i=1 pkyik > n which contradicts the budget

constraints of the agents. Therefore
∑n

i=1 yi j = 1 for every good j. We conclude that
(p, x) = (p,π(y)) forms a HZ-equilibrium, therefore proving Theorem 3.6.2.

3.7 Conclusion and Future Work

In this paper, we introduced the OPT-gate, a powerful tool that can be used as a black
box for FIXP-membership proofs, essentially substituting the various Linear Programs
and more general convex optimization programs that often appear in the corresponding
existence proofs. We demonstrated the strength of our technique via a set of different



88 Chapter 3. FIXP-membership via Convex Optimization

applications on quite important and fundamental equilibrium computation problems
in game theory, fair division and competitive markets.

We believe that our technique can be used even more broadly in the future, to
enable clean and simple FIXP-membership proofs of other interesting problems. For
example, one could study the equilibria of the various generalizations of the Hylland
and Zeckhauser mechanism, e.g., due to He et al. [140] and Echenique et al. [81]; we
believe that our OPT-gate can be used to show membership results for those problems
as well, but the details need to be worked out. Independently of our technique but
related to our results, some important open problems are whether one can show a
FIXP-hardness result for the equilibrium computation problem in Hylland and Zeck-
hauser pseudomarkets, or in Arrow-Debreu markets. For Hylland and Zeckhauser
pseudomarkets, it was recently proved that computing a (weak) approximate equi-
librium is PPAD-complete [49], but the complexity of computing exact equilibria
remains open. For Arrow-Debreu markets, as we explained in Section 3.1.2, the result
of Garg et al. [118] does not quite yield the FIXP-completeness result for the market
model as presented in [8]. On the other hand, our FIXP-membership result enables
future work to consider rather general markets (with general concave utilities and
convex consumption and production sets), in the quest of establishing the desired
FIXP-completeness of the problem.

A.1 Piecewise Differentiable Concave Functions

A piecewise differentiable concave function is a function that is obtained by tak-
ing the lower envelope of differentiable concave functions. Formally, a piecewise
differentiable concave function f : Rn→ R is given by

f (x) = min
j∈[m]

g j(x)

where for each j ∈ [m], g j : Rn → R is differentiable and concave. Note that, as a
result, f is also concave and, in particular, admits a superdifferential ∂ f .

For computational purposes f is represented as follows. For each j ∈ [m], we are
given:

• an algebraic circuit computing g j, and

• an algebraic circuit computing ∇g j, the gradient of g j.

Clearly, given the circuits for g j we can easily construct an algebraic circuit that
computes f .

Lemma 9. Given f represented as above, we can in polynomial time construct a
pseudogate computing the superdifferential ∂ f .

Before proving this Lemma, we provide some notable special cases of piecewise
differentiable concave function.



3.7. Conclusion and Future Work 89

• Piecewise Linear Concave (PLC): This corresponds to the special case where
the functions g j are linear affine, i.e., g j(x) = a j · x+ b j. PLC functions are
usually represented by the rationals a j, b j for j = 1, . . . ,m. Circuits for g j and
∇g j can easily be constructed from these. This class of functions also contains
Leontief utilities.

• Piecewise Polynomial Concave: This corresponds to the special case where
the functions g j are concave polynomials. The polynomials are represented
explicitly as a list of monomials. Again, circuits for g j and ∇g j can easily be
constructed from these.

Proof of Lemma 9. We show how to construct a circuit G∂ f : Rn×[0,1]ℓ→Rn×[0,1]ℓ

such that Fixℓ[G∂ f ](x) ⊆ ∂ f (x) for all x ∈ Rn.
On input x ∈ Rn, G∂ f first computes g j(x) and ∇g j(x) for j = 1, . . . ,m, using the

circuits for g j and ∇g j. Then using the OPT-gate, it computes w ∈ Rn as an optimal
solution to the following LP:

minimize
m∑

j=1

v jg j(x)

subject to
m∑

j=1

v j = 1

v j ≥ 0,∀ j

Finally, G∂ f outputs
∑m

j1 w j∇g j(x). Note that the ℓ auxiliary inputs/outputs of G∂ f are
used to implement the OPT-gate.

Clearly, the LP above satisfies the explicit Slater condition (Definition 3.3.3),
and as a result w is indeed an optimal solution of the LP. In other words, any
z ∈ Fixℓ[G∂ f ](x) can be written as z =

∑m
j1 w j∇g j(x), where w is an optimal so-

lution to the LP above. By construction, optimality for the LP ensures that z ∈
Conv{∇g j(x) : g j(x) = mink gk(x)} ⊆ ∂ f (x). The last containment follows from stan-
dard properties of the superdifferential, see, e.g., [191]. □





Chapter 4

PPAD-membership for Problems
with Exact Rational Solutions: A
General Approach via Convex
Optimization

Abstract

We introduce a general technique for proving membership of search prob-
lems with exact rational solutions in PPAD, one of the most well-known classes
containing total search problems with polynomial-time verifiable solutions. In
particular, we construct a “pseudogate”, coined the linear-OPT-gate, which
can be used as a “plug-and-play” component in a linear arithmetic circuit, as
an integral component of the “Linear-FIXP” equivalent definition of the class.
The linear-OPT-gate can solve several convex optimization programs, including
quadratic programs, which often appear organically in the simplest existence
proofs for these problems. This effectively transforms existence proofs to PPAD-
membership proofs, and consequently establishes the existence of solutions
described by rational numbers.

Using the linear-OPT-gate, we are able to significantly simplify and gen-
eralize almost all known PPAD-membership proofs for finding exact solutions
in the application domains of game theory, competitive markets, auto-bidding
auctions, and fair division, as well as to obtain new PPAD-membership results
for problems in these domains.

4.1 Introduction

Total search problems, i.e., search problems for which a solution is always guaranteed
to exist, have been studied extensively over the better part of the last century, in the
intersection of mathematics, economics and computer science. Famous examples
of such problems are finding Nash equilibria in games [177], competitive equilibria
in markets [8] and envy-free divisions of resources [209]. While the classic works

91



92 Chapter 3. PPAD-membership via Convex Optimization

in mathematics and economics have been primarily concerned with establishing the
existence as well as desirable properties of these solutions, the literature of computer
science over the past 35 years has been instrumental in formulating and answering
questions about the computational complexity of finding them.

More precisely, Megiddo and Papadimitriou [170] defined the class TFNP to
include all total search problems for which a solution is verifiable in polynomial
time. To capture the computational complexity of many problems including the
aforementioned ones, several subclasses of TFNP were subsequently defined. Among
those, one that has been extremely successful in this regard is the class PPAD of
Papadimitriou [182], which was proven to characterize the complexity of computing
Nash equilibria in games [55, 67], as well as competitive equilibria for several types
of markets [56], among many others.

In reality, when making statements like the above, i.e., general statements of the
form, “finding a Nash equilibrium is in PPAD”, or similarly for a solution to some
other total search problem, it is most often meant that what lies in the class is the
problem of finding approximate solutions. For strategic games for example, that
would mean strategy profiles which are almost Nash equilibria, up to some additive
parameter ε. This is actually quite often necessary, as it has been shown that for many
of these problems, there are cases where all of their solutions can only be described
by irrational numbers, and hence we can not hope to compute them exactly on a
computer.

Still, there is a large number of important variants of these domains for which exact
rational solutions exist. For example, several strategic games always have equilibria
in rational numbers, and so do certain markets for their competitive equilibria. There
are also examples from fair division where rational partitions of the resources can
be achieved. In all of those cases, PPAD-membership results for their approximate
versions are unsatisfactory; we would like to place the exact problems in PPAD
instead.

Indeed, coming up with proofs of existence that also guarantee rationality of
solutions has been a topic of interest in the area since the very early days, way
before the introduction of the relevant computational complexity classes, e.g., see
[80, 141, 160, 161]. Driven by those classic results, a significant literature in computer
science has attempted, and quite often has succeeded in placing the corresponding
computational problems in PPAD, for several of the application domains mentioned
above, including games [137, 153, 155, 172, 203], markets [110, 112, 119, 220], as
well as the more recent domain of auto-bidding auctions [57].

While these PPAD-membership proofs typically do follow one of a few common
approaches, in essence they are rather domain-specific and require reconstructing
a set of arguments again for each application at hand (see Section 4.1.2 below for
a detailed discussion). Instead, we would like to have one general technique for
proving PPAD-membership of problems with exact solutions, and ideally one that
arises “organically” as the computational equivalent of the standard proofs of existence.
To do this, a very promising avenue seems to be via a characterization of PPAD, coined
Linear-FIXP, due to Etessami and Yannakakis [86], which defines the class in terms



4.1. Introduction 93

of fixed points of problems represented by piecewise-linear arithmetic circuits. This
is because a standard existence proof, e.g., via the Kakutani fixed point theorem
[149] or via Brouwer’s fixed point theorem [39], often obtains the solution as a
fixed point of a set of local optimization problems, in which each agent or player is
independently maximizing a piecewise utility/payoff function. If we could “embed”
these optimization problems into a piecewise-linear circuit, that would essentially
translate the existence proof into a PPAD-membership proof. This is crisply captured
in the following quote from Vazirani and Yannakakis [220], in the context of proving
PPAD-membership for competitive equilibria in certain markets:

“There are very few ways for showing membership in PPAD. A promising
approach for our case is to use the characterization of PPAD of Etessami
and Yannakakis [2010] as the class of exact fixed-point computation
problems for piecewise-linear, polynomial time computable Brouwer
functions. [. . .] Unfortunately, we do not see how to do this [. . .] it is not
clear how to transfer the piecewise-linearity of the utility functions to the
Brouwer function.” [220].

Recently, Filos-Ratsikas et al. [101] in fact developed a general technique along those
lines: they designed an optimization gate, which can be used as part of a circuit to
substitute the aforementioned optimization problems and obtain membership results.
Crucially however, their membership results are not for the class PPAD, but rather for
the class FIXP [86], a superclass of Linear-FIXP in which the main computational
device is a (general) arithmetic circuit, not a piecewise-linear one. These circuits
are particularly powerful and can capture solutions with irrationalities. Using their
“OPT-gate for FIXP”, Filos-Ratsikas et al. [101] showed the FIXP-membership of
several very general problems related to strategic games, markets and fair division.

While FIXP is certainly a natural class, it has not enjoyed the same success as
PPAD, even in the context of classifying problems with exact solutions. Besides,
in the standard (Turing) model of computation, a FIXP-membership result can be
interpreted as finding a point that is close to a solution (e.g., in the max norm). This
is often a stronger guarantee than an approximate solution as described earlier, but
it it still very much only an approximation. Again, this is unsatisfactory for those
problems with exact rational solutions that should be in PPAD.

Could we hope to use Filos-Ratsikas et al.’s optimization gate to obtain PPAD-
membership? This is actually practically impossible, for reasons which are deeply
rooted in the definitions of the classes; we highlight those in Section 4.1.3 below.
In short, the power of general arithmetic circuits over piecewise-linear ones lies in
their capability to multiply and divide input variables, and this is of vital importance
in the design of the OPT-gate for FIXP in [101]. What we really need is a new
gate, one which avoids such multiplications/divisions and hence can be used in a
piecewise-linear arithmetic circuit. Clearly, the gate cannot capture the generality
of applications that the OPT-gate for FIXP does, as, as we said earlier, problems



94 Chapter 3. PPAD-membership via Convex Optimization

with irrational solutions cannot be in PPAD. It should however be general enough to
capture any problem for which exact rational solutions are possible.

This is the main technical contribution of our paper. We introduce the linear-OPT-
gate,1 which can be used as a general purpose tool for proving PPAD-membership of
problems with exact rational solutions. We demonstrate its strength and generality
on a host of different applications in game theory, markets, auctions and fair division.
Via its use, we are able to significantly simplify or generalize virtually all of the
PPAD-membership proofs for problems with exact solutions in the literature, as well
as to prove new membership results for problems for which PPAD-membership was
not known; we offer more details in the following subsection.

4.1.1 A Powerful Tool for PPAD-membership: The linear-OPT-gate

We introduce the linear-OPT-gate for proving membership of problems in PPAD. The
linear-OPT-gate can be used as a “plug-and-play” component in a linear arithmetic
circuit, i.e., similarly to any of the other gates {+,−,max,min,×ζ} of the circuit
(see Definition 4.2.3). The gate is guaranteed to work correctly at a fixed point
of the function that the circuit encodes, which, for the purposes of proving PPAD-
membership of a problem, is equivalent to a standard gate.

The linear-OPT-gate allows us to compute solutions to optimization programs of
a certain form, like those shown in the left-hand side of Figure 4.1. In particular, these
are optimization programs with a non-empty and bounded feasible domain given by a
set of linear inequalities, and the subgradient of the convex objective function (in the
variables x) is given by a linear arithmetic circuit. In particular, the linear-OPT-gate
can compute the solution to any linear program, but also to more general convex
programs, e.g., those with quadratic objective functions. The inherent strength of the
technique lies in the fact that these types of optimization programs arise naturally in
several of the applications in game theory, competitive markets and fair division. Now,
for the purpose of showing membership in PPAD, they may effectively be substituted
by linear-OPT-gates.

From the ability of the linear-OPT-gate to solve optimization programs of the form
C of Figure 4.1, we can also derive feasibility programs with conditional constraints,
like the program Q on the right-hand side of Figure 4.1. These feasibility programs
also often arise naturally in the context of existence proofs, and can be also thought
of as being solved in a black-box manner by a gate, which is constructed using the
linear-OPT-gate.

Our linear-OPT-gate has a wealth of applications, which we discuss below.

4.1.2 Applications of the linear-OPT-gate

We apply our linear-OPT-gate to a plethora of different domains, and obtain PPAD-
membership for finding solutions in several strategic games, competitive markets,

1The term “linear” here refers to piecewise-linear functions, and this is why it is typeset differently,
see also Remark 7.



4.1. Introduction 95

Optimization Program C

min f (x;c)

s.t. Ax ≤ b

x ∈ [−R,R]n

Feasibility Program Q

hi(y) > 0 =⇒ aT
i x ≤ bi

x ∈ [−R,R]n

Figure 4.1: The optimization programs and feasibility programs that can be solved by
the linear-OPT-gate.

auto-bidding auctions, as well as problems in fair division. We detail those applications
in the corresponding sections below. Our results achieve the following three desired
objectives simultaneously:

- Proofs of existence of solutions.

- Proofs of rationality of solutions.

- PPAD-membership of the corresponding problems.

For some of these domains, PPAD-membership results for the corresponding problems
were known; still, the proofs to establish those were often rather involved. With
the employment of our linear-OPT-gate, they become conceptually and technically
significantly simpler. In essence, the linear-OPT-gate allows us to turn a simple
existence proof into a PPAD-membership result. For some of our applications such
simple existence proofs already existed, and are transformed to PPAD-membership
proofs via the linear-OPT-gate. For others, developing these simpler existence proofs
is also part of our contribution; we provide more details in the sections below. The
linear-OPT-gate also allows us to straightforwardly obtain generalizations of some
of the known PPAD-membership results, to cases beyond what was known in the
literature. Finally, we also obtain the PPAD-membership of some problems whose
complexity had not been studied in the literature before.

We summarize our results in Table 4.1, where we indicate which results were
known in the literature before, which are generalizations, and which concern problems
for which we did not know any results about their computational complexity.

Before we proceed with the applications, we present the main techniques that have
been used previously for proving PPAD-membership results, and highlight the main
technical challenges of using those techniques as opposed to the “plug-and-play”
nature of our linear-OPT-gate.

Main Previous Approaches

Linear Complementarity Programs and Lemke’s Algorithm. The first main
approach for establishing rationality of solutions and PPAD-membership is that of



96 Chapter 3. PPAD-membership via Convex Optimization

linear complementarity programs (LCPs) [63, 64]. Given an n×n matrix M and a
vector q, an LCP seeks to find two vectors y and v satisfying:

M ·y+v = q, y ≥ 0, v ≥ 0, and yT ·v = 0

The term “complementarity” stems from the fact that in a solution, we may have
either yi > 0 or vi > 0, but not both. Lemke [160] designed an algorithm (based on the
previously designed Lemke-Howson algorithm [161]) to solve LCPs via a series of
complementary pivoting steps, i.e., steps in which when a variable enters the basis,
a complementary variable exits. Interestingly, the algorithm was designed in the
context of computing Nash equilibria in bimatrix games, long before the associated
computational complexity classes were defined. LCP-based formulations of equilibria
and other fixed point problems have in fact been a subject of study in classic works
(e.g, see [80, 141]) as a means to obtain existence proofs that guarantee the rationality
of solutions. PPAD membership can be obtained by pairing the algorithm with an
appropriate local orientation of its complementarity paths [216].

Quite importantly, Lemke’s algorithm terminates with either finding a solution
to the LCP, or without finding a solution, in what is referred to as a secondary ray.
This feature of the algorithm is well-documented (e.g., see [195] for an excellent
exposition) and is known as ray termination. In terms of proving PPAD-membership,
it seems almost inevitable that every PPAD-membership proof that uses this approach
has to argue against ray termination. As Garg and Vazirani [112] pointedly remark,
in the context of a succession of papers on equilibrium computation in competitive
markets:

“In the progression of these three works, the LCPs have become more
involved and proving the lack of secondary rays has become increasingly
harder.” [112].

This is not particular to markets either. For example, in Hansen and Lund’s [2018]
generalization of the results of Sørensen [203] from bimatrix to polymatrix games,
those concerning ε-proper equilibria, a new LCP needs to be devised, together with a
new argument for ray termination. Additionally, there are often significant challenges
in even appropriately formulating the problems in question as LCPs. In some cases,
the naive formulations may lead to inefficient representations, e.g., see [203]. In other
cases, all known formulations lead to nonstandard LCPs, which cannot be handled by
the “vanilla” version of Lemke’s algorithm, and require variants of the algorithm to be
devised, e.g., see [119, 172]. Finally in some cases, it is not known if the derived LCPs
can be solved via any variant of Lemke’s algorithm, thus leading to the development
of entirely new pivoting algorithms [155]. These characteristics of the LCP approach
make it somewhat insufficient as a general purpose PPAD-membership technique.

One advantage of LCP-based approaches is that they have been shown to perform
well in practice, e.g., see [119] and references therein. However, for the purpose of
proving PPAD-membership, we do not see any general advantage of the LCP method
over our linear-OPT-gate.



4.1. Introduction 97

Approximation and Rounding. The second general technique that has been used
in several applications to prove the PPAD-membership of exact solutions is that of
approximation and rounding. This generally consists of the two following main steps:

- consider an approximation or a relaxation of the solution (e.g., ε-approximate
equilibria) and prove that the approximate version is in PPAD, and

- devise a rounding procedure to transform approximate solutions to exact solu-
tions, while maintaining membership in the class.

This rather indirect approach certainly suffers in terms of elegance. More importantly
however, it is very much domain-specific. First, showing the PPAD-membership for
the approximate version typically still requires a non-trivial proof, often even a rather
involved one, e.g., via some reduction to one of the well-known problems in PPAD,
like End-of-Line (see Definition 4.2.1) or the computational version of Sperner’s
lemma [204]. Also, the rounding procedure itself may be rather complicated, and of
an ad hoc nature. For certain applications, there is a general linear programming-based
technique developed by Etessami and Yannakakis [86] to transform ε-approximate
solutions to exact ones, for sufficiently small values of ε. Still, this does not apply
to all problems, and it may need to be used in conjunction with other tailor-made
rounding steps, e.g., see [57, 220].

The linear-OPT-gate as a “plug-and-play” component. As we will explain in
the following, and as it will be evident via inspection of our proofs throughout the
paper, the linear-OPT-gate allows us to develop proofs which are very simple and
streamlined, essentially mimicking the easiest proofs of existence. Clearly, most of the
technical complications are “hidden” in the “inner workings” of the linear-OPT-gate.
This is the advantage of having a “plug-and-play” component readily available for
the proofs: one does not need to even be concerned about how the linear-OPT-gate
works, but only to understand what kind of optimization programs it can solve. We
consider this to be a significant advantage over the two aforementioned techniques,
which require to devise application-specific arguments (be it arguments about ray
termination or appropriate approximation and rounding). These arguments may be of
a standard general nature, but they have to be devised anew for each application, as
evidenced by all the different PPAD-membership results that employ these techniques.

Implicit Functions and Correspondences

As a final remark before we present our applications, we point out that, via machinery
that we develop in Section 4.3.4, our linear-OPT-gate can be used to show the PPAD-
membership of problems for which the inputs (e.g., utilities or latency functions)
are given implicitly in the input. In particular, we show how we can construct linear
arithmetic circuits computing these functions, when those are inputted succinctly via
Boolean circuits. In terms of the applications, this allows us to effectively consider
functions of exponential size (in the size of the circuits), e.g., piecewise-linear utility



98 Chapter 3. PPAD-membership via Convex Optimization

Applications to Game Theory

Games with Linear Best Response Oracles (LBRO) [Our Work]
Linear Concave Games [Our Work]
Bilinear Games [157], implicitly
Extended Digraph Threshold Games [Our Work]

Bimatrix Games
[182]
[64], implicitly

Polymatrix Games [141], implicitly
Linear Succinct Games [Our Work]
Multi-class Congestion games with piecewise-linear latency functions

Non-atomic Network Congestion Games
[Our Work]
linear latencies [172]

Atomic Splittable Network Congestion Games
[Our Work]
linear latencies [155]

Congestion Games with Malicious Players [Our Work]
Other equilibrium notions
ε-proper Equilibria in Bimatrix Games [203]
ε-proper Equilibria in Polymatrix Games [137]
ε-proper Equilibria in Linear Succinct Games [Our Work]
Personalized Equilibria [153]

Applications to Competitive Markets

Exchange Markets with Linear Utilitites [80], implicitly
Arrow-Debreu Markets with SPLC Utilities [116]

Arrow-Debreu Markets with SPLC Utilities/Productions
[220]
[112]

Arrow Debreu Markets with Leontief-free
Utilities/Productions [119]

Arrow Debreu markets with
succint SPLC utilities and
and SPLC production [Our Work]

Applications to Auto-Bidding Auctions

Pacing Equilibria in Second-Price Auctions with Budgets [57]
Applications to Fair Division

Envy-free Cake Cutting [126], implicitly
Rental Harmony [Our Work]

Table 4.1: A summary of our PPAD-membership results - for other complementary
results please see the respective sections/paragraphs in the introduction. Classes of
domains that are within the same frame in the table (i.e., not separated by borders) are
of increasing generality from top to bottom. Domains that appear in the same row of
a frame are incomparable in terms of their generality. For the applications to game
theory, all of the domains are special cases of linear concave games which in turn are
a special case of LBRO games. For those applications, the PPAD-membership extends
to generalized equilibria. For all of the results in the table, regardless of whether we
obtain entirely new results, generalizations, or simply results which were known in
the literature, we obtain significant simplifications in the proofs.



4.1. Introduction 99

functions with exponentially-many pieces. We provide details on how this capability
of the linear-OPT-gate is used in each application in the corresponding sections below.
We present applications for which the aforementioned techniques of Section 4.1.2
are inherently insufficient for obtaining PPAD-membership results for those implicit
functions, when these results are in fact enabled by the use of the linear-OPT-gate.

PPAD-membership for Strategic Games

We start our discussion from the applications of the linear-OPT-gate to the problem
of computing (exact) equilibria in strategic games. To provide some initial intuition,
before the technical sections of the paper, we provide an informal example of the use
of the linear-OPT-gate to compute mixed Nash equilibria in bimatrix games; this is
exposed in more detail in Section 4.4.1.

An Example: Bimatrix Games

A bimatrix game is a game played between two players, in which the payoffs are given
by two matrices A1 and A2, one for each player, denoting the payoff of the players
when they each choose certain actions. Each player chooses a mixed strategy, i.e., a
probability distribution over actions in the game, aiming to maximize their expected
payoff, against the choice of the opponent. A mixed Nash equilibrium is a pair of
mixed strategies for which every player is best responding, i.e., she is maximizing her
payoff, given the strategy of the other player. The existence of mixed Nash equilibria
for bimatrix games follows from Nash’s general existence theorem [177]. The proof
of the theorem that employs the Kakutani fixed point theorem [149] constructs a fixed
point of a function F from the domain of mixed strategies to itself, for which each
coordinate Fi is a best response for player i in the game. These best responses can be
captured by optimization programs of the form C in Figure 4.1 and in particular for
the case of bimatrix games, these are linear programs in which the subgradients of the
objective functions are linear functions. The existence proof then immediately yields
a PPAD-membership proof if one substitutes those programs with linear-OPT-gates
that compute them.

We remark that for bimatrix games, the original PPAD-membership proof of Papadim-
itriou [182] adopts the “LCP approach” that we mentioned earlier, i.e., it appeals to
an alternative proof of Nash equilibrium existence due to Cottle and Dantzig [64]
(see also [161]) that formulates the problem as an LCP. This is a good example of
what we mentioned earlier; the linear-OPT-gate allows us to organically retrieve
PPAD-membership from the standard, textbook existence proof of Nash [177].

Best Response Oracles, Linear Concave Games and Generalized Equilibria

Linear Best Response Oracles. The approach that we highlighted above is not
restricted to bimatrix games, but it actually captures a large class of strategic games.
In Section 4.4.3 we provide a technical definition for a very general class of games, in



100 Chapter 3. PPAD-membership via Convex Optimization

which the best response of each agent is given by an oracle that can be computed by a
linear arithmetic circuit. We refer to these games as games with linear best response
oracles (LBRO games). An equilibrium of any LBRO game can straightforwardly
be formulated as a fixed point of a function like the function F above, where each
coordinate Fi computes the best response of player i via the oracle. By using linear-
OPT-gates as oracles, we immediately obtain PPAD-membership results for a wealth
of different games.

Linear Concave Games. The class of concave games is a very large class of games,
studied notably by Rosen [192] and Debreu [68]. These are games with continuous
strategy spaces, for which the existence of an equilibrium is guaranteed under certain
continuity and concavity assumptions on the utility functions. This was proven by
Rosen [192] but also earlier independently by Debreu [68], [91], and Glicksberg
[124], and for that reason the existence result is often referred to as the Debreu-Fan-
Glicksberg theorem for continuous games.

In Section 4.4.3 we prove that as long as the supergradient of the (concave) utility
function can be computed by a linear arithmetic circuit, concave games are LBRO
games, and hence finding an equilibrium is in PPAD. We refer to those games as
linear concave games, but emphasize again that the function does not have to be
linear; in particular, it could for example be a quadratic function. Bimatrix games
are linear concave games, and so are polymatrix games [141, 145], bilinear games
[115], as well as generalizations of (digraph) threshold games [181], and thus we
obtain membership of finding equilibria in all of these games in PPAD. The latter two
games have continuous strategy spaces, and thus the equilibria that we compute are
pure, whereas for polymatrix games (and as a result, for bimatrix games) we compute
equilibria in mixed strategies.

Linear succinct games. In fact, we define a large class of games, which generalize
polymatrix games, one which we coin linear succinct games. In these games, the
expected utility of a player, given a pure strategy j and a mixed strategy x−i of the
other players, can be computed by a linear arithmetic circuit. These are linear concave
games, and the PPAD-membership of finding their mixed Nash equilibria is a corollary
of the results mentioned above.

We draw parallels between linear succinct games and those defined in Daskalakis
et al. [66] and Papadimitriou and Roughgarden [183]. Those works define classes
of succinct games for which there is an oracle for computing the expected utility of
the player. In [183], this oracle is referred to as the polynomial expectation property
and is used to show that correlated equilibria [9] of games with this property can be
computed in polynomial time. In [66], it is shown that if the oracle is given by a
bounded division free straight-line program of polynomial length, then these games
are in PPAD. Crucially, this latter result concerns approximate equilibria. One could
view our result as a complement to those two results, one which concerns exact
equilibria in rational numbers.



4.1. Introduction 101

Our PPAD-membership result for linear concave games captures the limits of the class
of concave games for which rational equilibria exist, and thus membership in PPAD
is possible. The only other known complexity results for the general class of concave
games are a FIXP-completeness result due to Filos-Ratsikas et al. [101], and a very
recent PPAD-membership result for approximate equilibria due to [184].

Generalized Equilibrium. Debreu [68] did not only consider concave games, but
in fact a more general equilibrium notion, one in which the strategy space of each
player is dependent on the set of strategies chosen by the other players. This was
coined a “social equilibrium” by Debreu [68] (see also Dasgupta and Maskin [65])
but over the years has been better known by the term generalized equilibrium. For our
purposes, the dependence on other strategies can be embedded in the constraints of
the optimization programs that we use as oracles in LBRO games, in a way that can be
handled by the linear-OPT-gate. As a corollary, we obtain all of the aforementioned
PPAD-membership results for generalized equilibria (rather than standard equilibria)
as well, see Section 4.4.3. To the best of our knowledge, these are the first PPAD-
membership results for generalized equilibria in the literature.

Personalized Equilibria

The notion of personalized equilibrium was introduced by Kintali et al. [153] in the
context of games played on hypergraphs, with an equivalent strategic form. Intuitively
speaking, these equilibria allow players to “match” their strategies with those of their
opponents, without obeying a product distribution. Kintali et al. [153] showed the
PPAD-membership (and as a result, rationality of equilibria) of personalized equilibria
via the “relaxation and rounding approach” (see Section 4.1.2). In particular, they
first define an approximate version of the problem (the ε-personalized equilibrium),
and reduce that problem to End-Of-Line (see Definition 4.2.1 in Section 4.2), via a
relatively involved construction. To obtain PPAD-membership for the exact problem
(i.e., when ε = 0) Kintali et al. [153] construct an elaborate argument that appeals
to linear programming compactness, by first showing that for sufficiently small ε,
ε-personalized equilibria “almost satisfy” the constraints of the linear programs, and
then carefully rounding the solution to obtain an exact equilibrium.

The use of the linear-OPT-gate allows us to obtain the PPAD-membership of the
problem via an extremely simple argument. Essentially, each player computes their
best response via a linear program which is computed by the linear-OPT-gate, which
reduces the problem to finding an equilibrium of an LBRO game, see Section 4.4.3.

ε-proper Equilibria

We also consider an alternative equilibrium notion, that of ε-proper equilibria. This
notion was introduced by Myerson [174] to refine the notion of ε-perfect equilibrium
of Selten [199], and captures situations in which the players can make small mistakes
(“trembles”) in the choice of their mixed strategies. The PPAD-membership of



102 Chapter 3. PPAD-membership via Convex Optimization

computing ε-proper equilibria was known for bimatrix games due to Sørensen [203]
and for polymatrix games due to Hansen and Lund [137]. Both of these works adopt
the LCP approach, which means that they need to go through the hassle of establishing
the properties of Lemke’s algorithm, as discussed in Section 4.1.2 above. Additionally,
formulating the problem as an LCP in this case is far from trivial, and requires an
extended formulation of the generalized permutahedron due to Goemans [125], to
make sure that the LCP has polynomially-many constraints.

The use of our linear-OPT-gate distinctly avoids all this labor. We formulate the
problem of computing a best response for each player (where the best response is
defined with respect to the ε-proper equilibrium notion) as a feasibility program of the
form Q in Figure 4.1, which can be solved by the linear-OPT-gate. This essentially
renders the game a LBRO game, and the PPAD-membership follows simply as a
corollary of our main theorem for LBRO games.

Network Congestion Games

Our last application in the area of game theory is to multi-class congestion games. In
particular, we will consider two models, non-atomic congestion games and atomic
splittable congestion games. In the former case, there is a continuum of players who
collectively form a class controlling a certain load allocation to different resources. In
the latter case, each class is represented by a single (atomic) player, who controls the
load and distributes it to the resources. For both of those settings, we will also consider
the subclass of network congestion games, where the strategies can be represented
more succinctly using flows over a directed network.

The existence of equilibria in those games was established in classic works, e.g.,
see [198] or [173], originally via the employment of the Debreu-Fan-Glicksberg
theorem [1952] for continuous games, assuming that the latencies on the resources are
concave functions. Relevant to us are the works on their computational complexity,
namely [172] (for non-atomic network congestion games) and [155] (for atomic
splittable network congestion games). Both papers showed the PPAD-membership
of finding pure equilibria in their respective settings, when the latency functions
are linear. We remark that these games are different from atomic (non-splittable)
congestion games, for which finding pure Nash equilibria is known to be in the class
PLS defined by Johnson et al. [148].

Meunier and Pradeau obtain their PPAD-membership result via the “LCP approach”
mentioned in Section 4.1.2. Interestingly, their LCP formulation turns out to not be
amenable to the use of Lemke’s algorithm, so they have to devise a “Lemke-like”
complementary pivoting algorithm, tailored to their problem. As in the case of
Lemke’s algorithm, they argue explicitly against ray termination. Klimm and Warode
note that in their case, the problem of finding an equilibrium can be formulated as an
LCP, however, it is not known or clear whether this LCP can be solved using any known
variant of Lemke’s algorithm. For that, they devise a rather involved proof, based on a
new homotopy method, essentially a new pivoting algorithm. Their algorithm solves
the problem of finding a Nash equilibrium as a system of linear equations involving



4.1. Introduction 103

notions such as excess flows, vertex potentials and block Laplacians. At a very high
level, the authors use the excess and potentials to define an undirected version of the
End-of-Line graph (see Definition 4.2.1 in Section 4.2), and the determinant of the
block Laplacians to define a unique orientiation of the edges, effectively reducing the
problem to End-of-Line.

The linear-OPT-gate allows us to avoid all of the technical complications of the
proofs of Meunier and Pradeau [172] and [155] (which are rather involved, especially
the latter), and essentially obtain the PPAD-membership for both of these problems
as simple corollaries of our main results for LBRO games or concave games. In fact,
we obtain generalizations of those PPAD-membership results to games with more
general latency functions, notably piecewise-linear latency functions (implicitly or
explicitly represented). In exactly the same fashion, we can use the linear-OPT-gate to
obtain the PPAD-membership of congestion games with malicious players, a setting
studied by Babaioff et al. [13], for which computational complexity results had not
been previously proven.

All of our results on congestion games are presented in Section 4.5.

PPAD-membership for Competitive Markets

We now move on to the application of our technique to the domain of competitive
markets. The standard market model in the literature is that of the Arrow-Debreu
market [8], where a set of consumers compete for goods endowed by them and
other consumers and goods produced by a set of firms. A competitive equilibrium
of the market is a set of allocations of goods to the consumers, a set of production
quantities and a set of prices, such that at those prices, (a) all consumers maximize
their individual utilities, (b) all firms produce optimal amounts, and (c) the market
clears, i.e., supply equals demand. The existence of an equilibrium for the general
market model was established by Arrow and Debreu [8] via the employment of
Debreu’s social equilibrium theorem [1952], under some standard assumptions on the
utilities of the consumers and the production sets of the firms.

Previous results and proofs. It has been well-known since the early works in
the area [80] that in general Arrow-Debreu markets, competitive equilibria may
be irrational. A significant literature, starting with the work of Eaves [80] aimed
at identifying special cases of the Arrow-Debreu market for which exact rational
solutions are always possible. When computer science took over in this quest, the
related question of establishing the PPAD-membership of finding those exact solutions
was also brought forward. Most of the PPAD-membership proofs that were developed
through the years followed the “LCP approach”, see Section 4.1.2. We present them
here in succession:

- Eaves [80] considered the simplest case of exchange markets (no production)
with linear utilities for the consumers and devised an LCP that can be solved by
Lemke’s algorithm. To establish the latter fact, he argued against ray termination,



104 Chapter 3. PPAD-membership via Convex Optimization

a characterstic of this approach that we emphasized in Section 4.1.2. A PPAD-
membership proof is implicit in his result.2

- Garg et al. [116] considered exchange markets with separable piecewise-linear
concave (SPLC) utilities, a generalization of linear utilities in which every agent
has a piecewise linear concave utility for the amount of a good j that she receives,
and her total utility for her bundle is additive over goods. The authors proved the
PPAD-membership of finding competitive equilibria in those markets via devising
an LCP that was “quite complex” [116], and naturally had to argue against ray
termination, to establish that Lemke’s algorithm will terminate on this LCP with a
valid solution.

- Garg and Vazirani [112] considered Arrow-Debreu markets with SPLC utilities as
well as SPLC production functions. This is in fact the work from which the quote of
Section 4.1.2 is taken. The quote highlights the increasing challenge of developing
these LCPs and establishing their successful termination. Indeed, for this LCP, Garg
and Vazirani [112] devise a set of linear programs, and then use the complementary
slackness and their feasibility conditions to develop the LCP needed for production.
The non-homogeneity of the resulting LCP for the equilibrium problem is dealt
with in a manner which is different from previous works [80, 116] and, naturally,
since the developed LCP is different, Garg and Vazirani again need to argue against
ray termination.

- The most general class of utility/production functions for which a PPAD-membership
of exact competitive equilibria was proven is that of Leontief-free functions [119],
which generalize SPLC functions. For this, the authors devise yet another LCP
formulation, which turns out to be even more complex than those of previous works.
This is because it has to differentiate between “normal” and “abnormal” variables,
the latter preventing the employment of Lemke’s algorithm. To circumvent this,
they exploit some additional structure of their nonstandard LCP, and then they also
modify Lemke’s algorithm, to account for the possibility of abnormal variables
becoming zero. Finally, as they devise a new LCP, they also have to argue once
again against ray termination.

Besides those works, the first work in computer science to prove PPAD-membership
for markets with SPLC utilities/productions was [220]. The approach in that paper is
not the “LCP approach” but the “approximation and rounding approach” (again, see
Section 4.1.2). An issue with this method is that very small changes in the prices may
result in drastic changes in the optimal bundles of the consumers, which makes the
proof quite challenging. To deal with this, Vazirani and Yannakakis [220] devise a set
of technical lemmas that allow them to “force” certain allocations over others.

2Note that for exchange markets with linear utilities and no production the problem is in fact known
to be polynomial-time solvable [? ].



4.1. Introduction 105

Our results. Our results in this section are twofold.

- Simplified proofs. First, we employ the linear-OPT-gate to recover all of the
aforementioned PPAD-membership results via proofs which are conceptually and
technically quite simpler. In particular, we formulate the optimal consumption
and the optimal production as linear programs similar to program C of Figure 4.1,
which can be effectively substituted by linear-OPT-gates in a linear arithmetic
circuit. We also apply a standard variable change which was first used by Eaves
[80], and which we refer to as Gale’s substitution, see Remark 22. For the prices,
we develop a feasibility program, similar to program Q of Figure 4.1. In a fixed
point of the circuit, the optimality of consumption and production follows almost
immediately by design. The main technical challenge of the proofs lies in arguing
the market clearing of the outputted prices, which however still requires a relatively
short proof.

To introduce the reader gently to our proof technique, we first apply it to the simple
setting of exchange markets with linear utilities in Section 4.6.1, then to the setting
of Arrow-Debreu markets with linear utilities and productions in Section 4.6.2, and
finally to the general case of Arrow-Debreu markets with Leontief-free utilities and
productions in Section 4.6.3.

- PPAD-membership for Succinct SPLC (SSPLC) utilities. In Section 4.6.4
we introduce a new class of utility functions, which we coin succinct separable
piecewise-linear (SSPLC) utilities. These are SPLC utilities in which the different
segments of the utility function need not be given explicitly in the input (as in the
case of (explicit) SPLC utilities), but can be accessed implicitly via a boolean circuit.
Effectively, this allows us to succinctly represent SPLC functions with exponentially
many pieces, where the input size is the size of the given circuits. We remark that
the “LCP-approach” developed in the aforementioned papers is inherently limited in
providing PPAD-membership results for this class. Indeed, one could formulate the
problem as a large LCP in exponentially-many variables, and that would establish
the existence of rational solutions. However, this formulation will no longer be a
polynomial time reduction (since now we do not have explicit input parameters ui

jk
for the utiliy of each piece) and hence it does not imply the PPAD-membership
of the problem. In contrast, using our machinery from Section 4.3.4 we can
make sure that our linear-OPT-gate can be used to obtain PPAD-membership for
markets with SSPLC utilities as well. In our result we also add (explicit) SPLC
production, which our technique clearly can handle. We provide a discussion on
the challenges of extending our results to also capture SSPLC production functions
at the end of Section 4.6.4. Note that the SSPLC functions and the Leontief-free
functions are of incomparable generality (and hence they appear on the same line
of Table 4.1). Whether we can prove PPAD-membership for a class of “succinct
Leontief-free functions”, which would generalize both settings, is an interesting
technical question.



106 Chapter 3. PPAD-membership via Convex Optimization

PPAD-membership for Auto-bidding Auctions

Our next application is on the domain of auto-bidding auctions, which has received a
lot of attention recently, due to its applicability in real-world scenarios [15–18, 33, 57,
61, 62, 162]. In particular, in Section 4.7 we consider the settings studied by Conitzer
et al. [61, 62], Chen et al. [55] and Li and Tang [162], in which buyers participate in
several parallel single-item auctions, via scaling their valuations by a chosen parameter
α, called the pacing multiplier. The buyers do that while facing constraints on their
feasible expenditure, typically provided by budgets or return-on-investment (ROI)
thresholds. The objective is to find a pacing equilibrium, i.e., pacing multipliers and
allocations for the buyers that are consistent with the format of the auction run (e.g,
first-price or second-price) and satisfy the expenditure constraints of all the buyers
simultaneously. Pacing equilibria have a similar flavor to the competitive equilibria
discussed earlier, but are sufficiently different, and thus require separate handling.

Our proof vs the previous approach. We prove that computing pacing equilibria
in parallel second-price auctions with budgets is in PPAD. The problem was already
known to be in PPAD (in fact, PPAD-complete) by the recent results of Chen et al.
[57], building on the original existence result of Conitzer et al. [62]. Chen et al.’s
proof rather heavily applies the “approximation and rounding” paradigm highlighted
in Section 4.1.2. In particular, Chen et al. define a (δ,γ)-approximate variant of the
pacing equilibrium, where δ,γ > 0 are two approximation parameters. Intuitively, this
equilibrium corresponds to an “almost equilibrium” (i.e., the expenditure constraints
are “almost” satisfied) of an “almost second-price auction” (i.e., an auction in which
the set of winners is those with “almost” the highest bid). The authors prove that
finding these approximate equilibria is in PPAD, via a reduction to a computational
version of Sperner’s lemma [204], and then devise an intrictate rounding procedure
to convert (δ,γ)-equilibria into γ-equilibria. The final step in their proof applies the
aforementioned technique of Etessami and Yannakakis [86] (see Section 4.1.2) to
further round these equilibria to pacing equilibria (i.e., where γ = 0).

Our proof employs the linear-OPT-gate and is conceptually and technically much
simpler, without needing to use approximations. Instead, we again apply the standard
variable change in Gale’s substitution (see Remark 22) which we also used for the
case of competitive markets, to work with the expenditures rather than the allocations
directly. From there, we can formulate the task of finding the optimal expenditures as a
set of linear programs (one for each buyer), and the pacing multipliers will be obtained
as a fixed point solution of a single simple equation. These linear programs can be
solved by linear-OPT-gates which essentially establishes the PPAD-membership of
the problem. The proof is detailed in Section 4.7.1.

ROI-constrained buyers. We observe that the existence proof underlying our PPAD-
membership proof in this section can in fact almost straightforwardly be modified to
yield the existence of pacing equilibria for a different setting in auto-bidding auctions,
that of second-price auctions with average return-on-investment (ROI) constraints,



4.1. Introduction 107

studied by Li and Tang [162]. Li and Tang established the existence of pacing
equilibria via a rather indirect proof, which first reduces the problem to a somewhat
convoluted concave game and applies the Debreu-Fan-Glicksberg theorem [68] to
obtain Nash equilibrium existence, and then recovers a pacing equilibrium as a limit
point of such a Nash equilibrium. This proof in fact closely follows the original
proof of Conitzer et al. [62] for the budgeted setting, and clearly does not have any
implications on the computational complexity of the problem.

Our proof, besides its advantages in terms of simplicity, also allows us for the
first time to obtain computational membership results for pacing equilibria in the
ROI-constrained buyer case. It turns out that for this setting, all pacing equilibria may
be irrational (see Example 7 in Section 4.7.2), and hence membership in PPAD is not
possible. Instead, we employ the OPT-gate for FIXP developed by Filos-Ratsikas et al.
[101] to easily transform our existence proof into a FIXP-membership proof.

PPAD-membership for Fair Division

The last applications of our linear-OPT-gate are related to the task of fairly parti-
tioning a resource among a set of agents with different preferences over its parts. In
particular, we show the PPAD-membership of computing exact envy-free solutions in
two fundamental problems, namely envy-free cake cutting [108] and rental harmony
[212], when the preferences of the agents ensure the existence of rational partitions.

Envy-free cake cutting. The envy-free division of a continuous resource (metaphor-
ically, a “cake”) is one of the most fundamental and well-studied mathematical
problems of the last century. The origins of the theory of the problem can be traced
back to the pioneering work of [208], with different variants being studied over the
years in a large body of literature in mathematics, economics, and computer science;
see [38, 188, 190] for some excellent textbooks on the topic. The existence of an
envy-free division was established in 1980 independently by Stromquist [209], by
Woodall [229], and by Simmons (credited in [212]), even when the division is re-
quired to be contiguous, i.e., when each agent receives a single, connected piece of
the resource. These proofs proceed by first establishing the existence of divisions that
are approximately envy-free and then obtaining exact solutions as limit points of these
approximations.

It is known that in general, envy-free divisions might be irrational (e.g., see [24],
or Example 8 for a simpler example), and hence the problem of computing them
cannot be in PPAD. Filos-Ratsikas et al. [101] showed that envy-free cake cutting is
in the class FIXP, which, recall, is appropriate for capturing the complexity of such
problems. Still, there are interesting cases for which rational divisions always exist.
This is the case for example when the agents’ preferences are captured by piecewise
constant density functions [126], a class of functions which is general enough to
capture many problems of interest. A FIXP-membership result for these variants is
unsatisfactory, and we would like to obtain a PPAD-membership result instead.



108 Chapter 3. PPAD-membership via Convex Optimization

Without the convenience of using our linear-OPT-gate, one can establish such a
membership result via the “approximation and rounding” technique, see Section 4.1.2.
Deng et al. [76] showed that approximately envy-free cake cutting is in PPAD, by
transforming Simmons’ proof into a computational reduction. Goldberg et al. [126]
showed how to “round” the approximate solution to obtain an exact envy-free division
for preferences captured by piecewise-constant densities, as long as ε is sufficiently
small.

Luckily, the linear-OPT-gate allows us to avoid having to do that, and instead
directly obtain a PPAD-membership result without any need for approximations.
In particular, we revisit the FIXP-membership proof of Filos-Ratsikas et al. [101];
similarly to our approach in this paper, they essentially first construct an existence
proof for the problem, one which involves a pair of optimization programs, and then
substitute those programs with their OPT-gates for FIXP. One might wonder if, by
simply following the steps of the proof and substituting those programs with linear-
OPT-gates instead, we can recover the PPAD-membership of the problem, for those
classes of preferences for which it is possible. This is almost true, apart from the fact
that there is a step in their proof that cannot be done in a linear arithmetic circuit.

Still, we manage to substitute that part by a third optimization program, which is in
fact a rather simple linear program, and can effectively be substituted by a linear-OPT-
gate. This allows us to obtain the PPAD-membership of the problem for the general
class of valuation functions (i.e., functions expressing the preferences via numerical
values) that can be computed by a linear arithmetic circuit, see Section 4.8.1, capturing
the aforementioned case of valuations with piecewise-constant densities.

Rental harmony. The rental harmony problem, notably studied by Su [212], is
concerned with the partition of rent among a set of tenants which have different
preferences over combinations of rooms and rent partitions. In the generality studied
by Su [212], this problem is in fact equivalent to that of finding an envy-free division of
a chore among a set of agents. Su’s existence proof is inspired by Simmons’ proof for
envy-free cake cutting, but employs a “dual Sperner labelling” [204]. Similarly to the
proofs for cake-cutting, the proof also appeals to limits of approximate solutions. In
contrast to cake-cutting however, computational complexity results about this general
version of the problem were not known, not even for approximate partitions.

In Section 4.8.2, we prove that the problem of finding a solution to rental harmony
is in PPAD, as long as the valuations of the tenants for the rent partition are given
by linear arithmetic circuits. Interestingly, this is established via very much the
same approach as the proof for envy-free cake cutting, thus providing for the first
time a unified proof of existence for those two problems. If one goes beyond the
aforementioned valuation functions, all rental harmony solutions may be irrational,
as we show in Example 9. For those cases, we explain how the existence proof can
be coupled with the OPT-gate for FIXP of Filos-Ratsikas et al. [101] to establish the
FIXP-membership of the problem.



4.1. Introduction 109

Computing Envy-free and Pareto-optimal allocations. We remark that very re-
cently Caragiannis et al. [44] used our linear-OPT-gate to establish that computing
probabilistic envy-free and Pareto-optimal allocations of multiple divisible goods is in
PPAD.

4.1.3 The linear-OPT-gate vs the OPT-gate for FIXP

As we mentioned in the introduction, Filos-Ratsikas et al. [101] were the first to
develop an OPT-gate for the computational class FIXP [86]. FIXP is the class that
captures the complexity of computing a fixed point of an arithmetic circuit, i.e., a
circuit over the basis {+,−,max,min,÷,∗} with rational constants, see Definition 4.2.2.
FIXP is a larger class than Linear-FIXP, due to the fact that we can multiply and divide
inside the circuit.

The tools that our linear-OPT-gate provides are conceptually very similar to those
of the OPT-gate for FIXP of Filos-Ratsikas et al. [101], in that they can substitute
convex optimization programs within existence proofs, when constructing a circuit
whose fixed points are the solutions that we are looking for. However, the design of
the gate itself is much more challenging.

The reason for this is the absence of the general multiplication gate ∗. While we
can multiply any two circuit variables in a general arithmetic circuit, we can only
multiply variables by constants in a linear arithmetic circuit. The construction of
the OPT-gate for FIXP by Filos-Ratsikas et al. [101] makes extensive usage of the
multiplication gate ∗ and can thus not directly be used for creating the linear-OPT-gate.
In our case, the constraint matrix A is fixed (i.e., not an input to the linear-OPT-gate)
and this does help to eliminate some of the general multiplication gates, but not all of
them. At a high level, the construction of Filos-Ratsikas et al. [101] ensures that the
output x of the gate satisfies

µ0 ·∂ f (x)+ATµ = 0

where µ satisfies some standard KKT conditions. If x is feasible and if µ0 > 0, then it
follows that x is an optimal solution by standard arguments (using the convexity of f ).
The term µ0 is carefully constructed as a function of µ and x in order to ensure that x
must be feasible and that µ0 > 0 when x is feasible. However, since both µ0 and ∂ f (x)
depend on x, in our case we cannot construct the term µ0 ·∂ f (x), because that would
entail multiplying two variables in the circuit. As a result, our construction instead
ensures that the output x of the gate satisfies

ε ·∂ f (x)+ATµ = 0

where µ again satisfies some standard KKT conditions, and where ε > 0 is some
sufficiently small constant that is picked when constructing the gate. By standard
arguments it still holds that if x is feasible, then it is an optimal solution. The challenge
however is to ensure that x is indeed feasible. While the argument is relatively
straightforward in the work of Filos-Ratsikas et al. [101], because µ0 can depend on



110 Chapter 3. PPAD-membership via Convex Optimization

x, here µ0 has been replaced by a constant ε. Our main technical contribution in the
construction of the linear-OPT-gate is to show that there exists a sufficiently small
ε > 0 that forces x to be feasible, and that such ε can be constructed efficiently given
the parameters of the gate (but, importantly, not its inputs!). As a bonus, our modified
construction and analysis allows us to obtain a linear-OPT-gate that does not require
any constraint qualification, whereas the construction of Filos-Ratsikas et al. [101]
required an explicit Slater condition (which of course, as they show, is necessary in
the case where the matrix A is not fixed).

From the standpoint of applications, the linear-OPT-gate can be used in almost the
same direct manner as the OPT-gate for FIXP of Filos-Ratsikas et al. [101]. In some
cases, precisely because we cannot multiply within a linear arithmetic circuit, we
may have to apply some standard variable changes, to “linearize” certain constraints.
Still, the linear-OPT-gate can effectively substitute appropriate optimization programs
in the same way that the OPT-gate for FIXP can. In a nutshell, one can view the
linear-OPT-gate as a more powerful tool for those applications for which rational
exact solutions exist.

4.1.4 Organization of the Paper

In Section 4.2 we provide the main definitions and terminology needed for our pa-
per. In Section 4.3, we detail the construction of the linear-OPT-gate, and prove
its correctness. In the same section (Section 4.3.4), we also develop the necessary
machinery to show how the linear-OPT-gate can be used to obtain PPAD-membership
of problems where certain functions are given implicitly in the input to the problem.
In Section 4.4, we provide the first applications of the linear-OPT-gate to several
important classes of games and to different equilibrium notions, besides Nash equi-
libria. In Section 4.5 we explain how to apply the machinery that we develop in
Section 4.4 in order to obtain PPAD-membership results for equilibrium computation
in nonatomic and atomic splittable congestion games. In Section 4.6, we present the
applications of our gate to finding competitive equilibria in Arrow-Debreu markets
with different utility and production functions. In Section 4.7 we demonstrate the
applicability of the linear-OPT-gate to obtain membership results for the auto-bidding
auctions with pacing strategies. In Section 4.8 we obtain membership results for the
two fundamental fair division problems of envy-free cake cutting and rental harmony.
We offer some discussion and some directions for future work in Section 4.9.

We would like to emphasize that while our paper is very long, this is almost
exclusively due to the fact that it covers so many applications, rather than due to the
proofs that we develop for those applications, which in reality range from being very
short to relatively short. For each of all of the domains that we consider, (a) we provide
the appropriate definition and place the setting in context within the rest of the paper,
(b) we discuss the related work and possibly the previous PPAD-membership results (if
any), (c) we provide detailed comparisons with those previous proofs to demonstrate
the effectiveness of our linear-OPT-gate as a general-purpose proof technique, and
finally (d) we develop the proofs themselves. In some cases in fact, we first apply



4.2. Preliminaries 111

the technique to simpler settings for a gentle introduction, and then move on to study
those settings in their full generality. We believe that all of our application sections
are largely self-contained, and can be read almost in isolation, even after only reading
the introduction of the paper, and by referring only to certain clearly referenced parts
in other sections.

4.2 Preliminaries

In this section, we introduce the computational class PPAD, as well as the main
machinery that will be used throughout the paper. The details for the specific settings
that we will consider in our applications will be defined in the corresponding sections.
We start with the definitions of the relevant computational complexity classes.

4.2.1 The class PPAD

All of the problems that we will consider in this paper will be total search problems.
A total search problem is one in which a solution is always guaranteed to exist. For
example, finding a Nash equilibrium in a game is a total search problem, by Nash’s
theorem [177]. Similarly, competitive equilibria in markets always exist (e.g., see [8]).
The class TFNP [170] contains all total search problems in NP, i.e., those for which a
candidate solution can be verified in polynomial time. For example, verifying whether
a given set of strategies is a Nash equilibrium in a bimatrix game (see Definition 4.4.1)
can be done in polynomial time, and hence the problem of finding Nash equilibria in
bimatrix games is in TFNP. For a formal definition of the class TFNP, we refer the
reader to [182].

The class PPAD, introduced by [182], is defined with respect to its canonical problem,
called End-of-Line, see Definition 4.2.1 below. PPAD is the class of all problems in
TFNP that are polynomial-time reducible to End-of-Line.

Definition 4.2.1 (End-of-Line). The End-of-Line problem is defined as: given Boolean
circuits P and S with n input bits and n output bits such that P(0) = 0 , S (0), find x
such that P(S (x)) , x or S (P(x)) , x , 0.

Intuitively, PPAD captures the following problem. We are given a directed graph in
which every node has indegree and outdegree at most 1 and a source of this graph,
and we are asked to find another source or a sink. Such a node exists by the parity
argument on the degrees of the nodes, which is the underlying principle of the class
PPAD. Importantly, we are not given this graph explicitly in the input (otherwise the
problem would be trivially in P), but we can access the predecessor and the successor
of a given node via Boolean circuits; these are the circuits P and S of Definition 4.2.1
above. We will be using an alternative definition of the class, via linear arithmetic
circuits, which we will define in Section 4.2.2 next.



112 Chapter 3. PPAD-membership via Convex Optimization

4.2.2 The classes FIXP and Linear-FIXP

We start by defining arithmetic circuits and linear arithmetic circuits.3

Definition 4.2.2 (Arithmetic Circuit). An arithmetic circuit is a circuit using gates in
{+,−,∗,÷,max,min} as well as rational constants.

A linear arithmetic circuit is simply an arithmetic circuit were multiplication and
division are not allowed.

Definition 4.2.3 (Linear Arithmetic Circuit). A linear arithmetic circuit is a circuit
using gates in {+,−,max,min,×ζ} as well as rational constants, where ×ζ denotes
multiplication by a rational constant.

We will use linear arithmetic circuits to provide an alternative definition of the class
PPAD. First, we state and prove the next simple lemma, which will be useful in
Section 4.3. For a rational number a, we let size(a) denote the number of bits needed
to describe a in the standard representation, where a is written as an irreducible
fraction, and the numerator and denominator are written in binary. We let size( f )
denote the number of bits needed to describe a linear arithmetic circuit f (in particular,
this includes the length of the description of any constants used in f ).

Lemma 10. For any linear arithmetic circuit f : Rn→ Rm and any rational B ≥ 0 it
holds that

max
x∈[−B,B]n

∥ f (x)∥∞ ≤ 2poly(size(B),size( f )).

Proof. Since a linear arithmetic circuit can be evaluated efficiently (see, e.g., [92,
Lemma 3.3]), we have ∥ f (0)∥∞ ≤ 2poly(size( f )). Additionally, f is L-Lipschitz-continuous
over Rn with Lipschitz constant L = 2poly(size( f )), see, e.g., [92, Lemma A.1]. As a
result, for any x ∈ [−B,B]n

∥ f (x)∥∞ ≤ ∥ f (0)∥∞+L∥x∥∞ ≤ 2poly(size(B),size( f )). □

We now move on to the definition of the related computational classes, in the context
of arithmetic circuits. We mentioned the class FIXP in the introduction; we proceed
to formally define it below. The following definitions follow those of [101].

A search problem Π with real-valued search space is defined by associating to any
input instance I (encoded as a string over a finite alphabet Σ) a search space DI ⊆ R

dI

and a set of solutions Sol(I). We assume there is a polynomial time algorithm that
given I computes a description of DI .

Next, we define basic FIXP problems and basic linear-FIXP problems.

3Sometimes in the literature, these are also referred to as algebraic circuits, e.g., see [101]. We also
adopt the term “linear arithmetic circuit” for circuits over the basis {+,−,max,min,×ζ} with rational
constants, which was not used originally by Etessami and Yannakakis [86], but has been used in some
more recent works [73, 92].



4.2. Preliminaries 113

Definition 4.2.4 (Basic (linear)-FIXP problem). A search problem Π is a basic
(linear)-FIXP problem if every instance I describes a nonempty compact convex
domain DI described by a set of linear inequalities with rational coefficients and
a continuous map FI : DI → DI given by a (linear) arithmetic circuit CI , and the
solution set is Sol(I) = {x ∈ DI | FI(x) = x}. We assume that CI well-defined, i.e., it
does not divide by zero and that it indeed represents a function FI with FI(DI) ⊆ DI .4

Next, we define reductions between search problems. Let Π and Γ be search problems
with real-valued search space. A many-one reduction from Π to Γ is a pair of maps
( f ,g). The instance mapping f maps instances I of Π to instances f (I) of Γ, and for
any solution y ∈ Sol( f (I)) the solution mapping g maps the pair (I,y) to a solution
g(I,y) ∈ Sol(I) of Π. In order to avoid meaningless reductions, it is required that
Sol( f (I)) , ∅ if Sol(I) , ∅. We require that the instance mapping f is computable in
polynomial time. Etessami and Yannakakis [86] defined the notion of SL-reductions
where the solution mapping g is separable linear. This means there exists a map
π : {1, . . . ,dI} → {1, . . . ,d f (I)} and rational constants ai,bi, i = 1, . . . ,dI , such that for
y ∈ Sol( f (I)) one has that x = g(I,y) is given by xi = aiyπ(i)+bi for all i. The map π
and the constants ai,bi should be computable from I in polynomial time.

We now define the class FIXP.

Definition 4.2.5 (FIXP). The class FIXP consists of all search problems with real-
valued search space that SL-reduce to a basic FIXP problem for which the domain DI

is a convex polytope described by a set of linear inequalities with rational coefficients
and the function FI is defined by an arithmetic circuit CI .

The class linear-FIXP is the “piecewise-linear fragment of FIXP” [86], defined below.

Definition 4.2.6 (Linear-FIXP). The class linear-FIXP consists of all search problems
with real-valued search space that SL-reduce to a basic linear-FIXP problem for which
the domain DI is a convex polytope described by a set of linear inequalities with
rational coefficients and the function FI is defined by a linear arithmetic circuit CI .

Above we have formally defined the class Linear-FIXP as a class of search problems
with real-valued search space forming a subclass of FIXP. However, Linear-FIXP also
naturally defines a subclass of TFNP since for any instance I of a basic Linear-FIXP
problem Π, Sol(I) always contains rational-valued solutions of polynomial bit-length.
Following the convention in the literature, we will denote the class of search problems
in TFNP reducible to the exact fixed-point computation defined by Π by Linear-FIXP
as well.

4Given an arithmetic circuit, it is not clear how to check whether it does satisfy these properties,
so we assume that it does, i.e., we consider promise problems, see also [101]. For the case of basic
linear-FIXP problems, the first condition is trivially satisfied (since division is not allowed), but for
the second condition we still require a promise. Note that this means that the problem is formally
not a TFNP problem, but instead a promise-TFNP problem. This is however not an issue for proving
PPAD-membership, since the problem ultimately reduces to the TFNP problem End-of-Line [86].



114 Chapter 3. PPAD-membership via Convex Optimization

With this convention, Etessami and Yannakakis [86] showed the following equivalence
result:

Theorem 4.2.1 ([86]). Linear-FIXP = PPAD.

Theorem 4.2.1 provides an alternative definition of PPAD which we will be using
throughout the paper. Roughly speaking, to show that a problem is in PPAD, it suffices
to show that it can be reduced to computing a fixed point of a function encoded by a
linear arithmetic circuit.

Remark 7 (Linear vs Linear). The term “linear” in “linear-FIXP” and “linear arith-
metic circuits” might be a bit misleading, as it may suggest that they only refer
to linear functions. From Definition 4.2.3, it should be obvious that they capture
piecewise-linear functions instead, and are hence more general. We believe that the
term “linear” was used in the related literature rather than “piecewise-linear” for
succinctness and brevity. In this paper, we will still call these arithmetic circuits
“linear”, but we will use the typesetting “linear” instead, to differentiate. We will
use this typesetting throughout, also in some of our definitions (e.g., “linear succinct
games”, see Definition 4.4.6 in Section 4.4.3). We hope that the literature will adopt
the same convention in future work.

We conclude the section with a very useful definition, that of linear pseudo-circuits.

Definition 4.2.7 (Linear pseudo-circuit). A linear pseudo-circuit with n inputs and
m outputs is a linear arithmetic circuit F : Rn× [0,1]ℓ→ Rm× [0,1]ℓ. The output of
the linear pseudo-circuit on input x is any y that satisfies F(x,z) = (y,z) for some
z ∈ [0,1]ℓ. Note that a linear pseudo-circuit can have multiple possible outputs.

Intuitively, linear pseudo-circuits are linear arithmetic circuits which are only required
to work correctly at a fixed point of the encoded function (or, to be more precise,
when its “auxiliary” variables z satisfy a fixed point condition). In particular, linear
arithmetic circuits are linear pseudo-circuits, and in fact, for the purpose of proving
membership in PPAD, those two are equivalent. The linear-OPT-gates that we will
define in the next section are in fact linear pseudo-circuits that are used as primitives
or subroutines in larger linear pseudo-circuits. The following is an example of a
simple linear pseudo-circuit, that was already used as an important primitive by
Filos-Ratsikas et al. [101].

Example 3 (Linear pseudo-circuit computing the Heaviside function). The Heaviside
function is the following correspondence

H(x) =


1 if x > 0
[0,1] if x = 0
0 if x < 0

.



4.3. A Powerful Tool for PPAD-membership: The linear-OPT-gate 115

We can construct a linear pseudo-circuit F : R× [0,1]→ R× [0,1] computing H by
letting

F(x,z) := (z,min{1,max{0,z+ x}}).

It is easy to check that F indeed computes H, i.e., F(x,z) = (y,z) =⇒ y ∈ H(x).

Computing a fixed point of a linear pseudo-circuit corresponds to computing a
fixed point of the linear arithmetic circuit representing it. Thus, a linear pseudo-circuit
is guaranteed to have at least one rational fixed point, and the problem of computing
such a fixed point lies in PPAD.

4.3 A Powerful Tool for PPAD-membership: The
linear-OPT-gate

In this section, we develop our main tool, the linear-OPT-gate.

When constructing a linear arithmetic circuit for the purpose of proving membership in
PPAD, we can assume without loss of generality that we have access to an additional
gate, called the linear-OPT-gate, which:

- is parameterized5 by n,m,k ∈ N, a rational matrix A ∈ Rm×n, and a linear arith-
metic circuit G∂ f : Rn×Rk × [0,1]ℓ→ Rn× [0,1]ℓ.

- takes as input b ∈ Rm, c ∈ Rk, and R ∈ R.

The linear-OPT-gate outputs an optimal solution of the following optimization problem
(over variables x ∈ Rn):

Optimization Program C

min f (x;c)

s.t. Ax ≤ b

x ∈ [−R,R]n

(4.1)

whenever the two following conditions hold for the given inputs b ∈ Rm, c ∈ Rk,
and R ∈ R:

1. The feasible domain {x ∈ [−R,R]n : Ax ≤ b} is not empty.

2. The map x 7→ f (x;c) is a convex function on the feasible domain and its subgra-
dient is given by the linear pseudo-circuit G∂ f .

For a more formal statement and the full proof see Section 4.3.3.

5The parameters of a gate determine its behavior and must be provided every time a gate of this
type is used in a circuit (and thus also count towards the representation size of the circuit). For example,
whenever we use a “multiplication by a constant” gate ×ζ, we have to specify the constant parameter ζ
of the gate. The same also applies to the linear-OPT-gate, except that it has (many) more parameters.



116 Chapter 3. PPAD-membership via Convex Optimization

Remark 8. Note that f does not need to be computable by a linear arithmetic circuit.
We only require that its subgradient (on the feasible domain) is given as a linear
pseudo-circuit. In particular, f can be a quadratic function.

Remark 9. The linear-OPT-gate can of course also solve maximization problems
max f (x) where the objective function f is concave, since this is equivalent to the
problem min− f (x). In that case we have to provide a linear pseudo-circuit computing
the supergradient of f , or equivalently the subgradient of − f .

In most of our applications, it will suffice for optimization program C to be a linear
program, i.e., for f to be linear function. We will use P to refer to the general form of
this linear program, and we will reference that in our applications.

Linear Program P

min cTx

s.t. Ax ≤ b

x ∈ [−R,R]n

(4.2)

Note that here f (x;c) = cTx, and its subgradient is simply computed by the linear
pseudo-circuit G∂ f : Rn×Rk→ Rn, (x;c) 7→ c. The linear pseudo-circuit G∂ f is in fact
just a normal linear arithmetic circuit here, i.e., ℓ = 0, since no auxiliary fixed point
variables are needed to compute the subgradient.

Remark 10. Note that we require that the constraint matrix A be fixed, whereas the
right-hand side of the constraints b can be given as an input to the gate. This is in fact
necessary, as the following example shows. If the linear-OPT-gate could solve the LP

min x

s.t. a · x ≥ 1

x ∈ [−2,2]

where a is not fixed, then we would obtain a linear pseudo-circuit computing 1/a for
a ∈ [1,2]. But then, we would be able to construct a linear pseudo-circuit F : [1,2]→
[1,2] computing y 7→ min{2,max{1,2/y}}. The only fixed point of F is at y =

√
2,

which is a contradiction, since linear pseudo-circuits always have at least one rational
fixed point.

4.3.1 Feasibility Program with Conditional Constraints

Using the linear-OPT-gate, we can also solve feasibility programs, which will be very
useful throughout our applications. In particular, when constructing a linear arithmetic
circuit for the purpose of proving membership in PPAD, we can assume without loss
of generality that we have access to an additional gate solving feasibility programs
with conditional constraints, which:



4.3. A Powerful Tool for PPAD-membership: The linear-OPT-gate 117

- is parameterized by n,m,k ∈N, a rational matrix A ∈Rm×n, and linear arithmetic
circuits hi : Rk→ R for i = 1, . . . ,m.

- takes as input b ∈ Rm, y ∈ Rk, and R ∈ R.

The gate outputs a feasible solution of the following feasibility problem (over variables
x ∈ Rn):

Feasibility Program Q

hi(y) > 0 =⇒ aT
i x ≤ bi

x ∈ [−R,R]n (4.3)

whenever it is feasible. Note that we may add unconditional constraints to feasibility
program Q above by simply setting hi(y) = 1 in the conditional constraints above.

Construction. We can solve the feasibility problem Q in (4.3) by solving the fol-
lowing optimization problem (over variables x ∈ Rn)

min
m∑

i=1

max{0,hi(y)} ·max{0,aT
i x−bi}

s.t. x ∈ [−R,R]n

(4.4)

Note that if x is an optimal solution for (4.4) with objective function value 0, then x is
feasible for Q in (4.3). Furthermore, if Q is feasible, then the optimal value of (4.4)
is 0. Thus, if Q is feasible, then any optimal solution to (4.4) will also be a feasible
solution to Q in (4.3).

As a result, it suffices to show that we can use the linear-OPT-gate to solve (4.4).
Clearly, the feasible domain of (4.4) is nonempty. Thus, it remains to show that
we can construct a linear pseudo-circuit computing the subgradient of x 7→ f (x;y,b),
where

f (x;y,b) =
m∑

i=1

max{0,hi(y)} ·max{0,aT
i x−bi}.

Note that this function is indeed convex in x.
The subgradient of x 7→max{0,aT

i x−bi} can be expressed as H(aT
i x−bi) ·ai, where

we recall that H is the Heaviside function defined as

H(z) =


1 if z > 0
[0,1] if z = 0
0 if z < 0

.

Thus, the subgradient of x 7→ f (x;y,b) can be written as
∑m

i=1 max{0,hi(y)} ·H(aT
i x−

bi) ·ai. For each i ∈ [m], we can compute the term max{0,hi(y)} ·H(aT
i x−bi) by using

Lemma 11 below. Since the vectors ai are fixed, we can then compute the product
max{0,hi(y)} ·H(aT

i x− bi) · ai. Doing this for every i ∈ [m] and then summing up



118 Chapter 3. PPAD-membership via Convex Optimization

yields an element in the subgradient of x 7→ f (x;y,b). Thus, we have successfully
constructed a linear pseudo-circuit computing this subgradient. It remains to prove
the following lemma we used, which will also be useful later.

Lemma 11. For the purpose of proving PPAD-membership, we can construct a linear
pseudo-circuit computing (x,y) 7→ H(x) · y.

Proof. Note that H(x) · y can be obtained by computing H(x) ·max{0,y} − H(x) ·
max{0,−y}. Thus, it suffices to prove that we can compute H(x) ·max{0,y}. This can
indeed be achieved by using the linear-OPT-gate to solve the following LP (in variable
v ∈ R):

max v · x

s.t. 0 ≤ v ≤max{0,y}

Note that the feasible domain is nonempty, and the gradient of the objective function is
x, which can trivially be computed by a linear arithmetic circuit. It is straightforward
to verify that any optimal solution v satisfies v ∈ H(x) ·max{0,y}, as desired. □

4.3.2 Using the linear-OPT-gate in applications

In our applications in subsequent sections we will be constructing linear arithmetic
circuits containing several linear-OPT-gates, corresponding to multiple optimization
programs like the program C above, as well as feasibility programs like the program
Q. It will be helpful to be able to reference the inputs to those linear-OPT-gates as
opposed to the variables of the corresponding programs, particularly because variables
for one program would be inputs to the linear-OPT-gate corresponding to another
program and vice versa. We will use the term gate inputs to refer to those inputs.

Definition 4.3.1 (Gate Inputs). Consider an optimization program in the form of C or
a feasibility program in the form of Q and let C be its corresponding linear-OPT-gate.
We will refer to the inputs of C as gate inputs of the program C or Q.

Using this terminology, we can argue that a specific program can be solved by the
linear-OPT-gate as follows.

For optimization programs of the form C we need to argue

- Conditions 1 and 2 in the definition of the linear-OPT-gate for C above, namely
that the domain is non-empty and that the subgradient of the convex objective
function is given by a linear pseudo-circuit G∂ f ,

- that gate inputs appear only on the right-hand side of the constraints, but not on
the left-hand side.

For feasibility programs of the form Q we need to argue that

- the feasibility program is solvable (i.e., feasible),



4.3. A Powerful Tool for PPAD-membership: The linear-OPT-gate 119

- the gate inputs appear only on the right-hand side of the constraints aT
i x ≤ bi,

- only gate inputs appear on the left-hand side of the conditional constraints, i.e.,
in the function hi(y) > 0.

The conditions above are obviously equivalent to the optimization and feasibility
programs having the form of (4.1) and (4.3), since the gate inputs are the inputs to the
linear-OPT-gate. Here the conditions are simply “spelled-out”, because it is easier to
refer to them in subsequent sections. What is not obvious is how one may argue about
the solvability of a feasibility program Q.

Solvability of Q. The feasibility programs that will appear in most of our applica-
tions will have the following same general form; it will be easy to argue the solvability
of those that do not.

Feasibility Program Qapp

hk(y)−hk′(y) > 0 =⇒ wk ≤ ρ ·wk′ for all k,k′ ∈ [m]
m∑

j=1

w j = 1, wi ≥
ρm

m
, for all i ∈ [m]

for some 0< ρ≤ 1, where w ∈Rm are the variables. For this type of feasibility program
Qapp, we can define the notion of a feasibility graph.

Definition 4.3.2 (The feasibility graph GQ). Consider a feasibility program of the
form Qapp. Let GQapp be the graph that has nodes for each k ∈ [m], and a directed edge
(k,k′) if and only if hk(y)−hk′(y) > 0. We will refer to GQapp as the feasibility graph of
Qapp.

The following lemma provides a general condition for solvability of Qapp.

Lemma 12 (Solvability of Qapp). A feasibility program of the form Qapp is solvable
as long as its feasibility graph GQapp is acyclic.

Proof. Assume that GQapp is acyclic, and let dk be the length of the longest path from
node k to a sink node in Qapp. Let

wk =
ρdk∑m
j=1 ρ

d j
, for all k ∈ [m].

We will argue that these values of wk, for k ∈ [m], satisfy the constraints of the
feasibility program Qapp. Obviously,

∑m
k=1 wk = 1 by definition. Since the graph

has m nodes, it holds that dk ≤ m. Since ρ ≤ 1, this implies that ρdk ≥ ρm and that∑n
j=1 ρ

d j ≤ m. Therefore, we obtain that wk ≥
ρm

m . It remains to show these values of
wk satisfy the conditional constraints. Indeed, consider an edge (k,k′) in the feasibility



120 Chapter 3. PPAD-membership via Convex Optimization

graph Qapp, which, recall, corresponds to a constraint where hk(y)−hk′(y) > 0. Since
(k,k′) is an edge in Qapp, we have that dk ≥ dk′ +1, as there is a path from k to a sink
of Qapp that starts with the edge (k,k′). This implies that

wk =
ρdk∑m
j=1 ρ

d j
≤
ρd′k+1∑m
j=1 ρ

d j
=
ρ ·ρd′k∑m

j=1 ρ
d j
= ρ ·wk′ ,

and hence the corresponding conditional constraint is satisfied. □

Thus, in our applications in which the feasibility programs that we construct are of
the form Qapp above, it suffices to show that their corresponding feasibility graph Qapp
is acyclic, in order to establish their solvability by Lemma 12.

4.3.3 Construction and proof for the linear-OPT-gate

In this section, we provide the formal construction and the proof of correctness for the
linear-OPT-gate. We state the main theorem below.

Theorem 4.3.1. Given n,m,k ∈ N, a rational matrix A ∈ Rm×n, rational bounds R > 0
and C > 0, as well as a linear arithmetic circuit G∂ f : Rn×Rk × [0,1]ℓ→ Rn× [0,1]ℓ,
we can construct a linear arithmetic circuit F : Rm×Rk × [0,1]t→ [−R,R]n× [0,1]t

in time
poly(n,m,k,size(A),size(R),size(C),size(G∂ f ))

which satisfies

F(b,c,α)= (x,α) =⇒ x is an optimal solution to optimization problem C in (4.1) at (b,c)

whenever b and c satisfy the following three conditions:

1. The feasible domain {x ∈ [−R,R]n : Ax ≤ b} is not empty.

2. The map x 7→ f (x;c) is a convex function on the feasible domain and its subgra-
dient is given by the linear pseudo-circuit G∂ f .

3. ∥c∥∞ ≤C.

Remark 11. The attentive reader might have noticed that the statement of Theo-
rem 4.3.1 does not completely correspond to what was claimed in the presentation of
the linear-OPT-gate at the beginning of Section 4.3. Namely, the theorem assumes
that we are given R as a parameter when we construct the gadget, whereas the earlier
description allowed R to be an input to the linear-OPT-gate. Furthermore, the theorem
also asks for an upper bound C on the length of c to be given as a parameter when
constructing the linear-OPT-gate, whereas no such C was mentioned earlier.

Instead of assuming that R is a fixed parameter of the linear-OPT-gate, we can
assume that R is an input, but that we are also given an upper bound R′ on R. This can
easily be achieved by applying Theorem 4.3.1 using R′ as the value of the parameter



4.3. A Powerful Tool for PPAD-membership: The linear-OPT-gate 121

R, and explicitly adding constraints xi ≤ R, −xi ≤ R (where R can now indeed be given
as an input, since it only appears on the right hand side of constraints). Note that as
long as we indeed have R ≤ R′, the new optimization problem is equivalent to the
previous one, and the linear-OPT-gate will correctly solve it.

We still have to provide upper bounds R′ and C when constructing the linear-OPT-
gate. The crucial observation here is that the original description explicitly mentions
that the linear-OPT-gate, as described there, can only be used for the purpose of
proving membership in PPAD. More formally, this should be interpreted as saying: as
long as we are ultimately only using the linear-OPT-gate inside a linear arithmetic
circuit with bounded domain, we can assume that we do not need to explicitly provide
upper bounds R′ and C. The reason for this stems from Lemma 10, which states
that we can bound the magnitude of any value inside a linear arithmetic circuit with
bounded domain, in terms of the size of the description of the circuit, and the bound
on the domain. Thus, whenever we use a linear-OPT-gate in a linear arithmetic
circuit with bounded domain, since the inputs R and c are computed by a linear
arithmetic circuit with bounded domain, we can compute corresponding upper bounds
R′ and C for the actual construction of the linear-OPT-gate gadget according to
Theorem 4.3.1. An important but subtle point is that the linear-OPT-gate is always
guaranteed to output an element in [−R′,R′]n. As a result, even in a linear arithmetic
circuit that uses multiple linear-OPT-gates, we can efficiently compute upper bounds
on the magnitudes of numbers given as input to the linear-OPT-gate, even before
replacing the linear-OPT-gates by the actual gadgets implementing them (namely the
construction of Theorem 4.3.1).

Construction of the linear arithmetic circuit F

We begin with the description of how the circuit F is constructed. For this we use
a sufficiently small value ε > 0, which we construct in the next section. We let
t := n+ ℓ+m and write [0,1]t = [0,1]n× [0,1]ℓ+m.

On input (b,c,α,β) ∈ Rm×Rk × [0,1]n× [0,1]ℓ+m, the circuit F proceeds as follows:

1. Compute x := 2Rα−R. In other words, we scale α ∈ [0,1]n into a point x ∈
[−R,R]n.

2. Compute (v,β1, . . . ,βℓ) :=G∂ f (x,c,β1, . . . ,βℓ).

3. Compute µi ∈H(aT
i x−bi) for i= 1, . . . ,m, using auxiliary variables βℓ+1, . . . ,βℓ+m

and corresponding outputs βℓ+1, . . . ,βℓ+m. More formally, compute βℓ+i :=
min{1,max{0,βℓ+i+aT

i x−bi}} and µi := βℓ+i for i = 1, . . . ,m.

4. Compute
x := ΠR

(
x−ε · v−ATµ

)
where ΠR denotes projection to [−R,R]n.

5. Compute α := (x+R)/2R (i.e., scale x ∈ [−R,R]n into a point α ∈ [0,1]n).



122 Chapter 3. PPAD-membership via Convex Optimization

6. Output (x,α,β).

Here ai ∈ R
n denotes the ith row of matrix A.

Note that we can construct a linear arithmetic circuit computing F in time

poly(n,m,k,size(A),size(R),size(C),size(G∂ f )),

assuming that ε can computed in polynomial time in these quantities (which we argue
in the section). In particular, the projection ΠR(y) of some vector y can be obtained by
computing min{R,max{−R,yi}} for each coordinate of y. Furthermore, note that the
first output x of F always satisfies x ∈ [−R,R]n, even when the fixed point constraints
α = α and β = β are not satisfied.

Construction of ε

We now describe how ε is constructed. Since G∂ f is a linear arithmetic circuit, by
Lemma 10 we can compute in time poly(size(R),size(C),size(G∂ f )) a rational K > 0
such that

max
(x,c,β)∈[−R,R]n×[−C,C]n×[0,1]ℓ

∥G∂ f (x,c,β)∥2 ≤ K. (4.5)

For the construction of ε we will also require the following notation. We define
Ã ∈ R(m+2n)×n and b̃ ∈ Rm+2n such that the system “Ãx ≤ b̃” corresponds to the system
“Ax ≤ b” with the additional constraints “xi ≤ R” and “−xi ≤ R” for i = 1, . . . ,n. In
particular, the first m rows of Ã correspond to A and the first m entries in b̃ correspond
to b. We use ãi to denote the ith row of Ã.

We set ε := γ∗/K, where γ∗ > 0 is computed in time poly(size(A)) using the following
lemma.

Lemma 13. Given A ∈ Rm×n, we can construct in polynomial time a sufficiently small
number γ∗ > 0 such that for any nonempty I ⊆ [m+2n] and for every partition of I
into I0 and I1, such that I1 , ∅, if the following optimization problem (in variables
u ∈ Rn and λ ∈ R|I|)

min
∑
i∈I1

ãT
i u

s.t. ãT
i u = 0 ∀i ∈ I0

ãT
i u ≥ 0 ∀i ∈ I1

∥u∥2 = 1

u =
∑
i∈I

λĩai

λi ≥ 0 ∀i ∈ I

(4.6)

is feasible, then its optimal value γ satisfies γ > γ∗.



4.3. A Powerful Tool for PPAD-membership: The linear-OPT-gate 123

Proof. Let I, I0, and I1 be as specified in the statement of the lemma, and such that
optimization problem (4.6) is feasible. Letting γ denote the optimal value of (4.6),
note that γ ≥ γ′/

√
n, where γ′ is the optimal value of the same optimization problem,

except that we replace the constraint “∥u∥2 = 1” by “∥u∥∞ = 1”, namely:

min
∑
i∈I1

ãT
i u

s.t. ãT
i u = 0 ∀i ∈ I0

ãT
i u ≥ 0 ∀i ∈ I1

∥u∥∞ = 1

u =
∑
i∈I

λĩai

λi ≥ 0 ∀i ∈ I

(4.7)

This is due to the fact that all other constraints are invariant to scaling of (u,λ). In
particular, note that (4.7) is also feasible.

The optimal value γ′ of (4.7) satisfies γ′ = mink∈I,s∈{+1,−1} γ
′
k,s, where γ′k,s is the

optimal value of the following LP

min
∑
i∈I1

ãT
i u

s.t. ãT
i u = 0 ∀i ∈ I0

ãT
i u ≥ 0 ∀i ∈ I1

−1 ≤ u j ≤ 1 ∀ j ∈ [n]

uk = s

u =
∑
i∈I

λĩai

λi ≥ 0 ∀i ∈ I

if it is feasible, and γ′k,s := +∞ otherwise.
Next, we show that γ′k,s > 0. This clearly holds if the LP is infeasible. Assume

towards a contradiction that the LP is feasible, but γ′k,s ≤ 0. Then, γ′k,s = 0 and it is
achieved by a feasible u with ãT

i u = 0 for all i ∈ I. Since u is feasible, there exists λ ≥ 0
with u =

∑
i∈I λĩai. But then ∥u∥22 = uTu =

∑
i∈I λĩaT

i u = 0, which contradicts |uk| = 1.
Finally, note that the bit-complexity of the optimal value of any LP of this form is

polynomially bounded by the bit-representation of matrix A. Indeed, the number of
bits needed to write down such an LP for any choice of k ∈ I, s ∈ {+1,−1}, and for any
I, I0, and I1 is bounded by some polynomial quantity in size(A). In particular, given
A, we can compute in polynomial time a rational value γ∗ > 0 such that γ∗ < γ′k,s/

√
n

for all k ∈ I, s ∈ {+1,−1}, and for all possible I, I0, and I1. By the arguments above, it
then follows that γ∗ < γ. □



124 Chapter 3. PPAD-membership via Convex Optimization

Analysis: Fixed point constraints

In this section, we state and prove some simple properties that follow from the
fixed point constraints (α,β) = (α,β). Recall that the system “Ãx ≤ b̃” corresponds
to the system “Ax ≤ b” with the additional constraints “xi ≤ R” and “−xi ≤ R” for
i = 1, . . . ,n. In particular, the first m rows of Ã correspond to A and the first m entries
in b̃ correspond to b.

The circuit F has been constructed in order to ensure that the following properties
hold.

Claim 6. If (α,β) = (α,β), then:

1. µi ∈ H(aT
i x−bi) for i = 1, . . . ,m.

2. ∥v∥2 ≤ K and, if Ax ≤ b, then v ∈ ∂ f (x;c).

3. x = x and
ε · v+ ÃTµ̃ = 0 (4.8)

where µ̃ ∈ Rm+2n satisfies µ̃ ≥ 0, as well as

µ̃i > 0 =⇒ ãT
i x ≥ b̃i

for all i = 1, . . . ,m+2n. Furthermore, for i ∈ [m] we also have µ̃i = µi.

Proof. The first statement follows from the construction of the Heaviside linear
pseudo-circuit. The fact that ∥v∥2 ≤ K follows from the definition of K (see (4.5)) and
the assumption that ∥c∥∞ ≤C. The fact that v ∈ ∂ f (x;c) when Ax ≤ b follows from the
assumption that G∂ f is a linear pseudo-circuit computing ∂ f (x;c), whenever x lies in
feasible domain.

Since α = α, it follows that x = x, i.e., x = ΠR(x−ε · v−ATµ). This implies that

x−ε · v−ATµ− x = Inλ
+− Inλ

−

where λ+,λ− ∈ Rn are nonnegative, and additionally satisfy λ+j > 0 =⇒ x j = R, and
λ−j > 0 =⇒ x j = −R. Here In ∈ R

n×n denotes the identity matrix. Finally, noting that

Ã =

 A
In

−In


we can rewrite the equation as

ε · v+ ÃTµ̃ = 0

where we let

µ̃ =

 µλ+
λ−


Note that we indeed have µ̃ ≥ 0 and µ̃i > 0 =⇒ ãT

i x ≥ b̃i. In particular, for i ∈ [m] this
follows from µ̃i = µi ∈ H(aT

i x−bi). □



4.3. A Powerful Tool for PPAD-membership: The linear-OPT-gate 125

In the remainder of the proof, we show that x must necessarily be an optimal solution
to the optimization problem. We first show that if x is feasible, it is necessarily optimal.
We complete the proof by proving that x must necessarily be feasible.

Analysis: Feasibility implies optimality

Consider the case where x is feasible, i.e., Ax ≤ b. We will show that x must be an
optimal solution. Since x ∈ [−R,R]n and Ax ≤ b, it follows that Ãx ≤ b̃. Thus, the third
statement in Claim 6 yields that

ε · v+ ÃTµ̃ = 0 (4.9)

where µ̃ ≥ 0 and where

µ̃i > 0 =⇒ ãT
i x ≥ b̃i =⇒ ãT

i x = b̃i.

In other words, µ̃i can only be strictly positive if the ith constraint is tight. Furthermore,
since x is feasible, the second statement in Claim 6 yields that v ∈ ∂ f (x;c). As a result,
given that ε > 0, the equality (4.9) can be interpreted as saying that the Karush-Kuhn-
Tucker (KKT) conditions hold at point x for the following constrained minimization
problem

min f (x;c)

s.t. Ãx ≤ b̃

which is the same as our optimization problem C in (4.1). Since, by assumption, f is
convex on the feasible domain, the KKT conditions are also sufficient for optimality,
and thus x is an optimal solution.

Formally, consider any feasible point z. We will show that f (z) ≥ f (x). Taking the
inner product of (4.9) with z− x yields

ε · vT(z− x) = (ÃTµ̃)T(x− z) = µ̃TÃ(x− z) ≥ 0

since µ̃≥ 0 and µ̃i > 0 =⇒ ãT
i x= b̃i ≥ ãT

i z. Given that ε > 0, it follows that vT(z− x)≥ 0.
Finally, using the fact that v ∈ ∂ f (x;c), i.e., v is a subgradient of f (·;c) at x, together
with the definition of subgradients, we obtain

f (z) ≥ f (x)+ vT(z− x) ≥ f (x)

i.e., x is a global minimum of f on the feasible domain.

Analysis: Feasibility

We show that x must necessarily be feasible, i.e., Ax ≤ b. Assume towards a contra-
diction that x is not feasible.

Let J := {i ∈ [m+2n] : ãT
i x ≥ b̃i} and note that J is nonempty, since x is infeasible.

By Claim 6 we have µ̃i > 0 =⇒ ãT
i x≥ b̃i =⇒ i ∈ J, and thus µ̃i = 0 for all i ∈ [m+2n]\ J.



126 Chapter 3. PPAD-membership via Convex Optimization

In particular, ÃTµ̃ = ÃT
J µ̃J , where ÃJ denotes the restriction of Ã to the subset of rows

J, and similarly for µ̃J . As a result, we can rewrite (4.8) from Claim 6 as

ε · v+ ÃT
J µ̃J = 0. (4.10)

Let z∗ be the projection of x onto the convex set DJ := {y ∈Rn : ÃJy ≤ b̃J}, which is
nonempty, since the feasible region D := {y ∈ Rn : Ãy ≤ b̃} is nonempty by assumption.
Note that z∗ , x, because if x ∈ DJ , then we would also have x ∈ D by the definition
of J.

Let I := {i ∈ J : ãT
i z∗ = b̃i}, i.e., the set of all constraints in J that are tight at z∗.

Note that z∗, which is the projection of x onto DJ , is also the projection of x onto
DI := {y ∈ Rn : ÃIy ≤ b̃I}. Indeed, assume that z∗ is not the projection of x onto DI .
Then there exists y ∈ DI with (x− z∗)T(y− z∗) > 0. But since all constraints in J \ I are
strictly satisfied at z∗, there exists a point y∗ on the segment [z∗,y] that satisfies y∗ ∈ DJ

and (x− z∗)T(y∗− z∗) > 0. This is a contradiction to the fact that z∗ is the projection of
x onto DJ . Thus, z∗ is indeed the projection of x onto DI .

Next, we partition I into two sets: I0 := {i ∈ I : ãT
i x = b̃i} and I1 := {i ∈ I : ãT

i x > b̃i}.
Note that by construction I0∩ I1 = ∅ and I = I0∪ I1, since I ⊆ J. Furthermore, I1 ⊆ [m],
because we have x ∈ [−R,R]n, which means that ãT

i x ≤ b̃i for all i ∈ [m+ 2n] \ [m].
Finally, I1 , ∅. Indeed, if I1 = ∅, then x ∈ DI , which contradicts z∗ , x.

Taking the inner product of (4.10) with z∗− x yields

ε ·vT(z∗− x)= (ÃT
J µ̃J)T(x−z∗)= µ̃T

J ÃJ(x−z∗)≥ µ̃T
I1

ÃI1(x−z∗)= µT
I1

AI1(x−z∗)=
∑
i∈I1

aT
i (x−z∗)

where we used µi ≥ 0 and ãT
i x ≥ b̃i ≥ ãT

i z∗ for all i ∈ J, µ̃I1 = µI1 , ÃI1 = AI1 , and µi = 1
for all i ∈ I1 ⊆ [m], since µi ∈ H(aT

i x−bi). As a result∑
i∈I

aT
i (x− z∗) ≤ ε · vT(z∗− x) ≤ ε∥v∥2∥x− z∗∥2 ≤ εK∥x− z∗∥2 ≤ γ∗∥x− z∗∥2 (4.11)

where we used ∥v∥2 ≤ K (Claim 6) and ε = γ∗/K.
We now show that this is a contradiction to our choice of γ∗. Let u := (x− z∗)/∥x−

z∗∥2 and note that u is well defined, since z∗ , x. Assume, for now, that u is feasible for
optimization problem (4.6) from Lemma 13, which we repeat here for convenience:

min
∑
i∈I1

ãT
i u

s.t. ãT
i u = 0 ∀i ∈ I0

ãT
i u ≥ 0 ∀i ∈ I1

∥u∥2 = 1

u =
∑
i∈I

λĩai

λi ≥ 0 ∀i ∈ I



4.3. A Powerful Tool for PPAD-membership: The linear-OPT-gate 127

In particular, the optimization problem is feasible, and thus by Lemma 13 its optimal
value is (strictly) lower bounded by γ∗. As a result,

∑
i∈I1 ãT

i (x− z∗)/∥x− z∗∥2 > γ∗,
which yields

∑
i∈I1 ãT

i (x− z∗) > γ∗∥x− z∗∥2. But this is a contradiction to (4.11).
It remains to show that u = (x− z∗)/∥x− z∗∥2 is indeed feasible for optimization

problem (4.6). The first two constraints are satisfied, because ãT
i x = b̃i = ãT

i z∗ for all
i ∈ I0, and ãT

i x > b̃i = ãT
i z∗ for all i ∈ I1. Clearly, ∥u∥2 = 1. Thus, it remains to prove

that there exists λ ≥ 0 such that x− z∗ = ÃT
I λ. Since z∗ is the projection of x onto

DI = {y ∈ Rn : ÃIy ≤ b̃I}, it follows that (x− z∗)T(y− z∗) ≤ 0 for all y ∈ DI . Given that
ÃIz∗ = b̃I , we thus obtain that (x−z∗)Ty ≤ 0 for all y with ÃIy ≤ 0. However, by Farkas’
lemma [37], we know that exactly one of the following two statements holds:

1. ∃y ∈ Rn : ÃIy ≤ 0 and (x− z∗)Ty > 0

2. ∃λ ∈ R|I| : ÃT
I λ = x− z∗ and λ ≥ 0

Since we have shown that the first statement does not hold, we deduce that there exists
λ ≥ 0 such that ÃT

I λ = x− z∗, as desired. As a result, u = (x− z∗)/∥x− z∗∥2 is indeed
feasible for optimization problem (4.6), and the proof is complete.

4.3.4 Implicit Functions and Correspondences

In this section we will construct linear arithmetic circuits computing univariate
piecewise-linear functions and piecewise-constant correspondences, based on a suc-
cinct representation given by a Boolean circuit, built from Boolean AND, OR and
NOT gates. We remark that conceptually, the ideas around the use of the triangle-wave
function (see Definition 4.3.6) and the bit multiplication (see Definition 4.3.7 and the
subsequent discussion) are attributed to Fearnley et al. [93] (private communication),
who developed them, albeit for a different setting.

By interpreting non-negative integers by their binary representation, a Boolean
function may be viewed as computing an integer-valued function. For b= (bn−1, . . . ,b0) ∈
{0,1}n, we denote by bitValn(b) the number bitValn(b) = (bn−1, . . . ,b0)2 =

∑n−1
i=0 bi2i

encoded by b in binary.

Definition 4.3.3. Let C be a Boolean circuit with n inputs and n outputs, thereby
computing a function C : {0,1}n → {0,1}n, and let 1 ≤ N < 2n be an integer. We
index the inputs and outputs of C with {0, . . . ,n− 1} and we consider b ∈ {0,1}n to
represent the integer bitValn(b). The integer-valued function represented by (C,N) is
the function f : {0,1, . . . ,N} → {0,1, . . . ,N} given by

f (bitValn(b)) =min{N,bitValn(C(b))} =min{N, (C(b)n−1, . . . ,C(x)0)2} ,

for b ∈ {0,1}n such that bitValn(b) ≤ N.

A natural piecewise-linear function is then given by linear interpolation between
function values.



128 Chapter 3. PPAD-membership via Convex Optimization

Definition 4.3.4. Let C be a Boolean circuit with n inputs and n outputs, and let
1 ≤ N < 2n be an integer. The piecewise-linear function represented by (C,N) is the
function g : R→ R given by

g(x) =


f (0) for x < 0
(1− (x−⌊x⌋)) f (⌊x⌋)+ (x−⌊x⌋) f (⌊x⌋+1) for 0 ≤ x < N
f (N) for N ≤ x

,

where f is the integer-valued function represented by (C,N).

In a similar way, a natural piecewise-constant correspondence is given by extend-
ing function values to the right, until the next function value is defined.

Definition 4.3.5. Let C be a Boolean circuit with n inputs and n outputs, and let
1 ≤ N < 2n be an integer. The piecewise-constant correspondence represented by
(C,N) is the correspondence g : R⇒ R given by

g(x) =


f (0) for x ≤ 0
[min( f (x−1), f (x)),max( f (x−1), f (x))] for x ∈ {1,2, . . . ,N}
f (⌊x⌋) for x ∈ [0,N] \ {0,1, . . . ,N}
f (N) for N < x

,

where f is the integer-valued function represented by (C,N).

An example illustrating Definition 4.3.4 and Definition 4.3.5 is given in Figure 4.2.

-1 0 1 2 3 4 5 6 7 8 9 10

1
2
3
4

-1 0 1 2 3 4 5 6 7 8 9 10

1
2
3
4

Figure 4.2: The piecewise-linear function (left) and piecewise-constant correspon-
dence (right) defined implicitly by a Boolean circuit C and N = 9 computing an integer
valued function f as shown with dots.

A function that will be used in both constructions is the familiar square-wave
function, restricted to a bounded number of periods, as illustrated in Figure 4.3.

Definition 4.3.6. For a non-negative integer n, the correspondence S n : R2⇒ [0,1],
consisting of 2n+1/2 periods of length p, in the interval [0, (2n+1/2)p], is defined
as H(Tn(x, p)), where Tn is the triangle-wave function defined inductively as follows.
For n = 0, we define

T0(x, p) =max(min(x, p/2− x),min(x− p,3p/2− x)) ,

and for n > 0 we define Tn(x, p) = Tn−1(min(x, (2n+1/2)p− x), p).



4.3. A Powerful Tool for PPAD-membership: The linear-OPT-gate 129

0 1
2 p p 3

2 p

1
4 p

1 2 3 4

1

Figure 4.3: The function T0(x, p) used to define S 0(x, p) (left) and the function S 2(x,1)
(right) giving a square wave with 4.5 periods of length 1 in the interval [0,4.5].

Boolean operations may be viewed as special cases of linear functions, namely the
Boolean functions AND(a,b), OR(a,b), and NOT(a) correspond to the linear functions
min(a,b), max(a,b), and 1−a, for a,b ∈ {0,1}. The following is thus immediate.

Lemma 14. Let C be a Boolean circuit with n inputs and m outputs. Then there is
a linear arithmetic circuit with n inputs and m outputs C′ with the same number of
gates as C such that C(b) =C′(b) for all b ∈ {0,1}n.

In fact, AND(a,b) and thus min(a,b) may also be viewed as the multiplication
operation for a,b ∈ {0,1}. Even more generally, min(a,b) may be viewed as a multipli-
cation when just b ∈ {0,1} and a ∈ [0,1]. As long as we ultimately only use this tool
to prove PPAD-membership, we can make use of the linear-OPT-gate to construct a
stronger multiplication gadget that does not require an a priori bound on the operand a.

Definition 4.3.7. Define the linear pseudo-circuit bitMult with two inputs and one
output by bitMult(a,b) = H(b− 1

2 )a.

Note that bitMult can indeed be computed by a linear pseudo-circuit by Lemma 11
(which uses the linear-OPT-gate internally). From the definition of the Heaviside
function H the following is then immediate.

Lemma 15. We have bitMult(a,b) = ab, for any a ∈ R and any b ∈ {0,1}.

We will show below that also the piecewise-linear functions and piecewise-
constant correspondences represented by Boolean circuits may be computed by linear
pseudo-circuits. In fact, for the case of piecewise-constant correspondences we will
show a considerably stronger statement allowing the scaling of the input and output
by a variable.

An important component of both constructions is bit extraction. Informally,
bit extraction of a non-negative x ≥ 0 refers to computing the binary expansion of
⌊x⌋. This is clearly an inherently discontinuous operation, but can nevertheless be
circumvented in our applications. The bit extraction procedure we define below will
actually take 2 inputs x and y, and the intention is to perform bit extraction on the
number x/y, when 0 < y ≤ 1.

Definition 4.3.8. For a positive integer n, we inductively define a linear pseudo-circuit
bitExtn with two inputs and n outputs as follows. For n = 1, we define bitExt1(x,y) =
H(x− y), and for n > 1 we define bitExtn(x,y) = (bn−1, . . . ,b0) where bn−1 = H(x−
2n−1y) and (bn−2, . . . ,b0) = bitExtn−1(x−bitMult(2n−1y,bn−1),y).



130 Chapter 3. PPAD-membership via Convex Optimization

Lemma 16. Let n≥ 1, assume 0< y≤ 1, and let bitExtn(x,y)= b= (bn−1, . . . ,b0). Then,
whenever x/y ∈ [0,2n] \ {1,2,3, . . . ,2n} we have bi ∈ {0,1}, for all i and bitValn(b) =∑n−1

i=0 bi2i = ⌊x/y⌋.

Proof. Assume x/y ∈ [0,2n] \ {1,2,3, . . . ,2n}. Since in particular x/y , 2n−1, by defini-
tion of the Heaviside function H we have that bn−1 = 0 when x/y < 2n−1 and bn−1 = 1
when x/y > 2n−1. This shows the case of n = 1. For n > 1 we have x/y−bn−12n−1 ∈

[0,2n−1] \ {1,2, . . . ,2n−1}, and by induction we have ⌊x/y−bn−12n−1⌋ =
∑n−2

i=0 bi2i. The
result now follows since ⌊x/y−bn−12n−1⌋ = ⌊x/y⌋−bn−12n−1, for bn−1 ∈ {0,1}. □

Remark 12. The output of bitExtn is of course well-defined for any value of x and y.
In particular we can observe that (bitExtn(x,0))i = H(x), for all i.

As an extension of Definition 4.3.7 and Lemma 15 we may in a linear arithmetic
circuit multiply a number given in binary encoding by variables with another variable.
This means that we may consider the output of a linear circuit, obtained from a
Boolean circuit by Lemma 14, as representing a number given in binary encoding and
then multiply that by a variable.

Definition 4.3.9. For an integer n > 0, define the linear pseudo-circuit bitMultn
having n+1 inputs and one output by bitMultn(a,bn−1, . . . ,b0) =

∑n−1
i=0 bitMult(a,bi)2i.

Using Lemma 15 we then have the following.

Lemma 17. For any positive integer n, b ∈ {0,1}n, and any a ∈Rwe have bitMultn(a,bn−1, . . . ,b0)=
a ·bitValn(b).

For b ∈ {0,1}n we shall for brevity also simply write bitMult(a,b)= bitMultn(a,bn−1, . . . ,b0).

Piecewise-linear functions

We will now develop a construction of a linear pseudo-circuit computing the piecewise-
linear function g represented by (C,N), as defined in Definition 4.3.4, for a circuit C
with n inputs and n outputs and an integer N satisfying 1 ≤ N < 2n. The general idea is
to perform bit extraction, evaluate the integer-valued function f represented by (C,N)
on two inputs, and then perform linear interpolation. The immediate obstacle is that bit
extraction applied to x ∈ [0,2n] fails, i.e., does not guarantee a Boolean output, when
x ∈ {1, . . . ,2n}. To overcome this obstacle we perform this procedure on two different
translations of the input, and use the square wave function to switch between the two,
thereby masking out erroneous values. Let in the following G = [0,2n] \ {1, . . . ,2n} be
the set of points where bit extraction succeeds.

For simplicity, we first give a description of the computation without referring to
Boolean circuits. Suppose x ∈ [0,N]. We consider the following two cases, each with
a special case in an endpoint of the interval [0,N].



4.3. A Powerful Tool for PPAD-membership: The linear-OPT-gate 131

1. Assume x ∈ [⌊x⌋,⌊x⌋+ 1
2 ] and assume first also x ≤ N − 1

2 . Let w1 = x+ 1
4 and

w2 = x+ 5
4 . Note that w1,w2 ∈G and that ⌊w1⌋ = ⌊x⌋ and ⌊w2⌋ = ⌊x⌋+1. It thus

follows that g(x) = g1(x), where

g1(x) = (⌊w2⌋− x) f (⌊w1⌋)+ (x−⌊w1⌋) f (⌊w2⌋) .

To also handle the special case of x = N, we proceed as follows. First, let
δ1 =H(x− (N− 1

4 )) and define w′1 = x+ 1
4 −δ1 and w′2 = x+ 5

4 −δ1. In case x = N
we have δ1 = 1 and thus w′1 = x− 3

4 , w′2 = w1 = x+ 1
4 , and w′1,w

′
2 ∈G. We then

have g(x) = g′1(x), where

g′1(x) = (⌊w′2⌋− x) f (⌊w1⌋)+ (x−⌊w′1⌋) f (⌊w′2⌋) .

Note that f is evaluated on ⌊w1⌋ and ⌊w′2⌋ (and not ⌊w′1⌋ and ⌊w′2⌋), which in the
case of x = N both equal N, thereby satisfying Definition 4.3.4.

Finally, note that in the general case, when x ≤ N − 1
2 , we have δ1 = 0, and thus

w′1 = w1 and w′2 = w2 which means that g′1(x) = g1(x).

2. Assume x ∈ [⌈x⌉ − 1
2 ,⌈x⌉] and assume first also x ≥ 1

2 . Let w3 = x− 1
4 and

w4 = x+ 3
4 . Note that w3,w4 ∈G. We now have two sub-cases. First, assume

that x < ⌈x⌉. Then ⌊w3⌋ = ⌊x⌋ and ⌊w4⌋ = ⌊x⌋+1. Next assume that x = ⌈x⌉. Then
⌊w3⌋ = ⌊x⌋−1 and ⌊w4⌋ = ⌊x⌋. In both sub-cases it thus follows that g(x) = g2(x),
where

g2(x) = (⌊w4⌋− x) f (⌊w3⌋)+ (x−⌊w3⌋) f (⌊w4⌋) .

To also handle the special case of x = 0, we proceed in a similar way as the
case of x = N above. First, let δ2 = H( 1

4 − x) and define w′3 = x− 1
4 + δ2 and

w′4 = x+ 3
4 +δ2. In case x= 0 we have δ2 = 1 and thus w′3 =w4 = x+ 3

4 , w′4 = x+ 7
4

and w′3,w
′
4 ∈G. We then have g(x) = g′2(x), where

g′2(x) = (⌊w′4⌋− x) f (⌊w′3⌋)+ (x−⌊w′3⌋) f (⌊w4⌋) .

Note that f is evaluated on ⌊w′3⌋ and ⌊w4⌋ (and not ⌊w′3⌋ and ⌊w′4⌋), which in the
case of x = 0 both equals 0, thereby satisfying Definition 4.3.4.

Finally, note that in the general case, when x ≥ 1
2 , we have δ2 = 0, and thus

w′3 = w3 and w′4 = w4 which means that g′2(x) = g2(x).

We will now simply use the square wave function to select between the two cases.
Namely, from the definition of S n we have that g(x) = g′2(x)+S n(x,1)(g′1(x)−g′2(x)).
Since S n(x,1) is defined as the composition H(Tn(x,1)) of the Heaviside function with
the linear function Tn(x,1), we can compute the term S n(x,1)(g′1(x)−g′2(x)) using the
linear-OPT-gate by Lemma 11. We now present the general construction of the linear
pseudo-circuit.

Proposition 4. Let C be a Boolean circuit with n inputs and n outputs, and let
N < 2n. Then, for the purpose of proving PPAD-membership, we can construct a
linear pseudo-circuit computing the piecewise-linear function g represented by (C,N).



132 Chapter 3. PPAD-membership via Convex Optimization

Proof. Let C′ be the linear arithmetic circuit obtained from C by Lemma 14. We
construct a linear pseudo-circuit computing g(x), operating as follows.

1. Compute x′ =max(0,min(N, x)). Thus x′ ∈ [0,N] and g(x) = g(x′).

2. Compute δ1 = H(x′− (N − 1
4 )) and δ2 = H( 1

4 − x′) using Lemma 11.

3. Compute w1 = x′+ 1
4 , w′1 = x′+ 1

4 −δ1, and w′2 = x′+ 5
4 −δ1.

4. Compute b1 = bitExtn(w1,1), b′1 = bitExtn(w′1,1), and b′2 = bitExtn(w′2,1).

5. Compute g′1 = bitMult(bitVal(b′2)− x′,C′(b1))+bitMult(x′−bitVal(b′1),C′(b′2)).

6. Compute w4 = x′+ 3
4 , w′3 = x′− 1

4 +δ2, and w′4 = x′+ 3
4 +δ2.

7. Compute b4 = bitExtn(w4,1), b′3 = bitExtn(w′3,1), and b′4 = bitExtn(w′4,1).

8. Compute g′2 = bitMult(bitVal(b′4)− x′,C′(b′3))+bitMult(x′−bitVal(b′3),C′(b4)).

9. Output g′2+S n(x′,1)(g′1−g′2), where the last term is computed using Lemma 11.

The correctness of the circuit follows from the preceding case analysis. □

Piecewise-linear correspondences

We will now, in a similar way, develop a construction of a linear pseudocircuit
computing the piecewise-constant correspondence g represented by (C,N), as defined
in Definition 4.3.5, for a circuit C with n inputs and n outputs and an integer N
satisfying 1 ≤ N < 2n. Again the general idea is to perform bit extraction and evaluate
the integer-valued function f represented by (C,N) on two inputs. Since the function
we compute is piecewise-constant, we are now able to also scale the output by a
variable. Let again G = [0,2n] \ {1, . . . ,2n} be the set of points where bit extraction
succeeds.

We will be able to compute the correspondence z ·g(x/y), but for simplicity we
first describe the computation of g(x), also without referring to Boolean circuits. Thus,
suppose now x ∈ [0,N]. We consider the same cases as above.

1. Assume x ∈ [⌊x⌋,⌊x⌋+ 1
2 ] . Let w1 = x+ 1

4 , and note that w1 ∈ G and that
⌊w1⌋ = ⌊x⌋. Let g1(x) = f (⌊w1⌋). It follows that g1(x) = f (⌊x⌋).

2. Assume x ∈ [⌈x⌉− 1
2 ,⌈x⌉] and assume first also x ≥ 1

2 . Let w2 = x− 1
4 , and note

that w2 ∈ G. Let g2(x) = f (⌊w2⌋). We now have two subcases. First, assume
that x < ⌈x⌉. Then ⌊w2⌋ = ⌊x⌋ and thus g2(x) = f (⌊x⌋). Next assume that x = ⌈x⌉.
Then ⌊w2⌋ = ⌊x⌋−1 and thus g2(x) = f (⌊x⌋−1). To also handle the special case
of x = 0, we proceed as follows. First, let δ =H( 1

4 − x) and define w′2 = x− 1
4 +δ.

Let g′2(x) = f (⌊w′2⌋). In case x = 0 we have δ = 1 and thus w′2 = x+ 3
4 and w′2 ∈G.

We thus have ⌊w′2⌋ = ⌊x⌋ and thus g′2(x) = f (⌊x⌋).

Finally, note that in the general case, when x ≥ 1
2 , we have δ = 0, and thus

w′2 = w2 which means that g′2(x) = g2(x).



4.4. Concave Games, Nash Equilibria and Other Equilibrium Notions 133

We will now simply use the square wave function to select between the two cases,
letting g(x) = g′2(x)+S n(x,1)(g1(x)−g′2(x)).

This will also be what gives the correct result in case x ∈ {1, . . . ,N} where we have
g1(x) = f (x) and g′2(x) = f (x−1) and selecting using the square-wave function yields
gives any convex combination of these values. For the special case of x = 0 we also
obtain the correct result, since g1(0) = g′2(0) = f (0).

Since S n(x,1) is defined as the composition H(Tn(x,1)) of the Heaviside function
with the linear function Tn(x,1), we can compute the term S n(x,1)(g1(x)−g′2(x)) using
Lemma 11. We now present the general construction of the linear pseudo-circuit.

Proposition 5. Let C be a Boolean circuit with n inputs and n outputs, and let
N < 2n. Then, for the purpose of proving PPAD-membership, we can construct a
linear pseudo-circuit computing a function h(x,y,z) such that when 0 < y ≤ 1 we have
h(x,y,z) = z ·g(x/y), where g is the piecewise-constant function represented by (C,N).

Proof. Let C′ be the linear arithmetic circuit obtained from C by Lemma 14. We
construct a linear pseudo-circuit computing h(x,y,z), operating as follows.

1. Compute x′ = max(0,min(yN, x)). Thus when y > 0 we have x′
y ∈ [0,N] and

g( x
y ) = g( x′

y ).

2. Compute δ = H( 1
4 y− x′)y using Lemma 11.

3. Compute w1 = x′+ 1
4 y and b1 = bitExtn(w1,y).

4. Compute g1 = bitMult(z,C′(b1)).

5. Compute w′2 = x′− 1
4 y+δ and b′2 = bitExtn(w′2,y).

6. Compute g′2 = bitMult(z,C′(b′2)).

7. Output g′2+S n(x′,y)(g1−g′2), where the last term is computed using Lemma 11.

The correctness of the circuit follows from the preceding case analysis, using x
y in

place of x in the analysis. □

4.4 Concave Games, Nash Equilibria and Other
Equilibrium Notions

The first application of our linear-OPT-gate will be to the domain of strategic games,
for computing Nash equilibria, as well as other related equilibrium notions. To
demonstrate the use of our technique, we first “warm up” with two basic applications,
namely (a) computing Nash equilibria in bimatrix games (Section 4.4.1) and (b)
computing fixed point solutions of digraph threshold games (Section 4.4.2). These
two applications will be used as examples to demonstrate the use of our linear-OPT-
gate via linear programs, similar to linear programP (see Program (4.2) in Section 4.3)



134 Chapter 3. PPAD-membership via Convex Optimization

or via feasibility programs, similar to feasibility program Q (see Program (4.3) in
Section 4.3) respectively.

Then in Section 4.4.3 we define a very large class of games, which we refer to as
games with linear best response oracles (LBRO games). This class has a technical
definition, and essentially captures every game in which the best response of the
agent can be computed by a linear arithmetic circuit (or, to be more precise, a linear
pseudo-circuit). The PPAD-membership of LBRO games is then immediate from our
results in Section 4.3 via the use of our linear-OPT-gate. This provides us with a very
strong unified tool to show the PPAD-membership of a very large class of games, by
merely showing that these games are LBRO games.

More precisely, in Section 4.4.3 we consider generalized equilibria in concave
games. Our PPAD-membership proof will capture a large class of concave games
that subsumes bimatrix games, polymatrix games and more generally a class of
games that we call linear succinct games (recall Remark 7 for the interpretation of
the term linear), as well as bilinear games, (extended) digraph threshold games, and
essentially all concave games for which Nash equilibria in rational numbers exist. In
Section 4.4.3, we consider an alternative equilibrium notion, due to Kintali et al. [153],
called personalized equilibrium, and in Section 4.4.3 we consider ε-proper equilibria
in linear succinct games (including polymatrix games), a well-known equilibrium
notion due to Myerson [174].

With the linear-OPT-gate at hand, the proofs that we will develop in this section
will be conceptually very simple, basically mimicking the simplest proofs of exis-
tence for these settings. More precisely, all of our PPAD-membership results for this
section are obtained as special cases of our main theorem for LBRO games (see Theo-
rem 4.4.3). In fact, we also employ the same theorem to obtain PPAD-membership
results for congestion games in Section 4.5.

4.4.1 Warm-up: Nash Equilibria in Bimatrix Games via Linear
Programs

We define bimatrix games below.

Definition 4.4.1 (Bimatrix Game). A bimatrix game is a strategic (normal form)
game played between two players. Each player i ∈ {1,2} has a finite set of pure
strategies S i = {1, . . . ,mi}, and a payoff function ui = S 1×S 2→ R, mapping pairs of
pure strategies to payoffs. The players can also randomize over their pure strategies.
A mixed strategy xi of player i is a probability distribution over pure strategies in
S i. The domain Σi of mixed strategies for player i is the (mi −1)-dimensional unit
simplex, i.e., Σi := {y ∈ Rmi

≥0 :
∑mi

j=1 y j = 1}. Given a mixed strategy xi for player i, the
jth coordinate xi, j denotes the probability that player i is playing pure strategy j. The
expected payoff ũi(x1,x2) of player i given a pair of mixed strategies (x1,x2) is defined
as:

ũi(x1,x2) =
m1∑

j1=1

m2∑
j2=1

x1, j1 · x2, j2 ·ui( j1, j2) (4.12)



4.4. Concave Games, Nash Equilibria and Other Equilibrium Notions 135

The name “bimatrix games” comes from the fact that for 2 players, the payoffs can be
expressed via two m1×m2 matrices, one for each player.

Definition 4.4.2 (Nash equilibrium). A pair of mixed strategies (x1,x2) ∈ Σ1×Σ2 is a
(mixed) Nash equilibrium of a bimatrix game if for any player i ∈ {1,2} and any mixed
strategy x′i ∈ Σi of that player, it holds that ũi(xi,x3−i) ≥ ũi(x′i ,x3−i), i.e., no player can
improve their expected payoff by unilaterally deviating to any other mixed strategy.

Finding Nash equilibria. We are interested in finding a Nash equilibrium of a
bimatrix game, when the payoff functions ui for each player i ∈ {1,2} are given
explicitly as rational numbers. This is a total search problem, since a solution is always
guaranteed to exist by Nash’s Theorem [177], the proof of which employs the Kakutani
fixed point theorem [149]. Papadimitriou [182] showed that the problem lies in PPAD,
which also implies the existence of rational solutions, i.e., Nash equilibria in which the
mixed strategies of the players are rational numbers. Note that Papadimitriou’s proof
essentially appeals to an alternative proof of Nash equilibrium existence due to Cottle
and Dantzig [64] that formulates the problem as an LCP (see also [161]); we discussed
the general challenges of using this approach in Section 4.1.2. Indeed, even in the
simple case of bimatrix games, an argument is required against ray termination.6 In
contrast, our linear-OPT-gate allows us to organically obtain PPAD-membership from
the standard, textbook existence proof of Nash [177], without any further arguments.

In a celebrated paper, Chen et al. [55] showed that the problem is in fact PPAD-
complete (and the hardness holds even when one aims to find approximate equilibria).
Of course, Nash’s theorem applies to strategic games beyond bimatrix games, i.e.,
games with more than 2 players. In that case however, it was known already from
Nash’s original work that with 3 or more players, there are games for which all Nash
equilibria are irrational. For those games, it has been shown that the problem of
computing exact Nash equilibria is FIXP-complete [86].

We will demonstrate how our linear-OPT-gate, in particular through its capability of
solving linear programs of the form P (see Program (4.2) in Section 4.3), can be used
to rather straightforwardly show that computing Nash equilibria in bimatrix games
is in PPAD. For ease of notation, let −i = 3− i. We start by observing that given a
mixed strategy x−i for the other player, player i can find an optimal (i.e., an expected
payoff-maximizing) mixed strategy yi via the solution to the following linear program:

Linear Program P

maximize ũi(yi,x−i)

subject to
mi∑
j=1

yi j = 1

yi j ≥ 0 j = 1, . . . ,mi

6Such an argument can be found in [63] and also implicitly in [64] and [160].



136 Chapter 3. PPAD-membership via Convex Optimization

“Spelling out” the objective function by substituting Equation (4.12) into it, it becomes:

ũi(yi,x−i) =
mi∑

ji=1

m−i∑
j−i=1

yi, ji · x−i, j−i ·ui( ji, j−i) (4.13)

Notice that Equation (4.13) is linear in yi, and hence P is indeed a linear program.

Now, to prove membership of finding Nash equilibria in bimatrix games in PPAD, all
we need to do is to construct a function whose fixed points will be the Nash equilibria
of the bimatrix game, and argue that this function can be computed by a linear
arithmetic circuit containing linear-OPT-gates. This is essentially the straightforward
translation of the proof via the Kakutani fixed point theorem to a PPAD-membership
proof.

Theorem 4.4.1. Computing a Nash equilibrium of a bimatrix game is in PPAD.

Proof. We construct a function F : Σ1 × Σ2 → Σ1 × Σ2, in which Fi(x1,x2) is the
optimal solution of linear program P for player i. Since each linear program computes
a best-response mixed strategy for the corresponding player, the resulting pair of
mixed strategies at a fixed point of F is a Nash equilibrium. It remains to show that the
linear program P can be computed by our linear-OPT-gate. Indeed, all the constraints
are linear functions of the variables yi, and the gate inputs x−i do not appear in the
constraints. The feasible domain is non-empty and bounded, and the gradient of the
objective function (with respect to the variables yi) is linear in the variables yi and
gate inputs x−i and hence can be computed by a linear pseudo-circuit. □

Before we conclude the section, we remark that for (general) games of 3 or more
players, the objective function would be a polynomial of degree at least 3 in the
variables and the gate inputs, and its gradient could not be given by a linear pseudo-
circuit. This is of course not a coincidence, as, as we said earlier, games with 3 or
more players may only have irrational Nash equilibria.

4.4.2 Warm-up: Equilibria of Digraph Threshold Games via Feasibility
Programs

Our next “warm-up” application is that of finding equilibria in digraph threshold
games. A digraph threshold game is played on a directed graph between n players
that choose a real number in [0,1], and their payoffs depend on the chosen numbers of
their incoming neighbors and a threshold. Digraph Threshold games were defined by
Papadimitriou and Peng [181]7 as a tool for proving PPAD-hardness of public goods

7Papadimitriou and Peng [181] used the term “threshold games” to refer to these games. However,
this term is ambiguous, as it has also been used to refer to a specific class of congestion games, see [2].
In fact, both variants have been used in relation to the general class of public goods games [154, 181],
which adds to the potential for confusion. For this reason, we have added the term “digraph” in front of
the name for distinction.



4.4. Concave Games, Nash Equilibria and Other Equilibrium Notions 137

games on directed graphs, and were later on used to establish the PPAD-hardness of
other problems, e.g., see [50, 58]8.

Definition 4.4.3 (Digraph Threshold Game). A digraph threshold game G(V,E, t) is
defined on a directed graph G = (V,E), and t ∈ (0,1) is a threshold. The nodes of
G correspond to players, and each player i ∈ V chooses a strategy xi ∈ [0,1]. Let
x = (x1, . . . , xn) be the vector of (pure) strategies that we will refer to as a (pure)
strategy profile. Let N(i) denote the (in-)neighborhood of player i ∈ V , i.e., the set
consisting of all the players that have arcs to player i, i.e., N(i) = { j : ( j, i) ∈ E}. A
strategy profile x is an equilibrium if it satisfies

xi =


0

∑
j∈N(i) x j > t

1
∑

j∈N(i) x j < t
[0,1]

∑
j∈N(i) x j = t

(4.14)

where in the above expression we have abused notation, using xi = [0,1] to denote
xi ∈ [0,1].

While we did use the terminology of games, digraph threshold games can alternatively
be viewed as finding fixed point solutions to a set of constraints. This is why we chose
this application to demonstrate the use of our feasibility programsQ (see Program (4.3)
in Section 4.3) which we can obtain from our linear-OPT-gate. Indeed, Equation (4.14)
can straightforwardly be written as a feasibility program Q as follows:9

Feasibility Program Q∑
j∈N(i)

x j > t⇒ xi = 0∑
j∈N(i)

x j < t⇒ xi = 1

0 ≤ xi ≤ 1

Note that xi is the only variable of this feasibility program, while the x j, j ∈ N(i), are
gate inputs.

In turn, membership in PPAD follows rather easily by constructing an appropriate
function whose fixed point coordinates are the outcomes of these feasibility programs
(one for each player), and arguing that it can be computed by a linear arithmetic circuit
containing linear-OPT-gates. We have the following theorem.

8To be precise, what is used for PPAD-hardness is their approximate version, which was shown to be
PPAD-complete in [181]. Here we show the membership in PPAD for the exact version, strengthening
the membership result.

9The perceptive reader might observe that digraph threshold games look a lot like the Heaviside
function introduced in Example 3. Indeed, one could obtain the PPAD-membership of digraph threshold
games as fixed points of functions containing only Heaviside linear pseudo-circuits rather than linear-
OPT-gates. We elected to use the feasibility program formulation instead, to introduce the reader to
its use in light of further applications to come later. Also note that the feasibility program Q contains
equalities; these can easily be modified to inequalities by splitting the constraints into two.



138 Chapter 3. PPAD-membership via Convex Optimization

Theorem 4.4.2. Computing an equilibrium of a digraph threshold game is in PPAD.

Proof. We construct a function F : [0,1]n→ [0,1]n in which for a vector x= (x1, . . . , xn),
Fi(x) is the outcome of the feasibility program Q for player i ∈ N. By definition,
x = F(x) satisfies the constraints of Equation (4.14) for every player, and is thus an
equilibrium of the digraph threshold game. Clearly, the gate inputs only appear on the
left-hand side of the conditional constraints, and Q is trivially always feasible. □

4.4.3 PPAD-membership via Linear Best Response Oracles

In the applications that we presented in Sections 4.4.1 and 4.4.2, what we essentially
did was construct a function F : ×i∈N Di→×i∈N Di, where Di is the strategy space of
player i, such that coordinate Fi(x) is a best response of player i to x−i. It is then clear
that any fixed point of F must be an equilibrium. This is in fact the application of the
Kakutani fixed point theorem to show equilibrium existence. PPAD-membership then
followed from the fact that the best responses could be computed via linear-OPT-gates.

In this section we will formulate the aforementioned principle as a general theorem,
which will have Theorems 4.4.1 and 4.4.2, as well as several other theorems that we
will prove later in this section and in Section 4.5, as corollaries. Below we define the
very general notion of a game with linear best response oracles, when the strategy
spaces Di are convex polytopes.

Definition 4.4.4 (Game with Linear Best Response Oracles (LBRO Game)). A game
with linear best response oracles (LBRO) is a game in which a best response of each
player i ∈ N is outputted by an oracle Ci : D1 . . .× . . .Di−1×Di+1× . . .×Dn→Di, which
is given by a linear pseudo-circuit.

An equilibrium of a LBRO game is a vector of strategies (x1, . . . ,xn), one for each
player, such that each player is choosing a best response. As we will see in the
applications later in the section, the notion of “best response” as well as the notion
of “equilibrium” can vary, depending on the application at hand. The strength of our
linear-OPT-gate makes the following theorem almost obvious.

Theorem 4.4.3. Computing an equilibrium of a LBRO Game is in PPAD.

Proof. We construct a function F : ×i∈N Di → ×i∈N Di in which for a vector x =
(x1, . . . , xn), Fi(x) is the outcome of the oracle Ci(x−i) for player i ∈ N. By defini-
tion, when x = F(x), x is an equilibrium. □

In Theorem 4.4.1, Ci was given by a linear-OPT-gate (which is, by definition, a linear
pseudo-circuit) computing solutions of linear program P, whereas in Theorem 4.4.2,
Ci was given by a linear pseudo-circuit computing solutions of feasibility program Q.
In the next subsections, we present several other applications of well-known games
that we prove to be LBRO games, thus establishing their PPAD-membership.



4.4. Concave Games, Nash Equilibria and Other Equilibrium Notions 139

Remark 13. We remark that even if one is not necessarily interested in PPAD-
membership, our technique also provides an easy approach for establishing the ratio-
nality of equilibria, as this is also implied by Theorem 4.4.3.

Remark 14. In Definition 4.4.4, we defined the input domain of the oracle Ci to
not include Di, i.e., the domain of strategies of player i, whose best-response the
oracle is calculating. This is natural, since a best-response oracle can intuitively be
best understood as a device which computes the best response of a player against the
chosen strategies of her opponents only. Still, in our applications in Section 4.5, it
will be useful to extend the definition of the oracle to be a function Ci : × jD j→ Di, in
order to be able to apply Theorem 4.4.3 above.

Concave Games and Generalized Equilibria

In this section we will generalize the PPAD-membership of Nash equilibria in the
previous two sections to a class of more general games, and to a more general equi-
librium notion. These will be special cases of concave games [192] and generalized
equilibria [68] that admit equilibria in rational numbers.

Concave Games. Concave games are generalizations of strategic games in which
there is a set N of n players, each of which has a strategy space Σi ∈ R

mi which is
compact and convex. Let Σ = Σ1× . . .×Σn be the space of strategy vectors; we will
refer to an element x = (x1, . . . ,xn) of Σ as a strategy profile. Each player i also has a
payoff function ui : Σ→ R, which is continuous in x and concave in xi, assuming that
the rest of the strategy profile x−i is fixed.

Generalized Equilibrium. An equilibrium of a concave game is a strategy profile x
in which every player chooses a payoff-maximizing element in her strategy space, i.e.,
ui(x) =maxyi∈Σi ui(yi,x−i) for every player i ∈ N. Debreu [68] defined the notion of
a generalized equilibrium, in which a strategy profile x also restricts the choices in
the strategy space of the players. In particular, letting Σ−i = Σ1× . . .Σi−1×Σi+1 . . .Σn,
there is a correspondence γi : Σ−i⇒ Σi, which specifies the set γi(x−i) ⊆ Σi that player
i is “allowed” to use. A generalized equilibrium of the game is a strategy profile x
in which every player chooses a payoff-maximizing element in γi(x−i), i.e., ui(x) =
maxyi∈γi(x−i) ui(yi,x−i). The existence of a generalized equilibrium was established by
Debreu [68] in concave games, when γi is upper and lower hemicontinuous, convex-
valued and non-empty valued. Similarly to Section 4.4.1, given a preference profile
x−i of the other players, the payoff-maximizing (allowable) strategy for player i can
be found as the optimal solution to the following convex program:

Convex Program Cgen

maximize ui(yi,x−i)

subject to yi ∈ γi(x−i)

yi ≥ 0



140 Chapter 3. PPAD-membership via Convex Optimization

Remark 15 (Concave Games and Generalized Equilibria). Concave games were
studied by Debreu [68] (in fact, “quasi-concave games”, where the payoff functions
can be quasi-concave) in the context of his generalized equilibrium result (coined
a “Social Equilibrium” there, see also [65]). Interestingly, Rosen [192] also studied
concave games independently, without referencing Debreu’s work. Seemingly the
only difference between Rosen’s and Debreu’s setting is that the former does not
require the strategy profile space Σ to necessarily be the product space of the players’
strategy spaces Σi, for i ∈ N.

For the standard notion of equilibrium (rather than generalized equilibrium) De-
breu’s theorem was concurrently and independently proven by Fan [91] and Glicksberg
[124], and for this reason it is often referred to as the Debreu-Fan-Glicksberg theorem
for continuous games. In fact, we will be referring to this theorem again throughout
the paper, as it has been used in previous existence proofs in the applications that we
consider.

It is not hard to see that concave games generalize n-player strategic games: the set of
mixed strategies (i.e., randomizations over the finite set of pure strategies) is compact
and convex and the payoff function is continuous in x and linear in xi. Thus a mixed
Nash equilibrium in a strategic game is a special case of an equilibrium (and hence of
a generalized equilibrium) in a concave game.

From the above discussion, it should be obvious that (generalized) equilibria of
concave games are not guaranteed to be rational (indeed, the 3-player example of
irrationality of Nash [177] still applies, for example). We will consider subclasses
of these games (based on the structure of the strategy spaces and the form of the
payoff functions) and these equilibria (based on the structure of the sets induced by
the functions γi) for which rational equilibria always exist; in fact, our proof of PPAD
membership will also provide the certificate of rationality. We remark that for general
concave games (under the necessary assumptions for the OPT gate for FIXP to work),
Filos-Ratsikas et al. [101] proved membership in FIXP; their theorems only apply to
equilibria rather than generalized equilibria, but the extension in their setting is almost
immediate.

In our setting, we need to consider special cases of convex program Cgen which are
amenable to the use of the linear-OPT-gate. Specifically, the objective function will be
such that its supergradient10 with respect to yi can be given by a linear pseudo-circuit,
and the constraints will be linear inequalities with the gate inputs appearing only on
the right-hand side of the constraints. We will also impose a bound on the domain of
the variables yi. With this we have the following convex program:

Convex Program C

10We consider the supergradient here rather than the subgradient, since ui is concave rather than
convex, see also Remark 9.



4.4. Concave Games, Nash Equilibria and Other Equilibrium Notions 141

maximize ui(yi,x−i)

subject to Ai ·yi ≤ bi(x−i)

yi ∈ [−Ri,Ri]mi

In C, we assume that the inputs are provided as rational numbers. For the payoff
function ui, we do not require access to the function itself but rather to its supergradient
with respect to yi, which is provided in the input as a linear pseudo-circuit. Here, the
strategy spaces of the players are given by linear inequalities which can depend on the
strategies of the other players, and generally lie within a bounded domain [−Ri,Ri]mi ,
for some Ri > 0. The following theorem is a corollary of Theorem 4.4.3.

Theorem 4.4.4. Computing a generalized equilibrium of a concave game, in which
the strategy spaces are given as in the constraints of convex program C and the
supergradients of the payoff functions of the players are given by linear pseudo-
circuits is in PPAD.

Proof. By the discussion above, it follows directly that convex program C can be
computed by a linear-OPT-gate, which can be used as the oracle Ci for each player
i ∈ N in the corresponding LBRO game. □

The class of concave games is very general, and hence captures several games of
interest. We provide some examples of the type of equilibrium results that are captured
by Theorem 4.4.4 below.

Bimatrix and Polymatrix Games. The theorem establishes that generalized Nash
equilibria in bimatrix games exist, are rational, and are in PPAD, thus generalizing
Theorem 4.4.1. It also establishes the same properties for a natural generalization of
bimatrix games, called polymatrix games [141, 145]. These are n-player games in
which the players’ payoffs are additive over several 2-player games.

Definition 4.4.5 (Polymatrix game). A polymatrix game consists of a set N of n
players, each with a set S i of pure strategies S i = {1, . . . ,mi} and a domain of mixed
strategies Σi := {y ∈ Rmi

≥0 :
∑mi

j=1 y j = 1}. Given a mixed strategy xi for player i, the jth
coordinate xi, j denotes the probability that player i is playing the pure strategy j. For
every pair of players i and i′ with i , i′, there is an associated (mi×mi′)-dimensional
payoff matrix Ai,i′ ∈ R

mi×mi′ , which determines the payoffs of player i in the bimatrix
game against player i′. Given a mixed strategy profile x = (x1, . . .xn), the expected
payoff of player i is defined as ũi(x) =

∑
i′∈N,i′,i(xi)T ·Ai,i′ ·xi′ .

Since the gradients of the payoff functions in polymatrix games are linear functions,
Theorem 4.4.4 has the following corollary.

Corollary 2. Computing a generalized mixed Nash equilibrium of a polymatrix game
is in PPAD.



142 Chapter 3. PPAD-membership via Convex Optimization

Linear Succinct Games. We observe that the reason which allowed us to use the
linear OPT-gate to prove PPAD-membership for the applications above is that we were
always able to construct a linear pseudo-circuit computing the following quantity:

ũi( j,x−i) = Es−i∼x−iui( j,s−i), (4.15)

where s−i denotes a vector of pure strategies (i.e., a pure strategy profile) of all players
besides i. The quantity above is the expected payoff of player i when using pure
strategy j ∈ S i against the mixed strategy x−i of the other players. As long as we have
a linear pseudo-circuit for computing ũi( j,x−i), Theorem 4.4.4 goes through. We will
use the term linear succinct games to refer to those games.

Definition 4.4.6 (Linear Succinct Game). A game is a linear succinct game if for
any player i and for any pure strategy j ∈ S i, there exists a linear pseudo-circuit
computing the expected utility ũi( j,x−i), for any profile of mixed strategies x−i of the
other players.

We have the following corollary of Theorem 4.4.4.

Corollary 3. Computing a generalized mixed Nash equilibrium of a linear succinct
game is in PPAD.

We draw parallels between our application and that of Daskalakis et al. [66] and
Papadimitriou and Roughgarden [183]. Those works define classes of succinct games
for which there is an oracle for computing the expected utility of the player. In
[183], this oracle is referred to as the polynomial expectation property and is used
to show that correlated equilibria [9] of games with this property can be computed
in polynomial time. In [66], it is shown that if the oracle is given by a bounded
division free straight-line program of polynomial length, then these games are in
PPAD. Crucially, this latter result concerns approximate equilibria. One could view
our result as a complement to those two results, one which concerns exact equilibria
in rational numbers.

Extended Digraph Threshold Games. Theorem 4.4.4 also establishes the PPAD-
membership of generalized equilibria in digraph threshold games (see Section 4.4.2).
To see this, we may redefine a player’s payoff in a digraph threshold game (Equa-
tion (4.14)) as:

ui(xi,x−i) = xi · (t−
∑
j∈Ni

x j), (4.16)

where x−i = (x1, . . . , xi−1, xi+1, . . . , xn). Indeed, when
∑

j∈Ni x j > t, the payoff is maxi-
mized when xi = 1, when

∑
j∈Ni x j < t, the payoff is maximized when xi = 0, and when∑

j∈Ni x j = t, any choice of xi ∈ [0,1] maximizes the payoff. Therefore the equilibria
of the game under this utility function are the same as those under the original defi-
nition. Additionally, the gradient of the utility function in Equation (4.16) is linear
and xi ∈ [0,1] for every player i ∈ N. The digraph threshold game is then a concave



4.4. Concave Games, Nash Equilibria and Other Equilibrium Notions 143

game satisfying the conditions of the statement of Theorem 4.4.4. One may also
add constraints on the allowable values of xi chosen by player i, given the chosen
strategies x−i of the other players, as those of the constraints in convex program C.
This gives us the following corollary, which generalizes Theorem 4.4.2.

Corollary 4. Computing a generalized equilibrium of a digraph threshold game is in
PPAD.

Measuring Equation (4.16) against the capabilities of our linear-OPT-gate, one may
observe that the term

∑
j∈Ni x j does not have to be a sum; it can in fact be any function

such that the supergradient of ui(xi,x−i) for xi can be given by a linear pseudo-circuit.
In turn, this naturally allows us to define a more general class of digraph threshold
games, which we call extended digraph threshold games.

Definition 4.4.7 (Extended Digraph Threshold Game). An extended digraph threshold
game G(V,E, t) is defined on a directed graph G = (V,E), and t ∈ (0,1) is a threshold.
The nodes of G correspond to players, and each player i ∈ V chooses a strategy
xi ∈ [0,1]. Let x = (x1, . . . , xn) be the vector of (pure) strategies that we will refer to as
a (pure) strategy profile. A strategy profile x is an equilibrium if for some function g
it satisfies

xi =


0 g(x−i) > t
1 g(x−i) < t
[0,1] g(x−i) = t

(4.17)

where in the above expression we have abused notation using xi = [0,1] to denote
xi ∈ [0,1], and where x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

To keep the definition close to that of the original digraph threshold games, we may
assume that gi(·) is a function only of the strategies of players in Ni, although this
is not necessary. In the alternative payoff representation, the corresponding payoff
function is

ui(xi,x−i) = xi · (t−g(x−i)). (4.18)

If g(x−i) can be given by a linear pseudo-circuit, then Theorem 4.4.4 applies.

Theorem 4.4.5. Computing a generalized equilibrium of an extended digraph thresh-
old game is in PPAD, as long as the function g(x−i) is given by a linear pseudo-circuit.

Some natural extended digraph threshold games for which Theorem 4.4.5 applies can
be defined as follows:

- digraph threshold games (Definition 4.4.3), for which g(x−i) =
∑

j∈Ni x j.

- max digraph threshold games, for which g(x−i) =max j∈Ni x j. In these games,
player i chooses xi = 0 if the maximum of the strategies of her incoming
neighbors is above the threshold, xi = 1 if it is below, and any value in [0,1]
otherwise.



144 Chapter 3. PPAD-membership via Convex Optimization

- min digraph threshold games, for which g(x−i) = min j∈Ni x j. In these games,
player i chooses xi = 0 if the minimum of the strategies of her incoming neigh-
bors is above the threshold, xi = 1 if it is below, and any value in [0,1] otherwise.

Bilinear Games. Theorem 4.4.4 also establishes the rationality and PPAD member-
ship of Nash equilibria in bilinear games, introduced by Garg et al. [115]. Intuitively,
these generalize bimatrix games in the sense that the strategy space does not have to
be the unit simplex Σi = {y ∈ R

mi
≥0 :

∑mi
j=1 y j = 1}, as in Definition 4.4.1, but it can be

any compact polytope.

Definition 4.4.8 (Bilinear Games [115]). A bilinear game is a two-player game
represented by two m1 ×m2 payoff matrices A1 and A2, one for each player, and
two compact polytopal strategy sets X1 and X2. Let A1 ∈ R

k1×m1 and A2 ∈ R
m2×k2

and let e1 ∈ R
k1 and e2 ∈ R

k2 be two vectors. The strategy spaces of players 1 and 2
respectively are defined as

X1 = {x ∈ Rm1 : A1 ·x = e1,x ≥ 0}, and X2 = {x ∈ Rm2 : A2 ·x = e2,x ≥ 0}.

Given a pair of strategies (x1,x2) ∈ X1×X2, the payoff of player 1 is xT
1 ·A1 ·x2 and

the payoff of player 2 is xT
1 ·A2 ·x2.

A Nash equilibrium of the game is defined analogously to Definition 4.4.2. From
Definition 4.4.8, it follows that bilinear games are concave games in which the
gradients of the payoffs of the players are linear functions. Thus Theorem 4.4.4 has
the following corollary.

Corollary 5. Computing a generalized Nash equilibrium of a bilinear game is in
PPAD.

We remark that the PPAD-membership of finding equilibria in bilinear games had not
explicitly been proven before our work, but it can be recovered rather implicitly via
observing that these games are very much related to the sequence form of Koller et al.
[157], for which the authors devise an LCP.

The Debreu-Fan-Glicksberg theorem [1952] and Rosen’s theorem [1965]. As
we mentioned earlier, the Debreu-Fan-Glicksberg theorem for continuous games (or
equivalently, Rosen’s theorem) is often used in the literature to prove existence of
equilibria for various games. It is in a sense stronger than Brouwer’s fixed point
theorem [39], as it can be used to prove the existence of equilibria in more general
games. Our PPAD-membership of this section also provides a tool for proving
PPAD-membership of these other problems that apply to the Debreu-Fan-Glicksberg
theorem, as long as the games that they consider satisfy the conditions required for
Theorem 4.4.4. Generally speaking, if the problem in question can be reduced to
that of finding equilibria of a concave game in which the supergradients of the payoff
functions can be computed by linear arithmetic circuits, then Theorem 4.4.4 implies
its membership in PPAD.



4.4. Concave Games, Nash Equilibria and Other Equilibrium Notions 145

The existence proofs of several of our applications in this section and in Section 4.5
are in fact established via the Debreu-Fan-Glicksberg theorem. One could transform
those proofs into computational reductions (and then Theorem 4.4.4 would apply
immediately); instead, we obtain the PPAD-membership of those problems directly
from the more general Theorem 4.4.3.

Personalized Equilibria

Our next application of Theorem 4.4.3 is to finding personalized equilibria in graphical
games, a notion introduced by Kintali et al. [153]. Intuitively speaking, these equilibria
allow players to “match” their strategies with those of their opponents, without obeying
a product distribution.

Definition 4.4.9 (Hypergraph Game [153]). Consider a game G played on a hyper-
graph G = (V,E) among n different players of a set N. Each player i ∈ N has a finite
strategy set S i, and |S i∩S J | = ∅ for all i, j ∈ N such that i , j. Let V =

⋃
i∈N S i. For

each player i ∈ N, we have a set Ei ⊆ E of hyperedges, which satisfy the following
two conditions:

- if e ∈ S i then |e∩S j| ≤ 1 for any j , i,

- if e,e′ ∈ S i, then e 1 e′.

Lastly, each player i ∈ N has a utility function ui : Ei→ R. A mixed strategy xi for
player i ∈ N is a probability distribution over S i, and a weight assignment wi is a
probability distribution over Ei.

One way to interpret Definition 4.4.9 above in relation to the “standard” games that
we have seen so far, is that the hyperedges e correspond to pure strategy profiles,
interpreted as sets of pure strategies, at most one for each player, and each player
can choose how much weight wi(e) to assign to each such profile. A personalized
equilibrium of G is defined as follows:

Definition 4.4.10 (Personalized Equilibrium [153]). A personalized equilibrium of G
consists of a vector of mixed strategies {x1, . . . ,xn} and a vector of weight assignments
{w1, . . . ,wn}, such that for every player i ∈ N, (xi,wi) is a solution to the following
linear program (with variables xi and wi):

maximize
∑
e∈Ei

wi(e)ui(e)

subject to
∑
e:s∈e

wi(e) ≤ x j(s) ∀s ∈ S j,∀ j , i∑
e:s∈e

wi(e) = xi(s) ∀s ∈ S i

wi(e) ≥ 0 ∀e ∈ Ei

(4.19)



146 Chapter 3. PPAD-membership via Convex Optimization

Features of our proof and Kintali et al.’s PPAD-membership result. To establish
existence of a personalized equilibrium in every hypergraph game G as defined above,
Kintali et al. [153] essentially reduce the game to a concave game, and then invoke the
Debreu-Fan-Glicksberg theorem (1952). This already hints at the fact that we could
obtain PPAD-membership of the problem as a corollary of Theorem 4.4.4. We will in-
stead obtain it as corollary of the more general Theorem 4.4.3 rather straightforwardly;
we do that in Theorem 4.4.6 below. Additionally, to obtain PPAD-membership (and
as a result, rationality of equilibria), Kintali et al. [153] first define an approximate
version of the problem (the ε-personalized equilibrium), and reduce that problem to
End-Of-Line (see Definition 4.2.1), via a relatively involved construction. To obtain
PPAD-membership for the exact problem (i.e., when ε = 0) Kintali et al. [153] con-
struct an elaborate argument that appeals to linear programming compactness, by first
showing that for sufficiently small ε, ε-personalized equilibria “almost satisfy” the
constraints of the linear programs, and then carefully rounding the solution to obtain
an exact equilibrium. Our technique allows us to reduce this whole argument to a few
lines.

Theorem 4.4.6. Computing a personalized equilibrium of a well-behaved hypergraph
game (Definition 4.4.9) is in PPAD.

Proof. We observe that the linear program (4.19) computes the best response of each
player i ∈ N in the game, when the player’s strategy is given by the variables xi(s) and
the other players’ strategies are given by the parameters x j(s). The LBRO game oracle
Ci for player i ∈ N will be given by a linear-OPT-gate which inputs the vector x−i of
strategies of the other players and outputs the strategy xi of player i. By Theorem 4.4.3,
the theorem follows. □

ε-proper Equilibria in Linear Succinct Games

In this section we will consider an alternative equilibrium notion, that of ε-proper equi-
librium [174], which refines another well-known notion, that of ε-perfect equilibrium
[199]. Both of these notions allow the players to make small mistakes (“trembles”)
when choosing their optimal mixed strategies, but ensure that these mistakes happen
with small probability (related to the parameter ε). Recall the definition of linear
succinct games (Definition 4.4.6); we will show that finding ε-proper equilibria of
those games is in PPAD.

First, to demonstrate the main ideas, we will consider bimatrix games, which were
studied in the past in the context of TFNP and ε-proper equilibria by [203]. Recall that
bimatrix games can be expressed by two m1×m2 matrices, which we will henceforth
denote by A1 and A2. We provide the definition of an ε-proper equilibrium below.

Definition 4.4.11 (ε-proper equilibrium in a bimatrix game [174]). Let ε > 0. A pair
of mixed strategies (x1,x2) is an ε-proper equilibrium of a bimatrix game if x1 and x2
are fully mixed (i.e., xi, j > 0 for any pure strategy j ∈ S i, for i ∈ {1,2}), and

(A1 ·x2) j < (A1 ·x2) j′ ⇒ x1, j ≤ ε · x1, j′ for all j, j′ ∈ S 1,



4.4. Concave Games, Nash Equilibria and Other Equilibrium Notions 147

(xT
1 ·A2) j < (xT

1 ·A2) j′ ⇒ x2, j ≤ ε · x2, j′ for all j, j′ ∈ S 2.

We remark that the ε-perfect equilibrium mentioned earlier is defined analogously,
with the only difference being that ε is not multiplied by the mixed strategy xi, j′ on
the right-hand side of the constraints.

We will obtain that computing ε-proper equilibria of bimatrix games is in PPAD,
essentially as a corollary of Theorem 4.4.3. Before we present the theorem and the
proof, we discuss the idea and its advantages over the previous PPAD-membership
proof due to Sørensen [203].

Features of our proof and the previous PPAD-membership result. Sørensen
[203] first provided a PPAD-membership result for computing ε-proper equilibria.
His proof proceeds by showing that an ε-proper equilibrium can be recovered as
a solution to an LCP, and thus can be found by Lemke’s algorithm [160]. As we
highlighted in Section 4.1.2, this approach already introduces complications, mainly
arguing against ray termination, which is also explicitly done in [203]. Besides that,
to make sure that the constructed LCP has polynomial size, Sørensen employs an
extended formulation of the generalized permutahedron due to Goemans [125].

Our proof is conceptually much simpler: it suffices to embed the conditions of
Definition 4.4.11 in a set of feasibility programs Q (see Program (4.3) in Section 4.3),
one for each player i ∈ {1,2}, see Figure 4.4. Each of those feasibility programs will
compute the best response of the corresponding player, where a “best response” here
is a mixed strategy xi that satisfies the conditions of Definition 4.4.11, i.e., when a
pure strategy yields smaller expected payoff, then it is played with probability which
is smaller by an ε multiplicative factor. Using these feasibility programs as the oracles
C1 and C2 of an LBRO game, we obtain the proof of Theorem 4.4.7 as a corollary of
Theorem 4.4.3. We state the theorem next.

Theorem 4.4.7. Computing an ε-proper equilibrium of a bimatrix game is in PPAD.

Proof. Consider the feasibility programs Q1 and Q2 of Figure 4.4, for players 1 and
2 respectively. By Definition 4.4.11, a solution to Qi, for i ∈ {1,2} is a best response
of player i in the bimatrix game. Note that the antecedents (namely, the constraints
on the left-hand side of the implications) only contain gate inputs. Hence, these can
be computed by linear-OPT-gates, so they can be used as oracles C1 and C2 in the
corresponding LBRO game (Definition 4.4.4) as long as they are solvable. Then, the
theorem follows from Theorem 4.4.3. Solvability of Qi for i ∈ {1,2} is easy to see,
by observing that it is of the form Qapp, presented in Section 4.3.2. By Lemma 12,
it suffices to argue that the feasibility graph is acyclic. The feasibility graph GQi

consists of vertices corresponding to the different pure strategies of player i, and an
edge ( j, j′) is only present if the expected utility of player i from j is strictly lower
than the expected utility for j′. It is straightforward to verify that GQi is acyclic. □



148 Chapter 3. PPAD-membership via Convex Optimization

Feasibility Program Q1

(A1 ·x2) j < (A1 ·x2) j′ ⇒ x1, j ≤ ε · x1, j′

for all j, j′ ∈ S 1

x1, j ≥
εm1

m1
, for all j ∈ S 1,

m1∑
j=1

x1, j = 1

Feasibility Program Q2

(xT
1 ·A2) j < (xT

1 ·A2) j′ ⇒ x2, j ≤ ε · x2, j′

for all j, j′ ∈ S 2

x2, j ≥
εm2

m2
, for all j ∈ S 2,

m2∑
j=1

x2, j = 1

Figure 4.4: The feasibility programs Q1 and Q2 used in the proof of Theorem 4.4.7.

Theorem 4.4.7 establishes the PPAD-membership of computing ε-proper equilibria in
bimatrix games. In the following we will show that the proof can straightforwardly be
extended to larger classes of games. We first offer the following remark.

Remark 16 (Proper and Trembling hand perfect equilibria). Myerson [174] defined
a proper equilibrium to be a limit point of ε-proper equilibria for ε→+ 0. Similarly,
limits points of ε-perfect equilibria are trembling hand perfect equilibria [199]. With
this definition, proper equilibria are refinements of trembling hand perfect equilibria,
which, in turn, are refinements of Nash equilibria. Intuitively, a refinement is a special
class of equilibria characterized by a set of principles that make them more “plausible”.
Note that ε-proper equilibria are not refinements of (exact) Nash equilibria, and this is
why we refer to them as “alternative equilibrium notions”. We believe they are still
natural, as they can be interpreted as a model of limited rationality11, with the players
being “imperfectly rational” in their decisions.

In this context, [203] showed a stronger result, namely that finding symbolic ε-
proper equilibria is in PPAD. Interestingly, the problem of finding a proper equilibrium
is unlikely to be in TFNP [137], and hence Sørensen’s result does not provide a PPAD-
membership result for all proper equilibria. We refer the reader to [203] for the
appropriate definitions and the details.

Linear succinct games. We now explain how Theorem 4.4.7 extends rather straight-
forwardly to linear succinct games (Definition 4.4.6). The definition of ε-proper
equilibria in such games generalizes that of Definition 4.4.11 straightforwardly. Recall
the definition of the expected utility of player i when playing the pure strategy j
against the mixed strategy profile x−i of the other players (Equation (4.15)).

Definition 4.4.12 (ε-proper equilibrium (general games) [174]). Let ε > 0. A mixed
strategy profile x = (x1, . . . ,xn) is an ε-proper equilibrium of a strategic game if for any
player i ∈ N, we have that xi is fully mixed (i.e., xi, j > 0 for any pure strategy j ∈ S i),
and for any player i ∈ N

ũi( j,x−i) < ũi( j′,x−i)⇒ xi, j ≤ ε · xi, j′ for all j, j′ ∈ S i. (4.20)
11Selten [199] in fact introduces the notion of trembling hand perfect equilibria using a similar

narrative.



4.5. Congestion Games 149

To extend the feasibility programs Qi, for i ∈ N, to general games, one only has to
substitute the corresponding constraints for each player i ∈ N with those in Defini-
tion 4.4.12 above. In linear succinct games, the quantities ũi( j,x−i) for any player
i and pure strategy j can be computed by a linear pseudo-circuit. The proof of the
following theorem is then very similar to that of Theorem 4.4.7.

Theorem 4.4.8. Computing an ε-proper equilibrium of a linear succinct game is in
PPAD.

Proof. Again, feasibility program Qi, for i ∈ N, captures the best response of player
i ∈ N. Each Qi can be computed by a linear-OPT-gate, and is solvable by the same
very simple argument used in the proof of Theorem 4.4.7. Thus Qi can be used as
the oracle Ci in the corresponding LBRO game (Definition 4.4.4), and the theorem
follows from Theorem 4.4.3. □

Since polymatrix games (Definition 4.4.5) are linear succinct games, we obtain the
following corollary.

Corollary 6. Computing an ε-proper equilibrium of a polymatrix game is in PPAD.

A proof of Corollary 6 was first provided by Hansen and Lund [137]. Their proof
essentially redoes all of the steps of the proof of Sørensen [203] for bimatrix games,
extending them to the more general case, stating and proving corresponding lemmas
etc. Clearly, our linear-OPT-gate allows us to avoid all this labor and extend the
PPAD-membership from bimatrix games to polymatrix games, and even beyond,
rather straightforwardly. We conclude our discussion on ε-proper equilibria with the
following remark.

Remark 17 (ε-proper equilibria can be irrational). For general multiplayer games (not
necessarily linear succinct), Filos-Ratsikas et al. [101] showed a FIXP-membership
result via a system of conditional convex constraints, which generalizes the feasibility
program Qi. FIXP is the right class for these games, because it has been shown (see
Footnote 1 in [89]) that there are games in which all ε-perfect equilibria (and hence
all ε-proper equilibria) are irrational.

4.5 Congestion Games

In this section we consider models of congestion games [193, 226], where players
compete for resources. More precisely, we focus our study on non-atomic and atomic
splittable congestion games, and for both we consider in particular the important
subclasses of network congestion games. In particular, via the employment of our
linear-OPT-gate we will obtain PPAD-membership results for three domains of con-
gestion games, namely for

- finding equilibria in congestion games with rational and malicious players,
studied by [13], see Section 4.5.1,



150 Chapter 3. PPAD-membership via Convex Optimization

- finding Wardrop equilibria in multi-class non-atomic network congestion games,
studied by [172], see Section 4.5.2,

- finding Nash equilibria multi-class atomic splittable network congestion games,
studied by [155], see Section 4.5.2.

All of our PPAD-membership results hold when the latency functions (an in some
cases possibly their subgradients) are given by linear pseudo-circuits (recall Defi-
nition 4.2.7) or simply, by linear arithmetic circuits. In particular, they apply for
example to all piecewise-linear latency functions that are given explicitly as part of
the input. Via the machinery that we develop in Section 4.3.4, we can in fact obtain
the PPAD-membership for the more general case where the latency functions and their
subgradients are provided in the input implicitly, via linear pseudo-circuits. As such,
our results are simultaneously significiant simplifications over the existing results in
the literature, as well as generalizations, since the only known PPAD-membership
results so far were for linear latency functions.12 In fact, for games with malicious
players, complexity results had not been proven before our work.

We remark that all the games mentioned above fall into one of two main categories,
either non-atomic congestion games or atomic splittable congestion games. As such,
finding their equilibria does not simply fall in the class PLS [148], which is known to
capture the complexity of atomic (non-splittable) congestion games. In fact, finding
equilibria for some of the games studied in this section has been proven to be PPAD-
complete [155].

Before we proceed with the technical parts of the section, we present the previous
works on these domains and compare the previous approaches to our proofs which
use the linear-OPT-gate.

Congestion games with malicious players. The study of congestion games with
malicious players was initiated by Karakostas and Viglas [150]. Here, we consider
the model studied by Babaioff et al. [13], in which there is a continuum of rational
players, who are trying to minimize their total load, and a single malicious player,
who is trying to maximize the load experienced by the rational players. Babaioff et al.
proved the existence of equilibria in such games with non-decreasing latency functions.
They also prove that when the latency functions are concave, these games have pure
equilibria, by appealing to the Debreu-Fan-Glicksberg theorem [1952]. This already
hints that PPAD-membership can be recovered as a corollary of Theorem 4.4.4; we
will instead obtain it as a corollary of the more general Theorem 4.4.3. We remark
that for these games, a PPAD-membership result was not previously known.13

12In the context of congestion games, the term “affine” is often used instead of “linear”. Boyd and
Vandenberghe [37] define a linear function as of the form f (x) = cTx, and an affine function as the sum
of a linear function and a constant. We use the term “linear” to refer to all affine functions.

13Babaioff et al. [13] mention in the conclusion of their work that their existence proofs establish
membership of the problem in PPAD. This claim is however not straightforward, and there is no proof to
support it. In any case, such a claim would most certainly refer only to approximate equilibria, as these
games do not always have rational equilibria for any concave latency function.



4.5. Congestion Games 151

Multi-class non-atomic network congestion games. In multi-class non-atomic
network congestion games, there is a continuum of players divided into different
classes. Existence of Wardrop equilibria in this setting was first established by
Schmeidler [198], via an application of the Debreu-Fan-Glicksberg theorem [1952].
A different proof of existence was provided by Milchtaich [173], who also studied the
equilibrium uniqueness. The first computational complexity results on the problem
were provided by Meunier and Pradeau [172], who proved that the problem of finding
a Wardrop equilibrium lies in PPAD, when the latency functions on the resources of
the game are linear. Their proof goes via the “LCP approach” (see Section 4.1.2).
It turns out that their LCP formulation cannot be solved by the vanilla version of
Lemke’s algorithm, and so they devise a similar pivoting algorithm, tailored to their
problem. As in the case of Lemke’s algorithm, they argue explicitly against ray
termination.

Multi-class atomic splittable network congestion games. The existence of Nash
equilibria in atomic splittable congestion games follows from the Debreu-Fan-Glicksberg
theorem [1952], see [155]. The computational complexity of the problem with player-
specific linear latency functions was studied by Klimm and Warode [155], who proved
its PPAD-completeness. What is important for us is the most challenging part of that
result, which is the PPAD-membership. Klimm and Warode’s proof is rather involved,
and goes via the development of a homotopy method for tracing an equilibrium given
the demand rates of the players. This gives rise to a new pivoting algorithm, similar
in spirit to Lemke’s algorithm, or more precisely, the Lemke-Howson algorithm (see
Section 4.1.2). The method solves the problem of finding a Nash equilibria as a system
of linear equations involving excess flows, vertex potentials and block Laplacians. At
a very high level, the authors use the excess and potentials to define an undirected
version of the End-of-Line graph (see Definition 4.2.1), and the determinant of the
block Laplacians to define a unique orientiation of the edges, effectively reducing
the problem to End-of-Line. It is interesting to mention that Klimm and Warode do
mention that the Nash equilibrium problem can be formulated as an LCP, but it is
unclear whether Lemke’s algorithm can solve it, motivating the development of their
new algorithm.

Our results and proofs. The linear-OPT-gate allows us to avoid any of the technical
complications of the proofs of Meunier and Pradeau [172] and [155] (which are rather
involved, especially the latter), and essentially obtain the PPAD-membership for all of
these problems as simple corollaries of Theorem 4.4.3 (or even Theorem 4.4.4, as the
games in this section are linear concave). In fact, as we mentioned earlier, we obtain
generalizations of those results, from linear latency functions to any latency function
that is given (in some cases together with its subgradient) by a linear arithmetic
circuit. In particular, they capture all piecewise-linear latency functions that are
given explicitly as part of the input, as well as those where the latencies and their
subgradients are given implicitly by the aforementioned circuits (see Section 4.3.4).



152 Chapter 3. PPAD-membership via Convex Optimization

For congestion games with malicious players, our PPAD-membership result for this
same class of latency functions is the first such complexity result for any version of
the problem.

4.5.1 Multi-class Congestion Games

In the models we consider, the players are divided into a finite number k of classes,
and we refer to these as multi-class congestion games. The main difference between
the different models we consider arise from how the classes of players are interpreted.
Apart from this, the models have many commonalities, and we start by describing
these.

Remark 18 (Notation). In this section we shall for convenience make use of the
(common) shorthand notation of writing a function argument as a subscript. That is,
we may write fa in place of f (a), for a given function f : A→ B.

Definition 4.5.1 (Multi-class Congestion Games). A multi-class congestion game
with a finite number of k classes is given by a finite set E of resources and, for each
class i ∈ [k], a set of pure strategies Σi ⊆ 2E , consisting of subsets of resources. Each
resource is equipped with class-dependent continuous latency functions, denoted by
ℓie : R≥0 → R≥0 for e ∈ E and i ∈ [k]. Note that we do not assume that the latency
functions are non-decreasing. A load on resources is a function x : E → R≥0. The
latency functions extend additively to latency functions for pure strategies that are
functions of loads by letting ℓiS (x) =

∑
e∈S ℓ

i
e(xe).

We associate to each class i ∈ [k] a positive weight demand di and let d = d1 +

· · ·+dk be the total weight demand. A load allocation for class i ∈ [k] is a function
f i : Σi→ R≥0 such that

∑
S∈Σi f i

S = di. The load allocation f i induces a load xi : E→
R≥0 for class i ∈ [k] and a resulting total load x : E→ R≥0 given as follows.

xi
e =

∑
S∈Σi
e∈S

f i
S , e ∈ E, i = 1, . . . ,k .

xe =

k∑
i=1

xi
e , e ∈ E .

(4.21)

Non-atomic congestion games

In the non-atomic model, each class of players represents a continuum of players.
Formally we consider the set of all players to be given by a bounded real interval I
of length d, partitioned into k measurable sets I1, . . . , Ik with respect to the Lebesgue
measure µ, such that µ(Ii) = di, for i ∈ [k], thereby defining the k classes of players. A
strategy profile is a measurable function ρ : I→ 2E such that ρ(Ii) ⊆ Σi for every i ∈ [k].
The restriction ρi = ρ↾Ii of ρ to the subset Ii yields the strategy profile ρi : Ii→ Σi of the
players of class i. The strategy profile induces a load allocation profile f = ( f 1, . . . , f k)
by letting f i

S = µ(ρ
−1(S )) for S ∈ Σi and i ∈ [k], which in turn defines a load profile

x = (x1, . . . , xk) and the total load x on resources.



4.5. Congestion Games 153

The central equilibrium notion for non-atomic congestion games is the Wardrop
equilibrium [226], here defined for multi-class congestion games. The notion is
very similar to the Nash equilibrium that we used in the previous sections. In fact,
the Wardrop equilibrium coincides with the notion of Nash equilibrium for this
formulation in terms of a continuity of players. We will use the term Wardrop
equilibrium to refer to equilibria in non-atomic games, and the term Nash equilibrium
or simply equilibrium to refer to atomic splittable games, see Section 4.5.1.

Definition 4.5.2 (Wardrop equilibrium). A strategy profile ρ is a Wardrop equilibrium
if for all i ∈ [k] it holds that ρ(Ii) ⊆ argminS∈Σi

ℓiS (x), where x is the total load induced
by ρ.

We shall also say that the load allocation profile induced by a Wardrop equilibrium ρ
itself is a Wardrop equilibrium. Note that a different strategy profile ρ′ may induce
the same load allocation as profile ρ without being a Wardrop equilibrium. In that
case, however, there would exist another Wardrop equilibrium ρ′′ such that ρ′ and ρ′′

differ only on a null set with respect to µ.

Definition 4.5.3 (Wardrop equilibrium — load allocation formulation). A load al-
location profile f = ( f 1, . . . , f k) is a Wardrop equilibrium if ℓiS (x) = minS ′∈Σi ℓ

i
S ′(x),

whenever f i
S > 0, for all i, where x is the total load defined by ( f 1, . . . , f k).

Before presenting a fixed point formulation of Wardrop equilibria, we introduce some
further notation, which will be used again in the setting of atomic splittable congestion
games in Section 4.5.1 below.

Given a load allocation f = ( f 1, . . . , f k) we let f −i = ( f 1, . . . , f i−1, f i+1, f k) denote the
load allocation profile for classes different from i. For i ∈ [k] and S ∈ Σi, we define
the function Li

S as follows. For a load allocation profile f and a load allocation gi for
class i, we let

Li
S (gi, f −i) =

∑
e∈S

ℓie


∑
T∈Σi
e∈T

gi
T +

∑
j,i

∑
T∈Σ j
e∈T

f j
T

 (4.22)

Note that if x−i = (x1, . . . , xi−1, xi+1, xk) are the induced loads by f −i, and yi is the
induced load by g, then Li

S (gi, f −i) =
∑

e∈S ℓ
i
e(yi

e +
∑

j,i x j
e). In particular, if x is the

total load induced by f , then Li
S ( f ) = ℓiS (x).

Let i ∈ [k] and consider the following linear program in variables gi
S .

Linear Program PWE

minimize
∑
S∈Σi

Li
S ( f )gi

S

subject to
∑
S∈Σi

gi
S = di

gi
S ≥ 0, for all S ∈ Σi



154 Chapter 3. PPAD-membership via Convex Optimization

An optimal solution gi = (gi
S )S∈Σi must satisfy that Li

S ( f ) =minS ′∈Σi Li
S ′( f ) whenever

gi
S > 0. This gives rise to a fixed point characterization of Wardrop equilibrium.

Proposition 6. A load allocation profile f = ( f 1, . . . , f k) is a Wardrop equilibrium if
and only if f i is an optimal solution to the linear program PWE for all i ∈ [k].

Looking ahead, the characterization of Proposition 6 via linear program PWE will
be employed to prove PPAD-membership. In particular, each PWE will capture
the best response of each player, and a linear-OPT-gate will serve as the oracle for
computing this best response. This effectively will render the game a LBRO game
(Definition 4.4.4), and PPAD-membership will follow from Theorem 4.4.3. We
present a concrete application of this in Section 4.5.1 below. First, we define the
setting of atomic splittable congestion games.

Atomic splittable congestion games

In the atomic splittable model each class is representing a single player controlling
the entire weight demand of the class. We shall thus refer to class i simply as player i,
and the strategy space of player i is the set of load allocations of class i. Given a
load allocation profile f , player i experiences latency

∑
S∈Σi Li

S ( f ) f i
S which becomes

the cost function Ci the player wishes to minimize. We thus define Ci(gi, f −i) =∑
S∈Σi Li

S (gi, f −i)gi
S .

The central equilibrium notion for atomic splittable congestion games we consider is
the Nash equilibrium with respect to these cost functions.

Definition 4.5.4 (Nash Equilibrium — load allocation formulation). A load allocation
profile f = ( f 1, . . . , f k) is a Nash equilibrium if and only if Ci( f ) ≤ Ci(gi, f −i) for
all i ∈ [k].

If one imposes an additional convexity assumption involving the latency functions,
then the game essentially becomes a concave game, and thus possesses a Nash
equilibrium by the Debreu-Fan-Glicksberg theorem [1952]. The following lemma
follows immediately from definitions.

Lemma 18 (Convexity assumption for latency functions). Suppose that for all i ∈ [k]
and e ∈ E the latency function ℓie satisfies that the function x 7→ ℓie(x+ c)x is convex
for all c ≥ 0. Then, for all i ∈ [k] and all load allocation profiles f the cost function
gi 7→Ci(gi, f −i) is convex.

Remark 19. In the literature on congestion games, a common assumption of a latency
function ℓ is that the function x 7→ ℓ(x)x is convex. This is in general not sufficient
to guarantee that the function x 7→ ℓ(x+ c)x for c ≥ 0 is convex, as required in the
model we consider. It is however sufficient if one additionally assumes that ℓ is
non-decreasing.

With the assumptions of Lemma 18 we consider the following convex program in
variables gi

S .



4.5. Congestion Games 155

Convex Program CNE

minimize
∑
S∈Σi

Li
S (gi, f −i)gi

S

subject to
∑
S∈Σi

gi
S = di

gi
S ≥ 0, for all S ∈ Σi

Directly from definitions we then have the following.

Proposition 7. In a congestion game with latency functions satisfying the assumptions
of Lemma 18, a load allocation profile f = ( f 1, . . . , f k) is a Nash equilibrium if and
only if f i is an optimal solution to the convex program CNE for all i ∈ [k].

Again, convex program CNE essentially calculates the best response for each player,
and hence will be computed by an oracle given by a linear-OPT-gate. We will apply
this concretely in Section 4.5.2 in the context of network congestion games, but after
we will have reformulated CNE via a more concise description of the strategies in
terms of flows on resources rather than load allocations.

PPAD-membership of congestion games with malicious players

A model of non-atomic congestion games with a malicious player was introduced
by [13]. In this model there are two classes of players, the rational players and the
malicious player. We shall use the index set {R,M} for these classes rather than {1,2}.
The class of rational players represents a continuum of players. As in the basic case of
non-atomic congestion games as given in Section 4.5.1, these are given by a bounded
real interval I of length dR and a strategy of the rational players is a measureable
function ρR : I → ΣR. The strategy ρ induces a load allocation f R, and we will use
that to re-express the equilibrium condition in terms of f R.

The class of the malicious player represents a single player that controls a weight
demand dM, as in the case of atomic splittable games as given in Section 4.5.1.
However, unlike the basic model of atomic splittable congestion games, the malicious
player can use a mixed strategy, i.e., a probability distribution ρM over load allocations
f M. Since the malicious player is using a mixed strategy, what the rational players
aim to minimize is the expected load of their chosen strategy. The malicious player on
the other hand aims to maximize the expected total load experienced by the rational
players. We define an equilibrium of this game explicitly below.

Definition 4.5.5. The strategy profile (ρR,ρM) is an equilibrium if the following
conditions hold, where xR is the load induced by ρR and xM is the load induced by
f M.

1. ρR ⊆ argminS∈ΣR
E f M∼ρM [ℓRS (xR+ xM)].

2. supp(ρM) ⊆ argmax f M
∑

e∈E ℓ
R
S (xR

e + xM
e )xR

e .



156 Chapter 3. PPAD-membership via Convex Optimization

Linear Program PR
WE

minimize
∑
S∈ΣR

LR
S ( f R, f M)gR

S

subject to
∑
S∈ΣR

gR
S = dR

gR
S ≥ 0, for all S ∈ Σi

Convex Program CM
NE

maximize
∑
S∈ΣR

LR
S ( f R,gM) f R

S

subject to
∑

S∈ΣM

gM
S = dM

gM
S ≥ 0, for all S ∈ Σi

Figure 4.5: The linear program PR
WE for the rational players (left) and the convex

program CM
NE for the malicious player (right), in the fixed point formulation of the

equilibrium.

We reformulate Definition 4.5.5 in terms of load allocations for the rational players,
similarly to the case of Wardrop equilibria, and thus view the pair ( f R,ρM) as a strategy
profile. For convenience we use the function Li

S defined in Section 4.5.1.

Definition 4.5.6. The strategy profile ( f R,ρM) is an equilibrium if

1. E f M∼ρM LR
S ( f R, f M) =minS ′∈ΣR E f M∼ρM LR

S ′( f R, f M) whenever f R
S > 0.

2. supp(ρM) ⊆ argmax f M
∑

S∈ΣR LR
S ( f R, f M) f R

S .

Babaioff et al. [13] proved that every congestion game with a malicious player with
non-decreasing latency functions has an equilibrium. They also proved, employing
the Debreu-Fan-Glicksberg theorem, that when the latency functions are concave,
such a game has a pure equilibrium, i.e. an equilibrium of the form ( f R, f M). We
will obtain a PPAD-membership result for this case. The result will be based on the
following fixed formulation of the problem, very similar to that of linear program
PWE presented in Section 4.5.1, and convex program CNE presented in Section 4.5.1,
refined for the problem at hand.

For the rational players, best responses are expressed by linear program PR
WE in

variables gR of the left-hand side of Figure 4.5.. For the malicious player, the best
response is expressed by convex program CM

NE in variables gM of the right-hand side
of Figure 4.5.

From the fixed point formulation in terms of the programs of Figure 4.5, PPAD-
membership is almost immediate via arguing that those best response can be computed
by linear-OPT-gates, as long as the subgradients of the objective functions can be
computed by a linear pseudo-circuit. Hence we have the following theorem.

Theorem 4.5.1. Computing an equilibrium of a congestion game with a malicious
player in which the latency functions are given by linear pseudo-circuits and their sub-
gradients are given by linear pseudo-circuits computing piecewise-constant functions
is in PPAD.



4.5. Congestion Games 157

Proof. Linear program PR
WE of Figure 4.5 computes the best response of the class

of rational players, and CM
NE computes the best response of the malicious players.

As long as those optimization programs can be computed by linear-OPT-gates, then
the game is a LBRO game (Definition 4.4.4, noting Remark 14 as the oracles also
input a players’ own strategy) and PPAD-membership follows from Theorem 4.4.3.
Indeed, for both programs the feasible domain is non-empty and bounded with no
gate inputs appearing in the left-hand side of the constraints. By the statement of
the theorem, the latency functions can be computed by linear pseudo-circuits. In
the case of linear program PR

WE, the subgradient is a sum of latency functions (one
for each S ∈ ΣR), which by extension can also be computed by a linear pseudo-
circuit. For convex program CM

NE, by the definition of the latency function LR
S ( f R,gM)

in Equation (4.22), we can use the linear pseudo-circuits that compute the latency
functions, as well as those that compute their subgradients. Those subgradients are
piecewise-constant functions, which we then can multiply by the variables gM by the
machinery developed in Section 4.3.4. In the end, we obtain a function which can be
computed by a linear pseudo-circuit, and the whole linear program can be computed
by a linear-OPT-gate. □

A direct corollary of Theorem 4.5.1 is to the case when the latency functions are
piecewise-linear functions given explicitly as part of the input. Indeed, in that case the
objective functions are piecewise-quadratic and their subgradients are piecewise-linear
functions, hence computable by a linear pseudo-circuit.

We complement Theorem 4.5.1 above with an example showing the tightness of the
class of latency functions considered in the statement of theorem. Indeed, if one
moves to more general concave latency functions, then the only equilibria of the game
may be irrational.

Example 4 (Only irrational equilibria). Consider a game with only rational players
(the game with a malicious player is a generalization). Define the function f : R≥0→

R≥0 by

f (x) =

3x− x2 for x ≤ 1
1+ x for x > 1

.

The function f passes through the origin and is continuous, differentiable, increasing,
and concave. Consider the non-atomic congestion game with two resources 1 and 2,
and latency functions l1(x) = f (x) and l2(x) = 2 f (x). If (x,1− x) is an equilibrium,
then it must hold that 3x− x2 = 2(3(1− x)− (1− x)2 which as x ∈ [0,1] implies that
x = (

√
41−5)/2.

We remark that for games with general concave latency functions, a FIXP-membership
result is implied by (although not explicitly stated in) [101], as these games are concave
games.



158 Chapter 3. PPAD-membership via Convex Optimization

4.5.2 Network Congestion Games

We now define an interesting subclass of congestion games, called network congestion
games. Network congestion games allow the players’ strategies to be succinctly
described by a flow network.

Multi-commodity flow networks To be able to define multi-class network con-
gestion games we consider a multi-commodity flow model. More precisely, consider
networks given by a directed graph G = (V,E) on which we consider routing of k
commodities. For each commodity i ∈ [k] we are given a source node si ∈ N, a target
node ti ∈ N, and a flow demand di > 0. A cost function c is in general a function
c : E→ R, but we will however only consider non-negative cost functions. We assume
separate cost functions ci for each commodity i ∈ [k].

A flow x is a function x : E → R. To be feasible, the flow x is required to be
non-negative. The balance b(x) of x is the function given by

b(x)u =
∑
uv∈E

xuv−
∑
vu∈E

xvu for u ∈ N.

For every i ∈ [k], define the vector bi by

bi
si
= di, bi

ti = −di, and bi
u = 0, for every u ∈ N \ {si, ti}.

The cost of x with respect to commodity i is
∑

uv∈E ci
uvxuv.

A multi-commodity flow in G consists of a flow profile x = (x1, . . . , xk) of flows for
each commodity i ∈ [k]. The individual flow xi is feasible if xi is nonnegative and
satisfies the balance constraint b(xi) = bi. We will say that the flow profile x is feasible
if xi is feasible for all i. The total flow x induced by such a multi-commodity flow
x = (x1, . . . , xk) is the sum x =

∑k
i=1 xi.

For a directed path P in G, we denote by γP the unit path flow given by

γP
uv = 1 for uv ∈ P and γP

uv = 0 for uv < P.

Similarly, for a directed cycle C in G, we denote by γC the unit cycle flow given by

γC
uv = 1 for uv ∈C and γC

uv = 0 for uv <C.

The costs ci(P) and ci(C) of P and C with respect to commodity i are given as

ci(P) =
∑
uv∈P

ci
uv and ci(C) =

∑
uv∈C

ci
uv.

Note that ci(P) = ci(γP) and ci(C) = ci(γC). Let Pi denote the set of all directed (si, ti)
paths in G and let P = ∪k

i=1Pi. Let C denote the set of all directed cycles in G.
A routing of commodity i in G is a flow xi of the form xi =

∑
P∈Pi αPγ

P, where∑
P∈Pi αP = di and αP ≥ 0 for every P ∈ Pi. Note that xi is feasible by definition. A



4.5. Congestion Games 159

multi-commodity routing is a multi-commodity flow (x1, . . . , xk) such that xi is a routing
of commodity i for every i ∈ [k]. The network model we consider is uncapacitated,
i.e. it does not place any upper limits on the flow on arcs. This means that a minimum
cost routing must place non-zero flow only on minimum cost paths.

Lemma 19. Suppose that xi =
∑

P∈Pi αPγ
P is a routing of commodity i minimizing the

cost ci(xi). Then ci(P) =minP′∈Pi ci(P′) whenever αP > 0.

It is well known that any flow may be decomposed path and cycle flows. We shall
make use of the following special case.

Lemma 20. Let xi be a feasible flow for commodity i. Then there are αP ≥ 0 for
P ∈ Pi and βC ≥ 0 for C ∈ C such that xi =

∑
P∈Pi αPγ

P+
∑

C∈C βCγ
C .

If b(xi) = bi the cost of xi with respect to commodity i is thus given as c(xi) =∑
P∈Pi αPci(P)+

∑
C∈C βCci(C). We have the following direct consequence.

Corollary 7. Let xi be a feasible flow for commodity i minimizing the cost ci(xi). If
ci(C) > 0 for any cycle C for which there exist uv ∈ E such that xi

uv > 0, then xi is a
routing of commodity i.

Multi-class network congestion games. From a multi-commodity flow network
G = (V,E) we naturally obtain a multi-class congestion game. The set of resources is
simply the set E of arcs in the network and the set Σi of pure strategies of class i is
equal to the set Pi of directed (si, ti) paths in G. This gives a very succinct description
of the strategies that allows the relevant optimization problems to be formulated with
variables corresponding to resources rather than strategies. Note that a load allocation
of class i in the congestion game corresponds exactly to a routing of commodity i in
G.

For the case of Wardrop equilibrium we consider the following linear program in
variables yi

uv, where yi = (yi
uv)uv∈E , x is a given non-negative multi-commodity flow

and x the resulting total flow.

Linear Program PG
WE

minimize
∑
uv∈E

ℓiuv(xuv)yi
uv

subject to b(yi) = bi

yi ≥ 0

This linear program is simply expressing minimum cost feasible flows for commodity i
with costs given by the latency functions and the total flow x. In order to identify
these minimum cost flows with minimum cost routing , using Corollary 7, we need to
impose a very mild restriction on the latency functions.



160 Chapter 3. PPAD-membership via Convex Optimization

Definition 4.5.7. We say that the the latency functions liuv are without free cycles if
for every i ∈ [k], every C ∈ C and every feasible flow x, for which xuv > 0 for some
uv ∈C, we have

∑
uv∈C ℓ

i(xuv) > 0.

We have the following fixed point characterization of Wardrop equilibrium in network
congestion games, using Lemma 19 and Corollary 7.

Proposition 8. In a network congestion games with latency functions without free
cycles, a flow x = (x1, . . . , xk) is a Wardrop equilibrium if and only xi is an optimal
solution to the linear program PG

WE for all i ∈ [k].

For the case of atomic splittable congestion games and with the assumptions of
Lemma 18 we consider the following convex program in variables in variables yi

uv,
where yi = (yi

uv)uv∈E .

Convex Program CG
NE

minimize
∑
uv∈E

ℓiuv(yi
uv+

∑
j,i

x j
uv)yi

uv

subject to b(yi) = bi

yi ≥ 0

Analogously to the case of the linear program PG
WE we would like to ensure that

optimal solutions to CG
NE are routings of commodity i. Here however, the cost functions

of the flow depend on the flow variables, and we thus require a stronger assumption
on the latency functions.

Proposition 9. In a network congestion game with non-decreasing latency functions
without free cycles and satisfying the assumptions of Lemma 18, a flow x = (x1, . . . , xk)
is a Nash equilibrium if and only if xi is an optimal solution to the convex program
CG

NE for all i ∈ [k].

Proof. We need to prove that each xi that is an optimal solution to CG
NE is a routing

of commodity i. By Lemma 20 we have αP ≥ 0 for P ∈ Pi and βC ≥ 0 for C ∈ C such
that xi =

∑
P∈Pi αPγ

P+
∑

C∈C βCγ
C . Suppose for contradiction that there exists C ∈ C

such that γC > 0 and define the new flow ŷi = yi−βCγ
C . Since γC is a cycle flow and

βCγ
C ≤ yi it follows that ŷi is feasible. Since the latency functions are non-decreasing

it follows that ℓiuv(ŷi
uv +

∑
j,i x j

uv) ≤ ℓiuv(ŷi
uv +

∑
j,i x j

uv) for all uv ∈ E, and thus also
ℓiuv(ŷi

uv +
∑

j,i x j
uv)ŷi

uv ≤ ℓ
i
uv(ŷi

uv +
∑

j,i x j
uv)yi

uv for all uv ∈ E. Now, since the latency
functions are without free cycles there exist uv ∈C such that ℓi(yi

uv+
∑

j,i x j
uv) > 0. It

follows that ℓi(ŷi
uv+

∑
j,i x j

uv)ŷi
uv ≤ ℓ

i(yi
uv+

∑
j,i x j

uv)ŷi
uv < ℓ

i(yi
uv+

∑
j,i x j

uv)yi
uv. Taken

together this contradicts the optimality of yi. □



4.5. Congestion Games 161

PPAD-membership for non-atomic network congestion games

The PPAD-membership result for finding Wardrop equilibria in multi-class network
non-atomic congestion games follows almost immediately from the fixed point char-
acterization of equilibria in Proposition 8. The following result generalizes that of
Meunier and Pradeau [172].

Theorem 4.5.2. Finding a Wardrop equilibrium of a multi-class network non-atomic
congestion game when the latency functions are without free cycles and they are given
by linear pseudo-circuits is in PPAD.

Proof. Linear program PG
WE can be interpreted as computing the best response of a

player corresponding to class i, for the equilibrium concept of Wardrop equilibrium.
PG

WE obviously has a non-empty and bounded feasible domain. Since the latency
functions ℓiuv can be computed by linear pseudo-circuits, the subgradient of the
objective function can be computed by a linear pseudo-circuit, and hence the whole
linear program can be computed by a linear-OPT-gate. By using this linear-OPT-gate
as the oracle, the game becomes a LBRO game (Definition 4.4.4), and the theorem
follows as a corollary of Theorem 4.4.3. □

Again, a direct corollary of Theorem 4.5.2 is to the case when the latency functions are
piecewise-linear functions given explicitly as part of the input. Indeed, in that case the
objective functions are piecewise-quadratic and their subgradients are piecewise-linear
functions, hence computable by a linear pseudo-circuit.

Remark 20 (No free cycles). As we mentioned earlier, the no free cycles condition
(see Definition 4.5.7 is rather mild one. It is in fact a milder condition that the usual
condition in this literature, which requires that if le(x) = 0, then x = 0, i.e., the latencies
are 0 only on 0 points. The works on linear latency functions implicitly make this
assumption, and we obtain strict generalizations of those via considering more general
latency functions.

For completeness, we also provide a simple example in which, if one goes beyond the
latency functions captured by Theorem 4.5.2, e.g., to quadratic latency functions, then
the game may possess only irrational Wardrop equilibria.

Example 5 (Only irrational Wardrop equilibria). Consider a very simple nonatomic
network congestion game where there is only one class given by the interval [0,1].
The node set V of the network G consists of two nodes s and t. For the arc set E, there
are two arcs e1 and e2 from s to t for the class, with latency functions le1(x) = x2 and
le2(x) = 2x2. Now if (x,1− x) is an equilibrium, then it must hold that x2 = 2 · (1− x)2

which as x ∈ [0,1] implies that x = 2−
√

2.

Example 5 establishes that the class captured by our Theorem 4.5.2 is tight, as if one
moves to larger classes of latency functions, Wardrop equilibria may be irrational.
We remark that for these cases, a FIXP-membership result follows from the results
of [101] (althought not explicitly stated there), since multi-class non-atomic network
congestion games are concave games.



162 Chapter 3. PPAD-membership via Convex Optimization

PPAD-membership for atomic splittable network congestion games

In the same fashion as in the previous section, the PPAD-membership result for
finding Nash equilibria in multi-class network atomic congestion games follows
almost immediately from the fixed point characterization of equilibria in Proposition 9.
The following result generalizes that of Klimm and Warode [155]. We also again
note the remarkable simplification of the proof that the linear-OPT-gate allows us to
achieve, compared to that of Klimm and Warode [155].

Theorem 4.5.3. Finding a Nash equilibrium of a multi-class network atomic splittable
congestion game when the latency functions are without free cycles, they are given
by linear pseudo-circuits and their subgradients are given by linear pseudo-circuits
computing piecewise-constant functions is in PPAD.

Proof. The proof is very similar to that of Theorem 4.5.2 above. Convex program
CG

NE can be interpreted as computing the best response of a player corresponding to
class i. CG

NE obviously has a non-empty and bounded feasible domain. To compute
the subgradient of the objective function, we can use the linear pseudo-circuits that
compute the latency functions, as well as those that compute their subgradients. Those
subgradients are piecewise-constant functions, which we then can multiply by the
variables yuv by the machinery developed in Section 4.3.4. In the end, we obtain
a function which can be computed by a linear pseudo-circuit, and the whole linear
program can be computed by a linear-OPT-gate. By using this linear-OPT-gate as the
oracle, the game becomes a LBRO game (Definition 4.4.4 and the theorem follows as
a corollary of Theorem 4.4.3. □

Once gain, we obtain the PPAD-membership of multi-class network atomic splittable
congestion game when the latency functions are piecewise-linear functions given
explicitly as part of the input as a direct corollary of Theorem 4.5.3. The result is
however more general, and also captures cases where the latency functions and their
subgradients are accessed implicitly via their corresponding linear pseudo-circuits.
Additionally, similarly to the statement of Theorem 4.5.2, we remark that the no free
cycles condition is implicitly made in the case of linear latencies, and hence we obtain
a strict generalization of the previous results.

Again, for completeness, we provide a simple example of a game that only has irra-
tional equilibria, if the latency functions go beyond those captured by Theorem 4.5.3.

Example 6 (Only irrational Nash equilibria). The example is the same as the one in
Example 5. We consider a network with a single player and two arcs e1 and e2 from s to
t, with the same latency functions as before. Here, since we have an atomic splittable
game, the single player has to minimize the latency x · l1(x)+ (1− x) · l2(1− x) =
x3+2 · (1− x)3 which for x ∈ [0,1] is minimized in x = 2−

√
2.

Again, Example 6 establishes that the class captured by our Theorem 4.5.3 is tight, as
if one moves to larger classes of latency functions, Nash equilibria may be irrational.



4.6. Competitive Equilibria in Arrow-Debreu Markets 163

Again, for similar reasons as before, a FIXP-membership for general concave latency
functions follows from the results of [101].

4.6 Competitive Equilibria in Arrow-Debreu Markets

In this section, we show how our linear-OPT-gate can be used to show the PPAD-
membership of finding competitive equilibria in Arrow-Debreu markets. We will
consider such markets in which the utility and production functions have a certain form
which allows equilibrium points to be rational numbers. For a gentle introduction, we
first apply the technique to the simpler cases of exchange markets (i.e., no production)
with linear utilities (Section 4.6.1) and of markets with linear utilities and productions
(Section 4.6.2), before we move to our most advanced applications.

The most general known class of utilities and productions for which rational
competitive equilibria are possible are those of Leontief-free utilities and productions,
introduced by Garg et al. [119], who also proved the PPAD-membership of finding
equilibria in those markets. We provide an alternative proof via the employment of the
linear-OPT-gate, which is conceptually and technically much simpler in Section 4.6.3.

The Leontief-free class generalizes the well-known class of separable piecewise
linear concave (SPLC) utilities, studied by several works, e.g., see [112, 116, 220].
SPLC utilities is in turn a generalization of linear utilities in which every agent has a
piecewise linear concave utility for the amount of a good j that she receives, and her
total utility for her bundle is additive over goods.

SSPLC, a new class of utilities. In Section 4.6.4, we define a new class of utility
functions, coined succinct separable piecewise linear concave (SSPLC) utilities, which
generalize the SPLC class in a different way than the Leontief-free class. Intuitively,
these are functions which can have exponentially many pieces, but those are accessed
implicitly, via access to boolean circuits computing their slopes. In this sense, the
class differs from SPLC utilities not in the definition of the utility function, but in the
way that it is inputted in the computational problem. As such, the existence of rational
solutions for this class already implicitly follows from previous work [112] for SSPLC
utilities. As we explain below however, the “LCP-approach” is inherently limited in
its ability to establish computational results for this class, and in particular PPAD-
membership. In contrast, by taking advantage of the machinery that we developed in
Section 4.3.4, we show that our linear-OPT-gate can be used in very much the same
fashion as in all the other proofs of the section, to prove that computing competitive
equilibria for SSPLC utilities is in PPAD. Our proof also incorporates (explicit) SPLC
production functions; we provide a discussion on the challenges of extending our
technique to the case of SSPLC production functions as well in Remark 35.

Features of our Proof vs Previous Approaches

Before we proceed, we first discuss the previous results that appeared in a succession
of important works in the area, and highlight the advantages of our approach over



164 Chapter 3. PPAD-membership via Convex Optimization

those.

Previous work and previous proofs. The origins of the literature that deals with the
PPAD-membership of finding exact and rational competitive equilibria for markets
for which this is possible can be traced back to the work of Eaves [80]. Eaves studied
the exchange market model with linear utilities (the same one we present first in
Section 4.6.1) and proved that its competitive equilibria can be found by Lemke’s
algorithm [160]. Referencing our discussion in Section 4.1.2, Eaves’ approach,
similarly to most subsequent approaches, formulates the problem as an LCP. Clearly,
the class PPAD had not been defined then, but as we explained in Section 4.1.2, the
PPAD-membership of the problem is implied by his proof.

Vazirani and Yannakakis [220] considered the case of SPLC utilities. Their proof
does not employ the “LCP approach”, but rather the “approximation and rounding
approach”, see Section 4.1.2. An issue with this method is that very small changes
in the prices may result in drastic changes in the optimal bundles of the consumers,
and hence Vazirani and Yannakakis [220] devise a set of technical lemmas that allow
them to “force” certain allocations over others. Subsequently, Garg et al. [116] proved
the PPAD-membership of equilibria for the same class of utility functions, via instead
using the “LCP approach”. Garg et al. point out that the LCP that they derive does not
fall into any of the classes known to avoid secondary rays, and hence they necessarily
devise an argument against ray termination (see Section 4.1.2). Besides that, the
formulation of the LCP itself “turns out to be quite complex” [116]. An integral part
of the proof, which is also useful in our regime, is the definition of the “desire” for a
good j, to be the total amount of the good represented by its non-zero utility segments
in the SPLC function.

For markets with production, the aforementioned work of Vazirani and Yannakakis
[220] also provides a PPAD-membership result for markets with SPLC utilities and
SPLC productions. The same PPAD-membership result was later recovered by [112]
via the “LCP approach”; this is in fact the paper from which the quote of Section 4.1.2
is taken. The quote highlights the increasing challenge of developing these LCPs and
establishing their successful termination. Indeed, the LCP of [112] naturally differs
from that of [116], in that it needs to account for production. This is done via devising
a set of linear programs, and then using complementary slackness and their feasibility
conditions to develop the LCP needed for production. The non-homogeneity of the
resulting LCP for the equilibrium problem is dealt with in a manner which is different
from previous works [80, 116] and, naturally, since the developed LCP is different,
Garg and Vazirani again need to argue against ray termination.

The last of the works in this sequence regarding competitive markets for goods
is by Garg et al. [119]. Garg et al. define a new class of utilities/productions, coined
“Leontief-free utilities/productions”, which generalize the SPLC functions mentioned
earlier (see Section 4.6.3 for a precise definition). What is interesting about this class is
that it contains functions which are not separable, but yet they admit rational solutions,
hence dispelling a potential suspicion that non-separability is what essentially leads to



4.6. Competitive Equilibria in Arrow-Debreu Markets 165

irrationality. Garg et al. [119] obtain the PPAD-membership of finding competitive
equilibria in those markets via, again, employing the “LCP approach”. Their LCP
formulation turns out to be even more complex than those of previous works, as it has
to differentiate between “normal” and “abnormal” variables, the latter preventing the
employment of Lemke’s algorithm. To circumvent this, they exploit some additional
structure of their nonstandard LCP, and then they also modify Lemke’s algorithm,
to account for the possibility of abnormal variables becoming zero. Finally, as they
devise a new LCP, they also have to argue once again against ray termination.

Our proofs. We employ the linear-OPT-gate to provide proofs which are con-
ceptually and technically simpler than the ones discussed above. In particular, we
formulate the optimal consumption (i.e., the consumers’ utility maximization) and
the optimal production (i.e, the firms’ profit maximization) as linear programs (e.g.,
see Figure 4.7), which can be effectively substituted by linear-OPT-gates in a linear
arithmetic circuit. Intuitively, one could view these as the “parallel” of best responses
that we used in previous sections, in the domain of markets. What differentiates the
proofs of this section is that these consumptions/productions need to be supported at a
set of market-clearing prices.

To make sure that we can work with linear constraints (in the inputs to linear
arithmetic circuit), we apply a standard variable change which was first used by
Eaves [80], and then subsequently on all of the works that apply the “LCP approach”:
instead of sets of goods for consumption and production, we use the expenditures of
the consumers to buy goods in their bundles, and of the firms to produce goods using
other goods as raw material. Interestingly, Eaves [80] attributes this idea to Gale,
and hence we refer to it as Gale’s substitution, see Remark 22. For the prices, we
develop a feasibility program (e.g., see Figure 4.8), which at a high level establishes
that if certain goods (or segments) have smaller expenditures, then they are sufficiently
cheaper. This is the main property that we use to argue that the prices computed by
the feasibility program at a fixed point are market-clearing.

For our results in Section 4.6.4, we take advantage of the capability of the lin-
ear-OPT-gate to compute implicit functions and correspondences, as detailed in
Section 4.3.4. In contrast, the “LCP approach” would need to have explicit variables
for each segment, resulting in an LCP of exponential size in the size of the input (which
is the size of the given input circuits). This is sufficient to prove rationality of solutions,
but not to construct the computational reduction needed for a PPAD-membership.

Compared to the applications in other sections of our paper, the proofs that
we provide in this section are probably the most technically involved. The main
complication lies in arguing the market clearing of the outputted prices, which still
requires a relatively short proof. We remark that most of the space in the following
sections is used for introducing the corresponding settings and putting our technique
in context, rather than the proofs themselves.

Finally, we emphasize that, as we mentioned also in Section 4.1.2, the “LCP
approach” satisfies some other desirable properties, e.g., see [119] for a discussion.



166 Chapter 3. PPAD-membership via Convex Optimization

As our focus here is the PPAD-membership of the problems, we do not discuss them
further.

Roadmap. We provide a brief roadmap of the section. In Section 4.6.1 we introduce
our technique in the simple setting of exchange markets with linear utilities. To gently
incorporate production, in Section 4.6.2 we consider markets with linear utilities and
linear productions. In Section 4.6.3 we consider the case of Leontief-free utilities
and productions. Finally in Section 4.6.4 we prove the PPAD-membership of finding
competitive equilibria in markets with SSPLC utilities and SPLC productions.

4.6.1 Exchange Markets with Linear Utilities

First, we explain how our linear-OPT-gate can be used to show the PPAD-membership
of finding competitive equilibria in a simple but fundamental variant of the Arrow-
Debreu market model, that of exchange markets with linear utilities. An exchange
market is one in which there is no production, and each consumer brings an endowment
to the market. The PPAD-membership for these markets demonstrates the strength
of the technique for a simple model, before moving on to apply it to more general
market settings.

Our main theorem in this section is the following:

Theorem 4.6.1. Computing a competitive equilibrium in an exchange market with
linear utilities is in PPAD.

Exchange Markets. In an exchange marketM, we have a set N of consumers and
a set G of infinitely divisible goods. Let n = |N | and m = |G|. We will typically use
index i to refer to consumers and j or g to refer to goods. Each consumer brings an
endowment wi = (wi1, . . . ,wim) to the market, with wi j ≥ 0 for all i ∈ N and j ∈G. We
may assume without loss of generality that for every good j, we have

∑
i∈N wi j = 1, i.e.,

that the total endowment of each good is 1. We will use xi = (xi1, . . . , xim) to denote
the vector of quantities of goods allocated to consumer i ∈ N inM, and we will call
it the bundle of consumer i. Let x = (x1, . . . ,xn) be the vector of such bundles. We
will use p = (p1, . . . , pm) to denote the vector of prices inM, one for each good j ∈G.
Prices are non-negative, so p j ≥ 0 for all j ∈G. Given a vector of prices p the budget
of consumer i ∈ N is defined as

∑
j∈G wi j p j; intuitively, this is the amount of money

that the consumer acquires by selling her endowment at prices p.

Utility Functions. Every consumer has a utility function ui : Rm
≥0→ R≥0 mapping

a bundle xi to a non-negative real number. In this section, these utilities are linear,
i.e., every consumer i ∈ N has a utility ui j for every good j ∈G, and her utility for the
bundle xi is ui(xi) =

∑
j∈G ui jxi j, where ui j is the value of consumer i for good j.



4.6. Competitive Equilibria in Arrow-Debreu Markets 167

Competitive Equilibrium. Next, we provide the definition of a competitive equilib-
rium (often referred to as a market or a Walrasian equilibrium).

Definition 4.6.1 (Competitive equilibrium). A competitive equilibrium of an exchange
marketM is a pair (p∗,x∗) consisting of a prices p∗ and and bundles x∗ = (x∗1, . . . ,x

∗
n)

such that

1. ui(x∗i ) =
∑

j∈G x∗i jui j is maximized, subject to∑
j∈G x∗i j p

∗
j ≤

∑
j∈G wi j p∗j and x∗i j ≥ 0, for any consumer i ∈ N. (bundle

optimality)

2.
∑

i∈N x∗i j = 1, for any good j ∈G. (market clearing)

Condition 1 above guarantees that at the equilibrium prices p∗, every consumer
receives the best possible bundle that they can buy given their budget and that each
good is allocated in a non-negative amount. Condition 2 guarantees that the market
clears, i.e., that the total quantity of goods sold is equal to the total endowment∑

i∈N wi j, which, recall, we have assumed without loss of generality that is equal to 1.

Sufficiency conditions. A competitive equilibrium as defined above exists for every
exchange market M, under some sufficiency conditions. Following Vazirani and
Yannakakis [220], we will use the sufficiency conditions used by Eaves [80], namely
that:

1. For every good j ∈G, there exists some consumer i ∈ N that values the good
positively, i.e., ui j > 0.

2. For every consumer i ∈ N, there exists some good j ∈ G that the consumer
endows in a positive amount, i.e., wi j > 0.

3. The market is not reducible. A market is reducible where there exists a proper
subset N′ ⊂ N of the consumers and a subset G′ ⊆G of the goods such that

a) all of the goods in G′ are entirely endowed by consumers in N′, i.e.,∑
i∈N′ wi j = 1 for all j ∈G,

b) all of the consumers in N′ only value positively goods in G′, i.e., for all
i ∈ N′ and g ∈G \G′, it holds that uig = 0.

Reducibility intuitively captures the fact that if a strict subset of consumers com-
pletely endow a subset of the goods and only value those goods positively, then
they could form their own marketM′ and exchange between them. Looking
ahead, the non-reducibility of the market is a special case of a property called
strong connectivity of the economy graph [167], which we will make use of for
the more general market settings that we consider later on.



168 Chapter 3. PPAD-membership via Convex Optimization

Optimality and bang-per-buck (BPB). The bundle optimality condition of the
competitive equilibrium stipulates that each consumer buys the best possible bundle at
the given prices. For linear markets, these optimal bundles have a crisp characteriza-
tion, in terms of the bang-per-buck (BPB). Given consumer i ∈ N and prices p, the BPB
of a good j ∈G is defined as BPBi( j) = ui j

p j
. An optimal bundle only contains non-zero

quantities of goods for which the BPB is maximum, i.e., j ∈ argmax j∈G BPBi( j).

Bounds on the prices. We may without loss of generality assume that all the prices
are strictly positive, i.e., p j > 0 for all j ∈G. Indeed, if p j = 0, then there would be
infinite demand for good j, contradicting market clearing. As such, in any equilibrium,
the prices are strictly positive. Note that by this assumption, the quantity BPBi( j) is
well-defined for every j ∈G.

Remark 21 (Normalized Prices). Given that p j > 0 for all j ∈G, we can normalize
the prices to sum to 1 without loss of generality, i.e., we may assume that

∑
j∈G p j = 1.

We will use a parameter ε to capture the fact that if the price p j for a good j ∈G is
sufficiently smaller than the price p j′ for a good j′ ∈G, then BPB( j) > BPB( j′). This
will allow us to “control” which goods certain consumers buy in their optimal bundles.
Specifically, we can compute ε > 0 such that

If p j ≤ ε · p j′ and ui j > 0 then BPBi( j) > BPBi( j′).

Additionally, we can pick ε to be sufficiently small such that ε < wi j
m for all i ∈ N and

all j ∈G with wi j > 0.
Given ε, we will impose a stricter lower bound on the prices, which will be

useful later on: in particular, we will assume that for all j ∈G, p j ≥
εm

m . Our PPAD-
membership proof will also establish that a competitive equilibrium still always exists
even under this additional restriction.

Preprocessing

The high-level overview of the proof will be the following. We will define a function
F from a convex compact domain D to itself, in a way that ensures that a competitive
equilibrium ofM can be recovered from a fixed point of F. The input and output
variables of the function will be outputs of a linear program P (see Program (4.2) in
Section 4.3) and a feasibility program Q (see Program (4.3) in Section 4.3). Intuitively,
P will be used to compute optimal bundles xi for the consumers, and Q will be used to
compute equilibrium prices p. These programs will be of a particular form amenable
to the use of our linear-OPT-gate. As such, we will be be able to encode F via a linear
arithmetic circuit containing linear-OPT-gates.

Straightforward choice: x and p. A straightforward choice would be to have the
pair (x,p) as the input/output to the function F. In that case, the linear program P



4.6. Competitive Equilibria in Arrow-Debreu Markets 169

would be the following:

maximize
∑
i∈N

∑
j∈M

ui jxi j

subject to
∑
j∈G

xi j p j ≤
∑
j∈G

wi j p j, ∀i ∈ N (4.23)

xi j ≥ 0, ∀i ∈ N, j ∈G

While the variables of this linear program are the variables xi j, the prices p j are gate
inputs (see Definition 4.3.1), and the budget constraints of the form

∑
j∈G xi j p j ≤∑

j∈G wi j p j cannot be present in a linear program that we would like to compute by
the linear-OPT-gate.

Change of variables: Expenditure. To circumvent this obstacle, we follow an
idea used by Eaves [80] that “linearizes” the constraints via an appropriate change of
variables. Eaves [80] attributes this idea to Gale, via private communication. Thus,
we refer to this change of variables as Gale’s substitution.

Remark 22 (Gale’s substitution). Let qi j = xi j p j be the expenditure of consumer i on
good j, i.e., how much money the consumer spends on the good given an allocation
xi j and a price p j. This change of variables is by now very much standard in the
literature, used among others by Chaudhury et al. [48], Eaves [80], Garg and Vazirani
[112], Garg et al. [119].

With this at hand, the budget constraints now become∑
j∈G

qi j ≤
∑
j∈G

wi j p j.

These are clearly linear in the variables qi j with no gate inputs appearing in the
expression. In turn, the objective function of P becomes∑

i∈N

∑
j∈M

ui j

p j
qi j.

Interestingly, the coefficient of each variable qi j is the bang-per-buck BPBi( j) of
good j for consumer i. In an optimal solution to P, the consumer will only spend
money on goods with maximum BPB. That being said, the format of the objective
function (with p j appearing in the denominator) is not one that can be handled by the
linear-OPT-gate, as its subgradient cannot be computed by a linear pseudo-circuit.
For this reason, we transform the objective function to∑

i∈N

∑
j∈M

p j

ui j
qi j.

and the maximization in linear program (4.23) to minimization. Clearly, in an optimal
solution, the consumer is again only spending on goods with minimum ratio p j

ui j
, i.e.,



170 Chapter 3. PPAD-membership via Convex Optimization

Linear Program P

minimize
∑
i∈N

∑
j∈G

p j

ui j
qi j

subject to
∑
j∈G

qi j =
∑
j∈G

wi j p j

qi j ≥ 0, ∀ j ∈G

Feasibility Program Q

e j < e j′ ⇒ p j ≤ ε · p j′ , ∀ j, j′ ∈G

p j ≥
εm

m
, ∀ j ∈G∑

j∈G

p j = 1

Figure 4.6: The linear program P used to recover optimal bundles (left) and the
feasibility program Q used to find market-clearing prices (right).

with maximum BPB, therefore purchasing an optimal bundle. This objective function
form is of a form amenable to the use of the linear-OPT-gate, as its subgradient is a
linear function.

However, there is a potential issue that arises when converting the maximization
objective to minimization. If we keep the budget constraint

∑
j∈G qi j ≤

∑
j∈G wi j p j

intact, then setting qi j = 0 for all i ∈ N and j ∈G is an optimal solution to the linear pro-
gram, while it is clearly not an expenditure consistent with a competitive equilibrium.
To handle this, we observe that in an optimal solution to linear program (4.23), where
the objective is maximization, we may assume that all the budget constraints have zero
slack, i.e., that

∑
j∈G x∗i j p

∗
j =

∑
j∈G wi j p∗j . Indeed, if one could increase some variable

xi j without violating the budget constraint for some consumer i ∈ N, then the consumer
would certainly not receive a lower utility in the objective function. Correspondingly,
the constraints

∑
j∈G qi j ≤

∑
j∈G wi j p j can be converted to equality constraints, i.e.,∑

j∈G qi j =
∑

j∈G wi j p j. In turn, these constrain the expenditure variables to receive
positive values in an optimal solution, ensuring that each consumer spends their entire
budget.

Summarizing, the linear program P can be seen on the left-hand side of Figure 4.6.

Excess expenditure and the program Q. While linear program P will be used to
obtain the optimal expenditures qi j (and as consequence the optimal bundles xi j), as
we mentioned earlier, the equilibrium prices will be obtained via a feasibility program
Q. Before we define the program, we introduce the notion of excess expenditure,
which will be useful later on. The excess expenditure e j of a good j ∈G is defined as
the difference between the total expenditure of all consumers i ∈ N for that good and
the price of the good, i.e.,

e j =
∑
i∈N

qi j− p j.

Then, at equilibrium prices p∗ we will have market clearing, i.e., e∗j = 0 for all j ∈G.

We are now ready to define our feasibility program Q; see the right-hand side of
Figure 4.6. The equilibrium prices will be obtained as the output p∗ of Q.



4.6. Competitive Equilibria in Arrow-Debreu Markets 171

Membership in PPAD: The proof of Theorem 4.6.1.

We will develop the proof in three steps, namely (a) construction of the function
F and arguing that it can be represented by a linear arithmetic circuit containing
linear-OPT-gates, (b) showing that the linear-OPT-gate can compute all the necessary
components, and (c) arguing that a competitive equilibrium can be recovered from a
fixed point of F.

The function F. Given the above, we will define F : D→ D with domain

D =
{

p ∈ ∆m−1 : ∀ j ∈G, p j ≥
εm

m

}
× [0,1]nm.

An input to F is a pair (p̄, q̄) of prices and expenditures, where q̄ = (q̄i j)i∈N, j∈G

and the output is another such pair (p∗,q∗). The domain D is the one above since∑
j∈G p̄ j = 1 (see Remark 21), and by the fact that in any feasible set of expenditures,∑
j∈G q̄i j ≤

∑
j∈G wi j p̄ j ≤ 1.

Remark 23. Note that while the linear program P and the feasibility program Q were
written in a general form in Figure 4.6, when using (p̄, q̄) as the input, we would have
to substitute p j with p̄ j in P (with the variables being qi j) and qi j and pi j with q̄i j

and p̄ j respectively in the expression for e j in Q (with the variables being p j). While
we do not write this out explicitly in all of the applications in our paper, here we
thought it would be important to mention, in order to avoid any confusion with p j

potentially being on the left-hand side of the conditional constraints in Q. It is p̄ j that
appears on the left-hand side, which is a gate input rather than a variable, and thus is
in accordance with the definition of feasibility programs in (4.3) of Section 4.3.

Computation by the linear-OPT-gate. In the next lemma, we argue formally what
we have alluded to earlier, namely that the solutions to the linear program P and the
feasibility program Q of Figure 4.6 can be computed by our linear-OPT-gate.

Lemma 21. Consider the linear program P and the feasibility program Q of Fig-
ure 4.6. An optimal solution to P can be computed by the linear-OPT-gate. Q is
solvable, and a solution can be computed by the linear-OPT-gate.

Proof. For the linear program P, we observe that the feasible domain [0,1]n is non-
empty and bounded. The gate inputs p j appear only on the right-hand side of the
constraints, and the subgradient of the objective function is linear, and hence can be
given by a linear pseudo-circuit. For the feasibility program Q, there are no variables
appearing in the left-hand side of the conditional constraints (see also Remark 23), and
no gate inputs appearing on the right-hand side. This means that the linear-OPT-gate
correctly computes the outcome of the program, assuming that the program is solvable.
To argue solvability, notice that Q is of the form Qapp as defined in Section 4.3.2, and
hence by Lemma 12 it suffices to argue that its feasibility graph GQ is acyclic. In our
case here, the vertices VQ of GQ are the goods, and an edge ( j, j′) exists if and only if
e j < e j′ . Clearly, GQ is acyclic. □



172 Chapter 3. PPAD-membership via Convex Optimization

Arguing optimality and market clearing. To conclude the proof, what is left to
show is that a fixed point (p∗,q∗) of F indeed corresponds to a competitive equilibrium.
We argue that in the following lemma.

Lemma 22. Let (p∗,q∗) be a fixed point of F. Then the pair (p∗,x∗), where x∗i j = q∗i j/p
∗
j

is a competitive equilibrium ofM.

Proof. By the form of the objective function of the linear program P of Figure 4.6,
each consumer spends money only on goods with maximum BPB and therefore the
allocation that she receives is only one of goods for which she has maximum BPB.
Therefore, the consumer receives an optimal bundle which satisfies Condition 1 of the
competitive equilibrium definition in Definition 4.6.1. The allocation quantities x∗i j
can straightforwardly be recovered from the values of q∗i j.

What remains to show is that p∗ is a vector of market-clearing prices. By the
definition of e j, this is equivalent to arguing that for all j ∈G, we have that e∗j = 0. We
first argue that

∑
j∈G e∗j = 0. Indeed:

∑
j∈G

e∗j =
∑
j∈G

∑
i∈N

q∗i j− p∗j

 =∑
j∈G

∑
i∈N

q∗i j−
∑
j∈G

p∗j =
∑
j∈G

∑
i∈N

wi j p∗j −1

=
∑
j∈G

p∗j ·
∑
i∈N

wi j−1 =
∑
j∈G

p∗j −1 = 0,

where in the calculation above we used:

- in Equations 3 and 6, that
∑

j∈G p∗j = 1, which is without loss of generality (see
Remark 21),

- in Equation 5, that
∑

i∈N wi j = 1, which is without loss of generality, and

- in Equation 3, that
∑

j∈G
∑

i∈N q∗i j =
∑

j∈G
∑

i∈N wi j p∗j , which follows from the
constraints of linear program P of Figure 4.6.

Define the set J to be the set of goods with minimum excess expenditure, i.e.,

J = { j ∈G : e∗j ≤ e∗j′ , for all j′ ∈G}.

It now suffices to show that e∗j ≥ 0 for all j ∈ J. Assume by contradiction that there
exists some j1 ∈ J such that e∗j1 < 0. By definition of the set J, we have that

for all j ∈ J, we have e∗j < 0. (4.24)

Also, by the fact that
∑

j∈G e∗j = 0 which we established above, it must be the case that
there also exists j2 ∈G \ J such that e∗j2 > 0. In particular G \ J , ∅. Define

N′ = {i ∈ N : there exists j ∈G \ J such that wi j > 0}.



4.6. Competitive Equilibria in Arrow-Debreu Markets 173

In words, N′ is the set of consumers with strictly positive endowment for some good
which is not in the set J. We will argue that

there exists i0 ∈ N′ and j ∈ J such that ui0 j > 0.

To see this, assume by contradiction that for all i ∈ N′ and j ∈ J, it was the case
that ui j = 0. Note also that for any good j′ ∈ G \ J, it holds that wi j′ > 0 only for
consumers i ∈ N′. That would imply that N′ and G \ J would constitute a reduced
market, contradicting Feasibility Condition 3.

Consider any good j ∈ J and any good j′ ∈G\ J such that wi0 j′>0. By the definition
of J, we have that e∗j < e∗j′ . By the fact that p∗ is a solution to the feasibility program
Q of Figure 4.6, we have that p∗j ≤ ε · p

∗
j′ . We have the following inequalities:

∑
g∈G

wi0g · p∗g ≥ wi0 j′ · p∗j′ and p∗j′ ≥
m · p∗j
wi0 j′

. (4.25)

The first inequality above is trivial, since j′ ∈G. The second inequality follows since
by the choice of ε,

p∗j′ ≥
p∗j
ε
≥

p∗j
wi0 j′/m

=
m · p∗j
wi0 j′

.

Since j was chosen to be any good in J, the inequalities in (4.25) hold for j such that
p∗j is the maximum price amongst all goods in J. Therefore in (4.25) we can substitute
p∗j by maxg∈J p∗g and we have∑

g∈G

wi0g · p∗g ≥ wi0 j′ · p∗j′ ≥ m ·max
g∈J

p∗g ≥
∑
g∈J

p∗g. (4.26)

Inequality 4.26 implies that consumer i0 has enough budget to buy all the goods in J.
At the same time, by the choice of ε, consumer i0 prefers to buy quantities of good j
rather than j′, i.e., BPBi0( j) > BPBi0( j′). Since consumer i0 only spends money on
goods with maximum BPB, we have that∑

g∈G

q∗i0g =
∑
g∈J

q∗i0g. (4.27)

From Inequality 4.26, Equation 4.27, and since q∗ is a feasible solution to linear
programP of Figure 4.6 (and hence satisfies the constraints

∑
g∈G q∗i0g =

∑
g∈G wi0g · p∗g),

we have that ∑
g∈J

q∗i0g ≥
∑
g∈J

p∗g.

This last inequality however implies that there must exist j0 ∈ J for which q∗i0 j0
≥ p∗j0

and therefore e∗j0 =
∑

i∈N q∗i j0
− p∗j0 ≥ 0, contradicting (4.24). This completes the

proof. □



174 Chapter 3. PPAD-membership via Convex Optimization

4.6.2 Arrow-Debreu Markets with Linear Utilities and Productions

We now move on to the next fundamental variant of the Arrow-Debreu market model,
that of markets with linear utilities as well as linear productions. Our results about
exchange markets in Section 4.6.1 were used to demonstrate the application of our
technique to one of the simplest variants of the main market model. The results of
this section can be seen as extending this exposition to the case where the markets
also have linear production functions. This is rather informative for the reader, as it
illustrates the approach that will be used for the most general market setting that we
prove PPAD-membership for, which we present in Section 4.6.3.

Our main theorem in this section is the following:

Theorem 4.6.2. Computing a competitive equilibrium in an Arrow-Debreu market
with linear utilities and linear productions is in PPAD.

We provide the main definitions for Arrow-Debreu markets with linear utilities and
linear productions below. To ensure that the section is self-contained, we have elected
to fully define the setting, rather than to only highlight the changes to the definitions
of exchange markets of Section 4.6.1. Still, to avoid unnecessary repetition, in the
preprocessing and setup steps for the proof, we do refer to the appropriate arguments
presented in Section 4.6.1.

Markets with Production. In an Arrow-Debreu market with productionM, we
have a set N of consumers, a set G of infinitely divisible goods, and a set F of firms.
Let n = |N|, m = |G|, and ℓ = |F|. We will typically use index i to refer to consumers, j
or g to refer to goods and f to refer to firms. Each consumer brings an endowment
wi = (wi1, . . . ,wim) to the market, with wi j ≥ 0 for all i ∈ N and j ∈G. We may assume
without loss of generality that for every good j, we have

∑
i∈N wi j = 1, i.e., that the

total endowment of each good is 1. We will use xi = (xi1, . . . , xim) to denote the vector
of quantities of goods allocated to consumer i ∈ N in M, and we will call it the
bundle of consumer i. Let x = (x1, . . . ,xn) be the vector of such bundles. We will use
p = (p1, . . . , pm) to denote the vector of prices inM, one for each good j ∈G. Prices
are non-negative, so p j ≥ 0 for all j ∈ G. Given a vector of prices p, the budget of
consumer i ∈ N is defined as

∑
j∈G wi j p j; intuitively, this is the amount of money that

the consumer acquires by selling her endowment at prices p.

Utility Functions. Every consumer has a utility function ui : Rm
≥0→ R≥0 mapping

a bundle xi to a non-negative real number. In this section, these utilities are linear,
i.e., every consumer i ∈ N has a utility ui j for every good j ∈G, and her utility for the
bundle xi is ui(xi) =

∑
j∈G ui jxi j, where ui j is the value of consumer i for good j.

Firm Shares. Each consumer i ∈ N has a share θi f ∈ [0,1] of the profit of each firm
f ∈ F. We assume that the profits are entirely shared among the consumers, i.e., for
every firm f ∈ F, we have that

∑
i∈N θi f = 1.



4.6. Competitive Equilibria in Arrow-Debreu Markets 175

Production Functions and Conversion Rates. Each firm f ∈ F produces a set of
goods using a set of goods as raw material. Following Garg and Vazirani [112], for
simplicity we will assume without loss of generality that each firm produces a single
good. We may also assume without loss of generality that each firm uses a single good
as raw material for the production. This because the production functions that we will
consider are separable, and hence a firm using/producing multiple goods can be split
into multiple firms using/producing single goods, with the shares of the agents’ being
duplicated (see also [112]). Given the above we will let:

- gout
f be the good produced by firm f ∈ F; we will refer to this as the output

good,

- gin
f be the good used as raw material by firm f ∈ F; we will refer to this as the

input good.

For every firm f ∈ F there is a function P f which determines the firm’s ability to
produce units of the output good gout

f as a function of quantities of the input good gin
f .

In this section, we will assume that these functions are linear, of the form P f (y) = c f ·y,
where c f ≥ 0 is a fixed conversion rate for firm f , specifying that the firm can use y
units of good gin

f to produce c f · y units of good gout
f . Given a conversion rate c f , and

prices pgout
f

and pgin
f

for the goods gout
f and gin

f respectively, the profit of f from using

y units of gin
f to produce c f · y units of gout

f is defined as pgout
f
· c f · y− pgin

f
· y.

Competitive Equilibrium. We are now ready to define the notion of a competitive
equilibrium in markets with production.

Definition 4.6.2 (Competitive Equilibrium - Markets with Production). A competitive
equilibrium of an Arrow-Debreu market with linear utilities and linear production
functions is a triple (p∗,x∗,y∗) consisting of non-negative prices p∗, non-negative
bundles x∗ = (x∗1, . . . ,x

∗
n) and non-negative amounts of input goods y∗ = (y∗1, . . . ,y

∗
ℓ),

such that

1. p∗gout
f
· c f · y∗f − p∗

gin
f
· y∗f is maximized, for any firm f ∈ F. (firm profit

maximization)

2. ui(xi) is maximized for every consumer i ∈ N, subject to∑
j∈G p∗j · xi j ≤

∑
j∈G p∗j ·wi j+

∑
f∈F θi f · (p∗gout

f
· c f · y∗f − p∗

gin
f
· y∗f ). (bundle

optimality)

3. z∗j ≤ 0, and z∗j p
∗
j = 0, where z∗j =

∑
i∈N x∗i j+

∑
f∈F : gin

f = j y∗f −
∑

f∈F : gout
f = j c f ·y∗f −1,

for every good j ∈G. (market clearing)

Condition 1 requires that at the chosen set of prices p∗, each firm maximizes its profit,
given its production functions. Condition 2 requires that at the chosen set of prices
p∗, each consumer maximizes her utility subject to their budget constraints, where



176 Chapter 3. PPAD-membership via Convex Optimization

the budget consists of the amount earned from selling all the consumer’s endowments∑
j∈G p∗jwi j and the profit share

∑
f∈F θi f · (p∗gout

f
·c f ·y∗f − p∗

gin
f
·y∗f ) of the consumer from

the production of the firms. Finally, Condition 3 is the market clearing condition,
which requires that the total consumption of each good is at most the total production
plus the total endowment of the consumers, and supply equals demand for all goods
which are not priced at 0. As we detail later on in the section, we may in fact assume
without loss of generality that in any competitive equilibrium all the prices are positive,
and hence Condition 3 reduces to z∗j = 0 for all j ∈G. Note that in Condition 3 we
have used that

∑
∈N wi j = 1 for each good j ∈G.

Sufficiency Conditions. A competitive equilibrium as defined above exists for every
marketM, under some sufficiency conditions. The weakest known such conditions
are the ones provided by Maxfield [167] (see also [112]), which generalize the suffi-
ciency conditions of Eaves [80] that we used in Section 4.6.1. We use the following
conditions, which are very close to that of Maxfield [167].

1. For every good j ∈G, there exists some consumer i ∈ N that values the good
positively, i.e., ui j > 0.

2. For every consumer i ∈ N, there exists some good j ∈ G that the consumer
endows in a positive amount, i.e., wi j > 0.

3. Consider a graph GF(M) in which the nodes are the goods, and an edge ( j, j′)
has weight

α j j′ = max
f∈F : gout

f = j′,gin
f = j

c f ,

i.e., j′ can be produced from j at conversion rate α j j′ by some firm f ∈ F. Then,
for any cycle C = (g0,g1), (g1,g2) . . . , (gk−2,gk−1) of GF(M) the product of the
weights of the edges is less than 1, i.e.,

∏
e∈C αe < 1.

This condition is known as the no production out of nothing and no vacuous
production condition. Indeed, if

∏
e∈C αe > 1, then it would be possible to

increase the quantity of some good, without decreasing the quantity of any other
good. The case of

∏
e∈C αe = 1 refers to the case of vacuous production, which

is also disallowed in our model.14

4. Consider the economy graph GE(M) of the marketM in which the nodes are
the consumers and the firms, and

- there is an edge (i, i′) between consumer/firm-node i and consumer-node
i′ if i endows/produces a good j for which ui′ j > 0,

14Maxfield [167] technically allows for vacuous production. Vacuous production is disallowed in the
conditions imposed in the original setting of Arrow and Debreu [8] and is also disallowed by Garg and
Vazirani [112].



4.6. Competitive Equilibria in Arrow-Debreu Markets 177

- there is an edge (i, f ) between consumer/firm-node i and firm-node f , if i
endows/produces the raw good gin

f that f uses for production.

Then, GE(M) contains a strongly connected component containing all the
consumer-nodes. This condition generalizes that of the market non-reducibility
condition that we used in Section 4.6.1.

Remark 24 (Bounds on Production). Condition 3 above imposes a bound on the
total amount of a production of any firm f ∈ F in a competitive equilibrium. Note
that the production starts from finite endowments

∑
i∈N wi j = 1 for all j ∈G. Since

no firm operates at a loss at an equilibrium, any cycle of production would violate
Condition Item 3. Since there are no such cycles, production can take place along
chains. The longest such chain is obviously bounded by m, and the maximum
production of any firm can be bounded by some sufficienctly large global constant
Lc = (e.g., some constant such that Lc ≥ mm(max f c f +1)n. See also [112] for a very
similar argument. Looking ahead, this will allow us to impose “loose” upper bounds
on the production and consumption in the linear programs that we will devise, without
compromising the existence of a competitive equilibrium.

Optimality and bang-per-buck (BPB). Similarly to Section 4.6.1, the optimal
bundles of Condition 2 in Definition 4.6.2 are characterized by their bang-per-buck
(BPB). Given consumer i ∈ N and prices p, the BPB of a good j ∈ G is defined as
BPBi( j) = ui j

p j
. An optimal bundle only contains non-zero quantities of goods for

which the BPB is maximum, i.e., j ∈ argmax j∈G BPBi( j).

Bounds on the prices. Again, similarly to Section 4.6.1, we may assume without loss
of generality that all the prices are strictly positive, i.e., p j > 0 for all goods j ∈ G.
Indeed, not that for any good j, there is some consumer i with ui j > 0. Then its price
p j cannot be 0 in any equilibrium. If j is not being produced, then the demand of
consumer i cannot be satisfied. If its being produced, it has to be produced using an
input good of 0 price as well, for the production to be profitable. This in fact implies
that it has to be produced along a chain of goods with 0 price, contradicting the market
clearing condition. Very similar arguments have been made in the related literature,
e.g., see [112, 119]. Note that by these assumptions, the quantity BPBi( j) is well
defined for every j ∈G.

Remark 25 (Normalized Prices). Given that p j > 0 for all j ∈G, we can normalize
the prices to sum to 1 without loss of generality, i.e., we may assume that for every
good j ∈G, we have that

∑
j∈G p j = 1.

Again, in a similar manner to Section 4.6.1, we will use a parameter ε to capture the
fact that if the price p j for a good j ∈G is sufficiently smaller than the price p j′ for a
good j′ ∈G, then BPB( j) > BPB( j′). Specifically, we can compute ε > 0 such that

If p j ≤ ε · p j′ and ui j > 0 then BPBi( j) > BPBi( j′).



178 Chapter 3. PPAD-membership via Convex Optimization

Linear Program P1

minimize
∑
i∈N

∑
j∈G

p j

ui j
qi j

subject to
∑
j∈G

qi j =
∑
j∈G

wi j p j+
∑
f∈F

θi f · (r f − s f )

0 ≤ qi j ≤ (C ·L+1), ∀ j ∈G

Linear Program P2

maximize (c f · pgout
f
− pgin

f
) · s f

subject to 0 ≤ s f ≤ L · pgin
f

Figure 4.7: The linear programs P1 and P2 used to recover optimal bundles (left), and
optimal production (right) respectively.

Additionally, we can pick ε to be sufficiently small such that ε < wi j
m for all i ∈ N and

all j ∈G. Given ε, we will impose a stricter lower bound on the prices, which will be
useful later on: in particular, we will assume that for all j ∈G, p j ≥

εm

m .

Preprocessing

The high-level approach will again be to define a function F from a convex compact
domain D to itself, and show that a competitive equilibrium ofM can be recovered
from a fixed point of F. We will need to show that F can be computed by a linear
arithmetic circuit and hence, similarly to Section 4.6.1, we cannot work directly with
the allocations x and the quantities of input goods y as in Definition 4.6.2, as those
would need to be multiplied with the the prices p, which will also be inputs to the
circuit. To circumvent this, we will again apply a change of variables very similar to
Gale’s substitution (see Remark 22) and work with the expenditure variables as we
did in Section 4.6.1. In more detail, we will need such variables for the expenditure of
the consumers as before, but we will also need variables for the expenditure and the
revenue of the firms in production. The same variable change was used by Garg and
Vazirani [112].

We will then make use of our linear-OPT-gate to obtain the equilibrium quantities
as outcomes of linear programs and a feasibility program. In particular, linear pro-
grams P1 and P1 will be used to compute the optimal consumer and firm expenditures
respectively, and from those the optimal bundles x and optimal quantities of input
goods y will be recovered. The prices will be the outcome of a feasibility program Q.

Consumer expenditure. For the consumers, we will use the standard change of
variables that we used in Section 4.6.1 for exchange markets. Namely, we will let
qi j = xi j p j be the expenditure of consumer i on good j, i.e., how much money the
consumer spends on the good given an allocation xi j and a price p j.

Firm expenditure. For the firms, we will use a similar substitution for the case of
production. Namely, we will let



4.6. Competitive Equilibria in Arrow-Debreu Markets 179

- s f = pgin
f
· y f be the expenditure of firm f on its input good gin

f , i.e., the amount
of money spend on y f units of the input good.

- r f = pgout
f
· c f · y f be the revenue of firm f from its output good gout

f , i.e., the

amount of money earned from c f · y f units of the output good.15

By definition, the profit of firm f ∈ F is then exactly r f − s f .

The program P1 for optimal consumer expenditure. We can now write the linear
program P1, the solution of which will give us the optimal expenditures q∗i j for the
consumers; see the left-hand side of Figure 4.7. It now becomes evident why we need
to apply the aforementioned substitution: without it the quantity

∑
f∈F θi f · (pgout

f
· c f ·

y f − pgin
f
· y f ) would appear in the constraints of the linear program P1. The constants

pgin
f
, pgout

f
and y f are gate inputs for the linear program, and such a constraint cannot be

handled by our linear-OPT-gate. With the gate inputs r f and s f instead, the constraint
becomes linear and thus respects the conditions of the linear-OPT-gate. Note that the
linear program P1 is parameterized by two constants L and C. Intuitively, C ·L+1 is
an upper bound on the amount of money that consumer i can spend on good j. Recall
that there is a global upper bound Lc on the total possible production, and as a result
there are global bounds on the total possible expenditure for both production and
consumption. We will set L and C to be sufficiently large to not constrain these global
upper bound; the precise bounds are established in the proofs of Claim 7 and Claim 8.

Similarly to Section 4.6.1, in an optimal solution, the consumer is again only
spending on goods with minimum ratio p j

ui j
, i.e., with maximum BPB, therefore

purchasing an optimal bundle. At the same time, the subgradient of this objective
function can be computed by a linear pseudo-circuit.

The program P2 for optimal firm expenditure. We are now ready to define the
linear program for each firm f ∈ F, the optimal solution of which will be the optimal
expenditure s∗f of firm f on the amount y∗f of the input good that the firm uses for
production; see the right-hand side of Figure 4.7. The linear program P2 is also
parameterized by the constant L, which we mentioned above; intuitively, L imposes
an upper bound on the quantity of the input good that firm f can use, and will be large
enough to not constrain the global upper bound Lc on production.

Remark 26 (P2 ensures optimal production). At first glance, the objective function
of linear program P2 might seem a bit unintuitive: why are we multiplying the
expenditure with the profit? How do we guarantee that in the competitive equilibrium,
each firm maximizes its profit? To provide some intuition, we remark that linear
program P2 could equivalently be substituted by the following feasibility program
Q(P2):

15We remark that Garg and Vazirani [112] used r f to refer to the expenditure (spending) and s f to
refer to the revenue. We have switched those so that the variables names are more indicative of the
quantities that they represent.



180 Chapter 3. PPAD-membership via Convex Optimization

Feasibility Program Q(P2)

c f · pgout
f
− pgin

f
> 0⇒ s f = L · pgin

f

c f · pgout
f
− pgin

f
< 0⇒ s f = 0

0 ≤ s f ≤ L · pgin
f

Indeed, linear program P2 has a very simple form, and hence in an optimal solution

- the firm spends as much as possible on the input good (i.e., s f is maximum),
when it is profitable to produce, (i.e., when c f · pgout

f
− pgin

f
> 0),

- the firm spends as little as possible on the input good (i.e., s f is 0), when it is
not profitable to produce, (i.e., when c f · pgout

f
− pgin

f
< 0),

- the firm spends any feasible amount when producing or not producing yield the
same profit (i.e., when c f · pgout

f
− pgin

f
= 0).

We could have in fact used Q(P2) rather than P2, as it is a valid feasibility program
that can be solved using the linear-OPT-gate. However, we elected to go the the linear
program P2 instead, as it sets up the machinery that we will use in Section 4.6.3,
where the corresponding linear program will be more involved and cannot simply be
substituted by a feasibility program as above.

We remark that in a competitive equilibrium, we will establish that c f · pgout
f
− pgin

f
≤

0, and hence the firm will never be required to use exactly L units of gin
f for production.

Remark 27 (Calculating r f from s f ). Looking ahead, the terms r f which appear in
the constraints of linear program P1 (and also in the feasibility program Q, see below),
will not be inputs to the function F that we will construct to compute a competitive
equilibrium. These will need to be recovered from the values of s f , or more precisely,
the terms themselves will need to be substituted with expressions of the term s f . This
can be done as follows:

r f = s f +max{0,c f · pgout
f
− pgin

f
} ·L (4.28)

As we will only be concerned with the fixed point behavior of our function F, this
equation needs to correctly capture the revenue of firm f at a competitive equilibrium.
Indeed, given our discussion above, we have that:

- When c f · pgout
f
− pgin

f
< 0, the firm does not spend any amount on producing and

as a result it does not produce anything. In that case r∗f = s∗f = 0.

- When c f · pgout
f
− pgin

f
> 0, the firm spends an amount of s∗f = L · pgin

f
for L units

of the input good and obtains a revenue of r∗f = L · c f · pgout
f

.



4.6. Competitive Equilibria in Arrow-Debreu Markets 181

Feasibility Program Q

e j < e j′ ⇒ p j ≤ ε · p j′ , ∀ j, j′ ∈G

p j ≥
εm

m
, ∀ j ∈G∑

j∈G

p j = 1

Figure 4.8: The feasibility program Q used to find market-clearing prices.

- When c f · pgout
f
− pgin

f
= 0, the firm can spend any amount s∗f for production, and

we have r∗f = s∗f by definition.

In each case, Equation (4.28) correctly computes the value of r∗f from s∗f at a competi-
tive equilibrium.

Excess expenditure and the programQ. Similarly to Section 4.6.1, the equilibrium
prices p∗ will be obtained via a feasibility program Q. Before we define the program,
we introduce the notion of excess expenditure; the definition is very similar to the one
we used in Section 4.6.1, except that it now takes into account the expenditure/revenue
due to production. The excess expenditure e j of a good j ∈ G is defined as the
difference between the total expenditure of all consumers i ∈ N and firms f ∈ F for
that good and the price of the good plus the total revenue of firms f ∈ F from that
good, i.e.,

e j =
∑
i∈N

qi j+
∑

f∈F : gin
f = j

s f − p j−
∑

f∈F : gout
f = j

r f .

Then, at equilibrium prices p∗j we will have market clearing, i.e., e∗j = 0.

We are now ready to define our feasibility program Q; see Figure 4.8. The equilibrium
prices will be obtained as the output p∗ of Q.

Membership in PPAD: The proof of Theorem 4.6.2.

We will again develop the proof in three steps, namely (a) construction of the function
F and arguing that it can be represented by a linear arithmetic circuit containing
linear-OPT-gates, (b) showing that the linear-OPT-gate can compute all the necessary
components, and (c) arguing that a competitive equilibrium can be recovered from a
fixed point of F.

The function F. Given the above, we will define F : D→ D with domain

D =
{

p ∈ ∆m−1 : ∀ j ∈G, p j ≥
εm

m

}
× [0,C ·L+1]nm× [0,L]ℓ.



182 Chapter 3. PPAD-membership via Convex Optimization

An input to F is a triple (p̄, q̄, s̄) of prices, consumer expenditures and firm expendi-
tures, where q̄ = (q̄i j)i∈N, j∈G and s̄ = (s̄1, . . . s̄ℓ), and the output is another such triple
(p∗,q∗,s∗). The domain D is the one above since

∑
j∈G p̄ j = 1 (see Remark 25), and

by the upper bounds of C · L+ 1 and L set on the consumer expenditures in linear
program P1 and the firm expenditures in linear program P2 respectively.

Computation by the linear-OPT-gate. Next, we argue that the solutions to the lin-
ear programs P1 and P2 and the feasibility program Q of Figure 4.6 can be computed
by our linear-OPT-gate.

Lemma 23. Consider the linear programs P1, P2 of Figure 4.7, and the feasibility
program Q of Figure 4.8. An optimal solution to P1 and P2 can be computed by the
linear-OPT-gate. Q is solvable, and a solution can be computed by the linear-OPT-
gate.

Proof. For the linear program P1, the feasible domain [0,1]n is non-empty and
bounded. The gate inputs p j and s f appear only on the right-hand side of the con-
straints, and the subgradient of the objective function is linear, and hence can be given
by a linear pseudo-circuit. For the linear program P2, the feasible domain [0,L] is
non-empty and bounded, and the gate inputs pgin

f
only appear on the right-hand side of

the constraints. The subgradient of the objective function is linear, and hence can be
given by a linear pseudo-circuit. For the feasibility program Q, the arguments that it
is of the correct form and that it is solvable are identical to those of Lemma 21, noting
the updated definition of the expenditure e j. □

Arguing optimality and market clearing. To conclude the proof, what is left
to show is that a fixed point (p∗,q∗,s∗) of F indeed corresponds to a competitive
equilibrium. We argue that in the following lemma.

Lemma 24. Let (p∗,q∗,s∗) be a fixed point of F. Then the triple (p∗,x∗,y∗), where
x∗i j = q∗i j/p

∗
j and y∗f = s∗f /p

∗

gin
f

is a competitive equilibrium ofM.

Proof. By the form of the objective function of the linear program P1 of Figure 4.7,
each consumer spends money only on goods with maximum BPB and therefore the
allocation that she receives is only one of goods for which she has maximum BPB.
Therefore, the consumer receives an optimal bundle which satisfies Condition 2 of
definition in Definition 4.6.2. The allocation quantities x∗i j can straightforwardly be
recovered from the values of q∗i j. As we discussed earlier in Remark 26, an optimal
solution to linear program P2 also results in the optimal expenditure for the firms.

What remains to show is that p∗ is a vector of market-clearing prices. By the
definition of e j, this is equivalent to arguing that for all j ∈G, we have that e∗j = 0. We



4.6. Competitive Equilibria in Arrow-Debreu Markets 183

first argue that
∑

j∈G e∗j = 0. Indeed:

∑
j∈G

e∗j =
∑
j∈G


∑
i∈N

q∗i j− p∗j +
∑

f∈F : gin
f = j

s∗f −
∑

f∈F : gout
f = j

r∗f


=

∑
i∈N

∑
j∈G

q∗i j−
∑
j∈G

p∗j +
∑
f∈F

(s∗f − r∗f )

=
∑
j∈G

∑
i∈N

wi j p∗j −1+
∑
i∈N

∑
f∈F

θi f · (r∗f − s∗f )+
∑
f∈F

(s∗f − r∗f )

=
∑
j∈G

p∗j ·
∑
i∈N

wi j−1+
∑
f∈F

(r∗f − s∗f ) ·
∑
i∈N

θi f ·
∑
f∈F

(s∗f − r∗f )

=
∑
i∈N

wi j−1+
∑
f∈F

(r∗f − s∗f )+
∑
f∈F

(s∗f − r∗f )

= 0,

where in the calculations above we used:

- in Equation 2, that
∑

j∈G
∑

f∈F : gin
f = j s∗f =

∑
f∈F s∗j and that

∑
j∈G

∑
f∈F : gout

f = j r∗f =∑
f∈F r∗f ,

- in Equation 3, that
∑

i∈N
∑

j∈G q∗i j =
∑

i∈N
∑

j∈G wi j p∗j +
∑

i∈N
∑

f∈F θi f (r∗f − s∗f ),
which follows from the constraints of linear program P2 of Figure 4.7,

- in Equations 3 and 5, that
∑

j∈G p∗j = 1, which is without loss of generality, see
Remark 25,

- in Equation 5, that
∑

i∈N θi f = 1 for every f ∈ F, by definition, and

- in Equation 6, that
∑

i∈N wi j = 1, which is without loss of generality.

From the above, it suffices to prove that e∗j ≥ 0, for all j ∈G. Assume by contradiction
that there exists some j1 ∈G such that e∗j1 < 0; we will obtain a contradiction to the
strong connectivity of the economy graph of the market. We define the following
three sets:

- J = { j ∈G : e∗j ≤ e∗j′ , for all j′ ∈G}. In other words, J is the set of goods with
minimum excess expenditure.

- NJ = {i ∈ N : there exists j ∈ J such that ui j > 0}. In other words, NJ contains
the set of consumers that value at least one item in J positively.

- FJ = { f ∈ F : gin
f ∈ J}. In other words, FJ contains the set of firms for which the

input good is in J.



184 Chapter 3. PPAD-membership via Convex Optimization

Since e∗j1 < 0, by the definition of J we know that

for all j ∈ J, we have e∗j < 0. (4.29)

Also, since e∗j1 < 0, and
∑

j∈G e∗j = 0, there must exist some other good j2 such that
e∗j2 > 0. In particular, that implies that J is a strict subset of G, i.e., J ⊊G. We state
and prove the following claim.

Claim 7. For all i ∈ NJ and all j′ ∈G \ J, it holds that wi j′ = 0.

Proof. Assume by contradiction that there exists some consumer i0 ∈ NJ and some
good j′ ∈ G \ J such that wi0 j′ > 0. We will show that this implies that there exists
some jℓ ∈ J with e∗jℓ ≥ 0, contradicting Statement (4.29). Since p∗ is a solution to
feasibility program Q of Figure 4.8, we have that p∗j ≤ ε · p

∗
j′ , for every j ∈ J. Hence,

by choosing ε to be sufficiently small, we may lower-bound the budget of consumer i
by

wi0 j′ · p∗j′ ≥
wi0 j′

ε ·m
·
∑
j∈J

p∗j ≥ (C ·L+1)
∑
j∈J

p∗j

Since i0 ∈ NJ , by the choice of ε, there is at least one good g ∈ J such that BPBi0(g) >
BPBi0(g′), for all g′ ∈ G \ J, i.e., the consumer prefers to buy quantities of good g
rather than any good which is not in the set J. Let j ∈ J be a good with maximum BPB
for consumer i0. Since q∗i0 j is an optimal solution to linear program P1 of Figure 4.7,
it should be that q∗i0 j =C ·L+1, which implies that q∗i0 j ≥ (C ·L+1)p∗j . By substituting
that into the definition of the excess expenditure e∗j , we obtain:

e∗j =
∑
i∈N

q∗i j+
∑

f∈F : gin
f = j

s∗f − p∗j −
∑

f∈F : gout
f = j

r∗f

≥ q∗i0 j+
∑

f∈F : gin
f = j

s∗f − p∗j −
∑

f∈F : gout
f = j

r∗f

≥ (C ·L)p∗j −
∑

f∈F : gout
f = j

r∗f

Therefore, it suffices to show that
∑

f∈F : gout
f = j r∗f ≤ (C ·L)p∗j; in that case we will have

e∗j ≥ 0 and will obtain a contradiction, by setting j = jℓ. Now consider any firm f ∈ F.
Referencing also Remark 26, note that

- if c f · p∗gout
f
< p∗

gin
f
, then the firm does not produce anything, and we have r∗f = 0,

- if c f · p∗gout
f
> p∗

gin
f
, the firm produces L units of gout

f and we have r∗f = L ·c f · pgout
f

,

- if c f · p∗gout
f
> p∗

gin
f
, the firm may produce any amount and we have r∗f = s∗f ≤

L · c f · pgout
f

, since s∗f is a feasible solution to linear program P2 of Figure 4.7.



4.6. Competitive Equilibria in Arrow-Debreu Markets 185

By letting C ≥ |F| ·max f∈F c f , it follows that
∑

f∈F : gout
f = j r∗f ≤ (C ·L)p∗j and we obtain

a contradiction. □

Claim 7 establishes that a consumer in the set NJ cannot endow any good that is not
in the set J in a positive quantity. Since J ⊊G, this implies that NJ ⊊ N, since every
good is positively endowed by some consumer i ∈ N. Now consider any consumer
i ∈ NJ and any consumer i′ ∈ N \NJ or any firm f ∈ F \FJ . Claim 7 implies that there
cannot be an edge (i, i′) or an edge (i, f ) in the economy graph of the market. Indeed,
for (i, i′), notice that by the claim consumer i only endows positively goods that are in
J, but consumer i′ has value 0 for them by virtue of being in N \NJ . Similarly, for
(i, f ), f uses good gin

f ∈ G \ J by definition, but consumer i only positively endows
goods in J.

Next, we state and prove the following claim.

Claim 8. For any f ∈ FJ , it holds that gout
f ∈ J.

Proof. Assume by contradiction that there exists some firm f0 ∈ FJ with gout
f0
< J.

For convenience, let j = gout
f0

be that good, and let j0 = gin
f0

be the firm’s input good.
Note that by definition of FJ , we have that j0 ∈ J. By Statement (4.29), we have
that e∗j0 < 0. Since p∗ is a solution to feasibility program Q of Figure 4.8, we have
that p∗j0 ≤ ε · p

∗
j . The value of ε can be chosen sufficiently small for this to imply

that c f0 · p
∗
j − p∗j0 > 0. Since this is the multiplier of the variable s f0 in the objective

function of linear program P2, the optimality of s∗f0 as a solution to the linear program
implies that s∗f0 = L · p∗j0 . Using this we may bound the expenditure e∗j0 as follows:

e∗j0 ≥ L · p∗j0 −
∑

f∈F : gout
f = j0

r∗f − p∗j0

= (L−1)p∗j0 −
∑

f∈F : gout
f = j0

r∗f

where in the calculations above we used the obvious fact that
∑

f∈F : gin
f = j s∗f ≥ s f0 .

Obviously, if good j0 is not being produced by any firm f ∈ F, we can simply set
L ≥ 1 and obtain that e∗j0 ≥ 0, a contradiction, since r∗f = 0 for all firms that have j0 as
their output good. Now consider the sequence of goods j0, j1, . . . , jk, where good jℓ−1
is being produced (in positive quantity) by some firm fℓ using jℓ as the input good.
Note that by the discussion above, we may assume that k ≥ 1. Additionally, by the
“no production out of nothing and no vacuous production” feasibility condition of the
marketM, it also holds that k ≤m, as otherwise the graph GF(M) would have a cycle
in which the product of the weight of the edges would be at least 1.

Finally, we remark that for each ℓ ∈ {0,1, . . . ,k}, we have that jℓ ∈ J. To see this,
observe that from the conditional constraints of feasibility program Q of Figure 4.8,
the price for any good in J is at least ε times smaller than the price of any good in
G \ J. By taking ε to be small enough, we can guarantee that if a firm f is producing a
good gout

f ∈ J, then it must use a good gin
f ∈ J as input, otherwise s∗f would not be an



186 Chapter 3. PPAD-membership via Convex Optimization

optimal expenditure. Since j0 ∈ J by the definition of FJ , it must hold that jℓ ∈ J for
all ℓ ∈ {0,1, . . . ,k}.

We will argue by induction that for 1 ≤ ℓ′ ≤ k, we have:

r∗fℓ ≥

 L−1

|F|ℓ ·
∏ℓ−1

i=1 c fi

−

ℓ−1∑
i=1

1

|F|i ·
∏ℓ−1

j=ℓ−i+1 c f j

 · p∗jℓ−1
(4.30)

With this at hand, at step k we will have

e∗jk ≥

 L−1

c fk · |F|k ·
∏k−1

i=1 c fi

−

k−1∑
i=1

1

c fk · |F|i ·
∏k−1

j=k−i+1 c f j

−1

 p∗jk −
∑

f∈F : gout
f = jk

r∗f

Since k is the last index in the sequence, i.e, good jk−1 is the last to be produced, we
know that r∗f = 0 for any firm f that has jk as its output good. From the above, we
have that

e∗jk ≥

 L−1

c fk · |F|k ·
∏k−1

i=1 c fi

−

k−1∑
i=1

1

c fk · |F|i ·
∏k−1

j=k−i+1 c f j

−1

 p∗jk

By picking L to be sufficiently large, e.g., large enough for the following to hold

L
(|F| ·max f c f )m −

m
(min f c f )m ≥ 0,

we obtain a contradiction. We compute the proof below by proving Inequality (4.30).

Base Case: Let ℓ = 1, and consider firm f1 that produces good j0 from good j1. It
follows that in the objective function of linear program P2 of Figure 4.7 corresponding
to firm f1, the multiplier of the expenditure s f1 is non-negative, i.e., c f1 · p

∗
j0
− p j∗1 ≥ 0.

There are two cases:

- If c f1 · p
∗
j0
− p j∗1 > 0, then s∗f1 = L · p∗j1 .

- If c f1 · p
∗
j0
− p j∗1 = 0, then s∗f1 = r∗f1 ≥

L−1
|F| · p

∗
j0

where the last inequality follows from the fact that e j0 < 0, by Statement (4.29). In
either case, in the second case using the fact that p∗j0 ≥ p∗j1/c f1 , we can bound the
expenditure e∗j1 as follows:

0 > e∗j1 ≥
(

L−1
|F| · c f1

−1
)
· p∗j1 −

∑
f∈F : gout

f = j1

r∗f

From this, we get that

r∗f2 ≥
(

L−1
|F|2 · c f1

−
1
|F|

)
· p∗j1

Induction Step: Consider some step ℓ and consider firm fℓ that produces good
jℓ−1 from good jℓ. It follows that in the objective function of linear program P2
of Figure 4.7 corresponding to firm fℓ, the multiplier of the expenditure s fℓ is non-
negative, i.e., c fℓ · p

∗
jℓ−1
− p j∗

ℓ
≥ 0. There are two cases:



4.6. Competitive Equilibria in Arrow-Debreu Markets 187

- If c fℓ · p
∗
jℓ−1
− p j∗

ℓ
> 0, then s∗fℓ = L · p∗jℓ .

- If c fℓ · p
∗
jℓ−1
− p j∗

ℓ
= 0, then

s∗fℓ = r∗fℓ ≥

 L−1

|F|ℓ ·
∏ℓ−1

i=1 c fi

−

ℓ−1∑
i=1

1

|F|i ·
∏ℓ−1

j=ℓ−i+1 c f j

 · p∗jℓ−1

where the inequality in the second case follows from the induction hypothesis. In
either case, in the second case using the fact that p∗jℓ−1

≥ p∗jℓ/c fℓ , we can bound the
expenditure e∗jℓ as follows:

0 > e∗jℓ ≥

 L−1

|F|ℓ ·
∏ℓ

i=1 c fi

−

ℓ−1∑
i=1

1

|F|i ·
∏ℓ

j=ℓ−i+1 c f j

−1

 · p∗jℓ − ∑
f∈F : gout

f = j1

r∗f

From this, we obtain that

r∗fℓ+1
≥

 L−1

|F|ℓ+1 ·
∏ℓ

i=1 c fi

−

ℓ∑
i=1

1

|F|i ·
∏ℓ

j=ℓ−i+1 c f j

 · p∗jℓ
□

Claim 8 implies that for any firm f ∈ FJ , there cannot be an edge to any consumer
i ∈ N \NJ or any firm f ′ ∈ F \FJ in the economy graph. Indeed, for an edge ( f , i), the
claim asserts that the production good gout

f of f will be in the set J, whereas consumer
i only values goods in the set G \ J positively, by virtue of being in N \NJ . Similarly,
for an edge ( f , f ′), firm f produces the good gout

f ∈ J, whereas the input good gin
f ′ of

firm f ′ is in G \ J, by virtue of f ′ being in F \FJ .

From the two paragraphs succeeding Claim 7 and Claim 8, NJ and N \NJ are two
strongly connected components in the economy graph of the market, contradicting the
sufficiency condition requiring that in the economy graph there is a strongly connected
component containing all the consumer-nodes. This completes the proof. □

4.6.3 Markets with Leontief-free Utilities and Productions

In this section we show how our linear-OPT-gate can be used to obtain the PPAD-
membership of finding competitive equilibria in Arrow-Debreu markets with Leontief-
free utilities and productions. Recall that, as we mentioned in the beginning of the
section, this is the largest class of functions for which membership in PPAD (and
hence rationality of solutions) has been proven [119]. In the following section we
define another class of functions which generalizes all previous ones, but its generality
is incomparable to the Leontief-free case. Our main theorem of the section is the
following.

Theorem 4.6.3. Computing a competitive equilibrium of an Arrow-Debreu market
with Leontief-free utilities and productions is in PPAD.



188 Chapter 3. PPAD-membership via Convex Optimization

Our proof in this section provides a significant simplification over that of Garg et al.
[119]. To keep the section as self-contained as possible, we define these markets in
detail here, rather than explain how they generalize the markets of Section 4.6.2, but
we make appropriate references to that section.

Markets with Production. In an Arrow-Debreu market with productionM, we
have a set N of consumers, a set G of infinitely divisible goods, and a set F of firms.
Let n = |N|, m = |G|, and ℓ = |F|. We will typically use index i to refer to consumers, j
or g to refer to goods and f to refer to firms. Each consumer brings an endowment
wi = (wi1, . . . ,wim) to the market, with wi j ≥ 0 for all i ∈ N and j ∈G. We may assume
without loss of generality that for every good j, we have

∑
i∈N wi j = 1, i.e., that the

total endowment of each good is 1. We will use xi = (xi1, . . . , xim) to denote the vector
of quantities of goods allocated to consumer i ∈ N in M, and we will call it the
bundle of consumer i. Let x = (x1, . . . ,xn) be the vector of such bundles. We will use
p = (p1, . . . , pm) to denote the vector of prices inM, one for each good j ∈G. Prices
are non-negative, so p j ≥ 0 for all j ∈ G. Given a vector of prices p, the budget of
consumer i ∈ N is defined as

∑
j∈G wi j p j; intuitively, this is the amount of money that

the consumer acquires by selling her endowment at prices p.

Utility Functions. Every consumer has a utility function ui : Rm
≥0→ R≥0 mapping

a bundle xi to a non-negative real number. In this section, we consider Leontief-free
utilities. Such utility functions are specified by a finite list Ki of tranches {si

k}k∈Ki .
16

Associated with every tranche si
k is a number Li

k ∈ R≥0∪{∞}, which is an upper bound
for the total utility that can be accrued from this tranche, and for every j ∈G there is a
number ui

jk ≥ 0, which is the rate at which good j provides utility for consumer i on
tranche k. That is, the utility consumer i receives from the bundle xi is calculated by
solving the following linear program.

maximize
∑
k∈Ki

∑
j∈G

ui
jkxi

jk

subject to
∑
j∈G

ui
jkxi

jk ≤ Li
k, for all k ∈ Ki∑

k∈Ki

xi
jk ≤ xi

j, for all j ∈ G

Note that the class of linear utilities that we considered in Sections 4.6.1 and 4.6.2 is a
special case of this construction where every tranche is unbounded and can accrue
utility from only a single good. In the case of SPLC utilities which we mentioned in
the beginning of Section 4.6, the restriction that the tranches must be unbounded is
dropped.

16Garg et al. [119] us the term “segments” to refer to these “portions” of the utility function. We use
the term “segments” for the parts of the SSPLC functions in Section 4.6.4 which has a different meaning,
so we adopt the term “tranche” here instead.



4.6. Competitive Equilibria in Arrow-Debreu Markets 189

Firm Shares. Each consumer i ∈ N has a share θi f ∈ [0,1] of the profit of each firm
f ∈ F. We assume that the profits are entirely shared among the consumers, i.e., for
every firm f ∈ F, we have that

∑
i∈N θi f = 1.

Production functions. Every firm f has a Leontief-free production function. Here
we will use slightly different terminology from Section 4.6.2, following the one used
by Garg et al. [119]. We will say that each firm f has a partitioning of the set of goods
G into raw goods and produced goods, i.e., G = R f ⊔P f . The firm then first converts
the raw goods into raw units, and these in turn are converted into produced goods.

More precisely, the production function of firm f is specified by a list of tranches
{s f

k }k∈K f . To each of these tranches we have the following associated quantities:

- a number L f
k ∈ R≥0 ∪ {∞}, which is a bound on how many raw units can be

produced on this tranche, for every raw good j ∈ R f ,k ⊆ R f ,

- a number α f
jk > 0, which denotes the rate at which good j can be converted into

raw units on this tranche (i.e., the raw-good-to-raw-unit conversion rate), and,

- for every produced good j′ ∈ P f ,k ⊆ P f , a number β f
j′k > 0, which denotes the

rate at which raw units can be converted into good j′ on this tranche (i.e„ the
raw-unit-to-produced-good conversion rate).

Let y f = (y j) j∈G be the production vector of firm f , i.e., the vector of amounts of raw
goods and produced goods involved in its production function.

Remark 28 (One tranche for each firm). Note that whether a firm produces on a
tranche k is independent of whether it produces on another tranche k′. Therefore, to
simplify the exposition, we may assume that the production function of any firm has
only one tranche. If a firm’s production function has multiple tranche, then we may
simply “split” the firm into one firm for every tranche of the function, and allocate to
the consumers shares in the new firms that are identical to the shares they had in the
original firm. This change will not impact the production of the firms or the budget
constraints of the consumers (see Definition 4.6.4 below). Given this, we can write α f

j

and β f
j′ for the conversion rate of firm f from quantities of the raw good j to raw units,

and for the conversion rate of the firm from raw units to quantities of the produced
good j′, respectively. Similarly, we can also write L f for the bound on the number of
raw units that the firm can produce on its tranche.

Next, we define the optimal production for firms and the optimal consumption for
consumers. We start from the former.

Optimal Production. Consider firm f , and let p j and p′j be the prices of goods j
and j′ in the market respectively. Using some raw good j ∈ R f , the firm can produce
1 raw unit on its tranche at a cost of p j/α

f
j . For any produced good j′ ∈ P f , the firm



190 Chapter 3. PPAD-membership via Convex Optimization

can use 1 raw unit to produce β f
j′ units of good j′, resulting in a revenue of p j′β

f
j′k.

With this in mind, we define the cost-per-unit (cpu) and revenue-per-unit (rpu) of firm
f as follows:

cpu f (p) =min
j∈R f

p j

α
f
j

and rpu f (p) = max
j′∈P f

p j′β
f
j′

Intuitively, the cpu of a firm is the minimum cost that it incurs from converting any of
its raw goods into raw units, and the rpu is the maximum revenue that it obtains by
converting raw units into any of its produced goods.

The profit-per-unit (ppu) of firm f is then defined as

ppu f (p) = rpu f (p)− cpu f (p)

We can now define a firm’s optimal production.

Definition 4.6.3 (Optimal Production). Given the production vector y f of firm f , a
production for the firm is optimal if the following conditions are satisfied:

1.
∑

j′∈P f y f
j′/β

f
j′ ≤

∑
j∈R f α

f
j y

f
j ≤ L f . (feasibility)

2. If ppu f (p) < 0, then y f = 0. (zero unprofitable production)

3. If ppu f (p) > 0, then
∑

j∈R f α
f
j y

f
j = L f . (maximum profitable production of raw

units)

4. If rpu f (p) > 0, then
∑

j′∈P f y f
j′/β

f
j′ =

∑
j∈R f α

f
j y

f
j . (maximum usage of raw

units)

5. For every j ∈ R f , if y f
j > 0, then p j/α

f
j = cpu f (p). (only use cost-optimal raw

goods)

6. For every j′ ∈ P f , if y f
j′ > 0, then p j′β

f
j′ = rpu f (p). (only produce

revenue-optimal produced goods)

Before we proceed, with offer the following remark with respect to Condition Item 3
above.

Remark 29 (Maximum Profitable Production). In Definition 4.6.3, when L f =∞,
Condition 3 stipulates that the firm should use an infite amount of raw goods for
production. As we explained in the previous section (see Remark 24) and as we we
will reiterate in the context of the markets of this section in Remark 30 below, in a
competitive equilibrium (see Definition 4.6.4) there is a finite, global upper bound to
how much a firm can produce. In turn, this also imposes a global upper bound on how
much a consumer can consume. Looking ahead, in the linear programs that we will
construct, we will use some upper bounds on production and consumption, which will
be sufficiently large to not constrain the aforementioned global upper bounds. For the



4.6. Competitive Equilibria in Arrow-Debreu Markets 191

case of production, that bound will be represented by L, and then, Item 3 should be
interpreted as

If ppu f (p) > 0, then
∑
j∈R f

α
f
j y

f
j =min{L f ,L},

where L will be guaranteed to be large enough such that min{L f ,L} = L only when
L f =∞.

Optimal Consumption and bang-per-buck (BPB). For the consumers, the optimal
consumption amounts to them utilizing tranches in order of decreasing bang-per-buck.
Given consumer i ∈ N and prices p, the BPB of a pair ( j,k) consisting of a good j ∈G
and a tranche k ∈ Ki is defined as BPBi( j,k) = ui

jk/p j. In particular, BPBi( j,k) has a
maximum BPB over pairs ( j,k) ∈G×Ki, then consumer i will buy quantities of good
j, and “allocate” the good to tranche k until the upper bound Li

k on the utility that
the consumer gain from this tranche has been met. This process is repeated until the
budget of the consumer is exhausted.

Competitive Equilibrium. We are now ready to define the notion of a competitive
equilibrium in markets with Leontief-free utilities and productions.

Definition 4.6.4 (Competitive Equilibrium - Markets with Leontief-free Utilites and
Productions). A competitive equilibrium of an Arrow-Debreu market with Leontief-
free utilities and Leontief-free productions is a tuple (p̄, x̄, ȳ) consisting of non-negative
prices p̄, non-negative bundles x̄i for i ∈ N , and non-negative amounts of goods
ȳ f ∈ R

|R f∪P f |

≥0 for f ∈ F satisfying the following conditions:

1. For every firm f ∈ F, ȳ f is an optimal production vector for f . (firm profit
maximization)

2. For every consumer i ∈ N , x̄i is an optimal consumption vector for i under the
budget constraint

∑
j∈G

∑
k∈Ki p̄ j · x̄i

jk ≤
∑

j∈G wi
j p̄ j+

∑
f∈F θ

i
f

(∑
j∈P f p̄ j · ȳ

f
j −

∑
j∈R f p̄ j · ȳ

f
j

)
,

(bundle optimality)

3. z̄ j ≤ 0, and z̄ j · p̄ j, where for every good j ∈ G,

z̄ j =
∑

i∈N
∑

k∈Ki x̄i
jk +

∑
f∈F : j∈R f ȳ f

j −
∑

f∈F : j∈P f ȳ f
j −1 (market clearing)

Condition 1 requires that at the chosen set of prices p̄, each firm maximizes its profit,
given its production functions. Condition 2 requires that at the chosen set of prices p̄,
each consumer maximizes her utility subject to their budget constraints, where the
budget consists of the amount earned from selling all the consumer’s endowments
and the profit share of the consumer from the production of the firms on the different
tranches. Finally, Condition 3 is the market clearing condition, which requires that
the total consumption of each good is at most the total production plus the total
endowment of the consumers, and supply equals demand for all goods which are
not priced at 0. Similarly to Section 4.6.2, and as we explain later, we may in fact



192 Chapter 3. PPAD-membership via Convex Optimization

assume without loss of generality that in any competitive equilibrium all the prices are
positive, and hence Condition 3 reduces to z̄ j = 0 for all j ∈G. Note that in Condition 3
we have used that

∑
∈N wi j = 1 for each good j ∈G.

Sufficiency Conditions. A competitive equilibrium as defined above exists for every
marketM, under some sufficiency conditions. Similarly to Section 4.6.2, we will
use the set of conditions used by Maxfield [167], also used in the series of papers on
market equilibria that we mentioned in the beginning of Section 4.6.

1. For every consumer i ∈ N, there exists some good j ∈ G that the consumer
endows in a positive amount, i.e., wi j > 0.

2. We will say that a consumer i ∈ N is nonsatiated for good j ∈G if there exists
some tranche k such that ui

jk > 0 and Li
k =∞. Following Garg et al. [119], we

will assume that for any good j ∈G, there exists some consumer i ∈ N that is
nonsatiated with respect to j. Similarly, a firm is nonsatiated for good j ∈G if
j ∈ R f and L f =∞.

We remark that this condition naturally generalizes the condition that “for any
good there exists some consumer with positive utility for that good”, which we
used in Sections 4.6.1 and 4.6.2.

3. Consider a graph GF(M) in which the nodes are the goods, and an edge ( j, j′)
has weight

w j j′ = max
f∈F : j∈R f∧ j′∈P f

α
f
j ·b
′ f
j ,

If the set is empty, the weight is defined to be 0.

The above weight captures the fact that j′ can be produced from j, via the
intermediate raw units, at combined conversion rate w j j′ by some firm f ∈ F.
Then, for any cycle C = (g0,g1), (g1,g2) . . . , (gk−2,gk−1) of GF(M) the product
of the weights of the edges is less than 1, i.e.,

∏
e∈C αe < 1.

This condition is known as the no production out of nothing and no vacuous
production condition. Indeed, if

∏
e∈C αe > 1, then it would be possible to

increase the quantity of some good, without decreasing the quantity of any other
good. The case of

∏
e∈C αe = 1 refers to the case of vacuous production, which

is also disallowed in our model, similarly to the related works. e.g., see Garg
and Vazirani [112].

4. Consider the economy graph GE(M) of the marketM in which the nodes are
the consumers and the firms, and

- there is an edge (i, i′) between consumer-node i and consumer/firm-node
i′ if i endows a good j for which i′ is nonsatiated.

- there is an edge ( f , i) between firm-node f and consumer/firm-node i, if
L f =∞ and there exists some good j ∈ P f for which i is nonsatiated.



4.6. Competitive Equilibria in Arrow-Debreu Markets 193

Then, GE(M) contains a strongly connected component containing all the
consumer-nodes. This condition generalizes the corresponding strong connec-
tivity condition that we used in Section 4.6.2.

Remark 30 (Bounds on Production). Very similarly to Section 4.6.2, we remark
that there are some inherent bounds on how much a firm can produce on a tranche,
even if for that segment we have L f = ∞. The idea here is very similar to that of
Remark 24; given that we start from a finite set of endowed goods, the absence of
cycles of profitable production in an equilibrium restricts the production to take place
in chains of length bounded by m. This implies a global upper bound Lc on how many
raw goods can be used or produced. Again, looking ahead, this will allow us to impose
“loose” upper bounds on the production and consumption in the linear programs that
we will devise, without compromising the existence of a competitive equilibrium.

Bounds on the prices. Again, similarly to Section 4.6.2, we may assume without loss
of generality that all the prices are strictly positive, i.e., p j > 0 for all goods j ∈ G.
The argument to achieve this is very similar to the one used in Section 4.6.2, and has
also been established in [119]. Note that by this assumption, the quantity BPBi( j,k) is
well-defined for every j ∈G and k ∈ Ki.

Remark 31 (Normalized Prices). Given that p j > 0 for all j ∈G, we can normalize
the prices to sum to 1 without loss of generality, i.e., we may assume that for every
good j ∈G, we have that

∑
j∈G p j = 1.

Again, in a similar manner to Sections 4.6.1 and 4.6.2, we will use a parameter ε to
capture the fact that if the price p j for a good j ∈G is sufficiently smaller than the price
p j′ for a good j′ ∈G, then BPB( j,k) > BPB( j′,k′), for any k,k′ ∈ Ki. Specifically, we
can compute ε > 0 such that

If p j ≤ ε · p j′ and ui
jk > 0 then BPBi( j,k) > BPBi( j′,k′).

Additionally, we can pick ε to be sufficiently small such that ε < wi j
m for all i ∈ N and

all j ∈G. Given ε, we will impose a stricter lower bound on the prices, which will be
useful later on: in particular, we will assume that for all j ∈G, p j ≥

εm

m .

Preprocessing

The approach that we will take for the proof is very similar to the one that we used
in Section 4.6.2. The main difference comes from the fact that we now need to
consider pairs of (goods, tranches) rather than just goods. This mainly complicates
notation, but the type of arguments that we make are very much along the same lines
as in the previous section. Again, we employ a standard variable change (see Gale’s
Substitution in Remark 22) to work with expenditures for the consumers and the firms,
rather than with quantities of goods. This is to avoid multiplications of parameters
which will be input to the circuit that we will construct, in particular the prices p
and the quantities xi

jk, and yi
jk in the bundle optimality condition of the competitive

equilibrium in Definition 4.6.4.



194 Chapter 3. PPAD-membership via Convex Optimization

Linear Program Pcon

minimize
∑
j∈G

∑
k∈Ki

p j

ui
jk

·qi
jk

subject to
∑
j∈G

qi
jk ≤min{Li

k,CL+1} ·min
j

p j

ui
jk

, ∀k ∈ Ki

∑
j∈G

∑
k∈Ki

qi
jk =

∑
j∈G

wi
j p j+

∑
f∈F

θif ·

∑
j∈P f

r f
j −

∑
j∈R f

s f
j


qi

jk ≥ 0, ∀ j ∈ G, ∀k ∈ Ki

Figure 4.9: The linear program Pcon for the optimal expenditures in consumption.
Note that CL+1 will be chosen to be large enough such that min{Li

k,CL+1} =CL+1
only when Li

k =∞.

Consumer expenditure. For the consumers, we will use the following standard
change of variables. We will let qi

jk = xi
jk · p j be the expenditure of consumer i on

good j and tranche k, i.e., how much money the consumer spends on the good at a
given tranche given an allocation xi

jk and a price p j.

Firm expenditure. For the firms, we will use a similar substitution for the case of
production. Namely, we will let

- For j ∈ R f , let s f
j = p j · y

f
j be the expenditure of firm f on its raw good j on

all tranches, i.e., the amount of money spend on y f units of the raw good j, at
given set of prices p.

Let s f =
(
s f

j

)
j∈R f

and let s =
(
s f

)
f∈F

.

- For j ∈ P f , let r f
j = p j · y

f
j be the revenue of firm f from its produced good j

on all tranches, i.e., the amount of money earned from y f units of the produced
good j, at a given set of prices p.

Let r f =
(
r f

j

)
j∈P f

and let r =
(
r f

)
f∈F

.

The program Pcon for optimal consumer expenditure. We are now ready to write
the linear program P1, the solution of which will give us the optimal expenditures for
the consumers, see Figure 4.9. In the linear program, notice the quantity min{Li

k,CL+
1}. CL+1 will be chosen to be large enough, so that min{Li

k,CL+1} = CL+1 only
when Li

k =∞. This is to capture the cases in which the consumer should be allowed
to spend an infinite amount of money on goods on a tranche, since there is upper
bound on the utility the she can accrue from this tranche. Still, we remark again (see
Remark 30) that there are inherent bounds on how much a consumer can spend, which
do not come from Li

k but rather from the inherent global upper bounds on production.



4.6. Competitive Equilibria in Arrow-Debreu Markets 195

In particular, it holds that
∑

j∈G ui
jkxi

jk ≤ Lp, where Lp is a global upper bound on the
consumption resulting from the global upper bound Lc on the production.

In previous sections, it was straightforward to see that the from the optimal
solution qi of the corresponding linear program, one could recover the optimal bundle
xi of consumer i. Here, we prove that in a simple lemma below. Note that we only
need to guarantee that the linear program computes the optimal expenditures correctly
at a competitive equilibrium, and so we can use the fact that

∑
j∈G ui

jkxi
jk ≤ Lp.

Lemma 25. Suppose that qi is an optimal solution to linear program Pcon of Fig-
ure 4.9, and let Let xi

jk = qi
jk/p j for all j ∈G and k ∈ Ki. Then, the resulting bundle xi

is an optimal consumption vector for consumer i at a competitive equilibrium of the
market.

Proof. First note that the linear program is feasible, because by the strong connectivity
of the economy graph GE(M), i is non-satiated with respect to some good, which
means that she can spend its entire budget on this good. By construction, consumer
i will spend money in order of increasing BPBi( j,k), establishing the optimality of
the resulting bundle xi. It remains to show that the feasibility constraints are satisfied.
Note that if xi

jk > 0, then qi
jk > 0, establishing that p j/ui

jk =min j′ p j′/ui
j′k. Hence, for

any i ∈G an k ∈ Ki, we have that

∑
j∈G

ui
jkxi

jk =
∑
j∈G

ui
jk

p j

qi
jk =

1
min
j′∈G

p j′/ui
j′k

∑
j∈G

qi
jk

≤
1

min
j′∈G

p j′/ui
j′k

·min{Li
k,CL+1} ·min

j′∈G

p j′

ui
j′k

=min{Li
k,CL+1}

This completes the proof of the lemma, since CL+1 will be chosen to be larger than
any finite Li

k and larger than Lp. □

The programs Pprod1 and Pprod2 for optimal firm expenditure. In Section 4.6.2
we devised a single linear program for the optimal production of the firms. Here, since
we have variables for both the expenditures on raw goods and the expenditures on
produced goods, we will devise two linear programs, one for each case. Those can be
seen in Figure 4.10. Again, in Section 4.6.2 the corresponding linear program almost
straightforwardly captured the optimal production of the firm which it represented;
here we argue that this is the case with another simple lemma.

Lemma 26. Suppose that s f and r f are solutions to the linear programs Pprod1

and Pprod2 of Figure 4.10 respectively. Let y f
j = s f

j /p j for j ∈ R f and y f
j′ = r f

j′/p j′

for j′ ∈ P f . Then y f is an optimal production vector for firm f at a competitive
equilibrium of the market.

Proof. We will argue that y f satisfies all the conditions of Definition 4.6.3. Since y f

consists of optimal solutions to the two linear programs, Condition 5 and Condition 6



196 Chapter 3. PPAD-membership via Convex Optimization

Linear Program Pprod1

maximize
∑
j∈R f

rpu f (p)−
p j

α
f
j

 s f
j

subject to
∑
j∈R f

s f
j ≤min{L f ,L} · cpu f (p)

s f
j ≥ 0, ∀ j ∈ R f

Linear Program Pprod2

maximize
∑
j′∈P f

(
p j′β

f
j′
)
· r f

j′

subject to
∑
j′∈P f

r f
j′ =

∑
j∈R f

s f
j +B

B =max{0, rpu f (p)− cpu f (p)} ·min{L f ,L}

r f
j′ ≥ 0, ∀ j′ ∈ P f

Figure 4.10: The linear programs Pprod1 and Pprod2 for the optimal expenditures in
production, for the raw goods (left) and for the produced goods (right). Note that L
will be sufficiently large such that min{L f ,L} = L will only hold when L f =∞, in both
programs. Also note that the variable B is only used for notational convenience.

are clearly satisfied. Now, suppose that ppu f (p) < 0. This implies that all the coeffi-
cients of linear program Pprod1 are negative, meaning that s f

j = 0 for all j ∈ R f . By the

constraints of linear program Pprod1, it follows that also r f
j = 0 for all j ∈ P f . Hence

y f = 0, and Condition 2 also holds. If ppu f (p) > 0, then at least one coefficient of
linear program Pprod1 is positive, implying that

∑
j∈R f s f

j =min{L f ,L} · cpu f (p). Also,

if s f
j > 0, then p j/α

f
j = cpu f (p). Hence, we have that

∑
j∈R f

α
f
j y

f
j =

∑
j∈R f

α
f
j

p j
· s f

j =
1

cpu f (p)

∑
j∈R f

s f
j =

1
cpu f (p)

·min{L f ,L} · cpu f (p) =min{L f ,L}

and hence Condition 3 is satisfied (see also Remark 29). What remains is to argue is
that y f satisfied Condition Item 1 of Definition 4.6.3, i.e. that it is a feasible production
vector. If ppu f (p) < 0, then y f = 0 is feasible. If ppu f (p) > 0, then it can be verified
that

∑
j∈R f α

f
j y

f
j =

∑
j∈P f y f

j /β
f
j . Finally, if ppu f (p) = 0, then

∑
j′∈P f

y f
j′

β
f
j′
=

∑
j′∈P f

r f
j′

p j′ ·β
f
j′
=

∑
j′∈P f

r f
j′

rpu f (p)
=

∑
j∈R f

s f
j

cpu f (p)
=

∑
j∈R f

α
f
j s f

j

p j
=

∑
j∈R f

α
f
j y

f
j .

This establishes all of the properties of Definition 4.6.3. Finally, let Ĝ = { j ∈
R f : rpu(p)− p j/α

f
j > 0}. The corresponding constraint of linear program Pprod1

stipulates that
∑

j∈Ĝ s f
j =min{L f ,L} · cpu f (p). Our proof will establish that in a com-

petitive equilibrium, if L f > Lc (the global upper bound on production), then Ĝ does
not contain any goods. This is to establish that the optimality of s f

j does not impose
any artificial constraints on the expenditure on raw goods due to the constraints of the
linear program. □



4.6. Competitive Equilibria in Arrow-Debreu Markets 197

Feasibility Program Q

e j < e j′ ⇒ p j ≤ ε · p j′ , ∀ j, j′ ∈G

p j ≥
εm

m
, ∀ j ∈G∑

j∈G

p j = 1

Figure 4.11: The feasibility program Q used to find market-clearing prices.

Excess expenditure and the program Q. Similarly to Sections 4.6.1 and 4.6.2, the
equilibrium prices will be obtained via a feasibility program Q. Before we define the
program, we introduce the notion of excess expenditure; the definition is very similar
to the one we used in previous sections. The excess expenditure e j of a good j ∈G
is defined as the difference between the total expenditure of all consumers i ∈ N and
firms f ∈ F for that good and the price of the good plus the total revenue of firms
f ∈ F from that good, i.e.,

e j =
∑
i∈N

∑
k∈Ki

qi
jk +

∑
f∈F : j∈R f

s f
j − p j−

∑
f∈F : j∈P f

r f
j .

Then, at equilibrium prices p̄ we will have market clearing, i.e., ē j = 0, for all j ∈G.

We are now ready to define our feasibility program Q; see Figure 4.11. The program
looks in fact identical with that which we used in the previous sections; the only
difference being the updated definition of the expenditures e j. The equilibrium prices
will be obtained as the output p̄ of Q.

Membership in PPAD: The proof of Theorem 4.6.3

We will again develop the proof in three steps, namely (a) construction of the function
F and arguing that it can be represented by a linear arithmetic circuit containing
linear-OPT-gates, (b) showing that the linear-OPT-gate can compute all the necessary
components, and (c) arguing that a competitive equilibrium can be recovered from a
fixed point of F.

The function F. Given the above, we will define F : D→ D with domain

D =
{

p ∈ ∆m−1 : ∀ j ∈G, p j ≥
εm

m

}
×i∈N

(
[0,C ·L+1]m|Ki |

)
× [0,L]ℓm.

An input to F is a tuple (p̂, q̂, ŝ, r̂) of prices, consumer expenditures and firm expendi-
tures for raw goods and produced goods, and the output is another such tuple (p̄, q̄, s̄, r̄).
The domain D is the one above since

∑
j∈G p̂ j = 1 (see Remark 31), and by the upper

bounds of C ·L+1 and L imposed on the maximum expenditures for consumption and
production respectively.



198 Chapter 3. PPAD-membership via Convex Optimization

Computation by the linear-OPT-gate. Next, we argue that the solutions to the
linear programsPcon of Figure 4.9, Pprod1 andPprod2 of Figure 4.10, and the feasibility
program Q of Figure 4.11 can be computed by our linear-OPT-gate.

Lemma 27. Consider the linear program Pcon of Figure 4.9, the linear programs
Pprod1 and Pprod2 of Figure 4.10, and the feasibility program Q of Figure 4.11. An
optimal solution to Pcon, to Pprod1 and to Pprod2 can be computed by the linear-OPT-
gate. Q is solvable, and a solution can be computed by the linear-OPT-gate.

Proof. The proof is very similar to that of Lemma 23. For all of the linear programs,
the feasibly domains non-empty and bounded. The gate inputs appear only on the right-
hand side of the constraints: these are the prices p̂ j, and the production expenditures
ŝ f

j and r̂ f
j for linear program Pcon, the prices p̂ j (as part of cpu f (p̂)) for linear program

Pprod1 , the prices p̂ j (as part of cpu f (p̂) and cpu f (p̂)) and the expenditures s f
j for

linear program Pprod2. The subgradients of the objective functions for all three linear
programs are linear, and hence can be computed by a linear pseudo-circuit. For the
feasibility program Q, the arguments that it is of the correct form and that it is solvable
are identical to those of Lemma 23 (and hence also of Lemma 21), noting the updated
definition of the expenditure e j. □

Arguing optimality and market clearing. To conclude the proof, what is left
to show is that a fixed point (p̄, q̄, s̄, r̄) of F indeed corresponds to a competitive
equilibrium. We argue that in the following lemma.

Lemma 28. Let (p̄, q̄, s̄, r̄) be a fixed point of F. Then the triple (p̄, x̄, ȳ, r̄), where
x̄i

jk = q̄i
jk/ p̄ j, ȳ f

j = s̄ f
j /p̄ j for j ∈ R f and ȳ f

j′ = r̄ f
j′/p̄ j′ for j′ ∈ P f is a competitive

equilibrium ofM.

Proof. In Lemma 25 and Lemma 26 we argued that the linear programs Pcon, Pprod1
and Pprod2 correctly calculate the optimal consumption vectors of the consumers and
the optimal production vectors of the firms. What is left to argue is that p̄ is a vector
of market-clearing prices. The proof will follow along very much the same lines as
the one of Lemma 24, using updated the updated terminology and notation of this
section.

By the definition of e j, arguing about market-clearing is equivalent to arguing that
for all j ∈G, we have that ē j = 0. Using a very similar calculation to the one that we
used in Lemma 24, this is equivalent to arguing that ē j ≥ 0 for all j ∈G. We provide
the calculation below.



4.6. Competitive Equilibria in Arrow-Debreu Markets 199

∑
j∈G

ē j =
∑
j∈G

∑
i∈N

∑
k∈Ki

q̄i
jk − p̄ j+

∑
f∈F : j∈R f

s̄ f −
∑

f∈F : j∈P f

r̄ f


=

∑
i∈N

∑
j∈G

∑
k∈Ki

q̄i
jk −

∑
j∈G

p̄ j+
∑
f∈F

(s̄ f − r̄ f )

=
∑
j∈G

∑
i∈N

wi j p̄ j−1+
∑
i∈N

∑
f∈F

θi f · (r̄ f − s̄ f )+
∑
f∈F

(s̄ f − r̄ f )

=
∑
j∈G

p̄ j ·
∑
i∈N

wi j−1+
∑
f∈F

(r̄ f − s̄ f ) ·
∑
i∈N

θi f ·
∑
f∈F

(s̄ f − r̄ f )

=
∑
i∈N

wi j−1+
∑
f∈F

(r̄ f − s̄ f )+
∑
f∈F

(s̄ f − r̄ f )

= 0,

where in the calculations above we used:

- in Equation 2, that
∑

j∈G
∑

f∈F : j∈R f s̄ f =
∑

f∈F s̄ j and that
∑

j∈G
∑

f∈F : j∈P f r̄ f =∑
f∈F r̄ f ,

- in Equation 3, that
∑

i∈N
∑

j∈G
∑

k∈Ki q̄i j =
∑

i∈N
∑

j∈G wi j p̄ j+
∑

i∈N
∑

f∈F θi f (r̄ f −

s̄ f ), which follows from the bundle optimality of the market equilibrium in
Definition 4.6.4, which at an optimal solution is sastisfied with equality,

- in Equations 3 and 5, that
∑

j∈G p̄ j = 1, which is without loss of generality, see
Remark 31,

- in Equation 5, that
∑

i∈N θi f = 1 for every f ∈ F, by definition, and

- in Equation 6, that
∑

i∈N wi j = 1, which is without loss of generality.

Assume by contradiction that there exists some j1 ∈G such that ē j1 < 0; we will obtain
a contradiction to the strong connectivity of the economy graph of the market. We
define the following three sets:

- J = { j ∈G : ē j ≤ ē j′ , for all j′ ∈G}. In other words, J is the set of goods with
minimum excess expenditure.

- NJ = {i ∈ N : there exists j ∈ J such that consumer i is nonsatiated for good j}.

- FJ = { f ∈ F : there exists j ∈ J such that firm f is nonsatiated for good j}.

Since e∗j1 < 0, by the definition of J we know that

for all j ∈ J, we have e∗j < 0. (4.31)

Also, since e∗j1 < 0, and
∑

j∈G e∗j = 0, there must exist some other good j2 such that
e∗j2 > 0. In particular, that implies that J is a strict subset of G, i.e., J ⊊G. We state
and prove the following claim.



200 Chapter 3. PPAD-membership via Convex Optimization

Claim 9. For all i ∈ NJ and all j′ ∈G \ J, it holds that wi j′ = 0.

Proof. The proof of the claim is very similar to that of Claim 7 which we presented
in Section 4.6.2. Assume by contradiction that there exists some consumer i0 ∈ NJ

and some good j′ ∈G \ J such that wi0 j′ > 0. We will show that this implies that there
exists some jℓ ∈ J with ē jℓ ≥ 0, contradicting Statement (4.31). Since p̄ is a solution
to feasibility program Q of Figure 4.8, we have that p̄ j ≤ ε · p̄ j′ , for every j ∈ J. Hence,
by choosing ε to be sufficiently small, we may lower-bound the budget of consumer i
by

wi0 j′ · p∗j′ ≥
wi0 j′

ε ·m
·
∑
j∈J

p̄ j ≥ (C ·L+1)
∑
j∈J

p∗j

Since i0 ∈ NJ , by the choice of ε, there is at least one good g ∈ J such that BPBi0(g,k)>
BPBi0(g′,k), for all g′ ∈G \ J, and for any two tranches k,k ∈ Ki, i.e., the consumer
prefers to buy quantities of good g rather than any good which is not in the set J,
on any tranche. Since consumer i0 is nonsatiated for some good j ∈ J (by virtue of
being in NJ), by the fact that q̄i0 j is an optimal solution to linear program Pcon of
Figure 4.9, it should be that q̄i0 j = C · L+ 1, which implies that q̄i0 j ≥ (C · L+ 1)p∗j .
By substituting that into the definition of the excess expenditure ē j, we obtain the
following inequality:

0 > ē∗j ≥ (CL+1)p̄ j−
∑

f∈F : j∈P f

r̄ f
j − p̄ j =CL · p̄ j−

∑
f∈F : j∈P f

r̄ f
j .

Therefore, it suffices to show that∑
f∈F : j∈P f

r̄ f
j ≤ (C ·L) · p̄ j;

in that case we will have ē j ≥ 0 and we will obtain a contradiction. Now consider any
firm f ∈ F. Note that if r̄ f ≤ 0, then the inequality above clearly follows. Otherwise,
if r̄ j

f > 0, then rpu(p̄) = p̄ j ·β
f
j . In this case, using the constraints of linear program

Pprod2 of Figure 4.10, we may bound the production of good j by firm f as follows:

r̄ f
j ≤

∑
j∈R f

s̄ f
j +max{0, rpu f (p̄)− cpu f (p̄)} ·min{L f ,L}

≤ rpu f (p̄) ·min{L f ,L}

= (β f
j min{L f ,L}) · p̄ j

≤ (β f
j L) p̄ j.

This clearly bounds r̄ f
j as long as the L f ,∞, as in that case L f ≤ L. L f =∞, then r̄ j f

is upper bounded by the global upper bound Lc on the production. Again, Lc ≤ L, and
the above inequality follows. By letting C ≥ |F | ·max{β f

j : f ∈ F ∧ j ∈ P f }, we obtain
the contradiction 0 > ē j ≥ 0. This concludes the proof of the claim. □



4.6. Competitive Equilibria in Arrow-Debreu Markets 201

Claim 9 establishes that a consumer in the set NJ cannot endow any good that is not
in the set J in a positive quantity. Since J ⊊G, this implies that NJ ⊊ N, since every
good is positively endowed by some consumer i ∈ N. Now consider any consumer
i ∈ NJ and any consumer i′ ∈ N \NJ or any firm f ∈ F \FJ . Claim 9 implies that there
cannot be an edge (i, i′) or an edge (i, f ) in the economy graph of the market. Indeed,
for (i, i′), notice that by the claim consumer i only endows positively goods that are in
J, but consumer i′ has value 0 for them by virtue of being in N \NJ , and hence she is
not nonsatiated for any good endowed positively by consumer i. Similarly, for (i, f ),
we have that R f ⊆G \ J by definition, but consumer i only positively endows goods in
J, so clearly f cannot be nonsatiated for any of the goods endowed by consumer i.

Next, we state and prove the following claim.

Claim 10. Consider and f ∈ FJ , with L f =∞. For any good j′ ∈ P f , it holds that
j′ ∈ J.

Proof. The claim also follows a very similar idea to that of Claim 10 which we
presented in Section 4.6.2. Let α = max f ′, jα

f ′

j and β = max f ′, j β
f ′

j . Assume by
contradiction that for firm f , there is some good j′ ∈ P f such that j′ ∈G \ J. Note that
f is nonsatiated with respect to some good in J (by virtue of being in FJ and L f =∞).
Additionally, since p̄ is an optimal solution to feasibility program Q of Figure 4.11,
we have that p̄ j · ε p̄ j′ for all goods j ∈ J. By the fact that s̄f is an optimal solution
to linear program Pprod1, it follows that firm f will utilize only goods from J as raw
goods for its production. Hence, there exists some good j1 ∈ J such that

s̄ f
j1
≥

L · cpu f1(p)
m

≥
L

mα
· p̄ j1

Using this, we conclude that

0 > ē j1 ≥
( L
mα
−1

)
p̄ j1 −

∑
f ′ : j1∈P f1

r̄ f ′

j1
(4.32)

If j1 were not being produced, we would reach the contradiction that 0 > ē j1 ≥ 0 by
picking L sufficiently large. If j1 is being produced, then it must be produced using
some good j2 from J. This is because by the choice of ε, it is only profitable for
any firm to produce units of goods j ∈ J (that have very low prices) only by using
units of goods j ∈ J as raw goods. Again, if j2 is not being produced, we reach
a contradiction by choosing L sufficiently large, and otherwise we may repeat the
argument. Since there cannot be a cycle of profitable production in the graph GF (M),
by the no production out of nothing and no vacuous production sufficiency condition,
the argument will need to be repeated at most m times, one for each good in the
possibly longest production chain of the graph. In the end, we can pick L to be large
enough to ensure that we get a contradiction.

We remark that we made the very same argument in the proof of Claim 8 via
establishing appropriate bounds inductively for every step of the chain. In the case of



202 Chapter 3. PPAD-membership via Convex Optimization

markets with Leontief-free productions however, calculating the resulting quantities
becomes very tedious, so we elected to present the proof a bit differently.

As it stands, Inequality 4.32 implies that there exists a firm f1 such that r f1
j1
≥

(
L
ℓmα −

1
ℓ

)
p̄ j1 . As f1 produces a good in J, it holds that

1. rpu f1(p) ≥ cpu f1(p) and

2. f1 produces only using goods from J.

We consider two cases, depending on whether the inequality in Inequality 1 is strict or
not.

Case 1: rpu f1(p̄) = cpu f1(p̄). In this case, we find that( L
ℓmα
−

1
ℓ

)
p̄ j1 ≤ r̄ f1

j1
≤

∑
j∈P f1

r̄ f1
j =

∑
j∈R f1

s̄ f1
j

From this it follows that there exist a good j2 such that s̄ f1
j2
≥

( L
ℓm2α
− 1
ℓm

)
p̄ j1 . Using

that p̄ j2/α
f1
j2
= cpu f1(p̄) = rpu f1(p̄) = β f1

j1
p̄ j1 , this implies that s̄ f1

j2
≥

( L
ℓm2α2β

− 1
ℓmαβ

)
p̄ j2 .

Now we may bound ē j2 as before and repeat the argument.

Case 2: rpu f1(p̄) > cpu f1(p̄). First, we show that L f1 =∞. Assume that it is not.
Then we have:( L
ℓmα
−

1
ℓ

)
p̄ j1 ≤ r̄ f1

j1
≤

∑
j∈P f1

r̄ f1
j ≤min{L f1 ,L} · rpu f1(p̄) ≤ (min{L f1 ,L}β) p̄ j1 ≤ (L f1β) p̄ j1 ,

(4.33)

where the last inequality follows because L is chosen sufficiently large for L f
1 ≤ L to

hold, since L f
1 ,∞ by assumption. For L sufficiently large though, this leads to a

contradiction. Hence we may assume henceforth that L f1 =∞.

Given the above, as rpu f1(p̄) > cpu f1(p̄), we have that
∑

j∈R f1
s̄ f1

j = L · cpu f1(p̄). As f1
produces a good from J, f1 can only produce using goods from J as raw goods. This
is because, as we discussed earlier, the prices of goods in J are sufficiently smaller
that those for goods in G \ J, and hence any profitable production that uses goods in J
as raw goods should also involve only goods in J as produced goods. Therefore, we
establish that there exists a j2 ∈ J such that s̄ f1

j2
≥ L

m cpu f1(p̄) ≥ L
mα p̄ j2 . Using this, we

may again bound ē j2 and repeat the arguments above.

Finding jk ∈ J with 0 > ē jk ≥ 0. As we mentioned earlier, by the no production out
of nothing and no vacuous production sufficiency condition, the above argument has to
be repeated at most m times, as that is the maximum possible length of any profitable
production chain. In both of the two cases consider above, L becomes smaller by a



4.6. Competitive Equilibria in Arrow-Debreu Markets 203

certain factor as a function of the input parameters. This means that L can be picked
large enough to guarantee that at the end of the chain, when the last good is not being
produced, we obtain that 0 > ē jk ≥ 0, a contradiction.

This concludes the proof of the claim. □

Claim 10 implies that for any firm f ∈ FJ , with L f =∞, there cannot be an edge to
any consumer i ∈ N \NJ or any firm f ′ ∈ F \FJ in the economy graph. Indeed, for an
edge ( f , i), the claim asserts that the any produced good j′ of f will be in the set J,
whereas consumer i only values goods in the set G \ J positively, by virtue of being in
N \NJ . Similarly, for an edge ( f , f ′), firm f produces only goods in J, whereas the
for firm f ′ we have R f ′ ⊆G \ J, by virtue of f ′ being in F \FJ .

From the two paragraphs succeeding Claim 9 and Claim 10, NJ and N \NJ are two
strongly connected components in the economy graph of the market, contradicting the
sufficiency condition requiring that in the economy graph there is a strongly connected
component containing all the consumer-nodes. This completes the proof. □

4.6.4 Arrow-Debreu Markets with Succinct SPLC Utilities and
Production

In this section we provide our PPAD-membership result for succinct separable
piecewise-linear utilities (SSPLC). These are SPLC utilities, i.e., each consumer
has a piecewise-lineaer utility function over different pieces (or segments) of each
good, and her total utility for her bundle is additive over those utility functions. The
“succinct” part comes from the fact that, in contrast with the SPLC utilities that have
been studied before in the literature (e.g., see [112, 116, 220]), these functions can
be accessed implicitly, given access to a boolean circuit that evaluates the function at
different points. Effectively, these allows us to model functions with exponentially
many pieces, while still developing a reduction which is polynomial in the size of the
input, i.e., the size of those circuits. Our main theorem of the section is the following.

Theorem 4.6.4. Computing a competitive equilibrium in an Arrow-Debreu market
with SSPLC utilities and SPLC production functions is in PPAD.

Note that we are also incorporating (explicit) SPLC productions in our result. Whether
we can generalize those to SSPLC production functions is an interesting technical
open problem; we discuss the challenges and why our technique falls short in this
regard in Remark 35.

Markets with Production. In an Arrow-Debreu market with productionM, we
have a set N of consumers, a set G of infinitely divisible goods, and a set F of firms.
Let n = |N |, m = |G|, and ℓ = |F|. We will typically use index i to refer to consumers, j
or g to refer to goods and f to refer to firms. Each consumer brings an endowment
wi = (wi1, . . . ,wim) to the market, with wi j ≥ 0 for all i ∈ N and j ∈G. We may assume
without loss of generality that for every good j, we have

∑
i∈N wi j = 1, i.e., that the



204 Chapter 3. PPAD-membership via Convex Optimization

total endowment of each good is 1. We will use xi = (xi1, . . . , xim) to denote the vector
of quantities of goods allocated to consumer i ∈ N in M, and we will call it the
bundle of consumer i. Let x = (x1, . . . , xn) be the vector of such bundles. We will use
p = (p1, . . . , pm) to denote the vector of prices inM, one for each good j ∈G. Prices
are non-negative, so p j ≥ 0 for all j ∈ G. Given a vector of prices p, the budget of
consumer i ∈ N is defined as

∑
j∈G wi j p j; intuitively, this is the amount of money that

the consumer acquires by selling her endowment at prices p.

Utility functions. Every consumer has a utility function ui : Rm
≥0→ R≥0 mapping a

bundle xi to a non-negative real number. In this section, these utilities are succinct
separable piecewise-linear concave (SSLPC). A utility ui being SPLC means that it
is separable over the goods and that the utility accrued from each good is given by a
piecewise-linear concave function ui j, that is, ui(xi) =

∑m
j=1 ui j(xi j). The word succint

refers to the piecewise-linear utilities concave ui j being given by boolean circuits
computing their slopes, thus allowing for an exponential number of changes to the
value of the slope. Concretely, we assume that the utility functions are given by the
following data:

1. A natural number A ∈ N such that the piecewise linear functions ui j have
constant slope in the interval (A,∞).

2. A natural number B ∈ N such that the slopes of the utility functions can change
only in the points k

B ·A for k ∈ {0,1, . . . ,B}.

3. For every i ∈ N and j ∈G, a boolean circuit Ci j with ⌊log2(B)⌋+1 input bits and
output bits which on input k ∈ {0,1, . . . ,B} computes 1/ui jk, where ui jk is the
slope of ui j in the interval ((k/B)A, ((k+1)/B)A). Note that this makes sense
only if the slope is strictly positive. Also, the utility functions are concave,
meaning that ui j0 ≥ ui j1 ≥ · · · ≥ ui jB.

4. For every i ∈ N and j ∈ J, if the slope of ui j eventually becomes zero, then we
are given a natural number Di j such that the slope becomes zero in the point
(Di j/B)A.

Remark 32. The reason that we assume that the boolean circuits Ci j compute the
inverse of the slopes is that this allows us to compute bang-per-buck ratios which is
required in our construction.

Firm Shares. Each consumer i ∈ N has a share θi f ∈ [0,1] of the profit of each firm
f ∈ F. We assume that the profits are entirely shared among the consumers, i.e., for
every firm f ∈ F, we have that

∑
i∈N θi f = 1.



4.6. Competitive Equilibria in Arrow-Debreu Markets 205

Production functions. In this section we assume that the firms have separable
piecewise-linear concave production functions given explicitly. Every firm f has a
single output good gout

f which it can produce, and for every j ∈G, it has a piecewise-

linear concave function P f
j : R≥0→ R≥0 defining the ability of f to produce gout

f as a
function of the good j. The overall production of firm f from bundle y = (y1, . . . ,ym)
is then given by P f (y) =

∑
j∈G P f

j (y j). Because of separability, we may assume that
every firm has an input good gin

f , which is the only good with which it can produce
a strictly positive amount of gout

f . As such the production function P f is simply
a piecewise-linear concave function. We assume that this function is given to us
explicitly as follows:

1. The nonnegative real line R≥0 is divided into a finite number K f of subsequent
segments of length L f k for 1 ≤ k ≤ K f . The length of the final segment is infinite.

2. To every segment is associated a conversion rate c f k ≥ 0 which is the slope of
P f in this segment, that is, c f k is the rate at which f can convert good gin

f to
good gout

f on this segment. The production function P f being concave means
that c f 1 ≥ c f 2 ≥ · · · ≥ c f K f .

One may wonder why we do not assume that the slopes of the production functions
are given succinctly by a boolean circuit as we did for the utility functions. We discuss
the problems arising from this representation later in the section.

Competitive Equilibrium. We are now ready to define the notion of a competitive
equilibrium in markets with production.

Definition 4.6.5 (Competitive Equilibrium - Markets with SSPLC Utilites and SPLC
Production). A competitive equilibrium of an Arrow-Debreu market with SSPLC
utilities and PLC production functions is a triple (p∗,x∗,y∗) consisting of non-negative
prices p∗, non-negative bundles x∗ = (x∗1, . . . ,x

∗
n) and non-negative amounts of input

goods y∗ = (y∗1, . . . ,y
∗
ℓ), such that

1. p∗gout
f
·P f (y∗f )− p∗

gin
f
· y∗f is maximized, for any firm f ∈ F. (firm profit

maximization)

2. ui(xi) is maximized for every consumer i ∈ N, subject to∑
j∈G p∗j · xi j ≤

∑
j∈G p∗j ·wi j+

∑
f∈F θi f · (p∗gout

f
·P f (y∗f )− p∗

gin
f
· y∗f ). (bundle

optimality)

3. z∗j ≤ 0, and z∗j p
∗
j = 0, where z∗j =

∑
i∈N x∗i j+

∑
f∈F : gin

f = j y∗f −
∑

f∈F : gout
f = j P f (y∗f )−

1,
for every good j ∈G. (market clearing)

Condition 1 requires that at the chosen set of prices p∗, each firm maximizes its profit,
given its production functions. Condition 2 requires that at the chosen set of prices



206 Chapter 3. PPAD-membership via Convex Optimization

p∗, each consumer maximizes her utility subject to their budget constraints, where
the budget consists of the amount earned from selling all the consumer’s endowments∑

j∈G p∗jwi j and the profit share
∑

f∈F θi f · (p∗gout
f
· P f (y∗f )− p∗

gin
f
· y∗f ) of the consumer

from the production of the firms. Finally, Condition 3 is the market clearing condition,
which requires that the total consumption of each good is at most the total production
plus the total endowment of the consumers, and supply equals demand for all goods
which are not priced at 0. As we detail later on in the section, we may in fact assume
without loss of generality that in any competitive equilibrium all the prices are positive,
and hence Condition 3 reduces to z∗j = 0 for all j ∈G. Note that in Condition 3 we
have used that

∑
∈N wi j = 1 for each good j ∈G.

Sufficiency Conditions. A competitive equilibrium as defined above exists for every
marketM, under some sufficiency conditions. Similarly to Section 4.6.2, we will
use the set of conditions used by Maxfield [167], also used in the series of papers on
market equilibria that we mentioned in the beginning of Section 4.6.

1. Consider a graph GF(M) in which the nodes are the goods, and an edge ( j, j′)
has weight

w j j′ = max
f∈F : j=gin

f ∧ j′=gout
f

c f 1

If the set is empty, the weight is defined to be 0.

The above weight captures the fact that j′ can be produced from j at conversion
rate w j j′ by some firm f ∈ F. Then, for any cycle C = (g0,g1), (g1,g2) . . . , (gk−2,gk−1)
of GF(M) the product of the weights of the edges is less than 1, i.e.,

∏
e∈C αe < 1.

This condition is known as the no production out of nothing and no vacuous
production condition. Indeed, if

∏
e∈C αe > 1, then it would be possible to

increase the quantity of some good, without decreasing the quantity of any other
good. The case of

∏
e∈C αe = 1 refers to the case of vacuous production, which

is also disallowed in our model, similarly to the related works, e.g., see [112].

2. We will say that a consumer i ∈ N is nonsatiated for good j ∈G if Ci j(B) > 0.
We will assume that for any good j ∈G, there exists some consumer i ∈ N that
is nonsatiated with respect to j. Similarly, we say that a firm f nonsatiated for
good j ∈G if j = gin

f and c f K f > 0.

3. Consider the economy graph GE(M) of the marketM in which the nodes are
the consumers and the firms, and there is an edge from node a to node b in
node a owns/produces a good for which node b is nonsatiated. Then, GE(M)
contains a strongly connected component containing all the consumer-nodes.
This condition generalizes the corresponding strong connectivity condition that
we used in Section 4.6.2.

Remark 33 (Bounds on Production). Condition 1 above imposes a bound on the
total amount of a production of any firm f ∈ F in a competitive equilibrium. Note



4.6. Competitive Equilibria in Arrow-Debreu Markets 207

that the production starts from finite endowments
∑

i∈N wi j = 1 for all j ∈G. Since
no firm operates at a loss at an equilibrium, any cycle of production would violate
Condition Item 1. Since there are no such cycles, production can take place along
chains. The longest such chain is obviously bounded by m, and the maximum
production of any firm can be bounded by some sufficiently large global constant Lc

(e.g., some constant such that Lc ≥ mm(max f C f (0)+1)n). See also [112] for a very
similar argument. Looking ahead, this will allow us to impose “loose” upper bounds
on the production and consumption in the linear programs that we will devise, without
compromising the existence of a competitive equilibrium.

Optimality and bang-per-buck (BPB). Similarly to Section 4.6.1, the optimal
bundles of Condition 2 in Definition 4.6.2 are characterized by their bang-per-buck
(BPB). Given consumer i ∈ N and prices p, the bang-per-buck of good good j on
segment k is defined as BPBi( j,k) = ui jk

p j
.

Bounds on the prices. Recall that we have assumed that for every good j, there is some
agent i that is nonsatiated with respect to j. Hence, using very similar arguments to
Section 4.6.2 and Section 4.6.3, we may assume that all the prices are strictly positive.

Remark 34 (Normalized Prices). Given that p j > 0 for all j ∈G, we can normalize
the prices to sum to 1 without loss of generality, i.e., we may assume that for every
good j ∈G, we have that

∑
j∈G p j = 1.

Again, in a similar manner to Section 4.6.1, we will use a parameter ε to capture the
fact that if the price p j for a good j ∈G is sufficiently smaller than the price p j′ for a
good j′ ∈G, then BPB( j) > BPB( j′). Specifically, we can compute ε > 0 such that

If p j ≤ ε · p j′ and ui jk > 0 then BPBi( j,k) > BPBi( j′,k′) for all k′.

Because the inverses of the utilities are in the set {1,2, . . . ,B} by assumption, the
actual utilities are in the set {1/B,1/(B− 1), . . . ,1/2,1}. For the above to hold, it is
thus sufficient that if p j ≤ εp j′ , then (1/B)/p j ≥ 1/p j′ . For this implication to hold, it
suffices to choose ε ≤ 1/B. Additionally, we can pick ε to be sufficiently small such
that ε < wi j

m for all i ∈ N and all j ∈G such that wi j > 0. Given ε, we will impose a
stricter lower bound on the prices, which will be useful later on: in particular, we will
assume that for all j ∈G, p j ≥

εm

m .

Expenditures. As in all of the previous sections, we do not work directly with the
quantities x, y. Instead we work with the consumer and firm expenditures respectively,
which are defined similarly to those of Section 4.6.2. Specifically, for every for agent
i we will have a variable qi j for every j ∈G which denotes the spending of agent i
on good j, and for every f and every 1 ≤ k ≤ K f , we will have a variable s f k which
denotes the spending of firm f on its input good gin

f on the kth segment.



208 Chapter 3. PPAD-membership via Convex Optimization

Membership in PPAD: The proof of Theorem 4.6.4

We will again develop the proof in three steps, namely (a) construction of the function
F and arguing that it can be represented by a linear arithmetic circuit containing
linear-OPT-gates, (b) showing that the linear-OPT-gate can compute all the necessary
components, and (c) arguing that a competitive equilibrium can be recovered from a
fixed point of F.

The function F. We define a function F : D→ D where

D = {p ∈ ∆m−1 : ∀ j ∈G, p j ≥
εm

m
}× [0,CL+1]nm× f [0,L]K f (4.34)

An input to F is a tuple (p,q,s) of prices, consumer expenditures and firm expenditures
for raw goods, and the output is another such tuple (p̄, q̄, s̄).

For any firm f , the output spending variable s̄ f = (s f k)1≤k≤K f is set to be the output of
the linear OPT-gate for the following linear program.

Linear Program Pprod

maximize
K f∑
k=1

(c f k pgin
f
− pgout

f
) · v f k (4.35)

subject to 0 ≤ v f k ≤min{L f k,L} · pgin
f

As in the case considered in Section 4.6.2, we define

r f k = s f k +max{0,c f k · pgout
f
− pgin

f
} ·min{L f k,L}.

Furthermore, we let s f =
∑K f

k=1 s f k and r f =
∑K f

k=1 r f k. Then, for every agent i, we let
the output expenditure qi be the output of the linear opt-gate of the following linear
program.

Linear Program Pcon

minimize
∑
j∈G

(
p j ·Ci j

(
qi j

p j

)
+ (B+1) ·H

(
qi j−

Di j

B
Ap j

))
· vi j

subject to
∑
j∈G

vi j =
∑
j∈G

wi j p j+
∑
f∈F

θi f · (r f − s f ) (4.36)

0 ≤ vi j ≤ (C ·L+1), ∀ j ∈G

The first term p j ·Ci j(qi j/p j) of the coefficient in front of vi j is the linear pseudo-
circuits from Proposition 5 computing the product of p j and the piecewise constant



4.6. Competitive Equilibria in Arrow-Debreu Markets 209

correspondence represented by (Ci j,B). This term should represent the inverse bang-
per-buck ratio of agent i for good j when her spending on the good is qi j. The second
term in the coefficient in front of vi j in the objective function only appears if the slope
of the PLC function that agent i has for good j eventually becomes zero. This term
is meant to ensure that in an optimal solution, an agent does not spend money on a
segment where the slope is zero.

Excess Expenditure and the Feasibility Program for the prices. Finally, for every
j ∈G, similarly to Section 4.6.2 and Section 4.6.3, we define the excess expenditure
of good j as

e j =
∑

i

qi j+
∑

f : gin
f = j

s f −
∑

f : gout
f = j

r f − p j.

As in previous sections, we let the output price vector p̄ be the output of the following
feasibility program.

Feasibility Program Q

e j < e j′ ⇒ p j ≤ ε · p j′ , ∀ j, j′ ∈G

p j ≥
εm

m
, ∀ j ∈G (4.37)∑

j∈G

p j = 1

Computation by the linear-OPT-gate. Next, we argue that the solutions to the
linear programs and the feasibility program can be computed by our linear-OPT-gate.
The subgradients of the LPs for production and consumption can be computed by
linear circuits. The main part of the construction is the linear pseudo-circuit from
Proposition 5, computing the correspondence p j ·Ci j(qi j/p j). For the feasibility
program, the arguments that it is of the correct form and that it is solvable are identical
to those of Lemma 23 (and hence also of Lemma 21), noting the updated definition of
the expenditure e j.

Fixed points. Suppose that (p,q,s) is a fixed point of F. Let f ∈ F be some firm. As
s f is a solution to LP (4.35), we have that s f k > 0 only if c f k · pgout

f
≥ pgin

f
. Furthermore,

if the inequality is strict, then the firm produces using all of that segment. We conclude
that s is an optimal production vector at prices p. Next, we prove the following:

Claim 11. Let i ∈ N and let xi j = qi j/p j for every j ∈G. Then xi is an optimal bundle
for agent i at prices p.



210 Chapter 3. PPAD-membership via Convex Optimization

Proof. First we show that if the slope of ui j becomes zero at some point, then qi j ≤
Di j
B ·A · p j. If this were not the case, then the coefficient in front of vi j would be at least

B+1. However, by assumption there is a good j′ for which agent i is nonsatiated, and
the coefficient in front of vi j′ is at most

p j′ ·Ci j′

(
qi j′

p j′

)
≤ p j′ ·B ≤ B < B+1.

Because qi is an optimal solution to LP (4.35), this would then imply that qi j = 0 ≤
Di j
B ·A · p j. This means that any agent i can only spend money on a good j up until the

point where the inverse of the bang-per-buck ratio is no longer well-defined. Now the
result follows, because all the goods j ∈G such that qi j > 0 must have the minimal
coefficient. From this it follows that agent i has bought the goods in a greedy manner
according to the bang-per-buck ratio, meaning that qi represents an optimal spending
for agent i. □

What remains to show is that the market clears, that is, e j = 0 for all j ∈ G. As in
previous sections, we can use a standard calculation to show that

∑
j∈G e j = 0. Hence,

it suffices to argue that e j ≥ 0 for all j ∈G. We define:

- J = { j ∈G : e j ≤ e j′ for all j′ ∈G}

- NJ = {i ∈ N : there exists j ∈ J such that i is nonsatiated for good j}

- FJ = { f ∈ F : there exists j ∈ J such that f is nonsatiated for good j}

Assume by contradiction that e j < 0 for j ∈ J. As
∑

j∈G e j = 0, this implies that there
must exists a good j′ such that e j′ > 0, meaning that J ⊊G. The contradiction will
be obtain via the following two claims, very similar to Claim 7 and Claim 8. Using
an identical reasoning to that of Lemma 24, the two claims together will establish
that the economy graph GE(M) is not strongly connected, violating the corresponding
sufficiency condition.

Claim 12. If i ∈ NJ and j′ ∈G \ J, it holds that wi j′ = 0.

Proof. Assume for contradiction that i ∈ NJ and j′ G \ J and that wi j′ > 0. As in
previous sections, this implies that we can lower bound the budget of agent i by
(CL+1)

∑
j∈J p j by picking ε ≤ wmin

m·(CL+1) . By assumption, i is nonsatiated with respect
to some j ∈G. As p j ≤ εp j′′ for all j′′ ∈G \ J, we get by choice of ε that i will spend
her entire budget on goods in J. Hence, there is some j ∈ J such that qi j ≥ (CL+1)p j.

This implies that

e j ≥ (CL+1)p j−
∑

f : gout
f = j

r f − p j (4.38)

Now for any f with gin
f = j, we have that r f =

∑K f

k=1 r f k ≤
∑K f

k=1 Lc f k p j ≤ (K f ·max f∈F c f 1)Lp j.
By picking C ≥ |F| ·max f K f ·max f c f 1, we obtain the contradiction that e j ≥ 0.We
conclude that if i ∈ NJ and j′ ∈G \ J, then wi j′ = 0. □



4.6. Competitive Equilibria in Arrow-Debreu Markets 211

Claim 13. If f ∈ FJ , then gout
f ∈ J.

Proof. Let f ∈ FJ and let j = gin
f . Assume for contradiction that gout

f < J. Then
p j ≤ εpgout

f
, meaning that f will produce fully if ε > 0 is chosen sufficiently small.

Hence s f ≥ s f K f = Lp j, and so

0 > e j ≥ (L−1) · p j−
∑

f ′ : gout
f ′ = j

r f ′ (4.39)

If no firm produces j, then we reach a contradiction by choosing L ≥ 1. The above
inequality implies that there must exist a firm f1 such that gout

f1
= j and r f1 ≥

L−1
ℓ p j.

Let j1 = gin
f1

and note that j1 ∈ J. As in previous sections, we may thus bound L−1
ℓ p j ≤

r f1 ≤ c f11s f1 . If any production occurs, then c f11 p j ≥ p j1 . These two inequalities
combine to show that s f1 ≥

L−1
ℓ·c2

f11
p j1 . Using this, we may again bound

0 > e j1 ≥
( L−1
ℓ · c2

f11

−1
)
· p j1 −

∑
f ′ : gout

f ′ = j1

r f ′ (4.40)

Again, if j1 is not produced, then we may pick L large enough to reach a contradiction.
Otherwise we repeat the previous argument. This can happen at most m times, because
of the no assumption out of nothing assumption. □

Beyond SSPLC Utilities?

We conclude the section with two remarks. The first one briefly discusses the chal-
lenges of using the machinery of Section 4.3.4 for SSPLC productions also.

Remark 35. The reason for not allowing a succinct representation of the production
functions is that this seemingly necessitates multiplying a piecewise-linear function
by an input variable of the circuit. A natural idea would be to have the cumulative
sum of conversion rates given succinctly by a boolean circuit C′. However, in order to
compute the revenue of firm f given spending s f , one would then have to compute the
piecewise-linear function pgout

f
·C′(s f /pgin

f
) which is something that is not captured by

the results in Section 4.3.4.

The second remark regards the possibility of defining a class of “succinct Leontief-free
functions”, similarly to the case of SSPLC.

Remark 36. One might hope to define a class which captures the case of Leontief-free
utility and production functions and the case of SSPLC utility functions and SPLC
production functions simultaneously. For the utility functions, one approach would be
to consider utility functions ui given by a finite list Ki of tranches {si

k}k∈Ki . Associated
with a tranche si

k would again be a number Li
k ∈ R≥0∪{∞} which is an upper bound

for the total amount of utility that can be accrued from this tranche. Also, for every
good j, instead of having a single number ui

jk which is the rate at which good j



212 Chapter 3. PPAD-membership via Convex Optimization

provides utility for agent i on tranche k, we would have that j would provide utility for
agent i on segment k according to a piecewise-linear concave function U i

jk given to
us succinctly in the form of a boolean circuit. Such a class of utility functions would
generalize both Leontief-free utility functions and SSPLC utility functions. However,
because the rates at which goods provide utility is non-constant, it is unclear how to
obtain constraints that mimic the constraint

∑
j∈G U i

jk(xi
jk) ≤ Li

k after transforming the
variables via Gale’s substitution (Remark 22).

4.7 Pacing Equilibria in Auto-Bidding Auctions

In this section, we consider environments which we will broadly refer to as “auto-
bidding auctions”. In these, a set of items are sold separately to a set of buyers via
parallel single-item auctions (e.g., first-price auctions or second-price auctions). To
participate in these auctions, each buyer i scales her valuations for the items by the
same multiplier αi, which is known as a pacing multiplier, under some constraints on
her expenditure, typically provided by budgets, or return-on-investment (ROI) thresh-
olds. The objective is to find a pacing equilibrium (see Definitions 4.7.1 and 4.7.3),
i.e., a vector of pacing multipliers and allocations which ensure that the auction is run
correctly and that it satisfies the spending constraints of all the buyers simultaneously.

In Section 4.7.1 we consider the former case, i.e., that of single-item auctions
with budget constraints. For the case of first-price auctions, [33] showed that a pacing
equilibrium always exists and can be computed in polynomial time via a convex
program. Later on Conitzer et al. [61] showed that in this case the pacing multipliers
are unique in every pacing equilibrium, and presented an interesting connection
between pacing equilibria and solutions of the well-known Eisenberg-Gale convex
program for quasi-linear utilities [60]. For second-price auctions, the existence of
a pacing equilibrium was established in [62]. Chen et al. [57] later on proved that
the problem of computing a pacing equilibrium in these auctions is in PPAD, which
also implied that a solution described by rational numbers also exists. We provide an
alternative PPAD-membership result for the same problem. Compared to the proof
of Chen et al. [57], our proof makes uses of our linear-OPT-gate and is significantly
simpler. We highlight the main ideas of our proof and how they differ from those
of Conitzer et al. [62] and Chen et al. [57] in Section 4.7.1 below. We remark that
Chen et al. [57] also showed the problem to be PPAD-hard, thus establishing its
PPAD-completeness.

In Section 4.7.2, we also consider the case of (on average) ROI-constrained buyers,
in the model introduced by Li and Tang [162]. The existence of pacing equilibria
for this case was proven by Li and Tang [162], following a very similar approach
to that of Conitzer et al. [62]. Our proof follows along very much the same lines as
the one we present for the case of budget-constrained buyers in Section 4.7.1, and is
again significantly simpler. Interestingly, it turns out that our linear-OPT-gate cannot
be used to obtain PPAD-membership of the problem in this case. Still, using the
OPT-gate for FIXP developed by [101], we prove membership of the problem in the



4.7. Pacing Equilibria in Auto-Bidding Auctions 213

class FIXP. This is the first membership result for this variant of the problem; we
provide more details in Section 4.7.2. In Section 4.7.2 we show that membership
in FIXP (rather than PPAD) is necessary, because pacing equilibria in this case can
be irrational. Whether the problem of computing pacing equilibria in second-price
auctions for ROI-constrained buyers is actually FIXP-complete is an intriguing open
problem. We note that for a notion of approximate pacing equilibria, a PPAD-hardness
result is known from [162].

4.7.1 Pacing Equilibria in Auctions with Budgets

Following Chen et al. [57], we will refer to the auction market environment as a
second-price pacing game (SPPG) G, consisting of

- a set N of buyers, with n = |N|,

- a set G of items, with m = |G|,

- a set of vectors of valuations vi = (vi1, . . .vim) for every buyer i ∈ N, where vi j

denotes the value of buyer i ∈ N for item j ∈G; without loss of generality we
assume that for all j ∈G, there exists some i ∈ N such that vi j > 0,

- a vector of budgets B = (B1, . . . ,Bn), such that Bi > 0 for every buyer i ∈ N.

For each buyer i ∈ N, there is a pacing multiplier αi ∈ [0,1], and let α = (α1, . . . ,αn)
be the vector of those multipliers. Given α, the bid of buyer i on item j ∈G is given
by αi · vi j, i.e., every buyer scales their value vi j by the multiplier αi. The items are
sold in parallel second-price auctions, which implies that

1. the item is allocated to the buyer with the highest bid, breaking ties using some
tie-breaking rule in case there are multiple such buyers. Let h j(α)=maxi∈N αivi j

be the highest bid on item j ∈G.

2. the price of item j ∈G is the second-highest bid. Let p j(α)=mini∈N maxi′∈N,i,i′ αi′vi′ j

be that price.

Another way to interpret Condition 1 above is that each one of the (potential) winners
achieves a fraction of the item, which can be interpreted as the probability that that
buyer is the final winner of the auction for that item. Formally, let W j(α) = {i ∈ N :
αivi j = h j(α)} be the set of possible winners (those with the highest bid) for item j ∈G.
Each buyer i ∈ N receives an allocation xi j of item j ∈ N, with the restriction that
xi j = 0 for all i ∈ N \W j(α).

Pacing Equilibria. We are now ready to define the notion of a pacing equilibrium.
Informally, a pacing equilibrium is a set of pacing multipliers and allocations that
satisfy some constraints that guarantee the validity of the auction and that the buyers
are in a sense meeting their maximum buying capabilities. Following Conitzer et al.
[61, 62], we formally refer to those equilibria as second-price pacing equilibria.



214 Chapter 3. PPAD-membership via Convex Optimization

Definition 4.7.1 (Second-price Pacing Equilibrium (SPPE)). A pair (α,x), with α ∈
[0,1]n and x ∈ [0,1]nm, is a second-price pacing equilibrium (SPPE) of a SPPG G, if
the following conditions hold:

I.a.
∑

i∈N xi j ≤ 1, for all j ∈G, (feasible allocation)

I.b. xi j > 0⇒ αivi j = h j(α), for all i ∈ N and j ∈G, (only highest bids win)

I.c. h j(α) > 0⇒
∑

i∈N xi j = 1, for all j ∈G, (full allocation of items with positive
bids)

I.d.
∑

j∈G xi j p j(α) ≤ Bi, for all i ∈ N, (budget constraints)

I.e.
∑

j∈G xi j p j(α) < Bi⇒ αi = 1, for all i ∈ N, (maximum pacing)

We remark that Definition 4.7.1 requires the flexibility to choose the way the items are
allocated to the possible winners; this is in fact necessary to guarantee the existence
of a SPPE for every SPPG. As we mentioned earlier, a SPPE is always guaranteed to
exist [57, 62]. Our PPAD-membership proof also provides an alternative, easier proof
of existence. We provide a high-level overview of the proof, as well as a comparison
to the existing proofs in the next section below.

Features of our proof

Previous proofs of existence and PPAD-membership. The existence of SPPE in
SPPGs was first established by Conitzer et al. [62]. Their proof proceeds by defining
an (ε,H)-smoothed pacing game, for ε > 0 and H > 0, which is derived from the SPPG
G as follows:

- There is an artificial reserve bid of 2ε on all items.

- The set of possible winners W j(α) (i.e., those buyers i ∈ N with xi j > 0 for item
j ∈ G) contains all buyers with almost the highest bid (i.e., a bid of at least
h j(α)− ε). Each buyer in W j receives a specific fraction of item j (i.e., xi j is
fixed for all i ∈ N and j ∈ N, as a function of the αi’s.) and pays a specific price
si j (see [62], Definition 3 for the exact allocations and prices).

- There is an artificial item ja of unlimited supply. Buyer i ∈ N receives a quantity
αi of that good and values that good at vi ja = 2ε.

- Every buyer i ∈ N has a utility which is a step function depending on the budget
Bi, the price si j she pays for quantities of item j, αi, ε and the parameter H in
the definition of the (ε,H)-smoothed pacing game (see [62], Definition 3 for
the exact utility function).

The reason for introducing all these seemingly convoluted conditions is that they
ensure that the (ε,H)-smoothed pacing game satisfies a set of desired properties,
namely (a) compactness and convexity of the strategy space, (b) continuity of the



4.7. Pacing Equilibria in Auto-Bidding Auctions 215

utility function in all strategies and (c) quasi-concavity of the utility function in
a buyer’s own strategy. With these at hand, one can then invoke the Debreu-Fan-
Glicksberg theorem for continuous games [1952], which we presented in Section 4.4.3,
to establish the existence of a Nash equilibrium.

The proof of Conitzer et al. [62] proceeds by proving Properties (a-c) above, and
then obtains the existence of a Nash equilibrium for the (ε,H)-smoothed pacing game.
To obtain the existence of a SPPE, they consider a sequence of Nash equilibria for
(ε,H)-smoothed pacing games, and show that as ε converges to 0 and H converge to
infinity, a SPPE is obtained as a limit point.

Besides the overhead of defining (ε,H)-smoothed pacing games and establishing
their properties, the proof uses off-the-shelf existence theorems and limit arguments.
Therefore, it is not surprising that it cannot be used to obtain PPAD-membership, or
even to establish that rational solutions are always possible. Both of these properties
were established via an alternative proof provided by Chen et al. [57], which we
describe briefly next.

Similarly in spirit to [62], Chen et al. [57] define an approximate version of a SPPE,
called a (δ,γ)-SPPE, with δ,γ > 0, in which

- Condition I.b. in Definition 4.7.1 has been substituted by xi j > 0⇒ aivi j =

(1−δ)h j(α), for all i ∈ N and all j ∈G.

- Condition I.e. in Definition 4.7.1 has been substituted by
∑

j∈G xi j p j(α) <
(1−γ)Bi⇒ αi ≥ (1−γ), for all i ∈ N.

In other words, they consider an approximate SPPE in which the set of winners W j(α)
contains buyers that have approximately the highest bid, and in which a buyer that
does not spend almost all of her budget uses almost a maximum pacing multiplier.
On top of that, they define a variant of (δ,γ)-SPPE, which they refer to as smooth
(δ,γ)-SPPE in which the allocation rule is specified, and is in fact similar to that used
by Conitzer et al. [62] in their definition of a (ε,H)-smoothed pacing game defined
above. By definition, a smooth-(δ,γ)-SPPE is (δ,γ)-SPPE. Their PPAD-membership
proof then proceeds in three steps:

- They show the PPAD-membership of smooth (δ,γ)-SPPE via a reduction to the
computational version of Sperner’s lemma [204]. This implies the existence of
a (δ,γ)-SPPE.

- They devise an intricate rounding procedure, which converts (δ,γ)-SPPE into
γ-SPPE, i.e., (δ,γ)-SPPE for which δ = 0, and establish the correctness of this
procedure via a series of arguments.

- They employ a general technique (introduced by [86]) of converting approx-
imate solutions of inversely exponential precision to exact solutions via a
carefully constructed linear program. They use this to convert a γ-SPPE into a
SPPE.



216 Chapter 3. PPAD-membership via Convex Optimization

Our proof. Our proof is markedly different from the aforementioned ones, and
conceptually much simpler, while at the same time obtaining both existence and
PPAD-membership, and as a result establishing the existence of SPPE described by
rational numbers. Contrary to [62] and [57], we do not need to define relaxations of the
SPPE. Instead, we apply Gale’s substitution (see Remark 22), i.e., the standard change
of variables from allocations xi j to expenditures qi j = xi j p j(α), see Section 4.7.1
below.17 This is in fact the very same change of variables that we used in Section 4.6
for competitive markets, and serves as a means to escape having to deal with quantities
of the form xi j p j(α), as such multiplications cannot be handled by linear arithmetic
circuits.

Membership in PPAD then follows from constructing a simple function F whose
fixed points will be the SPPE. For each buyer i ∈ N, the expenditures qi j will be
obtained as the solutions to a linear program which can be handled by our linear-OPT-
gate, and the pacing multipliers will be the solutions to a single equation involving the
inputs and the outputs of the function. Arguing that a fixed point of F indeed corre-
sponds to a SPPE reduces to establishing that Conditions I.a. to I.e. of Definition 4.7.1
are satisfied, which turns out to be rather simple.

Preprocessing

Before we present our proof, we will first modify and simplify the constraints of
Definition 4.7.1, to make them amenable to the use of our linear-OPT-gate. En route
to that, we will prove that without loss of generality, we may assume that in any
SPPE (α,x), both the pacing multipliers αi and the prices p j(α) can be assumed to be
bounded away from 0, which we will use later on.

Lower bounds on the pacing multipliers and prices. Below we prove simple
lower bounds on the value of the pacing multipliers α∗i and the prices p j(α∗) in any
SPPE (α∗,x∗).

Lemma 29. Let (α∗,x∗) be any SPPE. Then, for any i ∈ N, we have that α∗i ∈ [ℓi,1],
where ℓi =min{1,Bi/

∑
j∈G vi j}.

Proof. If α∗ = 1 then the lemma holds trivially. Otherwise, by Condition I.e., we have
that

Bi =
∑
j∈G

x∗i j p j(α∗) ≤
∑

j∈G:x∗i j>0

h j(α∗) =
∑

j∈G:x∗i j>0

α∗i vi j ≤ α
∗
i

∑
j∈G

vi j,

where the first inequality above holds by the fact that x∗i j p j(α∗) ≤ x∗i jh j(α∗) ≤ h j(α∗),
since h j(α∗) ≥ p j(α∗) by the definition of the auction, and the second equation holds
by Condition I.b.. □

Lemma 30. Let (α∗,x∗) be any SPPE. Then, for any j ∈G, we may assume without
loss of generality that p j(α∗) > 0.

17Interestingly, Conitzer et al. [61] also apply this change of variables in their Mixed-Integer Linear
Programming (MILP) formulation (see Section 6.3 in their paper), but not in the existence proof.



4.7. Pacing Equilibria in Auto-Bidding Auctions 217

Proof. Assume that there is some item j′ for which p′j(α
∗) = 0. For any choice of

pacing multipliers α∗, i.e., in any PE, we may choose an arbitrary allocation of the
good j′ for which xi j′ > 0 only for buyers i ∈W j(α). This way, Conditions I.b. and I.c.
of Definition 4.7.1 are satisfied. Since p′j(α

∗) = 0, the term for j′ contributes 0 to
the sum

∑
j∈G x∗i j p j(α∗) for every buyer i ∈ N, and hence Conditions I.d. and I.e. are

unaffected. Condition I.a. is trivially satisfied as well. Therefore, given any SPPE
(α∗,x∗

− j) for items j ∈G \ { j′}, we get the same SPPE, together with item j′ allocated
as described above. □

Change of variables. Looking at the conditions of Definition 4.7.1, we observe
that in Condition I.d., the allocation xi j is multiplied by the price p j(α). Looking
ahead, this condition will appear as a constraint in a linear program P that we will
aim to solve via our linear-OPT-gate, as part of a linear arithmetic circuit. This linear
program would have xi j as the variables, but p j(α) would be gate inputs in the context
of the linear-OPT-gate. Hence, such a constraint could not be handled by the linear-
OPT-gate. To remedy this, we work in a very similar fashion as we did in Section 4.6,
via applying Gale’s substitution (Remark 22). Namely, we will let qi j = xi j p j(α) be
the expenditure of buyer i ∈ N on item j ∈G. Additionally, Lemma 29 implies that
h j(α∗) > 0 for all items j ∈G. In turn, this implies that Conditions I.a. and I.c. can be
combined into a single condition, namely∑

i∈N

xi j = 1, for all j ∈G.

Putting everything together, we have the following equivalent definition of a second-
price pacing expenditure equilibrium (SPPEE), from which a SPPE can be straight-
forwardly recovered.

Definition 4.7.2 (Second-price Pacing Expenditure Equilibrium (SPPEE)). A pair
(α,q), with α ∈ [0,1]n and q ∈ [0,1]nm, is a second-price pacing expenditure equilib-
rium (SPPEE) of an SPPG G, if the following conditions hold:

II.a.
∑

i∈N qi j = p j(α), for all j ∈G, (feasible expenditure)

II.b. qi j > 0⇒ αivi j = h j(α), for all i ∈ N and j ∈G, (only highest bids spend)

II.c.
∑

j∈G qi j(α) ≤ Bi, for all i ∈ N, (budget constraints)

II.d.
∑

j∈G qi j < Bi⇒ αi = 1, for all i ∈ N. (maximum pacing)

Membership in PPAD

We are now ready to prove the main result of the section.

Theorem 4.7.1. Computing a SPPE of any SPPG G is in PPAD.



218 Chapter 3. PPAD-membership via Convex Optimization

Following our standard methodology, we will develop the proof in three steps, namely
(a) construction of the function F and arguing that it can be computed by a linear
arithmetic circuit containing linear-OPT-gates, (b) showing that the linear-OPT-gate
can compute all the necessary components, and (c) arguing that a SPPE can be
recovered from a fixed point of F.

The function F. We define the function F : D→ D with domain D =
∏

i∈N[li,1]×∏
i∈N

∏
j∈G[0,vi j]. Let (α,q) and (α∗,q∗) denote inputs and outputs to F respectively.

For any item j ∈ G, the vector of expenditures q∗j = (q∗1 j, . . . ,q
∗
n j) is obtained as the

output of the following linear program.

Linear Program P

maximize
∑
i∈N

(αivi j)qi j

subject to
∑
i∈N

qi j ≤ p j(α)

qi j ≥ 0, ∀i ∈ N

The pacing multipliers will be obtained via the following equation

α∗i =max

 Bi∑
j∈G vi j

,min

1,αi+Bi−
∑
j∈G

qi j


 (4.41)

Equation (4.41) uses max,min and addition operations on the variables, and hence can
be computed by a linear arithmetic circuit. Similarly, recall that p j(α)=mini∈N maxi′∈N,i,i′ αi′vi′ j,
and hence the linear program P can also be computed by a linear arithmetic circuit.

Computation by the linear-OPT-gate. In the next lemma, we argue that the output
q∗j of the linear program P can be computed by the linear-OPT-gate.

Lemma 31. Consider the linear programP. An optimal solution toP can be computed
by a linear-OPT-gate.

Proof. We will argue that P satisfies all the properties required for the linear-OPT-
gate, as highlighted in Section 4.3.2. The feasible domain [0,1]n of P is non-empty
and bounded, and the gate inputs p j(α) appear only on the right-hand side of the
constraints. The subgradient of the objective function is a linear function, and hence
can be computed by a linear pseudo-circuit. □



4.7. Pacing Equilibria in Auto-Bidding Auctions 219

Fixed points lead to SPPE. We will show that a fixed point (α∗,q∗) of F is a
SPPEE (Definition 4.7.2); a SPPE can then be straightforwardly recovered by setting
xi j = qi j/p j(α∗) for all i ∈ N and j ∈G, since all the prices can be assumed to be non-
zero by Lemma 30. In particular, we show that (α, q̂)= (α∗,q∗) satisfies Conditions II.a.
to II.d. of Definition 4.7.2.

1. Let j ∈G be any item. Since q j is an optimal solution to linear program P, and
since αivi j is positive for all i ∈ N, the “payment” constraint of P must be tight,
i.e.,

∑
i∈N q∗i j = p j(α) = p j(α∗). Hence Condition II.a. is satisfied.

2. Consider any buyer i ∈ N and item j ∈ N such that q∗i j > 0. By the optimality of
q∗j , αivi j must be maximum, i.e., αivi j = α

∗
i · vi j = h j(α∗). Hence Condition II.b. is

satisfied.

3. Let i ∈ N be any buyer. Assume by contradiction that Condition II.c. is violated,
i.e., that Bi <

∑
i∈N q∗i j. Since αi = α

∗
i , Equation (4.41) implies that α∗i = Bi/

∑
j∈G vi j.

However, since q∗j is a feasible solution to the linear program P, we have∑
j∈G

q∗i j =
∑

j∈G:q∗i j>0

q∗i j =
∑

j∈G:α∗i vi j=h j(α∗)

q∗i j ≤
∑

j∈G:α∗i vi j=h j(α∗)

p j(α∗)

≤
∑

j∈G:α∗i vi j=h j(α∗)

h j(α∗) =
∑

j∈G:α∗i vi j=h j(α∗)

α∗i vi j ≤
∑
j∈G

α∗i vi j

=
Bi∑

j∈G vi j

∑
j∈G

vi j = Bi,

where in the calculations above:

- the second equation follows from Condition II.b., which we we established
in Item 2 above,

- the first inequality follows from the “payment” constraints of the linear
program P, and

- the third inequality follows from the fact that h j(α∗) ≥ p j(α∗) by definition.

We have reached a contradiction.

4. Consider some buyer i ∈ N such that
∑

j∈G q∗i j < Bi. Since αi = α
∗
i , Equation (4.41)

in that case implies that α∗i = 1, and hence Condition II.d. is satisfied.

This completes the proof.

4.7.2 Pacing Equilibria in ROI-constrained Auctions

We now turn our attention to market environments where the total expenditure of each
bidder is not constrained by a fixed budget, but by a constraint on (average) return-
on-investement (ROI), in the setting proposed by Li and Tang [162]. For consistency
with Section 4.7.1, we will refer to these environments as second-price pacing ROI
games (SPPRG). A SPPRG G consists of



220 Chapter 3. PPAD-membership via Convex Optimization

- a set N of buyers, with n = |N |,

- a set G of items, with m = |G|,

- a set of vectors of valuations vi = (vi1, . . .vim) for every buyer i ∈ N, where vi j

denotes the value of buyer i ∈ N for item j ∈G; without loss of generality we
assume that for all j ∈G, there exists some i ∈ N such that vi j > 0.

Similarly to Section 4.7.1, for each buyer i ∈ N there is a pacing multiplier αi and
the buyer’s bid on item j is αi · vi j. For this setting to be meaningful, following [162],
we will not constrain the pacing multipliers to lie in [0,1], but in [1,A] for some
constant A ∈ R,A ≥ 1. Again, the items are sold in parallel second-price auctions,
which implies that

1. the item is allocated to the buyer with the highest bid, breaking ties using some
tie-breaking rule in case there are multiple such buyers. Let h j(α)=maxi∈N αivi j

be the highest bid on item j ∈G.

2. the price of item j ∈G is the second-highest bid. Let p j(α)=mini∈N maxi′∈N,i,i′ αi′vi′ j

be that price.

Again, let W j(α) = {i ∈ N : αivi j = h j(α)} be the set of possible winners (those with the
highest bid) for item j ∈G. Each buyer i ∈ N receives an allocation xi j of item j ∈ N,
with the restriction that xi j = 0 for all i ∈ N \W j(α).

ROI Pacing Equilibria. Next, we define the notion of a second-price ROI pacing
equilibrium.18 Note that the only significant difference between Definition 4.7.3 and
Definition 4.7.1 of Section 4.7.1 is that the budget constraints have now been replaced
by ROI constraints.

Definition 4.7.3 (Second-price ROI Pacing Equilibrium (SPRPE)). A pair (α,x), with
α ∈ [1,A]n and x ∈ [0,1]nm, is a second-price ROI pacing equilibrium (SPRPE) of an
SPPRG G, if the following conditions hold:

III.a.
∑

i∈N xi j ≤ 1, for all j ∈G, (feasible allocation)

III.b. xi j > 0⇒ αivi j = h j(α), for all i ∈ N and j ∈G, (only highest bids win)

III.c. h j(α) > 0⇒
∑

i∈N xi j = 1, for all j ∈G, (full allocation of items with positive
bids)

III.d.
∑

j∈G xi j p j(α) ≤
∑

j∈G xi jvi j, for all i ∈ N, (ROI constraints)

III.e.
∑

j∈G xi j p j(α) <
∑

j∈G xi jvi j⇒ αi = A, for all i ∈ N. (maximum pacing)

18Li and Tang [162] refer to these equilibria as “auto-bidding equilibria”; we choose the term
“second-price ROI pacing equilibria” for consistency with the results of Section 4.7.1.



4.7. Pacing Equilibria in Auto-Bidding Auctions 221

Li and Tang [162] established that a SPRPE always exists. Their proof follows
closely that of Conitzer et al. [62] for second-price pacing equilibria in auctions with
budgets, which we referred to in Section 4.7.1. In particular, they also define a very
similar (ε,H)-smoothed game that satisfies the properties required for the Debreu-Fan-
Glicksberg theorem [1952], and recover a SPRPE as a limit point of the sequence of
Nash equilibria of this game. The proof that we present in this section follows very
much along the same lines of the proof that we presented in Section 4.7.1 and is thus
conceptually much simpler than that of Li and Tang [162]. In addition, since it does
not exhibit the discontinuous arguments of the proof of Li and Tang [162], it can also
be used to show FIXP-membership of the problem, as we highlight in Section 4.7.2.

Since α∗i ≥ 1 for any i ∈ N, and since for every j ∈G, there exists some buyer i ∈ N
with vi j > 0, we can again merge Conditions III.a. and III.c. above and obtain the
following equivalent definition for a SPRPE.

Definition 4.7.4 (Second-price ROI Pacing Equilibrium (SPRPE)-simplified). A pair
(α,x), with α ∈ [1,A]n and x ∈ [0,1]nm, is a second-price ROI pacing equilibrium
(SPRPE) of an SPPRG G, if the following conditions hold:

IV.a.
∑

i∈N xi j = 1, for all j ∈G, (feasible allocation)

IV.b. xi j > 0⇒ αivi j = h j(α), for all i ∈ N and j ∈G, (only highest bids win)

IV.c.
∑

j∈G xi j p j(α) ≤
∑

j∈G xi jvi j, for all i ∈ N, (ROI constraints)

IV.d.
∑

j∈G xi j p j(α) <
∑

j∈G xi jvi j⇒ αi = A, for all i ∈ N. (maximum pacing)

A new proof of existence

We state the main theorem of this section.

Theorem 4.7.2. A SPRPE exists for any SPPRG G.

Proof. We define the function F : D→D with domain D=
∏

i∈N[1,A]×
∏

i∈N
∏

j∈G[0,1].
Let (α,x) and (α∗,x∗) denote inputs and outputs to F respectively. For any item j ∈G,
the vector of allocations x∗j = (x∗1 j, . . . , x

∗
n j) is obtained as the output of the following

linear program.

Linear Program P

maximize
∑
i∈N

(αivi j)xi j

subject to
∑
i∈N

xi j = 1, ∀i ∈ N

xi j ≥ 0, ∀i ∈ N



222 Chapter 3. PPAD-membership via Convex Optimization

The pacing multipliers will be obtained via the following equation

α∗i =max

1,min

A,αi+
∑
j∈G

xi jvi j−
∑
j∈G

xi j p j(αi)


 (4.42)

We will show that a fixed point (α∗,x∗) of F is a RPE. In particular, we show that
(α,x) = (α∗,x∗) satisfies Conditions IV.a. to IV.d. of Definition 4.7.4.

1. Let j ∈G be any item. Since x j is an optimal solution to linear program P, and
since αivi j is positive for all i ∈ N, the allocation constraint of P must be tight, i.e.,∑

i∈N x∗i j = 1. Hence Condition IV.a. is satisfied.

2. Consider any buyer i ∈ N and item j ∈ N such that x∗i j > 0. By the optimality of
x∗j , αivi j must be maximum, i.e., αivi j = α

∗
i · vi j = h j(α∗). Hence Condition IV.b. is

satisfied.

3. Let i ∈ N be any buyer. Assume by contradiction that Condition IV.c. is violated,
i.e., that

∑
j∈G x∗i jvi j <

∑
i∈N x∗i j p j(α∗). Since αi = α

∗
i , Equation (4.42) implies

that α∗i = 1. In turn, this implies that for any item j ∈ G, we have vi j = α
∗
i vi j.

Consider any such an item j′ ∈G for which x∗i j′ > 0. By Condition IV.b. which was
established in Item 2 above, we have that α∗i j′vi j′ = h′j(α

∗). Combining the above
two expressions, and the fact that h′j(α

∗) ≥ p′j(α
∗), we obtain that vi j′ ≥ p′j(α

∗). By
summing over all items j ∈G with xi j > 0, we obtain a contradiction.

4. Consider some buyer i ∈ N such that
∑

j∈G x∗i j p j(α∗) <
∑

j∈G x∗i jvi j. Since αi = α
∗
i ,

Equation (4.42) in that case implies that α∗i = A, and hence Condition III.d. is
satisfied.

This completes the proof. □

Membership in the class FIXP

The main technical difference between our proof in Section 4.7.1 and that in Sec-
tion 4.7.2 is that in the latter case, we did not perform a variable change. Indeed, the
nature of the ROI constraints in Condition IV.c. prevents us from doing that, as the
variables xi j appear in both sides of the constraints, once multiplied by the constants
vi j and once with the gate inputs p j(α). The problem with having expressions of
the form

∑
j∈G xi j p j(α) is that we are not allowed to multiply two parameters which

are both inputs to a linear arithmetic circuit. We can do that however with (general)
arithmetic circuits, see Definition 4.2.2.

As we discussed in Section 4.2, computation of fixed points via (general) arith-
metic circuits corresponds to the class FIXP [86], which allows for computation of
solutions that are described by irrational numbers. Here we can make use of the
OPT-gate for FIXP that was designed by Filos-Ratsikas et al. [101], in order to show
FIXP-membership of the problem. We have the following theorem.



4.7. Pacing Equilibria in Auto-Bidding Auctions 223

Theorem 4.7.3. Computing a SPRPE of any SPPRG G is in FIXP.

Proof. To turn the existence proof of Theorem 4.7.2 to a FIXP-membership proof, we
have to

- argue that the function F that we defined in Section 4.7.2 can be computed by
an arithmetic circuit,

- argue that the OPT-gate for FIXP of [101] can solve the linear program P of
Section 4.7.2.

The first part follows by observing that all the parameters of the linear program P
and those of Equation (4.41) can be computed using the standard operations of the
circuit. Note that compared to the corresponding argument in Section 4.7.1, here
we indeed need the capability to multiply input variables, in order to compute α∗i in
Equation (4.41). Linear program P is very simple and can be easily seen to satisfy all
the properties required for the OPT-gate for FIXP to work, stated in [101]. □

Limits of rationality: second-price ROI pacing equilibria can be irrational

To round off the section, it remains to determine whether our FIXP-membership result
for SPRPE, rather than a PPAD-membership result, is due to our proof technique
falling short, or whether there is some inherent reason for this. As we show below,
there are simple examples of SPRPGs G for which all SPRPE are irrational and hence
a PPAD-membership result is not possible.

Example 7 (Example of a SPRPG G that only has irrational SPRPE). Consider a
SPRPG G with 2 buyers and 3 items, with v1 = (1,0,1) and v2 = (0,1,2). Let A be
sufficiently large, e.g., A > 4; the proof can easily be adapted for other values of A
by appropriate rescaling of the parameters. Via a case analysis, we show that in any
SPRPE, the pacing multipliers αi for i ∈ {1,2} are irrational.

Let (α,x) be a SPRPE. Clearly,

- buyer 1 will be allocated the entire quantity of item 1, i.e., x11 = 1, at price
p1(α) = 0,

- buyer 2 will be allocated the entire quantity of item 2, i.e., x22 = 1, at price
p2(α) = 0.

Case 1: α1 < 2α2. In this case, buyer 2 wins the entirety of item 3 at price α1, thus
we have p3(α) = α1, x13 = 0 and x23 = 1. By the ROI constraint (Condition III.d. of
Definition 4.7.3) for buyer 2 it holds that

α1 = p3(α) · x23 ≤ 1+2 · x23 = 3



224 Chapter 3. PPAD-membership via Convex Optimization

However, we have that

x11 · p1(α) = 0 < 1 = v11 · x11 (4.43)

By the maximum pacing constraint (Condition III.e. of Definition 4.7.3) for buyer
1, it follows that α1 = A. Hence A = α1 ≤ 3, which is not possible by the choice of A.
This implies that (α,x) is not an SPRPE, a contradiction.

Case 2: α1 > 2α2. In this case, buyer 1 wins the entirety of item 3 at price 2α2, thus
we have p3(α) = 2α2, x13 = 1 and x23 = 0. By the ROI constraint (Condition III.d. of
Definition 4.7.3) for buyer 1 it holds that

2α2 · x13 = p3(α) · x13 ≤ 1+1 · x13 = 2 (4.44)

and hence α2 ≤ 1, which implies that α2 = 1, since α2 ∈ [1,A]. Therefore, we have
that α2 · v21 = 1, whereas

∑
j∈{1,2,3} x2 j · p j(α) = 0. By the maximum pacing constraint

(Condition III.e. of Definition 4.7.3) for buyer 2, it follows that α2 = A ≤ 1, which is
not possible since A > 1. This implies that (α,x) is not an SPRPE, a contradiction.

Case 3: α1 = 2α2. In this case, both buyers 1 and 2 submit the same bid, and hence
they are both eligible to receive positive quantities of item 3. Since the first- and
second-highest bids coincide, the price of the item is p3(α) = α1 = 2α2 ≥ 2, since
αi ∈ [1,A] for i ∈ {1,2}. By the ROI constraint (Condition III.d. of Definition 4.7.3)
for both buyers, we have

p3(α) · x13 ≤ 1+ x13 (4.45)

p3(α) · x23 ≤ 1+2x23 (4.46)

Next, we consider whether these inequalities can be strict or not. First, if the second
inequality is strict, then by the maximum pacing constraint (Condition III.e. of
Definition 4.7.3) for buyer 2, we have that α2 = A. However, then α1 = 2α2 = 2A,
which contradicts the fact that α1 ∈ [1,A]. This implies that the second inequality is in
fact an equality, as otherwise (α,x) is not an SPRPE.

Now suppose that the first inequality is strict. By the maximum pacing constraint
(Condition III.e. of Definition 4.7.3) for buyer 1, we have that α1 = A and hence
p3(α) = A. Now adding the two inequalities together we have

A = α1 = p3(α) · (x13+ x23) < 2+ x13+2x23 = 3+ x23 ≤ 4 (4.47)

which is a contradiction since A > 4. This implies that the first inequality is also in
fact an equality, as otherwise (α,x) is not an SPRPE.

We are now left with two equations, namely that

x12 =
1

p3(α)−1
and x23 =

1
p3(α)−2



4.8. Fair Division 225

Adding these together, we have that

1 = x13+ x23 =
1

p3(α)−1
+

1
p3(α)−2

Multiplying through by the denominators, we obtain the quadratic equation p3(α)2−

5p3(α)+5 = 0 which has only irrational solutions (5±
√

5)/2. Since p3(α) ≥ 2, this
means that p3(α) = (5+

√
5)/2 is the unique solution corresponding to a SPRPE. We

conclude that α1 = p3(α) and α2 = p3(α)/2 are irrational.

4.8 Fair Division

In this section we consider applications of our linear-OPT-gate to fair division. In
particular, we will mainly consider two rather fundamental settings, namely envy-free
cake cutting and rental harmony. The former is one of the prototypical problems in
fair division [108], the origins of which date back to the late 1940s and the work of
Steinhaus [208], and concerns the fair division of a single infinitely divisible resource
among a set of agents with heterogeneous preferences over parts of the resource.
The latter was studied famously by Su [212], who credits its origins to the chore
division problem of Gardner [109], and is concerned with the fair allocation or rooms
to tenants, taking into account their preferences over rooms and the rent for each
room.

The PPAD-membership for approximate envy-free cake cutting has been known
since the work of Deng et al. [76], and has been hinted at by the existence proof of
Simmons [212] that in fact goes via an approximate version and applies Sperner’s
Lemma [204]. Filos-Ratsikas et al. [101] recently showed that finding an exact envy-
free division is in FIXP in general. Still, there are cases for which exact solutions are
rational (e.g., when the preferences are captured by piecewise-constant densities), and
for those FIXP is not the appropriate class. Our main theorem in Section 4.8.1 below
extends the ideas of Filos-Ratsikas et al. to show the desired PPAD-membership result
for these cases. We remark that a FIXP-hardness result is also known from [101], as
well as a PPAD-hardness result from [76] for approximate divisions, but those only
concern very general versions of the problem and leave much room for improvement.

For rental harmony, there were no known complexity results before our work, to
the best of our knowledge. It turns out that our linear-OPT-gate allows us to obtain
the PPAD-membership of finding fair partitions using very much the same approach
as for the case of envy-free cake cutting, again for these cases for which partitions in
rational numbers exist. For more general settings (for which all partitions might be
irrational), we complement our results with a FIXP-membership proof, based on the
OPT-gate for FIXP of [101].

We remark that very recently Caragiannis et al. [44] already used the linear-OPT-
gate (which we made them aware of via personal communications) to establish that
computing envy-free and Pareto-optimal allocations of multiple divisible goods is in
PPAD.



226 Chapter 3. PPAD-membership via Convex Optimization

4.8.1 Envy-free cake cutting

We start from arguably the most fundamental fair division problem, that of envy-free
cake cutting.

Definition 4.8.1 ((Contiguous) envy-free cake cutting). Let the interval [0,1] be called
a cake, which is to be divided into n subintervals (pieces) using n−1 cuts. Let x ∈ ∆n−1

denote a division of the cake, i.e., each division is a point in the simplex, and let x j

be the j’th coordinate (or “the j’th piece”). There is a set N of n agents, and for each
piece j, each agent i ∈ N has a valuation function ui j : ∆n−1→ R≥0, assigning a real
number to a division of the cake. Given a division x, we will say that agent i ∈ N
prefers the j-th piece if ui j(x) ≥ ui j′(x) for any piece j′. A division x is envy-free if
there exists a permutation π of {1, . . . ,n} such that for every i ∈ N, agent i prefers piece
π(i).

We offer the following remarks regarding Definition 4.8.1:

- The definition considers the contiguous version of the problem, where the pieces
are single intervals. In the more general version of the problem, each piece can
be a collection of possibly disconnected intervals. Since a contiguous division
is clearly a division, the PPAD-membership of computing contiguous divisions
is a stronger result.

- The definition above is very general, in the sense that the valuations of the
agents for the pieces do not only depend on the pieces themselves, but they
could depend on the whole division x, e.g., on how the remaining pieces have
been allocated. This captures for example valuations that exhibit externalities.
In contrast, several textbooks on the problem (e.g., see [38, 188, 190]) often
consider the problem where the valuation of an agent only depends on her own
piece, and in fact these valuations are captured by additive measures over the
cake (i.e., the value of an agent for the union of two intervals is the sum of her
value for each interval). Again, with regard to PPAD-membership, the more
general setting that we consider here makes the result stronger.

Sufficiency condition: Hungriness. We will say that an agent i ∈ N is hungry, if
she prefers a non-empty piece of cake to an empty piece. An instance of the envy-free
cake cutting problem satisfies the hungriness condition if all of the agents are hungry.

Known results for existence and complexity. The existence of envy-free cake
cutting divisions (in the sense of Definition 4.8.1) was proven independently by
Woodall [229] and Simmons (credited in [212]), under the hungriness condition. Both
of these proofs go via proving existence for an approximate version of the problem
(via Sperner’s Lemma [204] or the related K-K-M Lemma [156]) and then take limits
to obtain the existence of exact divisions. An alternative proof by Woodall [229] uses
Brouwer’s fixed point theorem [39]. The first continuous proof of existence was given



4.8. Fair Division 227

by Filos-Ratsikas et al. [101] in the context of proving that computing an envy-free
division is in the class FIXP, via the employment of their OPT-gate for FIXP:

Theorem 4.8.1 ([101]). Computing an envy-free division of the cake is in FIXP.

In general, FIXP is indeed the right class for the computation of exact envy-free
divisions, as there are simple examples showing that even when the valuations are
given by linear density functions, all envy-free divisions might be irrational (e.g., see
[24]). We provide a simple one below for completeness:

Example 8 (Example where all envy-free cake cutting divisions are irrational). Con-
sider an instance with two identical agents and let u be their common valuation
function. For u, we will specify the densities over the cake [0,1], which are both given
by f (t) = 2t. Let z be the point where the cake is cut at an envy-free division. It must
hold that u([0,z]) = u([z,1]), i.e.,∫ z

0
2t dt =

∫ 1

z
2t dt

The first integral evaluates to z2 and the second integral evaluates to 1− z2. It follows
that the only envy-free division is obtained by cutting the cake at z = 1/

√
2, an

irrational number.

Still, there are interesting valuation functions for which rational envy-free divisions
exist, and for those cases a FIXP-membership result is unsatisfactory. For example,
it is known that when agents have piecewise-constant density functions (i.e., step
functions), an envy-free division in rational numbers exists (e.g., see [126]). For these
cases for which rationality is possible, we would like to obtain a PPAD-membership
result instead. This is achievable via the “approximation and rounding” approach
which was discussed in Section 4.1.2, i.e., to start from an ε-approximately envy-free
division of the cake, known to be computable in PPAD from [76], and then round it
to an exact solution, as long as ε is small enough [126]. We provide an alternative,
conceptually much simpler proof, via the employment of our linear-OPT-gate, which
does not require approximations or rounding. We will obtain the PPAD-membership
of the problem for any valuation function that is given by a linear pseudo-circuit. We
state the main theorem of the section.

Theorem 4.8.2. Computing an envy-free division of the cake when the agents’ valua-
tion functions are given by linear pseudo-circuits is in PPAD.

The valuation functions are the integrals of the density functions, so Theorem 4.8.2 im-
mediately implies a PPAD-membership result for envy-free divisions with piecewise-
constant densities, which we mentioned above. Using the machinery developed in
Section 4.3.4, we can also capture simple interesting cases where the inputs are given
as the integrals of the density functions rather than the utilities themselves. We develop
the proof in Section 4.8.1 below.



228 Chapter 3. PPAD-membership via Convex Optimization

The proof of Theorem 4.8.2

The proof follows very much along the same lines of that of Theorem 4.8.1 presented
in [101], with a crucial modification to make it amenable to the use of linear arithmetic
circuits. For that reason, it is instructive to first present the proof of [101], and then
explain how to obtain the proof of Theorem 4.8.2 from there.

Envy-free divisions as matchings in bipartite graphs. Let x ∈ ∆n−1 be a division
of the cake. Let G = (N,P,E) be the bipartite graph in which N is the set of agents, P
is the set of pieces and an edge (i, j), i ∈ N, j ∈ P is in E if and only if agent i prefers
piece j. Given this interpretation, x is envy-free if and only if G admits a perfect
matching. We will find that perfect matching via a maximum flow argument, therefore
we define capacities ce on the edges of the corresponding flow network.

Envy-free divisions as fixed points. Filos-Ratsikas et al. [101] construct a function
F : D→ D and recover envy-free divisions from its fixed points. In particular the
domain of F will be D = ∆n−1×

(
∆n−1

)n
× ([0,1]n)n. In D:

- a point x ∈ ∆n−1 will be the division of the cake,

- a point ci ∈ ∆
n−1 represents the capacities of the edges from agent i ∈ N,

- a point yi in [0,1]n represents the flow along the edges from agent i ∈ N.

In other words, the input of F will be a vector (x,c1, . . . ,cn,y1, . . . ,yn) and let (x∗,c∗1, . . . ,c
∗
n,y∗1, . . . ,y

∗
n)

denote the output. Let rk =max{0,1−
∑n

i=1 yik} denote the flow excess incoming into
piece k. The division x∗ will be computed via the following equations:

x∗j =
x j+ r j

1+
∑n

k=1 rk
, for all pieces j (4.48)

The capacities c∗i and the flows y∗i will be obtained as the outcomes of the linear
programs of Figure 4.12. P1 is a set of linear programs (one for each agent i ∈ N), the
optimal solutions of which will give the capacities c∗i j, and P2 is a linear program that
gives the values y∗i j of the flow.

Remark 37. The 1/n3 term in the constraints of P2 ensures that there exists a strictly
feasible point (i.e., a point ẑ such that the general constraint C · z ≤ d is satisfied with
strict inequality, i.e., C · ẑ < d, and hence satisfies the Slater condition [202]). This is
required for the OPT-gate for FIXP of Filos-Ratsikas et al. [101] but is not required
for our linear-OPT-gate. In particular, we could have the constraints be 0 ≤ yi j ≤ ci j

instead, and in fact that would even slightly simplify the proofs. However, we elected
to keep linear program P2 with the term 1/n3 in the constraints, for two reasons. First,
it allows us to directly compare with the proof of [101]. Secondly, it allows us to refer
to linear program P2 when we prove the FIXP-membership for the rental harmony
problem in Section 4.8.2.



4.8. Fair Division 229

Linear Program P1

maximize
n∑

j=1

ci j ·ui j(x)

subject to
n∑

j=1

ci j = 1

ci j ≥ 0, for any piece j

Linear Program P2

maximize
∑

1≤i, j≤n

yi j

subject to 0 ≤ yi j ≤ ci j+
1
n3 , for any agent i and piece j

n∑
i=1

yi j ≤ 1 for any piece j

n∑
i=1

yi j ≥ 1 for all agents i ∈ N

Figure 4.12: The linear program P1 used for capacities ci (left) and the linear program
P2 used for the flow y.

Filos-Ratsikas et al. [101] state and prove the following simple lemma.

Lemma 32 ([101]). If the total flow
∑

i∈N
∑

j y∗i j = n, then x∗ is an envy-free division.

Proof Sketch. We sketch the proof here, and refer the reader to [101] for the (only
slightly longer and more detailed) complete proof. By Hall’s Theorem [134], it follows
that unless x∗ is an envy-free division indeed, there will be some set of agents A ⊆ N
such that |N(A)| < |A|, where N(A) is the set of pieces preferred by agents in A. Linear
program P1 dictates that in an optimal solution, c∗i j > 0 only for pieces that agent i
prefers, i.e., c∗i j = 0 for any i ∈ A and j , N(A). Using this in linear program P2, we get
that y∗i j ∈ [0,1/n3], which allows the total flow out of A to be bounded by a quantity
strictly smaller than |A| and consequently, the total flow in the network by a quantity
strictly smaller than n, obtaining a contradiction. □

Lemma 32 reduces the problem of finding an envy-free division to that of finding a
flow of total value n. In turn, by the definition of r j, this is equivalent to stating that
r j = 0 for all pieces j. Filos-Ratsikas et al. [101] use the definition of x∗j to establish
that in a fixed point of F, this reduces to proving the statement of Lemma 33 below.
Indeed, the definition of x∗j establishes that in a fixed point (where x∗j = x j), it must be
the case that

x j ·

n∑
k=1

rk = r j, for all pieces j,

which implies that

x j > 0 and r j = 0⇒
n∑

k=1

rk = 0,

as desired.

Lemma 33 ([101]). There exists some piece j with r∗j = 0 and x∗j > 0.



230 Chapter 3. PPAD-membership via Convex Optimization

Proof. Since x is a valid division, there exists some ℓ such that x∗ℓ > 0. If r∗ℓ = 0 we
are done, so assume that r∗ℓ > 0. By the definition of r∗ℓ , that means that piece ℓ has
positive residual capacity, which implies that the total flow in the network is less than n.
Hence, there exists some agent i ∈ N, such that the total flow out of i is less than 1, i.e.,∑n

k=1 y∗ik < 1. The next step is to establish that there exists some piece ℓ′ ∈ N(i), where
N(i) is the set of preferred pieces for agent i, with r∗ℓ′ = 0, which will conclude the
proof, since xℓ′ > 0 follows from the hungriness condition. Assume by contradiction
that for all k ∈ N(i), it holds that r∗k > 0. Note that

∑N
k=1 y∗ik < 0 as established before,

and that
∑

k∈N(i) c∗ik = 1, which means that it is possible to send more flow from i to
N(i). Since each piece in N(i) is preferred by agent i, this contradicts the optimality
of y∗ as a solution to linear program P2. □

We now move on to the proof of Theorem 4.8.2. The proof mimics that presented
above, except for one crucial part: we can no longer use Equation (4.48) to retrieve the
envy-free division as a fixed point of the function F. This is because Filos-Ratsikas
et al. [101] only need to argue that F can be represented by an arithmetic circuit that
uses OPT-gates for FIXP, whereas we need to argue that it is possible to represent F
by a linear arithmetic circuit using linear-OPT-gates. In particular, we cannot divide
by 1+

∑n
k=1 rk in a linear arithmetic circuit.

It turns out that there is an easy “fix” for this. Consider the following linear program
P0.

Linear Program P0

maximize
n∑

k=1

rk · xk

subject to
n∑

k=1

xk = 1

xk ≥ 0 for any piece k

The division x∗ will be obtained as the optimal solution to a set of linear programs
of the form P0, one for each piece. We argue that a fixed point of the function F is
an envy-free division below. The PPAD-membership of the problem then follows
by restricting the functions ui j(x) to assume an appropriate form that allows F to be
computable by a linear arithmetic circuit.

Proof of Theorem 4.8.2. Consider a fixed point of the function F and let x∗ be the
corresponding division, which is an optimal solution of linear program P0 by design.
Note that in such an optimal solution, positive weight is only placed on variables xℓ for
which rℓ is maximum, i.e., x∗ℓ > 0⇒ r∗ℓ =maxk r∗k . Hence, if there exists some piece j
such that x∗j > 0 and r∗j = 0, that means that maxk r∗k = 0. Since r∗k ≥ 0 for all k, this is
equivalent to r∗k = 0 for all k. Thus, we have established exactly what Equation (4.48)
does without dividing in the circuit.



4.8. Fair Division 231

r∗k can obviously be computed by a linear arithmetic circuit. Linear programs
P0, P1 and P2 use only linear constraints with the gate inputs appearing only on
the right-hand side of the constraints. The gate inputs do not appear in the objective
function of P2, whereas the objective function of P0 has a linear subgradient. For P1,
the subgradient of the objective function is a linear function in ui j(x), and since ui j(x)
is given by a linear pseudo-circuit, so is the subgradient of the objective function. This
establishes that F can be represented by a linear arithmetic circuit, which concludes
the proof. □

4.8.2 Rental Harmony

We define the rental harmony problem, notably studied by Su [212].

Definition 4.8.2 (Rental harmony). In the rental harmony problem, the total rent of
a house has to be divided among the n rooms of the house, in a way that makes it
possible to assign the rooms to n tenants in an envy-free manner, i.e., no tenant would
prefer to have someone else’s room (with the respective rent) to their own. Formally,
we denote the rent by the unit interval [0,1]. Each tenant has a valuation function
ui j : ∆n−1→ R≥0, for each room j, assigning a real number to each division of the rent.
Given a division x, we will say that tenant i prefers the j-th room if ui j(x) ≥ ui j′(x) for
any room j′. A division x is envy-free if there exists a permutation π of {1, . . . ,n} such
that for every i ∈ {1, . . . ,n}, tenant i prefers room π(i).

Known results for existence. The existence of a solution to the rental harmony
problem was proven by Su [212], via an interesting adaptation of the idea of Simmons
for proving the existence of envy-free cake cutting solutions, one which employs a
“dual Sperner labelling”. Similarly to the proofs for cake-cutting, the proof also appeals
to limits of approximate solutions. To the best of our knowledge, computational
complexity results about the general version of the problem did not exist before our
work.

One can see the similarities between Definition 4.8.2 above and Definition 4.8.1 of
Section 4.8.1. In fact, those are even more clear if we consider the following problem,
which we refer to as envy-free chore division.

Definition 4.8.3 ((Contiguous) envy-free chore division). Let the interval [0,1] be
called a chore, which is to be divided into n subintervals (pieces) using n−1 cuts. Let
x ∈ ∆n−1 denote a division of the chore, i.e., each division is a point in the simplex,
and let x j be the j’th coordinate (or “the j’th piece”). There is a set N of n agents, and
for each piece j, each agent i ∈ N has a valuation function ui j : ∆n−1→ R≥0, assigning
a real number to a division of the cake. Given a division x, we will say that agent
i ∈ N prefers the j-th piece if ui j(x) ≥ ui j′(x) for any piece j′. A division x is envy-free
if there exists a permutation π of {1, . . . ,n} such that for every i ∈ N, agent i prefers
piece π(i).

Looking at Definition 4.8.3 above, one can observe two things:



232 Chapter 3. PPAD-membership via Convex Optimization

(a) It defines the same problem as the one in Definition 4.8.2, by simply substituting
the term “room” with “piece” (and the term “tenant” with “agent”).

(b) It defines the same problem as the one in Definition 4.8.1 in Section 4.8.1, by
simply substituting the term “chore” with “cake”.

Observation (a) is because we are using a very general definition of envy-free
chore-division (as we used a very general definition of envy-free cake-cutting in
Section 4.8.1), one in which there is a different valuation function for each piece.
In that generality, there is no difference between a piece and a room. For restricted
valuation functions, the two problems could be different. We remark again that for
proving membership results, considering these very general versions makes the results
stronger.

Now looking at Observation (b), it seems as if the envy-free chore division problem
and the envy-free cake cutting problem are the same. Is that really the case? The
difference lies in the sufficiency condition. Recall that for cake-cutting, the sufficiency
condition was hungriness, i.e., that agents always prefer a non-empty piece to any
empty piece. For chore division/rental harmony, we will have the exact opposite.

Sufficiency condition: Miserly agents. We will say that an agent i is a miser, if
she prefers an empty piece of the chore (respectively a room with zero rent) to a
non-empty piece (respectively a room with non-zero rent). An instance of the chore
division/rental harmony problem satisfies the miserly agents condition if all of the
agents are misers.

Given the above, in our setting envy-free chore division (Definition 4.8.3) and rental
harmony (Definition 4.8.2) are equivalent, so we will use the terminology of envy-
free chore division in the proof that we will develop, mainly for consistency with
Section 4.8.1. Our main theorem of the section is the following, which is reminiscent
of Theorem 4.8.2 for envy-free cake cutting.

Theorem 4.8.3. Computing an envy-free division of the chore (i.e., a rental harmony
partition) when the agents’ valuation functions are given by linear arithmetic circuits
in PPAD.

As in the case of Section 4.8.1, using the machinery developed in Section 4.3.4, we
can also capture simple interesting cases where the inputs are given as the integrals of
the density functions rather than the utilities themselves.

Before we proceed with the proof, we make the following remark.

Remark 38. One may be inclined to believe that there would be an easy reduction
from envy-free chore division to envy-free cake cutting, e.g., by setting ucake

i j (x) =
−uchore

i j (x) for all agents i and pieces j. Indeed, this would turn a hungry agent
into a miser, thus establishing the correct sufficiency condition. However, letting
xcake = xchore would not result in an envy-free chore division, as shown by the simple



4.8. Fair Division 233

following example with 2 agents. Let xcake
1 = [0,1/2] and xcake

2 = (1/2,1] and let
ucake

11 (xcake
1 , xcake

2 ) = 1− ϵ and ucake
12 (xcake

1 , xcake
2 ) = ϵ for some ϵ < 1. Let agent 2 be

indifferent between any allocation of the cake. We have that uchore
11 (xchore

1 , xchore
2 ) =

−ucake
11 (xcake

1 , xcake
2 ) = −1+ ϵ and uchore

12 (xchore
1 , xchore

2 ) = −ucake
12 (xcake

1 , xcake
2 ) = −ϵ. Agent

1 obviously prefers piece 2 rather than piece 1, and this is not an envy-free chore
division.

In this example it is easy to remedy that, by labelling the pieces oppositely, i.e.,
by having xcake

1 = xchore
2 and vice-versa. What happens however in more complex

scenarios, with more agents and different valuations? Finding the appropriate division
would essentially end up constructing the dual Sperner labelling used by Su [212].
Our results in this section provide an alternative way of finding an envy-free chore
division, which is very much in line with the approach that we used in Section 4.8.1.
In other words, our technique based on the linear-OPT-gate provides a unified proof
of existence of solutions for both envy-free cake cutting and rental harmony.

4.8.3 The proof of Theorem 4.8.3

Exactly in the same manner as in Section 4.8.1, we will consider a bipartite graph
with agents i on one side and pieces j on the other side, with edges (i, j) indicating
that agent i prefers pieces j. An envy-free chore division will correspond to a perfect
matching in the graph, which we will again compute via a maximum flow argument
in a fixed point.

Again, we construct a function F : D→ D and recover envy-free chore divisions
from its fixed points. In particular the domain of F will be D = ∆n−1 ×

(
∆n−1

)n
×

([0,1]n)n. In D:

- a point x ∈ ∆n−1 will be the division of the chore,

- a point ci ∈ ∆
n−1 represents the capacities of the edges from agent i ∈ N,

- a point yi in [0,1]n represents the flow along the edges from agent i ∈ N.

In other words, the input of F will be a vector (x,c1, . . . ,cn,y1, . . . ,yn) and let (x∗,c∗1, . . . ,c
∗
n,y∗1, . . . ,y

∗
n)

denote the output. As in Section 4.8.1, the capacities and the flow values will be
obtained as optimal solutions to the linear programs P1 and P2 of Figure 4.12 respec-
tively.

Again, we will use rk =max{0,1−
∑n

i=1 yik} to denote the flow excess incoming
into piece k. Lemma 32 holds verbatim for our setting here as well, which establishes
that it suffices to argue that in our fixed point, r∗j = 0 for all pieces j. Now, the chore
division x∗ will be an optimal solution to the following linear program, which is a
straightforward adaptation of linear program P0 presented in Section 4.8.1.

Linear Program Pc
0



234 Chapter 3. PPAD-membership via Convex Optimization

minimize
n∑

k=1

rk · xk

subject to
n∑

k=1

xk = 1

xk ≥ 0 for any piece k

The following lemma is analogous to Lemma 33, although the proof is somewhat
different.

Lemma 34. In a fixed point of F, r∗j = 0 for all pieces j.

Proof. Consider a fixed point (x∗,c∗1, . . . ,c
∗
n,y∗1, . . . ,y

∗
n) of F. For any piece j, x∗j >

0⇒ r∗j =mink r∗k , which follows from the fact that x∗j is an optimal solution to linear
program Pc

0, and hence only places positive weight to pieces with minimum r∗k .
We will first argue that x∗j > 0 for all pieces j. Assume first that x∗j0 = 0 for some

piece j0 and consider any piece j such that x∗j > 0; note that at least one such j
must exist by the fact that x∗ is a valid division of the chore. By the miserly agents
sufficiency condition, we have that any agent i ∈ N prefers j0 to j, i.e., ui j0(x∗)> ui j(x∗).
Since c∗i j is an optimal solution to linear program P1, it follows that c∗i j = 0. In turn,
by the corresponding constraint of linear program P2, it follows that y∗i j ≤ 1/n3, and
that

∑n
i=1 y∗i j ≤ 1/n2. From this, we conclude that r∗j ≥ 1−1/n2.

Since x∗j > 0, by the discussion above this implies that mink r∗k ≥ 1−1/n2, which
of course implies that r∗ℓ ≥ 1−1/n2 for all pieces ℓ. It follows that

∑n
i=1 y∗iℓ ≤ 1/n2 for

all pieces ℓ, and by summing over ℓ we obtain that
∑n
ℓ=1

∑n
i=1 y∗i j < 1/n. Since ci is a

feasible solution to linear program P1, there exists a set of pieces Aℓ with
∑

i∈Aℓ c
∗
i j = 1

for at least one agent i ∈ N (and those are precisely the pieces with x∗ℓ = 0). That
implies that there is a solution to linear program P2 for which

∑n
ℓ=1

∑n
i=1 yi j ≥ 1. This

contradicts the fact that y∗ is an optimal solution to linear program P2.
Now since x∗j > 0 for all pieces j, by the discussion in the first paragraph of the

proof it follows that r∗j = r∗j′ for all pieces j and j′. Let r∗ denote the value of r j for any
j. We will argue that r∗ = 0, which will conclude the proof. Assume by contradiction
that r∗ > 0, or, equivalently, that

∑n
i=1 y∗i j < 1 for piece j. This implies that in linear

program P2 the corresponding constraint for piece j is not be tight. In turn, that means
that there is a feasible flow y of value larger than that of y∗, contradicting the fact that
y∗ is an optimal solution to linear program P2.

□

We can now conclude the proof of Theorem 4.8.3.

Proof of Theorem 4.8.3. Lemma 34 establishes that a fixed point of F corresponds
to an envy-free chore division. It remains to show that F can be computed by a
linear arithmetic circuit containing linear-OPT-gates. This is virtually identical to the
corresponding argument in the proof of Theorem 4.8.2. □



4.9. Conclusion and Future Work 235

FIXP-membership for (unrestricted) rental harmony

In the envy-free cake cutting application, Theorem 4.8.2 provides a crisper complexity
result than that of Theorem 4.8.1, for the case when the valuation functions are given
by linear pseudo-circuits, which admits envy-free divisions in rational numbers. For
rental harmony/chore division, the situation is similar, except, as we mentioned earlier,
a FIXP-membership result (or any other kind of complexity result for that matter)
was not known before our work. It is almost straightforward to generalize our proof
developed in Section 4.8.3 to obtain a theorem analogous to Theorem 4.8.1, for the
case of fairly dividing a chore as well, when the valuation functions are generally
represented by arithmetic circuits (not necessarily linear).

Theorem 4.8.4. Computing an envy-free division of the chore is in FIXP.

Proof. Construct a function F exactly as in Section 4.8.3 and consider a fixed point
(x∗,c∗1, . . . ,c

∗
n,y∗1, . . . ,y

∗
n) of F. The arguments on why x∗ constitutes an envy-free

division are identical to those developed in the previous section. What we need to
establish is that F can be computed by an arithmetic circuit that contains instances of
the OPT-gate for FIXP developed by Filos-Ratsikas et al. [101]. In reality, this has
practically already been established in [101]: linear programs P1 and P2 are identical
to those used in [101], and linear program P0 is also amenable to the use of their
OPT-gate for FIXP. We note that it is possible to multiply two inputs in arithmetic
circuits, and hence the valuations ui j(x) in the objective function of linear program P1
are not restricted as in Theorem 4.8.3. □

We conclude the section with an example showing that if one goes beyond linear
valuations, there are cases where all envy-free divisions are irrational, and hence the
FIXP-membership result of Theorem 4.8.4 (rather than a PPAD-membership result) is
justified.

Example 9 (Example where all envy-free chore divisions are irrational). Consider
an instance of the rental harmony/envy-free chore division problem with two agents.
A division of the chore is represented by a point (x,1− x) ∈ ∆1. The common utility
functions of the two agents are given by u1(x,1− x) = 2(1− x)2 and u2(x,1− x) = x2.
Note that if x = 0 the agents will prefer piece 1, and if x = 1 the agents will prefer
piece 2. Therefore, the agents are indeed misers. For (x,1− x) to be an envy-free
chore division, then it must hold that 2(1− x)2 = x2. As x ∈ [0,1], this implies that
x = 2−

√
2, so the only solution is irrational.

4.9 Conclusion and Future Work

In this work, we developed the linear-OPT-gate, a powerful general-purpose tool for
showing the PPAD-membership of problems that have exact rational solutions. We
demonstrated its strength by applying it to a plethora of domains related to game theory,
competitive markets, auto-bidding auctions and fair division. For those applications,



236 Chapter 3. PPAD-membership via Convex Optimization

we obtain new results and generalizations of the state-of-the-art complexity results, as
well as significant simplifications in terms of the proof techniques.

There are some interesting open directions related to our work, mainly in the
domain of competitive markets. First, it will be very interesting to see whether one
could extend our machinery in Section 4.3.4 to also capture markets with SSPLC
production sets; we discussed the challenges of this task in Remark 35. Similarly,
it would be interesting to try to design a class of succinct utility and production
functions that subsumes all the known classes for which rational solutions are known
to exist, i.e., one that would generalize the Leontief-free class of functions. Finally,
one application that we did not study in our work is that of competitive markets for
mixed manna, where there are goods but also bads to be allocated to the consumers.
Chaudhury et al. [48] studied these markets for SPLC utility functions and provided
a PPAD-membership result. There does not seem to be any technical obstacle to
applying our technique on those markets as well (and also possibly incorporating
production functions as well); the details are still to be worked out.

Looking at the big picture, our linear-OPT-gate complements and refines the
OPT-gate for FIXP of Filos-Ratsikas et al. [101] as a tool to proving computational
membership of exact problems in the appropriate complexity classes. One interesting
question is whether one could hope to develop a similar gate for approximate problems,
i.e., an optimization gate that could be used in a very similar manner to those other
two gates to establish PPAD-membership of more general problems (with irrational
solutions), for their approximate versions. This certainly introduces new challenges
and intriguing questions. One would have to work with approximate rather than exact
fixed points. How should the gate be constructed to be useful in this regard? Should
the gate work approximately as well? Applications domains like competitive markets,
where the approximation in the competitive equilibrium notion comes from relaxing
the clearing condition rather than the bundle optimality of the consumers, seem to
suggest otherwise.



Chapter 5

Strong Approximate Consensus
Halving and the Borsuk-Ulam
Theorem

Abstract

In the consensus halving problem we are given n agents with valuations
over the interval [0,1]. The goal is to divide the interval into at most n+1 pieces
(by placing at most n cuts), which may be combined to give a partition of [0,1]
into two sets valued equally by all agents. The existence of a solution may be
established by the Borsuk-Ulam theorem. We consider the task of computing an
approximation of an exact solution of the consensus halving problem, where the
valuations are given by distribution functions computed by algebraic circuits.
Here approximation refers to computing a point that ε-close to an exact solution,
also called strong approximation. We show that this task is polynomial time
equivalent to computing an approximation to an exact solution of the Borsuk-
Ulam search problem defined by a continuous function that is computed by an
algebraic circuit.

The Borsuk-Ulam search problem is the defining problem of the complexity
class BU. We introduce a new complexity class BBU to also capture an alter-
native formulation of the Borsuk-Ulam theorem from a computational point of
view. We investigate their relationship and prove several structural results for
these classes as well as for the complexity class FIXP.

5.1 Introduction

Many computational problems, e.g. linear and semidefinite programming, are most
naturally expressed using real numbers. When the model of computation is discrete,
these problems must be recast as discrete problems. In the case of linear programming
this causes no problems. Namely, when the input is given as rational numbers and an
optimal solution exists, a rational valued optimal solution exists and may be computed
in polynomial time. For semidefinite programming however, it may be the case that all

237



238 Chapter 5. Strong Approximate Consensus Halving and BU

optimal solutions are irrational. For dealing with such cases we may instead consider
the weak optimization problem as defined by Grötschel, Lovász and Schrijver [132]:
Given ε > 0, the task is to compute a rational-valued vector x that is ε-close to
the set of feasible solutions and has objective value ε-close to optimal. Assuming
we are also given, as an additional input, a strictly feasible solution and a bound
on the magnitude of the coordinates of an optimal solution, the weak optimization
problem may be solved in polynomial time using the ellipsoid algorithm [132]. Let us
note however that without additional assumptions, even the complexity of the basic
existence problem of semidefinite feasibility is unknown. In fact, the problem is likely
to be computationally very hard [215]. More precisely, it is hard for the problem
PosSLP, which is the fundamental problem of deciding whether an integer given by a
division free arithmetic circuit is positive [5].

In this paper we consider real valued search problems, where existence of a
solution is guaranteed by topological existence theorems such as the Brouwer fixed
point theorem and the Borsuk-Ulam theorem. This means that the search problems
are total, thereby fundamentally differentiating them from general search problems
where, as described above, even the existence problem may be computational hard.
We are mainly interested in the approximation problem: given ε > 0, the task is to
compute a rational-valued vector x that is ε-close to the set of solutions.

Recall that the Brouwer fixed point theorem states every continuous function
f : Bn→ Bn, where Bn is the unit n-ball, has a fixed point, i.e. there is x ∈ Bn such
that f (x) = x [39]. The Borsuk-Ulam theorem states that every continuous function
f : S n→ Rn, where S n is the unit n-sphere in Rn+1, maps a pair of antipodal points
of S n to the same point in Rn, i.e. there is x ∈ S n such that f (x) = f (−x) [35].
The Brouwer fixed point theorem is of course not restricted to apply to the domain
Bn, but applies to any domain that is homeomorphic to Bn. Similarly the Borsuk-
Ulam theorem applies to any domain homeomorphic to S n by an antipode-preserving
homeomorphism. It is well-known that the Borsuk-Ulam theorem generalizes the
Brouwer fixed point theorem, in the sense that the Brouwer fixed point theorem is
easy to prove using the Borsuk-Ulam theorem [211, 222].

The Brouwer fixed point theorem and the Borsuk-Ulam theorem naturally define
corresponding real valued search problems, and thereby also corresponding approxi-
mation problems. In addition, the statements of the theorems naturally leads to another
notion of approximation. For the case of the Brouwer fixed point theorem we may
look for an almost fixed point, i.e. x ∈ Bn such that f (x) is ε-close to x, and for the case
of the Borsuk-Ulam theorem we look for a pair of antipodal points that almost map to
the same point, i.e. x ∈ S n such that f (x) and f (−x) are ε-close. Following [85], we
shall refer to this notion of approximation as weak approximation and to make the
distinction clear we refer to the former (and general) notion of approximation as strong
approximation. In the setting of weak approximation in relation to the Borsuk-Ulam
theorem we assume that f has co-domain Bn.

In their seminal work, Etessami and Yannakakis [85] introduced the complexity
class FIXP to capture the computational complexity of the real-valued search problems
associated with the Brouwer fixed point theorem, and proved that the problem of



5.1. Introduction 239

finding a Nash equilibrium in a given 3-player game in strategic form is FIXP-
complete. In order to have a notion of completeness, the class FIXP is defined to be
closed under reductions. The type of reductions chosen by Etessami and Yannakakis,
SL-reductions, consists of mapping between sets of solutions by a composition of
a projection reduction followed by individual affine transformation applied to each
coordinate.

Etessami and Yannakakis consider different ways to cast real valued search prob-
lems as discrete search problems. In addition to the approximation problem, these are
the partial computation problem where the task is to compute a solution to a given
number of bits of precision and decision problems, where the task is to evaluate a
sign condition of the set of solutions given the promise that either all solutions satisfy
the condition or none of them do. Of these we shall only consider the approximation
problem. The class FIXPa denotes the class of discrete search problems corresponding
to strong approximation of Brouwer fixed points and is defined to be closed under
polynomial time reductions. Etessami and Yannakakis also prove that the problem
PosSLP reduce to the problem of approximating a Nash equilibrium, thereby showing
that FIXPa likely contains search problems that are computationally very hard.

While the notion of SL-reductions is very restricted, it is sufficient for proving
completeness of the problem of finding Nash equilibrium. Likewise, SL-reductions
are sufficient for showing that FIXP is robust with respect to the choice of domain for
the Brouwer function.

Another important reason for using SL-reductions is that they immediately imply
polynomial time reductions between the corresponding decision and approximation
problems (the partial computation problem is more fragile and requires additional
assumptions, cf. [85]). As we are mainly interested in the approximation problem more
expressive notions of reducibility can be considered, while maintaining the property
that reducibility implies polynomial time reducibility between the corresponding
approximation problems. A sufficient condition for this is that the mapping of solutions
is polynomially continuous and polynomial time computable.

5.1.1 The Borsuk-Ulam Theorem

Deligkas, Fearnley, Melissourgos, and Spirakis [72] recently introduced a complexity
class BU to capture, in an analogy to FIXP, the computational complexity of the
real-valued search problems associated with the Borsuk-Ulam theorem.

The Borsuk-Ulam theorem has a number of equivalent statements that are also
easy to derive from each other. A function f defined on the unit sphere S n is odd
if f (x) = − f (−x) for all x ∈ S n. Note that the boundary ∂Bn of the unit n-ball Bn is
identical to S n−1. We thus say that a function f defined on Bn is odd on ∂Bn if f is
odd when restricted to S n−1. We present the simple proof of the known fact that the
different formulations can be derived from each other, for the purpose of discussing
equivalence from a computational point of view.

Theorem 5.1.1 (Borsuk-Ulam). The following statements hold:



240 Chapter 5. Strong Approximate Consensus Halving and BU

1. If f : S n→ Rn is continuous there exists x ∈ S n such that f (x) = f (−x).

2. If g : S n→ Rn is continuous and odd there exists x ∈ S n such that g(x) = 0.

3. If h : Bn → Rn is continuous and odd on ∂Bn there exists x ∈ Bn such that
h(x) = 0.

Proof of equivalence. Given f we may define g(x) = f (x)− f (−x). Clearly g is odd
and we have g(x) = 0 if and only if f (x) = f (−x), which shows that (2) implies (1).
Conversely, given g we simply let f = g. If f (x) = f (−x), then since g is odd we have
f (x) = g(x) = −g(−x) = − f (−x) = − f (x) and hence g(x) = f (x) = 0, which therefore
shows (1) implies (2).

We may view S n as two hemispheres, each homeomorphic to Bn, which are glued
together along their equators. Let π : S n→ Bn be the orthogonal projection defined by
π(x1, . . . , xn+1) = (x1, . . . , xn). Then given h we may define

g(x) =

h(π(x)) if xn+1 ≥ 0
−h(−π(x)) if xn+1 ≤ 0

.

The assumption that h is odd on ∂Bn makes g a well-defined continuous odd function.
We have g(x) = 0 if and only if h(x) = 0, which shows that (2) implies (3). Conversely,

given g we define h by h(x) = g
(
x, (1−∥x∥22)

1
2

)
. Then h is continuous and odd on ∂Bn,

since x ∈ ∂Bn if and only if ∥x∥22 = 1. Clearly if h(x) = 0 we may let y = (x, (1−∥x∥22)
1
2 )

and have g(y) = 0. On the other hand, when g(y) = 0 we may define x = (y1, . . . ,yn) if
yn+1 ≥ 0 and x = (−y1, . . . ,−yn) if yn+1 < 0, and we have h(x) = 0. Together this shows
that (3) implies (2). □

The class BU defined in [72] corresponds to first formulation of the above theorem.
We may clearly consider the second formulation equivalent to the first also from a
computational point of view. In particular, when translating between formulations,
the set of solutions is unchanged. Note that this set of solutions has the property that
all solutions come in pairs: when x is a solution then −x is a solution as well. For
the third formulation of the theorem this property only holds for solutions on the
boundary ∂Bn.

In contrast, while the mapping of solutions of the third formulation to the second
(and first) formulation given above is continuous this is not the case in the other
direction. More precisely, consider y ∈ S n such that g(y) = 0. For a solution strictly
contained in the upper hemisphere, the orthogonal projection to the first n coordinates
produces x ∈ Bn such that h(x) = 0. For a solution y strictly contained in the lower
hemisphere, the projection is instead applied to the antipodal solution −y.

To clarify this issue from a computational point of view we introduce a new
class BBU of real valued search problems corresponding to the third formulation of
Theorem 5.1.1, and it will follow from definitions that BU ⊆ BBU. In the context of
strong approximation however, the corresponding classes of discrete search problems



5.1. Introduction 241

BUa and BBUa will be shown to coincide. The idea is that given an approximation to
y ∈ S n, where g(y) = 0, that is sufficiently close to the equator of S n, there is no harm
in incorrectly deciding to which hemisphere y belongs, since solutions x ∈ ∂Bn for
which h(x) = 0 also come in pairs.

For the class BU, the notion of SL-reductions is clearly too restrictive to allow a
reasonable comparison to FIXP. Closing the class BU by SL-reductions, the solutions
would still come in pairs, thereby imposing strong conditions on the set of solutions.
On the other hand the reductions should also not be too strong. In particular it would
be desirable that FIXP would be still be closed under the chosen notion of reductions.
This issue is not discussed in [72]. We shall therefore propose a suitable notion of
reductions for both BU and BBU.

5.1.2 Consensus Halving

The Consensus halving problem is a classical problem of fair division [201]. We are
given a set of n bounded and continuous measures µ1, . . . ,µn defined on the interval
A = [0,1]. The goal is to partition the interval A into at most n+1 intervals, i.e. by
placing at most n cuts, such that unions of these intervals form another partition
A = A+∪A− of A satisfying µi(A+) = µi(A−) for every i. We may think of the intervals
being assigned a label from the set {+,−}, and A+ is precisely the union of the intervals
labeled by +. Such a partition is also known as a consensus halving. Using the Borsuk-
Ulam theorem, Simmons and Su [201] proved that a consensus halving using at most n
cuts always exists. Simmons and Su represent a division of A as a point x on the unit n-
sphere S n

1 with respect to the ℓ1-norm. The point x is viewed as representing a division
into precisely n+1 intervals, where some intervals are possibly empty. More precisely,
the i-th interval has length |xi|, and intervals of length 0 may simply be discarded. The
intervals of positive length are then labeled according to sgn(xi). Note that for any
x, the antipode −x represent the division where the sets A+ and A− are exchanged.
This naturally leads to a formulation using the Borsuk-Ulam theorem [201]. Namely
we may consider the function F : S n

1→ R
n given by F(x)i = µi(A+), and note that any

x ∈ S n
1 for which F(x) = F(−x) represent a consensus halving.

We are interesting in the simple setting of additive measures, where we have
corresponding density functions f1, . . . , fn such that µi(B) =

∫
B fi(x)dx. To cast the

consensus halving problem as a real valued search problem we follow [72] and assume
that the measures µ1, . . . ,µn are given by the distribution functions F1, . . . ,Fn defined
by

∫ x
0 fi(x)dx. An instance of the consensus halving problem is then given as a list of

algebraic circuits computing these distribution functions.
Corresponding to the different formulations of the Borsuk-Ulam theorem as a

real valued search problem with domain S n or Bn we get two different formulations
of the consensus halving problem. We denote these by CH and BCH respectively.
Deligkas et al. proved membership of CH in BU following the proof of Simmons
and Su, and proved hardness of CH for FIXP. Combining these, it follows that
FIXP ⊆ BU.



242 Chapter 5. Strong Approximate Consensus Halving and BU

5.1.3 Strong versus Weak Approximation

The difference between weak and strong approximation was studied in detail in the
general context of the Brouwer fixed point theorem by Etessami and Yannakakis. A
central example is the problem of finding a Nash equilibrium (NE). An important
notion of approximation of a NE is the notion of an ε-NE. Computing an ε-NE of
a given strategic form game Γ is polynomial time equivalent to computing a weak
ε′-approximation to a fixed point the Nash’s Brouwer function FΓ associated to Γ [85,
Proposition 2.3]. In turn, computing a weak ε′-approximation to a fixed point of FΓ
polynomial time reduces to computing a strong ε′′-approximation to a fixed point
of FΓ [85, Proposition 2.2], since the function FΓ is polynomially continuous and
polynomial time computable. In general however an ε-NE might be far from any
actual NE, unless ε is inverse doubly exponentially small as a function of the size of
the game [85, Corollary 3.8].

For the problem of consensus halving we can illustrate the difference between
weak and strong approximation by a simple example. We shall refer to a weak ε-
approximation of a consensus halving as simply an ε-consensus halving. Consider a
single agent whose measure µ is on the interval [0,1] is given by the following density

f (x) =


(1+ε)/ε if 0 ≤ x < ε/2
0 if ε/2 ≤ x < 1−ε/2
(1−ε)/ε if 1−ε/2 ≤ x ≤ 1

We have µ([0,1]) = 1 and since µ is a step function, the corresponding distribution
function F is piecewise linear. The unique consensus halving is obtained by placing a
cut at the point ε/2−ε2/(2+2ε). Placing a cut at any point t ∈ [ε/2−ε2/(1+ε),1−ε/2]
results in an ε-consensus halving, i.e. such that |µ([0, t])−µ([t,1])| ≤ ε. Thus an ε-
consensus halving might be very far from an actual consensus halving. Note also that
placing a cut at any point t ∈ [0,3ε/2−ε2/(2+2ε)] is a strong ε-approximation, which
illustrates that a strong approximation is not necessarily a weak approximation. On
the other hand, a strong (ε2/2)-approximation is also an ε-consensus halving.

The Brouwer fixed point theorem and the Borsuk-Ulam theorem can both be
proved starting from combinatorial analogoues of the two theorems, namely from
Sperner’s lemma and Tucker’s lemma, respectively. The proofs of these two lemmas
are constructive, but using them to derive the Brouwer fixed point theorem and the
Borsuk-Ulam theorem involve a nonconstructive limit argument. Let us in passing
note that while Sperner’s lemma, like the Borsuk-Ulam theorem, has several different
formulations, it is usually formulated as the combinatorial analogue of the third
formulation of Theorem 5.1.1.

Sperner’s and Tucker’s lemma give rise to total NP search problems. These
turn out to be complete for the complexity classes PPAD and PPA introduced in
seminal work by Papadimitriou [182]. Papadimitriou proved PPAD-completeness of
the problem given by Sperner’s lemma as well as membership in PPA of the problem
given by Tucker’s lemma, while PPA-completeness of the latter problem was proved



5.1. Introduction 243

recently by Aisenberg, Bonet, and Buss [4]. These results also imply that the classes
PPAD and PPA corresponds to the problems of computing weak approximations to
Brouwer fixed points and to Borsuk-Ulam points.

The computational complexity of the problems of computing an ε-NE and of com-
puting an ε-consensus halving was settled in breakthroughs of two lines of research.
Computing an ε-NE was shown to be PPAD-complete by Daskalakis, Goldberg and
Papadimitriou [67] and Cheng and Deng [51]. Computing an ε-consensus halving
was shown to be PPA-complete by Filos-Ratsikas and Goldberg [94, 95].

5.1.4 Our Results

Our main result is that the problem of strong approximation of consensus halving is
equivalent to strong approximation of the Borsuk-Ulam theorem.

Theorem 5.1.2. The strong approximation problem for CH is BUa-complete.

As described we view the consensus halving problem as the real valued search
problem with its domain being either the unit sphere or the unit ball with respect to
the ℓ1-norm. The theorem is proved by reduction from the real valued search problem
associated with the Borsuk-Ulam theorem on the domain being the unit ball with
respect to the ℓ∞-norm, i.e. from a defining problem of the class BBU.

It is of general interest to study the relationship between search problems given by
the Borsuk-Ulam theorem on different domains from a computational point of view.
The reduction establishing the proof of Theorem 5.1.2 gives additional motivation
for this. The domains we consider are unit spheres S n

p and unit balls Bn
p with respect

to the ℓp-norm for p ≥ 1 or p = ∞. It is of course straightforward to construct
homeomorphisms between unit spheres or unit balls with respect to different norms,
and these could be used to define reductions between the different problems. We
would however like that the mapping of solutions is simple, and in particular we would
like to avoid divisions and root operations. We prove that one may in fact reduce
between domains using SL-reductions.

Deligkas et al. gave a reduction from the FIXP-complete problem of finding a
Nash equilibrium to CH. Combined with membership of CH in BU, this gives the
inclusion FIXP ⊆ BU. We observe that a proof due to Volovikov [222] of the Brouwer
fixed point theorem from the Borsuk-Ulam theorem may be adapted to give a simple
proof of the inclusion FIXP ⊆ BU.

For the class FIXP we prove two interesting structural properties that do not appear
to have been observed earlier. While FIXP is defined using SL-reductions, we show
that FIXP is closed under polynomial time reductions where the mapping of solutions
is expressed by general algebraic circuits. This in particular supports that one may
reasonably define the classes BU and BBU using less restrictive notions of reductions
than SL-reductions. We propose to have the mapping of solutions be computed by
algebraic circuits involving the operations of addition, multiplication by scalars, as
well as maximization. This means that the mapping of solutions is a piecewise linear
function, and we refer to these as PL-reductions. The second structural result for



244 Chapter 5. Strong Approximate Consensus Halving and BU

FIXP is a characterization of the class by very simple Brouwer functions. These are
defined on the unit-hypercube domain [0,1]n and each coordinate function is simply
one of the operations {+,−,∗,max,min}, modified to be have the output truncated to
the interval [0,1].

For the classes BU and BBU we prove that they are also closed under reductions
where the mapping of solutions is computed by general algebraic circuits, but with
the additional requirement that this function must be odd.

For the class FIXP, an interesting consequence of the proof that finding a Nash
equilibrium is complete, is that the class may be characterized by Brouwer functions
computed by algebraic circuits without the division operation. The proof also shows
that the class FIXP is unchanged even when allowing root operations as basic op-
erations. We prove by a simple transformation that the classes BU and BBU may
be characterized using algebraic circuits without the division operation. Further-
more, as a consequence of Theorem 5.1.2 the class of strong approximation problems
BUa = BBUa is unchanged even when allowing root operations as basic operations.

5.1.5 Comparison to previous work

As a precursor to the proof of PPA-completeness of computing an ε-consensus halving,
Filos-Ratsikas, Frederiksen, Goldberg and Zhang [98] proved the problem to be PPAD-
hard. Deligkas et al. [72] uses ideas from this proof together with additional new ideas
to obtain their proof of FIXP-hardness for computing an exact consensus halving.

While PPAD ⊆ PPA, the PPAD-hardness result of [98] is not implied by the recent
proofs of PPA-completeness. In particular, the work [98] proves PPAD-hardness even
for constant ε, while the work of [95] only proves PPA-hardness for ε being inverse
polynomially small. In the same way, while FIXP ⊆BU, FIXP-hardness of computing
an exact consensus halving is not implied by our reduction, since Theorem 5.1.2
establishes BUa-hardness rather than BU-hardness. Recently a considerably simpler
proof of PPA-hardness for computing an ε-consensus halving was given by Filos-
Ratsikas, Hollender, Sotiraki and Zampetakis [99], and our reduction is inspired by
this work.

All reductions described above are similar in the sense that one or more evaluations
of a circuit are expressed in the consensus halving instance. The full interval A is
partitioned into subintervals, cuts within these subintervals encode values in various
ways, and agents implement the gates of the circuit by placing cuts. A main difference
between the reductions establishing PPAD-hardness and FIXP-hardness to those
establishing PPA-hardness is that in the former reductions, all cuts are constrained
to be placed in distinct subintervals. This reason this is possible is that the objective
is to find a fixed point of the circuit, which means that inputs and outputs may be
identified.

In the setting of PPA and BBU the objective is to find a “zero” of the circuit. More
precisely, for the setting of PPA the objective is to find two adjacent points of a given
Tucker labeling that receive complementary labels, i.e. labels of different sign but
same absolute value. For the setting of BBU the objective is to find an actual zero



5.1. Introduction 245

point of the circuit. All of the reductions establishing PPA-hardness of computing an
ε-consensus halving have the property that cuts encoding the input of the circuit are
free cuts, meaning that they can in principle be placed anywhere, and as a result also
interfere with the evaluations of the circuit. This is also the case for our reduction,
and this invariably limits its applicability to the approximation problem.

In the reduction of [99], the interval A is structured into different regions, a
coordinate-encoding region, a constant-creation region, several circuit-simulation
regions, and finally a feedback region. Our reduction also has a coordinate-encoding
region and several circuit simulation regions, but the functions performed by the
constant-creation region and feedback regions perform in [99] is our reduction inte-
grated in the individual circuit simulation regions and done differently.

A novelty of the reduction of [99] compared to previous reductions is in how
values are encoded by cuts in subintervals. In previous reductions, values are encoded
by what we will call position encoding. Here it is required that there is exactly one
cut in the subinterval, and the value encoded is determined by the distance between
the cut position and the left endpoint of the interval. In [99] values are encoded by
what we will call label encoding. Here there is no requirement on the number of
cuts in the subinterval, and the value encoded is simply the difference between the
Lebesgue measures of the subsets of the interval receiving label + and label −. We
shall employ a hybrid approach where the coordinate-encoding region uses label
encoding while the circuit-simulation regions uses position encoding. The first step
performed in a circuit-simulation region is thus to copy the input from the coordinate-
encoding region. Switching to position encoding allows us in particular to implement
a multiplication gate, similarly to [72]. Here the multiplication xy is computed via
the identity xy = ((x+ y)2 − x2 − y2)/2. In [72] where values range over [0,1], the
squaring operation may be implemented directly by agents. In our case values range
over the interval [−1,1], and the squaring operation is decomposed further, having
agents compute it separately over the intervals [−1,0] and [0,1].

In analogy to [99] we have feedback agents that ensures that the circuit evaluates
to 0 on the encoded input. The criteria that the agents check is however different,
and for our purposes it is crucial that we have the same sign pattern in the position
encoding of the output of the circuit as the copy of the input made by the circuit-
simulation region. The actual detection of an output of 0 is performed by using
approximations of the Dirac delta function. For computing the distribution functions
of the feedback agents, we make use of the fact that these are computed by algebraic
circuits, which enable us to make a strong approximation of the Dirac delta function
via repeated squaring.

5.1.6 Organization of Paper

In Section 5.2 we introduce necessary terminology and we give a detailed account of
real valued search problems and reducibility between these. Our structural results for
FIXP are given in Section 5.3 and our structural results for BU and BBU are given in



246 Chapter 5. Strong Approximate Consensus Halving and BU

Section 5.4. Section 5.4 also includes the simple proof of the inclusion FIXP ⊆ BU.
We present our main result, Theorem 5.1.2, in Section 5.6.

5.2 Preliminaries

5.2.1 Algebraic Circuits

Let B be a finite set of real valued functions, for example B = {+,−,∗,÷,max,min}.
An algebraic circuit C with n inputs and m outputs over the basis B is given by an
acyclic graph G = (V,A) as follows. The size of C is equal to the number of nodes
of G, which are also referred to as gates. The depth of C is equal to the length of
the longest path of G. Every node of indegree 0 is either an input gate labeled by a
variable from the set {x1, . . . , xn} or a constant gate labeled by a real valued constant.
Every other node is labeled by an element of B called the gate function. If a node v
is labeled by a gate function g : A→ R with A ⊂ Rk we require that g has exactly k
ingoing arcs with a linear order specifying the order of arguments to g. The output
of C is specified by an ordered list of m (not necessarily distinct) nodes of G. The
computation of C on a given input x ∈ Rn is defined in the natural way. Computation
may fail in case a gate of C labeled by a function g : A→ R receives an input outside
A, and in this case the output of C is undefined. Otherwise we say that the output
is well defined and denote its value by C(x). If D ⊆ Rn we say that C computes a
function f : D→ Rm if C(x) is well defined for all x ∈ D.

We shall in this paper just consider algebraic circuits where the basis consists
only of continuous functions. This means in particular that any algebraic circuits
computes a continous function as well. We shall also only consider consider constant
gates labeled with rational numbers. In this case we are also interested in the bitsize
of the encoding of the constants, which is the maximum bitsize of the numerator or
denominator. An important special class of algebraic circuits are those over the basis
{+,−,∗,÷} and using just the constant 1. We refer to these as arithmetic circuits. An
arithmetic circuit with no division gates is called division-free. Note that any integer
of bitsize τ may be computed by a division-free arithmetic circuit of size O(τ).

By using multiplication with the constant −1, the functions − and min may be
simulated using + and max, respectively. In this way we may convert a circuit over
the full basis {+,−,∗,÷,max,min} into an equivalent {+,∗,÷,max}-circuit. We shall
also consider circuits where use of the multiplication operator ∗ is restricted to having
one of the arguments being a constant gate. We denote this by the symbol ∗ζ and use
it in particular for defining {+,∗ζ,max}-circuits.

At times it will convinient to consider gate functions with their output range
truncated to stay within a given interval. If g : A→ R is a gate function and a ≤
b defines a real interval [a,b] we denote by gT [a,b] the gate function defined by
gT [a,b](x) = a if g(x) < a, gT [a,b](x) = b if g(x) > b, and gT [a,b](x) = g(x) otherwise.
Note that gT [a,b] is continuous whenever g is continuous.

While we shall not consider circuits with the discontinous sign function sgn, in the
context of approximating functions, it is sometimes sufficient to use an approximation



5.2. Preliminaries 247

of sgn instead. A typical use of sgn(z) is to perform a selection between two values x
and y. We define the δ-approximate selection function to be the function that based on
sgn(z) outputs values x or y except in the interval of length δ centered around 0 where
it instead linearly interpolates between x and y.

Definition 5.2.1. For given δ > 0, the (two-sided) δ-approximate selection function
Sel is defined by

Selδ(x,y,z) =


x if z ≤ −δ/2
(y− x)z/δ+ (y+ x)/2 if −δ/2 ≤ z ≤ δ/2
y if δ/2 ≤ z

We note that Selδ may be computed as Selδ(x,y,z) = (1− t)/2 · x+ (1+ t)/2 · y,
where t defined by t =max(min(z, δ/2),−δ/2)/(δ/2) is the δ-approximation of sgn(z).
In particular is Selδ(x,y,z) computed by a {+,∗,max}-circuit (or a {+,∗,÷,max}-circuit
if we also view δ as a variable).

5.2.2 Search problems

A general search problem Π is defined by specifying to each input instance I a search
space (or domain) DI and a set Sol(I) ⊆ DI of solutions. We distinguish between
discrete and real-valued search problems. For discrete search problems we assume
that DI ⊆ {0,1}dI for an integer dI depending on I. Analogously, for real-valued search
problems we assume that DI ⊆ R

dI for an integer depending on I. One could likewise
distinguish between search problems with discrete input and real-valued input. We are
however mostly interested in problems where the input is discrete, that is we assume
that instances I are encoded as strings over a given finite alphabet Σ (e.g. Σ = {0,1}).

A very important class of discrete search problems arise from decision problems
given as languages in NP, thereby forming the class of NP search problems. More
precisely, these are the discrete search problems where we assume there are polynomial
time algorithms that (i) given I compute dI whose magnitude is polynomial in |I|,
(ii) given I and x ∈ {0,1}dI checks whether x ∈ DI , and lastly, (iii) given I and x ∈ DI

checks whether x ∈ Sol(I). The corresponding language in NP is then L = {I | Sol(I) ,
∅}. The class of all NP search problems is denoted by FNP. The subclass TFNP of
FNP consists of the NP search problems for which Sol(I) , ∅ for every input I. An
NP search problem Π is said to be solvable in polynomial time if there is a Turing
machine running in polynomial time that on input I gives as output some member y
of Sol(I) in case Sol(I) , ∅ and rejects otherwise. The subclass of FNP consisting of
the search problems solvable in polynomial time is denoted by FP, and it holds that
FP = FNP if and only if P = NP.

Many natural search problems are however defined with a continous search space.
Not all of these may adequately be recast as discrete search problems, but are more
naturally viewed as real-valued search problems. One approach for studying such
problems would be to switch to the Blum-Shub-Smale model of computation [30]. A



248 Chapter 5. Strong Approximate Consensus Halving and BU

BSS machine resembles a Turing machine, but operates with real numbers instead
of symbols from a finite alphabet. In particular is the input real-valued, and input
instances are therefore encoded as real-valued vectors. All basic arithmetic operations
and comparisons are unit-cost operations. One may then define real-valued analogues
of Turing machine based classes. In particular, Blum, Shub and Smale defined
and studied the real-valued analogues PR and NPR of P and NP. A BSS machine
may in general make use of real-valued machine constants. If a BSS machine only
uses rational valued machine constants we shall call it constant-free. Real-valued
analogoues of the classes FP, FNP, and TFNP for the BSS machine model do not
appear to be defined in the literature, but can be defined in a straight-forward way. Let
us just note that the proof that P = NP implies FP = FNP does not generalize to the
setting of BSS machines, since it crucially depends on the search space being discrete.

For the classes PR and NPR, if we simply restrict the input to be discrete and
consider only constant-free BSS machines this results in complexity classes, denoted
by BP(P0

R) and BP(NP0
R), that may directly be compared to Turing machine based

complexity classes. Indeed, it was proved by Allender, Bürgisser, Kjeldgaard-Pedersen
and Miltersen [5, Proposition 1.1] that BP(P0

R)= PPosSLP, where PosSLP is the problem
of deciding whether an integer given by a division free arithmetic circuit is positive.
While the precise complexity of PosSLP is not known, Allender et al. proved that it
is contained in the counting hierarchy CH (not to be confused with the consensus
halving problem whose abbreviation coincides).

The class BP(NP0
R) is equal to the class ∃R that was defined by Schaefer and

Štefankovič [197] to capture the complexity of the existential theory of the reals ETR.
It is known that NP ⊆ ∃R ⊆ PSPACE, where the latter inclusion follows from the
decision procedure for ETR due to Canny [41]. Schaefer and Štefankovič also prove
∃R-completeness for deciding existence of a probability-constrained Nash equilibrium
in a given 3-player game in strategic form; later works have extended this to ∃R-
completeness for many other decision problems about existence of Nash equilibria
satisfying different properties in 3-player games in strategic form [27–29, 120]. The
proofs of ∃R-hardness makes critical use of the fact that the input is discrete and it is
not known if these problems are also complete for NPR.

We define the class of ∃R search problems as the following subclass of all real
valued search problems. Instaces I are encoded as string over a given finite alphabet Σ
and we assume there is a polynomial time algorithm that given I computes dI , where
DI ⊆ R

dI . We next assume that there are polynomial time constant free BSS machines
that given I and x ∈ RdI checks whether x ∈ DI , and given I and x ∈ DI checks whether
x ∈ Sol(I). The corresponding language in ∃R is then L = {I | Sol(I) , ∅}.

5.2.3 Solving real-valued search problems

Let Π be a ∃R search problem. In analogy with the case of NP search problems, one
could consider the task of solving Π to be that of giving as output some member y of
Sol(I) in case Sol(I) , ∅. In general each member of Sol(I) may be irrational valued
which precludes a Turing machine to compute a solution explicitly. This is in general



5.2. Preliminaries 249

also the case for a BSS machine, even when allowing machine constants. Regardless,
we shall restrict our attention to Turing machines below.

On the other hand, when Sol(I) , ∅ a solution is guaranteed to exist with coor-
dinates being algebraic numbers, since a member of Sol(I) may be defined by an
existential first-order formula over the reals with only rational-valued coefficients.
This means that one could instead compute an indirect description of the coordinates
of a solution, for instance by describing isolated roots of univariate polynomials. If
such a description could be computed in polynomial time in |I| we could consider that
to be a polynomial time solution of Π.

Etessami and Yannakakis [85] suggest several other computational problems one
may alternatively consider in place of solving a search problems Π explicitly or
exactly. Our main interest is in the problem of approximation. We shall assume for
simplicity that DI ⊆ [−1,1]dI . Together with an instance I of Π we are now given as
an auxiliary input a rational number ε > 0, and the task is to compute x ∈ QdI such
that there exist x∗ ∈ Sol(I) with ∥x∗− x∥∞ ≤ ε. We shall turn this into a discrete search
problem by encoding the coordinates of x as binary strings. More precisely, to Π we
shall associate a discrete search problem Πa where instances are of the form (I,k),
where I is an instance of Π and k is a positive integer. We define ε = 2−k and let the
domain of (I,k) be DI,k = {0,1}dI (k+3), thereby allowing the specification of a point
x ∈ DI with coordinates of the form xi = ai2−k+1, where ai ∈ {−2k+1, . . . ,2k+1}. The
solution set Sol(I,k) is defined from Sol(I) by approximating each coordinate. That
is, we define Sol(I,k) = {x ∈ DI,k | ∃x∗ ∈ Sol(I) : ∥x∗ − x∥∞ ≤ ε}. Note that if we had
defined Sol(I,k) by instead truncating the coordinates of solutions x∗ ∈ Sol(I) to k
bits of precision, we would have obtained the possibly harder problem of partial
computation which was also considered by Etessami and Yannakakis [85].

We say that Π can be approximated in polynomial time if the approximation
problem Πa can be solved in time polynomial in |I| and k.

5.2.4 Reductions between search problems

Let Π and Γ be search problems. A many-one reduction from Π to Γ consists of a pair
of functions ( f ,g). The function f is called the instance mapping and the function g
the solution mapping. The instance mapping f maps any instance I of Π to an instance
f (I) of Γ and for any solution y ∈ Sol( f (I)) of Γ the solution mapping g maps the pair
(I,y) to a solution x = g(I,y) ∈ Sol(I) of Π. It is required that Sol( f (I)) , ∅ whenever
Sol(I) , ∅. We will only consider many-one reductions, and will refer to these simply
as reductions.

If Π1 and Π2 are discrete search problems a reduction ( f ,g) between Π1 and Π2 is
a polynomial time reduction if both functions f and g are computable in polynomial
time. If Π1 and Π2 are real-valued search problems it is less obvious which notion
of reduction is most appropriate and we shall consider several different types of
reductions. For all these we assume that f is computable in polynomial time. The
reduction ( f ,g) is a real polynomial time reduction if g is computable in polynomial
time by a constant free BSS machine. We shall generally consider this notion of



250 Chapter 5. Strong Approximate Consensus Halving and BU

reduction too powerful. In particular the definitioon does not guaranteed that the
function g is a continuous function in its second argument y. For this reason we instead
consider reductions defined by algebraic circuits over a given basis B of real-valued
basis functions.

We say that the reduction ( f ,g) is a polynomial time B-circuit reduction if there is
a function computable in polynomial time thats maps an instance I to a B-circuit CI in
such a way that CI computes a function CI : D f (I)→ DI where g(I,y) =CI(y) for all
y ∈ Sol( f (I)). Note in particular that the size of CI and the bitsize of all constant gates
are bounded by a polynomial in |I|. If in addition there exists a constant h such that the
depth of CI is bounded by h for all I we say that the reduction ( f ,g) is a polynomial
time constant depth B-circuit reduction. Etessami and Yannakakis [85] defined the
even weaker notion where the function f is a separable linear transformation. The
reduction ( f ,g) is an SL-reduction if there is a function π : {1, . . . ,dI} → {1, . . . ,d f (I)}

and rational constants ai,bi, for i = 1, . . . ,dI , all computable in polynomial time from
I, such that for all y ∈ Sol( f (I)) it holds that xi = aiyπ(i)+bi, where x = g(I,y). Thus
an SL-reduction is simply a projection reduction together with an individual affine
transformation of each coordinate of the solution.

Functions computed by algebraic circuits over the basis {+,∗ζ,max} are piece-
wise linear. We shall thus call polynomial time {+,∗ζ,max}-circuit reductions for
polynomial time piecewise linear reductions, or simply PL-reductions.

It is easy to see that all notions of reductions defined above are transitive, i.e. if Π
reduces to Γ and Γ reduces to Λ, then Π reduces to Λ as well.

A desirable property of PL-reductions is that the solution mapping g is polynomi-
ally continuous. By this we mean that for all rational ε > 0 there is a rational δ > 0
such that for all points x and y of the domain, ∥x− y∥∞ ≤ δ implies ∥g(x)−g(y)∥∞ ≤ ε,
and the bitsize of δ is bounded by a polynomial in the bitsize of ε and of |I|. An ex-
ample of a notion of reductions not guaranteed to be polynomially continuous would
be {+,∗,max}-circuit reductions, since a circuit might perform repeated squaring.
However, constant depth {+,∗,max}-circuit reductions would still be polynomially
continuous.

5.2.5 Total real-valued search problems

Like in the case of TFNP where interesting classes of total NP search problems may
be defined in terms of existence theorems for finite structures [129, 182], we may
define classes of total real valued ∃R search problems based on existence theorems
concerning domains DI ⊆ R

n. Typical examples of such domains DI are spheres and
balls. Suppose p is either a real number p ≥ 1 or p =∞. By S n

p and Bn
p we denote the

unit n-sphere and unit n-ball with respect to the ℓp-norm defined as S n
p = {x ∈ R

n+1 |

∥x∥p = 1} and Bn
p = {x ∈ R

n | ∥x∥p ≤ 1}, respectively. If p is not specified, we simply
assume p = 2.



5.2. Preliminaries 251

The Brouwer fixed point theorem and FIXP

We recall here the definition of the class FIXP by Etessami and Yannakis [85]. The
class FIXP is defined by starting with ∃R search problems given by the Brouwer fixed
point theorem, and afterwards closing the class with respect to SL-reductions. We
shall refer to these defining problems as basic FIXP problems.

Definition 5.2.2. An ∃R search problem Π is a basic FIXP problem if every instance I
describes a nonempty compact convex domain DI and a continuous function FI : DI→

DI , computed by an algebraic circuit CI , and these descriptions must be computable
in polynomial time. The solution set is Sol(I) = {x ∈ DI | FI(x) = x}.

The Brouwer fixed point theorem guarantees that every basic FIXP problem is a
total ∃R search problem. To define the class FIXP, Etessami and Yannakis restrict
attention to a concrete class of basic FIXP problems.

Definition 5.2.3. The class FIXP consists of all total ∃R search problems that are
SL-reducible to a basic FIXP problem for which each domain DI is a convex polytope
described by a set of linear inequalities with rational coefficients and the function FI

is defined by a {+,−,∗,÷,max,min}-circuit CI .

The class FIXPa is the class of strong approximation problems corresponding to
FIXP. More precisely, FIXPa consist of all discrete search problems polynomial time
reducible to the problem Πa for Π ∈ FIXP.

The definition of FIXP is quite robust with respect to the choice of domain and
set of basis functions allowed by circuits in the basic FIXP problems. Etessami
and Yannakis proved that basic FIXP problems defined by {+,−,∗,÷,max,min, k√ }-
circuits are still in the class FIXP. Likewise, basic FIXP-problems where DI is a ball
with rational-valued center and diameter, or more generally an ellipsoid given by a
rational center-point and a positive-definite matrix with rational entries, are still in the
class FIXP [85, Lemma 4.1]. The same argument allows for using as domain the ball
Bd

p with respect to the ℓp norm for any rational p ≥ 1 or p =∞, with the coordinates
possibly transformed by individual affine functions.

On the other hand, Etessami and Yannakakis also proved that one may greatly
restrict the class of basic FIXP problems used to define FIXP without changing the
class. The domains may be restricted to be unit hypercubes [0,1]dI and the circuits
may be restricted to {+,∗,max}-circuits. Both restrictions may in fact be imposed at
the same time. The restriction to {+,∗,max}-circuits is a consequence of first proving
that the problem of finding a Nash equilibrium in a given finite game in strategic form
is hard for FIXP with respect to SL-reductions and then proving FIXP-membership
of this problem using {+,∗,max}-circuits.

Another way to restrict circuits is by limiting their depth. The function of Nash for
expressing Nash equilibrium as Brouwer fixed points involve divisions but as noted by
Etessami and Yannakakis it may be viewed as a constant depth circuit, if one allows
for addition gates of arbitrary fanin. Thus in the definition of FIXP one may restrict



252 Chapter 5. Strong Approximate Consensus Halving and BU

circuits to be constant depth {+,∗,max}-circuits, where the addition gates are allowed
to have unbounded fanin.

We show in Proposition 12 of Section 5.3 that one may in fact take this much
further and completely flatten the circuits of defining problems for FIXP to be depth 1
circuits of fanin at most 2, additionally also without requiring division. In other words,
each coordinate function becomes just a simple function of at most 2 coordinates
of the input. We also show in Proposition 10 that FIXP is closed under much more
powerful reductions than just the basic SL-reductions used to define the class FIXP.

The Borsuk-Ulam theorem and BU

A new class BU of total ∃R search problems based on the Borsuk Ulam theorem was
recently introduced by Deligkas et al. [72]. The definition of BU is meant to capture
the Borsuk-Ulam theorem as stated in formulation (1) of Theorem 5.1.1. Following
the definition of FIXP by Etessami and Yannakakis, Deligkas et al. first consider a set
of basic search problems and then close the class under reductions.

Definition 5.2.4. An ∃R search problem Π is a basic BU problem if every instance
I describes a domain DI ⊆ R

dI which is homeomorphic to S dI−1 by an an antipode
preserving homeomorphism and a continuous function FI : DI → R

dI−1, computed
by an algebraic circuit CI , and these descriptions must be computable in polynomial
time. The solution set is Sol(I) = {x ∈ DI | FI(x) = FI(−x)}.

In defining the class Deligkas et al. restrict their attention to spheres with respect
to the ℓ1-norm as domains and functions computed by {+,−,∗,max,min}-circuits.
Compared to the definition of FIXP, division gates are thus excluded. However we
show later in Section 5.4 that division gates can always be eliminated. Having thus
fixed the set of basic BU search problems what remains in order to define BU is to
settle on a notion of reductions. In their journal paper, Deligkas et al. [72] suggest
using reductions computable by general algebraic circuits including non-continuous
comparison gates, whereas in the preceeding conference paper [71] they did not
precisely define a choice of reductions. We shall revisit the question of choice of
reduction in Section 5.4 before proposing our definition of BU.

5.2.6 Consensus Halving

We give here a formal definition of consensus halving with additive measures as real
valued search problems.

Definition 5.2.5. The problem CH is defined as follows. An instance I consists of a list
of {+,−,∗,÷,max,min}-circuits C1, . . . ,Cn computing distribution functions F1, . . . ,Fn

defined on the interval A = [0,1]. The domain is DI = S n
1 and Sol(I) constists of all x

for which ∑
j:x j>0

Fi(t j)−Fi(t j−1) =
∑

j:x j<0

Fi(t j)−F(t j−1) , (5.1)

where t0 = 0 and t j =
∑

k≤ j|xk|, for j = 1, . . . ,n+1.



5.2. Preliminaries 253

Given {+,−,∗,÷,max,min}-circuits computing the distribution functions Fi, the
function F computing the left-hand-side of equation (5.1) may clearly be computed by
{+,−,∗,÷,max,min}-circuits as well. The result of Deligkas et al. that CH is contained
in BU follows.

The existence proof of a consensus halving by Simmons and Su as well the
formulation of a ∃R search problem by Deligkas et al. match the Borsuk-Ulam
theorem as stated in formulation (1) of Theorem 5.1.1. We shall also define a variation
BCH of CH to match formulation (3) of Theorem 5.1.1. A point y ∈ Bn

1 may be lifted
to the point x = (1−∥y∥1,y) ∈ S n

1. This means that we may view y ∈ Bn
1 as describing

a partition of A by the partition described by x. Compared to the representation of
partitions of A into n+1 intervals given by points of S n

1 we thus restrict the label of
the first interval to be +, in case it has positive length.

Definition 5.2.6. The problem BCH is defined as follows. An instance I consists
of a list of {+,−,∗,max,min}-circuits C1, . . . ,Cn computing distribution functions
F1, . . . ,Fn defined on the interval A = [0,1]. The domain is DI = Bn

1 and Sol(I)
constists of all y for which

Fi(t1)+
∑

j:y j>0

Fi(t j+1)−Fi(t j) =
∑

j:y j<0

Fi(t j+1)−F(t j) , (5.2)

where t0 = 0, and t j = 1−
∑

k≥ j|y j|, for j = 1, . . . ,n+1.

5.2.7 Tools from Real Algebraic Geometry

For obtaining our results concerning strong approximation we need concrete bounds
on δ > 0 as a function of ε > 0 witnessing the truth of “epsilon-delta” statements.
When such a statement is expressible in the first-order theory of the reals, such
bounds can be obtained in a generic way using the general machinery of real algebraic
geometry [21]. This approach has been used several times previously for establishing
FIXPa membership of the problem of strong approximation of Nash equilibrium
refinements [83, 88, 136].

Concretely, suppose that Φ(ε,δ) is a formula with free variables ε and δ of the
form

Φ(ε,δ) = (Q1x1 ∈ R
n1) · · · (Qωxω ∈ Rkω)F(x1, . . . , xω, ε,δ) ,

where Qi ∈ {∀,∃}, and F is a Boolean formula whose atoms are polynomial equali-
ties and inequalities involving polynomials of degree at most d and having integer
coefficients of bitsize at most τ.

We now assume that the statement (∀ε > 0)(∃δ > 0)Φ(ε,δ) is true, and fix ε = 2−k,
for a positive integer k, resulting in the formula (δ > 0)∧Φ(ε,δ), with δ as the
only variable. We may now perform quantifier elimination [21, Algorithm 14.21]
on this to obtain an equivalent quantifier free formula Ψ(δ). The formula Ψ(δ) is
simply a Boolean formula whose atoms involve univariate polynomial equalities and
inequalities. The bounds given by Basu, Pollack and Roy for the result of quantifier
elimination imply that the degree of the univariate polynomials are bounded by



254 Chapter 5. Strong Approximate Consensus Halving and BU

dO(k1)...O(kω) with coefficients of bitsize at most max(k, τ)dO(k1)...O(kω). We may now
appeal to Theorem 13.17 of [21] to conclude that Ψ(δ), and hence also Φ(ε,δ) is true,
for some δ ≥ 2−max(k,τ)dO(k1)...O(kω)

.
In our applications, the formula Φ is defined from a given instance I. Both τ and

d will be bounded by fixed polynomials of |I|. The number of blocks ω of quantified
variables will be a fixed constant, and ki for 1≤ i≤ω are bounded by fixed polynomials
of |I| as well. In other words there will be a fixed polynomial q such that the formula
Φ(ε,δ) is true for some δ ≥ (1/ε)2g(|I|)

.
The first-order formulas we consider are expressed using also the evaluation

of functions computable by algebraic circuits as a primitive. We may in a generic
way transform such formulas to having only polynomial inequalities and equalities
and required above. Namely, we may perform a Tseitin-style transformation by
introducing existentially quantified variables for each gate of the circuit and express
using polynomial inequalities and equalities that each gate is computed correctly, and
the variables corresponding to the output gates may then be used instead in place of
the function. As long as the number of evaluations of functions is constant, this leaves
the number of blocks of quantified variables constant.

5.3 Structural Properties of FIXP

Recall that FIXP is defined to be the closure of all basic FIXP problems with respect
to the very simple notion of SL-reductions. We first show that FIXP is in fact closed
under general circuit reductions.

Proposition 10. Suppose that Π is a ∃R search problem defined with unit hypercube
domains and reduces to Γ ∈ FIXP by a polynomial time {+,−,∗,÷,max,min, k√ }-
circuit reduction. Then Π belongs to FIXP as well.

Proof. We may without loss of generality assume the domain of Γ is also the unit
hypercube. Let ( f ,g) be the assumed reduction from Π to Γ. Let I be an instance of
Π. By assumption DI = [0,1]m and D f (I) = [0,1]n, where m = dI and n = d f (I). From
the definition of ( f ,g) we may given I in polynomial time compute f (I) as well as
the circuit CI that defines a function G : [0,1]n→ [0,1]m such that g(I, x) =G(x) for
all x ∈ Sol( f (I)). By assumption on Γ we may in polynomial time compute another
circuit C f (I) that defines a function F : [0,1]n → [0,1]n such that Sol( f (I)) are the
fixed points of F.

We now define the function H : [0,1]n+m → [0,1]n+m by H(x,y) = (F(x),G(x)).
Clearly the set of fixed points of H is equal to {(x,G(x)) | x ∈ Sol( f (I))}, and since H
is computable by a {+,−,∗,÷,max,min, k√ }-circuit this defines a ∃R search problem
Λ in FIXP with the same set of instances as Π. We note that the projection of a fixed
point of H to the last m coordinates gives a solution to Π from which it follows that Π
in particular SL-reduces to Λ. Therefore Π belongs to FIXP as well. □

Our next basic result is based on properties of the basic FIXP problem used by
Etessami and Yannakakis to show that the division operation is not necessary to



5.3. Structural Properties of FIXP 255

express all of FIXP. We give a brief review of their construction. An instance I
describes a d-player game in strategic form. Player i has a set S i of ni = |S i| pure
strategies and a utility function ui : S 1 × · · · × S d → R. Let n = n1 + · · ·+ nd be the
total number of strategies. The domain is given as DI = ∆n1−1 × · · · ×∆nd−1, where
the (ni − 1)-dimensional unit simplex ∆ni−1 is identified with the set of probability
distributions on S i, for i = 1, . . . ,d. The domain DI may be viewed as a subset of Rn

in the natural way. The utility functions define the function v : DI → R
n given by

v(x)iai =
∑

a−i∈S −i

ui(a1, . . . ,ad)
∏
j,i

x ja j ,

where S −i = S 1× · · · ×S i−1×S i+1× · · · ×S d and a−i = (a1, . . . ,ai−1,ai+1, . . . ,ad) ∈ S −i.
Define further the function h : DI→ R

n by h(x) = x+v(x) and finally let GI : DI→ DI

be defined by letting GI(x) be the projection of h(x) onto DI . For all i = 1, . . . ,d,
it holds that GI(x)i,ai = max(hi,ai − ti,0), where ti is the unique value satisfying∑

ai∈S i max(hi,ai − ti,0) = 1. The fixed points of GI are exactly the Nash equilib-
ria of the game described by I [85, Lemma 4.5], and the search problem is therefore
FIXP-complete [85, Theorem 4.3].

The definitions of the functions v, h, and GI allows us to extend their domain from
DI to the n-dimensional unit cube [0,1]n. By definition of GI this does not change the
set of fixed points of GI . Likewise, applying the same affine transformation to ui(x),
for i = 1, . . . ,d, does not change the set of fixed points of GI . We may thus assume that
ui has codomain [0,1]. Making use of a sorting network, Etessami and Yannakakis
show that GI may be computed by a polynomial size {+,−,∗,max,min}-circuit CI [85,
Lemma 4.6]. It is furthermore straightforward to ensure that all constants used in CI

as well as values computed by gate functions of CI belong to the interval [0,1] for any
input x ∈ [0,1]n (cf. [72]). We summarize these observations below.

Proposition 11. There is a basic FIXP problem ΠNE, complete for FIXP under SL-
reductions, such that for any instance I it holds that DI = [0,1]dI and such that CI is a
{+,−,∗,max,min}-circuit that satisfies that all gate functions of CI compute values in
[0,1] given input x ∈ DI .

From here we may derive a characterization of FIXP in terms of depth 1 circuits,
where the addition and subtraction operators (necessarily) are truncated to the interval
[0,1]. This is simply done by a Tseitin-style transformation. One may note that a
Tseitin-style transformation is already used in the proof that ΠNE is FIXP-hard. This
means such a transformation is applied twice at different points of the proof to yield
the statement below.

Proposition 12. There is a basic FIXP problem Π, complete for FIXP under SL-
reductions, such that for any instance I it holds that DI = [0,1]dI and such that CI is
a depth 1 {+T [0,1],−T [0,1],∗,max,min}-circuit, using only constants from the interval
[0,1].

Proof. We reduce from the problem ΠNE of Proposition 11. The instances of Π are
the same instances of ΠNE. Let I be an instance of ΠNE and let D = [0,1]dI and CI be



256 Chapter 5. Strong Approximate Consensus Halving and BU

the corresponding domain and {+,−,∗,max,min}-circuit as given by Proposition 11.
Suppose that CI has mI gates g1, . . . ,gmI . We define the new domain D′I for Π simply
by D′I = [0,1]d′I , where d′I = dI +mI . We next define the gates of C′I which all are
output gates of C′I . We may consider the input as pairs (x,y) ∈ [0,1]dI × [0,1]mI and
we may think of the output gates as variables, similarly grouped as (z,w) and ranging
over [0,1]dI × [0,1]mI . If g j is an input gate labeled by xi, we let w j = xi, and if g j is a
constant gate labeled by c ∈ [0,1] we let w j = c. If g j is an addition gate taking as input
gates gk and gℓ we let w j = (yk + yℓ)T [0,1], i.e. the addition of gk and gℓ is simulated
by a truncated addition of yk and yℓ. The case of subtraction is analogous. If g j is a
multiplication gate taking as input gk and gℓ we let w j = yk · yℓ. The case of maximum
and minimum gates are analogous. Finally if g j is the ith output gate of CI we let
zi = y j. By construction C′I computes a function F′I : D′I → D′I and F′I(x,y) = (x,y) if
and only if g j computes the value y j on input x for all j and CI(x) = x. We thus obtain
x such that CI(x) = x as the projection of (x,y) to the first dI coordinates. □

In case we prefer to construct a normal {+,−,∗,max,min}-circuit without truncated
operations we can clearly simulate the truncated addition and subtraction operations
by depth 3 circuits. We can also easily convert the circuits to constant depth {+,∗,max}
circuits by considering the the domain B

d′I
∞ = [−1,1]d′I instead of [0,1]d′I .

5.4 Definition and Structural Properties of BU and BBU

In this section we define two classes of ∃R search problems BU and BBU based on
the Borsuk-Ulam theorem corresponding to formulations (1) and (3) of Theorem 5.1.1.
We start by defining basic BU and basic BBU problems. We shall restrict our attention
to the unit n-sphere and unit n-ball, but with regards to any ℓp norm for p ≥ 1 or p =∞.
For the case of BU this amounts to specializing Definition 5.2.4.

Definition 5.4.1. A basic BU problems is a basic ℓp-BU problem if for every instace
I we have DI = S dI

p .

Similarly we define the set of basic BBU problems with respect to the ℓp-norm.

Definition 5.4.2. An ∃R search problem Π is a basic ℓp-BBU problem if for every
instance I we have DI = BdI

p and I describes a continuous function FI : DI → R
dI ,

which is odd on the boundary ∂BdI
p . The function FI must be computed by an algebraic

circuit CI whose description is computable in polynomial time. The solution set is
Sol(I) = {x ∈ DI | FI(x) = 0}.

The condition that the function FI is odd on ∂BdI
p is a semantic condition. How-

ever, typically the function FI would be defined from a basic ℓp-BU problem by a
transformation done in a similar way as in the proof of Theorem 5.1.1, and thereby FI

would satisfy the condition automatically.
To define the classes BU and BBU, we restrict our attention to domains with

respect to the ℓ∞-norm.



5.4. Definition and Structural Properties of BU and BBU 257

Definition 5.4.3. The class BU (respectively, BBU) consists of all total ∃R search
problems that are PL-reducible to a basic ℓ∞-BU problem (respectively, basic ℓ∞-BBU
problem) for which the function FI is defined by a {+,−,∗,÷,max,min}-circuit CI .

While the definition of BU in [72] was using as domain the unit sphere with
respect to the ℓ1-norm and not allowing for division gates, we show in this section
these changes do not change the class. We propose choosing PL-reductions for
closing the class under reductions. PL-reductions are sufficient for obtaining all of
our results and they are polynomially continuous. Another reason for this choice is
that if we restrict the circuits defining the classes FIXP and BU to also be piecewise
linear, i.e. be {+,∗ζ,max}-circuits, we obtain the classes LinearFIXP and LinearBU,
that when closed under polynomial-time reductions are equal to PPAD and PPA,
respectively [72, 85].

5.4.1 Elimination of Division Gates

In this section, we show how to eliminate division gates from circuits defining an
instance of the BU or BBU problems. Let therefore C denote an algebraic circuit
defined over the basis {+,−,∗,÷,max,min, k√ }.

Moving Divisions to the Top. In the paper [85], it is shown how to move all division
gates to the top of the circuit by keeping track of the numerator and denominator of
every gate. For sake of completeness we describe this transformation. Every gate gi

is replaced by two gates g′i and g′′i keeping track of the numerator and denominator,
that is the value of gi in the original circuit will be equal to the value of g′i/g

′′
i in

the transformed circuit. Firstly, if gi is an input gate or a constant-c gate we put
g′i = x j for appropriate j (respectively g′i = c) and g′′i = 1. In order to maintain the
equality gi = g′i/g

′′
i , we proceed as follows: if gi = g j±gk is an addition/subtraction

gate in the original circuit, then we update the numerator and denominator to g′i =
g′j · g

′′
k ± g′k · g

′′
j and g′′i = g′′j · g

′′
k ; if gi = g j · gk, then g′i = g′j · g

′
k and g′′i = g′′j · g

′′
k ;

if gi = g j ÷ gk, then g′i = g′j · g
′′
k and g′′i = g′′j · g

′
k. For root gates, we note that if

g j = g′j/g
′′
j is input to a k

√
−gate gi for k even, then g j ≥ 0, from which it follows that

sgn(g′j) = sgn(g′′j ). With this in mind, we see that we may maintain the numerator

and denominator of gi by putting g′i = k
√

g′jg
′′
j and g′′i = k

√
g′′j ·g

′′
j . Finally, for the

max-gate we note that max(ca,cb) = cmax(a,b) for c ≥ 0. Using this we see that
if gi = max(g j,gk), then we may maintain the numerator and denominator via the
formulas g′i = max(g′j ·g

′′
j · (g

′′
k )2,g′k ·g

′′
k · (g

′′
j )2) and g′′i = (g′′j )2 · (g′′k )2. We note that

all this can be done only blowing up the size of the circuit by a constant factor. In
the aforementioned paper, the authors then have division gates at the top outputting
outi = out′i/out′′i . However, for our application this is unnecessary and we may
completely remove division gates.

Removing Division Gates for BBU. Suppose that Π is a BBU problem. Let I be an
instance of Π and denote by CI an algebraic circuit computing a continuous function



258 Chapter 5. Strong Approximate Consensus Halving and BU

FI : BdI →RdI that is odd on S dI−1 such that Sol(I)= {x ∈ BdI | FI(x)= 0}. As described
above, we may transform the circuit CI to a circuit C+I that maintains the numerator
and denominator of every gate. In the same way we define a circuit C−I that is exactly
like C+I , except it multiplies the input by −1 at the very beginning. Let outn+

i ,outd+
i

and outn−
i ,outd−

i denote the gates in C±I representing the numerators and denominators
of the output gates of CI . We now define a circuit C∗I that on input x feeds this into
C+I and C−I and then outputs the values outn+

i ·outd−
i for i = 1, . . . ,dI . If we denote by

Fi = F′i/F
′′
i the coordinate functions of FI , then C∗I is a circuit computing the function

F∗I with coordinate functions F′i (x)F′′i (−x). Now, if x ∈ S dI−1 then F′i (x)/F′′i (x) =
−F′i (−x)/F′′i (−x), so F′i (x)F′′i (−x) = −F′i (−x)F′′i (−(−x)), meaning that F∗I is odd on
the boundary. In this way we have defined a BBU problem Γ with the same instances
as Π. Furthermore, given an instance I of Π one may in polynomial time compute
an instance f (I) of Γ by computing C∗I . We note that for any x ∈ BdI it holds that
FI(x) = 0 if and only if F∗I (x) = 0. We conclude that Π SL-reduces to the division-free
BBU−problem Γ.

Removing Division Gates for BU. Now let I be an instance of a BU−problem Π
and denote by CI an algebraic circuit computing a continuous function FI : S dI → RdI

such that Sol(I) = {x ∈ S dI | FI(x) = FI(−x)}. We make the same reduction as for
BBU defining a circuit C∗I that computes a function F∗I : S dI → RdI whose coordinate
functions are given by F′i (x)F′′i (−x) where F′i (x)/F′′i (x) is the ith coordinate function
of FI . By definition, x is a BU-point of FI if and only if F′i (x)/F′′i (x)= F′i (−x)/F′′i (−x)
for all i. This happens if and only if F′i (x)F′′i (−x) = F′i (−x)F′′i (−(−x)) for all i,
meaning that x is a BU-point of F∗I . Again, we conclude that Π SL-reduces to a
division-free BU−problem.

In the previous two paragraphs, we have shown the following result.

Proposition 13. The classes BU and BBU remain the same even if the circuits are
restricted to not using division gates.

5.4.2 Relationship with FIXP

As a consequence of their results about consensus halving, Deligkas et al. proved
that FIXP ⊆ BU. We observe here that the direct proof that the Bosuk-Ulam theorem
implies the Brouwer fixed point theorem due to Volovikov [222] gives a much simpler
way to derive this relationship. For completeness we present the construction and
proof of Volovikov.

Proposition 14 (Volovikov). Let f : Bd
∞→ Bd

∞ be a continuous function. Define the
continous function g : S d

∞→R
d by g(x, t) = (1+ t)(t f (x)− x). If g(x, t) = g(−x,−t) then

|t| = 1 and f (tx) = tx.

Proof. Note first that

g(x, t)−g(−x,−t) = t
[
(1+ t) f (x)+ (1− t) f (−x)

]
−2x .



5.4. Definition and Structural Properties of BU and BBU 259

It follows that g(x, t) = g(−x,−t) if and only if k(x, t) = x, where

k(x, t) =
t
2
[
(1+ t) f (x)+ (1− t) f (−x)

]
.

If (x, t) ∈ S d
∞ and |t| < 1 it holds that ∥x∥∞ = 1. Then since

∥k(x, t)∥∞ ≤
|t|
2

[
(1+ t)∥ f (x)∥∞+ (1− t)∥ f (−x)∥∞

]
≤
|t|
2

[(1+ t)+ (1− t)] = |t| < 1 ,

we have k(x, t) , x. Thus g(x, t) = g(−x,−t) implies that |t| = 1. When |t| = 1 we
clearly have k(x, t) = t f (tx). In conclusion, g(x, t) = g(−x,−t) implies t f (tx) = x, or
equivalently that f (tx) = tx. □

The above construction immediately give a simple reduction from any basic FIXP
problem with domains BdI

∞ to a basic ℓ∞-BU problem. The solution mapping of
the reduction must map solutions (x, t) to tx. This may be done by simply using
multiplication gates. But since any solution (x, t) has |t| = 1 the multiplication txi may
also be expressed as Sel2(−xi, xi, t), which means the solution mapping can also be
computed by constant depth {+,∗,max}-circuits.

Proposition 15. AnyΠ ∈FIXP reduces to a basic ℓ∞-BU problem with {+,−,∗,max,min}-
circuit by polynomial time constant depth B-circuit reductions, for both B = {+,−,∗}
and B = {+,−,∗ζ,max,min}.

Proof. Any Π ∈ FIXP SL-reduces to a basic FIXP problem Γ with domains DI =

BdI
∞ and {+,∗,max}-circuits CI . From that, the instance mapping as described by

Proposition 14 produces a {+,∗,max}-circuit and domain S dI
∞. The composition of

the SL-reduction and the reduction described above then yields the claimed types of
reductions. □

5.4.3 Change of Domains for BU and BBU

In this section we show reduce between different domains for the BBU and BU
problems.

Proposition 16. Let B be a set of gates that contains {+,−,∗,÷,max,min}. Suppose
that Π is an ∃R search problem whose domains are contained in hypercubes that
reduces to a basic ℓp −BBU problem Γ by a polynomial time B-circuit reduction
( f ,g). Furthermore, suppose that for any instance I of Π the function g(I, ·) mapping
solutions of f (I) to solutions of I is odd and assume that C f (I) is also a B−circuit.
(i) If p =∞ then Π SL-reduces to a basic ℓ∞−BBU problem using gates in B. (ii) If
1 ≤ p <∞ then Π SL-reduces to a basic ℓp−BBU problem using B∪{ p√·}−circuits.



260 Chapter 5. Strong Approximate Consensus Halving and BU

Proof. (i) First assume that the domains of Γ are unit hypercubes. Let I denote
an instance of Π. By assumption DI ⊆ [−1,1]m and D f (I) = [−1,1]n where m = dI

and n = d f (I). From the definition of ( f ,g) we may given I in polynomial time
compute f (I) and a circuit CI computing a function G : [−1,1]n → [−1,1]m such
that G(x) = g(I, x) ∈ Sol(I) for every x ∈ Sol( f (I)). By assumption of Γ we may in
polynomial time compute another circuit C f (I) that defines a function F : [−1,1]n→Rn

that is odd on the boundary such that Sol( f (I)) are the zeroes of F.
Define H : [−1,1]n+m→ Rn+m by H(x,y) = ((1− ||y||∞)F(x),y− 1

2G(x))). As G is
odd and F is odd on the boundary, one may verify that H is odd on the boundary
of [−1,1]m+n. As H is polynomial-time computable by a B−circuit, it defines an
ℓ∞ −BBU problem Λ with the same instances as Π. Furthermore, if (x,y) is a zero
of H, then y = G(x)/2, so ||y||∞ < 1. The equality (1− ||y||∞)F(x) = 0 from the first
component then implies F(x) = 0. Therefore, the zeroes of H are contained in
{(x,G(x)/2) | x ∈ Sol( f (I))}. Given a zero of H one may recover a solution to Π
by projecting onto the last m coordinates and multiplying by 2. In particular, Π
SL-reduces to Λ.

(ii) Now, suppose that the domains of Γ are p-balls, where 1 ≤ p <∞. Again by
assumption we have that DI ⊆ [−1,1]m and D f (I) = Bn

p where m = dI and n = d f (I), and
we may given an instance I of Π in polynomial time compute a circuit CI defining
a function G : Bn

p→ [−1,1]m such that G(x) = g(I, x) ∈ Sol(I) for every x ∈ Sol( f (I)).
Furthermore, we may in polynomial time compute a circuit C f (I) computing a function
F : Bn

p→ R
n that is odd on S n−1

p such that Sol( f (I)) is the zeroes of F.
Now define an odd function h : Bn

p→ Bn
p by h(x) = x/max(1/2, ||x||p), which may

be computed by a circuit using also p√· gates, and define H : Bn+m
p → Rn+m by

H(x,y) = (max(0, 12 − ||y||
p
p)F(h(x)),y− 1

3nG(h(x)))

First we remark that H is odd on the boundary of Bn+m
p . Clearly, the second coordinate

is always odd, and the first coordinate evaluates to 0 if ||y||pp > 1/2. If (x,y) ∈ S n+m−1
p

and ||y||pp < 1/2, then ||x||pp > 1/2 which implies that ||x||p > 1/2. This then implies that
h(x) = x/||x||p and so F(h(x)) = −F(−h(x)) = −F(h(−x)), because h is odd and F is
odd on S n−1

p .
Now, if (x,y) is a zero of H, then y = 1

3nG(h(x)) and so ||y||pp ≤ (n||y||∞)p ≤ 1
3p <

1
2 .

From the first first coordinate equality max(0,1/2− ||y||pp)F(h(x)) = 0 one then obtains
that F(h(x)) = 0 so h(x) ∈ Sol( f (I)). Thus, the set of zeroes of H are contained in
{(x, 1

3nG(h(x)) | h(x) ∈ Sol( f (I))}. Furthermore, H can be computed by circuit over
B∪{ p√·}, so this defines a basic ℓp−BBU problem Λ with (B∪{ p√·})-circuits and the
same instances as Π. From a zero of H we may again recover a solution to Π by
projecting onto the last m coordinates and multiplying the result by 3n. We conclude
that Π SL-reduces to Λ. □

Proposition 17. Any basic ℓ∞−BBU problem SL-reduces to a basic ℓp−BBU prob-
lem using gates in {+,−,∗,÷,max,min, p√·}.

Proof. Let Π be a basic ℓ∞−BBU problem. By the previous proposition it suffices
to argue that Π polynomial time {+,−,∗,÷,max,min}−reduces to a a basic ℓp−BBU



5.4. Definition and Structural Properties of BU and BBU 261

problem. Given an instance I of Π, compute in polynomial time a circuit CI defining
a function F : Bn

∞→ R
n that is odd on S n−1

p such that Sol(I) are the zeroes of F. Also,
define the map π : Bn

∞→ Bn
∞ by π(x) = x/max( 1

2n , ||x||∞). Now we may in polynomial
time compute {+,−,∗,÷,max,min}−circuit computing the function G : Bn

p→R
n given

by G(x) = F(π(x)). If ||x||p = 1, then ||x||∞ ≥ 1/(2n), so ||π(x)||∞ = 1, implying that
G(x) = G(−x). Thus we have defined a map f taking instances I of Π to instances
f (I) of a basic ℓp −BBU problem Γ. We note that f is computable in polynomial
time. Furthermore, from x ∈ Sol( f (I)) one may recover a solution by g(I, x) = π(x) to
I. As the function g(I, ·) is odd and computable by a {+,−,∗,÷,max,min}−circuit we
conclude that ( f ,g) satisfies the requirements of the previous proposition. We conclude
that Π SL-reduces to a ℓp−BBU using gates from {+,−,∗,÷,max,min, p√·}. □

Proposition 18. Any basic ℓp −BBU problem Π SL-reduces to a basic ℓ∞ −BBU
problem where the circuits are allowed to use p√· gates.

Proof. Let Π be a basic ℓp − BBU problem and let I denote an instance of Π.
We may compute a circuit CI defining a function F : Bn

p → R
n that is odd on the

boundary of Bn
p such that Sol(I) is the set of zeroes of F. Now, define a function

h : Rn → Rn by h(x) = x/max(1/2, ||x||p). We may now in polynomial time com-
pute a {+,−,∗,÷,max,max, p√·}-circuit computing the function H : Bn

∞→ R
n given by

H(x) = F(h(x)).
If x ∈ ∂Bn

∞, then ||x||p ≥ ||x||∞ = 1 which shows that h(x) = x/||x||p so ||h(x)||p = 1.
As h is odd and F is odd on the boundary, it follows that H(x)= F(h(x))= F(−h(−x))=
−F(h(−x)) = −H(−x) showing that H is odd on the boundary of Bn

∞, so it defines an
instance of an ℓ∞−BBU problem Γ. Mapping back solutions amounts to computing
h(x) which can be done by a {+,−,∗,÷,max,max, p√·}-circuit. The result now follows
from part (i) of Proposition 16. □

Now we proceed with showing the reductions between basic ℓp−BU problems.

Proposition 19. Suppose that Π is an ∃R search problem whose domains are con-
tained in hypercubes that reduces to a basic ℓp−BU problem by a B−circuit reduction
( f ,g), where {+,−,∗,÷,max,min} ⊆ B. Assume also that for every instance I of Π, and
that g(I, ·) is an odd map Rd f (I) → [−1,1]dI . (i) If p =∞ then Π SL-reduces to a basic
ℓ∞−BU problem with circuits over B. (ii) If 1 ≤ p <∞ then Π SL-reduces to a basic
ℓp−BU problem with circuits over B∪{ p√·}.

Proof. (i) Let I denote an instance of Π and let m = dI . By assumption of ( f ,g) we
may in polynomial time compute a circuit defining a function F : S n

∞→ R
n such that

Sol( f (I)) consists of the x ∈ S n
∞ such that F(x) = F(−x). By the result in Section 5.4.1

we may assume that the circuit computing F is division-free, and so we may extend the
domain of F to be Rn+1. Also, we may in polynomial time compute a circuit defining
a function G : Rn+1→ [−1,1]m mapping Sol( f (I)) to Sol(I). Define H : S m+n

∞ → Rm+n

by H(x,y) = (F(x),y− 1
2G(x)). We note that H may be computed by a circuit over B,

so it defines a basic ℓ∞ −BU problem Λ with B−circuits and the same instances as



262 Chapter 5. Strong Approximate Consensus Halving and BU

Π. If (x,y) ∈ S n+m
∞ has H(x,y) = H(−x,−y) then y− 1

2G(x) = −y+ 1
2G(x), as G is odd.

Therefore ||y||∞ = ||G(x)/2||∞ < 1 and so ||x||∞ = 1. Also, the first coordinate shows
that F(x) = F(−x). This says that x ∈ Sol( f (I)), and so G(x) ∈ Sol(I). As 2y =G(x)
we see that Π SL-reduces to Λ.

(ii) Again let I denote an instance of Π with m = dI . From f (I) we may in
polynomial time compute a circuit computing a map F : S n

p→R
n such that Sol( f (I))=

{x ∈ S n
p | F(x) = F(−x)} and a B−circuit computing a map G : Rn+1→ [−1,1]m sending

Sol( f (I)) to Sol(I). Again, we may extend the domain of F. Define a map h : Rn+1→

Rn+1 by h(x) = x/max(1/2, ||x||p) and H : S m+n
p → Rm+n by

H(x,y) = (F(h(x)),y− 1
2G(h(x)))

In this way, we have defined a basic ℓp−BU problem Λ with B∪{ p√·}−circuits and the
same instances as Π. If (x,y) ∈ S n+m

p has H(x,y) = H(−x,−y) we find that y = 1
2G(h(x))

so ||y||p ≤ 1/2. This implies that ||x||p ≥ 1/2, and so h(x) = x/||x||p ∈ S n
p. Also, the first

component shows that F(h(x)) = F(h(−x)) = F(−h(x)) where we use that h is odd.
Therefore, h(x) ∈ Sol( f (I)), and so G(h(x)) ∈ Sol(I). As 2y =G(h(x)), we conclude
that Π SL-reduces to Λ. □

Proposition 20. Let B = {+,−,∗,÷,max,min}. (i) A basic ℓp −BU problem Π with
B-circuits SL-reduces to a basic ℓ∞−BU problem with B∪{ p√·}-circuits. (ii) A basic
ℓ∞ −BU problem Π with B-circuits SL-reduces to a basic ℓp −BU problem using
B-circuits.

Proof. (i) Let Π denote a basic ℓp −BU problem. Suppose an instance I is defined
by some continuous function F : S n

p → R
n. By Section 5.4.1 we may assume that

the circuit computing F is division-free and so extend F to be defined in all of Rn+1.
Define a function g : Rn+1→ [−1,1]n+1 by g(x) = x/max(1/2, ||x||p) and H : S n

∞→ R
n

by H(x) = F(g(x)). Let f denote the map sending the instance I to the instance f (I)
given by H of a basic ℓ∞−BU problem Γ. One may verify that ( f ,g) is a reduction
satisfying the properties of Proposition 19, so by part (i) of Proposition 19 we have
that Π SL-reduces to the basic ℓ∞−BU.

(ii) Let Π denote a basic ℓp −BU problem. Suppose an instance I is defined
by some continuous function F : S n

∞→ R
n. Again, we may extend F. Similarly to

the case above, we define a function g : Rn+1→ [−1,1]n+1 by g(x) = x/max(1/(n+
1), ||x||p) and H : S n

p → R
n by H(x) = F(g(x)). Let f denote the map sending the

instance I to the instance f (I) given by H of a basic ℓ∞−BU problem Γ.
First, the map g satisfies the condition of Proposition 19. If xSol( f (I)) then it

holds that x ∈ S n
p, and so 1 = ||x||p ≤ (n+ 1)||x||∞, implying that ||x||∞ ≥ 1/(n+ 1).

From this it follows that g(x) = x/||x||∞ by definition. Furthermore, using that g is
odd we find that F(g(x)) = H(x) = H(−x) = F(g(−x)) = F(−g(x)). We conclude that
g(x) ∈ Sol(I). In conclusion, ( f ,g) is a reduction from Π to Γ satisfying the properties
of Proposition 19. By part (ii) of Proposition 19 we conclude that Π SL-reduces to a
basic ℓ∞−BU problem. □



5.5. Relation between ℓp−BU and ℓp−BBU 263

5.5 Relation between ℓp−BU and ℓp−BBU

Let B be some finite set of gates containing {+,−,∗,÷,max,min}. In this section we
study reductions between ℓp−BU problems and ℓp−BBU problems. Suppose we are
given a basic ℓp−BU problem Π with circuits defined over B. In order to show that Π
reduces to a basic ℓp−BBU problem we follow the proof of Theorem 5.1.1. Given an
instance of Π we may in polynomial time compute the dimension n = dI and a circuit
over B defining a map FI : S n

p → R
n such that Sol(I) = {x ∈ S n

p | FI(x) = FI(−x)}.
Define also the map π : Bn

p→ S n
p by

π(x) =

(x, (1− ||x||pp)1/p) if 1 ≤ p <∞
(x/t,2 · (1− t)) if p =∞

where t =max(1/2, ||x||∞). Define a map H : Bn
p→ R

n by H(x) = FI(π(x))−F(−π(x)).
If x ∈ S n−1

p then the last coordinate of π(x) vanishes and so π(x) = −π(−x) implying
that H(x) = −H(−x), so H is odd on the boundary. As H is computable by a (B∪
{ p√·})−circuit if p <∞ (and B−circuit if p =∞) this defines an ℓp −BBU problem
Γ with the same instances as Π. Furthermore, the set of BU-points of H is exactly
{x ∈ Bn

p | FI(π(x)) = FI(−π(x))}, so mapping solutions x of Γ to solutions of Π amounts
to computing π(x) which can be done by a circuit over B∪{ p√·} if p <∞ (and over B
if p =∞).

However, when p , 1 these reductions make use of p
√-gates for p <∞ or divison

gates for p =∞. We can remedy this by applying Propositions 17, 18, and 20 which
give that we may go back and forth between different domains for BBU and BU
by SL-reductions. Specifically, for any ℓp −BU problem we may SL-reduce to a
ℓ1 −BU problem (that also uses p

√ gates if p <∞). Then we may apply the above
{+,∗ζ}-reduction from ℓ1−BU to ℓ1−BBU. And from there we may again SL-reduce
to an ℓp−BBU problem. In conclusion we obtain the following result.

Proposition 21. Any basic ℓp −BU problem {+,∗ζ}-reduces to a basic ℓp −BBU
problem.

Note that the reductions of this proposition are a special case of PL-reductions.
Because these are polynomially continuous, we automatically also get the following
result.

Proposition 22. Any basic ℓp −BUa problem polynomial time reduces to a basic
ℓp−BBUa problem.

For reductions in the other direction, consider an instance H : Bn
∞→ R

n of a basic
ℓ∞ −BBU problem. Given this instance we define an instance of a basic ℓ∞ −BU
problem given by F : S n

∞→ R
n where

F(x) = Sel2(−H(−π(x)),H(π(x)), xn+1)



264 Chapter 5. Strong Approximate Consensus Halving and BU

and π : Rn+1→ Rn is the projection π(x1, . . . , xn+1) = (x1, . . . , xn). Now suppose that
x ∈ S n

∞ satisfies F(x) = F(−x). If xn+1 = 1 this implies that

H(π(x)) = F(x) = F(−x) = −H(−π(−x)) = −H(π(x))

showing that H(π(x)) = 0, so π(x) is a solution to the original problem. Similarly, if
xn+1 = −1, then H(−π(x)) = 0, so −π(x) is a solution to the original problem. In the
case where |xn+1| < 1 we have that ||π(x)||∞ = 1 and so H(π(x)) = −H(−π(x)), because
H is odd on the boundary. By definition of the selection-function Sel this implies that

F(x) = Sel2(−H(−π(x)),H(π(x), xn+1) = Sel2(H(π(x)),H(π(x)), xn+1) = H(π(x))

and similarly F(−x) = −H(π(x)). The equality F(x) = F(−x) then implies that
H(π(x)) = H(−π(x)) = 0, so both π(x) and −π(x) is a solution to the original in-
stance in this case1. In conclusion, if we could recover the sign of xn+1 then we could
define a solution map sending x to sgn(xn+1)π(x), but we do not allow this. However,
in the approximate version, we may do this.

Proposition 23. Any basic ℓp−BBUa problem polynomial time reduces to a basic
basic ℓp−BUa problem.

Proof. After changing domain we may assume that p =∞. Given an instance (H, ϵ)
of a basic ℓ∞−BBUa problem we apply the above construction and the map f outputs
the instance (F, ϵ′) of a basic ℓ∞−BUa problem where ϵ′ =min(ϵ,1/2). Now suppose
that x is a solution to the problem (F, ϵ′) . This means there exists some x∗ with
||x− x∗||∞ ≤ ϵ′ and F(x∗) = F(−x∗).We now claim that we may map back the solution
x of (F, ϵ′) to a solution of (H, ϵ) by the map g(x) = sgn(xn+1)π(x).

If |xn+1| ≥ 1/2 then we have that sgn(xn+1) = sgn(x∗n+1) as ϵ′ ≤ 1/2. Therefore

||sgn(x)π(x)− sgn(x∗)π(x∗)||∞ = ||π(x)−π(x∗)||∞ ≤ ||x− x∗|| ≤ ϵ′ ≤ ϵ

Also sgn(x∗)π(x∗) is a zero of H by the discussion above the proposition. In the case
where |xn+1| < 1/2 we have that |x∗n+1| < 1 and so both of ±π(x∗) is a zero of H. As
sgn(x)π(x) is ϵ-close to −π(x∗) or π(x∗), we conclude that g(x) is a solution to the
problem (H, ϵ). □

Combining Proposition 22 and Proposition 23 we obtain the following result.

Theorem 5.5.1. BUa = BBUa

1We are grateful to Alexandros Hollender for noting that the reduction is possible without introducing
approximation error.



5.6. Consensus Halving 265

5.6 Consensus Halving

In this section we present the proof of our main result Theorem 5.1.2. This result
enables an additional structural result, given in Section 5.6.5 about the class of strong
approximation problems BUa = BBUa, showing that the class is unchanged even
when allowing root operations as basic operations.

Suppose we are given a basic ℓ∞−BBUa problem Πa with circuits over the basis
{+,−,∗,max,min}. Let (I,k) denote an instance of Πa and put ε = 2−k. We may in
polynomial time compute a circuit C defining a function F : Bn

∞→ R
n that is odd on

the boundary S n−1
∞ such that Sol(I) = {x ∈ Bn

∞ | F(x) = 0}. We now provide a reduction
from Πa to a CHa-problem. In the reduction we will make use of the "almost implies
near" paradigm.

Lemma 35. Let F : Bn
∞→R

n be a continuous map. For any ε > 0 there is a δ > 0 such
that if ||F(x)||∞ ≤ δ then there is an x∗ ∈ Bn

∞ such that ||x− x∗||∞ ≤ ε and F(x∗) = 0.

Proof. Let F and ε > 0 be given. Suppose the claim is false. Then for any n ∈ N there
is an xn such that ||F(x)||n ≤ 1/n and if x∗ ∈ Bn

∞ has ||xn− x∗||∞ ≤ ε then F(x∗) , 0. By
compactness the Bolzano-Weierstrass theorem implies the existence of a subsequence
{xni} converging to some x∗ ∈ Bn

∞. By continuity of F and || · ||∞ we get that ||F(x∗)||∞ =
limi→∞ ||F(xni)||∞ = 0, showing that F(x∗) = 0. However, for sufficiently large i ∈ N it
holds that ||xni − x∗|| ≤ ε contradicting the choice of the xn. □

This lemma says that for any ε > 0, if ||F(x)||∞ is sufficiently close to being zero,
then x is ε-close to a real zero of F. When F is computed by an algebraic circuit of
polynomial size, it follows by the results in Section 5.2.7 that there exists some fixed
polynomial q with integer coefficients such that the above lemma holds true for some
δ ≥ (ε)2q(|I|)

. The lemma then holds true for δ = (ε)2q(|I|)
, and we may construct this

number using a circuit of polynomial size by repeatedly squaring the number ε exactly
q(|I|) times. This number will be used by the feedback agents in our CHa instance in
order to ensure that any solution gives a solution to the ℓ∞−BBUa instance.

5.6.1 Overview of the Reduction

Overview. As in previous works, we describe a consensus halving instance on an
interval A = [0,M], where M is bounded by a polynomial in |I|, rather than the inter-
val [0,1]. This instance may then be translated to an instance on the interval [0,1] by
simple scaling. Like [99], in the leftmost end of the instance we place the Coordinate-
Encoding region consisting of n intervals. In a solution S , these intervals will encode
a value x ∈ [−1,1]n. A circuit simulator C will simulate the circuit of F on this value x.
The circuit simulators will consist of a number of agents each implementing one gate
of the circuit. However, such a circuit simulator may fail in simulating F properly,
so we will use a polynomial number of circuit simulators C1, . . . ,Cp(n). Each of these
circuit simulators will output n values [C j(x)]1, . . . , [C j(x)]n into intervals I1 j, . . . , In j

immediately after the simulation. Finally, we introduce the so-called feedback agents



266 Chapter 5. Strong Approximate Consensus Halving and BU

f1, . . . , fn. The agent fi will have some very thin Dirac blocks centered in each of the
intervals Ii j where j ∈ [p(n)]. These agents will ensure that if z is an exact solution to
the CH instance, then the encoded value x satisfies that ||F(x)||∞ is sufficiently small
that we may conclude that x is ε-close to a zero x∗ of F.

Label Encoding. For a unit interval I we let I± denote the subsets of I assigned the
corresponding label. We define the label encoding of I to be a value in [−1,1] given
by the formula vl(I) := λ(I+)−λ(I−), where λ denotes the Lebesgue measure on the
real line R. This makes sense as I± is measurable, because they are the union of a
finite number of intervals.

Coordinate-Encoding Region. The interval [0,n] is called the Coordinate-Encoding
region. For every i ∈ [n], the subinterval [i−1, i] of the Coordinate-Encoding region
encodes a value xi := vl([i−1, i]) via the label encoding.

Position Encoding. For an an interval I which contains only a single cut, thus
dividing I into two subintervals I = Ia∪ Ib, we define the position encoding of I to be
the value vp(I) := λ(I1)−λ(I2). We note that vp(I) = vl(I) if the labeling sequence is
−/+, and vp(I) = −vl(I) in the case the labeling sequence is +/−.

From Label to Position. Before a circuit simulator there is a sign detection interval
Is which detects the labeling sequence. Unless it contains a stray cut, this interval
will encode a sign s = ±1 (to be precise 1 if the label is + and −1 is the label is −).
By placing agents that flip the label as indicated below, we may now obtain position
encodings of the values sx1, . . . , sxn. These values will be read-in as inputs to the
subsequent circuit simulator.

· · ·x1 x2 xn

· · ·

s
· · ·

sx1 sx2

Circuit Simulators. As mentioned above, the circuit simulator C j will read-in the
values s jx1, . . . , s jxn and simulate the circuit computing F on this input. They then
output their values into n intervals immediately after the simulation.

Feedback Agents. By the discussion after the proof of Lemma 35 we may by
repeated squaring construct a circuit of polynomial size in |I| computing a tiny number
δ > 0 such that if ||F(x)||∞ ≤ δ then x is (ε/2)-close to a zero of F. Now fix i ∈ [n]
and let ci j denote the centre of the feedback interval Ii j outputs the value [C j(s j · x)]i.
We then define the ith feedback agent to have constant density 1/δ in the intervals
[ci j−δ/2,ci j+δ/2].

The reason for having the feedback agents have these very narrow Dirac blocks
is that if Fi(x) > δ for some i, then in any of the "uncorrupted" circuits (i.e. circuits



5.6. Consensus Halving 267

outputting the correct values) all the density of the ith agent will contribute to the same
label. Moreover, we will show using the boundary condition of F that the contribution
is to the same label in all the uncorrupted circuit simulators. This will contradict
that the feedback agents should value I+ and I− equally. That is the feedback agents
ensure that ||F(x)||∞ ≤ δ if x is the value encoded by an exact solution to the consensus
halving instance we construct.

Stray Cuts. Any of the agents implementing one of the gates in a circuit simulator
will force a cut to be placed in an interval in that same circuit simulator. The only
agents whose cuts we have no control over are the n feedback agents.The expectation
is that these agents should make cuts in the Coordinate-Encoding region that flip the
label. If they do not do this we will call it a stray cut. If a circuit simulator contains a
stray cut, we will say nothing about its value.

Observation 2. If it is not the case that every unit interval encoding a coordinate xi

in the Coordinate-Encoding region contains a cut that flips the label, then the encoded
point x ∈ Bn

∞ will lie on the boundary S n
∞. With this in mind we may ensure that

x ∈ S n
∞ or s1 = s2 = · · · = sp(n) = ±1 where the sign is the same as the label of the first

interval. This can be done by, if necessary, placing one single-block agent after the
Coordinate-Encoding region and each of the circuit simulators (if placing such an
agent is necessary depends on, respectively, the number of variables n and the size of
the circuits).

5.6.2 Construction of Gates

In this section we describe how to construct Consensus-Halving agents implementing
the required gates {+,−,∗,max,min}. First, we show that we may transform the circuit
such that all gates only take values in the interval [−1,1] on input from Bn

∞.

Transforming the Circuit. By propagating every gate to the top of the circuit
we may assume that the circuit is layered. Let C′ denote the resulting circuit. By
repeated squaring we may maintain a gate with value 1/22d

in the dth layer. Suppose
g = α(g1,g2) is a gate with inputs g1,g2 in layer d. We modify the gates as follows: if
α ∈ {+,−,max,min} then we multiply gi by 1/22d

before applying α; if α = ∗, then we
multiply the input by 1 before applying α. Finally, we transform C′ into the circuit C′′

as follows: on input x, the circuit C′′ multiplies the input by 1/2 and then evaluates C′

on input x/2. Inductively, one may show that if g is a gate in layer d in the circuit C′,
then the corresponding gate in in the circuit C′′ has value g/22d

. As all the gates are
among {+,−,∗,max,min}, this ensures that all the gates in C′′ take values in [−1,1].

Addition Gate [G+]. We may construct an addition gate using two agents. The
first agent has two unit input intervals that we assume contain one cut each. This
then forces a cut in the long output interval that has length 3. The second agent then
truncates this value.



268 Chapter 5. Strong Approximate Consensus Halving and BU

Constant Gate [Gζ]. Let ζ ∈ [−1,1]∩Q be a rational constant. The agent will have
a block of unit height in the sign interval and a block of width ζ/2 and height 2/ζ
centered in another interval.

Before proceeding with the remaining gates, we construct a general function gate,
an agent that implements any decreasing function.

Function Gate [Gh]. Let −1 ≤ a < b ≤ 1 and −1 ≤ c < d ≤ 1 be rational numbers
and consider a continuously differentiable map h : [a,b]→ [c,d] satisfying h(a) = d
and h(c) = c. Let h denote the extension of h that is constant on [−1,a] and [b,1]. We
now construct an agent with input interval I and output interval O computing this map,
that is the agent should force a cut in the output interval such that h(vp(I)) = vp(O).

The agent that we construct has a block of height 2/(d− c) in the sub-interval
[(c+1)/2, (d+1)/2] of the output interval and density f (z) := −2h′(2z−1)/(d− c) in
the sub-interval ((a+1)/2, (b+1)/2) of the input interval. We note that f is positive
in this interval as h is assumed to be a decreasing map, so it makes sense for the agent
to have density f . One may verify that the agent values the input interval and output
interval equally. We further add two rectangles to the output interval colored blue and
red in the sketch below. These will ensure that if the cut in the input interval is placed
at z ≤ (a+1)/2 such that vp(I) ≤ a, then the cut in the output interval must be placed
at z∗ = (d+1)/2, meaning that vp(O) = d. Similarly, if vp(I) ≥ b then vp(O) = c.

0 1a+1
2

b+1
2

0 1c+1
2

d+1
2

z z∗

+ − + −

· · ·

Suppose cuts are placed in z in the input interval and in z∗ in the output interval. As
the agent must value the parts with positive and negative label equally, we get the



5.6. Consensus Halving 269

equality

1 =
∫ z

(a+1)/2

−2h′(2t−1)
d−c dt+

(
z∗− c+1

2
) 2

d−c

From this we obtain that

d− c = −
∫ 2z−1

a
h′(u)du+2z∗− c−1

= −h(2z−1)+d+2z∗− c−1

where we use that h(a) = d by assumption. We conclude that h(2z−1) = 2z∗−1, that
is we obtain the equality h(vp(I)) = vp(O).

Using this general function gate, we may now build up the remaining gates
required by the circuit.

Multiplication By -1 Gate [G−(·)]. In order to realise this gate, we consider the
function h : [−1,1]→ [−1,1] given by x 7→ −x. The agent’s density function in the
input interval is then given by f (z) = 1.

0 1 0 1z z∗

+ −

· · ·

+ −

Subtraction Gate [G−]. We may build this using the gates G−(·) and G+.

Multiplication by ζ ∈ [−1,1] [G·ζ]. If ζ < 0 we mahy construct G·ζ as a function
gate using the function h : [−1,1]→ [ζ,−ζ]. If ζ > 0 we construct using −ζ and a
minus gate, i.e. G·ζ = −G·(−ζ).

Maximum Gate [Gmax]. First we show how to construct a gate computing the abso-
lute value of the input. We may construct gates G1,G2 such that G1(x) = −max(x,0)
and G2(x) =max(−x,0) as function gates by using the functions h1 : [0,1]→ [−1,0]
given by x 7→ −x and h2 : [−1,0]→ [0,1] given by x 7→ −x. Now, we may constrcuct
the absolute value gate as G|·| = −G1+G2. We may now construct Gmax by using the
formula max(x,y) = (x+ y+ |x− y|)/2.

Minimum Gate [Gmin]. We may build this using min(x,y) = x+ y−max(x,y).

Multiplication Gate [G∗]. We start off by constructing a gate squaring the input.
First we construct G1 and G2 as function gates with respect to h1 : [−1,0]→ [0,1]
given by x 7→ x2 and h2 : [0,1]→ [−1,0] given by x 7→ −x2. Then we may construct
the squaring gate as G(·)2 = G1 −G2. Now we may use the previously constructed
gates to make a multiplication gate via the identity xy = ((x+ y)2− x2− y2)/2.



270 Chapter 5. Strong Approximate Consensus Halving and BU

5.6.3 Describing valuation functions as circuits.

In the description above, we described the valuations of the agents by providing
formulas for their densities. However, an instance of CH actually consists of a list
of algebraic circuits computing the distribution functions of the agents. In order
to construct gates, it is sufficient for agents to have densities that are piece-wise
polynomial. Therefore, consider an agent with polynomial densities fi in the intervals
[ai,bi) for i = 1, . . . , s, and let Fi denote the indefinite integral of fi. We note that Fi is
a polynomial so it may be computed by an algebraic circuit. Now we claim that the
distribution function of this agent may be computed by an algebraic circuit via the
formula

F(x) =
s∑

i=1

[Fi(max(ai,min(x,bi)))−Fi(ai)] (5.3)

This is the case, because the summands will be equal to Fi(ai)−Fi(ai) = 0 if x < ai,

to Fi(x)−Fi(a) if ai ≤ x ≤ bi and to Fi(b)−Fi(a) if x > bi, meaning that this formula
does indeed calculate the valuation of the agent in the interval [0, x].

5.6.4 Reduction and Correctness

Recall that we are given an instance (F, ε) of the BBUa problem and that we have to
construct an instance of the CHa problem. The reduction now outputs an instance
of the CHa problem where the consensus halving instance is constructed as above
with p(n) = 2n+ 1 circuit simulators and the approximation parameter is given by
ε′ = ε/(4n). Let z denote a solution to this CHa instance. By definition, there exists
an exact solution z∗ to the consensus-halving problem such that ∥z− z∗∥∞ ≤ ε′.

Let x and x∗ denote the values encoded by respectively z and z∗ in the Coordinate-
Encoding region. Suppose, generally, we are given an interval I with a number of cut
points t1, . . . , ts. Moving a cut point by a distance ≤ ε′ we create a new interval I′. This
changes the label encoding by at most 2ε′, that is |vl(I)− vl(I′)| ≤ 2ε′. Succesively,
if we move all the cuts by a distance ≤ ε′, then we get an interval I∗ such that
|vl(I)− vl(I∗)| ≤ 2sε′. As ∥z− z∗∥∞ ≤ ε′ and any of the subintervals in the Coordinate-
encoding region can contain at most n cuts, we conclude that ∥x− x∗∥∞ ≤ 2nε′ =
2n(ε/(4n)) = ε/2. In order to show that x is ε-close to a zero of F, it now suffices by
the triangle inequality to show that x∗ is (ε/2)-close to a zero of F. This will follow
from the two following lemmas.

Lemma 36. If there are no stray cuts in the exact solution z∗, then the associated
value x∗ encoded in the Coordinate-encoding region satisfies F(x∗) = 0.

Proof. We recall that if the solution z∗ contain no stray cuts, then the signs of all the
circuit simulators are equal s1 = · · · = s2n+1 = s where s = ±1. Furthermore, all the
circuit simulators will output the same values F1(sx∗), . . . ,Fn(sx∗) into the feedback
intervals. Thus, there can be no cancellation, so in order for the feedback agents to
value the positive and negative part equally it must be the case that F(sx∗) = 0. □



5.6. Consensus Halving 271

Lemma 37. If there is a stray cut in the exact solution z∗, then the associated value
x∗ encoded in the Encoding-region satisfies the inequality ||F(x∗)||∞ ≤ δ.

Proof. Suppose toward contradiction that |F(x)i| > δ for some i. Without loss of
generality we assume that F(x)i > δ. As there is a stray cut, the Coordinate-Encoding
region can contain at most n−1 cuts. Thus, at least one of the coordinates x∗i must
be ±1 showing that x∗ ∈ S n−1. From this and the boundary condition we conclude
that F(x∗) = −F(−x∗). Furthermore, there is at most n stray cuts, so at most n circuit
simulators can become corrupted. This means that n+ 1 circuit simulators work
correctly. Now suppose that the circuit simulator C j is uncorrupted. If the label is
s j = +1, then C j will output F(x) into the feedback region and the labeling sequence
will be +/−; if the label is s j =−1 then C j will output F(−x)=−F(x) into the feedback
region and the labeling sequence will be −/+. This is indicated below:

+ −
− +

F(x)i > δ

+ −

F(−x)i = −F(x)i < −δ

From this we conclude that the n+1 uncorrupted circuit simulators altogether con-
tribute (n+ 1)δ to the part with negative label. However, the n corrupted circuit
simulators can contribute at most nδ to the part with positive label. This implies that
fi cannot value the negative and positive part equally. This contradicts the assumption
that z∗ is an exact consensus-halving. We conclude that ||F(x∗)||∞ ≤ δ. □

By the two lemmas above, it follows that the value x∗ encoded by the exact
consensus-halving z∗ satisfies the inequality ||F(x∗)||∞ ≤ δ. By choice of δ, this
implies that there exists some x∗∗ such that ∥x∗− x∗∗∥∞ ≤ ε/2 and F(x∗∗) = 0. From
the discussion before the two lemmas, it follows that x is ε-close to a zero of F and is
thus a solution to the BBUa instance (F, ε).

Mapping back a Solution. What remains is to show that we may recover a solution
x to the BBUa instance from the solution z to the CHa instance. Recall that in a
solution z = (z1, . . . ,zN) to the consensus-halving problem |zi| and sgn(zi) represents
the length and label of the ith interval. For i ≤ n and j ≤ n+1 we introduce

t j =

j−1∑
k=1

|zk|

x+i j =max(0,min(t j−1+ z j, i)−max(t j−1, i−1))

x−i j =max(0,min(t j−1− z j, i)−max(t j−1, i−1))

These numbers may be computed efficiently by a circuit over {+,−,max,min}. We
notice that if z j > 0 then x−i j = 0 (and if z j < 0 then x+i j = 0). Furthermore, by checking
a couple of cases, one finds that if z j > 0 (respectively z j < 0) then x+i j (respectively x−i j)
is the length of the jth interval that is contained in [i−1, i]. As the coordinate-encoding



272 Chapter 5. Strong Approximate Consensus Halving and BU

region can contain at most n cuts (corresponding to at most n+1 intervals), we deduce
from the above that the values encoded can be computed as

xi =

n+1∑
j=1

x+i j− x−i j

for every i ≤ n. If there is a stray cut then both x and −x are valid solutions by the
boundary condition of F. If there is no stray cut, then s1 = s2 = · · · = sp(n) = s = sgn(z1)
by Observation 2 and in this case we may recover a solution as sx.

5.6.5 Removing Root Gates.

In this subsection, we argue by going through CHa that the strong approximation
problems BUa = BBUa do not change even if we allow the circuits to use root-
operations as basic operations.

Proposition 24. The class ℓ∞−BBUa remains unchanged even if we allow the circuits
to use root-gates.

Proof. Let Πa be a basic ℓ∞ −BBUa problem where the circuits are allowed to use
gates from the basis {+,−,∗,max,min, k

√
}. In the previous section, we constructed a

polynomial time reduction fromΠa to a CHa problem Γa in such a way that the circuits
computing the distribution functions of the agents are defined over {+,−,∗,max,min}.
Namely, the root gates can be implemented by first noting that the power-gate (·)k

can be implemented by an agent with polynomial densities by using the general
function gate construction. Then, in order to construct an agent implementing the
root gate we simply interchange the input interval and output interval of the power-
gate. By the proof of the result of Deligkas et al. that CH is contained in BU, the
problem Γa polynomial time reduces to a ℓ1 −BUa problem Λ that only uses gates
from {+,−,∗,max,min}. By Proposition 22, Λ reduces to a basic ℓ1−BBUa problem
Ξ which again uses only gates from {+,−,∗,max,min}. Finally, by Proposition 18, Ξ
reduces to a basic ℓ∞−BBUa problem, again using only gates from {+,−,∗,max,min}.
Altogether, we see that Πa polynomial time reduces to a ℓ∞ −BBUa without root-
gates. □



Chapter 6

The Frontier of Intractability for
EFX with Two Agents

Abstract

We consider the problem of sharing a set of indivisible goods among agents
in a fair manner, namely such that the allocation is envy-free up to any good
(EFX). We focus on the problem of computing an EFX allocation in the two-
agent case and characterize the computational complexity of the problem for
most well-known valuation classes. We present a simple greedy algorithm that
solves the problem when the agent valuations are weakly well-layered, a class
which contains gross substitutes and budget-additive valuations. For the next
largest valuation class we prove a negative result: the problem is PLS-complete
for submodular valuations. All of our results also hold for the setting where
there are many agents with identical valuations.

6.1 Introduction

The field of fair division studies the following fundamental question: given a set of
resources, how should we divide them among a set of agents (who have subjective
preferences over those resources) in a fair way? This question arises naturally in many
settings, such as divorce settlement, division of inheritance, or dissolution of a business
partnership, to name just a few. Although the motivation for studying this question is
perhaps almost as old as humanity itself, the first mathematical investigation of the
question dates back to the work of Banach, Knaster and Steinhaus [205, 207].

Of course, in order to study fair division problems, one has to define what exactly
is meant by a fair division. Different fairness notions have been proposed to formalize
this. Banach, Knaster and Steinhaus considered a notion which is known today as
proportionality: every agent believes that it obtained at least a fraction 1/n of the
total value available, where n is the number of agents. A generally1 stronger notion,
and one which seems more adapted to the motivating examples we mentioned above,

1As long as agents’ valuations are subadditive, every envy-free division also satisfies proportionality.

273



274 Chapter 6. The Frontier of Intractability for EFX with Two Agents

is that of envy-freeness [103, 108, 218]. A division of the resources is said to be
envy-free, if no agent is envious, i.e., no agent values the bundle of resources obtained
by some other agent strictly more than what it obtained itself.

As our motivating examples already suggest, the case with few agents – in fact,
even just with two agents – is very relevant in practice. When the resources are
divisible, such as for example money, water, oil, or time, the fair division problem with
two agents admits a very simple and elegant solution: the cut-and-choose algorithm,
which already appears in the Book of Genesis. As its name suggests, in the cut-and-
choose algorithm one agent cuts the resources in half (according to its own valuation),
and the other agent chooses its preferred piece, leaving the other piece to the first agent.
It is easy to check that this guarantees envy-freeness, among other things. The case of
divisible resources, which is usually called cake cutting, has been extensively studied
for more than two agents. One of the main objectives in that line of research can be
summarized as follows: come up with approaches that achieve similar guarantees to
cut-and-choose, but for more than two agents. This has been partially successful, and
notable results include the proof of the existence of an envy-free allocation for any
number of agents [210, 213, 228], as well as a finite, albeit very inefficient, protocol
for computing one [10].

In many cases, however, assuming that the resources are divisible might be too
strong an assumption. Indeed, some resources are inherently indivisible, such as a
house, a car, or a company. Sometimes these resources can be made divisible by
sharing them over time, for example, one agent can use the car over the week-end and
the other agent on weekdays. But, in general, and in particular when agents are not on
friendly terms with each other, as one would expect to often be the case for divorce
settlements, this is not really an option.

Indivisible resources make the problem of finding a fair division more challenging.
First of all, in contrast to the divisible setting, envy-free allocations are no longer
guaranteed to exist. Indeed, this is easy to see even with just two agents and a single
(indivisible) good that both agents would like to have. No matter who is given the
good, the other agent will envy them. In order to address this issue of non-existence
of a solution, various relaxations of envy-freeness have been proposed and studied in
the literature. The strongest such relaxation, namely the one which seems closest to
perfect envy-freeness, is called envy-freeness up to any good and is denoted by EFX
[43, 131]. An allocation is EFX if for all agents i and j, agent i does not envy agent j,
after removal of any single good from agent j’s bundle. In other words, an allocation
is not EFX, if and only if there exist agents i and j, and a good in j’s bundle, so that i
envies j’s bundle even after removal of that good.

For this relaxed notion of envy-freeness, it is possible to recover existence, at
least in some cases. An EFX allocation is guaranteed to exist for two agents with any
monotone valuations [185], and for three agents if we restrict the valuations to be
additive [45]. It is currently unknown whether it always exists for four or more agents,
even just for additive valuations.

Surprisingly, proving the existence of EFX allocations for two agents is non-trivial.
In order to use the cut-and-choose approach, we need to be able to “cut in half”. In



6.1. Introduction 275

the divisible setting, this is straightforward. But, in the indivisible setting, we need to
“cut in half in the EFX sense,” i.e., divide the goods into two bundles such that the first
agent is EFX with either bundle. In other words, we first need to show the existence
of EFX allocations for two identical agents, namely two agents who share the same
valuation function, which is not a trivial task.

Plaut and Roughgarden [185] provided a solution to this problem by introducing
the leximin++ solution. Given a monotone valuation function, they defined a total
ordering over all allocations called the leximin++ ordering. They proved that for
two identical agents, the leximin++ solution, namely the global maximum with
respect to the leximin++ ordering, must be an EFX allocation. As mentioned above,
using the cut-and-choose algorithm, this shows the existence of EFX allocations for
two, possibly different, agents. Unfortunately, computing the leximin++ solution is
computationally intractable2 and so, while this argument proves the existence of EFX
allocations, it does not yield an efficient algorithm.

Nevertheless, for two agents with additive valuations, Plaut and Roughgarden
[185] provided a polynomial-time algorithm based on a modification of the Envy-
Cycle elimination algorithm of Lipton et al. [163]. They also provided a lower bound
for the problem in the more general class of submodular valuations, but not in terms of
computational complexity (i.e., not in the standard Turing machine model). Namely,
they proved that for two identical agents with submodular valuations computing an
EFX allocation requires an exponential number of queries in the query complexity
model.

Their work naturally raises the following two questions about the problem of
computing an EFX allocation for two agents:

1. What is the computational complexity of the problem for submodular valua-
tions?

2. What is the computational complexity of the problem for well-known valuation
classes lying between additive and submodular,3 such as gross substitutes, OXS,
and budget-additive?

Note that it does not make sense to study the query complexity for additive
valuations, since a polynomial number of queries is sufficient to reconstruct the whole
valuation functions (and the amount of computation then needed to determine a
solution is not measured in the query complexity). However, it does make sense to
study the computational complexity of the problem for submodular valuations, as well
as other classes beyond additive. The query lower bound by Plaut and Roughgarden
essentially says that many queries are needed in order to gather enough information

2Computing the leximin++ solution is NP-hard, even for two identical agents with additive valua-
tions. This can be shown by a reduction from the Partition problem (see [185, Footnote 7] and note that
the argument also applies to leximin++).

3In particular, Plaut and Roughgarden [185, Section 7] propose studying the complexity of fair
division problems with respect to the hierarchy of complement-free valuations (additive ⊆ OXS ⊆
gross substitutes ⊆ submodular ⊆ XOS ⊆ subadditive) introduced by Lehmann et al. [159].



276 Chapter 6. The Frontier of Intractability for EFX with Two Agents

about the submodular valuation function to be able to construct an EFX allocation.
But it does not say anything about the computational hardness of finding an EFX
allocation. Their lower bound does not exclude the possibility of a polynomial-time
algorithm for submodular valuations in the standard Turing machine model. Studying
the problem in the computational complexity model allows us to investigate how hard
it is to solve when the valuation functions are given in some succinct representation,
e.g., as a few lines of code, or any other form that allows for efficient evaluation.

Our contribution. We answer both of the aforementioned questions:

1. For submodular valuations, we prove that the problem is PLS-complete in the
standard Turing machine model, even with two identical agents.

2. We present a simple greedy algorithm that finds an EFX allocation in polynomial
time for two agents with weakly well-layered valuations, a class of valuation
functions that we define in this paper and which contains all well-known strict
subclasses of submodular, such as gross substitutes, OXS, and budget-additive.

Together, these two results completely resolve the computational complexity of the
problem for all valuation classes in the standard complement-free hierarchy (additive⊆
OXS⊆ gross substitutes⊆ submodular⊆XOS⊆ subadditive) introduced by Lehmann
et al. [159]. Furthermore, just like in the work of Plaut and Roughgarden [185], our
negative and positive results also hold for any number of identical agents.

Regarding the PLS-completeness result, the membership in PLS is easy to show
using the leximin++ ordering of Plaut and Roughgarden [185]. The PLS-hardness is
more challenging. The first step of our hardness reduction is essentially identical to
the first step in the corresponding query lower bound of Plaut and Roughgarden [185]:
a reduction from a local optimization problem on the Kneser graph to the problem
of finding an EFX allocation. The second step of the reduction is our main technical
contribution: we prove that finding a local optimum on a Kneser graph is PLS-hard4,
which might be of independent interest.

Further related work. The existence and computation of EFX allocations has been
studied in various different settings, such as for restricted versions of valuation classes
[6, 14], when some items can be discarded [26, 42, 46, 47], or when valuations are
drawn randomly from a distribution [165].

A weaker relaxation of envy-freeness is envy-freeness up to one good (EF1)
[40, 163]. It can be computed efficiently for any number of agents with monotone
valuations using the Envy-Cycle elimination algorithm [163]. If one is also interested
in economic efficiency, then it is possible to obtain an allocation that is both EF1

4We note that proving a tight computational complexity lower bound is more challenging than
proving a query lower bound, because we have to reduce from problems with more structure. Indeed, the
exponential query lower bound for the Kneser problem (and thus also for the EFX problem) can easily
be obtained as a byproduct of our reduction.



6.2. Preliminaries 277

and Pareto-optimal in pseudopolynomial time for additive valuations [20]. For more
details about fair division of indivisible items, we refer to the two recent surveys by
Amanatidis et al. [7] and Aziz et al. [12].

Outline. We begin with 6.2 where we formally define the problem and solution
concept, as well as some standard valuation classes of interest. In 6.3 we introduce
weakly well-layered valuation functions, and present our simple greedy algorithm for
computing EFX allocations. Finally, in 6.4 we prove our main technical result, the
PLS-completeness for submodular valuations.

6.2 Preliminaries

We consider the problem of discrete fair division where an instance consists of a
set of agents N, a set of goods M, and for every agent i ∈ N a valuation function
vi : 2M → R≥0 assigning values to bundles of goods. All valuation functions will
be assumed to be monotone, meaning that for any subsets S ⊆ T ⊆ M it holds that
v(S ) ≤ v(T ), and normalized, i.e., v(∅) = 0.

We now introduce the different types of valuation functions that are of interest
to us. A valuation v : 2M → R≥0 is additive if v(S ) =

∑
g∈S v({g}) for every S ⊆ M.

The hardness result we present in 6.4 holds for submodular valuations. These are
valuations that satisfy the following diminishing returns condition that whenever
S ⊆ T and x < T it holds that v(S ∪{x})− v(S ) ≥ v(T ∪{x})− v(T ).

Next, for our results in the positive direction, we introduce the classes of gross
substitutes and budget-additive valuations, both contained in the class of submodular
valuations. Before defining gross substitutes valuations, we have to introduce some
notation. For a price vector p ∈ Rm on the set of goods, where m = |M|, the function
vp is defined by vp(S ) = v(S )−

∑
g∈S pg for any subset S ⊆ M, and the demand set is

D(v, p) = argmaxS⊆M vp(S ). A valuation v is gross substitutes if for any price vectors
p, p′ ∈ Rm with p ≤ p′ (meaning that pg ≤ p′g for all g ∈ M), it holds that if S ∈ D(v, p),
then there exists a demanded set S ′ ∈ D(v, p′) such that {g ∈ S : pg = p′g} ⊆ S ′. That
is to say, if some good g is demanded at prices p and the prices of some other
goods increase, then g will still be demanded. These valuations have various nice
properties, for instance guaranteeing existence of Walrasian equilibria [133]. Lastly,
a valuation v is budget-additive if it is of the form v(S ) = min{B,

∑
g∈S wg} for reals

B,w1, . . . ,wm ≥ 0. [159] show that a budget-additive valuation need not satisfy the
gross substitutes condition. See 6.1 for the relationship between the valuation classes.

Envy-freeness up to any good (EFX). The goal of fair division is to find an
allocation of the goods to the agents (i.e., a partitioning M = X1⊔ · · ·⊔Xn) satisfying
some notion of fairness. One might hope for an envy-free division in which every
agent prefers his own bundle over the bundle of any other agent, that is, vi(Xi) ≥ vi(X j)
for all i, j ∈ N. Such a division need not exist, however, as can be seen in the case
where one has to divide one good among two agents, as already mentioned in the



278 Chapter 6. The Frontier of Intractability for EFX with Two Agents

Submodular

Additive

Gross SubstitutesBud
ge

t-A
dd

itiv
e

Well-Layered

Weakly Well-Layered

•
Example 10

•
Example 11

•
Example 12

Figure 6.1: Inclusions of valuation classes

introduction. Therefore various weaker notions of fairness have been studied. In this
paper we consider the notion of envy-freeness up to any good (EFX) introduced by
Caragiannis et al. [43], and before that by Gourvès et al. [131] under a different name.
An allocation (X1, . . . ,Xn) is said to be EFX if for any i, j ∈ N and any g ∈ X j it holds
that vi(Xi) ≥ vi(X j \ {g}).

6.3 Polynomial-time Algorithm for Weakly Well-Layered
Valuations

In this section we present our positive result, namely the polynomial-time algorithm
for computing an EFX allocation for two agents with weaklywell− layered valuations.
To be more precise, our algorithm works for any number of agents that all share the
same weaklywell− layered valuation function. As a result, using cut-and-choose it
can then be used to solve the problem with two possibly different agents. We begin
with the definition of this new class of valuations, and then present the algorithm and
prove its correctness.

6.3.1 Weakly Well-Layered Valuations

We introduce a property of valuation functions and situate this with respect to well-
known classes of valuation functions.

Definition 6.3.1. A valuation function v : 2M → R≥0 is said to be weakly well-layered



6.3. Polynomial-time Algorithm for Weakly Well-Layered Valuations 279

if for any M′ ⊆ M the sets S 0,S 1,S 2, . . . obtained by the greedy algorithm (that is,
S 0 = ∅ and S i = S i−1∪ {xi} where xi ∈ argmaxx∈M′\S i−1 v(S i−1∪ {x}) for 1 ≤ i ≤ |M′|)
are optimal in the sense that v(S i) =maxS⊆M′ : |S |=i v(S ) for all i.

We can reformulate this definition as follows: a valuation function v is weakly
well-layered if and only if, for all M′ ⊆ M and all i, the optimization problem

max v(S )

s.t. S ⊆ M′

|S | ≤ i

(6.1)

can be solved by using the natural greedy algorithm. Note that since we only consider
monotone valuations, we can also use the condition |S | = i instead of |S | ≤ i.

The reformulation of the definition in terms of the optimization problem (6.1) is
reminiscent of one of the alternative definitions of a matroid. Consider the optimization
problem

max v(S )

s.t. S ∈ F
(6.2)

where v : 2M → R≥0 is a valuation function and F is an independence system on M.
Then, it is well-known that F is a matroid, if and only if, for all additive valuations
v, the optimization problem (6.2) can be solved by the natural greedy algorithm
[82, 107, 189]. In other words, the class of set systems (namely, matroids) is defined
by fixing a class of valuations (namely, additive). The alternative definition of weakly
well-layered valuations given in (6.1) can be viewed as doing the opposite: the
class of valuations (namely, weakly well-layered) is defined by fixing a class of
set systems (namely, all uniform matroids on subsets M′ ⊆ M, or, more formally,
F = {S ⊆ M′ : |S | ≤ i} for all M′ ⊆ M and all i).

Relationship to other valuation classes. We begin by showing that any gross
substitutes valuation is weakly well-layered. In particular, this also implies that OXS
valuations, which are a special case of gross substitutes, are also weakly well-layered.
Paes Leme [180] proved that gross substitutes valuation functions satisfy the stronger
condition of being well-layered, that is, for any p ∈ Rm it holds that if S 0,S 1,S 2, . . . is
constructed greedily with respect to the valuation vp, where vp(S ) := v(S )−

∑
g∈S pg,

then S i satisfies that S i ∈ argmaxS⊆M : |S |=i vp(S ).

Lemma 38. If v : 2M → R≥0 is well-layered, then it is also weakly well-layered. In
particular, gross substitutes valuations are weakly well-layered.

Proof. Assume that v : 2M → R≥0 is well-layered and let M′ ⊆ M. Assume that the
sequence S 0,S 1,S 2, . . . is constructed via the greedy algorithm: that is S 0 = ∅ and
S i = S i−1∪{xi} where xi ∈ argmaxx∈M′\S i−1

v(S i−1∪{x}) for 1 ≤ i ≤ |M′|. We have to
show that v(S i) =maxS⊆M′ : |S |=i v(S ).



280 Chapter 6. The Frontier of Intractability for EFX with Two Agents

In order to exploit the assumption that v is well-layered, we introduce a price
vector p ∈ Rm given by

pg =

0 g ∈ M′

v(M)+1 g < M′

One sees that the sequence S 0,S 1,S 2, . . . can occur via the greedy algorithm for
the valuation vp, because goods not in M′ cannot be chosen as their prices are too
high. As v is well-layered, we have that vp(S i) =maxS⊆M : |S |=i vp(S ). As pg = 0 for
all g ∈ M′, this implies that v(S i) =maxS⊆M′ : |S |=i v(S ). We conclude that v is weakly
well-layered. □

Closure property. We note that the class of weakly well-layered valuations is closed
under composition with a strictly increasing function.

Lemma 39. Let v : 2M → R≥0 be weakly well-layered and let f : R≥0→ R≥0 strictly
increasing. Then the composition f ◦ v : 2M → R≥0 is weakly well-layered.

Proof. Let M′ ⊆ M and assume that S 0,S 1,S 2, . . . are constructed greedily, that is
S 0 = ∅ and S i = S i−1∪{xi} where xi ∈ argmaxx∈M′\S i−1 f (v(S i−1∪{x})) for 1 ≤ i ≤ |M′|.
As f is strictly increasing, we see that xi ∈ argmaxx∈M′ f (v(S i−1 ∪ {x})) if and only
if xi ∈ argmaxx∈M′ v(S i−1 ∪ {x}). Therefore S 0,S 1,S 2, . . . could also arise via the
greedy construction based on the valuation v. As v is weakly well-layered, this
implies that v(S i) = maxS⊆M′ : |S |=i v(S ) for all i. As f is increasing, this shows that
f (v(S i)) = maxS⊆M′ : |S |=i f (v(S )) for all i. We conclude that f ◦ v is weakly well-
layered. □

Lemma 40. Let v : 2M → R≥0 be weakly well-layered and B ≥ 0. Then the valuation
u : 2M → R≥0 given by u(S ) =min(v(S ),B) is weakly well-layered.

Proof. Let S 0,S 1,S 2, . . . be constructed greedily from the valuation u. Suppose that
S 0,S 1, . . . ,S k have utility < B and that S k+1,S k+2, . . . have utility B. As x 7→min(x,B)
is strictly increasing on [0,B), the sets S 0,S 1, . . . ,S k could have been constructed
greedily from v. As v is weakly well-layered, they are therefore optimal of their given
size for v and therefore also for u. The sets S k+1, . . . all have maximal utility B and
are therefore optimal of their given sizes. □

As a corollary it follows that the class of budget-additive valuations satisfies the
weakly well-layered property.

Corollary 8. Any budget-additive valuation is weakly well-layered.

In contrast, we note that a budget-additive valuation is not necessarily well-layered,
as the following example shows.



6.3. Polynomial-time Algorithm for Weakly Well-Layered Valuations 281

Algorithm 1 Greedy EFX
Input: N,M,v
Output: EFX allocation

Let Ai = ∅ for i ∈ N.
Let R = M.
while R , ∅ do

i = argmin j∈N v(A j)
g = argmaxx∈R v(Ai∪{x})
Ai = Ai∪{g}
R = R \ {g}

end while
return (A1, . . . ,An)

Example 10. Consider the budget-additive valuation on three goods a,b,c with values
va = vb = 2, vc = 4 and a budget of B = 4. Let p = (1,1,2) be a price vector. Under
these prices, the greedy algorithm would pick good c as its first item. However, {a,b}
is the unique optimal bundle of size 2, and so the greedy algorithm would fail in this
case. As a result, the valuation is not well-layered.

The results of this subsection are summarised in 6.1. Note also that the classes
of submodular valuations and weakly well-layered valuations are incomparable. For
an example of a valuation function that is submodular but not weakly well-layered,
see 12 in the next section. For the other direction, see the following example of a
valuation that is well-layered (and thus weakly well-layered), but not submodular.

Example 11. Consider the valuation function v on two goods a,b given by v({a,b})= 1
and v(∅) = v({a}) = v({b}) = 0. This valuation function is seen to be well-layered (and
thus weakly well-layered), because subsets of equal size have the same valuation.
However, it is not submodular, because v({a}∪ {b})− v({a}) = 1 > 0 = v(∅∪ {b})− v(∅).

6.3.2 The Greedy EFX Algorithm

We now present a simple algorithm that computes an EFX allocation for many agents
that all share the same weakly well-layered valuation function v.

Theorem 6.3.1. If the valuation function v is weakly well-layered, then the output
of Algorithm 1 is EFX. In particular, by using the cut-and-choose protocol one may
compute an EFX allocation for two agents with different valuations as long as one of
these valuations is weakly well-layered.

Proof. We show that the algorithm maintains a partial EFX allocation throughout.
Initially the partial allocation is empty and so clearly EFX. Suppose that at the
beginning of some round the current partial allocation (X1, . . . ,Xn) is EFX and that
some agent i ∈ N receives a good g in this round. We have to show that the new
(partial) allocation (X′1, . . . ,X

′
n) is EFX, where X′i = Xi ∪ {g} and X′j = X j for j , i.



282 Chapter 6. The Frontier of Intractability for EFX with Two Agents

Clearly, the only thing we have to argue is that v(X′i \ {g
′}) ≤ v(X′j) for all j ∈ N and all

g′ ∈ X′i . As i received a good in the current round we have that v(Xi) ≤ v(X j) = v(X′j).
Therefore, it suffices to argue that v(X′i \{g

′})≤ v(Xi) for all g′ ∈ X′i . This last inequality
follows from v being weakly well-layered by taking M′ = X′i . With this M′, the set
Xi could namely be produced by running the greedy algorithm. Therefore, Xi is an
optimal subset of M′ = X′i of size |Xi| = |X′i | −1, meaning that v(X′i \ {g

′}) ≤ v(Xi) for
all g ∈ X′i . □

The algorithm can fail to provide an EFX allocation for submodular valuations
that are not weakly well-layered, as the following example shows.

Example 12. Consider an instance with two agents and four goods denoted a,b,c,d,
where the valuation function v is given by: v({a}) = 11,v({b}) = v({c}) = 10,v({d}) =
16,v({a,b}) = 15,v({a,c}) = 15,v({b,c}) = 17,v({a,b,c}) = 18, and v(S ) = 18 for all sets
S that satisfy d ∈ S and |S | ≥ 2. It can be checked by direct computation that v is
indeed submodular. The greedy EFX algorithm yields: agent 1 gets good d, and then
agent 2 gets goods a,b,c. This allocation is not EFX, because v({d}) < v({b,c}).

6.4 PLS-completeness for Submodular Valuations

Total NPsearch problems (TFNP). A total search problem is given by a relation
R ⊆ {0,1}∗ × {0,1}∗ that satisfies: for all x ∈ {0,1}∗, there exists y ∈ {0,1}∗ such that
(x,y) ∈ R. The relation R is interpreted as the following computational problem: given
x ∈ {0,1}∗, find some y ∈ {0,1}∗ such that (x,y) ∈ R. The class TFNP[169] is defined
as the set of all total search problems R such that the relation R is polynomial-time
decidable (i.e., given some x,y we can check in polynomial time whether (x,y) ∈ R)
and polynomially balanced (i.e., there exists some polynomial p such that |y| ≤ p(|x|)
whenever (x,y) ∈ R).

Let R and S be two problems in TFNP. We say that R reduces to S if there exist
polynomial-time functions f : {0,1}∗→ {0,1}∗ and g : {0,1}∗×{0,1}∗→ {0,1}∗ such
that for all x,y ∈ {0,1}∗: if ( f (x),y) ∈ S , then (x,g(y, x)) ∈ R. In other words, f maps
an instance of R to an instance of S , and g maps back any solution of the S -instance
to a solution of the R-instance.

Polynomial Local Search (PLS). Johnson et al. [147] introduced the class PLS, a
subclass of TFNP, to capture the complexity of computing locally optimal solutions
in settings where local improvements can be computed in polynomial time. In order
to define the class PLS, we proceed as follows: first, we define a set of basic PLS
problems, and then define the class PLS as the set of all TFNPproblems that reduce to
a basic PLS problem.

A local search problem Π is defined as follows. For every instance5 I ∈ {0,1}∗,
there is a finite set FI ⊆ {0,1}∗ of feasible solutions, an objective function cI : FI → N,

5A more general definition would also include a polynomial-time recognizable set DΠ ⊆ {0,1}∗ of
valid instances. The assumption that DΠ = {0,1}∗ is essentially without loss of generality. Indeed, for



6.4. PLS-completeness for Submodular Valuations 283

and for every feasible solution s ∈ FI there is a neighborhood NI(s) ⊆ FI . Given an
instance I, one seeks a local optimum s∗ ∈ FI with respect to cI and NI , meaning, in
case of a maximization problem, that cI(s∗) ≥ cI(s) for all neighbors s ∈ NI(s∗).

Definition 6.4.1. A local search problem Π is a basic PLS problem if there exists
some polynomial p such that FI ⊆ {0,1}p(|I|) for all instances I, and if there exist
polynomial-time algorithms A,B and C such that:

1. Given an instance I, algorithm A produces an initial feasible solution s0 ∈ FI .

2. Given an instance I and a string s ∈ {0,1}p(|I|), algorithm B determines whether
s is a feasible solution and, if so, computes the objective value cI(s).

3. Given an instance I and any feasible solution s ∈ FI , the algorithm C checks
if s is locally optimal and, if not, produces a feasible solution s′ ∈ NI(s) that
improves the objective value.

Note that any basic PLS problem lies in TFNP.

Definition 6.4.2. The class PLS is defined as the set of all TFNPproblems that reduce
to a basic PLS problem.

A problem is PLS-complete if it lies in PLS and if every problem in PLS reduces
to it. Johnson et al. [147] showed that the so-called Flip problem is PLS-complete.
We will define this problem later when we make use of it to prove our PLS-hardness
result.

6.4.1 PLS-membership

Plaut and Roughgarden [185] prove the existence of an EFX allocation when all
agents share the same monotone valuation, by introducing the leximin++ solution.
In this section, we show how their existence proof can be translated into a proof of
PLS-membership for the following problem.

Definition 6.4.3 (Identical-EFX). An instance I = (N,M,C) of the Identical-EFX
search problem consists of a set of agents N = [n], a set of goods M = [m], and a
boolean circuit C with m input gates. The circuit C defines a valuation function
v : 2M → N which is the common valuation of all the agents. A solution is one of the
following:

1. An allocation (X1, . . . ,Xn) that is EFX.

2. A pair of bundles S ⊆ T that violate monotonicity, that is, v(S ) > v(T ).

I < DΠ we can define FI = {0}, cI(0) = 1 and NI(0) = {0}. Note that this does not change the complexity
of the problem.



284 Chapter 6. The Frontier of Intractability for EFX with Two Agents

The reason for allowing the violation-of-monotonicity solutions is that the circuit
C is not guaranteed to define a monotone valuation, and in this case an EFX allocation
is not guaranteed to exist. Importantly, we note that our PLS-hardness result (presented
in the next section) does not rely on violation solutions. In other words, even the
version of the problem where we are promised that the valuation function is monotone
remains PLS-hard.

Theorem 6.4.1. The Identical-EFX problem lies in PLS.

The problem of computing an EFX allocation for two non-identical agents with
valuations v1 and v2 is reducible to the problem of computing an EFX allocation for
two identical agents via the cut-and-choose protocol. As a result, we immediately also
obtain the following:

Corollary 9. Computing an EFX allocation for two not necessarily identical agents
is in PLS.

Proof. To show that the Identical-EFX problem is in PLS, we reduce it to a basic
PLS problem. An instance of this basic PLS problem is just an instance of the
Identical-EFX problem, i.e, a tuple I = (N,M,C). The set of feasible solutions FI is
the set of all possible allocations of the goods in M to the agents in N. As an initial
feasible solution, we simply take the allocation where one agent receives every good.
It remains to specify the objective function cI and the neighborhood structure NI , and
then to argue that a local optimum corresponds to an EFX allocation.

Plaut and Roughgarden [185, Section 4] introduce the leximin++ ordering on the
set of allocations, and show that the maximum element with respect to that ordering
must be an EFX allocation. In fact, a closer inspection of their proof reveals that even
a local maximum with respect to the leximin++ ordering must be an EFX allocation.
As a result, we construct an objective function that implements the leximin++ ordering
and then use the same arguments as Plaut and Roughgarden [185, Theorem 4.2].

For an allocation (X1, . . . ,Xn), we let OX = (i1, . . . , in) be an ordering of the agents
according to increasing values of v(Xi) (if multiple agents have bundles of equal utility,
we break ties by ordering tied agents in terms of their agent number, i.e., if agents i
and j are tied, and i < j, then agent i will appear before agent j in the ordering). The
objective value is then defined as

cI(X) = |Xin |+ v(Xin)K

+|Xin−1 |K
2+ v(Xin−1)K3

+ . . .

+|Xi1 |K
2n−2+ v(Xi1)K2n−1

where K is an upper bound on the size or utility of any bundle. We claim that if an
allocation X is not EFX, then one may construct an allocation X′ from X by moving
a single good from one bundle to another such that the objective strictly increases,
cI(X′) > cI(X). Therefore, we will consider local maximization of this objective and



6.4. PLS-completeness for Submodular Valuations 285

we define the neighborhood of X to be NI(X) = {X′ ∈ FI : ∃i, j ∈ N,∃g ∈ X j s.t. X′i =
Xi∪ {g}, X′j = X j \ {g}, X′k = Xk for k , i, j}. We note that the cardinality of NI(X) is
polynomial in n and m, so the algorithm for finding an improving neighbor if one exists
may simply compute the objective value for every allocation in the neighborhood.
Thus, this local maximization problem is indeed a basic PLS problem.

Finally, we have to show that any local maximum X ∈ FI yields a solution to
the Identical-EFX problem, i.e., X is an EFX allocation or X yields a violation of
monotonicity. We say that an allocation X yields a violation of monotonicity, if there
exist i ∈ N and g ∈ M such that v(Xi \ {g}) > v(Xi) or v(Xi∪{g}) < v(Xi). We note that
if X yields a violation of monotonicity, then the violation can be found in polynomial
time.

Consider an allocation X ∈ FI that is not EFX and that does not yield a violation
of monotonicity. We will show that X cannot be a local maximum, which then implies
the desired statement by contrapositive. Since X is not EFX, we may find i, j ∈ N and
g ∈ X j such that v(Xi) < v(X j \ {g}). Without loss of generality, we may assume that
i = argmink∈N v(Xk), and if more than one agent attains this minimum, then we take
the i that appears last among those tied agents in OX according to the tie-breaking.
Now define an allocation X′ by

X′i = Xi∪{g}

X′j = X j \ {g}

X′k = Xk for k , i, j

and note that X′ ∈ NI(X). We claim that cI(X′) > cI(X), meaning that X is not a local
maximum.

In order to prove this, we first show that the orderings OX and OX′ agree in their
first ℓ positions, where ℓ ∈ {0,1, . . . ,n−1} is the index such that OX

ℓ+1 = i, i.e., agent i
appears in position ℓ+1 in OX . Let S denote the set of agents that appear in OX before
agent i, i.e., the first ℓ agents appearing in OX . Note that S consists of all the agents
that have utility v(Xi) in allocation X, excluding i. First, observe that j < S , because
v(X j) ≥ v(X j \ {g}) > v(Xi) as X does not yield a violation of monotonicity. Therefore,
we find that the bundles of the agents in S are not changed from allocation X to X′,
and, in particular, these agents still have utility v(Xi) in allocation X′. Furthermore,
in allocation X′, all other agents (except possibly i) have strictly larger utility than
S -agents, namely v(X′j) = v(X j \{g}) > v(Xi), and v(X′k) = v(Xk) > v(Xi) for k < S ∪{i, j}.
Finally, v(X′i ) = v(Xi ∪ {g}) ≥ v(Xi) as X does not yield a violation of monotonicity,
and thus, in allocation X′, agent i is either also tied with the agents in S , or it has
strictly larger utility. In any case, by the tie-breaking, the first ℓ positions of OX and
OX′ are the same.

We now argue that cI(X′) > cI(X). Since OX and OX′ agree in their first ℓ positions,
and the bundles of those first ℓ agents have not changed, the 2ℓ highest-order terms in
cI(X) and cI(X′) have identical coefficients. By definition, OX

ℓ+1 = i. If OX′
ℓ+1 = i, then

we have that cI(X′) > cI(X), because v(X′i ) = v(Xi∪{g}) ≥ v(Xi) and |X′i | = |Xi∪{g}| >
|Xi|, meaning that the coefficient in front of K2n−(2ℓ+1) is at least as large in cI(X′) as



286 Chapter 6. The Frontier of Intractability for EFX with Two Agents

in cI(X) and the coefficient in front of K2n−(2ℓ+2) is strictly larger. If OX′
ℓ+1 = k , i, then

we have that cI(X′) > cI(X), because v(X′k) > v(Xi), implying that the coefficient in
front of K2n−(2ℓ+1) is strictly larger in cI(X′) than in cI(X). We conclude that X is not a
local maximum. Therefore, by contraposition, a local maximum is an EFX allocation
or it yields a violation of monotonicity. □

6.4.2 PLS-hardness

In this section we prove the following theorem.

Theorem 6.4.2. The problem of computing an EFX allocation for two identical agents
with a submodular valuation function is PLS-hard.

The reduction consists of two steps. First, following Plaut and Roughgarden [185],
we reduce the problem of local optimization on an odd Kneser graph to the problem of
computing an EFX allocation for two agents sharing the same submodular valuation
function. Then, in the second step, which is also our main technical contribution, we
show that the PLS-complete problem Flip reduces to local optimization on an odd
Kneser graph.

Kneser ≤ Identical-EFX

For k ∈ N, the odd Kneser graph K(2k+ 1,k) is defined as follows: the vertex set
consists of all subsets of [2k+1] of size k, and there is an edge between two vertices
if the corresponding sets are disjoint. We identify the vertex set of K(2k+1,k) with
the set {x ∈ {0,1}2k+1 : ||x||1 = k}, where ||x||1 =

∑2k+1
i=1 xi denotes the 1-norm. Note that

there is an edge between x and x′ if and only if ⟨x, x′⟩ = 0, where ⟨·, ·⟩ denotes the
inner product.

Definition 6.4.4 (Kneser). The Kneser problem of local optimization on an odd
Kneser graph is defined as the following basic PLS problem. An instance of the
Kneser problem consists of a boolean circuit C with 2k+1 input nodes for some k ∈N.
The set of feasible solutions is FC = {x ∈ {0,1}2k+1 : ||x||1 = k}, and the neighborhood
of some x ∈ FC is given by NC(x) = {x′ ∈ FC : ⟨x, x′⟩ = 0}. The goal is to find a solution
that is a local maximum with respect to the objective function C(x) =

∑m−1
i=0 yi · 2i,

where y0, . . . ,ym−1 denote the output nodes of the circuit C.

Lemma 41. Kneser reduces to Identical-EFX with two identical submodular agents.

Proof. Our proof of this lemma closely follows the corresponding proof of Plaut and
Roughgarden [185, Theorem 3.1], with some minor modifications due to the different
computational model. First, we describe the map f taking instances C of Kneser to
instances of Identical-EFX. We consider a valuation on subsets of [2k+1] given by

v(X) =


2|X| if |X| < k
2k−2−C(X) if |X| = k
2k if |X| > k



6.4. PLS-completeness for Submodular Valuations 287

Using the description of the circuit C, we may in polynomial time construct a boolean
circuit computing v. This valuation may take non-integer values, but this can be fixed
by scaling by a larger power of 2. Scaling will not change anything in the arguments
below. We now define f (C) = ([2], [2k+ 1],v). That is, the Kneser instance C is
mapped to an Identical-EFX instance with 2k+1 goods and with two agents sharing
the same valuation v.

We note that 2−C(X) ∈ (0,1], because C takes values in the natural numbers. This
ensures that the valuation v is monotone, because v(S ) is seen to be non-decreasing in
|S |. Therefore, the only optimal solutions of f (C) are EFX allocations (X1,X2). Note
by inspection of v that if (X1,X2) is EFX, then |X1| = k and |X2| = k+1 (or |X1| = k+1
and |X2| = k). If we are in the first case then X1 corresponds to a feasible solution of
the Kneser instance C. Also any neighbor of X1 in the Kneser graph is of the form
X2 \ {g} for some g ∈ X2. As (X1,X2) is EFX we have that

2k−2−C(X1) = v(X1)

≥ v(X2 \ {g}) = 2k−2−C(X2\{g})

implying that C(X1) ≥ C(X2 \ {g}) for all g ∈ X2. We conclude that X1 is a local
maximum for the instance of Kneser given by the circuit C. Similarly, when |X2| = k,
X2 will be a local maximum. As a result, we can define the polynomial-time map g
that maps solutions of the Identical-EFX instance to solutions of the Kneser-instance
by

g((X1,X2),C) =

X1 if |X1| = k
X2 otherwise

By the discussion above it follows that if (X1,X2) is a solution to the Identical-EFX
instance, then g((X1,X2),C) is an optimal solution to the Kneser-instance. Therefore,
the pair ( f ,g) constitutes a reduction from Kneser to Identical-EFX.

Finally, we show that v is submodular. For any X ⊆ [2k+1] and x < X we have
that

v(X∪{x})− v(X) =


2 if |X| < k−1
2−2−C(X∪{x}) if |X| = k−1
2−C(X) if |X| = k
0 if |X| > k

Using that 2−C(X) ∈ (0,1], this shows that v(X∪ {x})− v(X) is non-increasing in |X|.
Thus, if Y ⊆ X and x < X, we have that v(X∪{x})− v(X) ≤ v(Y ∪{x})− v(Y), meaning
that v is submodular. □

Flip ≤Kneser

Johnson et al. [147] introduced the computational problem Flip and proved that it
is PLS-complete. We will now reduce from Flip to Kneser to show that Kneser,



288 Chapter 6. The Frontier of Intractability for EFX with Two Agents

and thus Identical-EFX, are PLS-hard. In particular, this also establishes the PLS-
completeness of Kneser, which might be of independent interest.

Definition 6.4.5 (Flip). The Flip problem is the following basic PLS problem. The
instances of Flip are boolean circuits. For an instance C with n input nodes x0, . . . , xn−1
and m output nodes y0, . . . ,ym−1, the set of feasible solutions is all the possible inputs
to the circuit: FC = {0,1}n. For any x ∈ {0,1}n, the neighborhood is all the inputs that
can be obtained from x by flipping one bit: NC(x) = {x′ ∈ {0,1}n : ∆(x, x′) = 1} where
∆(·, ·) denotes the Hamming distance. The goal is to find a solution that is locally
minimal with respect to the objective function defined by C(x) =

∑m−1
i=0 yi ·2i.

Lemma 42. Flip reduces to Kneser.

Proof. We construct a reduction from Flip to the minimization version of Kneser.
The minimization version of Kneser is seen to be equivalent to its maximization
version by negating the output nodes of the original circuit. Let CF be an instance
of Flip. Denote by p = poly(|CF |) the length of the feasible solutions of CF . The
map of instances f now takes CF to an instance CK of the Kneser-problem whose
feasible solutions are FK = {x ∈ {0,1}2p+1 : ||x||1 = p}. A typical feasible solution will
be written as s = uvb where u,v ∈ {0,1}p and b ∈ {0,1}. We will use the notation u to
denote the bitwise negation of u ∈ {0,1}p. The circuit CK is defined as follows:

1. CK(uu0) = 2 ·CF(u),

2. CK(uv1) = 2 ·min(CF(u),CF(v))+1 if ∆(u,v) = 1,

3. CK(uvb) = M+∆(u,v) otherwise.

Here M denotes a number chosen to be sufficiently large so that it dominates any cost
2 ·CF(w). Note that the circuit CK is well-defined and that it can be constructed in
polynomial time given the circuit CF . At a high level, the definition of the cost of
a vertex of the third type is meant to ensure that for any such vertex uvb, there is a
sequence of neighbors with decreasing costs that ends in a vertex of the form uu0.
The costs of the first and second vertex types are then meant to ensure that for a vertex
uu0, there is a sequence of neighbors with decreasing costs that ends in a vertex ww0
where w is an improving neighbor of u in the original Flip-instance.

Below we show that the only local minima of CK are of the form uu0 where u is a
local minimum for CF . Therefore, upon defining the solution-mapping by g(uvb) = u
we have that ( f ,g) is a reduction from Flip to Kneser.

No optimal solutions of type (3). If a feasible solution s = uvb is of type (3), then
we claim that it must have a neighbor of lower cost. First of all, note that since s is
not of type (1) or (2), and since ||s||1 = p, it follows that ∆(u,v) ≥ 2. Now, because
∆(u,v) ≥ 2 > 0 and ||uv||1 ≤ p, there must exist an i such that ui = vi = 0. Otherwise
one would find that ||uv||1 > p, which contradicts s being a feasible solution. Now, let
s′ = u′v′b′, where u′ = u, b′ = b, and v′j = v j for all j , i, but v′i = vi = 0. We note that
||s′||1 = ||s||1−1 = (p+1)−1 = p, so s′ is a valid vertex in the Kneser graph. Further,



6.4. PLS-completeness for Submodular Valuations 289

we see that s′ is a neighbor of s, because s′js j = 0 for all j. If s′ is not of type (3), then
it has lower cost than s by construction of CK and choice of M. Finally, if s′ is of type
(3), then the observation that ∆(u′,v′) < ∆(u,v) again yields that s′ has lower cost than
s.

No optimal solutions of type (2). Suppose s = uv1 is of type (2). As ||s||1 = p and
∆(u,v) = 1, there is some i with vi = 0 and ui = 1, and v j = u j for j , i. This implies
that

∑
i uivi = 0, and so both s′ = uu0 and s′′ = vv0 are neighbors of s. Furthermore,

by construction of CK , the cost of s′ or of s′′ is strictly less than the cost of s.
Optimal solutions. Consider a feasible solution of the form uu0. If u is not a

local minimum for CF , then let w be an improving neighbor of u. As ∆(u,w) = 1,
there are now two cases to consider. If ui = 0 and wi = 1 for some i, then s′ = wu1 is
a type (2) neighbor of lower cost. If ui = 1 and wi = 0 for some i, then s′ = uw1 is a
type (2) neighbor of lower cost. Therefore, if uu0 is a local minimum for CK , then u
is a local minimum for CF . □

Corollary 10. Let n ≥ 2 be an integer. Computing an EFX allocation for n identical
agents with a submodular valuation function is PLS-hard.

Proof. By 6.4.2 it suffices to produce a reduction from the problem of computing
an EFX allocation for two identical agents to the problem of computing an EFX
allocation for n identical agents. We sketch this reduction. Let u : 2M → R denote
the common submodular valuation function of the two agents. Construct an EFX-
instance with n agents by adding n−2 agents and n−2 goods, M′ = M∪{g1, . . . ,gn−2}.
Define the valuation function of the n agents to be u′ = u+ v where u : 2M′ → R is the
extension of u given by u(S ) = u(S ∩M) and where v : 2M′ → R is additive given by
v({gi}) = u(M)+1 for i = 1, . . . ,n−2 and v({g}) = 0 for g ∈ M. One may verify that u
is submodular, and so that u′ is the sum of two submodular valuations and therefore
itself submodular.

Let (X1, . . . ,Xn) denote an EFX allocation of this instance. We claim that after
permuting the bundles, we may assume that Xi+2 = {gi} for i = 1, . . . ,n−2 and X1∪

X2 = M. At least one bundle, say X1, receives no good from {g1, . . . ,gn−2}, and so
u′(X1) = u(X1) ≤ u(M). Now suppose some other bundle Xi contains some good g j. If
Xi contained another good g, then

u′(Xi \ {g}) ≥ u′({g j}) = u(M)+1 > u′(X1),

contradicting (X1, . . . ,Xn) being EFX. Hence, Xi = {g j}, and the claim follows. Now,
one sees that (X1,X2) is an EFX allocation of the original two-agent instance. □





Bibliography

[1] Atila Abdulkadiroğlu and Tayfun Sönmez. Random serial dictatorship and the
core from random endowments in house allocation problems. Econometrica,
66(3):689–701, 1998. doi: 10.2307/2998580. 84

[2] Heiner Ackermann, Heiko Röglin, and Berthold Vöcking. On the impact of
combinatorial structure on congestion games. Journal of the ACM (JACM), 55
(6):1–22, 2008. 136

[3] Ron Aharoni, Eli Berger, Joseph Briggs, Erel Segal-Halevi, and Shira Zerbib.
Fractionally balanced hypergraphs and rainbow KKM theorems. arXiv preprint
arXiv:2011.01053, 2020. 34, 68

[4] James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2-d tucker is PPA
complete. J. Comput. Syst. Sci., 108:92–103, 2020. doi: 10.1016/j.jcss.2019.
09.002. 243

[5] Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro
Miltersen. On the complexity of numerical analysis. SIAM J. Comput., 38
(5):1987–2006, 2009. doi: 10.1137/070697926. URL https://doi.org/10.
1137/070697926. 238, 248

[6] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros
Hollender, and Alexandros A. Voudouris. Maximum Nash welfare and other
stories about EFX. Theoretical Computer Science, 863:69–85, 2021. doi:
10.1016/j.tcs.2021.02.020. 25, 276

[7] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, and Alexan-
dros A. Voudouris. Fair division of indivisible goods: A survey. In Proceedings
of the 31st International Joint Conference on Artificial Intelligence (IJCAI),
pages 5385–5393, 2022. doi: 10.24963/ijcai.2022/756. 277

[8] Kenneth J. Arrow and Gerard Debreu. Existence of an equilibrium for a
competitive economy. Econometrica, 22(3):265–290, 1954. doi: 10.2307/
1907353. 3, 29, 34, 35, 37, 76, 77, 79, 80, 88, 91, 103, 111, 176

[9] Robert J Aumann. Subjectivity and correlation in randomized strategies. Jour-
nal of mathematical Economics, 1(1):67–96, 1974. 100, 142

291

https://doi.org/10.1137/070697926
https://doi.org/10.1137/070697926


292 Bibliography

[10] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake
cutting protocol for any number of agents. In Proceedings of the 57th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 416–427,
2016. doi: 10.1109/focs.2016.52. 274

[11] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake
cutting protocol for any number of agents. In Proceedings of the 57th Sympo-
sium on Foundations of Computer Science (FOCS), pages 416–427, 2016. doi:
10.1109/FOCS.2016.52. 36, 37

[12] Haris Aziz, Bo Li, Herve Moulin, and Xiaowei Wu. Algorithmic fair allocation
of indivisible items: A survey and new questions. arXiv:2202.08713, 2022.
277

[13] Moshe Babaioff, Robert Kleinberg, and Christos H Papadimitriou. Congestion
games with malicious players. Games and Economic Behavior, 1(67):22–35,
2009. 103, 149, 150, 155, 156

[14] Moshe Babaioff, Tomer Ezra, and Uriel Feige. Fair and truthful mechanisms
for dichotomous valuations. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI), pages 5119–5126, 2021. URL https://ojs.
aaai.org/index.php/AAAI/article/view/16647. 276

[15] Santiago Balseiro, Yuan Deng, Jieming Mao, Vahab Mirrokni, and Song Zuo.
Robust auction design in the auto-bidding world. Advances in Neural Informa-
tion Processing Systems, 34:17777–17788, 2021. 106

[16] Santiago Balseiro, Anthony Kim, Mohammad Mahdian, and Vahab Mirrokni.
Budget-management strategies in repeated auctions. Operations research, 69
(3):859–876, 2021. doi: 10.1287/opre.2020.2073.

[17] Santiago R Balseiro and Yonatan Gur. Learning in repeated auctions with
budgets: Regret minimization and equilibrium. Management Science, 65(9):
3952–3968, 2019.

[18] Santiago R Balseiro, Yuan Deng, Jieming Mao, Vahab S Mirrokni, and Song
Zuo. The landscape of auto-bidding auctions: Value versus utility maximization.
In Proceedings of the 22nd ACM Conference on Economics and Computation,
pages 132–133, 2021. 106

[19] R. B. Bapat. A constructive proof of a permutation-based generalization of
Sperner’s lemma. Mathematical Programming, 44(1):113–120, 1989. doi:
10.1007/BF01587081. 34, 68, 70, 75

[20] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding
fair and efficient allocations. In Proceedings of the 19th ACM Conference
on Economics and Computation (EC), pages 557–574, 2018. doi: 10.1145/
3219166.3219176. 277

https://ojs.aaai.org/index.php/AAAI/article/view/16647
https://ojs.aaai.org/index.php/AAAI/article/view/16647


Bibliography 293

[21] S. Basu, R. Pollack, and M. Roy. Algorithms in Real Algebraic Geome-
try. Springer, updated online version of second edition (2008) edition, 2016.
https://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted3.html. 253,
254

[22] Eleni Batziou, Kristoffer Arnsfelt Hansen, and Kasper Høgh. Strong Approx-
imate Consensus Halving and the Borsuk-Ulam Theorem. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021), volume 198 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–24:20,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik. ISBN 978-3-95977-195-5. doi: 10.4230/LIPIcs.ICALP.2021.24. URL
https://drops.dagstuhl.de/opus/volltexte/2021/14093. 4, 15

[23] Eleni Batziou, Kristoffer Arnsfelt Hansen, and Kasper Høgh. Strong approxi-
mate Consensus Halving and the Borsuk-Ulam theorem. In Proceedings of the
48th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 24:1–24:20, 2021. doi: 10.4230/LIPIcs.ICALP.2021.24. 20, 38

[24] Xiaohui Bei, Ning Chen, Xia Hua, Biaoshuai Tao, and Endong Yang. Optimal
proportional cake cutting with connected pieces. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 26(1), pages 1263–1269, 2012.
107, 227

[25] Claude Berge. Topological Spaces: including a treatment of multi-valued
functions, vector spaces, and convexity. Courier Corporation, 1997. 39

[26] Ben Berger, Avi Cohen, Michal Feldman, and Amos Fiat. Almost full EFX
exists for four agents. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI), pages 4826–4833, 2022. doi: 10.1609/aaai.v36i5.20410.
276

[27] Marie Louisa Tølbøll Berthelsen and Kristoffer Arnsfelt Hansen. On the compu-
tational complexity of decision problems about multi-player Nash equilibria. In
Dimitris Fotakis and Evangelos Markakis, editors, SAGT 2019, volume 11801
of Lecture Notes in Computer Science, pages 153–167. Springer, 2019. doi:
10.1007/978-3-030-30473-7_11. 248

[28] Vittorio Bilò and Marios Mavronicolas. A catalog of ∃R-complete decision
problems about Nash equilibria in multi-player games. In Nicolas Ollinger and
Heribert Vollmer, editors, STACS 2016, volume 47 of LIPIcs, pages 17:1–17:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi: 10.4230/LIPIcs.
STACS.2016.17.

[29] Vittorio Biló and Marios Mavronicolas. ∃R-complete decision problems about
symmetric Nash equilibria in symmetric multi-player games. In Heribert
Vollmer and Brigitte Vallé, editors, STACS 2017, volume 66 of LIPIcs, pages

https://drops.dagstuhl.de/opus/volltexte/2021/14093


294 Bibliography

13:1–13:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017. ISBN
978-3-95977-028-6. doi: 10.4230/LIPIcs.STACS.2017.13. 248

[30] Lenore Blum, M. Schub, and Steve Smale. On a theory of computation
and complexity over the real numbers: NP-completeness, recursive functions
and universal machines. Bull. Amer. Math. Soc., 21:1–46, 07 1989. doi:
10.1090/S0273-0979-1989-15750-9. 247

[31] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic
Geometry. Springer, 1998. doi: 10.1007/978-3-662-03718-8. 73

[32] Anna Bogomolnaia and Hervé Moulin. A new solution to the random as-
signment problem. Journal of Economic Theory, 100(2):295–328, 2001. doi:
10.1006/jeth.2000.2710. 35, 84

[33] Christian Borgs, Jennifer Chayes, Nicole Immorlica, Kamal Jain, Omid Ete-
sami, and Mohammad Mahdian. Dynamics of bid optimization in online
advertisement auctions. In Proceedings of the 16th international conference on
World Wide Web, pages 531–540, 2007. 106, 212

[34] Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Funda-
menta Mathematicae, 20:177–190, 1933. doi: 10.4064/fm-20-1-177-190. 3,
15, 38

[35] Karol Borsuk. Drei sätze über die n-dimensionale euklidische sphäre. Funda-
menta Mathematicae, 20(1):177–190, 1933. doi: 10.4064/fm-20-1-177-190.
238

[36] Sylvain Bouveret and Jérôme Lang. Efficiency and envy-freeness in fair division
of indivisible goods: Logical representation and complexity. 32(1):525–564,
jun 2008. ISSN 1076-9757. 21

[37] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2014. 127, 150

[38] Steven J. Brams and Alan D. Taylor. Fair Division: From cake-cutting to
dispute resolution. Cambridge University Press, 1996. 30, 33, 36, 66, 67, 107,
226

[39] L. E. J. Brouwer. Über abbildung von mannigfaltigkeiten. Mathematische
Annalen, 71:97–115, 1911. doi: 10.1007/BF01456931. 3, 10, 30, 38, 93, 144,
226, 238

[40] Eric Budish. The combinatorial assignment problem: Approximate competitive
equilibrium from equal incomes. Journal of Political Economy, 119(6):1061–
1103, 2011. doi: 10.1086/664613. 21, 276



Bibliography 295

[41] John Canny. Some algebraic and geometric computations in PSPACE. In
STOC, pages 460–467. ACM, 01 1988. doi: 10.1145/62212.62257. 248

[42] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any
item with high Nash welfare: The virtue of donating items. In Proceedings
of the 20th ACM Conference on Economics and Computation (EC), pages
527–545, 2019. doi: 10.1145/3328526.3329574. 276

[43] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia,
Nisarg Shah, and Junxing Wang. The unreasonable fairness of maximum Nash
welfare. ACM Transactions on Economics and Computation, 7(3):12:1–12:32,
2019. doi: 10.1145/3355902. 22, 274, 278

[44] Ioannis Caragiannis, Kristoffer Arnsfelt Hansen, and Nidhi Rathi. On the
Complexity of Pareto-Optimal and Envy-Free Allocation Lotteries, 2023.
Manuscript in preparation. 109, 225

[45] Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. EFX exists for
three agents. In Proceedings of the 21st ACM Conference on Economics and
Computation (EC), pages 1–19, 2020. doi: 10.1145/3391403.3399511. 25, 274

[46] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, and Pran-
abendu Misra. Improving EFX guarantees through rainbow cycle number. In
Proceedings of the 22nd ACM Conference on Economics and Computation
(EC), pages 310–311, 2021. doi: 10.1145/3465456.3467605. 276

[47] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini
Sgouritsa. A little charity guarantees almost envy-freeness. SIAM Journal on
Computing, 50(4):1336–1358, 2021. doi: 10.1137/20m1359134. 276

[48] Bhaskar Ray Chaudhury, Jugal Garg, Peter McGlaughlin, and Ruta Mehta. A
complementary pivot algorithm for competitive allocation of a mixed manna.
Mathematics of Operations Research, 2022. 169, 236

[49] Thomas Chen, Xi Chen, Binghui Peng, and Mihalis Yannakakis. Computational
hardness of the Hylland-Zeckhauser scheme. In Proceedings of the 33rd ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2253–2268, 2022.
doi: 10.1137/1.9781611977073.90. 88

[50] Thomas Chen, Xi Chen, Binghui Peng, and Mihalis Yannakakis. Computational
hardness of the Hylland-Zeckhauser scheme. In Proceedings of the 2022 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2253–2268.
SIAM, 2022. 137

[51] Xi Chen and Xiaotie Deng. Settling the complexity of two-player Nash equi-
librium. In FOCS 2006, pages 261–272. IEEE Computer Society Press, 2006.
243



296 Bibliography

[52] Xi Chen and Xiaotie Deng. On the complexity of 2d discrete fixed point prob-
lem. Theoretical Computer Science, 410(44):4448–4456, 2009. ISSN 0304-
3975. doi: https://doi.org/10.1016/j.tcs.2009.07.052. URL https://www.
sciencedirect.com/science/article/pii/S030439750900499X. Au-
tomata, Languages and Programming (ICALP 2006). 10

[53] Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. Settling the complexity
of Arrow-Debreu equilibria in markets with additively separable utilities. In
Proceedings of the 50th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 273–282, 2009. doi: 10.1109/FOCS.2009.29. 10, 37

[54] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of
computing two-player Nash equilibria. Journal of the ACM, 56(3):14:1–14:57,
2009. doi: 10.1145/1516512.1516516. 30, 36

[55] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of
computing two-player Nash equilibria. Journal of the ACM (JACM), 56(3):
1–57, 2009. 10, 92, 106, 135

[56] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-
monotone markets. Journal of the ACM, 64(3):20:1–20:56, 2017. doi: 10.1145/
3064810. 10, 30, 35, 37, 79, 80, 92

[57] Xi Chen, Christian Kroer, and Rachitesh Kumar. The complexity of pacing
for second-price auctions. In Proceedings of the 22nd ACM Conference on
Economics and Computation, pages 318–318, 2021. 92, 97, 98, 106, 212, 213,
214, 215, 216

[58] Xi Chen, Christian Kroer, and Rachitesh Kumar. Throttling equilibria in auction
markets. In WINE, 2021. URL https://arxiv.org/abs/2107.10923. 137

[59] Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. The
complexity of equilibria: Hardness results for economies via a correspondence
with games. Theoretical Computer Science, 408(2–3):188–198, 2008. doi:
10.1016/j.tcs.2008.08.007. 10, 37

[60] Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V
Vazirani, and Sadra Yazdanbod. Convex program duality, Fisher markets, and
Nash social welfare. In Proceedings of the 2017 ACM Conference on Economics
and Computation, pages 459–460, 2017. 212

[61] Vincent Conitzer, Christian Kroer, Debmalya Panigrahi, Okke Schrijvers, Nico-
las E Stier-Moses, Eric Sodomka, and Christopher A Wilkens. Pacing equilib-
rium in first price auction markets. Management Science, 68(12):8515–8535,
2022. 106, 212, 213, 216

https://www.sciencedirect.com/science/article/pii/S030439750900499X
https://www.sciencedirect.com/science/article/pii/S030439750900499X
https://arxiv.org/abs/2107.10923


Bibliography 297

[62] Vincent Conitzer, Christian Kroer, Eric Sodomka, and Nicolas E Stier-Moses.
Multiplicative pacing equilibria in auction markets. Operations Research, 70
(2):963–989, 2022. 106, 107, 212, 213, 214, 215, 216, 221

[63] Richard W Cottle, Jong-Shi Pang, and Richard E Stone. The linear comple-
mentarity problem. SIAM, 2009. 96, 135

[64] RW Cottle and GB Dantzig. Complementarity pivot theory of mathematical
programming, linear algeb. In Appl, volume 1, pages 163–185, 1968. 96, 98,
99, 135

[65] Partha Sarathi Dasgupta and Eric S Maskin. Debreu’s social equilibrium
existence theorem. Proceedings of the National Academy of Sciences, 112(52):
15769–15770, 2015. 101, 140

[66] Constantinos Daskalakis, Alex Fabrikant, and Christos H Papadimitriou. The
game world is flat: The complexity of nash equilibria in succinct games. In
ICALP (1), pages 513–524, 2006. 100, 142

[67] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou.
The complexity of computing a Nash equilibrium. SIAM Journal on Computing,
39(1):195–259, 2009. 10, 15, 30, 36, 92, 243

[68] Gerard Debreu. A social equilibrium existence theorem. Proceedings of the
National Academy of Sciences, 38(10):886–893, 1952. doi: 10.1073/pnas.38.
10.886. 3, 37, 79, 100, 101, 102, 103, 107, 139, 140, 144, 145, 146, 150, 151,
154, 156, 215, 221

[69] Argyrios Deligkas, John Fearnley, and Rahul Savani. Inapproximability results
for approximate Nash equilibria. In Proceedings of the 12th International
Conference on Web and Internet Economics (WINE), pages 29–43, 2016. doi:
10.1007/978-3-662-54110-4_3. 36

[70] Argyrios Deligkas, John Fearnley, Rahul Savani, and Paul Spirakis. Computing
approximate Nash equilibria in polymatrix games. Algorithmica, 77:487–514,
2017. doi: 10.1007/s00453-015-0078-7. 36

[71] Argyrios Deligkas, John Fearnley, Themistoklis Melissourgos, and Paul G.
Spirakis. Computing exact solutions of consensus halving and the Borsuk-
Ulam theorem. In ICALP, volume 132 of LIPIcs, pages 138:1–138:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi: 10.4230/LIPIcs.ICALP.
2019.138. 16, 17, 252

[72] Argyrios Deligkas, John Fearnley, Themistoklis Melissourgos, and Paul G.
Spirakis. Computing exact solutions of consensus halving and the Borsuk-
Ulam theorem. Journal of Computer and System Sciences, 117:75–98, 2021.
doi: https://doi.org/10.1016/j.jcss.2020.10.006. 20, 239, 240, 241, 244, 245,
252, 255, 257



298 Bibliography

[73] Argyrios Deligkas, John Fearnley, Themistoklis Melissourgos, and Paul G.
Spirakis. Computing exact solutions of consensus halving and the Borsuk-
Ulam theorem. Journal of Computer and System Sciences, 117:75–98, 2021.
doi: 10.1016/j.jcss.2020.10.006. 112

[74] Argyrios Deligkas, John Fearnley, Themistoklis Melissourgos, and Paul G.
Spirakis. Computing exact solutions of consensus halving and the Borsuk-
Ulam theorem. J. Comput. Syst. Sci., 117:75–98, 2021. doi: 10.1016/j.jcss.
2020.10.006. 38

[75] Argyrios Deligkas, John Fearnley, and Themistoklis Melissourgos. Pizza
sharing is ppa-hard. In Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,
2022, pages 4957–4965. AAAI Press, 2022. URL https://ojs.aaai.org/
index.php/AAAI/article/view/20426. 20

[76] Xiaotie Deng, Qi Qi, and Amin Saberi. Algorithmic solutions for envy-free
cake cutting. Operations Research, 60(6):1461–1476, 2012. doi: 10.1287/opre.
1120.1116. 10, 30, 33, 36, 67, 108, 225, 227

[77] Nikhil R. Devanur, Christos H. Papadimitriou, Amin Saberi, and Vijay V.
Vazirani. Market equilibrium via a primal-dual algorithm for a convex program.
Journal of the ACM, 55(5):22:1–22:18, 2008. doi: 10.1145/1411509.1411512.
37

[78] Ran Duan and Kurt Mehlhorn. A combinatorial polynomial algorithm for the
linear Arrow-Debreu market. Information and Computation, 243:112–132,
2015. doi: 10.1016/j.ic.2014.12.009.

[79] Ran Duan, Jugal Garg, and Kurt Mehlhorn. An improved combinatorial
polynomial algorithm for the linear Arrow-Debreu market. In Proceedings
of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
90–106, 2016. doi: 10.1137/1.9781611974331.ch7. 37

[80] B Curtis Eaves. A finite algorithm for the linear exchange model. Journal of
Mathematical Economics, 3(2):197–203, 1976. 92, 96, 98, 103, 104, 105, 164,
165, 167, 169, 176

[81] Federico Echenique, Antonio Miralles, and Jun Zhang. Constrained pseudo-
market equilibrium. American Economic Review, 111(11):3699–3732, 2021.
doi: 10.1257/aer.20201769. 88

[82] Jack Edmonds. Matroids and the greedy algorithm. Mathematical Program-
ming, 1(1):127–136, 1971. doi: 10.1007/bf01584082. 279

https://ojs.aaai.org/index.php/AAAI/article/view/20426
https://ojs.aaai.org/index.php/AAAI/article/view/20426


Bibliography 299

[83] Kousha Etessami. The complexity of computing a (quasi-)perfect equilibrium
for an n-player extensive form game. Games and Economic Behavior, 2020.
doi: 10.1016/j.geb.2019.03.006. In Press, Journal Pre-proof. 253

[84] Kousha Etessami. The complexity of computing a (quasi-)perfect equilibrium
for an n-player extensive form game. Games and Economic Behavior, 125:
107–140, 2021. doi: 10.1016/j.geb.2019.03.006. 32, 37, 60

[85] Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria
and other fixed points. SIAM J. Comput., 39(6):2531–2597, 2010. 5, 12, 30,
32, 33, 34, 36, 37, 40, 41, 58, 59, 60, 64, 71, 79, 238, 239, 242, 249, 250, 251,
255, 257

[86] Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria
and other fixed points. SIAM Journal on Computing, 39(6):2531–2597, 2010.
11, 92, 93, 97, 106, 109, 112, 113, 114, 135, 215, 222

[87] Kousha Etessami, Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and
Troels Bjerre Sørensen. The complexity of approximating a trembling hand
perfect equilibrium of a multi-player game in strategic form. In Proceedings of
the 7th International Symposium on Algorithmic Game Theory (SAGT), pages
231–243, 2014. doi: 10.1007/978-3-662-44803-8_20. 37, 60

[88] Kousha Etessami, Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and
Troels Bjerre Sørensen. The complexity of approximating a trembling hand
perfect equilibrium of a multi-player game in strategic form. In Ron Lavi,
editor, SAGT 2014, volume 8768 of LNCS, pages 231–243. Springer, 2014. doi:
10.1007/978-3-662-44803-8_20. 253

[89] Kousha Etessami, Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and
Troels Bjerre Sørensen. The complexity of approximating a trembling hand per-
fect equilibrium of a multi-player game in strategic form. In Algorithmic Game
Theory: 7th International Symposium, SAGT 2014, Haifa, Israel, September
30–October 2, 2014. Proceedings 7, pages 231–243. Springer, 2014. 149

[90] Ky Fan. Fixed-point and minimax theorems in locally convex topological linear
spaces. Proceedings of the National Academy of Sciences, 38(2):121–126,
1952. doi: 10.1073/pnas.38.2.121. 65

[91] Ky Fan. Fixed-point and minimax theorems in locally convex topological linear
spaces. Proceedings of the National Academy of Sciences, 38(2):121–126,
1952. 100, 102, 107, 140, 144, 145, 146, 150, 151, 154, 156, 215, 221

[92] John Fearnley, Paul Goldberg, Alexandros Hollender, and Rahul Savani. The
complexity of gradient descent: CLS = PPAD ∩ PLS. Journal of the ACM, 70
(1):1–74, 2022. doi: 10.1145/3568163. 112



300 Bibliography

[93] John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani.
The Complexity of Computing KKT Solutions of Quadratic Programs, 2023.
Personal communication. 127

[94] Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is PPA-complete.
In STOC, pages 51–64. ACM, 2018. doi: 10.1145/3188745.3188880. 16, 243

[95] Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting neck-
laces and bisecting ham sandwiches. In STOC, pages 638–649. ACM, 2019.
doi: 10.1145/3313276.3316334. 16, 20, 243, 244

[96] Aris Filos-Ratsikas, Kristoffer A. Hansen, Kasper Høgh, and Alexandros Hol-
lender. Ppad-membership for problems with exact rational solutions: A general
approach via convex optimization. Manuscript. 10

[97] Aris Filos-Ratsikas, Kristoffer A. Hansen, Kasper Høgh, and Alexandros Hol-
lender. Fixp-membership via convex optimization: Games, cakes, and mar-
kets. SIAM Journal on Computing, 0(0):FOCS21–30–FOCS21–84, 0. doi:
10.1137/22M1472656. URL https://doi.org/10.1137/22M1472656. 4,
10

[98] Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen, Paul W. Goldberg, and
Jie Zhang. Hardness results for consensus-halving. In MFCS, volume 117 of
LIPIcs, pages 24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. doi: 10.4230/LIPIcs.MFCS.2018.24. 16, 244

[99] Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis
Zampetakis. Consensus-halving: Does it ever get easier? In EC, pages
381–399. ACM, 2020. doi: 10.1145/3391403.3399527. 18, 244, 245, 265

[100] Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Philip
Lazos, and Diogo Poças. On the complexity of equilibrium computation in
first-price auctions. In Proceedings of the 22nd ACM Conference on Economics
and Computation (EC), pages 454–476, 2021. doi: 10.1145/3465456.3467627.
37

[101] Aris Filos-Ratsikas, Kristoffer Arnsfelt Hansen, Kasper Høgh, and Alexandros
Hollender. FIXP-membership via convex optimization: Games, cakes, and
markets. SIAM J. Comput., Special Section FOCS 2021, 2023. doi: 10.1137/
22M1472656. 93, 101, 107, 108, 109, 110, 112, 113, 114, 140, 149, 157, 161,
163, 212, 222, 223, 225, 227, 228, 229, 230, 235, 236

[102] A. M. Fink. Equilibrium in a stochastic n-person game. J. Sci. Hiroshima Univ.
Ser. A-I Math., 28(1):89–93, 1964. doi: 10.32917/hmj/1206139508. 32, 64, 65

[103] Duncan K. Foley. Resource Allocation and the Public Sector. PhD thesis, Yale
University, 1966. 274

https://doi.org/10.1137/22M1472656


Bibliography 301

[104] Duncan Karl Foley. Resource allocation and the public sector. Yale University,
1966. 85

[105] D. Gale. Equilibrium in a discrete exchange economy with money. Interna-
tional Journal of Game Theory, 13:61–64, 1984. doi: 10.1007/BF01769865.
34, 68, 74, 75

[106] David Gale. The law of supply and demand. Mathematica Scandinavica, 3:
155–169, 1955. doi: 10.7146/math.scand.a-10436. 72, 74

[107] David Gale. Optimal assignments in an ordered set: An application of matroid
theory. Journal of Combinatorial Theory, 4(2):176–180, 1968. doi: 10.1016/
s0021-9800(68)80039-0. 279

[108] George Gamow and Marvin Stern. Puzzle-math. Viking Press, 1958. 33, 36,
66, 107, 225, 274

[109] Martin Gardner. aha! Insight. Scientific American, Inc./W. H. Freeman and
Company, 1978. 225

[110] Jugal Garg. Market equilibrium under piecewise Leontief concave utilities.
Theoretical Computer Science, 703:55–65, 2017. 92

[111] Jugal Garg and Aniket Murhekar. Computing fair and efficient allocations
with few utility values. In Ioannis Caragiannis and Kristoffer Arnsfelt Hansen,
editors, Algorithmic Game Theory, pages 345–359, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-85947-3. 25

[112] Jugal Garg and Vijay V. Vazirani. On computability of equilibria in markets
with production. In SODA, pages 1329–1340. SIAM, 2014. 92, 96, 98, 104,
163, 164, 169, 175, 176, 177, 178, 179, 192, 203, 206, 207

[113] Jugal Garg and Vijay V. Vazirani. On computability of equilibria in markets
with production. Proceedings of the 25th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1329–1340, 2014. doi: 10.1137/1.9781611973402.
98. 37

[114] Jugal Garg and László A. Végh. A strongly polynomial algorithm for linear
exchange markets. In Proceedings of the 51st ACM Symposium on Theory of
Computing (STOC), pages 54–65, 2019. doi: 10.1145/3313276.3316340. 37

[115] Jugal Garg, Albert Xin Jiang, and Ruta Mehta. Bilinear games: Polynomial
time algorithms for rank based subclasses. In Internet and Network Economics:
7th International Workshop, WINE 2011, Singapore, December 11-14, 2011.
Proceedings 7, pages 399–407. Springer, 2011. 100, 144



302 Bibliography

[116] Jugal Garg, Ruta Mehta, Milind Sohoni, and Vijay V. Vazirani. A complemen-
tary pivot algorithm for market equilibrium under separable, piecewise-linear
concave utilities. SIAM Journal on Computing, 44(6):1820–1847, 2015. 37,
98, 104, 163, 164, 203

[117] Jugal Garg, Ruta Mehta, and Vijay V. Vazirani. Dichotomies in equilibrium
computation and membership of PLC markets in FIXP. Theory of Computing,
12(20):1–25, 2016. doi: 10.4086/toc.2016.v012a020. 34, 35, 37, 75, 79, 80, 81

[118] Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. Settling the
complexity of Leontief and PLC exchange markets under exact and approximate
equilibria. In Proceedings of the 49th ACM Symposium on Theory of Computing
(STOC), pages 890–901, 2017. doi: 10.1145/3055399.3055474. 10, 30, 37, 88

[119] Jugal Garg, Ruta Mehta, and Vijay V Vazirani. Substitution with satiation: A
new class of utility functions and a complementary pivot algorithm. Mathemat-
ics of Operations Research, 43(3):996–1024, 2018. 10, 92, 96, 98, 104, 163,
164, 165, 169, 177, 187, 188, 189, 192, 193

[120] Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. ∃R-
completeness for decision versions of multi-player (symmetric) Nash equi-
libria. ACM Trans. Econ. Comput., 6(1):1:1–1:23, 2018. ISSN 2167-8375. doi:
10.1145/3175494. 248

[121] Rahul Garg, Sanjiv Kapoor, and Vijay Vazirani. An auction-based market equi-
librium algorithm for the separable gross substitutability case. In Proceedings
of the 7th International Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems (APPROX) and 8th International Workshop
on Randomization and Computation (RANDOM), pages 128–138, 2004. doi:
10.1007/978-3-540-27821-4_12. 37

[122] John Geanakoplos. Nash and Walras equilibrium via Brouwer. Economic
Theory, 21:585–603, 2003. doi: 10.1007/s001990000076. 37, 79

[123] I. L. Glicksberg. A further generalization of the Kakutani fixed point theorem,
with application to Nash equilibrium points. Proceedings of the American
Mathematical Society, 3(1):170–174, 1952. doi: 10.2307/2032478. 65

[124] Irving L Glicksberg. A further generalization of the Kakutani fixed theorem,
with application to nash equilibrium points. Proceedings of the American
Mathematical Society, 3(1):170–174, 1952. 100, 102, 107, 140, 144, 145, 146,
150, 151, 154, 156, 215, 221

[125] Michel X Goemans. Smallest compact formulation for the permutahedron.
Mathematical Programming, 153(1):5–11, 2015. 102, 147



Bibliography 303

[126] Paul Goldberg, Alexandros Hollender, and Warut Suksompong. Contiguous
cake cutting: Hardness results and approximation algorithms. Journal of
Artificial Intelligence Research, 69:109–141, 2020. 98, 107, 108, 227

[127] Paul W. Goldberg. A survey of PPAD-completeness for computing Nash
equilibria. In Robin Chapman, editor, Surveys in Combinatorics 2011, London
Mathematical Society Lecture Note Series, pages 51–82. Cambridge University
Press, 2011. doi: 10.1017/CBO9781139004114.003. 30

[128] Paul W. Goldberg and Alexandros Hollender. The Hairy Ball problem is PPAD-
complete. Journal of Computer and System Sciences, 122:34–62, 2021. doi:
10.1016/j.jcss.2021.05.004. 38

[129] Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified complexity
theory of total functions. Journal of Computer and System Sciences, 94:167 –
192, 2018. doi: 10.1016/j.jcss.2017.12.003. 250

[130] Paul W. Goldberg, Kasper Høgh, and Alexandros Hollender. The frontier of
intractability for efx with two agents, 2023. 4, 20

[131] Laurent Gourvès, Jérôme Monnot, and Lydia Tlilane. Near fairness in matroids.
In Proceedings of the 21st European Conference on Artificial Intelligence
(ECAI), pages 393–398, 2014. doi: 10.3233/978-1-61499-419-0-393. 22, 274,
278

[132] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algo-
rithms and Combinatorial Optimization, volume 2 of Algorithms and Combi-
natorics. Springer, 1988. 238

[133] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross
substitutes. Journal of Economic Theory, 87(1):95–124, 1999. URL
https://EconPapers.repec.org/RePEc:eee:jetheo:v:87:y:1999:
i:1:p:95-124. 21, 277

[134] P. Hall. On representatives of subsets. Journal of the London Mathematical
Society, s1-10(1):26–30, 1935. doi: 10.1112/jlms/s1-10.37.26. 15, 69, 229

[135] Kristoffer Arnsfelt Hansen and Troels Bjerre Lund. Computational com-
plexity of proper equilibrium. In Proceedings of the 2018 ACM Confer-
ence on Economics and Computation (EC), pages 113–130, 2018. doi:
10.1145/3219166.3219199. 32, 36, 60, 61

[136] Kristoffer Arnsfelt Hansen and Troels Bjerre Lund. Computational complexity
of proper equilibrium. In EC 2018, pages 113–130, New York, NY, USA, 2018.
ACM. doi: 10.1145/3219166.3219199. 253

https://EconPapers.repec.org/RePEc:eee:jetheo:v:87:y:1999:i:1:p:95-124
https://EconPapers.repec.org/RePEc:eee:jetheo:v:87:y:1999:i:1:p:95-124


304 Bibliography

[137] Kristoffer Arnsfelt Hansen and Troels Bjerre Lund. Computational complex-
ity of proper equilibrium. In Proceedings of the 2018 ACM Conference on
Economics and Computation, pages 113–130, 2018. 92, 96, 98, 102, 148, 149

[138] Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and Troels Bjerre Sørensen.
The computational complexity of trembling hand perfection and other equilib-
rium refinements. In Proceedings of the 3rd International Symposium on
Algorithmic Game Theory (SAGT), pages 198–209, 2010. doi: 10.1007/
978-3-642-16170-4_18. 36

[139] Kristoffer Arnsfelt Hansen, Michal Koucky, Niels Lauritzen, Peter Bro Mil-
tersen, and Elias P. Tsigaridas. Exact algorithms for solving stochastic games.
In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC),
pages 205–214, 2011. doi: 10.1145/1993636.1993665. 36

[140] Yinghua He, Antonio Miralles, Marek Pycia, and Jianye Yan. A pseudo-
market approach to allocation with priorities. American Economic Journal:
Microeconomics, 10(3):272–314, 2018. doi: 10.1257/mic.20150259. 88

[141] Joseph T Howson Jr. Equilibria of polymatrix games. Management Science,
18(5-part-1):312–318, 1972. 92, 96, 98, 100, 141

[142] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals
to positions. Journal of Political Economy, 87(2):293–314, 1979. doi: 10.1086/
260757. 34, 35, 75, 84, 85, 88

[143] Kamal Jain. A polynomial time algorithm for computing an arrow–debreu
market equilibrium for linear utilities. SIAM Journal on Computing, 37(1):
303–318, 2007. 37

[144] Kamal Jain, Mohammad Mahdian, and Amin Saberi. Approximating market
equilibria. In Proceedings of the 6th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX) and 7th In-
ternational Workshop on Randomization and Computation (RANDOM), pages
98–108, 2003. doi: 10.1007/978-3-540-45198-3_9. 37

[145] Elena Janovskaja. Equilibrium points in polymatrix games. Lithuanian Mathe-
matical Journal, 8(2):381–384, 1968. 100, 141

[146] Fritz John. Extremum problems with inequalities as subsidiary conditions. In
Studies and Essays, Courant Anniversary Volume, pages 187–204, 1948. 54

[147] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How
easy is local search? Journal of Computer and System Sciences, 37(1):79–100,
1988. doi: 10.1016/0022-0000(88)90046-3. 10, 282, 283, 287



Bibliography 305

[148] David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. How
easy is local search? Journal of computer and system sciences, 37(1):79–100,
1988. 102, 150

[149] Shizuo Kakutani. A generalization of Brouwer’s fixed point theo-
rem. Duke Mathematical Journal, 8(3):457–459, 1941. doi: 10.1215/
S0012-7094-41-00838-4. 3, 11, 32, 38, 39, 93, 99, 135

[150] George Karakostas and Anastasios Viglas. Equilibria for networks with mali-
cious users. Mathematical Programming, 110(3):591–613, 2007. 150

[151] William Karush. Minima of functions of several variables with inequalities
as side conditions. Master’s thesis, University of Chicago, Department of
Mathematics, 1939. 54

[152] Alexander S. Kelso and Vincent P. Crawford. Job matching, coalition formation,
and gross substitutes. Econometrica, 50(6):1483–1504, 1982. ISSN 00129682,
14680262. URL http://www.jstor.org/stable/1913392. 21

[153] Shiva Kintali, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, and
Shang-Hua Teng. Reducibility among fractional stability problems. SIAM J.
Comput., 42(6):2063–2113, 2013. 92, 98, 101, 134, 145, 146

[154] Max Klimm and Maximilian J Stahlberg. Complexity of equilibria in binary
public goods games on undirected graphs. arXiv preprint arXiv:2301.11849,
2023. 136

[155] Max Klimm and Philipp Warode. Complexity and parametric computation of
equilibria in atomic splittable congestion games via weighted block Laplacians.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2728–2747. SIAM, 2020. 92, 96, 98, 102, 103, 150, 151,
162

[156] Bronisław Knaster, Casimir Kuratowski, and Stefan Mazurkiewicz. Ein Beweis
des Fixpunktsatzes für n-dimensionale Simplexe. Fundamenta Mathematicae,
14:132–137, 1929. doi: 10.4064/fm-14-1-132-137. 33, 34, 66, 68, 72, 74, 75,
226

[157] Daphne Koller, Nimrod Megiddo, and Bernhard Von Stengel. Efficient com-
putation of equilibria for extensive two-person games. Games and economic
behavior, 14(2):247–259, 1996. 98, 144

[158] Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In Proceedings
of the 2nd Berkeley Symposium on Mathematical Statistics and Probability,
pages 481–492, 1951. 54

http://www.jstor.org/stable/1913392


306 Bibliography

[159] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions
with decreasing marginal utilities. Games and Economic Behavior, 55(2):
270–296, 2006. doi: 10.1016/j.geb.2005.02.006. 22, 275, 276, 277

[160] Carlton E Lemke. Bimatrix equilibrium points and mathematical programming.
Management science, 11(7):681–689, 1965. 92, 96, 135, 147, 164

[161] Carlton E Lemke and Joseph T Howson, Jr. Equilibrium points of bimatrix
games. Journal of the Society for industrial and Applied Mathematics, 12(2):
413–423, 1964. 92, 96, 99, 135

[162] Juncheng Li and Pingzhong Tang. Auto-bidding equilibrium in ROI-constrained
online advertising markets. arXiv preprint arXiv:2210.06107, 2023. 106, 107,
212, 213, 219, 220, 221

[163] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi.
On approximately fair allocations of indivisible goods. In Proceedings of the
5th ACM Conference on Electronic Commerce (EC), pages 125–131, 2004. doi:
10.1145/988772.988792. 22, 275, 276

[164] Olvi L. Mangasarian and Stan Fromovitz. The Fritz John necessary optimality
conditions in the presence of equality and inequality constraints. Journal of
Mathematical Analysis and Applications, 17(1):37–47, 1967. doi: 10.1016/
0022-247X(67)90163-1. 54

[165] Pasin Manurangsi and Warut Suksompong. Closing gaps in asymptotic fair
division. SIAM Journal on Discrete Mathematics, 35(2):668–706, 2021. doi:
10.1137/20m1353381. 276

[166] Andreu Mas-Colell, Michael Dennis Whinston, and Jerry R. Green. Microeco-
nomic theory. Oxford University Press, 1995. 78

[167] Robert R Maxfield. General equilibrium and the theory of directed graphs.
Journal of Mathematical Economics, 27(1):23–51, 1997. 167, 176, 192, 206

[168] Lionel McKenzie. On equilibrium in Graham’s model of world trade and
other competitive systems. Econometrica, 22(2):147–161, 1954. doi: 10.2307/
1907539. 37

[169] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence
theorems and computational complexity. Theoretical Computer Science, 81(2):
317–324, 1991. doi: 10.1016/0304-3975(91)90200-L. 282

[170] Nimrod Megiddo and Christos H Papadimitriou. On total functions, existence
theorems and computational complexity. Theoretical Computer Science, 81(2):
317–324, 1991. 8, 92, 111



Bibliography 307

[171] Jean-François Mertens and Abraham Neyman. Stochastic games. International
Journal of Game Theory, 10(2):53–66, 1981. doi: 10.1007/BF01769259. 36

[172] Frédéric Meunier and Thomas Pradeau. Computing solutions of the multiclass
network equilibrium problem with affine cost functions. Annals of Operations
Research, 274:447–469, 2019. 92, 96, 98, 102, 103, 150, 151, 161

[173] Igal Milchtaich. Generic uniqueness of equilibrium in large crowding games.
Mathematics of Operations Research, 25(3):349–364, 2000. 102, 151

[174] Roger B. Myerson. Refinements of the Nash equilibrium concept. International
Journal of Game Theory, 7(2):73–80, 1978. doi: 10.1007/BF01753236. 32, 36,
58, 60, 61, 101, 134, 146, 148

[175] John Nash. Non-cooperative games. Annals of Mathematics, 2(54):286–295,
1951. doi: 10.2307/1969529. 3, 10, 15

[176] John Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295,
1951. doi: 10.2307/1969529. 35

[177] John F. Nash. Equilibrium points in n-person games. Proceedings of the
National Academy of Sciences, 36(1):48–49, 1950. doi: 10.1073/pnas.36.1.48.
11, 15, 29, 35, 41, 91, 99, 111, 135, 140

[178] Abraham Neyman and Sylvain Sorin, editors. Stochastic games and appli-
cations, volume 570 of NATO Science Series C: Mathematical and Physical
Sciences. Springer, 2003. doi: 10.1007/978-94-010-0189-2. 36

[179] Miquel Oliu-Barton. New algorithms for solving zero-sum stochastic games.
Mathematics of Operations Research, 46(1):255–267, 2021. doi: 10.1287/
moor.2020.1055. 36

[180] Renato Paes Leme. Gross substitutability: An algorithmic survey. Games and
Economic Behavior, 106:294–316, 2017. doi: 10.1016/j.geb.2017.10.016. 21,
279

[181] Christos Papadimitriou and Binghui Peng. Public goods games in directed
networks. In Proceedings of the 22nd ACM Conference on Economics and
Computation, pages 745–762, 2021. 100, 136, 137

[182] Christos H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. J. Comput. Syst. Sci, 48(3):498–532, 1994. 8,
10, 30, 35, 67, 92, 98, 99, 111, 135, 242, 250

[183] Christos H Papadimitriou and Tim Roughgarden. Computing correlated equi-
libria in multi-player games. Journal of the ACM (JACM), 55(3):1–29, 2008.
100, 142



308 Bibliography

[184] Christos H. Papadimitriou, Emmanouil-Vasileios Vlatakis-Gkaragkounis, and
Manolis Zampetakis. The computational complexity of multi-player concave
games and Kakutani fixed points. arXiv preprint arXiv:2207.07557, 2022. 101

[185] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general
valuations. SIAM Journal on Discrete Mathematics, 34(2):1039–1068, 2020.
doi: 10.1137/19m124397x. 22, 23, 24, 274, 275, 276, 283, 284, 286

[186] Henri Poincaré. Sur les courbes définies par les équations différentielles (III).
Journal de Mathématiques Pures et Appliquées, 4(1):167–244, 1885. 38

[187] Ariel D. Procaccia. Thou shalt covet thy neighbor’s cake. In Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI), pages
239–244, 2009. 37

[188] Ariel D. Procaccia. Cake cutting: Not just child’s play. Communications of the
ACM, 56(7):78–87, 2013. doi: 10.1145/2483852.2483870. 33, 66, 107, 226

[189] Richard Rado. Note on independence functions. Proceedings of the London
Mathematical Society, s3-7(1):300–320, 1957. doi: 10.1112/plms/s3-7.1.300.
279

[190] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you
can. CRC Press, 1998. 30, 33, 36, 66, 67, 107, 226

[191] Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.
51, 89

[192] J. B. Rosen. Existence and uniqueness of equilibrium points for concave n-
person games. Econometrica, 33(3):520–534, 1965. doi: 10.2307/1911749.
32, 58, 59, 60, 100, 139, 140, 144

[193] Robert W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory, 2(1):65–67, 1973. doi: 10.1007/
BF01737559. 149

[194] Aviad Rubinstein. Settling the complexity of computing approximate two-
player Nash equilibria. In Proceedings of the 57th Symposium on Foundations of
Computer Science (FOCS), pages 258–265, 2016. doi: 10.1109/FOCS.2016.35.
36

[195] Rahul Savani. Finding Nash equilibria of bimatrix games. PhD thesis, London
School of Economics and Political Science, 2006. 96

[196] Herbert Scarf. The approximation of fixed points of a continuous mapping.
SIAM Journal on Applied Mathematics, 15(5):1328–1343, 1967. doi: 10.1137/
0115116. 37



Bibliography 309

[197] Marcus Schaefer and Daniel Štefankovič. Fixed points, Nash equilibria, and
the existential theory of the reals. Theory Comput Syst, 60:172–193, 11 2017.
doi: 10.1007/s00224-015-9662-0. 248

[198] David Schmeidler. Equilibrium points of nonatomic games. Journal of statisti-
cal Physics, 7:295–300, 1973. 102, 151

[199] Reinhard Selten. Reexamination of the perfectness concept for equilibrium
points in extensive games. International Journal of Game Theory, 4:25–55,
1975. 60, 101, 146, 148

[200] Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy of
Sciences, 39(10):1095–1100, 1953. doi: 10.1073/pnas.39.10.1095. 32, 36, 59,
63, 64

[201] Forest W. Simmons and Francis Edward Su. Consensus-halving via theorems
of Borsuk-Ulam and Tucker. Math. Soc. Sci., 45(1):15–25, 2003. doi: 10.1016/
S0165-4896(02)00087-2. 15, 17, 241

[202] Morton Slater. Lagrange multipliers revisited. Cowles Commission Discussion
Paper: Mathematics 403, Cowles Foundation for Research in Economics,
Yale University, 1950. URL https://elischolar.library.yale.edu/
cowles-discussion-paper-series/304. 31, 49, 228

[203] Troels Bjerre Sørensen. Computing a proper equilibrium of a bimatrix game.
In Boi Faltings, Kevin Leyton-Brown, and Panos Ipeirotis, editors, ACM Con-
ference on Electronic Commerce, EC ’12, pages 916–928. ACM, 2012. 92, 96,
98, 102, 146, 147, 148, 149

[204] Emanuel Sperner. Neuer Beweis für die Invarianz der Dimensionszahl und des
Gebietes. Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg, 6:265–272, 1928. doi: 10.1007/BF02940617. 8, 33, 66, 97, 106,
108, 215, 225, 226

[205] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1):101–104,
1948. URL https://www.jstor.org/stable/1914289. 273

[206] Hugo Steinhaus. Sur la division pragmatique. Econometrica, 17:315–319,
1949. doi: 10.2307/1907319. 36

[207] Hugo Steinhaus. Sur la division pragmatique. Econometrica, 17(Suppl.):
315–319, 1949. doi: 10.2307/1907319. 273

[208] Hugo Steinhaus. Sur la division pragmatique. Econometrica: Journal of the
Econometric Society, pages 315–319, 1949. 107, 225

[209] Walter Stromquist. How to cut a cake fairly. The American Mathematical
Monthly, 87(8):640–644, 1980. doi: 10.1080/00029890.1980.11995109. 33,
36, 66, 91, 107

https://elischolar.library.yale.edu/cowles-discussion-paper-series/304
https://elischolar.library.yale.edu/cowles-discussion-paper-series/304
https://www.jstor.org/stable/1914289


310 Bibliography

[210] Walter Stromquist. How to cut a cake fairly. The American Mathematical
Monthly, 87(8):640–644, 1980. doi: 10.1080/00029890.1980.11995109. 274

[211] Francis Edward Su. Borsuk-Ulam implies Brouwer: A direct construction.
The American Mathematical Monthly, 104(9):855–859, 1997. doi: 10.2307/
2975293. 238

[212] Francis Edward Su. Rental harmony: Sperner’s lemma in fair division. The
American Mathematical Monthly, 106(10):930–942, 1999. doi: 10.1080/
00029890.1999.12005142. 30, 33, 36, 66, 107, 108, 225, 226, 231, 233

[213] Francis Edward Su. Rental harmony: Sperner’s lemma in fair division. The
American Mathematical Monthly, 106(10):930–942, 1999. doi: 10.1080/
00029890.1999.12005142. 274

[214] Masayuki Takahashi. Equilibrium points of stochastic non-cooperative n-
person games. Journal of Science of the Hiroshima University Series A-I
(Mathematics), 28(1):95–99, 1964. doi: 10.32917/hmj/1206139509. 32, 64, 65

[215] Sergey P. Tarasov and Mikhail N. Vyalyi. Semidefinite programming and
arithmetic circuit evaluation. Discrete Applied Mathematics, 156(11):2070 –
2078, 2008. ISSN 0166-218X. doi: 10.1016/j.dam.2007.04.023. 238

[216] Michael J Todd. Orientation in complementary pivot algorithms. Mathematics
of Operations Research, 1(1):54–66, 1976. 96

[217] Hirofumi Uzawa. Walras’ existence theorem and brouwer’s fixed-point theorem.
The Economic studies quarterly, 13:59–62, 1962.

[218] Hal R. Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9(1):
63–91, 1974. doi: 10.1016/0022-0531(74)90075-1. 274

[219] Hal R. Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9(1):
63–91, 1974. doi: 10.1016/0022-0531(74)90075-1. 85

[220] Vijay V Vazirani and Mihalis Yannakakis. Market equilibrium under separable,
piecewise-linear, concave utilities. Journal of the ACM (JACM), 58(3):1–25,
2011. 10, 37, 92, 93, 97, 98, 104, 163, 164, 167, 203

[221] Vijay V. Vazirani and Mihalis Yannakakis. Computational complexity of the
Hylland-Zeckhauser scheme for one-sided matching markets. In Proceedings
of 12th Innovations in Theoretical Computer Science Conference (ITCS), pages
59:1–59:19, 2021. doi: 10.4230/LIPIcs.ITCS.2021.59. 35, 75, 85

[222] Alexey Yu. Volovikov. Borsuk-Ulam implies Brouwer: A direct construction
revisited. Am. Math. Mon., 115(6):553–556, 2008. 238, 243, 258

[223] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische
Annalen, 100:295–320, 1928. doi: 10.1007/BF01448847. 35



Bibliography 311

[224] John von Neumann and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1944. 35

[225] Léon Walras. Éléments d’économie politique pure. L. Corbaz et Cie, 1874. 21,
37, 76

[226] J G Wardrop. Some theoretical aspects of road traffic research. Proceedings
of the Institution of Civil Engineers, 1(3):325–362, 1952. doi: 10.1680/ipeds.
1952.11259. 149, 153

[227] Gerhard J. Woeginger and Jiří Sgall. On the complexity of cake cutting.
Discrete Optimization, 4(2):213–220, 2007. doi: 10.1016/j.disopt.2006.07.003.
36

[228] Douglas R. Woodall. Dividing a cake fairly. Journal of Mathematical Analysis
and Applications, 78(1):233–247, 1980. doi: 10.1016/0022-247x(80)90225-5.
15, 274

[229] Douglas R. Woodall. Dividing a cake fairly. Journal of Mathematical Analysis
and Applications, 78(1):233–247, 1980. doi: 10.1016/0022-247X(80)90225-5.
34, 67, 107, 226

[230] Mihalis Yannakakis. Equilibria, fixed points, and complexity classes. Computer
Science Review, 3(2):71–85, 2009. doi: 10.1016/j.cosrev.2009.03.004. 29


	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Outline of Thesis

	Preliminaries
	Search Problems
	Fixed Point Computation
	Consensus Halving and Borsuk-Ulam
	Fair Division of Indivisible Items


	Publications
	FIXP-membership via Convex Optimization: Games, Cakes, and Markets
	Introduction
	Preliminaries
	The OPT-gate
	Applications to Game Theory
	Applications to Cake Cutting
	Applications to Markets
	Conclusion and Future Work

	PPAD-membership for Problems with Exact Rational Solutions: A General Approach via Convex Optimization
	Introduction
	Preliminaries
	A Powerful Tool for PPAD-membership: The linear-OPT-gate
	Concave Games, Nash Equilibria and Other Equilibrium Notions
	Congestion Games
	Competitive Equilibria in Arrow-Debreu Markets
	Pacing Equilibria in Auto-Bidding Auctions
	Fair Division
	Conclusion and Future Work

	Strong Approximate Consensus Halving and the Borsuk-Ulam Theorem
	Introduction
	Preliminaries
	Structural Properties of FIXP
	Definition and Structural Properties of BU and BBU
	Relation between p -BU and p -BBU
	Consensus Halving

	The Frontier of Intractability for EFX with Two Agents
	Introduction
	Preliminaries
	Polynomial-time Algorithm for Weakly Well-Layered Valuations
	PLS-completeness for Submodular Valuations

	Bibliography


