
Foundational Verification
of Cryptographic Primitives

Benjamin Salling Hvass

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Foundational Verification
of Cryptographic Primitives

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Benjamin Salling Hvass

December 31, 2022

Abstract

Cryptographic software is difficult to get right. Not only does cryptographic
protocols have complex specifications, but since the use of cryptography is
ubiquitous in modern software, implementations must also be heavily optimized
and programmed in low-level languages. Furthermore, the abstraction level at
which cryptographic pen-and-paper proofs are conducted, is usually very far
from the gritty implementation details.

For these reasons, applying mechanized reasoning tools to get formal
guarantees about cryptographic software has within the last decade become
increasingly popular. However, so far the focus has been primarily on the
most common cryptographic primitives and protocols, such as TLS, SHA-3,
Curve 25519, etc.

In this thesis, we explore how some of the tools developed so far can be
applied to pairing-based cryptography or elliptic curve cryptography in general.
We do this first by extending an existing tool with a finite field inversion
algorithm which is particularly desirable in the pairing-based case. Secondly,
we extend the same algorithm to additionally compute the Kronecker symbol
and benchmark its performance in hashing to elliptic curves. In both cases,
we provide an extensive analysis of the algorithms in the Coq Proof Assistant.

Lastly we formally connect the Jasmin language to the Coq framework
SSProve, allowing for end-to-end verification of efficient primitives implemented
using Jasmin. Connecting to Coq opens up for the opportunity to utilize
the existing mathematical libraries formalized in Coq in the verification of
cryptographic implementations; e.g. elliptic curves. We however leave this for
later work, but do exemplify the connection with an encryption scheme using
AES.

i

Resumé

Kryptografisk software er svært at implementere korrekt. Kryptografiske pro-
tokoller har komplekse specifikationer, og da kryptografi er overalt i moderne
software, så skal implementationer også være superoptimerede og program-
merede i maskinnære sprog. Desuden er abstraktionsniveauet for kryptografiske
beviser ofte langt fra konkrete implementationer.

Pga. disse udfordringer er det blevet mere og mere populært at anvende
automatiseret software til at få formelle garantier for sikkerheden af kryp-
tografiske implementationer. Indtil nu har fokus dog primært været på de
mest udbredte kryptografisk protokoller og primitiver, f.eks TLS, SHA-3 og
Curve25519.

I denne afhandling undersøger vi hvordan nogle af de hidtil udviklede værk-
tøjer kan finde anvendelse inden for “pairing”-baseret kryptografi eller elliptisk
kurve-kryptografi mere generelt. Vi gør dette ved at udvide et eksisterende
værktøj med en algoritme til invertering i endelige legemer, som er specielt
anvendelig i legemer anvendt til “pairing”-baseret kryptografi. Dernæst gener-
aliserer vi denne algoritme til også at beregne Kronecker-symbolet og tester en
implementation ved at anvende den til “hashing” til elliptiske kurver. I begge
tilfælde giver vi en omfattende analyse af algoritmerne i bevisassistenten Coq.

Til sidst forbinder vi programmeringssproget Jasmin med Coq-frameworket
SSProve. En sådan forbindelse giver mulighed for at verificerer implementa-
tioner fra abstrakt specifikation til effektiv implementation. Forbindelsen til
Coq åbner desuden op for muligheden for at anvende den enorme mængde
matematik der er formaliseret i bevisassistenten. F.eks. elliptiske kurver.
Vi efterlader dog dette til senere arbejde, men eksemplifiserer Jasmin-Coq-
forbindelsen med en krypteringsprotocol baseret på AES.

iii

Acknowledgments

First I would like to thank my advisors Diego de Freitas Aranha and Bas
Spitters. Working together with them have given me a unique perspective on
verified cryptography from two very different angles – the side of foundational
formalization and the side of aggressive optimization. Thanks to Diego for
teaching me the many details of cryptographic implementations and to Bas for
teaching me formal methods, in particular the Coq Proof Assistant. Thanks
to Peter Schwabe for hosting me at the MPI-SP in Bochum, I greatly enjoyed
my time in Germany.

I’d also like to thank all the people I have worked together with during my
PhD and earlier studies. In particular, many thanks to Philipp and Théo for
our collaboration during my stay in Bochum.

Special thanks to all my friends and family for keeping me sane for the last
three and a half years, I could not have done it without you. Getting beaten
at board games is the perfect distraction from research, so thanks to Emil and
Kim (and several others) for always being up for another round.

Finally a very sincere thank you to my partner Frederikke who is the
primary reason this dissertation ever got written. Thanks for the never-ending
support.

Benjamin Salling Hvass,
Aarhus, December 31, 2022.

v

Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

I Overview 1

1 Introduction 3
1.1 Verification in cryptography . 3
1.2 High-assurance cryptography 4
1.3 The Coq Proof Assistant . 6
1.4 Fiat Cryptography . 8
1.5 Jasmin . 9
1.6 Contents of this thesis . 9
1.7 Further development . 12

II Manuscripts 13

2 High-assurance inversion 15
2.1 Introduction . 16
2.2 The Fiat-Crypto Framework . 18
2.3 Bernstein-Yang inversion . 21
2.4 Verified and efficient field inversion in Fiat-Crypto 24
2.5 Formalization of Bernstein-Yang inversion 41
2.6 Connecting the formalization of BY-inversion and Fiat-Crypto 46
2.7 Related work . 48
2.8 Future work . 49
2.9 Acknowledgements . 50

vii

viii CONTENTS

3 Evaluation of the Kronecker symbol 51
3.1 Introduction . 52
3.2 Preliminaries . 54
3.3 Algorithms for Kronecker symbol 57
3.4 Implementation and experimental results 65
3.5 Conclusion . 71

4 Jasmin, SSProve and Hacspec 73
4.1 Introduction . 74
4.2 From specification to verified, efficient implementation 75
4.3 Background . 78
4.4 Hacspec & SSProve . 81
4.5 Jasmin & SSProve . 82
4.6 AES example . 88
4.7 Future work . 92
4.8 Related work . 92

Bibliography 95

Part I

Overview

1

Chapter 1

Introduction

In this chapter we give a brief review of the history and state-of-the-art of
high-assurance cryptography. We also give background details for some of the
tools used in Part II and lastly give an overview of the structure and contents
of Part II.

1.1 Verification in cryptography

Verification of cryptographic implementations, formal or otherwise, is an
arduous task for two major reasons:

(1) Security proofs have become increasingly mathematically complex

(2) Cryptographic implementations are highly specialized and optimized

The increase in complexity of cryptographic arguments led to the development
of more formal frameworks for exercising cryptographic reasoning. Examples
include formal theories for using game-playing proofs [29, 66] and for analyzing
cryptographic protocols [53]. These developments led to more proofs being veri-
fiable by experts and have paved the way for yet more specialized frameworks
(e.g. [52]) for proving security properties of cryptographic algorithms.

Meanwhile, cryptographic implementations have also become increasingly
complicated. Even though algorithms usually have reference implementations,
implementations in a high-level language written to resemble the mathemati-
cal specification as much as possible, the actual implementations running in
the world are usually written in low-level assembly language and often in an
architecture-dependent way. Even for similar architectures different optimiza-
tions might or might not be employed, such as using specialized intrinsics or
SIMD instructions.

The payoff for this increased complexity is increased performance. In the
modern age, cryptography is pervasive and all-encompassing – slight increases
in performance can mean massive reductions in computational cost. This

3

4 CHAPTER 1. INTRODUCTION

need for high-speed implementations has led to the development of specialized
tools [33].

Yet another aspect of cryptographic implementations contributing to com-
plexity is that they have to take the execution environment into account. In
particular, the implementations have to be side-channel resistant, that is, not
leak secret information through variable execution time, power consumption,
or other detectable inconsistencies. Guarding against such leakage is again
heavily dependent on platform and compiler characteristics.

The combination of these two developments – increase in proof and im-
plementation complexity – has made current cryptographic implementations
almost unverifiable and relying on experts to be able to audit code bases
is both fragile and extremely resource-consuming. As a possible solution
to this problem, the field of high-assurance cryptography or computer-aided
cryptography [16] has become increasingly popular. Here, computers are uti-
lized to model and verify desirable cryptographic and security properties of
cryptographic protocols or implementations.

Current formalization projects, which go all the way to the implementation
level, have managed to cover a wide variety of algorithms and primitives (see
e.g. [94]). However, not much has been explored in the fields of elliptic curve
cryptography (ECC) (except for Curve25519) or pairing-based cryptography
(PBC). PBC has recently seen applications in blockchain implementations used
for zero-knowledge proofs, i.e. proofs of knowledge which does not leak any
information about the prover’s secret input.

In this thesis, we achieve progress towards more formal verification in this
field of cryptography. In particular, we will focus on the functional correctness
of efficient primitives.

1.2 High-assurance cryptography

Automated protocol analysis Several tools have had success in verifying
complex protocols and also found severe bugs in the specification of the
protocols. Examples include ProVerif [43] and Tamarin [26] which have been
used to verify TLS 1.3 [41] and many other protocols; see e.g. [16] for an
overview. In this thesis, we will not be looking at this aspect of high-assurance
cryptography, which models the communication between parties. Due to the
complexity of the protocols, these tools often favor automation and scalability
over expressivity. If one wants to do a more granular analysis of cryptographic
implementations, more interactive theorem provers are often necessary.

Theorem provers One tool from formal verification which has seen quite
a lot of application to cryptographic protocols and implementations is proof
assistants or interactive theorem provers. Using such tools one no longer has to
trust each individual proof: If the proof checker validates a proof, then only the

1.2. HIGH-ASSURANCE CRYPTOGRAPHY 5

implementation of the checker has to be trusted. The set of implementations
which have to be trusted to have faith in the checked proofs is usually referred
to the trusted computing base, or TCB for short. A major goal for many such
proof assistants is to contain the TCB as much as possible.

Apart from isolating the need for trust, proof-assistants also allow to
varying degrees identifying and automating recurring patterns of arguments.
One advantage of this is that trivial or boilerplate parts of complex arguments
can be abstracted away which allows experts to more easily evaluate the validity
of proposed proofs of security.

Proof assistants for use in cryptographic proofs usually have a syntax for
defining cryptographic games, i.e. programs which an adversary can interact
with and then usually is challenged to distinguish between, and support
reasoning about probabilistic properties of such games.

CertiCrypt [22] and its successor EasyCrypt [24] are two such proof assis-
tants which have been used to formally prove several cryptographic schemes
secure. It has, e.g. , been used to prove the security of an implementation of
the cryptographic hash function SHA-3 [6]. The proof reduces the security of
the implementation to the differentiability of the underlying permutation from
a random oracle (see also [37]). To get an efficient implementation they use the
Jasmin language, a low-level language that has an extraction mechanism to
EasyCrypt. This implementation is also proven secure against timing attacks,
i.e. side-channel attacks that exploit variations in execution time to get infor-
mation about secret input. This is possible since the model in EasyCrypt is
capable of modeling leakage. EasyCrypt has also been used to formally verify
one of the NIST post-quantum finalists Saber [72].

F? [103] is a general-purpose functional programming language and proof
assistant. Within high-assurance cryptography, F? has been used to implement
and verify all necessary cryptographic primitives for the TLS protocol [40]. F?

supports compilation to both C [93] and assembly [61] for efficient implemen-
tation. Because of this, F? implementations can achieve performance matching
that of non-verified code; an F? implementation of Curve25519 achieve the
best performance in an experiment conducted in [16].

CryptoVerif [42] is another proof assistant for doing game-based proofs.
CryptoVerif has been shown to scale to complex protocols, e.g. by verifying TLS
1.3. CryptoVerif has recently [79] also been connected to verified and efficient
implementations in F?. This allows the user to conduct probabilistic reasoning
in CryptoVerif and then extract the model to F? where an implementation can
be compiled and where implementation security can be verified.

Foundations None of the previously mentioned tools are foundational in
that they do not reduce all logical steps to a core foundational logic. By
using a foundational tool, one does not have to trust the implementation of
the analysis but merely the implementation of the proof checker. A common

6 CHAPTER 1. INTRODUCTION

non-foundational tool used by both EasyCrypt and F? are SMT solvers – proof
obligations are verified by an external SMT solver. One issue here is that such
SMT solvers might have bugs. This decision to use a non-foundational tool is
usually that it scales a lot better, since foundational proofs tend to be much
longer and tend to be more difficult to automate.

The Foundational Cryptography Framework (FCF) [88] is a foundational
tool based on the the Coq Proof Assistant [106]. It has been used to verify
an implementation of hash-based message authentication [32] and connected
with the CompCert [76] compiler, achieving end-to-end verification from source
code to C.

Another recent foundational tool is SSProve [1], which implements the
State Separation Proofs (SSP) methodology [52] for proving cryptographic
reductions in Coq. This is the tool we will use in Chapter 4 to prove functional
correctness and security properties of Jasmin implementations. While SSProve
and FCF share the same underlying type theory, they differ in quite substantial
ways: SSProve offers an extensible semantic model of the logic and SSProve
allows one to reason using the SSP method.

Yet another high-assurance cryptography tool using Coq is Fiat Cryptog-
raphy [58] or just Fiat-Crypto which is a framework for synthesis of finite field
arithmetic.

Specification language Another direction in high-assurance cryptography
is that of devising a formal specification language. Considering the several tools
that exist for reasoning about cryptographic protocols, a common language for
writing formal specifications would save a lot time. Simultaneously, it would
increase the connection between the formalization of the same primitives in
different frameworks.

To design such a language is exactly the goal of Hacspec [85], a specifi-
cation language which is a strict subset of the Rust programming language.
Then, since the language has a formal semantic, protocol specifications can
be translated into different verification backends. This would require each
backend (EasyCrypt, CryptoVerif, FCF, etc.) to supply its own translation.

In Chapter 4 we describe and implement such a backend for the SSProve
framework and connect Hacspec specifications to Jasmin implementations.

1.3 The Coq Proof Assistant

The Coq Proof Assistant [106] is a general-purpose proof assistant built around
a core language based on the type theory Calculus of Inductive Constructions.
By constructing terms in this type theory, one can prove theorems using
the Curry-Howard Correspondence [71], while also being able to implement
programs in the same core language.

1.3. THE COQ PROOF ASSISTANT 7

Coq has native support for inductive types, and the use of these is pervasive
in Coq developments. The canonical example of such a type is the Peano
natural numbers, representing the naturals as either zero or a successor.

Inductive nat :=

| O : nat

| S : nat -> nat.

To use inductive types, Coq features fixpoints and pattern matching, allowing
us e.g. to define addition over the naturals.

Fixpoint add n m :=

match n with

| O => m

| S n' => S (add n' m)

end.

It is worth noting here that such fixpoints are quite restrictive; Coq’s termi-
nation checker has to be able to determine that the definition will not loop
forever. Indeed, if we were allowed to define a non-terminating function, e.g.
fix bad (n : nat) := bad n, then we could produce a term of any type. If we
want to use the Curry-Howard Correspondence and encode proofs/theorems as
terms/types then this is bad news: We would get a proof of any proposition.

Coq comes with a tactic language Ltac, which is used to programmatically
construct terms (e.g. proofs) in the underlying type theory. This alleviates the
programmer from writing terms directly by hand. In addition to the standard
tactics for manipulating contexts and goals, several advanced high-level tactics
have been developed for Coq including tactics for

• solving linear integer arithmetic: lia [39] (also non-linear and real-
arithmetic variants)

• solving equations over abstract or concrete rings: ring [64]

• solving equations modulo associativity and commutativity: aac-tactics [49]

All of these proved very useful in the development described in Chapter 2. lia is
particularly useful, basically discharging all arithmetical subgoals. Furthermore,
Coq supports generalized rewriting [100], i.e. rewriting terms up relations
different from strict equality. This is also used in Chapter 2, e.g. for the types Q

of rationals and mat Q of rational matrices. Indeed, a/b = c/d if just ad = bc, i.e.
reflexivity (a/b = a/b) is not the only relation generating equality of rationals.
This setoid equality (i.e. equivalence relation) extends to matrices over Q in the
obvious way.

8 CHAPTER 1. INTRODUCTION

Coq features extraction to OCaml [77]. Using this, one can implement
and verify programs in Coq and then get an equivalent implementation in
OCaml. This can yield better performance and it also allows inclusion into
larger developments.

It is important to note that Coq’s underlying logic is inherently constructive:
The law of excluded middle does not hold a priori, though it is consistent with
Coq’s logic. That does not mean one should assume it without reason, though,
since it might be inconsistent with other axioms one might need.

1.4 Fiat Cryptography

Fiat Cryptography [59] (or just Fiat-Crypto) is a framework for generating
verified finite field arithmetic which is correct by design. It provides a simple
CLI which takes a prime and a machine word size and generates C source files
implementing most finite field operations necessary to implement e.g. elliptic
curve cryptography. Go, Rust and Zig are also supported. There are separate
binaries for each style of multi-precision arithmetic: Montgomery, saturated
and unsaturated.

Fiat-Crypto is implemented in Coq and consists of a verified compiler from
a subset of Gallina to a simple language embedded in Coq consisting only
of bitwise and machine-integer operation. From here, the generated terms
can be pretty-printed to C or other languages (currently Java, Rust and Go
are supported). Code generated by Fiat-Crypto is currently being used in
production in Firefox1, BoringSSL2 and the WireGuard VPN3.

To implement new algorithms in Fiat-Crypto, one writes implementation
directly in Coq. At this level bignums, i.e. integers larger than the word size
of the underlying architecture, are modeled as lists of integers (i.e. list Z in
Coq). Implementations using such bignums are allowed to be parametric in
their limbwidth, i.e. the length of the inputs of type list Z. This allows the
implementation to be instantiated with different prime moduli, further down
the compilation pipeline.

The implementation can then be partially evaluated by instantiating certain
parameters, e.g. the limbwidth of inputs and the prime wrt. numbers should
be reduced. If the implementation only used suitable function, then it should
reduce such that it basically resembles straightline C code, only with Coq
let-bindings instead of variable assignments and arbitrary precision integers
instead of bounded integers.

By specifying the range of each input and output limb, this representation
can be reified into an internal AST containing architecture specific types and

1
https://blog.mozilla.org/security/2020/07/06/performance-improvements-via-formally-verifie

d-cryptography-in-firefox/
2
https://boringssl.googlesource.com/boringssl/+/master/third_party/fiat/

3
https://www.wireguard.com/formal-verification/

https://blog.mozilla.org/security/2020/07/06/performance-improvements-via-formally-verified-cryptography-in-firefox/
https://blog.mozilla.org/security/2020/07/06/performance-improvements-via-formally-verified-cryptography-in-firefox/
https://boringssl.googlesource.com/boringssl/+/master/third_party/fiat/
https://www.wireguard.com/formal-verification/

1.5. JASMIN 9

operations. This can finally be compiled into a resembling straightline C
code, which can readily be pretty-printed to an efficient implementation. Note
that the compilation passes are certified, i.e. proven correct. This resulting C
implementation can the be benchmarked against other implementation of the
same primitives.

Proofs about the implementation can be carried out at the source (para-
metric Gallina) level. This simplifies the proofs substantially and the certified
compiler ensures that proven properties are carried to the target level. Note
that the pretty-printing pass is not verified; this would require a formal seman-
tics of C (or other target language) in Coq.

1.5 Jasmin

Jasmin [5] is a low-level language and compiler designed for implementing
efficient implementations of cryptographic primitives. The compiler is partially
implemented in Coq and verified to preserve the semantics of the source code
to the target. The parts of the compiler which are not implemented in Coq are
implemented in OCaml and checked using translation validation. It currently
supports x86 assembly, but development to make the compiler more generic is
ongoing work4.

Jasmin has been used to implement several cryptographic primitives, in-
cluding SHA-3 [6] and ChaCha20-Poly1305 [8]. The implementations have been
proven to be comparable in performance to unverified, hand-crafted assembly
implementations.

Jasmin features extraction to EasyCrypt. This way, implementations can
be connected to a formal model in EasyCrypt, allowing one to reason about
the implementation. Since EasyCrypt also supports probabilistic reasoning,
this allows users to prove security properties of cryptographic implementations.
In Chapter 4, we develop another “extraction” mechanism for Jasmin, by
implementing a translation from Jasmin to SSProve. We can the use the fact
that both languages have formal semantics defined in Coq, to prove that the
translation is correct, i.e. preserves the semantics of programs.

1.6 Contents of this thesis

In this thesis, we try to answer the question: Has cryptographic verification
tools matured to a point where we can get certified implementations of PBC?

We do this in three manuscripts that all try to shrink the gap between
implementation and formal verification. The first two are more tightly coupled
and should be read in order. Chapter 4 can be read independently.

4See e.g. the arm branch https://github.com/jasmin-lang/jasmin/wiki/Branches

https://github.com/jasmin-lang/jasmin/wiki/Branches

10 CHAPTER 1. INTRODUCTION

Chapter 2 is based on the paper [73] which extends and supersedes [74, 75].
The paper appears as in the literature, except for some minor formatting.

High-assurance field inversion for curve-based cryptogra-
phy
Benjamin S. Hvass, Diego F. Aranha, Bas Spitters
2023 IEEE 36th Computer Security Foundations Symposium

In this paper we explore the Bernstein-Yang inversion algorithm [35] (BY-
inversion) for computing inverses in finite fields. We detail the development
of a formal verification of the algorithm in Coq and connect it to a verified
implementation in Fiat-Crypto.

The formalization of the algorithm has several aspects. The correctness-
proof of the algorithm reduces to checking a finite set of matrices satisfying a
particular predicate. This reduction hinges on the fact that the norm of all
matrices in this finite set of matrices is bounded by a sufficiently decreasing
sequence of numbers. This theorem is checked by exhaustion, i.e. the authors
of [35] implement a procedure that recursively checks the set of matrices
and asserts that each member satisfy the inequality. The termination of this
procedure is then proof that both the set is finite and that all elements satisfies
the assertion. To verify this theorem we implement the procedure in Coq
and extract to OCaml to achieve the necessary performance. Note that this
increases the TCB of the formalization.

For the verified implementation, we extend the Fiat-Crypto framework with
several primitives, including signed bignum arithmetic. We choose Fiat-Crypto
as a tool, since it is the only one that already synthesizes arithmetic for curves
we are interested in – verified finite field arithmetic in other high-assurance
cryptography frameworks are limited to the underlying field of Curve25519.

My own contributions to this paper include all the formalizations and the
implementations, except for the benchmarking suites. Similarly for writing
the paper, I wrote the majority of all sections except the section detailing the
benchmarking.

Chapter 3 is based on the manuscript:

Faster constant-time evaluation of the Kronecker symbol
with application to elliptic curve hashing
Diego F. Aranha, Benjamin S. Hvass, Bas Spitters, Mehdi Tibouchi
To be submitted

In this paper, we extend BY-inversion to compute the Kronecker symbol
of two integers and implement an application to elliptic curve hashing. We
extend the formal development of [73] to formally verify the independently
developed extension of BY-inversion in [67]. We also implement the version

1.6. CONTENTS OF THIS THESIS 11

from [67] and do extensive benchmarking against other implementations of the
Kronecker symbol.

My contributions to the paper were the formulation of the “full width”
Divstep, i.e. Algorithm 7, and a preliminary reference implementation in
python. In writing, I contributed with the preliminaries, formalization details,
and the proof of correctness of Algorithm 7.

Chapter 4 is based on the manuscript:

The last yard: formal specification and security proofs for
high-speed cryptography
Benjamin S. Hvass, Lasse Letager Hansen, Philipp Haselwarter,
Theo Winterhalter, Bas Spitters
To be submitted

Here we utilize that Jasmin has a formal semantic in Coq to provide a verified
translation from Jasmin to the probabilistic language of SSProve. We are
heavily inspired by the extraction mechanism to EasyCrypt [6], except we wish
to be able to verify the translation. Additionally, when doing theorem proving
in Coq, there are many established libraries of mathematical theory one can
use (e.g. [81]).

The correctness theorem of the translation states that if the source program
has a correct semantic then the translated program in SSProve has the same
semantic. We argue that this is the best you can hope for. Indeed, we are
not interested in ill-defined source programs and we also cannot hope for a
bidirectional translation: The source program contains a lot of information for
the compiler which we do not have a way of representing in SSProve. We also
argue that this is adequate. We simply wish to know about the I/O behavior of
the source code and this is fully determined by its semantic, so proving things
about a program with the same semantic is sufficient to get guarantees about
the source code. Note that we do not consider side-channel leakages in this
paper, however it could possibly be added to SSProve similarly to how it is
modeled in EasyCrypt.

We also manage to connect the translated Jasmin code with security proofs
in SSProve. We exemplify this with an implementation of an encryption scheme
based on AES, assuming AES implements a pseudo-random function. Our
methodology prove sufficiently modular to not require us to redo any security
proofs. We only need to prove that the concrete implementation of AES is
indistinguishable from the abstract one in Coq.

In addition to the Jasmin-SSProve connection, we also provide a SSProve
backend for Hacspec. This way we can draw cryptographic implementations
from the Hacspec library and immediately reason about them in the SSProve
framework.

12 CHAPTER 1. INTRODUCTION

We also generally expand on the SSProve framework, supporting more
types and implementing unary reasoning on top of the existing relational
programming logic.

My contributions to this project include a proportional amount of the
translation from Jasmin to SSProve. I also implemented the representation
of local memory in SSProve and verified that the translation respects local
memory as part of the correctness of the entire translation. Additionally,
I carried out all the examples of verification of translated Jasmin code in
SSProve.

1.7 Further development
The work presented in this thesis explores how current tools can be applied to
get verified implementations of PBC. There is, however, still plenty more to
be done in the field of high-assurance elliptic curve cryptography.

One conclusion of the work presented in Chapter 2, is that Fiat-Crypto
is not suited for more complex algorithms, since it does not support loops or
function calls. To get an implementation of actual elliptic curve arithmetic,
the support for function calls is necessary. Some work [70] have been done
in connecting the correctness proofs from Fiat-Crypto with another proof
backend, bedrock25, where more involved algorithms could be implemented.

The formalization of BY inversion in Chapter 2 is independent of the
Fiat-Crypto framework. Therefore, it would be interesting to see if one could
get a verified implementation from some other verification framework, e.g. the
Verified Software Toolchain [9] or SSProve.

It would also be interesting to stress-test the development presented in Chap-
ter 4 even more. If finite field arithmetic could be verified, then a connection to
elliptic curve operations should not be too difficult, considering formalizations
of elliptic curves already exist in Coq (see e.g. [25]).

5
https://github.com/mit-plv/bedrock2

https://github.com/mit-plv/bedrock2

Part II

Manuscripts

13

Chapter 2

High-assurance field inversion
for curve-based cryptography

Benjamin Salling Hvass, Aarhus University
Diego F. Aranha, Aarhus University
Bas Spitters, Aarhus University

Abstract

The security of modern cryptography depends on multiple factors,
from sound hardness assumptions to correct implementations that resist
side-channel cryptanalysis. Curve-based cryptography is not different in
this regard, and substantial progress in the last few decades has been
achieved in both selecting parameters and devising secure implementation
strategies. In this context, the security of implementations of field inver-
sion is sometimes overlooked in the research literature, because (i) the
approach based on Fermat’s Little Theorem (FLT) suffices performance-
wise for many parameters used in practice; (ii) it is typically invoked only
at the very end of a cryptographic computation, with a small impact
on performance; (iii) it is challenging to implement securely for general
parameters without a significant performance penalty. However, field
inversion can process sensitive information and must be protected with
side-channel countermeasures like any other cryptographic operation,
as illustrated by recent attacks [2–4]. In this work, we focus on imple-
menting field inversion for primes of cryptographic interest with security
against timing attacks, irrespective of whether the FLT-based inversion
can be efficiently implemented. We extend the Fiat-Crypto framework,
which synthesizes provably correct-by-construction implementations, to
implement the Bernstein-Yang inversion algorithm as a step towards this
goal. This allows a correct implementation of prime field inversion to be
synthesized for any prime. We benchmark the implementations across
a range of primes for curve-based cryptography and they outperform
traditional FLT-based approaches in most cases, with observed speedups
up to 2 for the largest parameters. Our work is already used in production

15

16 CHAPTER 2. HIGH-ASSURANCE INVERSION

in the MirageOS unikernel operating system, zig programming language,
and the ECCKiila framework [30].

2.1 Introduction

Finite field arithmetic is pervasive in number-theoretic public-key cryptography,
and an essential ingredient of Elliptic Curve Cryptography (ECC) and Pairing-
based Cryptography (PBC). In many cases, its implementation dictates how
efficiently and securely the overall cryptosystem behaves in practice. The field
inversion operation is a peculiar case, since it is rarely among the performance-
critical portions of the implementation, and most efficient algorithms for
the general case are hard to implement securely without a high performance
penalty [48]. For this reason, field inversion is often implemented using Fermat’s
Little Theorem (FLT) approach of exponentiating by p− 2 in Fp for prime p.
This is efficient for ECC implementations relying on special primes with fast
modular reduction, especially when the exponent allows a short addition chain
as in Curve25519 [34]. When performance is more pressing or parameters are
not friendly to FLT inversion, implementers typically resort to an aggressively
optimized version of the Extended Euclidean Algorithm (EEA). However,
bugs and side-channel leakage in the EEA implementation can lead to attacks
against RSA [3] and ECC [2, 4]. These are not just threats of research interest,
as illustrated by a vulnerability recently discovered in the EEA implementation
in Windows that could be exploited to mount denial of service attacks1.

Field arithmetic in Montgomery representation, as commonly found in
PBC, is a particularly challenging case for field inversion. The FLT approach is
not favored by the dense prime moduli in popular families of pairing-friendly of
curves [18, 20] that employ the slower modular reduction in Montgomery arith-
metic [86]. In the context of PBC, the performance of field inversion matters
during exponentiation in pairing groups, and it also unlocks an optimization
called compressed squarings in the final exponentiation of the pairing [12].
With pairings being increasingly deployed as a fundamental building block for
zero-knowledge proofs and privacy-preserving cryptocurrencies (for example
in short signature schemes [47] and zkSNARKs [31]), the threat of imple-
mentation bugs becomes more important, as they can allow attacks which
may compromise the security and privacy guarantees of these cryptographic
systems [51]2. A survey of implementation bugs in cryptographic libraries is
collected in [44, 59].

In order to satisfy performance constraints, current efficient software im-
plementations of ECC and PBC rely on hand-optimized architecture-specific
assembly code for the underlying field arithmetic and a great deal of manual

1
https://bugs.chromium.org/p/project-zero/issues/detail?id=1804

2
https://web.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencie

s.html

https://bugs.chromium.org/p/project-zero/issues/detail?id=1804
https://web.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://web.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

2.1. INTRODUCTION 17

tuning to unlock the best performance across a range of architectures [13, 14].
This introduces low-level code which is both hard to audit and to verify as
correct. Moreover, implementations need at least to be constant-time, in the
sense that execution time does not depend on input, and protection against
timing attacks is provided given some performance penalty. As an illustrat-
ing case using the popular BLS12-381 curve for motivation, the cost of one
scalar multiplication required for computing short Boneh-Lynn-Schacham sig-
natures [47] is reported to be around 400,000 cycles on Intel Skylake [10, 15]
using variable-time inversion. According to our benchmarking in Table 2.3, a
constant-time field inversion using publicly available code would add at least
200,000 cycles to that figure for the two required conversions to affine coordi-
nates (one for the table of precomputed points, the other for the result). This
impact is significant and motivates the need for our more efficient alternatives.

Recent progress in the literature allows this problem to be solved elegantly.
Bernstein and Yang proposed in 2019 a constant-time Euclidean algorithm
based on division steps that can be generalized for polynomial arithmetic, comes
with a mathematical proof and is surprisingly efficient for field inversion [35].
In that same year, an alternative path for implementing cryptographic libraries
was demonstrated as viable in the Fiat-Crypto framework [59]. By combining
correct-by-construction optimized low-level code with automatically generated
and formally verified high-level code, it became possible to develop libraries
which are both efficient and formally verified. Simultaneously, the generated
code stays within a small imperative language, thus avoiding notorious memory
safety issues which cause many vulnerabilities [44]. Unfortunately, Fiat-Crypto
does not provide an inversion operation and the implementer must build its
own approach based on the other field operations, creating the same risk of
insufficient post-hoc analysis.

Our contributions. We extend the Fiat-Crypto framework with a
constant-time implementation of field inversion based on the Bernstein-Yang
approach of iterating division steps. We implement the original version of
the algorithm (with the jumpdivstep optimization) and the “half-delta” vari-
ant, recently developed to optimize inversion within ECDSA signing over
the curve secp256k1 adopted in Bitcoin [109]. This variant requires a lower
number of division steps to be evaluated, which immediately translates to
better performance.

Our work completes the set of finite field operations which Fiat-Crypto
supports, and consists in the first efficient verified implementation of field
inversion for several primes, including those needed for PBC. Moreover, it
allows to conveniently synthesize a correct and portable implementation of
the algorithm for any prime using the two main representations supported in
Fiat-Crypto (unsaturated Solinas and Montgomery). This comes in contrast
with previous work, which consisted of implementing the FLT approach on
top of a verified multiplier, instead of a dedicated specialized inversion algo-
rithm [111]. Our formulation of the algorithm maximally relies on what is

18 CHAPTER 2. HIGH-ASSURANCE INVERSION

provided by Fiat-Crypto, taking advantage of the field operations provided by
the framework whenever possible instead of introducing new ones. In the con-
text of Montgomery arithmetic, this introduces some expensive multiplications
to update the algorithm’s matrix coefficients, the effects of which we mitigate
by employing the lazy reduction optimization and adjusting the precomputed
constant.

According to our benchmarks, we achieve a performance penalty of up to
5.3 in comparison to our own unverified constant-time assembly-accelerated
implementations of inversion for a range of parameters in both ECC and
PBC settings from 254 to 575 bits. The slowdown is tolerable if correctness
is of critical importance or if inversion performance is less critical. For the
PBC primes, our implementation consistently outperforms the FLT approach
accelerated with finite field arithmetic in unverified assembly, with speedups
ranging from 1.6 to 2 for different sizes. For the ECC primes, we outperform
the FLT approaches in the two largest parameters and improve performance
up to 40% against an implementation based on Fiat-Crypto and 14% against
handwritten assembly.

Our slowest implementation is already used in production the MirageOS
unikernel3 and zig language 4 and the ECCKiila framework [30], showing that
it is fast enough for engineering projects with a focus on correctness.

Outline of the paper. We briefly explain the necessary preliminaries of
Fiat-Crypto and the inversion algorithm in Sections 2.2 and 2.3. Sections 2.4
to 2.6 describe our implementation/formalization of the algorithm and our
formalization of the correctness proof, respectively. The two final sections
conclude with related and future work.

2.2 The Fiat-Crypto Framework
Fiat Cryptography[59] (or just Fiat-Crypto) is a framework for generating
verified finite field arithmetic which is correct by design. The approach was
illustrated through the implementation of field arithmetic for several standard-
ized elliptic curves using an extensible code generation framework, capable
of producing code competitive in performance with popular hand-optimized
multi-precision libraries. It provides a simple CLI which takes a prime and
a machine word size and generates C source files implementing most finite
field operations necessary to implement e.g. elliptic curve cryptography. Java,
Go and Rust are also supported. Code generated by Fiat-Crypto is currently
being used in production in Firefox5, BoringSSL6 and the WireGuard VPN7.

3
https://github.com/mirage/mirage-crypto/tree/main/ec/native

4https://github.com/ziglang/zig/blob/master/lib/std/crypto/pcurves/common.zig
5
https://blog.mozilla.org/security/2020/07/06/performance-improvements-via-formally-verifie

d-cryptography-in-firefox/
6
https://boringssl.googlesource.com/boringssl/+/master/third_party/fiat/

7
https://www.wireguard.com/formal-verification/

https://github.com/mirage/mirage-crypto/tree/main/ec/native
https://blog.mozilla.org/security/2020/07/06/performance-improvements-via-formally-verified-cryptography-in-firefox/
https://blog.mozilla.org/security/2020/07/06/performance-improvements-via-formally-verified-cryptography-in-firefox/
https://boringssl.googlesource.com/boringssl/+/master/third_party/fiat/
https://www.wireguard.com/formal-verification/

2.2. THE FIAT-CRYPTO FRAMEWORK 19

In Fiat-Crypto there are separate binaries to generate code for each style of
multi-precision arithmetic: Montgomery, saturated and unsaturated representa-
tions. Although, there is no formal proof that the code is of constant time, only
“straight-line code” is generated, i.e. code without branching that should run
in constant-time after it is processed by an optimizing compiler. Fiat-Crypto
consists of a verified compiler written in the Coq proof assistant [106]. It com-
piles from a subset of Coq to a simple language embedded in Coq containing
only bitwise and machine-integer operations. From here, the generated terms
can be pretty-printed to the programming languages mentioned above.

Correct-by-construction vs. verifying existing code. Fiat-Crypto
differs significantly from other verification projects: Instead of verifying an
existing implementation against a specification, it provides a pipeline for
generating verified implementations. This has the advantage of only requiring
a single formalization effort. Verification of complex software is a laborious
procedure, so in many cases it will not be deemed important enough. Having
auto-generated code allows verified code to be used in such cases. Another
advantage is the multi-language support: in general each implementation in a
different language would present a separate formalization effort.

Coq. Coq is a state-of-the-art interactive proof assistant based on depen-
dent type theory [105]. Coq reduces all proofs to a small kernel — it is thus
foundational in that it reduces everything to the axioms of mathematics. Next
to its built-in functional programming language, Coq also has a more ad-hoc
scripting language for tactics. Users write tactics to direct Coq to construct,
or search for, proofs. When, after a list of such tactic instructions, the proof is
fully completed and it is finally checked by the kernel for correctness.

We will use the Coq standard library throughout this paper. In particular,
we use the standard implementations of (unary) naturals nat and (binary and
infinite precision) integers Z.

Multi-precision arithmetic. In cryptography, it is common to compute
on numbers much larger than a single machine word. These are usually
represented using arrays of digits and interpreted as a number in some large
radix size (e.g. a full word size). We will refer to the entries of these arrays as
limbs and numbers represented as such as multi-limb numbers.

In Fiat-Crypto multi-limb integers are represented as lists of integers, i.e.
as the type list Z. Such a list of numbers, say [1;12;123], corresponds to the
sum of its elements up to some weighing of the indices, e.g. 1 · 2weight 0 + 12 ·
2weight 1 +123 · 2weight 2, where weight is some map from nat to Z. Note that the
representation is little-endian. When reasoning about multi-limb numbers, one
uses the function eval to evaluate the number as an integer by adding together
its limbs (multiplied by their respective weights).

We will refer to representations using a full-word radix as saturated. When
computing on such a representation, one has to take care of propagating carries,
as additions do not fit within one register. Conversely, we will refer to a radix
smaller than a full word size as unsaturated. We will refer to arithmetic on

20 CHAPTER 2. HIGH-ASSURANCE INVERSION

these numbers as multi-precision arithmetic, as opposed to single-precision
arithmetic, which we will assume is implemented natively in the platform.

There are a variety of optimizations and algorithms for multi-precision
arithmetic, and more precisely for multi-precision modular arithmetic modulo
some large number, as used in cryptography. One of the more expensive
operations in modular arithmetic is reduction, as it generally requires a multi-
precision division. Reduction is necessary after a multi-precision multiplication
or squaring. We will briefly describe two specialized approaches, both used in
our implementations.

For integers a, b and c we write a ≡ b (mod c) when c divides the difference
between a and b. For integers a, c we write a mod c for the unique integer b
between 0 and c satisfying a ≡ b (mod c).

Generalized Mersenne Reduction. If the modulusM is of the form 2k+
c12

k−1+· · ·+ck for some integers k and ci (which satisfies some constraints [99]),
then M is said to be a generalized Mersenne number (or Solinas number). In
that case there is an improved algorithm for reduction which replaces division
with a linear number of additions and shifting operations. The efficiency
depends on the coefficients and exponents of the integral polynomial. A notable
example of a generalized Mersenne number which is used in cryptographic
implementations is the prime 2255−19 over which the elliptic curve Curve25519
is defined [34].

Montgomery Reduction. In addition to Generalized Mersenne Reduc-
tion, Fiat-Crypto supports Montgomery arithmetic [86]. If R is a number
coprime to the modulus M , then the Montgomery reduction modulo M of a
number a is the number aR−1 modM . Montgomery reduction can be com-
puted more efficiently than generic reduction when R is chosen appropriately.
The algorithm performs divisions by R instead of M , so R can be chosen as a
power of 2 such that divisions become cheap and simple shifts.

The factor R−1 might look out of place, but Montgomery reduction can be
used when computing multiplications by working in the “Montgomery domain”,
which simply means operations are performed on numbers multiplied by R.
That is, to compute ab modM we instead compute (aR modM)(bR mod
M) and compute a Montgomery reduction. We obtain (aR modM)(bR mod
M)R−1 modM = abR modM , the product in the Montgomery domain. This
achieves modular multiplication without divisions.

Multiplying with R modM every time might seem expensive, but if multiple
arithmetic operations can be performed before converting back again, then
this cost becomes negligible. One can also add naturally in the Montgomery
domain:

(aR modM + bR modM) modM = (a+ b)R modM.

Because Montgomery reduction has the same complexity as a multi-precision
multiplication, another popular optimization in Montgomery arithmetic is lazy

2.3. BERNSTEIN-YANG INVERSION 21

reduction, which adds unreduced multiplication results (up to M ×R) before
a full reduction is needed.

2.3 Bernstein-Yang inversion
The Bernstein-Yang (BY) inversion algorithm [35] is a new and efficient
constant-time algorithm for inverting in finite fields. In this paper we will
only be using the algorithm over a field Fp, for prime p. The algorithm is a
constant-time variant of the classical Extended Euclidean Algorithm (EEA).
We implement the BY algorithm in Fiat-Crypto (Section 2.4), and formalize
its proof of correctness (Section 2.5).

Specification and correctness

The algorithm uses a division step (divstep), which we define for all integers
δ, g and odd integers f as

divstep(δ, f, g) =
(
1− δ, g, g−f

2

)
if δ > 0 and g odd(

1 + δ, f, g+(g mod 2)f
2

)
otherwise.

The requirement that f is odd makes divstep an endofunction on Z×Z×(2Z+1).
The branch can be implemented in constant time and thus so can the divstep
function.

We will also use the following transition matrices

T (δ, f, g) =

(
0 2

−1 1

)
if δ > 0 and g odd

(
2 0

g mod 2 1

)
otherwise.

These are transition matrices in the sense that multiplication corresponds to
applying divstep once (up to a factor; see also Theorem 9.1 in [35]). Note that
this definition differs slightly from the one in [35] (it is scaled by a factor).

To compute the inverse of g modulo f we will need to iterate the divstep,
compute the transition matrix of the resulting values and sequentially multiply
these matrices. This procedure is depicted in Algorithm 4.

Note that while Algorithm 4 as described is not constant time, the branch
can be implemented as a conditional swap (which can be implemented in
constant time). This is also how it is implemented in [35].

For integers δ, f and g we write (δn, fn, gn) = divstepn(δ, f, g) and Tn =
T (δn, fn, gn).

22 CHAPTER 2. HIGH-ASSURANCE INVERSION

Algorithm 1: Divsteps
Input : Integers n, δ, f and g such that f is odd
Output :The integers δn, fn and gn and the matrix product

TnTn−1 · · · T0
1 u← 1, v ← 0, q ← 0, r ← 1 ;
2 for i← 1 to n do
3 if 0 < δ and g odd then
4 δ ← −δ, f ← g, g ← −f , u← q, v ← r, q ← −u, r ← −v ;
5 g0 ← g mod 2 ;
6 δ ← δ + 1 ;
7 g ← g+g0f

2 ;
8 u← 2u ;
9 v ← 2v ;

10 q ← q + g0u ;
11 r ← r + g0v ;
12 return δ, f, g, (u v

q r)

The Divsteps procedure can then be used to implement modular inversion
as described in Algorithm 2. To implement field inversion for a fixed modulus,
we can precompute d,m and e in the algorithm. The algorithm does precom-
putations (lines 1-7), iterates division steps a constant number of times (line 8)
and combines the two (line 9); where sgn(·) computes the sign of an integer.

Algorithm 2: BY-inversion
Input : Integers f and g such that f is odd and gcd(f, g) = 1
Output : Integer g−1 such that gg−1 = 1 (mod f)

1 d← max(log2 f, log2 g) ;
2 if d < 46 then
3 m← b(49d+ 80)/17c ;
4 else
5 m← b(49d+ 57)/17c ;
6 e← ((f + 1)/2)m mod f ;
7 δ ← 1 ;
8 δ, f, g, (u v

q r)← Divsteps(m, δ, f, g) ;
9 g−1 ← e · v · sgn(f) ;

The correctness of this algorithm is summarized in the following theorem:

Theorem 1 (Theorem 11.2 in [35]). Let f and g be integers with f odd. Let d
be a real number such that f2 + 4g2 ≤ 5 · 22d. Let m be an integer such that
m ≥ b(49d+ 80)/17c if d < 46 and m ≥ b(49d+ 57)/17c if d ≥ 46.

2.3. BERNSTEIN-YANG INVERSION 23

For i = 1, 2, . . . ,m, let (δi, fi, gi) = divstepi(1, f, g) and Ti = T (δi, fi, gi)

and
(
ui vi
qi ri

)
= Ti−1Ti−2 · · · T0. Then gm = 0, fm = ± gcd(f, g) and vmg =

2mfm (mod f).

The correctness of Algorithm 2 follows from Theorem 2 since f and g are
assumed to be coprime, the final values of f and v are respectively fm and vm,
and p is the inverse of 2m modulo f , so the following holds:

p · v · sgn(f) · g = (2−m)v(±1)g = (±1)(±1) = 1 (mod f).

The theorem as stated here differs slightly from the one in [35] since our
definition of T is scaled by a factor to avoid having to reason about rational
numbers.

Outline of proof

The proof of Theorem 2, as given in [35], is in 4 parts:

• Specification of a related algorithm for computing the gcd of two numbers.

• Complexity analysis of the related algorithm; in particular giving a
worst-case bound.

• Establishing the relation between divsteps and the related algorithm.

• Proving that reaching a fixed point of divstep yields the modular inverse.

These are described in Appendix E, F, G and Section 11 in [35], respectively.
We will expand on how each part was formalized in Section 2.5. For the

proofs we need the definition of 2-adic valuation. If g is an integer and p
is a prime, then the p-adic valuation of g is the highest power of p which
divides g. We will denote it by ordp g or valp g (in the literature νp is also
common). We will also write splitp g for g divided by this maximal power of p,
i.e. splitp g = g/pordp g.

While the proof in the paper uses 2-adic integers, we only use the corre-
sponding statements for integers. This facilitates the formalization and suffices
to prove Theorem 2.

The jumpdivstep optimization

Algorithm 4 can be optimized by observing that computing the k first iterations
of Divsteps only depends on the k first bits in f and g. This allows working
on smaller numbers and “jumping” through the Divsteps computations in
larger steps. This optimized version is depicted in Algorithm 3 (see section 10
in [35] for details).

24 CHAPTER 2. HIGH-ASSURANCE INVERSION

Algorithm 3: JumpDivsteps
Input : Integers n, k, b, δ, f and g such that f is odd and k | n and

k ≤ b
Output :The integers δn, fn and gn and the matrix product

TnTn−1 · · · T0
1 T ← (1 0

0 1) ;
2 for i← 1 to n/k do
3 f ′ ← f mod 2b, g′ ← g mod 2b ;
4 δ, f ′, g′, T ′ ← Divsteps(k, δ, f ′, g′) ;
5

(
f
g

)
← T

(
f
g

)
/2k ;

6 T ← T ′ · T ;
7 return δ, f, g, T

One way to see that Algorithm 3 is correct is to note that one run through
the loop corresponds to k runs through the loop in Algorithm 4 (where the
matrix T corresponds to the four variables u, v, q and r). Indeed, which branch
is chosen in Divsteps for the first k iterations only depends on the first k bits
of f and g, since the k − 1 first bits in (g − f)/2 and (g + (g mod 2)f)/2 (the
two possibilities for subsequent g-values) only depend on the k first bits of g
and f .

The concrete values of f and g have no influence on u, v, q and r, so the
matrix we get in line 4 of Algorithm 3 is indeed correct, and we multiply with
the current product in line 6 as required. Now, to see that the updated values
of f and g are correct, simply note that for integers i ≤ j,

2j−i

(
fj
gj

)
= Tj−1Tj−2 · · · Ti

(
fi
gi

)

This follows from the fact that 2
(
fi+1

gi+1

)
= Ti

(
fi
gi

)
(by definition) and induc-

tion (see also theorem 9.1 in [35]). We already established that T ′ is equal to
the intermediate matrix product, so f ′ and g′ are equal to fik and gik (in the
ith iteration).

2.4 Verified and efficient field inversion in
Fiat-Crypto

We will now shift gears and focus on the technical details of our formalization.
Our contributions can be found in our fork of Fiat-Crypto at https://github.com/b
shvass/fiat-crypto/tree/main. The generated code for the programming language
lang can be found in the folder fiat-lang, and standalone testing/benchmarking

https://github.com/bshvass/fiat-crypto/tree/main
https://github.com/bshvass/fiat-crypto/tree/main

2.4. VERIFIED AND EFFICIENT FIELD INVERSION IN FIAT-CRYPTO25

programs for illustration can be found in the folder inversion/c together with a
Makefile. All file paths in this section will be relative to this folder.

To implement the Bernstein-Yang algorithm in Fiat-Crypto we needed
to add several primitives to the framework. The implementation is verified
by relating it to the algorithm formalized in Section 2.5. The majority of
our contribution to Fiat-Crypto is in the src/Arithmetic/BYInv folder and in the
present section all file paths will be relative to this root.

A major part of specifying and implementing the algorithm was implement-
ing and formalizing signed multi-precision arithmetic for the types of f and g
in Algorithm 4, since this was absent from the framework. In the following,
machine_wordsize : Z or mw : Z will refer to the machine word size for which
the implementation is parameterized. We will use m : Z to refer to the prime
underlying the modular arithmetic and wrt. which we are trying to invert; f g :

list Z will usually refer to bound multi-limb numbers and a b : Z to word-sized
integers. The function eval : list Z -> Z will refer to evaluation of multi-limb
numbers wrt. some weight function. In the context of Montgomery arithmetic
this will be a uniform (or saturated) weight function and in the context of
unsaturated Solinas it will be unsaturated.

When programming in Fiat-Crypto, one has to use the supported low-level
language, i.e. the language whose terms can be compiled into the embedded C-
like language and consequently generate C code. Notable supported operations
are bitwise operations on integers: >> for right shifts, |' for bitwise OR and
&' for bitwise AND. Furthermore, there is Z.lnot_modulo n which interprets a
number to be of bit-length n and then flips all bits in its binary representation
(bitwise negation).

Representing signed word-sized integers

We use the following definition to represent the numbers from −2mw to 2mw−1

Definition twos_complement (mw a : Z) :=

if (a mod 2 ^ mw) <? 2 ^ (mw - 1)

then a mod 2 ^ mw

else a mod 2 ^ mw - 2 ^ mw.

Then, e.g. twos_complement mw (2 ^ mw - 1) = -1 as usual for a two’s-complement
representation. We will usually shorten twos_complement to tc and omit the
bitwidth if it is implicit. We implement several operations working on these rep-
resentations. They are all found at the bottom of the file src/Util/ZUtil/Definitions.v

and have separate files in the same folder for their properties. In particular,
we provide implementations of arithmetic shifts, addition in two’s complement
and multiplication in two’s complement. These were all needed for the imple-
mentation, for the Divsteps over words in JumpDivsteps. The correctness

26 CHAPTER 2. HIGH-ASSURANCE INVERSION

statements about these implementations prove how interpreting their results in
two’s complement corresponds to operations on their inputs in two’s comple-
ment. For example, the correctness of shifting can be expressed by the lemma
below.

Lemma arithmetic_shiftr_spec (mw a k : Z)

(Hm : 0 < mw)

(Ha : 0 <= a < 2 ^ mw)

(Hk : 0 <= k) :

tc mw (arithmetic_shiftr mw a k)

= (tc mw a) / 2 ^ k.

Representing signed multi-limb integers

We extend Fiat-Crypto with signed multi-limb arithmetic. These numbers will
be represented using lists of integers and evaluated as a multi-limb number
in saturated representation interpreted in two’s complement. In Coq this is
defined as

Definition tc_eval (n : nat) (f : list Z) :=

tc (mw * n) (eval n f).

where eval is evaluation of multi-limb numbeers in saturated representation
(wrt. mw). The variable n is the amount of limbs needed, i.e. the length of
f , and the evaluation is interpreted in two’s complement at bitwidth bw * n.
We will usually omit the mw and n parameters for brevity. All operations we
support for multi-limb signed arithmetic can be found in Definitions.v. We
will summarize a few of them here.

Arithmetic right shift. As for word-sized integers, we will need to
divide multi-limb numbers by powers of two. We do this in the obvious way
by shifting each limb and xor’ing the underflow with the shift of the next
limb. Additionally, the most significant limb has to be arithmetically shifted
to preserve the sign (here we can reuse our implementation for word-sized
integers). The function arithmetic_shiftr does not fit Fiat-Crypto’s DSL (since
shifting by a non-constant is not supported), so we cannot synthesize its
implementation for general k. However, we can do so for each specific k; we
only need to instantiate k before generating. In the case of jumpdivstep, we
instantiate k to b − 2, where b is the machine word length. The correctness
theorem is as follows

Lemma tc_eval_arithmetic_shiftr (f : list Z) (k : Z) (...) :

tc_eval (arithmetic_shiftr f k)

= tc_eval f / (2 ^ k).

2.4. VERIFIED AND EFFICIENT FIELD INVERSION IN FIAT-CRYPTO27

Definition divstep_aux data :=

let '(d,f,g,v,r) := data in

let cond := land (pos d) (mod2 g) in

let d' := zselect cond d (opp d) in

let f' := select cond f g in

let g' := select cond g (tc_opp f) in

let v' := select cond v r in

let v'':= addmod v' v' in

let r' := select cond r (oppmod v) in

let g0 := mod2 g' in

let d'' := (d' + 1) mod 2 ^ mw in

let f'' := select g0 tc_zero f' in

let g'' := arithmetic_shiftr1 (tc_add g' f'') in

let v''' := select g0 mont_zero v' in

let r'' := addmod r' v''' in

(d'',f',g'',v'',r'').

Definition divstep (d : Z) (f g v r : list Z) :=

divstep_aux (d, f, g, v, r).

Listing 1: Implementation of a divstep in Fiat-Crypto

where k is the shift amount and f is a multi-limb integer.
Addition, negation and subtraction. Addition is already implemented

in Fiat-Crypto (signed addition is the same as unsigned addition in two’s
complement), so we simply wrap this implementation in the function tc_add.
To negate we flip all bits of all limbs in the list and then use tc_add to add one.
Subtraction is defined by combining addition and negation.

Implementing Divsteps

We provide implementations of a single divstep, i.e. the body of the for loop in
Algorithm 4. The implementations are in the file Definitions.v and properties
about the implementations are proven in Divstep.v. There are implementations
for Montgomery arithmetic, unsaturated Solinas and for word-sized divsteps
(needed for JumpDivsteps). We have included the implementation using
Montgomery arithmetic in Listing 1.

The implementation uses modular arithmetic for variables u, v, q and r since
these would otherwise grow much larger than necessary (by Theorem 2 we only
need these numbers modulo f), regular signed multiple-precision arithmetic
for f and g and word-sized arithmetic for δ.

28 CHAPTER 2. HIGH-ASSURANCE INVERSION

We utilize the zselect and select functions provided by the library, which
implement constant-time selection of values depending on a condition. The
functions addmod and oppmod are multi-limb modular addition and negation,
respectively; these were also implemented in Fiat-Crypto. The functions
which we have implemented and verified are pos, which checks positivity of
a word-sized integer in two’s complement, mod2, which checks the parity of a
multi-limb integer, and arithmetic_shiftr1 which is a singular arithmetic right
shift of multi-limb numbers. We did not have to implement tc_add, but we
had to specify how it is computed in two’s complement. Note also that the
implementation differs slightly from the specification in Algorithm 4, in that
we do not compute the u and q quantities. This is simply because they are not
necessary in Algorithm 2 (they are however used in the proof of correctness of
Algorithm 2).

We prove that executing divstep and then evaluating corresponds to the
reference Coq function

Definition divstep_vr_mod m '(d, f, g, v, r) :=

if Z.odd g

then if 0 <? d

then (1 - d, g, (g - f) / 2,

(2 * r) mod m, (r - v) mod m)

else (1 + d, f, (g + f) / 2,

(2 * v) mod m, (r + v) mod m)

else (1 + d, f, g / 2,

(2 * v) mod m, r mod m).

which is simply defined over the Z type of integers in Coq, i.e. it does not
compute over lists of numbers. Concretely, we prove the theorem

Lemma divstep_correct (d : Z) (f g v r : list Z) (...) :

let '(d1,f1,g1,v1,r1) := (divstep_aux (d, f, g, v, r)) in

(tc d1, tc_eval f1, tc_eval g1,

eval v1 mod m, eval r1 mod m) =

divstep_vr_mod m (tc d, tc_eval f, tc_eval g,

eval v mod m, eval r mod m).

which states that for a given input d, f, g, v, r to divstep computing the Fiat-
Crypto implementation Listing 1 and interpreting the output in two’s comple-
ment, corresponds to interpreting d in two’s complement, f, g as multi-limb
numbers in two’s complement, and r, v as multi-limb numbers modulo m, and
computing divstep_vr_mod_m of the interpretations.

The proof is straightforward, in that we simply have to propagate the
correctness theorems of each function that is called (addmod, tc_add, etc.). The

2.4. VERIFIED AND EFFICIENT FIELD INVERSION IN FIAT-CRYPTO29

correctness of the modular operations are provided by Fiat-Crypto, but others
we have to prove ourselves. Most functions have a separate file dedicated to
their correctness and properties, e.g. TCAdd.v, ArithmeticShiftr.v, Mod2.v, etc.

Note that the theorem has several assumptions not depicted here. Most
notably, f and g must be less than half the maximum integer, since otherwise
the first tc_add might overflow. Also, f have to be assumed odd, but recall
that this is simply by the definition of divstep (see Section 2.3).

Implementing BY-inversion using Divsteps

We provide implementations of Algorithm 2 using Divsteps. The implementa-
tions are in the file Definitions.v and properties about the implementations are
proven in BYInv.v. There are implementations for Montgomery arithmetic and
unsaturated Solinas. We have included the implementation using Montgomery
arithmetic here in Listing 3.

In the implementation, we use the function partition, which simply takes
an integer and represents it as a multi-limb number (as a list) according to
some weight function. Obviously, the arguments to this has to be known a
compile time and is a way to get Coq to compute constants and translate them
to multi-limb numbers. We use it to get the representation of m, the prime wrt.
which we are inverting, and divstep_precomp, which is the e from Algorithm 2.
The fold in Listing 3 computes the for loop from Algorithm 2 and the function
iterations computes

Definition iterations (b : Z) :=

if b <? 46 then (49 * b + 80) / 17

else (49 * b + 57) / 17.

as expected by Algorithm 2. Note that iterations is in Ref.v.
We prove that our implementation is equivalent to a reference Coq imple-

mentation, which we will prove correct in Section 2.5. The reference, by_inv_ref,
is in Ref.v. The correctness theorem (for the Unsaturated Solinas case) is
depicted in Listing 2. The assumptions are rather natural: g_length requires
that g has the appropriate amount of limbs, g_in_bounded requires that each
limb of g is within a word size and g_bounds requires that g is less than half the
absolute max value representable in two’s complement. We ensure that this is
true when g is a number mod m, by choosing the quantity tc_limbs such that
m < 2machine_wordsize·tc_limbs − 2.

The proof of theorem required us to prove several invariants of divstep.
Fiat-Crypto provided sufficient machinery to make this fairly simple; see e.g.
divstep_iter_bounds in Divstep.v. The only potential “overflow” we have to worry
about, is d, since it can in practice grow unboundedly if one iterates divstep
sufficiently many times; this shows up in the lemma divstep_iter_correct where

30 CHAPTER 2. HIGH-ASSURANCE INVERSION

Theorem eval_by_inv (g : list Z)

(g_length : length g = tc_limbs)

(g_in_bounded : in_bounded g)

(g_bounds :

- 2 ^ (mw * tc_limbs - 2) <

tc_eval g < 2 ^ (mw * tc_limbs - 2)) :

eval (by_inv g) mod m = by_inv_ref m (tc_eval g).

Listing 2: Correctness of by_inv

you have to bound d depending on how many times you iterate. The other
quantities cannot overflow, since f, g are decreasing for each divstep and v, r
are computed using modular arithmetic. Only in the very first iteration, when
you add f and g, do you risk to overflow: this is exactly why we need to
have 2 spare bits when representing the prime in two’s complement (1 for this
potential overflow and 1 for the sign).

Montgomery inversion. Inverting in Montgomery arithmetic needs
additional care to compute the inverse wrt. Montgomery multiplication, not
regular modular multiplication. This amounts to computing the regular inverse
multiplied by R2. This works since,

(aR modM)((aR)−1 ·R2 mod M)R−1 modM
= 1 ·R modM

which indeed is 1 in the Montgomery domain. Accordingly, the theorem
eval_by_inv_jump contains this factor in the Montgomery case.

Implementing JumpDivsteps

We provide implementations of a single jumpdivstep, i.e. the body of the for
loop in Algorithm 3. The implementations are in the file Definitions.v and
properties about them are proven in JumpDivstep.v. There are implementations
for both the Montgomery arithmetic and unsaturated Solinas. We have included
the implementation in Montgomery arithmetic here in Listing 4.

For JumpDivsteps we need a couple of additional methods. The idea of
JumpDivsteps is computing Divsteps (line 4) on word-sized integers (we use
k = mw− 2 such that all intermediate values in divstep fit in a word). This
however also means that the entries of the result matrix T ′ are word-sized
integers and thus we have to multiply word-sized and multi-limb numbers when
computing the matrix-vector product in line 5. This functionality was already
implemented in Fiat-Crypto, but we wrapped it in word_sat_mul.

Also, the numbers in T have to be modular reduced (otherwise they grow
too large), so when we have to compute the matrix product in line 6, we have
to reduce the entries of T modulo f (they might for instance be negative).

2.4. VERIFIED AND EFFICIENT FIELD INVERSION IN FIAT-CRYPTO31

Definition by_inv (g : list Z) :=

let bits := (Z.log2 m) + 1 in

let msat := partition m in

let its := iterations bits in

let pc := partition divstep_precomp in

let '(_, fm, _, vm, _) :=

fold_left (fun data i => divstep_aux data)

(seq 0 (Z.to_nat its))

(1,msat,g,zero,one) in

let sign := tc_sign_bit fm in

let inv := mulmod pc vm in

let inv := select sign inv (oppmod inv) in

inv.

Listing 3: Implementation of a BY-inversion in Fiat-Crypto using Mont-
gomery arithmetic

This is what twosc_word_mod_m does (the corresponding function for Solinas is
word_to_solina), by computing the negation and then choosing based on sign
(recall that it has to compute the negation always otherwise a branch is
introduced).

Proving jump_divstep correct is similar to proving by_inv, in that we have
to prove invariants about (word-sized) divsteps. As we did for the other
algorithms, we prove it correct wrt. a reference, namely the function

Definition jump_divstep_vr

(n : nat) (mw m : Z) '(d, f, g, v, r) :=

let '(d1, f1, g1, u1, v1, q1, r1) :=

iter n divstep_uvqr

(d, f mod 2 ^ mw, g mod 2 ^ mw, 1, 0, 0, 1) in

let f1' := (u1 * f + v1 * g) / 2 ^ n in

let g1' := (q1 * f + r1 * g) / 2 ^ n in

let v1' := (u1 * v + v1 * r) mod m in

let r1' := (q1 * v + r1 * r) mod m in

(d1, f1', g1', v1', r1').

Here, iter is just an iterator applying the second argument to itself n times,
initialized with the third argument to iter. The function divstep_uvqr is similar
to divstep_vr_mod from earlier, but it also computes the q and r quantities; these
are needed in JumpDivsteps to update the values f, g, v and r.

The correctness of jump_divstep states that

32 CHAPTER 2. HIGH-ASSURANCE INVERSION

Definition jump_divstep_aux '(d, f, g, v, r) :=

let '(d1,f1,g1,u1,v1,q1,r1) :=

fold_right word_divstep

(d,nth_default 0 f 0,nth_default 0 g 0,1,0,0,1)

(seq 0 (machine_wordsize - 2)) in

let f2 := word_tc_mul u1 f in

let f3 := word_tc_mul v1 g in

let g2 := word_tc_mul q1 f in

let g3 := word_tc_mul r1 g in

let f4 := tc_add word_tc_mul_limbs f2 f3 in

let g4 := tc_add word_tc_mul_limbs g2 g3 in

let f5 := arithmetic_shiftr f4 (machine_wordsize - 2) in

let g5 := arithmetic_shiftr g4 (machine_wordsize - 2) in

let f6 := firstn tc_limbs f5 in

let g6 := firstn tc_limbs g5 in

let u2 := twosc_word_mod_m u1 in

let v02 := twosc_word_mod_m v1 in

let q2 := twosc_word_mod_m q1 in

let r02 := twosc_word_mod_m r1 in

let v2 := mulmod u2 v in

let v3 := mulmod v02 r in

let r2 := mulmod q2 v in

let r3 := mulmod r02 r in

let v4 := addmod v2 v3 in

let r4 := addmod r2 r3 in

(d1,f6, g6, v4, r4).

Listing 4: Implementation of jumpdivstep using Montgomery arithmetic.

Theorem jump_divstep_correct d f g v r (...) :

let '(d1, f1,g1,v1,r1) :=

jump_divstep_aux (d, f, g, v, r) in

(tc d1, tc_eval f1, tc_eval g1,

eval v1 mod m, eval r1 mod m)

= jump_divstep_vr (mw - 2) mw m

(tc d, tc_eval f, tc_eval g,

eval v mod m, eval r mod m).

Note that the argument mw - 2 corresponds to k in Algorithm 3, i.e. how
many times we iterate divstep on word-sized integers, and the argument mw

corresponds to where we truncate (truncating at mw is easy: simply take the
first limb). This correctness theorem is for unsaturated Solinas arithmetic.

2.4. VERIFIED AND EFFICIENT FIELD INVERSION IN FIAT-CRYPTO33

Theorem eval_by_inv_jump g

(g_length : length g = tc_limbs)

(g_in_bounded : in_bounded g)

(g_bounds :

- 2 ^ (mw * tc_limbs - 2) <

tc_eval g < 2 ^ (mw * tc_limbs - 2)) :

eval (by_inv_jump g) mod m = by_inv_jump_ref (tc_eval g).

Listing 5: Correctness of by_inv_jump

We have omitted the preconditions to this theorem here for clarity, but they
are all natural (and necessary). E.g., d has to have a distance of mw - 2 to
the lowest and highest value representable in two’s complement (otherwise
iterating divsteps mw - 2 times might overflow).

Lazy Montgomery reduction When we translate words to multi-limb
numbers in the Montgomery arithmetic setting, we ought to multiply with R,
such that we get the representations in the Montgomery domain; we can however
just propagate these factors through the execution and include them in the
final recomputed constant. Note that this means that these factors show up in
the correctness theorem in the Montgomery setting (see the WordByWordMontgomery

section in JumpDivstep.v).

Implementing BY-inversion using JumpDivsteps

We provide implementations of Algorithm 2 using JumpDivsteps. The imple-
mentations are in the file Definitions.v and properties about the implementa-
tions are proven in BYInvJump.v. There are implementations for Montgomery
arithmetic and Unsaturated Solinas. We have included the implementation
using Montgomery arithmetic here in Listing 6.

The implementation is very close to BY-inversion using Divsteps – the
only changes are the number of iterations and (consequently) the precomputed
value to multiply at the end.

To prove correctness of by_inv_jump as specified in Listing 5 we need to prove
that jump_divstep preserves several invariants. Here we utilize that we have
the reference Coq implementation and instead prove the invariants about this
function and then transport them from the Coq function defined over Z to the
one defined over list Z (jump_divstep).

We do this e.g. in jump_divstep_invariants2 in JumpDivstep.v and in the Mont-
gomery version of jump_divstep_iter_correct in JumpDvstep. In the first one we
use jump_divstep_vr_invariants, proven in Ref.v, which asserts how the bounds of
the outputs of an iterated jumpdivstep depend on the bounds of the inputs. In
the second one, we use that a multiplication on inputs propagates through and

34 CHAPTER 2. HIGH-ASSURANCE INVERSION

Definition by_inv_jump g :=

let bits := (Z.log2 m) + 1 in

let msat := partition m in

let jump_its := jump_iterations bits in

let pc := partition jumpdivstep_precomp in

let '(_, fm, _, vm, _) :=

fold_left (fun data i => jump_divstep_aux data)

(seq 0 (Z.to_nat jump_its))

(1,msat,g,zero,one) in

let sign := tc_sign_bit fm in

let inv := mulmod pc vm in

let inv := select sign inv (oppmod inv) in

inv.

Listing 6: Implementation of BY-inversion using JumpDivsteps and Mont-
gomery arithmetic

corresponds to a multiplication on the outputs (used to propagate R-factors
through the computation). This is lemma nat_iter_jump_divstep_vr_mul proven
at Ref.v.

Differences from [35]. In Section 12 of [35], the authors compute the
matrix product in Algorithm 3 by recursively dividing it into halves, resulting
in a total of n−1 matrix multiplications. This allows them to keep the precision
of the entries as low as possible.

We compute the product iteratively, because we attempt to minimize the
new code introduced to Fiat-Crypto. This requires 4n modular multiplications;
and since only the top right entry of the final matrix is needed, it suffices to do
matrix-vector multiplications (note that this is not possible when recursively
dividing the product). However, by using this method one cannot keep the
precision low for as many multiplications. This was fine for our implementation,
since keeping track of different precision (and using appropriate multiplication
implementations) in Fiat-Crypto would be difficult. Our unverified implemen-
tation of the jumpdivstep approach keeps track of how these coefficients grow
(one limb with every iteration of the outer loop), making it possible to delay
the expensive modular reduction until it is strictly necessary (lazy reduction).

Generating Fiat-Crypto code

Thus far we have not explained how to turn our Fiat-Crypto implementation
into efficient low-level code, which is not so straightforward. Even though the
implementations by_inv (Listing 3) and by_inv_jump (Listing 6) are reifiable into
Fiat-Crypto’s internal language, they are both too large for this to be feasible.
The reason is that (1) the folds used are unrolled by Fiat-Crypto, and there is

2.4. VERIFIED AND EFFICIENT FIELD INVERSION IN FIAT-CRYPTO35

currently no way to get Fiat-Crypto to generate a proper loop, and (2) each
function is fully inlined, since Fiat-Crypto does support function calls. As a
result, the generated code would be many thousands of lines long and the code
generation would slow down prohibitively.

It is unclear if these limitations will be fixed in Fiat-Crypto, in particular
supporting function calls would require a richer internal language. On the
other hand, these are also not functions which Fiat-Crypto claims to be able
to generate, so we are probably pushing the limit for how large programs
should be synthesized. One way to fix this, would be to export Fiat-Crypto
implementations along with their proofs of correctness to a richer language.
Work in this direction has started using bedrock2 [70].

We manage to generate code by splitting our implementation into two
parts: The body of fold (i.e., a single divstep and a single jumpdivstep
respectively) and the functions outside the loop. For the jumpdivstep version,
we unfortunately also had to split the body of the loop into three parts to
make reification and code generation succeed.As a result, one has to reassemble
the code manually in C; as depicted in Listing 7 and Listing 8. When doing
this, one should be very careful to replicate the structure of Fiat-Crypto
implementation; as depicted in Listing 3 and Listing 6. Then the correctness
theorem about the assembled program should still hold, though you cannot
prove this formally. That this has been done correctly should be manually
verified.

Implementing BY-inversion using half-delta JumpDivsteps

We also provide an implementation of a faster variant of BY-inversion pro-
posed by Wuille et al. [109]. It is the same as by_inv_jump but with slightly dif-
ferent constants, see jump_divstep_hd and jump_divstep_precomp_hd in Definitions.v.
This variant starts with the value δ = 1/2 and runs for around 18% fewer
iterations, as given by the closed formula b(45907 log2(M)+26313)/19929c for
inversion modulo M . While the authors provide a formal correctness proof
in the latest version of the repository for the result, we understand this has
neither been peer-reviewed nor formalized. So, we take the extra precaution of
validating the lower number of iterations. We adapted their 256-bit Coq proofs
for our various parameter sizes and executed them with two optimizations:
using the native_compute reduction machine in Coq, which cut execution time
to 32 hours from the initially reported 2.5 days; and extracted the proofs
using Coq’s built-in extraction mechanism [78] to OCaml native binaries for
another 2-factor reduction in time. Table 2.1 reports on the time for running
all proofs. At the moment, there is no connection between our implementation
in Fiat-Crypto and this formalized proof. We would merely get an equivalence
between the Fiat-Crypto implementation and a reference Coq implementation.

We do not prove properties about the half-delta BY-inversion implemen-
tation, though one could easily adapt the proofs of correctness of the other

36 CHAPTER 2. HIGH-ASSURANCE INVERSION

void inverse(WORD out[LIMBS], WORD g[SAT_LIMBS]) {

WORD precomp[LIMBS], h[LIMBS];

WORD f1[SAT_LIMBS], f[SAT_LIMBS], g1[SAT_LIMBS];

WORD v1[LIMBS], v[LIMBS];

WORD r1[LIMBS], r[LIMBS];

WORD d, d1, its;

uint8_t s;

MSAT(f);

ITERATIONS(&its);

PRECOMP(precomp);

for (int j = 0; j < LIMBS; j++) {

v[j] = 0;

r[j] = 0;

}

r[0] = 1;

d = 1;

for (int i = 0; i < its - (its % 2); i += 2) {

DIVSTEP(&d1, f1, g1, v1, r1, d, f, g, v, r);

DIVSTEP(&d, f, g, v, r, d1, f1, g1, v1, r1);

}

if (its % 2) {

DIVSTEP(&d1, f1, g1, v1, r1, d, f, g, v, r);

for (int k = 0; k < LIMBS; k++)

v[k] = v1[k];

for (int k = 0; k < SAT_LIMBS; k++)

f[k] = f1[k];

}

SIGN(&s, f);

MUL(out, v, precomp);

OPP(h, out);

SZNZ(out, s, out, h);

return;

}

Listing 7: handwritten reassembly of the Fiat-Crypto implementation of BY-
inversion in Listing 3

2.4. VERIFIED AND EFFICIENT FIELD INVERSION IN FIAT-CRYPTO37

void inverse(WORD out[LIMBS], WORD g[SAT_LIMBS]) {

WORD precomp[LIMBS], h[LIMBS];

WORD f1[SAT_LIMBS], f[SAT_LIMBS], g1[SAT_LIMBS];

WORD v1[LIMBS], v[LIMBS];

WORD r1[LIMBS], r[LIMBS];

WORD d, d1, un, vn, qn, rn, its;

uint8_t s;

MSAT(f);

ITERATIONS(&its);

PRECOMP(precomp);

for (int j = 0; j < LIMBS; j++) {

v[j] = 0;

r[j] = 0;

}

r[0] = 1;

d = 1;

for (int i = 0; i < its - (its % 2); i += 2) {

FN_INNER_LOOP(&d1, &un, &vn, &qn, &rn, d, f, g);

UPDATE_FG(f1, g1, f, g, un, vn, qn, rn);

UPDATE_VR(v1, r1, v, r, un, vn, qn, rn);

FN_INNER_LOOP(&d, &un, &vn, &qn, &rn, d1, f1, g1);

UPDATE_FG(f, g, f1, g1, un, vn, qn, rn);

UPDATE_VR(v, r, v1, r1, un, vn, qn, rn);

}

if (its % 2) {

FN_INNER_LOOP(&d1, &un, &vn, &qn, &rn, d, f, g);

UPDATE_FG(f1, g1, f, g, un, vn, qn, rn);

UPDATE_VR(v1, r1, v, r, un, vn, qn, rn);

for (int k = 0; k < LIMBS; k++)

v[k] = v1[k];

for (int k = 0; k < SAT_LIMBS; k++)

f[k] = f1[k];

}

SIGN(&s, f);

MUL(out, v, precomp);

OPP(h, out);

SZNZ(out, s, out, h);

return;

}

Listing 8: handwritten reassembly of the Fiat-Crypto implementation of BY-
inversion in Listing 6

38 CHAPTER 2. HIGH-ASSURANCE INVERSION

implementations to this one. The reason we did not do this, is that in the end
we would not get an end-to-end proof, since the method we use to formalize
the reference implementation in Section 2.5 is not capable of proving this lower
bound of iterations, see [35] section 8.

Table 2.1: Time taken to run computational proofs to validate the number of
iterations for various prime moduli sizes in the half-delta optimization using
different strategies.

Size (bits) Iterations Coq-native Coq-ExtOCaml
256 590 32.1 hours 14.7 hours
381 878 213.0 hours 100.5 hours
448 1033 634.3 hours 281.1 hours
521 1201 1226.7 hours 557.6 hours
575 1325 2671.5 hours 906.7 hours

Experimental results

We have generated and benchmarked field inversion in C for primes commonly
used in both ECC and PBC settings of curve-based cryptography. For ECC,
we chose the well-known primes 2255 − 19, 2448 − 2224 − 1 and 2521 − 1 labeled
by their named curves Curve25519, Curve448 and NIST-P521 at respectively
the 128-, 224- and 256-bit security levels. For PBC, we took the base fields
for Barreto-Naehrig (BN) [20] and Barreto-Lynn-Scott (BLS) curves [21] at
three different security levels. These are the 254-bit prime used in the now
legacy 110-bit secure BN curves [12, 84], the 381-bit prime for BLS curves
with embedding degree 12 undergoing standardization at 128-bit security [84],
and the 575-bit prime for BLS curves with embedding degree 48 proposed for
256-bit security [82].

The generated code was integrated in the RELIC toolkit [11], a crypto-
graphic library containing several state-of-the-art implementations of pairings.
RELIC uses a combination of handwritten assembly (ASM) with higher-level C-
code and has set speed records for several of the PBC parameters. Integrating
the code within RELIC allowed convenient comparison between the efficiency
of our approach and other field inversion algorithms already implemented in
the library. We benchmarked the implementations on an Intel Skylake Core
i7-6700K CPU running at 4.00GHz, using GCC version 12.1 and clang from
LLVM 13. Numbers were obtained by computing the average of 104 consecutive
executions measured using the cycle counter. TurboBoost and HyperThreading
were disabled for benchmarking stability.

We present our results in Table 2.2 and Table 2.3. In both tables, the
first part has baseline implementations from the GMP 6.2.1 library [63] used

2.4. VERIFIED AND EFFICIENT FIELD INVERSION IN FIAT-CRYPTO39

for reference. With the exception of Variable-time GMP, all operations are
implemented in constant-time. These timings set a lower bound (aggressively
optimized variable-time code) and upper bound (generic constant-time ap-
proach) that illustrate how challenging implementing efficient field inversion in
constant-time can be for general fields. The next part has timings for the FLT
approaches using exponentiation by p− 2. For the ECC primes, we took state-
of-the-art timings from the literature in the ASM case [60, 87] (FLT+ASM)
and benchmarked the same addition chains over field arithmetic generated
by Fiat-Crypto (FLT+Fiat). For PBC, we built and benchmarked RELIC
using both the existing ASM backends and field arithmetic code generated
by Fiat-Crypto. Since the same number of multiplications are executed in
FLT, the timings illustrate the penalty of going from handwritten ASM to
Fiat-Crypto for the different parameters: an approximate slowdown of 1.2–3.0
when compiling using either clang or GCC.

The remaining rows in the tables show the performance of our various imple-
mentations of BY-inversion. The most interesting entries performance-wise
are jumpdivstep and hdjumpdivstep, respectively the jumpdivstep implemen-
tation that we generate automatically from Fiat-Crypto; and the half-deta
variant proposed later. These are also benchmarked in RELIC in the PBC
case using the provided ASM backends.

We compare performance against FLT due to its generality, and acknowledge
that performance speedups are due in part to choice of algorithms. For ECC,
the hdjumpdivstep implementations outperform the FLT implementations in
the two largest primes, showing that FLT approaches do not scale well for larger
parameters, with speedups over unverified assembly (FLT+ASM) of 14% for
Curve448 and 13% for P521. For PBC, the speedup over FLT+ASM is visible
in all fields and grows to the range between 39%–49%. We also outperform
FLT over a verified multiplier (FLT+Fiat) by up to a 2-factor in all cases,
except Curve25519. When comparing the fastest verified implementations of
BY-inversion with our implementation within RELIC using its unverified
ASM backends (RELIC+ASM), the performance difference ranges from 2 to
5.3, a tolerable trade-off considering the correctness guarantees provided by
the Fiat-Crypto version.

Timings for Curve25519. We report detailed timings for the prime
2255−19 generated in the unsaturated representation. There are many applica-
tions for such an implementation, due to the widespread adoption of Curve25519
and Ed25519 as key exchange and digital signature algorithms [34, 36]. The
Bernstein-Yang paper reports 8,778 Skylake cycles for inversion, later im-
proved to 3,900 cycles8. An alternative approach by Thomas Pornin [91] was
benchmarked at 6,200 cycles in our Skylake processor. In comparison, the
performance degradation of our best implementation is around 3.8 in compar-
ison to those results, but we note that these faster implementations are not

8
https://gcd.cr.yp.to/software.html

https://gcd.cr.yp.to/software.html

40 CHAPTER 2. HIGH-ASSURANCE INVERSION

verified beyond exhaustive testing and/or they employ handwritten assembly
optimizations including vector instructions. We benchmarked inversion from
the C+ASM verified implementation of Curve25519 in EverCrypt [94] at 12,728
cycles in the same machine, which gives us a small 15% difference in latency.
For reference, Fiat-Crypto is 21% slower than Evercrypt according to the
original benchmarks.

Table 2.2: Benchmarks of different approaches for field inversion over ECC
fields. Numbers in bold are the fastest for group of implementations in this
work or related work among the different compilers for a certain choice of
prime.

Curve25519 Curve448 NIST-P521
Verified clang gcc clang gcc clang gcc

Variable-time GMP No 3,098 3,314 4,724 5,799 6,814 7,128
Constant-time GMP No 75,895 76,300 186,637 186,186 257,935 270,085
FLT+ASM No – 9,301 ∗41,400 – – 53,828
FLT+Fiat Partially 13,638 11,778 49,867 46,103 78,565 55,139
This work+Fiat (divstep) Yes 69,942 72,583 189,542 248,685 230,221 308,478
This work+Fiat (jumpdivstep) Yes 17,797 20,394 43,529 53,186 57,894 67,928
This work+Fiat (hdjumpdivstep) Yes 14,652 17,166 35,549 43,401 46,747 54,708

(∗) The authors also report 35,000 for an AVX2 implementation,
but we consider the 64-bit ASM implementation more fair for comparison.

Table 2.3: Benchmarks of different approaches for field inversion over PBC
fields. Numbers in bold are the fastest for group of implementations in this
work or related work among the different compilers for a certain choice of
prime. The last three rows represent this work using Fiat-Crypto. The three
next to last rows uses arithmetic from the RELIC library.

BN-254 BLS12-381 BLS48-575
Verified clang gcc clang gcc clang gcc

Variable-time GMP No 3,291 3,270 4,724 4,716 7,495 7,504
Constant-time GMP No 75,639 76,168 146,157 146,083 270,631 271,168
FLT+ASM No 31,452 31,492 104,513 103,361 288,719 288,109
FLT+Fiat Partially 57,748 75,283 182,825 262,919 577,626 856,437
RELIC+ASM (divstep) No 87,456 87,584 167,724 164,459 335,864 337,641
RELIC+ASM (jumpdivstep) No 14,382 14,383 23,820 23,810 43,941 43,989
RELIC+ASM (hdjumpdivstep) No 9,777 9,873 16,377 16,183 31,963 27,911
This work+Fiat (divstep) Yes 80,018 120,486 172,497 296,065 390,773 671,370
This work+Fiat (jumpdivstep) Yes 23,406 30,572 62,555 75,412 180,023 220,852
This work+Fiat (hdjumpdivstep) Yes 19,733 25,836 52,628 63,237 147,402 180,530

2.5. FORMALIZATION OF BERNSTEIN-YANG INVERSION 41

Definition iterations b :=

if b <? 46 then (49 * b + 80) / 17

else (49 * b + 57) / 17.

Definition jump_iterations b mw :=

((iterations b) / (mw - 2)) + 1.

Definition by_inv_ref (f g : Z) :=

let bits := Z.log2 f + 1 in

let i := iterations bits in

let k := (f + 1) / 2 in

let pc := (k ^ i) mod f in

let '(_, fm, _, vm, _) :=

iter its (divstep_vr_mod f) (1, f, g, 0, 1) in

let sign := if fm <? 0 then (-1) else 1 in

sign * pc * vm mod f.

Definition by_inv_jump_ref mw f g :=

let bits := (log2 f) + 1 in

let its := jump_iterations bits mw in

let total_iterations := its * (mw - 2) in

let k := (f + 1) / 2 in

let pc := (k ^ total_iterations) mod f in

let '(_, fm, _, vm, _) := iter its (jump_divstep n mw f) (1, f, g, 0, 1) in

let sign := if fm <? 0 then (-1) else 1 in

sign * pc * vm mod f.

Listing 9: Implementation of BY-inversion in Coq

2.5 Formalization of Bernstein-Yang inversion

This section presents the formalization of Theorem 2, which proves the cor-
rectness of the BY-inversion algorithm (Algorithm 2). The development is
available at https://github.com/bshvass/by-inversion and paths in this section
will be relative to by-inversion/src/.

The two Coq versions of the algorithm are in Listing 9 (using Divsteps
and JumpDivsteps respectively) and the main theorems of the development,
which state that the Coq algorithms are correct, are in Listing 10.

p-adic valuations

Since some theory of p-adic valuations was required for the proof, we developed
a small library for the basics of this theory. This is in the file PadicVal.v. We
implemented the p-adic valuation by simply counting the number of times a

https://github.com/bshvass/by-inversion

42 CHAPTER 2. HIGH-ASSURANCE INVERSION

Theorem by_inv_spec f g

(f_bound : (21 < log2 f))

(g_bound : 0 < g <= f)

(fg_rel_prime : gcd f g = 1)

(f_odd : odd f = true) :

by_inv_ref f g * g mod f = 1.

Theorem by_inv_jump_spec mw f g

(f_bound : (21 < log2 f))

(g_bound : 0 < g <= f)

(mw_bound : 2 < mw)

(fg_rel_prime : gcd f g = 1)

(f_odd : odd f = true) :

by_inv_jump_ref mw f g * g mod f = 1.

Listing 10: Correctness of BY-inversion in Coq

number is divisible by p and proved the following specification

Lemma pval_spec p a: a <> 0 -> 1 < p ->

(p ^+ (pval p a) | a) /\ ~ (p ^+ (S (pval p a)) | a).

i.e. that pval p a is the maximal power of p which divides a. We also prove
uniqueness such that the full specification becomes

Lemma pval_full_spec p a v: a <> 0 -> 1 < p ->

pval p a = v <-> (p ^+ v | a) /\ ~ (p ^+ (S v) | a).

We also define split p, which divides a number by the maximal power of p
which divides it evenly. We prove the specification

Lemma psplit_spec p a: a <> 0 -> 1 < p ->

a = (p ^+ (pval p a)) * psplit p a /\ ~ (p | psplit p a).

The gcd algorithm

The formalization of the gcd algorithm using divsteps (described in Appendix
E in [35]) is in AppendixE.v. We prove two main results:

1. The existence and specification of q(f, g) (Theorem E.1 in [35])

2.5. FORMALIZATION OF BERNSTEIN-YANG INVERSION 43

2. The correctness of the gcd algorithm assuming termination (Theorem
E.3 in [35])

We implemented a function computing q(f, g) instead of proving its existence
abstractly. This allows us to use it in the recursive definition of Ri (see
Theorem E.2 in [35]). One minor issue here is that to construct q(f, g) one
needs to compute the inverse of split2 g as a 2-adic number. Recall that in
the paper most theorems are stated over this larger ring. This inverse is not
necessarily an integer (e.g. 2 does not have a multiplicative inverse in Z), but
when constructing q(f, g) one only needs the inverse to a finite precision. This
is done by computing the inverse of split2 g modulo 2i. We recall that Coq’s
default logic and type theory are constructive. This has the advantage that
all definable functions are actually computer programs, and allows us to carry
out proofs by computation. It is possible to consistently add the axiom of
excluded middle, but as a result the computation may get stuck. We have
decided to use such non-computable real numbers. This allows us to carry out
all operations in the same type (R), as opposed to silently coercing (embedding)
rational numbers into the real numbers. For example, the expression f div2 g
is rational, but we give it type R:

Definition div_2 f g : R := IZR (q f g) / IZR (2 ^+ ord2 g).

where IZR is the embedding from the Z to R (see also Theorem E.1 in [35]).
A constructive solution could have been to use a library of algebraic, or

constructive, real numbers.

Complexity analysis

The formalization of the termination proof of the gcd algorithm is in AppendixF.v.
This part of the proof is the content of Appendix F in [35]. Here, their
proof becomes more complicated and one theorem from [35] depends on the
termination of a SAGE program (see theorem F.22 and figure F.23 in [35]).

The mathematical community is ambivalent about such ‘computer proofs’;
see, for example, the discussions around the 4-color theorem [62] and Kepler’s
conjecture [65]. A popular solution is to carry out the computation inside a
proof assistant. Although Coq has become much faster in recent years, e.g.
due to addition of native compilation [45], this computation is still beyond
the scope of what can be done in Coq in reasonable time. Instead, we use
Coq’s extraction mechanism [78] to translate the Coq program to a related
program in OCaml. This slightly extends the trusted computing base. That is,
to trust formalization of the proof is correct, one also has to trust the unverified
extraction mechanism. However, possible bugs in extraction are likely to be
orthogonal to possible issues in [35].

44 CHAPTER 2. HIGH-ASSURANCE INVERSION

The operator norm. To prove termination of the gcd algorithm, we need
to prove that the operator norm of products of transition matrices is bounded
by an exponentially decreasing sequence of numbers. In particular, we have to
introduce the operator norm of matrices; we only define it for 2 by 2 matrices
since this suffices for the proof. To this end, we use the following formula

Definition mat_norm (m : mat) :=

let '(m11, m12, m21, m22) := m in

let a := (m11 ^ 2 + m12 ^ 2)%R in

let b := (m11 * m21 + m12 * m22)%R in

let c := (m11 * m21 + m12 * m22)%R in

let d := (m21 ^ 2 + m22 ^ 2)%R in

sqrt ((a + d + sqrt ((a - d) ^ 2 + 4 * b ^ 2)) / 2).

To prove that this definition enjoys properties such as |Mv|2 ≤ |M ||v|2 and
|MN |2 ≤ |M |2|N |2, we prove and use the spectral theorem for 2 by 2 real
matrices. This is the content of Spectral.v. See also theorem F.11 in [35] (note
that by taking this formula as our definition, we do not need to prove theorem
F.11).

The file Spectral.v only contains lemmas pertaining to the spectral theorem
and the norm of matrices over reals. Our formalization of 2 by 2 matrices over
general rings is in Matrix.v. This theory is built on top of a small theory of
algebraic structures, which is the content of Hierarchy/. This library is in the
style of math-classes [101], although in the interest of simplicity we do not
depend on it. For similar reasons, we did not reuse [80]. We used automation
in this development to avoid tedious algebraic proofs. The tactics auto_mat and
inversion_mat use the decision procedure ring over types declared as algebraic
rings to solve most equational proofs about matrix operations.

Bounding the operator norm. Next, the proof proceeds by computing
a bound on the operator norm of products of matrices of a particular form,
namely

Definition M (e : nat) (q : Z) :=

[0 , 1 / (2 ^ e) ; - 1 / (2 ^ e) , q / (2 ^ (2 * e))].

The bound is given by theorem F.16 in [35], which is formalized in AppendixF.v.
The formalized proof is a little laborious, since we did not find any simple
tactics for manipulating expressions involving square roots (sqrt). Our general
strategy is to reduce an expression to an expression without square roots by
isolating and squaring appropriately. These two methods do not, however,
suffice in general (consider e.g.

√
5 ≤ 1+

√
2+
√
3). A general solution would be

to construct the ring of integers extended with square roots as a subring of the

2.5. FORMALIZATION OF BERNSTEIN-YANG INVERSION 45

real closed field extending the rationals and use advanced decision procedures
there [55].

The bounding sequence. Next, we define the number sequence αn which
will bound the operator norms. Using this we prove three main facts

• If a particular subset of the matrices M(e, q) are bounded by αn, then
all such matrices are bounded by αn (Theorem F.21 in [35]).

• That all matrices in this particular subset are bounded by αn (Theorem
F.22 in [35]).

• That the gcd algorithm terminates (Theorem F.26 in [35]).

Now we use Coq’s extraction mechanism to prove Theorem F.22, as discussed
at the beginning of this section. The development of this computational proof
is the contents of Comp1. The file Comp1/Mem.v contains the program to be ex-
tracted (depth_first_verify) which utilizes memoization to achieve performance.
Memoization complicated the formalization quite a bit, and we split the proof
as follows:

1. Proving that the memoized program terminates (using extraction).

2. Proving the memoized program equivalent to a non-memoized program
(this is in Comp1/Mem.v).

3. Proving that if the non-memoized program terminates, then theorem
F.22 follows (this is the content of Comp1/NoMemNew.v).

Running the extracted program terminates9 and outputs the same result as
reported in [35]. The axiom which we add is comp1_theorem in Comp1/Mem.v.

The other proofs in this section were more straightforward as they mostly
combine previously established theorems (about matrices and about the Rj

sequence from AppendixE.v).
We developed a small “big operator” library [38] to reason about the big

multiplications (
∏
) and big additions (

∑
), as required in theorem F.21. Like

our theory of matrices, it is built on top of Hierarchy.v. The same reason for
developing our own matrix library applies here, we wanted to have a greater
degree of control over the implementation.

Relating the gcd algorithm and divstep

We finally prove Theorem 2 in Section11.v by proving and utilizing the connec-
tion between the gcd algorithm and iterating divstep in AppendixG.v. We have
also included an implementation of the inversion algorithm, Algorithm 2, in
BYInv.v with an accompanying correctness proof. Note that we prove a slightly

9In 332 minutes using OCaml 4.11.1 on a Intel Coffee Lake Core i7-9750H.

46 CHAPTER 2. HIGH-ASSURANCE INVERSION

specialized version of Theorem 2: We require that the maximum bitwidth of f
and g to be at least 21. This suffices for all cryptographically interesting primes
and, in particular, the primes which we have benchmarked in Section 3.4.

A formal proof of correctness for inputs of bounded size exists [109]. Their
approach is different from ours, in that they generate bounds and proofs of
correctness from bounds on the inputs (which the caller provides). They
achieve this by using a new proof strategy using convex hulls of all possible
branches in a sequence of divsteps. Their proofs, like ours, use very heavy
computation based on a program written in Coq. Unlike ours, the time it
takes for their algorithm to finish is (barely) feasible within Coq.

Assumptions and trusted computing base (TCB)

Fiat-Crypto is axiom free but the printer from the intermediate language
to C is not verified, and thus it has to be trusted. The formalization of
the proof of BY-inversion depends on a few axioms; these are printed at
end of building the development. The first four are standard axioms from
the classical reals in the standard library, which are needed because Coq’s
logic is constructive: sig_not_dec (axiom of limited omniscience), sig_forall_dec,
functional_extensionality_dep (functional extensionality) and classic (law of ex-
cluded middle). The last axiom comp1_theorem is the assertion that the com-
putation of the term depth_first_verify terminates and yields Some number (as
described in Section 2.5). We verify this last axiom using extraction to OCaml,
adding the extraction mechanism of Coq to the TCB. This is a small, but
standard, extension of the TCB, similar to Coq’s native_compute [45], which
also uses the ocaml compiler after a translation of a Coq term to an OCaml
program. The precise term is

comp1_theorem : depth_first_verify = Some 3787975117

2.6 Connecting the formalization of BY-inversion
and Fiat-Crypto

Having proven both Listing 2 and Listing 10 we can combine them and prove
that Fiat-Crypto does in fact compute the inverse (wrt. the modular operations
in Fiat-Crypto).

However, since the theorems are proven under different developments, we
have to copy the correctness theorem Listing 10 to the Fiat-Crypto development,
and include it as an assumption in our assertions. We hesitate to merge the
two libraries, as it would quite a large dependency to the already substantial
Fiat-Crypto library – however the propositions are identical as can be inspected

2.6. CONNECTING THE FORMALIZATION OF BY-INVERSION AND
FIAT-CRYPTO 47

(compare Ref.v in the Fiat-Crypto repository to BYInv.v in the by-inversion
repository).

Converting representations. There is a technical caveat when com-
paring the input of by_inv to its output: The function by_inv assumes that
its input g is represented as a multi-limb number in two’s complement, and
it ensures that its output is in either Montgomery or unsaturated Solinas
representation (depending on the implementation). Usually, you will want
both input and output to be in the appropriate representation for modular
arithmetic (Montgomery/Solinas). Thus, to use the function, we have to
convert between representations first. We will write to_tc for this conversion
(to two’s complement).

Word by word Montgomery. For multi-limb numbers in Montgomery
form this function is simply zero-extending by a single limb if necessary, i.e.

Definition to_tc := extend_to_length mont_limbs tc_limbs.

where extend_to_length is provided by Fiat-Crypto, mont_limbs is the amount of
limbs in Montgomery representation and tc_limbs is amount of limbs needed
for representing in two’s complement. Recall that we need 2 more bits to
represent m in two’s complement, so this will just be the identity, unless m’s is
within 2 bits of a multiple of the machine word size. Using this, we can prove
the theorem

Lemma by_inv_correct g

(g_length : length g = mont_limbs)

(g_nonzero : eval g <> 0)

(g_valid : valid g)

(spec : by_inv_spec m (eval g)) :

eval (mulmod (by_inv (to_tc g)) g) mod m

= 2 ^ (machine_wordsize * mont_limbs) mod m.

by applying the general lemmas about mulmod and the correctness theorem of
by_inv (Listing 2). The valid predicate on g asserts that the evaluation of g
is less than m and that it is in the unique saturated representation. This
is required for all Montgomery operations and is the responsibility of the
caller. Note that g is not invertible if g is zero and that 2 ^ (machine_wordsize *

mont_limbs) mod m is indeed the identity in the Montgomery domain.
We prove an identical theorem about by_inv_jump in BYInvJump.v.
Unsaturated Solinas. For the unsaturated representation, we have to be

a bit more careful, since the representation is not unique. If we just naively
convert to two’s complement, we might get an “overflow” error, where a positive
integer incorrectly becomes interpreted as negative. We therefore utilize the

48 CHAPTER 2. HIGH-ASSURANCE INVERSION

freeze function provided by Fiat-Crypto to get a canonical representation,
which can safely be converted to two’s complement. The definition becomes

Definition to_sat mw num den n tc_limbs m g :=

let g := freeze (weight num den) n (ones mw) m g in

convert_bases num den mw 1 n tc_limbs g.

Here num/den is the base of the unsaturated representation and n is the amount
of limbs, such that convert_bases converts from the unsaturated representation
to two’s complement, which has base mw/1 and limbwidth tc_limbs, as expected.
We are then able to prove the theorem

Lemma by_inv_correct g

(g_length : length g = n)

(g_nonzero : eval g mod m <> 0)

(g_bounds : 0 < eval g < 2 * m)

(spec : by_inv_spec m (eval g mod m)) :

eval (carry_mulmod (by_inv (to_tc g)) g) mod m = 1.

again by combining previous results. The bound requirements on g are needed
for the correctness of freeze. They are the responsibility of the caller, but
can always be met by calling the unsaturated Solinas function carrymod, which
ensures that its output is within these bounds.

Additional constraints on m. Note that we need some assumptions
about the prime m in addition to the ones already required by Fiat-Crypto. As
mentioned in Section 2.4, we need that m < 2 ^ (machine_wordsize * tc_limbs - 2)

to ensure that we can interpret m correctly in two’s complement. Secondly, we
need that 21 < log2m, which is true for all cryptographic use cases. Finally we
need to prove that the amount of times we iterate in the implementations of BY-
inversion do not result in overflows. The concrete bounds are in BYInv.v and
BYInvJump.v, named iterations_bounds. These constraints are all checked before
code generation (see check_args in UnsaturatedSolinas.v and WordByWordMontgomery.v,
in src/PushButtonSynthesis).

2.7 Related work
The verified synthesis approach adopted by Fiat-Crypto is not the only possi-
bility for verifying implementations of cryptographic algorithms. An alternate
approach consists of writing optimized code by hand in a low-level language
embedded in a proof assistant.

EverCrypt [94] is one example of this approach that provides a formally
verified cryptographic provider, i.e., a collection of verified cryptographic imple-
mentation together with an API. It builds on two other projects HACL* [111],

2.8. FUTURE WORK 49

which is a collection of cryptographic protocols implemented, specified and ver-
ified in a subset of the F* language (Low*) and compiled to C, and ValeCrypt
which is a collection of cryptographic primitives implemented in an assembly
language and verified using the Vale tool [46]. EverCrypt does not generate
code for new primitives, but it supports a large amount of cryptographic primi-
tives including AES, SHA-3, MD5 and implementations of elliptic curves as well
as signature and key exchange protocols on top of these. Notably, EverCrypt
does not support curves for pairing-based cryptography. Yet another approach
is followed by Jasmin [5], which provides a higher level assembly language
and a verified compiler to Intel assembly. Jasmin has been used to verify a
high-performance SHA3 implementation [6], among many other primitives [7].

There are differences in the guarantees of the tools mentioned. Coq is
foundational in that it reduces all proofs to the axioms of mathematics. Neither
Easycrypt nor F* are foundational, even though they were carefully designed,
they depend on an unverified reduction to unverified SMT-solvers. Moreover,
Easycrypt does not include evaluation of functions. We are not aware that F*
would be able to complete the computation that Coq cannot.

2.8 Future work

We can extend our work in several directions. In one angle, we can target
embedded platforms running over ARM or RISC-V and study the performance
trade-offs in those systems. In another angle, we can extend the scope to other
arithmetic layers employed in many other cryptographic protocols based on
pairings. Fiat-Crypto can be extended with the general construction of field
extension, by implementing polynomial arithmetic. Since these polynomials
would have coefficients in the finite fields currently generated by Fiat-Crypto,
one would have to be able to generate representations of these, e.g. as arrays
of integers. It is unclear whether or not Fiat-Crypto is geared for this, but if it
is, then the implementation should be no more difficult than what is presented
in Section 2.4.

Going even further, one could extend Fiat-Crypto to generate elliptic curve
arithmetic directly. However, Fiat-Crypto’s low-level language does not include
function calls and these are necessary to implement elliptic curve operations.
A solution could be to the use bedrock2, a low-level language embedded in
Coq with links to the Fiat-Crypto library. This has been pursued in [70].

After generating elliptic curve arithmetic, we can go yet another step
up the abstraction layer and implement bilinear pairings over these curves.
Bilinear pairings are maps from a product of curve groups of prime order
to the multiplicative subgroup of an extension field. At this point we would
have all necessary primitives to implement pairing-based protocols. This has
the added complexity of requiring a formalization of bilinear pairings in Coq.
Formalizations of elliptic curves in Coq already exist, e.g. in [25] and in the

50 CHAPTER 2. HIGH-ASSURANCE INVERSION

Fiat-Crypto library, but no formalized implementation of a pairing has been
publicly developed.

2.9 Acknowledgements
We would like to thank Pieter Wuille and Tim Ruffing for interesting discus-
sions about their related work and the anonymous reviewers for the suggested
improvements. Part of this research was supported by the Concordium Foun-
dation.

Chapter 3

Faster constant-time
evaluation of the Kronecker
symbol with application to
elliptic curve hashing

Diego F. Aranha, Aarhus University
Benjamin Salling Hvass, Aarhus University
Bas Spitters, Aarhus University
Mehdi Tibouchi, NTT Corporation

Abstract

We generalize the Bernstein-Yang (BY) algorithm [35] for constant-
time modular inversion to compute the Kronecker symbol, of which the
Jacobi and Legendre symbols are special cases. We start by developing a
basic and easy-to-implement Divstep version of the algorithm defined
in terms of full-precision division steps. We then describe an optimized
version due to [67] over word-sized inputs, similar to JumpDivstep version
of the BY algorithm, and formally verify its correctness. We introduce a
number of optimizations for implementing both versions in constant time
and at high-speed. The resulting algorithms are particularly suitable for
the special case of computing the Legendre symbol with dense prime p,
where no efficient addition chain exists for the conventional approach
by exponentiation to p−1

2 . This is often the case for the base field of
popular pairing-friendly elliptic curves. Our high-speed implementation
for a range of parameters shows that the new algorithm is up to 14 times
faster than the conventional exponentiation approach, and up to 25.7%
faster than the previous state of the art. We illustrate the performance
of the algorithm with an application for hashing to elliptic curves, where
the observed savings amount to approximately 40% when used for testing
quadratic residuosity within the SwiftEC hashing algorithm [54].

51

52 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

3.1 Introduction

Many algorithms of cryptographic interest in Number Theory can be expressed
as variants of the Euclidean algorithm. Natural examples employed in many
cryptosystems are algorithms for computing modular inversion, and testing if
integers have a square root with respect to a modulus (quadratic residuosity).
Respectively, these algorithms are used to generate keys in factorization-based
cryptosystems such as RSA and Paillier, or to convert elliptic curve points to
affine coordinates; and for testing validity of the x-coordinate of an elliptic
curve point when hashing.

In its original form, the Euclidean algorithm executes a variable number
of iterations computed over monotonically decreasing inputs until a certain
condition is met. This aspect of the algorithm, however, poses a challenge
for their implementation when both security and performance are priorities.
This is true under a threat model where the adversary is capable of measuring
characteristics of the running implementation, such as execution time or
power consumption, mounting a so-called side-channel attack. In such a
setting, an adversary can observe irregular patterns in the implementation and
collect leakage that reveals sensitive information, for example bits of private
inputs [2–4]. A particular class of side-channel attacks that is considered
easier to exploit consists of timing attacks, in which an adversary collects
leakage correlated with private inputs by measuring timing differences locally
or remotely. Common countermeasures against such attacks are employing
constant-time implementation or employing additional randomness to make
inputs or execution less predictable.

The literature has many hardened variations of Euclidean algorithms that
behave in a more regular way and reduce the amount of leakage. The simplest
approach is to evaluate the functions computed by these algorithms using
one or more exponentiations by a fixed power depending on the modulus,
for example (p − 2) for inversion modulo p. When parameters permit, this
can be evaluated efficiently in constant-time using a short addition chain.
Alternatively, a branchless implementation could evaluate all targets of branches
and conditionally select only the correct one at each iteration [48]. This would
effectively eliminate timing attacks based on branch prediction, but at high
performance penalty. Another common trick is to introduce a blinding factor
that randomizes the execution, which might keep the algorithm in variable-time
but decorrelates the leakage from the actual inputs [2]. In many cases, these
protections impose a non-trivial performance penalty that greatly reduce the
efficiency of implementations in comparison to the unprotected versions; or
improve security at most heuristically by modestly increasing attack complexity,
while not addressing the root causes for side-channel leakage.

Related work. The Bernstein-Yang (BY) algorithm for modular inver-
sion [35] is a recent development that elegantly improved solutions available to
this problem. It consists of a fast algorithm that can be easily implemented

3.1. INTRODUCTION 53

in constant time, since it is formulated in terms of division steps that can be
efficiently evaluated in a regular manner. The algorithm is quite flexible, and
can also be generalized for polynomial arithmetic or to solve other problems
related to the Euclidean algorithm. Recent work by Hvass et al. [73] has
formally verified the theory underlying the BY algorithm using a foundational
approach, and synthesized efficient and formally verified implementations for
inclusion in the Fiat-Crypto framework [59].

In a recent independent preprint [67], Hamburg continues the Bernstein-
Yang line of work and proposes a variation of the BY algorithm to compute
the Jacobi symbol

(a
b

)
for a, b ∈ Z, in constant time. The Jacobi symbol is

a generalization of the Legendre symbol and can be computed by factoring

b =
∏

i p
ei
i and multiplying the Legendre symbols

(
a

pi

)ei

for each prime factor

pi and multiplicity ei. In turn, the Legendre symbol represents the quadratic

residuosity of a modulo pi and can be computed as
(
a

pi

)
≡ a

pi−1

2 (mod pi).

From another research angle, Pornin recently introduced a constant-time
algorithm to compute modular inversion in constant time by unrolling the inner
loop in a variation of the binary Euclidean algorithm [89]. He later adapted it
for the Legendre symbol as well, and presented timings for an implementation
targeting ARM Cortex-M0 microcontrollers [90].

Contributions. In this paper, we generalize the full-precision version of
the BY algorithm to compute the Kronecker symbol that generalizes both
the aforementioned Legendre and Jacobi symbols. When restricted to the
Legendre symbol, which is the case of higher interest in cryptography, we
obtain a significant speedup over its computation using exponentiation for
dense prime moduli, where a short addition chain to compute exponentiation
by p−1

2 is not known and modular multiplication is more expensive due to
Montgomery arithmetic. The case of dense prime moduli frequently occur
in pairing-based cryptography, where the finite fields are defined in terms of
prime numbers parameterized by polynomials that quickly grow in density
when evaluated over sparse integers. Moreover, we optimize Hamburg’s faster
word-sized version of the algorithm and obtain an additional speedup over the
exponentiation approach. The correctness of our algorithms is backed by a
formal verification of the underlying theory using the framework developed
in [73].

Our efficient implementation and experimental evaluation point out that
the basic and faster versions of the algorithm are 2 and 14 times faster than
the exponentiation approach when implemented in constant time for several
prime moduli underlying popular pairing-friendly curves, and up to 25.7%
over the previous state of the art established in [90]. We also illustrate the
algorithm when applied for testing quadratic residuosity within the SwiftEC
approach to hash arbitrary strings to points on an elliptic curve, obtaining
an approximate speedup of 40%. Our version of the algorithm can be easily

54 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

modified to compute the Kronecker symbol instead, which is a generalization
of the Jacobi symbol supporting negative integers as input.

Organization. The paper is organized as follows. Section 3.2 gives
the mathematical background about the various symbols and the original BY
algorithm. Section 3.3 develops the new algorithms and optimizations, both the
full and word-sized precision versions. Section 3.4 presents our benchmarking
approach and experimental results, and Section 3.5 concludes.

3.2 Preliminaries

In this section, we review definitions for the Legendre, Jacobi and Kronecker
symbols and their main properties. These are functions applied to integer
parameters taken from monotonically larger sets. In textbooks, all three use
the same notation

(a
b

)
, but we will denote them with L, J and K subscripts

to make explicit what symbol we are referring to. We note that this does not
change their definitions in any way, but it will prove important later on when
we introduce the algorithmic parts and move across different parameter ranges.

The Legendre symbol of a over p, written as
(
a

p

)
L

for integer a and odd

prime p, is defined as:

(
a

p

)
L

=

0 if a ≡ 0 (mod p)
1 if a 6≡ 0 (mod p) and ∃x ∈ Z : a ≡ x2 (mod p)
−1 otherwise.

In other words, the Legendre symbol encodes the information about a being
a quadratic residue modulo p, and thus can be evaluated through Euler’s

criterion by computing
(
a

p

)
L

≡ a
p−1
2 (mod p).

The Legendre symbol satisfies several properties:

• Periodicity in the first argument (numerator):

if a ≡ b (mod p) then
(
a

p

)
L

=

(
b

p

)
L

• Complete multiplicativity:
(
ab

p

)
L

=

(
a

p

)
L

(
b

p

)
L

.

In particular, it allows to state the law of quadratic reciprocity for odd primes
p and q: (

p

q

)
L

(
q

p

)
L

= (−1)
p−1
2

q−1
2 ,

3.2. PRELIMINARIES 55

and its two supplements:(
−1
p

)
L

= (−1)
p−1
2 =

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).(
2

p

)
L

= (−1)
p2−1

8 =

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8).

The Jacobi symbol generalizes the Legendre symbol to odd positive integers
b, given the factorization of b =

∏
i p

ei
i for pi > 2:(a

b

)
J
=
∏
i

(
a

pi

)ei

L

.

It also satisfies many of the same properties of the Legendre symbol, for example
periodicity of the first argument, and complete multiplicativity in one argument
when the other is fixed. Like the Legendre symbol, if

(a
b

)
J
= −1 then a is a

quadratic nonresidue modulo b. The converse
(a
b

)
J
= 1 for quadratic residue

a modulo b is only true if a and b are coprime. Hence it also satisfies a more
general law of quadratic reciprocity with supplements, expressed in the same
way but for odd positive coprime integers.

The Kronecker symbol further generalizes the Jacobi symbol to all remaining
cases, where b = u ·

∏
i p

ei
i for u ∈ {−1, 0, 1} and pi ≥ 2, defined as:

(a
0

)
K

=

{
1 if a = ±1
−1 otherwise.

(a
2

)
K

=

0 if a is even,
1 if a ≡ ±1 (mod 8)

−1 otherwise.

(
a

−1

)
K

=

{
1 if a ≥ 0

−1 otherwise.(a
b

)
K

=
(a
u

)
K

∏
i

(
a

pi

)ei

L

.

The Kronecker symbol shares many of the basic properties of the Jacobi
symbol, but under more restrictions, and does not have the same connection
to quadratic residuosity as the previous two. In this work, we will consider the
most general definition of the Kronecker symbol, but note that some textbooks
restrict the definition to b > 0 for simplicity [96].

The Bernstein-Yang algorithm

The BY algorithm for modular inversion relies on the definition of a division
step that updates the operands as the algorithm executes for a fixed number
of iterations [35]. A division step (divstep) is defined for all integers δ, g and
odd integers f as:

divstep(δ, f, g) =

(
1− δ, g, g−f

2

)
if δ > 0 and g odd(

1 + δ, f, g+(g mod 2)f
2

)
otherwise.

56 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

The algorithm also computes transition matrices:

T (δ, f, g) =

(
0 2

−1 1

)
if δ > 0 and g odd

(
2 0

g mod 2 1

)
otherwise.

Note that we use the definition of T from [73] which differs slightly from the
presentation in [35].

For integers δ, f and g we write (δn, fn, gn) = divstepn(δ, f, g) and Tn =
T (δn, fn, gn).

Algorithm 4 iterates the divstep function, computing and sequentially
multiplying the transition matrix of the resulting values. For a constant-time
implementation, the branch can be implemented by just looking at individual
bits of δ and g, the sign flips by converting the corresponding variables in
two’s-complement representation, and the assignments by conditional swaps
to exchange the values when the branch is taken (lines 4-5 in the algorithm).

Algorith 5 implements modular inversion by computing the number of
iterations required (lines 1-5), setting up the constants (lines 6-7), iterating the
division steps the required number of times (line 8) and combining the results
at the end (line 9). In the algorithm, sgn(·) computes the sign of an integer.
For a fixed modulus f and assuming 1 < g < f , which is the case commonly
occurring for modular arithmetic in cryptography, we can precompute the
values d,m and e in advance. The correctness of the algorithm is given by the
main theorem in [35], reproduced below.

Theorem 2 (Theorem 11.2 in [35]). Let f and g be integers with f odd. Let d
be a real number such that f2 + 4g2 ≤ 5 · 22d. Let m be an integer such that
m ≥ b(49d+ 80)/17c if d < 46 and m ≥ b(49d+ 57)/17c if d ≥ 46.

For i = 1, 2, . . . ,m, let (δi, fi, gi) = divstepi(1, f, g) and Ti = T (δi, fi, gi)

and
(
ui vi
qi ri

)
= Ti−1Ti−2 · · · T0. Then gm = 0, fm = ± gcd(f, g) and vmg =

2mfm (mod f).

Since f and g are assumed to be coprime, the final values of f and v are
respectively fm and vm, and p is the inverse of 2m modulo f , so the following
holds:

p · v · sgn(f) · g = (2−m)v(±1)g = (±1)(±1) = 1 (mod f).

Again we use the presentation from [73] which differs slightly from the one
in [35] because of our definition of T .

3.3. ALGORITHMS FOR KRONECKER SYMBOL 57

Algorithm 4: Divsteps for inversion
Input : Integers n, δ, f and g such that f is odd
Output :The integers δn, fn and gn and the matrix product

TnTn−1 · · · T0
1 k ← 0, u← 1, v ← 0, q ← 0, r ← 1
2 for i← 1 to n do
3 if 0 < δ and g odd then
4 δ ← −δ, f ← g, g ← −f ,
5 u← q, v ← r, q ← −u, r ← −v
6 g0 ← g mod 2, δ ← δ + 1

7 g ← g+g0f
2 , u← 2u, v ← 2v

8 q ← q + g0u, r ← r + g0v

9 return δ, f, g, (u v
q r)

Algorithm 5: Bernstein-Yang modular inversion algorithm.
Input : Integers f and g such that f is odd and gcd(f, g) = 1
Output : Integer g−1 such that gg−1 = 1 (mod f)

1 d← max(log2 f, log2 g) if d < 46 then
2 n← b(49d+ 80)/17c
3 else
4 n← b(49d+ 57)/17c
5 e← ((f + 1)/2)n mod f
6 δ ← 1
7 δ, f, g, (u v

q r)← Divsteps(m, δ, f, g)
8 return e · v · sgn(f)

3.3 Algorithms for Kronecker symbol

We describe two versions of the algorithm: an easier-to-implement full-precision
version based on divstep, described in Section 3.3; and a faster word-sized
version described in Section 27. Like in modular inversion, we will assume
that the first argument to Divsteps is public. It corresponds to the modulus
in inversion and the bottom argument in the Kronecker symbol. Hence the
algorithms can leak the values of specific bits of f , and the lengths of both
arguments f and g, since the number of iterations depend directly on those.
Since f is known in advance and 0 ≤ g < f in the cases of interest within
cryptography, there is no impact in security.

58 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

Full-precision Divstep version

We start by defining a symbol that extends the Jacobi symbol to include

negative numbers in the denominator as
(a
b

)
:=

(
a

|b|

)
J

, for integers a, b.

Even numbers are also handled by factoring out powers of
(a
2

)
K

=

(
2

a

)
K

under multiplicativity. This is well-defined, so we have the following version of
reciprocity for coprime a and b:

(a
b

)(b
a

)
= ε(a, b)(−1)

a−1
2

b−1
2 , (3.1)

where ε(a, b) = −1 if both a and b are negative and 1 otherwise. All other
properties of the usual Jacobi symbol are preserved (such as multiplicativity
in both arguments and periodicity in the numerator).

Now we extend the divstep function to also record information about the
value of the Jacobi symbol. For k ∈ {±1} we define:

divstepk(δ, f, g, k) =
(
1− δ, g, g−f

2 , (−1)
g2−1

8 ε(g,−f)(−1)
g−1
2

−f−1
2 k

)
if δ > 0 and g odd(

1 + δ, f, g+(g mod 2)f
2 , (−1)

f2−1
8 k

)
otherwise.

In this first case, we swap (f, g) with (g,−f) and employ the laws of
quadratic reciprocity to handle even f and multiplicatively accumulate the
result into the intermediate value k. In the second case, we apply the second
supplement of the law of quadratic reciprocity to handle even g and accumulate
the result. Now we can prove that the recurrence computes the extended symbol
correctly.

Lemma 1. For all n ∈ N write (δn, fn, gn, kn) = divstepnk(δ, f, g, k). If we
take k = 1 and assume that gcd(f, g) = 1, then we have

kn

(
gn
fn

)
=

(
g

f

)
.

In particular, if fn = ±1, then kn =

(
g

f

)
.

Proof. We proceed by induction in n. By assumption k0 = k = 1, so the
formula is true when n = 0.

3.3. ALGORITHMS FOR KRONECKER SYMBOL 59

If δn+1 > 0 and gn+1 is odd, then

kn+1

(
2gn+1

fn+1

)
= (−1)

g2n−1

8 ε(gn,−fn)(−1)
gn−1

2
−fn−1

2 kn

(
gn − fn
gn

)
=

(
2

fn+1

)
kn

(
gn
−fn

)
=

(
2

fn+1

)(
g

f

)

and the result follows by dividing by
(

2

fn+1

)
. Note that we use that fn+1 is

odd and that fn and gn are coprime (since f and g are assumed to be so).
If δn+1 ≤ 0 or gn+1 is even, then

kn+1

(
2gn+1

fn+1

)
= (−1)

f2n−1

8 kn

(
gn + (gn mod 2)fn

fn

)
=

(
2

fn+1

)
kn

(
gn
fn

)
=

(
2

fn+1

)(
g

f

)
.

and the result follows as before.

By the main theorem of [35], there is anN such that (fN , gN) = (± gcd(f, g), 0)
so we get the following corollary.

Lemma 2. Let f and g be integers with f odd. We have that(
g

f

)
=

{
kN iffN = ±1
0 otherwise.

This means that if we iterate divstepk as many times as is needed for
divstep to converge, then we also get an algorithm for computing the extended

symbol
(
g

f

)
defined previously.

For simplicity, we will split the resulting algorithm for arbitrary integers
f, g in two subroutines. The inner routine will evaluate the extended symbol(
g

|f |

)
by iterating the divstepk the required number of times. Algorithm 6

does exactly that, but it also computes the transition matrix. Algorithm 7
is a modification to evaluate the branches in constant time explicitly and
to avoid computing the transition matrix that is not needed for the actual
evaluation of the Kronecker symbol. We define an operator msb(·) to evaluate
the most-significant bit in two’s complement representation that coincides
exactly with the sign evaluation. The other general cases corresponding to the

60 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

Kronecker symbol will be handled in the outer Algorithm 8, which can also be
trivially modified to be executed in constant-time with respect to the value
of g. In particular, we handle the case f = 0 right after counting the number
of iterations, and use a temporary variable u to correct the sign when both f
and g are negative and when f is even. We argue that Algorithm 8 does not
leak information about g when the branches are evaluated in constant time,
other than its length when iterating Divstepsk for the corresponding number
of iterations. In the cases of interest to cryptography (Legendre or Jacobi
symbol), g is assumed to be reduced modulo f , so the number of iterations is
determined by f alone and does not leak information about the length of g.

Algorithm 6: Divstepsk for Kronecker symbol
Input : Integers n, δ, f and g such that f is odd
Output :The integers δn, fn and gn

1 k ← 0, u← 1, v ← 0, q ← 0, r ← 1
2 for i← 1 to n do
3 if 0 < δ and g odd then
4 δ ← −δ, f ← g, g ← −f ,
5 k = k + ((bf2 c mod 2) · (bg2c mod 2) + 1) mod 2
6 if f < 0 ∧ g < 0 then
7 k ← k + 1 mod 2

8 g0 ← g mod 2, δ ← δ + 1

9 k = k + ((bf2 c mod 2) · (bf4 c mod 2)) mod 2

10 g ← g+g0f
2 u← 2u, v ← 2v

11 q ← q + g0u, r ← r + g0v

12 return δ, f, g, k, (u v
q r)

Word-oriented JumpDivstep version

Algorithm 4 can be optimized by observing that computing the ` first iterations
of Divsteps only depends on the ` first bits in f and g. This allows working
on smaller numbers and “jumping” through the computations of Divsteps in
larger steps (see section 10 in [35]).

This optimization, however, can unfortunately not be naively applied to
Algorithm 7. The issue is that going to a lower bit length by truncating, one
loses information about the most significant bits of f and g. Fortunately, a
trick discovered Hamburg in [67] can be used to circumvent this issue. In [67]
it is noted that to compute the contribution of msb(f) ∧msb(g) to k output
by Algorithm 7, one only needs to compute the amount of times f changes
sign. Now this in itself is still not enough, since f is truncated. Instead it

3.3. ALGORITHMS FOR KRONECKER SYMBOL 61

Algorithm 7: Optimized OptDivstepsk in constant time
Input : Integers n, δ, f and g such that f is odd
Output :The integers δn, fn and gn

1 k ← 0
2 for i← 1 to n do
3 d0 = (g mod 2) ∧ (δ > 0)
4 δ = −δ if (δ < 0)
5 k = k ⊕ (1⊕ (f � 1) ∧ (g � 1))⊕ (msb(f) ∧msb(g))
6 f ← g if d0 > 0, g = −g if (d0 > 0)
7 g0 ← g mod 2, δ ← δ + 1
8 k = k ⊕ (((f � 1) mod 2) ∧ ((f � 2) mod 2))
9 g ← (g + g0f)� 1

10 return δ, f, g, k

turns out that counting the amount of times q changes sign in Algorithm 6 is
sufficient for computing the contribution of f ’s sign changes.

Hamburg defines a 2 by 2 number matrix to be ratchet, if it has strictly
positive determinant and its second row is positive. Then he proceeds to prove
the two theorems:

Theorem 3 (Theorem 1, [67]). Let Mi be a sequence of ratchet matrices and
let Ti =

(
ai bi
ci di

)
be the sequence of matrices recursively defined by T0 = I

and Ti = Mi · Ti−1. Let f, g ∈ Z with either f 6= 0 or g > 0 and write(
fi
gi

)
= Ti ·

(
f
g

)
. If tj , uj denote the number of times that fi, ci change signs

for i ≤ j, respectively, then tj − uj ∈ {0, 1}.

Theorem 4. For all n ∈ N, Tn is ratchet.

Using these two theorems, one can apply the jumpdivstep optimization
to Algorithm 6. To this defines a variant of Algorithm 7 which does not use
the most significant bits of f or g, but rather counts the sign changes of q to
compute the same contribution. Let us refer to this version as JumpDivsteps
k.

For a processor with word size w, an optimal value for ` would be the
largest integer smaller than w−2 that divides the required number of iterations.
We also define Algorithm 9 as an adaptation of Algorithm 8 that uses the
modified JumpDivsteps k. Algorithm 9 computes the number of iterations
using the half-delta optimization [109], that reduces the number of iterations
by approximately 18% on average, then handles the corner cases just like
Algorithm 8. It finishes by invoking JumpDivstepsk as a subroutine.

62 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

Algorithm 8: Kronecker symbol based on Divsteps
Input : Integers f and g

Output :Kronecker symbol
(
g

f

)
K

1 d← max(log2 f, log2 g)
2 if d < 46 then
3 n← b(49d+ 80)/17c
4 else
5 n← b(49d+ 57)/17c
6 if f = 0 then
7 if g = ±1 then
8 return 1
9 else

10 return 0

11 u← 1
12 if (f < 0) and (g < 0) then
13 u← −1 // handle negative operands

14 while f mod 2 = 0 do
15 f = f/2
16 if g mod 2 = 0 then
17 u← 0 // return 0 no matter k below

18 if g mod 8 = ±3 then
19 u← −u // factor out (g|2) and flip u

20 δ ← 1
21 δ′, f ′, g′, k ← OptDivstepsk(n, δ, |f |, g)
22 if |f ′| 6= 1 then
23 return 0

24 if k = 1 then
25 return −u
26 else
27 return u

Formal Verification of Hamburg’s Paper.

The BY inversion algorithm has been formalized in the Coq Proof Assistant in
related work [73]. We build on top of that framework to give formal guarantees
about the Kronecker computation. The contributions of this development are
publicly available1.

1
https://github.com/bshvass/by-inversion/blob/jacobi2/src/Ratchet.v

https://github.com/bshvass/by-inversion/blob/jacobi2/src/Ratchet.v

3.3. ALGORITHMS FOR KRONECKER SYMBOL 63

Algorithm 9: Kronecker symbol based on JumpDivsteps
Input : Integers f and g

Output :Kronecker symbol
(
g

f

)
K

1 d← max(log2 f, log2 g)
2 n = b(45907d+ 26313)/19929c
3 if f = 0 then
4 if g = ±1 then
5 return 1
6 else
7 return 0

8 u← 1
9 if (f < 0) and (g < 0) then

10 u← −1 // handle negative operands

11 while f mod 2 = 0 do
12 f = f/2
13 if g mod 2 = 0 then
14 u← 0 // return 0 no matter k below

15 if g mod 8 = ±3 then
16 u← −u // factor out (g|2) and flip u

17 δ ← 0
18 δ′, f ′, g′, k ← JumpDivstepsk(n, δ, |f |, g)
19 if |f ′| 6= 1 then
20 return 0
21 else
22 return u · k

Concretely, we formalize the results in Hamburg’s paper [67], which are
necessary for the correctness of the JumpDivsteps implementation of the
Kronecker computation.

To formalize Theorem 3 we need some auxiliary functions. We define
µ : Z×Z→ {0, 1} by µ(a, b) = 1 if a and b have different signs and 0 otherwise;
this is used to count sign changes. We also define ε as in Section 3.3. Using
these we can rephrase Theorem 3 as follows.

Theorem 5. Let i ∈ N and cj and fj be defined as in Theorem 3 for all
j ∈ {0, . . . , i}. Then

i−1∑
j=0

µ(fj+1, fj) =
i−1∑
j=0

µ(cj+1, cj) + (µ(fi, f0) + µ(ci, c0) mod 2).

64 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

The formalization of this proposition in Coq is the following:

Definition ratchet_spec M i :=

κ M i =

(κ' M i) + ((μ (f M i) (f M 0)) + (μ (c M i) (c M 0))) mod 2.

where κ and κ' correspond to the sums in Theorem 5.
The proof proceeds much like in [67]. We split each matrix Mi into a

product of three matrices, each of which are either upper triangular or rotation
matrices. We implement this as a map t from sequences of matrices to sequences
of matrices, defined in Coq as

Definition t (M : nat -> mat Q) :=

fun (i : nat) =>

let '(a, b, c, d) := M (i / 3)%nat in

if (decide (b ≡ 0))

then match mod3dec i with

| inright _ => I

| inleft pf => match pf with

| right _ => I

| left _ => (a, b, c, d)

end

end

else match mod3dec i with

| inright _ => (b, 0, d, 1)

| inleft pf => match pf with

| right _ => (0, 1, -1, 0)

| left _ => (a * d / b - c, 0, a / b, 1)

end

end.

where mod3dec decides whether a number is 0, 1 or 2 modulo 3. Note that all the
matrices in the sequence t(M) are either upper triangular or rotation matrices.
In Coq we have that:

Lemma t_lt_or_rot M : forall i, lt_or_rot (t M i).

We prove that the sequence t(M) actually decomposes the sequence M , such
that multiplying three consecutive matrices in t(M) (starting at a multiple of
3) gives a corresponding matrix in M :

(t(M))3·i+2 · (t(M))3·i+1 · (t(M))3·i =Mi.

3.4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 65

We then prove that Theorem 5 is satisfied if M is a sequence of matrices which
all are upper triangular or rotation matrices. This is the theorem

Theorem aux M :

f0 ≢ 0 \/ g0 > 0 ->

(forall i, ratchet (M i)) ->

(forall i, lt_or_rot (M i)) ->

(forall i, ratchet_spec M i).

and by applying the decomposition function t, we get Theorem 5 in Coq

Theorem thm M :

f0 ≢ 0 \/ g0 > 0 ->

(forall i, ratchet (M i)) ->

(forall i, ratchet_spec M i).

3.4 Implementation and experimental results

Our collection of experimental results is split in two parts. In the first sub-
section we study the performance of the Kronecker symbol in isolation, by
benchmarking the Legendre symbol across multiple parameters from curve-
based cryptography. In the second, we observe the performance of the algorithm
in the context of elliptic curve hashing.

Legendre symbol

For benchmarking, we specialize for the Legendre symbol, which is the most
interesting case of cryptographic interest. We have implemented our algorithms
for a range of parameters commonly used in both elliptic curve cryptography
(ECC) and pairing-based cryptography (PBC) settings. For the elliptic curve
cryptography setting, we chose the 256-bit primes 2255 − 19 and 2256 − 232 −
29− 28− 27− 26− 24− 1 labeled by their respective named curves Curve25519,
and secp256k1 at the 128-bit security level. We note however that the specific
prime shape does not affect the performance of our algorithms. For pairing-
based cryptography, we selected three different primes to define the base
field for Barreto-Lynn-Scott (BLS) curves [21] at multiple security levels. In
particular, those are respectively the prime moduli underlying the BLS curves
with embedding degree 12 undergoing standardization at 128-bit security [84],
the 509-bit prime for BLS curves with embedding degree 24 proposed for
192-bit security [13, 19], and the 575-bit prime for BLS curves with embedding
degree 48 proposed for 256-bit security [82].

66 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

The code was developed on a fork of the RELIC toolkit [11] in the C
programming language, due to its strong support for curve-based cryptography.
For reference, RELIC has a number of pairing-friendly curves implemented
efficiently, having set multiple speed records for their computation. There is
support for advanced elliptic curve hashing algorithms [108] and handwritten
Assembly acceleration for the field arithmetic. This approach allowed compar-
isons between our algorithms for Legendre symbol computation and the other
algorithms already implemented in the library.

In the implementation, we followed the library standard and implemented
arithmetic using saturated arithmetic, with 64-bit limbs. We also implemented
support for Pornin’s algorithm [90] by incorporating it from the optimized
implementation found in the blst [102] multi-lingual library implementing
Boneh-Lynn-Shacham short signatures [47] over the BLS12-381 elliptic curve.
For fairness of comparison, we performed minor tweaks in this implementation
to enjoy the same low-level field arithmetic primitives from RELIC as our
algorithms.

Benchmarking measurements were taken by computing the average la-
tency of running the code for 104 consecutive executions on an Intel Kaby
Lake Core i7-7700 CPU at 3.60GHz. The compilers used were GCC version
12.2 and clang 14.0.6, with optimization flags -O3 -funroll-loops -march=native

-mtune=native. Following benchmarking conventions 2, TurboBoost and Hyper-
Threading were disabled for higher stability.

Our results are presented in Table 3.1. In the table, the first part sets
the baseline for comparison. We included the highly-optimized variable-time
implementation of the Jacobi symbol from the GNU MP library version
6.2.1 [63], and the exponentiation approach by Euler’s criterion using a generic
constant-time algorithm. The particular choice configured for the latter was
a sliding-window exponentiation with precomputation table of 32 elements,
as per the default RELIC configuration. These two algorithms represent the
conventional approaches for variable-time and constant-time implementation,
and respectively set both a lower bound for aggressively optimized variable-time
code, and an upper bound for generic constant-time approach. The next part
brings what is arguably the current state-of-the-art-algorithms for computing
the Legendre symbol in constant time. The first line for related work labeled
with (C+ASM) contains timings for Pornin’s algorithm [90] using RELIC’s
Assembly acceleration for the various fields. The line labeled with (pure ASM)
constains pure Assembly implementations for Pornin’s algorithm found in the
blst library for BLS12-381, or an implementation that we built ourselves. In the
case of Curve25519 and secp256k1, the pure ASM implementation was built by
computing shorter addition chains for p−1

2 using [83], combined with Assembly
code for squarings/multiplications from [87]. The last part of the table show
the performance of our algorithms, both the basic Divstep approach and the

2
https://bench.cr.yp.to/supercop.html

https://bench.cr.yp.to/supercop.html

3.4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 67

JumpDivstep optimization.
From the baseline entries in the first part of the table, we can observe the

massive difference in performance between the two approaches, ranging from a
4- to 45-factor. These illustrate how poorly the generic exponentiation-based
approach performs across the various parameters. It is at best competitive
with the basic Divstep implementation, but only for the shorter parameters.
Starting with the ECC primes, the sparse Curve25519 prime benefits a lot both
the variable-time GMP implementation and the addition-chain based exponen-
tiation approach, exactly as expected. For the constant-time implementations,
the related work in pure ASM is the fastest, with a 11% speedup over our
JumpDivstep algorithm (8,846 instead of 9,891 cycles, respectively). When we
increase the prime length by 1 bit but move to the secp256k1 field, where the
modulus is not as sparse and arithmetic is not as efficient, the addition-chain
approach is penalized and the numbers are reversed: now JumpDivsteps
becomes 11% faster (9,756 instead of 10,971 cycles, respectively). Now moving
to the dense pairing-friendly primes, the generic constant-time exponentiation
based approach does not scale well and cannot be easily optimized with shorter
addition chains, so the basic Divsteps approach becomes competitive by
providing a speedup between 1.5 and 2.5. The real competition is between
Pornin’s algorithm in (C+ASM) versus JumpDivstep, in which we obtain
a consistent improvement of 17.8-25.7% across all fields. In the particular
case of the BLS12-381 prime which is heavily optimized in blst, the fully
unrolled pure ASM implementation of the same algorithm gives a substantial
42% improvement over the (C+ASM) version, and becomes 23% faster than
our JumpDivstep approach. However, we believe that comparison is not
entirely fair and our JumpDivstep approach would benefit similarly from the
same-level of optimization, to the point of providing a similar improvement we
obtained in comparison to the (C+ASM) version.

Table 3.1: Benchmarks of different approaches for Legendre computation over
different fields. Numbers in bold are the fastest for group of implementations
in this work or related work among the different compilers for a certain choice
of prime. With exception of variable-time GMP, all implementations run in
constant time.

Curve25519 secp256k1 BLS12-381 BLS24-509 BLS48-575
gcc clang gcc clang gcc clang gcc clang gcc clang

Variable-time GMP 2,702 2,692 7,777 7,820 12,007 11,930 16,120 16,222 18,353 18,314
Generic constant-time exp. 37,200 36,778 34,264 34,779 110,286 112,987 228,315 226,817 305,544 308,035
Related work (C+ASM) 11,336 11,322 11,271 11,217 17,323 17,460 24,357 24,046 27,565 27,419
Related work (pure ASM) 8,847 8,846 10,971 10,979 10,000 10,003 – – – –
This work (Divsteps) 35,727 50,321 35,773 49,631 69,164 73,148 88,873 105,857 129,074 129,060
This work (JumpDivsteps) 9,891 10,277 9,756 10,182 13,044 14,074 17,865 19,101 22,643 23,760

68 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

Application to elliptic curve hashing

Hashing arbitrary strings to elliptic curve points is a fundamental operation in
many cryptographic protocols, for example the pairing-based short signature
scheme [47]. Various techniques have been proposed to perform this operation
efficiently for an elliptic curve in short Weierstrass form E : y2 = x3 + ax+ b
over a field of characteristic p, starting from the basic try-and-increment. With
this approach, a cryptographic hash function is used to hash the string to the x-
coordinate of a point, and then the value z = x3+ax+ b is tested for quadratic
residuosity. In the positive case, the y-coordinate is computed as

√
z in Fp;

otherwise x is incremented and another quadratic residuosity test performed.
However, there are several problems with this approach: the distribution of
outputs is uncertain; and the algorithm is intrinsically variable-time, which
might leak information about the string being hashed.

A more principled alternative approach was proposed by Brier et al. [50].
This approach is composed in two stages, first the messagem is hashed to a field
element in Fp, and then the Shallue-van de Woestijne-Ulas (SWU) encoding
f : Fp → E(Fp) is used to map the hash output to a point in the elliptic curve.
Given two cryptographic hash functions h1 and h2 mapping from arbitrary
strings to Fp, the complete process constructs the elliptic curve hash function
H : {0, 1}∗ → E(Fp) as simply H(m) = f(h1(m)) + f(h2(m)), and then
multiplying the result by a cofactor to obtain a point in the right prime-order
subgroup. From the security point of view, it is known that the map H will
satisfy the standard security notion of random oracle indifferentiability when
both h1 and h2 are indifferentiable from random oracles as well. Unfortunately,
this approach is quite expensive in which it needs two evaluations of the
encoding map f (plus a minor elliptic curve point addition) to perform its role.
Most follow-up work has focused on specialized and optimizing this approach
to different classes of elliptic curves, for example BLS12 [108], by accelerating
the computation of the map f and proposing variants easier to implement in
constant time.

The performance drawback of previous approaches was recently improved
in the research literature with the SwiftEC [54] algorithm. In this new work,
Chávez-Saab et al. reformulate the encoding map f as a parameterized family
of functions, such that fh2(m)(h1(m)) is indifferentiable from a random oracle
if h1 and h2 are indifferentiable as well. The algorithm constructs a conic S
admitting a two-parameterization over Fp, and uses it to obtain three candidate
coordinates x1, x2, x3 for the x-coordinate of a point in E, such that at least
one of them will be such that (x3i + axi + b) is a square. The latter will be
exactly the x-coordinate, and a matching y-coordinate is computed by taking
a square-root and choosing the sign based on an additional bit. This idea saves
the evaluation of one encoding function, which in turn saves on square-root
extractions and quadratic residuosity tests. The algorithm is also considerably
easier to implement in constant-time than previous work, providing additional

3.4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 69

benefits beyond just the performance improvement.
We implemented the SwiftEC construction for the parameters in Ta-

ble 3.1. We restricted the implementation for the cases where the JumpDi-
vstep approach for computing the Legendre symbol improved on the previous
state-of-the-art, which means all primes except Curve25519. Coincidentally,
those were the exact parameters where the corresponding elliptic curve was
such that a = 0, which represents a simpler and faster special case of SwiftEC.
Algorithm 10 presents the algorithm, which executes one inversion, two Legen-
dre symbol computations, one square root and other minor operations in the
finite field (additions, squarings and multiplications). For a fully constant-time
implementation, we would need to remove the branch to handle the case in
line 8, which occurs with at most negligible probability. This can be easily
handled by setting P to the point at infinity, conditionally randomizing w and
making the assignment in line 22 conditional as well. We omit these details to
simplify the description, with a remark that most protocols would reject the
point at infinity as an output anyways, requiring another hashing attempt.

Table 3.2: Benchmarks of different approaches for hashing to elliptic curves
defined over different fields. Numbers in bold are the fastest for group of
implementations in this work or related work among the different compilers
for a certain choice of prime. With exception of variable-time SWU, all
implementations run in constant time.

secp256k1 BLS12-381 BLS24-509 BLS48-575
gcc clang gcc clang gcc clang gcc clang

Variable-time SWU + SQRT 361,170 362,420 629,625 624,955 1,071,457 1,093,585 1,641,249 1,595,068
SwiftEC+Exponentiation 260,834 261,456 560,359 563,114 928,453 928,714 1,372,557 1,375,696
SwiftEC+JumpDivsteps 141,181 142,893 365,370 370,817 515,451 514,849 806,602 810,699

Table 3.2 has the resulting timings, using the same benchmarking machine
and iterations as described in the previous subsection. In the table, the first line
represents the baseline for comparison established by RELIC’s implementation
of the SWU approach [108] in variable-time to save square root computations.
This implementation computes modular square roots using exponentiation by
p+1
4 , relying on the fact that all benchmarked parameters have p ≡ 3 (mod 4).

In the second line, we have a naive implementation of the SwiftEC algorithm
using Legendre symbols computed through Euler’s criterion implemented in
constant time using exponentiation. In the last line, we present numbers for
the same implementation, but now using our algorithm for faster evaluation of
the Legendre symbol using JumpDivsteps. In comparison to the variable-time
baseline in the first line, SwiftEC+JumpDivstep in constant-time improves
timings for hashing by 41% to 61%, depending on the parameter. The highest
speedup is for the secp256k1 prime modulus. In comparison to the SwiftEC
algorithm implemented with baseline Legendre symbols, the speedups are

70 CHAPTER 3. EVALUATION OF THE KRONECKER SYMBOL

reduced to the range between 34% and 46%.

Algorithm 10: Special case of SwiftEC with a = 0

Input :Elliptic curve E(Fp) : y
2 = x3 + b with order n = hr, for

prime r and cofactor h, integer λ such that λ2 ≡ −3 (mod p),
hash functions h1, h2 : {0, 1}∗ → Fp, hs : {0, 1}∗ → {0, 1}

Output :Point P ∈ E(Fp) of order r
1 t← h1(m), u← h2(m), s← hs(m)
2 x1 ← (u3 + b− t2)
3 y1 ← 2t2 + x1
4 z1 ← 2tuλ
5 x1 ← u · λ · x1
6 v ← z1(x1 − uy1), w ← 2y1z1
7 if w = 0 then
8 P ←∞ // point at infinity

9 else
10 w ← w−1

11 x1 ← vw
12 x2 ← −(u+ x1)
13 x3 ← (4y21w)

2 + u
14 y1 ← x31 + b, y2 ← x32 + b, y3 ← x33 + b

15 c2 ←
(
u

p

)
L

, c3 ←
(
v

p

)
L

16 x1 ← x2 if c2 = 1 // conditional copies

17 y1 ← y2 if c2 = 1
18 x1 ← x3 if c3 = 1
19 y1 ← y3 if c3 = 1
20 y1 ←

√
y1

21 y1 ↔ −y1 if w + s mod 2 = 1 // choose y-coordinate

22 P ← h · E(x1, w) // multiply by cofactor

23 return P

The experimental results show that our proposed algorithms for evaluating
the Legendre symbol as a special case of the Kronecker symbol can substantially
accelerate computations in curve-based cryptography. While hashing to elliptic
curves is used for illustration, any other evaluation of the symbol in a context
involving a secret numerator operand can perform more efficiently by using
our techniques.

3.5. CONCLUSION 71

3.5 Conclusion
In this paper, we generalized the efficient and constant-time BY algorithm
for modular inversion to compute the Kronecker symbol. We defined two
versions of the algorithm, with different trade-offs: a full-precision version
that is easier to implement and a faster word-oriented variant. After proving
correctness of the introduced algorithms using a formalization of the BY theory
within the Coq proof assistant, we produced an optimized implementation of
the algorithms inside the RELIC library. Benchmarking our implementation
revealed that the new algorithm is up to 14 times faster than the conventional
exponentiation approach, and 25.7% faster than the previous state of the art;
and improved a recent approach for hashing to elliptic curves by approximately
40%.

Chapter 4

The last yard: formal
specification and security
proofs for high-speed
cryptography

Benjamin S. Hvass, Aarhus University
Lasse Letager Hansen, Aarhus University
Philipp Haselwarter, Aarhus University
Theo Winterhalter, Inria Saclay
Bas Spitters, Aarhus University

Abstract

While the field of high-assurance cryptography matures, a unified
framework for end-to-end verification without gaps is still missing. To ad-
dress this, we connect three tools: (1) the emergent specification language
Hacspec; (2) the Jasmin compiler to produce high-assurance efficient
assembly code; (3) the SSProve foundational framework for end-to-end
security and correctness verification of cryptographic implementations.
SSProve has been used in the past for the modular verification of the
security of cryptographic protocols. We provide both an imperative and
a functional embedding from Hacspec to SSProve and automate equiva-
lence proofs between those two translations. We further extend SSProve
with a semantics-preserving embedding of Jasmin programs, allowing
one to reason about high-performance cryptographic code. To evaluate
our toolchain, we connect an existing AES Jasmin implementation to
a security proof in SSProve and also partially relate it to a Hacspec
specification.

This case study demonstrates how to leverage the modularity of
SSProve’s language by breaking the game-hopping refinement proofs into
composable modules.

73

74 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

4.1 Introduction
In recent years, in the field of high-assurance cryptographic software, there has
been an effort to close the gaps in the verification toolchains [8, 32]. However,
a few important gaps in verification remain.

First, there is the specification gap. When considering formal proofs, one
should consider whether one has proved the correct statement. Hacspec [85]
addresses this problem by identifying a simple subset of the Rust programming
language which is both understandable for the ordinary developer and cryp-
tographer, while at the same time providing a precise (functional) semantics.

Second, high assurance implementations often want to use Jasmin, since
unverified C compilers cannot always be trusted [98], while CompCert [76]
(only) provides code comparable to code generated by GCC at optimization1

level 1.
In the fundamental ‘last mile’ paper [8], the verification of Jasmin programs

uses a mixture of Coq and EasyCrypt, with no precise formalized connection
between the two. In this paper, we provide a toolchain that closes such veri-
fication gaps by replacing EasyCrypt by SSProve, and moreover, connecting
to Hacspec. Importantly, this facilitates using large existing mathematical
libraries in Coq, which are not available in EasyCrypt. Moreover, the verifica-
tion of jasmin programs often starts by proving the equivalence of a functional
specification with an imperative reference implementation. We automate this
process by using Hacspec.

Third, cryptographic primitives do not live in isolation but are part of
larger protocols. So, one needs some way to connect Jasmin code with a
higher level language, such as Rust. Jasminify is a script that replaces Rust
code by Jasmin code. However, it comes with no correctness guarantees. Our
toolchain facilitates proving source-level correctness of such a transformation
for cryptographic protocols written in Hacspec.

Contributions

In this paper, we contribute the following:

• The first translation of Hacspec into an imperative programming language
in a proof assistant, including automatic proofs of program equivalence
of a functional and imperative program embedding (Section 4.4 and 4.4)

• Connect SSProve to the verified Jasmin compiler via a verified translation
from the Jasmin source code to SSProve.

• We evaluate our toolchain by proving security of the Hacspec specifi-
cations of OTP and AES in SSProve. Then we prove that the Jasmin
implementations satisfy these specifications.

1
https://www.absint.com/factsheets/factsheet_compcert_c_web.pdf

https://www.absint.com/factsheets/factsheet_compcert_c_web.pdf

4.2. FROM SPECIFICATION TO VERIFIED, EFFICIENT
IMPLEMENTATION 75

4.2 From specification to verified, efficient
implementation

Given an efficient, low-level implementation in Jasmin and a reference imple-
mentation in Hacspec, we translate both to SSProve, an imperative language
embedded in Coq. Once translated, the programs can be compared and we
can prove probabilistic properties about them using probabilistic relational
Hoare logic in Coq.

We begin by illustrating our methodology using a simple example: exclusive
or (XOR), which we will use in the one-time-pad (OTP) in 4.2. A Jasmin
implementation of this function could look as follows:

export fn xor(reg u64 x, reg u64 y)

-> reg u64 {

reg u64 r;

r = x;

r ^= y;

return r;

}

which reads two variables x and y stored in registers (as specified by the reg

keyword) and writes the XOR of x and y to another register.

Translation to Coq

The first step in our tool chain is to get the Coq AST of the jasmin source. We
obtain the function’s AST in Coq by using a pretty printer from the internal
extracted AST generated by the Jasmin compiler to a proper Coq term; this
boils down to basically de-extracting the extracted Coq term from OCaml.
Then we use our translation from Jasmin functions to SSProve codes and get
the following SSProve function.

Definition JXOR id0 w1 w2 :=

#put x := w1 ;;

#put y := w2 ;;

#put r := w1 ⊕ w2 ;;

r0 ← get r ;;

ret [('word U64 ; r0)].

Note that this is not the literal output of the translation, but rather the result
of some careful (but semi-automated) unfolding and rewriting. Note also that
the code takes an id, id0, as input: This determines which locations on the
heap it will use for its local memory.

76 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

Equivalence to reference

The reference implementation is given in the specification language Hacspec
and is in this case quite similar to our ‘efficient’ implementation.

fn xor(x : u64, y : u64) -> u64 {

x ^ y

}

This is similarly translated to a SSProve function hacspec_xor and now that we
have both translations, we can state and prove the theorem, that they should
be equivalent in our program logic.

Lemma xor_equiv : ∀ id0 w1 w2,

⊢ ⦃ λ '(h₀, h₁), ⊤ ⦄

res ← JXOR id0 w1 w2 ;;

ret (hdtc res)

≈

hacspec_xor w1 w2

⦃ λ '(v₀, h₀) '(v₁, h₁), v₀ = v₁ ⦄.

Here, hdtc simply takes the head of the returned list of results. The pre- and
postconditions are predicates over pairs of heaps and pairs of value-heap pairs
(resp.) since we wish to reason about stateful programs. This particular
equivalence only relates the return values of the two programs, so, we do not
provide guarantees about how the two program uses memory. In particular,
they might use different locations to store their intermediate values.

Securely implement OTP

We now prove security properties of our jasmin program. The property
we are interested in is perfect security of a OTP scheme using the Jasmin
implementation of XOR.

To this end, we first need to define some terminology. In SSProve a package
is a finite set of codes which might contain calls to uninstantiated external
codes. The set it implements is called its exports and the set on which it
depends its imports. A game is a package with no imports and a game pair is a
pair of games which export the same procedures. These can be used to model
cryptographic games, e.g. a game pair might consist of a real encryption scheme
and an oracle: These have the same interfaces but different implementations.

Returning to the OTP example, we need to define the game pair consisting
of an implementation of OTP using the Jasmin code and an implementation
which we know to be secure.

The Jasmin game is the package JOTP_real exporting the single code:

4.2. FROM SPECIFICATION TO VERIFIED, EFFICIENT
IMPLEMENTATION 77

Definition JOTP id0 m :

k_val ← sample uniform (word n) ;;

JXOR id0 m k_val.

The implementation for which we already have a security proof is the package
OTP_real exporting the single code:

Definition OTP m :

k_val ← sample uniform (word n) ;;

ret m ⊕ k_val.

This game is already proven to be indistinguishable under chosen plaintext
attack (IND-CPA) in the SSProve library. This is done by proving that
the advantage of an attacker in distinguishing between OTP_real and a game
OTP_ideal, where the input is disregarded and a random message is encrypted,
is zero.

If we can prove that JOTP_real is perfectly indistinguishable from OTP_real,
then we can combine the two results using the triangle inequality for advantages
of games (Lemma 1 in [1]) and prove that an adversary also cannot distinguish
between JOTP_real and OTP_ideal, i.e. that the Jasmin implementation is IND-
CPA.

That is, we only need to prove the following theorem:

Lemma JOTP_OTP_perf_ind id0 :

JOTP_real id0 ≈₀ OTP_real.

where ≈0 means that the advantage of an adversary trying to distinguish
between the two games is zero. To prove this lemma we utilize Theorem 1 from
[1], which allows us to conclude if we can prove the following code equivalence
for all m and some stable invariant inv:

⊢ ⦃ λ '(s₀, s₁), inv (s₀, s₁) ⦄

JOTP id0 m ≈ OTP m

⦃ λ '(b₀, s₀) '(b₁, s₁), b₀ = b₁ ∧ inv(s₀,s₁) ⦄.

For the precise definition of stable invariant see 4.2 in [1]. In our case we
can use the invariant heap_ignore, which asserts that both heaps are preserved
during execution, if the locations used by JXOR are ignored.

Combining this result with the already established security of OTP_real we
get security of JOTP_real.

78 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

Theorem unconditional_secrecy_jas :

forall LA A,

fdisjoint LA xor_locs ->

ValidPackage LA

[interface #val #[i1] : 'word → 'word] A_export A →

Advantage IND_CPA_jasmin A = 0.

That is, for all adversaries A and regions of adversarial memory LA, if the
adversary cannot use the same locations as JXOR then their advantage in
distinguishing between JOTP_real and OTP_ideal is zero.

4.3 Background

Hacspec

Hacspec is a High Assurance Cryptography SPECification language [85]
aiming to be the connection between programmers, cryptographers and proof
engineers. It is a way to make internet standards, such as IETF and NIST,
machine-readable. Hacspec is constructed as a subset of Rust, a programming
language familiar to cryptographic engineers. The Hacspec language was
carefully crafted to have a functional semantics in which assignments are
translated to let-expressions. The Hacspec tool comes with translations to
several proof assistants, currently F?, Coq and EasyCrypt. As such it is a
convenient tool to share specifications across provers. This allows one to safely
combine code generated from these proof assistants. As these backends have
been used before, over time this gives us confidence in the translation.

The Hacspec language Unlike Rust, Hacspec comes with a precise op-
erational semantics. The soundness of the translations with respect to the
operational semantics is ‘obvious’. However, this has not been proven formally.
Because the Rust language is currently not specified, Hacspec can be seen as
one proposed precise semantics for this subset of Rust. Other such proposals
include those of Denis et al. [57], Ho and Protzenko [69].

Because Hacspec has translations to multiple backends/tools/libraries, all
the translations of specifications/reference implementations in Hacspec can be
used to either prove properties of the protocol, or to prove equivalence with
an optimized implementation.

The Hacspec library Hacspec is aimed towards specifying cryptography,
and therefore provides a builtin library that implements common functionalities
needed by cryptographers. This includes:

• Modular Arithmetic Integers;

4.3. BACKGROUND 79

• Machine Integers;

• Fixed-length arrays and vectors.

Hacspec adds some type constructors for commonly used types in crypto-
graphic specifications, e.g. fixed-length arrays, modular natural integers and
sequences. These types have a special semantic in the backends. Sequences
and arrays replace vectors in the subset of Hacspec, as we want types with
known size at compile time, to get a safe and fast implementation of the Copy
trait.

Extending Hacspec All additions to the Hacspec library will be immediately
available to all the backends. We envision some small extensions to the language
in the future.

Currently, all Hacspec backends use a functional semantics. However, both
in EasyCrypt and in Coq, one could also choose to use a translation to an
embedded imperative language. We will explain how to do so in Section 4.4.

Jasmin

Jasmin is a low-level language designed for implementing high-speed cryptog-
raphy, with a verified compiler supporting arm and x86 output. The language
has a formal semantics in The Coq Proof Assistant, and this is leveraged by the
jasmin compiler, which is also implemented in Coq. The compiler is verified,
in the sense that it preserves the semantics of its Jasmin source to its target
(currently x86).

Jasmin allows the programmer to have control over the compiled assembly,
while still providing some high-level mechanisms. For instance, the programmer
can specify whether local variables should be stored in registers (using the reg

keyword) or on the stack (using the stack keyword). To allow this fine grained
control, Jasmin requires the programmer to do spilling by hand.

Jasmin offers high-level mechanisms such as for- and while-loops, and both
inlined and non-inlined function calls.

SSProve

As we already hinted at, Abate et al. [1] introduced SSProve as a Coq library
for specifying and proving security properties of probabilistic stateful programs.
We will introduce the concepts needed to understand the current paper. An
extensive overview of the tool can be found in the journal version of the
SSProve paper [68].

Code In this paper we will de-emphasize the probabilistic capabilities of
SSProve as they are not currently reflected in Jasmin. They are only needed
when connecting implementations to security proofs. Thus, for our purposes,

80 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

SSProve essentially embeds a stateful language inside Coq using a monad
we call raw_code. In raw_code A one can (1) embed any pure value x of type
A using ret x; (2) read from a memory location ℓ and use the read value in
a continuation k, written x ← get ℓ ;; k x; (3) write a value v to a memory
location ℓ and then continue with k, written #put ℓ ;; k; (4) combine two
programs using a bind operator that we write x ← u ;; k x.

Memory model Memory locations consist in a natural number and a type
that together serve as an index in a global shared memory. This global state
is valid when all locations point to values of the same type. Note that to
be able to use the type in the key of the memory, we must in fact use codes
of types; since SSProve is built for probabilistic code, these codes represent
types on which one may build (discrete) distributions. Technically, they are
choice_type in the sence of [81]. For our purposes, it is sufficient to note that
this type includes2 all the types needed to represent Jasmin programs. Memory
is simulated using a structure we call heap, essentially a map from locations
to values. We would like to stress the fact that the memory is global rather
than local to each program. This means that when generating programs one
must take care not to generate overlaps by ensuring disjoint locations. We will
address this point when talking about the translation from Jasmin to SSProve
(Section 4.5).

Packages Another defining feature of SSProve is that of packages. Since
we currently do not use them extensively, we will only introduce them briefly.
Packages are collections of programs that might all refer to the same set of
locations and invoke certain procedures that are part of an import interface.
The signature of this collection defines the export interface of the package.
Packages can thus be combined modularly to create bigger programs. For
instance, one package can be linked to another one that implements its import
interface or they can be composed in parallel to export the union of their
respective export interfaces. This is very useful in proofs of composed protocols
as described by Brzuska et al. [52].

Relational Hoare logic Finally, SSProve features a (probabilistic) relational
Hoare logic that lets us prove relational properties of programs. Once again,
we will focus on the stateful but deterministic fragment. In this program logic
we prove judgments of the form

` {{{φ}}} c0 ∼ c1 {{{ψ}}}

where c0 and c1 are two programs we wish to compare and φ and ψ are
respectively a pre- and a postcondition relating (1) the initial heaps (for φ);

2In fact we extended the choice_type universe with sums, lists and words. Jasmin’s types
are words and arrays of words. Our translated Jasmin functions return a list of values.

4.4. HACSPEC & SSPROVE 81

(2) the final heaps and final return values of both programs (for ψ). In the
case of deterministic programs, this is equivalent to: for all initial memory
states m0 and m1 such that φ(m0,m1) holds, running ci in state mi will yield
final state m′

i and final value vi such that ψ(m′
0, v0)(m

′
1, v1) holds.

SSProve proves a number of rules for this logic and provides tactics to
facilitate writing proofs. Moreover, one can also fall back on the semantics
above to prove judgments; see Haselwarter et al. [68].

4.4 Hacspec & SSProve
Hacspec facilitates writing a specification (reference implementation) which
one can then prove to be equivalent to an efficient implementation. We further
this goal by adding a translation from Hacspec to the cryptography verification
library SSProve. This translation is done in two parts: (1) a pure translation,
which wraps the existing Coq translation to SSProve; (2) a stateful translation,
which uses the SSProve imperative language. We also generate a proof of
functional equality between the two translations. In Section 4.5, we show how to
prove functional equivalence between a Jasmin and a Hacspec implementation.

In EasyCrypt [8], a correctness proof of an efficient implementation often
starts by proving the equivalent between a functional implementation and an
unoptimized imperative implementation. In Section 4.4 we show how Hacspec
allows us to automate this step.

The pure Translation

Hacspec already comes with a Coq backend [95]. We make a minor change
to this backend to facilitate connecting to Jasmin. Coq does not provide
a standard library for machine integers, so, the existing backend chose the
CompCert library to model machine integers. Jasmin uses its own word library.
In the long run we would hope for a unified word library in the Coq ecosystem.
Meanwhile, we have chosen to change the backend to use Jasmin words.

In the future, one may either want to parameterize the backend by a module
type for machine integers, or use parametricity [56] or univalence [28, 104, 107]
to translate between these data structures.

Another issue in the library implementation is the use of coercions to cast
between types (e.g. embedding u8 into N). To allow casting for the types
used in SSProve, we needed to introduce a new type, which represents an
equality between the Coq types, and the types used in code. We can then
coerce between the Coq types, and cast to this equivalence type, to still be
able to use the coercion mechanism of Coq.

We translate for-loops as a fixed-point over the difference in the bounds
of the loop. So, for each loop iteration we decrement the counter of the loop
to a monadic do, and bind the result of the code block applied to the current
accumulated values. This value is then used as the accumulated value in the

82 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

next iteration, until the iteration counter hits zero, where we return the value
of all the mutable variables with assignments in the loop. In this way we prove
that the code block is equalivalent to a fold in pure Coq.

The Stateful Translation

Since we provide the first translation from Hacspec to an imperative pro-
gramming language, we need to extend Hacspec’s analysis. SSProve needs
information about what memory locations and functions are used in a given
scope. To compute this, we add static dependency analysis to the Hacspec
pipeline. This is done by walking the AST for every block of code and adding
a unique memory location for each mutable variable. In a second pass, we add
external dependencies by inspecting all the local (non-external) function calls,
for which we already know the scoping information.

Functional Equality of Translation

We prove functional equality between the two translations by constructing
primitives with both a pure and a stateful version. Then instead of translating
assignments to a pure and stateful assignment, we translate to the assignment
primitive, which has the proof of equality. This way the translation remains
close to the original specification, made more readable by the notation engine
in Coq, while having projections to the stateful and pure translation as well as
the functional equality between them.

4.5 Jasmin & SSProve

We implement a translation of Jasmin programs of type _prog, to SSProve
programs of type raw_code. To prove this translation correct, it proved useful
to extend SSProve with the notion of unary judgments.

Unary deterministic judgements

SSProve originally supported only relational judgments of the form ` {{{φ}}} c0 ∼
c1 {{{ψ}}}, as presented in Section 4.3. We build on top of it a new unary judgment
that deals with the special case where we relate a program with a return value:
` {{{φ}}} c ⇓ v {{{ψ}}}. This time φ is a precondition on the initial state of c while
ψ is a postcondition on the final state after running c. There is no longer any
mention of another state or of a final value in the postcondition, instead the
final value v is part of the judgment. The reason is that we consider c to be a
deterministic program, i.e. one that does not sample.

4.5. JASMIN & SSPROVE 83

We define ` {{{φ}}} c ⇓ v {{{ψ}}} as the following judgment relating c to
return v:

` {{{(m0,m1). φ m0}}}
c

∼ return v
{{{(m′

0, a0), (m
′
1, a1). ψ m′

0 ∧ a0 = a1 ∧ a1 = v}}}

The precondition only considers the memory of the left-hand side, while the
postcondition also states that both sides must produce the same value and
that this value must be equal to v.

Here we define a simple concept using a complex semantic interpretation.
The advantage is that we can reuse the existing theory. Moreover, we obtain a
precise connection between the two logics by proving that whenever c is free of
sampling operations, the judgment above is equivalent to saying that running c
on any initial state m such that φ m will yield return value v and final state m′

such that ψ m′. An advantage of this approach is that we can easily leverage
the rules of the relational program logic to prove unary judgments.

We show the two main rules of the unary program logic derived from the
relational one. They are (thankfully) not surprising.

∀m. φ m =⇒ ψ m ∧ v = v′

` {{{φ}}} return v ⇓ v′ {{{ψ}}}
` {{{φ}}} c ⇓ u {{{ξ}}} ` {{{ξ}}} k u ⇓ v {{{ψ}}}

` {{{φ}}} x← c ; k x ⇓ v {{{ψ}}}

We also derive rules for reasoning about state.

Memory

A major difference between the Jasmin and SSProve semantics, is how memory
is handled. In particular, Jasmin supports both global and local variables:
global variables corresponding to pointers into memory and local variables
representing (and compiling to) variables stored on the stack frame of a single
function call; SSProve only has a notion of global memory. We emulate
the behavior of local variables in SSProve by parameterizing all translated
programs over a process ID, which reserves a region of the global memory to
local variables. Then instantiating a program with a process ID, correctly
assigns new process IDs to all its called functions. We choose to store the
global memory in a map (from integers to bytes), though this could also just
have been region of memory.

Program translations

Types The only base types missing from SSProve’s choice_type (the restricted
set of types which a raw_code can return) were word and array types. Mimicking
Jasmin, we used the coqword library for a type of words, which is based on the
Mathematical Components library. We represent arrays as maps from integers

84 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

to bytes. The only minor difference is our implementation of maps differs from
Jasmin. The benefit of using similar types made it easy to embed Jasmin
values into SSProve values (via the identity) for all except array values.

Expressions For the translation of expressions we had to be careful to do
the right casts and truncations, as dictated by the semantics of Jasmin. e.g.
when looking up in an array, the index is always cast to an integer type. For
the translation of function applications in expressions (additions, subtractions,
etc.), we reused the semantics from Jasmin expressions, by transporting values
back to Jasmin types, applying the operations, and then transporting back to
SSProve types. Note that this transport is only non-trivial for arrays. This
simplifies the proof significantly, only requiring us to prove that all operations
are invariant under this transportation. This is again related to the transport
problem, we mentioned in 4.4.

Instructions The main difficulty in translating instruction was translating
function calls; for operation applications we could mostly use the same solution
as for expressions and for for-loops we simply iterate the translated body.
To be able to call functions, we choose to let our translation keep track of
previously translated functions, and only allow these to be called; this avoids
cyclic function calls and recursion. Furthermore we make sure to call these
translated function with a fresh process ID, such that there are no collisions
between local variables in separate function calls.

Note that we currently do not translate while loops or system calls, as we
have did not give them semantics in SSProve yet.

Correctness theorem

We prove that our translation preserves the semantics of well defined programs.
To do this we define a relation between Jasmin memory-states and SSProve
memory-states. First we relate the global Jasmin memory of type mem to the
“global memory map” stored on the heap in SSProve. The relation is the
natural one, i.e. if one can successfully read a single byte at an address from
the Jasmin memory, then one can look up the corresponding value on the
SSProve heap.

Definition rel_mem (m : mem) (h : heap) :=

∀ (ptr : pointer) (v : u8),

read m ptr U8 = ok v → (get_heap h mem_loc) ptr = Some v.

Here mem_loc is the static Location on the heap where the global memory map
is stored.

4.5. JASMIN & SSPROVE 85

To relate the local memory of Jasmin of type vmap and our implementation
of local memory in SSProve, we define a relation between vmap and a pair of a
p_id (process ID) and a heap. The relation states that if one can successfully
look up a variable in the vmap, then looking up that variable on the heap relative
to the process ID yields the same value.

Definition rel_vmap (vm : vmap) (p : p_id) (h : heap) :=

∀ i v,

vm.[i] = ok v → get_heap h (translate_var p i) = embed v.

Here embed here is the function embedding Jasmin values in SSProve values.
This is usually the identity as discussed earlier.

Now, the relation between Jasmin memory of type estate (which is just a
record containing a emem : mem and current evm : vmap) and SSProve memory
of type heap is not just the conjunction of rel_mem and rel_vmap, since we need
to know that a certain process can spawn arbitrarily many sub-processes and
not run out of space on the heap. To state this we need some terminology. We
will say that a process ID m_id (main ID) is fresh wrt. a heap h when rel_vmap

vmap0 m_id h holds, where vmap0 is the empty variable map. We will assume
that we have a prefix order, �, on process IDs and say that a process ID is
valid when all its strict successors wrt. this order are fresh.

Then we will define the notion of a stack-frame

Definition stack_frame :=

vmap * p_id * p_id * list p_id.

which consists of a vmap, two process IDs and list of process IDs. The intuition
for a term (vm, m_id, s_id, s_st) of this type, is that the vm should be related
(via rel_vmap) to m_id and s_id (sub-ID) should be a valid process ID (from
which the process can spawn new processes with fresh memory). In that case
we say that the stack-frame is valid (given some auxiliary conditions on s_st).
The list s_st (sub-stack) is kept around to remember which processes has been
spawned and how they relate to current process IDs (namely that the memory
they point to should be disjoint). Note that this list is only need for the proof
of correctness, and is not actually used in the translation of a given program.

We then define a stack simply as a list of stack frames

Definition stack := list stack_frame.

and define an inductive relation valid_stack between stacks and heaps. We
define it such that the following key lemmas are satisfied:

(1) A single valid stack_frame constitutes a valid stack.

86 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

Lemma valid_stack_single vm m_id s_id s_st h :

valid_stack_frame (vm, m_id, s_id, s_st) h ->

valid_stack [::(vm, m_id, s_id, s_st)] h.

(2) Popping from a valid stack yields a valid stack.

Lemma valid_stack_pop stf st :

∀ h, valid_stack (stf :: st) h ->

valid_stack st h.

(3) Given a valid stack, you can push an empty stack_frame and preserve
validity, if you update the sub-ID of the previous top.

Lemma valid_stack_push vm m_id s_id s_st st :

∀ h, valid_stack ((vm, m_id, s_id, s_st) :: st) h ->

valid_stack ((vmap0, s_id∼1, s_id∼1, [::])

:: ((vm, m_id, s_id∼0, s_st) :: st)) h.

Here s_id∼0 and s_id∼1 are some process IDs which point to disjoint regions of
the heap and are both strict successors of s_id.

The final relation between Jasmin and SSProve memory is then parameter-
ized by a (current) stack-frame and stack as

Definition rel_estate (s : estate)

(m_id : p_id) (s_id : p_id)

(s_st : list p_id) (st : stack) (h : heap) :=

rel_mem s.(emem) h ∧

valid_stack ((s.(evm), m_id, s_id, s_st) :: st) h.

Using this relation, we can prove how our translation of Jasmin code relates
to its source. For example, if we consider the function translate_pexpr, which
translates Jasmin expressions to raw_code, we get the following correctness
theorem3.

Lemma translate_pexpr_correct :

∀ (e : pexpr) (s : estate) (v : value) m_id s_id s_st st,

sem_pexpr gd s e = ok v →

⊢ ⦃ rel_estate s m_id s_id s_st st ⦄

translate_pexpr m_id e

3Note that we have omitted some boilerplate code for conciseness.

4.5. JASMIN & SSPROVE 87

⇓

translate_value v

⦃ rel_estate s m_id s_id s_st st ⦄.

This theorem states that if a Jasmin expression e has the value v in the jasmin
memory-state s and s is related to an SSProve heap e, then we conclude two
things: (1) evaluating the translated expression (in the heap h) gives the same
value v; (2) after evaluating the translated expression s and h are still related.
This is the expected results, since evaluating expressions should not have any
side-effects on memory.

The main theorem we prove, which establishes the connection between
function calls in Jasmin and in SSProve is the following.

Theorem translate_prog_correct P m vargs m' vres :

∀ fn,

sem_call P m fn vargs m' vres →

handled_program P ->

∀ vm m_id s_id s_st st,

⊢ ⦃ rel_estate {| emem := m; evm := vm |} m_id s_id s_st st ⦄

get_translated_fun P fn s_id~1 [seq totce (translate_value v) | v <- vargs]

⇓

[seq totce (translate_value v) | v <- vres]

⦃ rel_estate {| emem := m' ; evm := vm |} m_id s_id~0 s_st st ⦄.

The theorem states that if calling the function fn in the Jasmin program
(basically, a list of Jasmin functions) P and global memory m with arguments
vargs results in the new global memory m' and returns the values vres, and the
global memory m together with some local memory vm is related to a heap h,
then we can conclude two things:

1. Translating the function at a fresh ID (s_id~1) and calling it with the
translation of vargs as arguments evaluates to the translation of vres

2. After calling the translated function, the global memory m' is related
to heap where we have updated the sub-ID to a fresh one (from s_id to
s_id~0)

Again this is the expected behavior: Calling a function should be able to
change the global but not the local state. We have to update our sub-ID
because the previous one is no longer fresh, since we might have stored local
state inside the function call.

Note the handled_program simply ensures that the program P does not con-
tain any functions using while-loops (as these are not yet supported by our
translation).

88 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

4.6 AES example
As a larger test case of our framework, we verify the security of a Jasmin im-
plementation of an encryption scheme using AES. The Jasmin implementation
and the general methodology are similar to the presentation inEasyCrypt [17],
except we use SSProve instead of EasyCrypt.

Concretely, we prove indistinguishability under chosen plaintext attack of an
PRF-based encryption scheme using an Intel AES-NI Jasmin implementation
of AES.

As was the case in Section 4.2 we do not actually have to provide a security
proof of the abstract encryption scheme, since such a proof, using a generic
function as pseudo-random function (PRF) instead of AES, is already present
in the SSProve library.

The PRF-based encryption scheme is given by the code:

Definition PRF_ENC f m :=

k_val ← kgen ;;

enc m k_val.

where kgen is a key generation code (by uniform sampling) and enc is given by
the code:

Definition enc m k :=

r ← sample uniform N ;;

let pad := f r k in

let c := m ⊕ pad in

ret c.

Here f is the function which we assume to be a PRF and which we will
instantiate with AES in our example. For all functions f : word -> word ->

word we denote the game consisting of the single export PRF_ENC f by PRF_real f.
To connect to the existing proof, we have to prove that PRF_real aes is

perfectly indistinguishable from the same scheme where enc has been substituted
with the translated Jasmin code. For details on the security proof for the
PRF-based encryption scheme see section 2.3 in [1].

The high-level structure of the security analysis of the implementation is
as follows:

1. Implement program in Jasmin

2. Extract Coq AST from the Jasmin source

3. Translate the Coq AST to imperative SSProve code (using the translation
from Section 4.5)

4.6. AES EXAMPLE 89

4. Write the intermediate imperative implementation directly in SSProve
code

5. Write the functional implementation directly in Coq (Gallina)

6. Prove the equivalence between the intermediate implementation and the
functional implementation

7. Prove the equivalence between the translated implementation and the
intermediate implementation

8. Connect the equivalences to the existing security proof of the abstract
encryption scheme

We can skip step (1) by using the implementation from [17]. Steps (3) and
(4) can also be copied almost verbatim from the EasyCrypt development: The
syntactic similarities of the two EasyCrypt and SSProve makes translation
very straightforward. For the proofs in steps (5) and (6) we can reuse some
parts, e.g. the loop invariants, but in general the differences in the operation
semantics and the underlying proof assistants require new proofs.

Translation

As mentioned in Section 4.2, we start by printing the Coq AST’s of all the
involved functions during Jasmin compilation. Then we use the translation
described in Section 4.5 to obtain SSProve codes of each function used in the
implementation.

Specification

Next, we write intermediate specifications for the Jasmin functions. When
comparing to the example in Section 4.2, these correspond to the pure Coq
XOR function. As mentioned, we can reuse the specifications from [17], which
simplifies this step considerably.

The reasoning behind having the intermediate specification between the
translated and the functional one, is that it is usually easier to get rid of the
artifacts from the translation first (generated memory locations, generated
operation specs) and then afterwards worry about the underlying mathematical
logic.

Equivalences for intermediate code

Here we prove that our intermediate implementations are equivalent to func-
tional (stateless) Coq functions. The statements we prove are generally of the

90 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

form:
` {{{(m0,m1). φ (m0,m1)}}}

c i
∼ return (f i)
{{{(m′

0, a0), (m
′
1, a1). φ (m′

0,m
′
1) ∧ a0 = a1}}}

where i is arbitrary input, c is the intermediate SSProve code and f is the
Coq function. Note that we also prove that these equivalences preserve the
precondition φ; for the equivalences to hold we usually have to assume that φ
is stable wrt. memory locations used by c.

Even though f is usually stateless, we have to keep the heap of the right
hand side in mind, since it might be relevant in a context where we wish
to apply the program equivalence. Note that we could have used the unary
judgments described in Section 4.5 if we could ignore the heap of the right
hand side.

Equivalences for translated code

Now we have to reason about the code generated by the Jasmin compiler
and passed through our translation to SSProve. The general form of these
equivalences is:

` {{{(m0,m1). φ (m0,m1)}}}
o ← translate_call id F i ; ;
return o

∼ c i
{{{(m′

0, a0), (m
′
1, a1). φ (m′

0,m
′
1) ∧ a0 = a1}}}

where i is an arbitrary input, id is an arbitrary process ID (determining the
locations used by the function), F is the name of a function in the jasmin
program and c is the intermediate code.

The function translate_call is a subprocedure of our translation function
that handles calls to other functions in the program; by proving an equivalence
of this form, we can reuse it in proofs where F appears as a called function.
Note that it is therefore important that the equivalences are parametric in the
id, since functions can call other functions at arbitrary ids.

Here we also want to preserve the precondition φ and again we have to
assume that φ is stable wrt. the locations of F and c. However, there is
one issue here: the set locations of F is not straightforward to compute and
might also be rather large. Instead we require that φ is stable wrt. to all
possible locations used by φ, i.e. , locations stored using an id′ with prefix
id (id � id′). This turns out to be a sufficient and reasonably manageable
invariant to preserve.

4.6. AES EXAMPLE 91

Connecting to security proof

The encryption function of which we want to prove the security can be imple-
mented in Jasmin as:

fn enc(reg u128 n, reg u128 k, reg u128 p) -> reg u128 {

reg u128 mask,c;

mask = aes(n,k);

c = xor(mask,p);

return(c);

}

We translate this into SSProve as JENC and use it in the following encryption
scheme:

Definition JPRF_ENC id0 m :=

k_val ← kgen ;;

r ← sample uniform N ;;

JENC id0 k_val r m

We will denote the game consisting of just JPRF_ENC by JPRF_real. Then we prove
perfect indistinguishability between this scheme and a similar scheme CPRF_real,
which simply uses an intermediate SSProve encryption function, ENC, in place
of JENC.

To do this, we again use Theorem 1 from [1]. We thus have to find a stable
invariant which is preserved by a run of each of these schemes and prove that
their return values are equal. Here we prove a slight generalization of the
version of Theorem 1 previously implemented in Coq. In the previous version
of the theorem the invariant was required to be stable wrt. the finite sets
of locations used by the program. Moreover, these sets were assumed to be
disjoint from the state of the adversary. We generalize this and only require
the invariant to be stable wrt. some arbitrary sets of locations assumed to be
disjoint from the state of the adversary. In particular, the sets are no longer
required to be finite.

This generalization facilitates applying the theorem to the case where one
of the programs is the output of our translation, since we do not have to
provide the concrete set of locations used by the program, but instead we can
just give an infinite over approximation of locations used by the program. We
obtain following theorem.

Theorem JPRF_perf_indist id0 :

JPRF_real id0 ≈₀ CPRF_real.

92 CHAPTER 4. JASMIN, SSPROVE AND HACSPEC

Now we prove that CPRF_real is perfectly indistinguishable from PRF_real aes

where aes is the functional Coq specification of AES, i.e. we prove the theorem:

Theorem CPRF_perf_indist id0 :

CPRF_real ≈₀ PRF_real aes.

Here we can apply the original version of Theorem 1, since we have better
control over which locations are used.

Now we can use the triangle equality for advantages similar to how we
used them in Section 4.2 and derive that JPRF_real is IND-CPA with the same
bounds as in [1, Section 2.3].

4.7 Future work
Jasminify4 is a python tool that simplifies the process of calling Jasmin code
from Rust. After the compilation of a program, the Rust object file is replaced
with the Jasmin object file. However, Jasminify does not come with any
correctness guarantees. Above we have shown how to prove the equivalence of
a Rust (Hacspec) implementation for AES with a Jasmin program. Hacspec is
expressive enough to implement high-level cryptographic protocols. For such
protocols, we now have a safe way to replace its cryptographic primitives by
optimized Jasmin ones, as we know that their source-level semantics agrees.
For future work, one could try to test this toolchain, by using Jasminify,
proving equivalence between the Hacspec and Jasmin implementations and
then benchmarking to see what kinds of performance gains one can achieve.

4.8 Related work
Formal verification of cryptographic software has been intensely investigated;
see [16] for an overview. More narrowly, work related to SSProve can be found
in [68]. In this section, we survey the closest related work in this space.

CertiCrypt [22] is the earliest framework for reasoning about cryptographic
code in Coq. It is currently unmaintained. FCF [88] is a more recent foun-
dational Coq framework for cryptographic proofs. It was used to verify the
HMAC implementations in OpenSSL [32] and mbedTLS [110].

A detailed comparison with those works can be found in the journal version
of the SSProve paper [68]. Briefly, SSProve is in active development, uses the
well-developed math-comp library and supports modular proofs.

EasyCrypt [23, 24] is a proof assistant and verification tool specifically
designed and built from scratch for game-based cryptographic proofs. Easy-
Crypt’s good integration with automatic theorem provers (e.g. SMT solvers) is

4
https://gitlab.com/Jur/jasminify

https://gitlab.com/Jur/jasminify

4.8. RELATED WORK 93

helpful for such large proofs, even if it does come at a cost in terms of trusted
computing base.

CryptHOL [27] is a foundational framework for game-based proofs that
uses the theory of relational parametricity to achieve automation in the Is-
abelle/HOL proof assistant. However, unlike EasyCrypt, CryptHOL has not
been used for the verification of efficient programs.

The last mile paper [8] is an important point of comparison. It proves the
security and correctness of a Jasmin implementation of SHA3.

The verification of the HMAC C-implementation in OpenSSL [32] uses FCF
and VST. Our work is similar in that we prove the security and correctness of
the Jasmin implementation of AES.

Schwabe et al. [97] proves correctness of the C-implementation of X25519
in TweetNaCl using VST. Protzenko and Parno [92] verifies an impressive
library of cryptographic code in F*. Fiat-cryptography [58] can be used to
generate verified efficient implementations of finite field arithmetic. None of
these works considers cryptographic security.

Acknowledgements
This work was in part supported by the Concordium Blockchain Research
Center at Aarhus University.

Bibliography

[1] Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van
Muylder, Théo Winterhalter, Cătălin Hriţcu, Kenji Maillard, and Bas
Spitters. SSProve: A foundational framework for modular cryptographic
proofs in Coq. 2021. URL https://eprint.iacr.org/2021/397. 6, 77, 79, 88,
91, 92

[2] Alejandro Cabrera Aldaya, Alejandro Cabrera Sarmiento, and Santiago
Sánchez-Solano. SPA vulnerabilities of the binary extended euclidean
algorithm. J. Cryptogr. Eng., 7(4):273–285, 2017. 15, 16, 52

[3] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez
Tapia, and Billy Bob Brumley. Cache-timing attacks on RSA key gener-
ation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):213–242,
2019. 16

[4] Alejandro Cabrera Aldaya, Cesar Pereida García, and Billy Bob Brumley.
From A to Z: projective coordinates leakage in the wild. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2020(3):428–453, 2020. 15, 16, 52

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,
Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-assurance and
high-speed cryptography. In CCS, pages 1807–1823. ACM, 2017. 9, 49

[6] José Bacelar Almeida, Cecile Baritel-Ruet, Manuel Barbosa, Gilles
Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago
Oliveira, Alley Stoughton, and Pierre-Yves Strub. Machine-checked
proofs for cryptographic standards: Indifferentiability of sponge and se-
cure high-assurance implementations of SHA-3. In CCS, pages 1607–1622.
ACM, 2019. 5, 9, 11, 49

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Gré-
goire, Adrien Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves
Strub. The last mile: High-assurance and high-speed cryptographic
implementations. In IEEE S & P, pages 965–982. S & P, 2020. 49

95

https://eprint.iacr.org/2021/397

96 BIBLIOGRAPHY

[8] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Gré-
goire, Adrien Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves
Strub. The last mile: High-assurance and high-speed cryptographic
implementations. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 965–982. IEEE, 2020. 9, 74, 81, 93

[9] Andrew W. Appel. Verified software toolchain - (invited talk). In
ESOP, volume 6602 of Lecture Notes in Computer Science, pages 1–17.
Springer, 2011. doi: 10.1007/978-3-642-19718-5_1. URL https:

//doi.org/10.1007/978-3-642-19718-5_1. 12

[10] D. F. Aranha. Pairings are not dead, just resting. https://ecc2017.cs.ru.

nl/slides/ecc2017-aranha.pdf, 2017. 17

[11] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao.
RELIC is an Efficient LIbrary for Cryptography. https://github.com/rel

ic-toolkit/relic, 2022. 38, 66

[12] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys,
and Julio López. Faster Explicit Formulas for Computing Pairings over
Ordinary Curves. In EUROCRYPT, volume 6632 of LNCS, pages 48–68.
Springer, 2011. 16, 38

[13] Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred
Menezes, and Francisco Rodríguez-Henríquez. Implementing Pairings
at the 192-Bit Security Level. In Pairing, volume 7708 of LNCS, pages
177–195. Springer, 2012. 17, 65

[14] Diego F. Aranha, Paulo S. L. M. Barreto, Patrick Longa, and Jefferson E.
Ricardini. The Realm of the Pairings. In Selected Areas in Cryptography,
volume 8282 of LNCS, pages 3–25. Springer, 2013. 17

[15] Diego F. Aranha, Elena Pagnin, and Francisco Rodríguez-Henríquez.
LOVE a pairing. In LATINCRYPT, volume 12912 of LNCS, pages
320–340. Springer, 2021. 17

[16] Manuel Barbosa, Gilles Barthe, Karthikeyan Bhargavan, Bruno Blanchet,
Cas Cremers, Kevin Liao, and Bryan Parno. Sok: Computer-aided
cryptography. IACR Cryptol. ePrint Arch., 2019:1393, 2019. URL
https://eprint.iacr.org/2019/1393. 4, 5, 92

[17] Manuel Barbossa, François Dupressoir, Benjamin Grégoire, Vincent
Laporte, Pierre-Yves Strub, and Tiago Oliveira. Easycrypt and jasmin
tutorial, june 2022. URL https://formosa-crypto.gitlab.io/news/2022-06-0

7/sibenik. 88, 89

[18] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations
for pairings. J. Cryptol., 32(4):1298–1336, 2019. 16

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://ecc2017.cs.ru.nl/slides/ecc2017-aranha.pdf
https://ecc2017.cs.ru.nl/slides/ecc2017-aranha.pdf
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2019/1393
https://formosa-crypto.gitlab.io/news/2022-06-07/sibenik
https://formosa-crypto.gitlab.io/news/2022-06-07/sibenik

BIBLIOGRAPHY 97

[19] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations
for pairings. J. Cryptol., 32(4):1298–1336, 2019. 65

[20] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic
Curves of Prime Order. In SAC, volume 3897 of LNCS, pages 319–331.
Springer, 2005. 16, 38

[21] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing
elliptic curves with prescribed embedding degrees. In SCN, volume 2576
of LNCS, pages 257–267. Springer, 2002. 38, 65

[22] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal
certification of code-based cryptographic proofs. In POPL, pages 90–101,
2009. 5, 92

[23] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptographer.
In CRYPTO, volume 6841 of LNCS, pages 71–90. Springer, 2011. 92

[24] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. EasyCrypt: A tutorial. In
Foundations of Security Analysis and Design VII - FOSAD 2012/2013
Tutorial Lectures, volume 8604 of Lecture Notes in Computer Science,
pages 146–166. Springer, 2013. ISBN 978-3-319-10081-4. doi: 10.1007/
978-3-319-10082-1_6. URL http://dx.doi.org/10.1007/978-3-319-10082-1_6.
5, 92

[25] Evmorfia-Iro Bartzia and Pierre-Yves Strub. A formal library for elliptic
curves in the Coq proof assistant. In ITP, volume 8558 of LNCS, pages
77–92. Springer, 2014. 12, 49

[26] David Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. Tamarin:
Verification of Large-Scale, Real World, Cryptographic Protocols. IEEE
Security and Privacy Magazine, 2022. doi: 10.1109/msec.2022.3154689.
URL https://hal.archives-ouvertes.fr/hal-03586826. 4

[27] David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. CryptHOL:
Game-based proofs in higher-order logic. J. Cryptol., 33(2):494–566,
2020. doi: 10.1007/s00145-019-09341-z. URL https://doi.org/10.1007/s0

0145-019-09341-z. 93

[28] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman,
Matthieu Sozeau, and Bas Spitters. The hott library: a formalization of
homotopy type theory in coq. In Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, pages 164–172, 2017. 81

http://dx.doi.org/10.1007/978-3-319-10082-1_6
https://hal.archives-ouvertes.fr/hal-03586826
https://doi.org/10.1007/s00145-019-09341-z
https://doi.org/10.1007/s00145-019-09341-z

98 BIBLIOGRAPHY

[29] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and
the security of triple encryption. IACR Cryptol. ePrint Arch., page 331,
2004. URL http://eprint.iacr.org/2004/331. 3

[30] Dmitry Belyavsky, Billy Bob Brumley, Jesús-Javier Chi-Domínguez, Luis
Rivera-Zamarripa, and Igor Ustinov. Set it and forget it! turnkey ECC
for instant integration. In ACSAC, pages 760–771. ACM, 2020. 16, 18

[31] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
Anonymous Payments from Bitcoin. In S&P’14, pages 459–474. IEEE
Computer Society, 2014. 16

[32] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W.
Appel. Verified correctness and security of OpenSSL HMAC. In 24th
USENIX Security Symposium, pages 207–221. USENIX Association,
2015. URL https://www.usenix.org/conference/usenixsecurity15/technical-s

essions/presentation/beringer. 6, 74, 92, 93

[33] Daniel J. Bernstein. qhasm: tools to help write high-speed software.
URL https://cr.yp.to/qhasm.html. 4

[34] Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In
PKC, volume 3958 of LNCS, pages 207–228. Springer, 2006. 16, 20, 39

[35] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd compu-
tation and modular inversion. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(3):340–398, 2019. 10, 17, 21, 22, 23, 24, 34, 38, 42, 43, 44,
45, 51, 52, 55, 56, 59, 60

[36] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. J. Cryptogr. Eng., 2(2):77–89,
2012. 39

[37] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Nigel Smart, editor,
Advances in Cryptology – EUROCRYPT 2008, pages 181–197, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78967-3. 5

[38] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canon-
ical big operators. In TPHOLs, volume 5170 of LNCS, pages 86–101.
Springer, 2008. 45

[39] Frédéric Besson. Fast reflexive arithmetic tactics the linear case and
beyond. In Thorsten Altenkirch and Conor McBride, editors, Types for
Proofs and Programs, International Workshop, TYPES 2006, Nottingham,
UK, April 18-21, 2006, Revised Selected Papers, volume 4502 of Lecture

http://eprint.iacr.org/2004/331
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://cr.yp.to/qhasm.html

BIBLIOGRAPHY 99

Notes in Computer Science, pages 48–62. Springer, 2006. ISBN 978-3-
540-74463-4. doi: 10.1007/978-3-540-74464-1_4. URL https://doi.org/10

.1007/978-3-540-74464-1_4. 7

[40] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, and P Strub. Implementing TLS with verified cryptographic
security. In IEEE Symposium on Security and Privacy, pages 445–459,
2013. 5

[41] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified
models and reference implementations for the TLS 1.3 standard candidate.
In IEEE Symposium on Security and Privacy (S&P’17), pages 483–503,
San Jose, CA, May 2017. IEEE. Distinguished paper award. 4

[42] Bruno Blanchet. A computationally sound mechanized prover for security
protocols. In IEEE S&P, pages 140–154. IEEE Computer Society, 2006.
doi: 10.1109/SP.2006.1. URL https://doi.org/10.1109/SP.2006.1. 5

[43] Bruno Blanchet. Modeling and verifying security protocols with the
applied pi calculus and ProVerif. Foundations and Trends in Privacy
and Security, 1(1–2):1–135, October 2016. 4

[44] Jenny Blessing, Michael A. Specter, and Daniel J. Weitzner. You really
shouldn’t roll your own crypto: An empirical study of vulnerabilities in
cryptographic libraries, 2021. 16, 17

[45] Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full re-
duction at full throttle. In CPP, volume 7086 of LNCS, pages 362–377.
Springer, 2011. 43, 46

[46] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath T. V. Setty, and Laure
Thompson. Vale: Verifying high-performance cryptographic assembly
code. In USENIX Security Symposium, pages 917–934, 2017. 49

[47] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. J. Cryptol., 17(4):297–319, 2004. doi: 10.1007/s00145-004
-0314-9. URL https://doi.org/10.1007/s00145-004-0314-9. 16, 17, 66, 68

[48] Joppe W. Bos. Constant time modular inversion. J. Cryptogr. Eng., 4
(4):275–281, 2014. 16, 52

[49] Thomas Braibant and Damien Pous. Tactics for reasoning modulo ac
in coq. In Jean-Pierre Jouannaud and Zhong Shao, editors, Certified
Programs and Proofs, pages 167–182, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. ISBN 978-3-642-25379-9. 7

https://doi.org/10.1007/978-3-540-74464-1_4
https://doi.org/10.1007/978-3-540-74464-1_4
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1007/s00145-004-0314-9

100 BIBLIOGRAPHY

[50] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues
Randriam, and Mehdi Tibouchi. Efficient indifferentiable hashing into
ordinary elliptic curves. In CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 237–254. Springer, 2010. 68

[51] Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren.
Practical Realisation and Elimination of an ECC-Related Software Bug
Attack. In CT-RSA, volume 7178 of LNCS, pages 171–186. Springer,
2012. 16

[52] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad
Kohbrok, and Markulf Kohlweiss. State separation for code-based
game-playing proofs. In ASIACRYPT, pages 222–249, Cham, 2018.
Springer International Publishing. ISBN 978-3-030-03332-3. URL
https://eprint.iacr.org/2018/306. 3, 6, 80

[53] Ran Canetti. Universally composable security. J. ACM, 67(5):28:1–28:94,
2020. doi: 10.1145/3402457. URL https://doi.org/10.1145/3402457. 3

[54] Jorge Chávez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi.
Swiftec: Shallue-van de woestijne indifferentiable function to elliptic
curves. IACR Cryptol. ePrint Arch., page 759, 2022. URL https:

//eprint.iacr.org/2022/759. 51, 68

[55] Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic
geometry: from ordered fields to quantifier elimination. Log. Methods
Comput. Sci., 8(1), 2012. 45

[56] Maxime Dénès, Anders Mörtberg, and Vincent Siles. A refinement-based
approach to computational algebra in coq. In International Conference
on Interactive Theorem Proving, pages 83–98. Springer, 2012. 81

[57] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. Creusot:
A foundry for the deductive verification of rust programs. In Adrian Ri-
esco and Min Zhang, editors, Formal Methods and Software Engineering,
pages 90–105. Springer, 2022. ISBN 978-3-031-17244-1. 78

[58] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple
high-level code for cryptographic arithmetic - with proofs, without com-
promises. In IEEE S&P, 2019. doi: 10.1109/SP.2019.00005. URL
http://adam.chlipala.net/papers/FiatCryptoSP19/. 6, 93

[59] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. Simple high-level code for cryptographic arithmetic - with
proofs, without compromises. In S& P, pages 1202–1219. IEEE, 2019. 8,
16, 17, 18, 53

https://eprint.iacr.org/2018/306
https://doi.org/10.1145/3402457
https://eprint.iacr.org/2022/759
https://eprint.iacr.org/2022/759
http://adam.chlipala.net/papers/FiatCryptoSP19/

BIBLIOGRAPHY 101

[60] Armando Faz-Hernández, Julio César López-Hernández, and Ricardo
Dahab. High-performance implementation of elliptic curve cryptography
using vector instructions. ACM Trans. Math. Softw., 45(3):25:1–25:35,
2019. 39

[61] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno,
Aseem Rastogi, and Nikhil Swamy. A verified, efficient embedding
of a verifiable assembly language. PACMPL, (POPL), 2019. URL
https://github.com/project-everest/project-everest.github.io/raw/master/as

sets/vale-popl.pdf. 5

[62] Georges Gonthier. Formal proof–the four-color theorem. Notices of the
AMS, 55(11):1382–1393, 2008. 43

[63] Torbjörn Granlund and the GMP development team. GNU MP: The
GNU Multiple Precision Arithmetic Library, 6.2.1 edition, 2012. https:

//gmplib.org/. 38, 66

[64] Benjamin Grégoire and Assia Mahboubi. Proving equalities in a com-
mutative ring done right in Coq. In Joe Hurd and Thomas F. Melham,
editors, Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceed-
ings, volume 3603 of Lecture Notes in Computer Science, pages 98–113.
Springer, 2005. ISBN 3-540-28372-2. doi: 10.1007/11541868_7. URL
https://doi.org/10.1007/11541868_7. 7

[65] Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John
Harrison, Hoang Le Truong, Cezary Kaliszyk, Victor Magron, Sean
McLaughlin, Tat Thang Nguyen, et al. A formal proof of the kepler
conjecture. In Forum of Mathematics, Pi, volume 5. CUP, 2017. 43

[66] Shai Halevi. A plausible approach to computer-aided cryptographic
proofs. IACR Cryptol. ePrint Arch., page 181, 2005. URL http://eprint

.iacr.org/2005/181. 3

[67] Mike Hamburg. Computing the Jacobi symbol using Bernstein-Yang.
Cryptology ePrint Archive, Paper 2021/1271, 2021. URL https://eprint

.iacr.org/2021/1271. https://eprint.iacr.org/2021/1271. 10, 11, 51, 53, 60,
61, 63, 64

[68] Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo
Winterhalter, Carmine Abate, Nikolaj Sidorenco, Cătălin Hriţcu, Kenji
Maillard, and Bas Spitters. SSProve: A foundational framework for
modular cryptographic proofs in Coq. Cryptology ePrint Archive, Paper
2021/397, 2021. URL https://eprint.iacr.org/2021/397. Journal version
https://eprint.iacr.org/2021/397. 79, 81, 92

https://github.com/project-everest/project-everest.github.io/raw/master/assets/vale-popl.pdf
https://github.com/project-everest/project-everest.github.io/raw/master/assets/vale-popl.pdf
https://gmplib.org/
https://gmplib.org/
https://doi.org/10.1007/11541868_7
http://eprint.iacr.org/2005/181
http://eprint.iacr.org/2005/181
https://eprint.iacr.org/2021/1271
https://eprint.iacr.org/2021/1271
https://eprint.iacr.org/2021/1271
https://eprint.iacr.org/2021/397
https://eprint.iacr.org/2021/397

102 BIBLIOGRAPHY

[69] Son Ho and Jonathan Protzenko. Aeneas: Rust verification by functional
translation. Proc. ACM Program. Lang., 6(ICFP), 2022. doi: 10.1145/
3547647. URL https://doi.org/10.1145/3547647. 78

[70] Rasmus Holdsbjerg-Larsen, Mikkel Milo, and Bas Spitters. A verified
pipeline from a specification language to optimized, safe rust. In CoqPL
2022, 2022. URL https://popl22.sigplan.org/details/CoqPL-2022-papers/5/.
12, 35, 49

[71] William Alvin Howard. The formulae-as-types notion of construction.
In Haskell Curry, Hindley B., Seldin J. Roger, and P. Jonathan, editors,
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism. Academic Press, 1980. 6

[72] Andreas Hülsing, Matthias Meijers, and Pierre-Yves Strub. Formal
verification of saber’s public-key encryption scheme in easycrypt. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO, volume
13507 of Lecture Notes in Computer Science, pages 622–653. Springer,
2022. doi: 10.1007/978-3-031-15802-5_22. URL https://doi.org/10.100

7/978-3-031-15802-5_22. 5

[73] B. Salling Hvass, D. F. Aranha, and B. Spitters. High-assurance field
inversion for curve-based cryptography. In 2023 2023 IEEE 36th Com-
puter Security Foundations Symposium (CSF) (CSF), pages 111–126,
Los Alamitos, CA, USA, jul 2023. IEEE Computer Society. doi:
10.1109/CSF57540.2023.00008. URL https://doi.ieeecomputersociet

y.org/10.1109/CSF57540.2023.00008. 10, 53, 56, 62

[74] Benjamin Salling Hvass, Diego F. Aranha, and Bas Spitters. High-
assurance field inversion for pairing-friendly primes. July 2020. URL
https://fmbc.gitlab.io/2020/. 2nd Workshop on Formal Methods for
Blockchains, FMBC ; Conference date: 20-07-2020 Through 21-07-2020.
10

[75] Benjamin Salling Hvass, Diego F. Aranha, and Bas Spitters. High-
assurance field inversion for pairing-friendly primes. July 2020. The Coq
Workshop 2020 ; Conference date: 05-07-2020 Through 06-07-2020. 10

[76] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer,
Markus Pister, and Christian Ferdinand. Compcert-a formally verified
optimizing compiler. In ERTS 2016: Embedded Real Time Software and
Systems, 8th European Congress, 2016. 6, 74

[77] P. Letouzey. Coq extraction, an overview. In LTA ’08, volume 5028 of
Lecture Notes in Computer Science. Springer-Verlag, 2008. 8

https://doi.org/10.1145/3547647
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/
https://doi.org/10.1007/978-3-031-15802-5_22
https://doi.org/10.1007/978-3-031-15802-5_22
https://doi.ieeecomputersociety.org/10.1109/CSF57540.2023.00008
https://doi.ieeecomputersociety.org/10.1109/CSF57540.2023.00008
https://fmbc.gitlab.io/2020/

BIBLIOGRAPHY 103

[78] Pierre Letouzey. A new extraction for Coq. In TYPES, volume 2646 of
LNCS, pages 200–219. Springer, 2002. 35, 43

[79] Benjamin Lipp. Mechanized Cryptographic Proofs of Protocols and their
Link with Verified Implementations. PhD thesis, Inria Paris, 2022. 5

[80] Assia Mahboubi and Enrico Tassi. Mathematical Components. Zenodo,
2020. doi: 10.5281/zenodo.4282710. URL https://doi.org/10.5281/zenodo

.4282710. 44

[81] Assia Mahboubi and Enrico Tassi. Mathematical components. Online
book, 2021. URL https://math-comp.github.io/mcb/. 11, 80

[82] Narcisse Bang Mbang, Diego F. Aranha, and Emmanuel Fouotsa. Com-
puting the optimal ate pairing over elliptic curves with embedding degrees
54 and 48 at the 256-bit security level. Int. J. Appl. Cryptogr., 4(1):
45–59, 2020. 38, 65

[83] Michael B. McLoughlin. addchain: Cryptographic addition chain gener-
ation in go. Repository https://github.com/mmcloughlin/addchain, October
2021. URL https://doi.org/10.5281/zenodo.5622943. 66

[84] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with
assessing the impact of NFS advances on the security of pairing-based
cryptography. In Mycrypt, volume 10311 of LNCS, pages 83–108. Springer,
2016. 38, 65

[85] Denis Merigoux, Franziskus Kiefer, and Karthikeyan Bhargavan. hac-
spec: succinct, executable, verifiable specifications for high-assurance
cryptography embedded in Rust. Technical report, Inria, March 2021.
URL https://hal.inria.fr/hal-03176482. 6, 74, 78

[86] Peter L Montgomery. Modular multiplication without trial division.
Mathematics of computation, 44(170):519–521, 1985. 16, 20

[87] Kaushik Nath and Palash Sarkar. Efficient arithmetic in (pseudo-
)mersenne prime order fields. Adv. Math. Commun., 16(2):303–348,
2022. 39, 66

[88] Adam Petcher and Greg Morrisett. The foundational cryptography
framework. In Riccardo Focardi and Andrew C. Myers, editors, Principles
of Security and Trust - 4th International Conference, POST 2015, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings,
volume 9036 of Lecture Notes in Computer Science, pages 53–72. Springer,
2015. ISBN 978-3-662-46665-0. doi: 10.1007/978-3-662-46666-7_4. URL
http://adam.petcher.net/papers/FCF.pdf. 6, 92

https://doi.org/10.5281/zenodo.4282710
https://doi.org/10.5281/zenodo.4282710
https://math-comp.github.io/mcb/
https://github.com/mmcloughlin/addchain
https://doi.org/10.5281/zenodo.5622943
https://hal.inria.fr/hal-03176482
http://adam.petcher.net/papers/FCF.pdf

104 BIBLIOGRAPHY

[89] Thomas Pornin. Optimized binary gcd for modular inversion. Cryptology
ePrint Archive, Paper 2020/972, 2020. URL https://eprint.iacr.org/2020

/972. https://eprint.iacr.org/2020/972. 53

[90] Thomas Pornin. Faster modular inversion and legendre symbol, and an
x25519 speed record. https://research.nccgroup.com/2020/09/28/faster-mod

ular-inversion-and-legendre-symbol-and-an-x25519-speed-record/, 2020. 53,
66

[91] Thomas Pornin. Optimized binary gcd for modular inversion. Cryptology
ePrint 2020/972, 2020. 39

[92] Jonathan Protzenko and Bryan Parno. EverCrypt cryptographic provider
offers developers greater security assurances. Microsoft Research Blog,
April 2019. URL https://www.microsoft.com/en-us/research/blog/evercrypt-c

ryptographic-provider-offers-developers-greater-security-assurances/. 93

[93] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine
Delignat-Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Four-
net, and Nikhil Swamy. Verified low-level programming embedded in F*.
PACMPL, 1(ICFP):17:1–17:29, September 2017. doi: 10.1145/3110261.
URL http://arxiv.org/abs/1703.00053. 5

[94] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel,
Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joon-
won Choi, Antoine Delignat-Lavaud, Cédric Fournet, Natalia Kulatova,
Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy, Christoph M.
Wintersteiger, and Santiago Zanella Béguelin. Evercrypt: A fast, verified,
cross-platform cryptographic provider. In S& P, pages 983–1002. IEEE,
2020. 4, 40, 48

[95] Mikkel Milo Rasmus Holdsbjerg-Larsen, Bas Spitters. A verified pipeline
from a specification language to optimized, safe rust. CoqPL, 2022. URL
https://cs.au.dk/~spitters/CoqPL22.pdf. 81

[96] Harvey E Rose. A course in number theory. Oxford University Press,
1995. 55

[97] Peter Schwabe, Benoît Viguier, Timmy Weerwag, and Freek Wiedijk. A
coq proof of the correctness of x25519 in tweetnacl. In 2021 34th CSF,
pages 1–16, 2021. doi: 10.1109/CSF51468.2021.00023. 93

[98] Laurent Simon, David Chisnall, and Ross Anderson. What you get is
what you c: Controlling side effects in mainstream c compilers. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pages
1–15. IEEE, 2018. 74

https://eprint.iacr.org/2020/972
https://eprint.iacr.org/2020/972
https://eprint.iacr.org/2020/972
https://research.nccgroup.com/2020/09/28/faster-modular-inversion-and-legendre-symbol-and-an-x25519-speed-record/
https://research.nccgroup.com/2020/09/28/faster-modular-inversion-and-legendre-symbol-and-an-x25519-speed-record/
https://www.microsoft.com/en-us/research/blog/evercrypt-cryptographic-provider-offers-developers-greater-security-assurances/
https://www.microsoft.com/en-us/research/blog/evercrypt-cryptographic-provider-offers-developers-greater-security-assurances/
http://arxiv.org/abs/1703.00053
https://cs.au.dk/~spitters/CoqPL22.pdf

BIBLIOGRAPHY 105

[99] Jerome A. Solinas. Generalized Mersenne numbers. Technical report,
CACR, 1999. URL https://cacr.uwaterloo.ca/techreports/1999/corr99-46.

pdf. 20

[100] Matthieu Sozeau. Generalized rewriting. URL https://coq.inria.fr/refma

n/addendum/generalized-rewriting.html. 7

[101] Bas Spitters and Eelis van der Weegen. Type classes for mathematics in
type theory. MSCS, special issue on ‘Interactive theorem proving and
the formalization of mathematics’, 21:1–31, 2011. doi: 10.1017/S0960129
511000119. 44

[102] Supranational. The blst multilingual bls12-381 signature library. https:

//github.com/supranational/blst. 66

[103] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and
Santiago Zanella-Béguelin. Dependent types and multi-monadic effects
in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 256–270. ACM, January 2016.
ISBN 978-1-4503-3549-2. URL https://www.fstar-lang.org/papers/mumon/. 5

[104] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. The marriage of
univalence and parametricity. Journal of the ACM (JACM), 68(1):1–44,
2021. 81

[105] The Coq Development Team. The Coq proof assistant, version 8.12.0,
July 2020. URL https://doi.org/10.5281/zenodo.4021912. 19

[106] The Coq development team. The Coq proof assistant. URL http://coq.in

ria.fr. 6, 19

[107] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study, 2013. 81

[108] Riad S. Wahby and Dan Boneh. Fast and simple constant-time hashing
to the BLS12-381 elliptic curve. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(4):154–179, 2019. 66, 68, 69

[109] Peter Wuille, Gregory Maxwell, and Russell O’Connor. Bounds on
divsteps iterations in safegcd. https://github.com/sipa/safegcd-bounds,
2021. 17, 35, 46, 61

[110] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,
Adam Petcher, and AndrewW. Appel. Verified correctness and security of
mbedTLS HMAC-DRBG. In CCS’17, pages 2007–2020. ACM, 2017. doi:

https://cacr.uwaterloo.ca/techreports/1999/corr99-46.pdf
https://cacr.uwaterloo.ca/techreports/1999/corr99-46.pdf
https://coq.inria.fr/refman/addendum/generalized-rewriting.html
https://coq.inria.fr/refman/addendum/generalized-rewriting.html
https://github.com/supranational/blst
https://github.com/supranational/blst
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.5281/zenodo.4021912
http://coq.inria.fr
http://coq.inria.fr
https://github.com/sipa/safegcd-bounds

106 BIBLIOGRAPHY

10.1145/3133956.3133974. URL https://doi.org/10.1145/3133956.3133974.
92

[111] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. HACL*: A Verified Modern Cryptographic
Library. In CCS, pages 1789–1806. ACM, 2017. 17, 48

https://doi.org/10.1145/3133956.3133974

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Verification in cryptography
	High-assurance cryptography
	The Coq Proof Assistant
	Fiat Cryptography
	Jasmin
	Contents of this thesis
	Further development

	Manuscripts
	High-assurance inversion
	Introduction
	The Fiat-Crypto Framework
	Bernstein-Yang inversion
	Verified and efficient field inversion in Fiat-Crypto
	Formalization of Bernstein-Yang inversion
	Connecting the formalization of BY-inversion and Fiat-Crypto
	Related work
	Future work
	Acknowledgements

	Evaluation of the Kronecker symbol
	Introduction
	Preliminaries
	Algorithms for Kronecker symbol
	Implementation and experimental results
	Conclusion

	Jasmin, SSProve and Hacspec
	Introduction
	From specification to verified, efficient implementation
	Background
	Hacspec & SSProve
	Jasmin & SSProve
	AES example
	Future work
	Related work

	Bibliography

