
Quattro Formaggi:
Zero-Knowledge from VOLE

Alexander Munch-Hansen

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

ii

Quattro Formaggi:
Zero-Knowledge from VOLE

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Alexander Munch-Hansen

August 31, 2023

iv

Abstract
Zero-knowledge (ZK) proofs have recently attracted much attention. Typically, these
are defined with respect to statements that are fomulated as circuits over a fixed finite
field F2 or Fp for a large prime p and they are evaluated gate-by-gate. This causes
the running time of these protocols to scale linearly with the number of gates. A third
domain they can be defined over is the ring Z2k . These fit what CPUs operate on,
thus allows for easier porting of programs to ZK protocols, but little research has been
done in ZK over this domain. This thesis pushes forward the study of circuit-based ZK
protocols in two major ways; by providing gadgets that lower the overall gate-count and
by building new efficient protocols for circuits defined over the ring Z2k . In addition to
this, this thesis also provides a new result in the random-access-memory (RAM) model
where we provide a novel ZK proof system. The RAM model allows a prover to evaluate
a function represented as a RAM program while revealing no information of the private
input. This uses a different computational model (random-access-machines) compared
to circuits. Certain programs run much faster in this model versus when represented as
a circuit.

Our first contribution presents a maliciously secure, VOLE extension protocol that
can turn a short seed-VOLE over Z2k into a much longer, pseudorandom VOLE over
the same ring. We use these to build additively homomorphic commitments over Z2k .
Moreover, we show that the approach taken by the QuickSilver ZK proof system (CCS
2021) can be generalized to support computations over Z2k . This new VOLE-based proof
system, which we call QuarkSilver, yields better efficiency than previous ZK protocols
over Z2k , at 1.3 million 64 bit multiplications per second in zero-knowledge.

Our second contribution is twofold; two efficient ZK protocols over Z2k based on
VOLE and a new efficient check of consistency between secret values from the domains
of Fp (or Z2k) and F2. This allows the prover and verifier to swap domains of the
circuit based on which operations are performed, thus avoiding computing functions in
an inefficient domain.

Our third contribution is three new protocols for efficiently evaluating range proofs.
These are specialized gadgets for proving that the prover knows some x such that a ≤
x ≤ b for some public pair (a, b). Each of the provided protocols is efficient in its own
right. These are based on either square decomposition or n-ary decomposition, making
them better at handling larger or smaller values as well as larger or smaller batches of
range proofs.

Our final contribution is a novel ZK proof system for RAM programs compatible
with VOLE-based ZK systems such as Quicksilver and Mac’n’Cheese (CRYPTO 2021)
that (1) supports arbitrary fields and (2) has linear overhead in both the word size and
circuit complexity. This new ZK proof system achieves similar asymptotics are other
works, but this approach requires significantly less computation and communication in
settings where the number of RAM operations is larger than the RAM.

i

ii

Resumé

Zero-knowledge (ZK) beviser har i den seneste tid tiltrukket meget opmærksomhed. De
er typisk defineret ud fra kredsløb med operationer fra legemerne F2 eller Fp, hvor p
er et stort primtal. Portene i kredsløbet evalueres én af gangen. Dette medfører, at
kørselstiden af denne slags protokoller skalerer lineært med antallet af porte. Udover
Fp og F2 kan man også betragte operationer fra ringen Z2k . Denne ring passer bedre
med, hvordan CPU’er fungerer, hvilket betyder, at normale programmer nemmere kan
overføres til ZK protokoller. Desværre findes der dog ikke meget research for dette
domæne. Denne afhandling bidrager til forskningen om kredsløb-baseret ZK protokoller
på to måder: den giver konstruktioner, der sænker antallet af porte i kredsløb, og den
giver nye protokoller for kredsløb defineret ud fra ringen Z2k . Udover dette giver denne
afhandling også et resultat i random-access-memory (RAM) modellen. Her giver vi et
nyt effektivt ZK bevissystem. RAM modellen tillader én, der vil bevise noget i ZK, at
evaluere en funktion, der er repræsenteret af et RAM program uden at afsløre noget om
personens private input. RAM modellen bruger en anden model til at beregne beviser i
stedet for kredsløb. Denne hedder “random-access-machines”. Visse programmer kører
meget hurtigere, hvis denne model bruges, sammenlignet med hvis man brugte kredsløb.

Vores første bidrag er en sikker VOLE protokol, der fungerer ved at udvide få VOLE
fra Z2k til en masse pseudo-tilfældige VOLE over den samme ring. Vi bruger disse VOLE
til at bygge additivt-homomorfiske commitments i Z2k . Udover dette viser vi, hvordan
QuickSilver ZK bevissystemet (CCS 2021) kan blive generaliseret til at fungere i Z2k .
Dette nye VOLE-baserede bevissystem, som vi kalder QuarkSilver, er mere effektivt end
nogen andre ZK protokoller i Z2k , da det kan evaluere 1.3 millioner 64 bit multiplikationer
pr. sekund i ZK.

Vores andet bidrag er todelt: to nye ZK protokoller i Z2k baseret på VOLE og et
nyt effektivt tjek af, om to hemmelige værdier fra de to domæner Fp (eller Z2k) og F2

repræsenterer den samme værdi. Dette tillader én der ønsker at bevise noget i ZK og en
der skal verificere det at løbende skifte mellem hvilket domæne kredsløbet er defineret
over, altså, at de slipper for at skulle beregne funktioner i et ikke-favorabelt domæne.

Vores tredje bidrag er tre nye protokoller til at evaluere “range-proofs”. Disse er
specialiserede protokoller til at bevise, at man kender en værdi x således, at a ≤ x ≤ b
for nogle offentligt kendte værdier a, b. Hver protokol som vi foreslår, er effektiv på sin
egen måde. Den første protokol er baseret på at opdele tal i kvadrater, og de to andre
bygger på en teknik, der hedder n-opdeling. Dette medfører, at de er bedre i forskellige
situationer, enten med større værdier, flere værdier, mindre værdier eller færre.

Vores sidste bidrag er et nyt ZK bevissystem for RAM programmer, der er kompati-
belt med VOLE-baserede ZK systemer såsom QuickSilver eller Mac’n’Cheese (CRYPTO
2021). Denne nye tilgang (1) tillader arbitrære legemer og (2) skalerer lineært i kost (ef-
fektivt set) i forhold til størrelsen på værdierne i hukommelsen og mængden af RAM
operationer. På trods af at denne protokol er asymptotisk lige så effektiv som andre
protokoller, kræver denne nye protokol markant færre beregninger og mindre kommu-
nikation, når mængen af RAM operationer er større end hukommelsen.

iii

iv

Acknowledgments
The road leading to me now writing these acknowledgements has not been an entirely
straight one. To be honest, before I started my master’s, I had no plans on becoming a
PhD (or heck I didn’t even know if I wanted to take a master’s degree). I was however
eventually convinced to take a master’s in Computer Science, during which I took all
of the Cryptography courses. This sparked an interest, at which point Claudio Orlandi
told me to do a research project during my third semester, which eventually lead to me
writing my master’s degree with him and Sophia Yakoubov as my advisors. This finally
lead to me getting hired by Peter Scholl and Carsten Baum. I am truly grateful for
getting the opportunity back during my master’s.

However, this thesis simply wouldn’t exist without my wonderful advisors, Carsten
and Peter. Throughout the last three years, I have spent a great deal of time being
confused about things or misunderstanding topics, but both of you have always made
absolutely sure that I knew I always had someone to ask and that (to a certain degree)
there were no stupid questions. For that I am forever in debt. In addition to this, not
only have they taught me much about cryptography and cheese, but also life (getting
told several times to go out with friends rather than sit down and work, was apparently
required at times). It has been a truly great time, thank you so much.

I am indebted to each and everyone of my collaborators and co-authors: Carsten
Baum, Lennart Braun, Alex Malozemoff, Claudio Orlandi, Benoit Razet, Marc Rosen,
Peter Scholl and Sophia Yakoubov. I have thoroughly enjoyed working with all of you,
thank you!

I want to thank Galois and in particular Richard Jones (and their HR department)
for setting aside the tremendous amount of time it took to figure out how to get me a
work VISA for the US. My time in the US taught me a lot about how to practically
apply my research and I had a great time at Galois (not only due to their snacks).

I want to thank all of the wonderful people in the Aarhus Crypto Group. The small
conversations at the coffee machines, that would usually drag out and take waay too
long, the chilling in the couches or the impromptu meetings in the hallway. It has been
a great time! Specifically I would like to thank Lennart Braun for our many good hours
together (some admittedly better than others), both inside and outside of the university.

I would also like to say thanks to all of my friends at Aarhus University. It would
certaintly have been a lot more difficult to get to where I am now, without always
having people to whom I could rant about my problems (and oftentimes solve them in
the process), chill with in the couches in Regnecentralen or collaborate with during the
many exercises during my bachelor’s and master’s degree.

Finally, I’d like to thank my mom. Without her, this thesis would have a grammati-
cally incorrect mess of a resumé. Unfortunately, she gives no guarantee for the remainder
of the thesis.

Alexander Munch-Hansen,
Aarhus, August 31, 2023.

v

vi

Contents

Abstract i

Resumé iii

Acknowledgments v

I Introduction and Overview 1

1 Introduction 3
1.1 Interactive Proofs . 3
1.2 Circuit Based Proofs . 9
1.3 Commitments . 9
1.4 Oblivious Transfer . 10
1.5 Commit and prove . 14
1.6 SNARKs . 22
1.7 Applications . 24
1.8 Overview . 26
1.9 Additional Publications . 35

II Publications 37

2 MozZ2karella: Efficient Vector-OLE and Zero-Knowledge Proofs Over
Z2k 39
2.1 Introduction . 39
2.2 Preliminaries . 44
2.3 Single-Point Vector OLE . 49
2.4 Vector OLE Construction . 65
2.5 QuarkSilver: QuickSilver Modulo 2k . 70
2.6 Experiments . 86

3 Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode
Arithmetic and Z2k 95
3.1 Introduction . 95
3.2 Preliminaries . 99
3.3 Conversions between Z2 and ZM . 103
3.4 Truncation and Integer Comparison . 122
3.5 Interactive Proofs over Z2k . 128
3.6 Evaluation . 141

vii

viii CONTENTS

4 Cheddar – Oh, Range Proofs for VOLE-based Zero-Knowledge! 151
4.1 Introduction . 151
4.2 Square Decomposition . 152
4.3 Approximate Range Proofs . 158
4.4 Exact Proofs of Lesser Values . 165
4.5 Idea based on Polynomials . 166
4.6 Evaluation . 167

5 Pecorino: More Efficient Zero-Knowledge for RAM Programs 171
5.1 Introduction . 171
5.2 Preliminaries . 176
5.3 New Protocol for ZK Proofs in the RAM Model 178
5.4 Asserting Permutations . 187
5.5 Implementation and Experiments . 189

Part I

Introduction and Overview

1

Chapter 1

Introduction

1.1 Interactive Proofs

Vanessa wants to buy a recipe for a secret sauce from Poul, of which only a tiny sample
exist, one which was made many years ago. The thing is, Vanessa knows that the sample
is made from the correct recipe, but how can she be sure that Poul is not simply trying to
make a quick buck from her, by telling her the wrong recipe? Hell, Poul might not even
know the correct recipe. Thus, Vanessa is afraid that Poul is trying to fool her and just
run with her money, while Poul is afraid that Vanessa might just take the recipe without
paying him for it. This leaves the question of how can Poul convince Vanessa that the
recipe is correct, without revealing the recipe beforehand? This is where interactive
proof systems come into the picture.

The idea of an interactive proof system [GMR85, GMR89] was originally formalized
by Goldwasser, Micali and Rackoff. To be rigorous about it, we will consider statements
x with respect to an instance of a language L. This language L can be interpreted
as a set of problem instances to which the answer is “Yes”, when considering those
aforementioned statements. This is denoted by

x ∈ L,

in which case the statement is true with respect to the language and the answer is "yes".
We model a prover P and a verifier V as two probabilistic Turing machines. We then say
that P and V run an interactive protocol to determine if the statement x is in L. The goal
of the protocol is for P to correctly convince V that x ∈ L, if indeed x ∈ L. To relate this
back to our example with Poul trying to sell a recipe to Vanessa, we (informally) define
the language L as the problem of checking equality between the supposed recipe and the
known-to-be-correct sample of the secret sauce, and the statement is then represented
by the recipe that is input by Poul. The goal of the interactive protocol is then to check
that the recipe input by Poul is the same one that resulted in the sample. Now, for these
interactive proofs to be of interest to us, they must satisfy the following set of properties.

Completeness: making sure the protocol works when both the prover and verifier
behaves correctly. Essentially, if both parties behave according to the protocol
specification for some input x ∈ L, then V should always correctly output 1,
indicating that indeed x was in L and V "is convinced” of this fact. Without
completeness, protocols clearly fall apart, as they can’t be used to prove that
something is correct. If the protocol used by Vanessa and Poul lacked completeness,
Poul wouldn’t be able to convince Vanessa, even if Poul was telling the truth and
the recipe is correct.

3

4 CHAPTER 1. INTRODUCTION

Soundness: protecting against any dishonest behaviour from the prover. Having a
protocol that satisfies completeness is naturally a necessity, otherwise what is the
point, if the protocol fails despite both parties behaving honestly? However, it is a
steep demand that everyone must always behave honestly. Therefore we must have
a way of catching P, in case P behaves dishonestly. Specifially, what happens if
the statement x isn’t in the language L? To avoid such shenanigans, the protocol
should also be sound, or rather, satisfy soundness. This implies that any potentially
malicious or cheating P, henceforth denoted as P∗, will have a hard time convincing
V that x ∈ L, if, in reality, x 6∈ L. If this was not the case, it implies that Poul can
get away with the money, without actually giving the correct recipe to the secret
sauce, which would leave Vanessa without both recipe and money.

Zero-Knowledge: protecting against overly curious verifiers. This curiously named
property is perhaps a bit of a misnomer. It refers to the fact that during an
interactive proof between a prover and a verifier, the verifier should learn only
that x ∈ L (or x 6∈ L), but nothing more than this. This should be true, regardless
of whether or not the verifier behaves honestly. Without this property, Vanessa
could simply learn the recipe through the proof that Poul is creating purely so
that she can be convinced that he actually knows the recipe! This is obviously not
in the best interest of Poul, as he will now have given the recipe and now has to
trust Vanessa to give the money, despite her already knowing being able to cook
the secret sauce now. Thus, zero-knowledge is clearly an important property.
However, if a verifier has infinite computing power and time, it becomes very
difficult to define a protocol that can never be broken, e.g. one where the verifier
can never learn the secret from the proof. To remedy this, we usually consider
very specific problems to base protocols on, in addition to bounding the time the
verifier has to solve the problems.

The protocols usually considered are those that, when one is given a problem as well
as a potential solution, one can verify that the solution is correct in an efficient way, but
without the solution, a new solution is very difficult to find. The class of such problems
is known as NP. To relate this idea back to the discussion on turing machines earlier,
it is the set of problems that can be solved in polynomial time by a nondeterministic
turing machine, or rather, if a problem is given to a verifier who does not know the
solution, the verifier would likely have to try all possible combinations of inputs before
finding a result. This is a slight simplification as P ⊂ NP and even if we consider the
problems which are NP-complete (i.e. problems that are in NP but not in P), then in
some cases there do exist algorithms which are faster than bruteforce. Disregarding this
for now, if the verifier would have to try all possible combinations of inputs before finding
a result, this makes the computation time grow exponentially in the number of inputs.
We call the possible solution to the problem, the witness (usually w for short). We
can now rephrase the above definition of zero-knowledge. If the verifier is given a proof
(x,w) ∈ L ∈ NP , the verifier should not learn anything about w apart from the fact
that (x,w) ∈ L. Likewise, the prover cannot come up with a witness w without knowing

1.1. INTERACTIVE PROOFS 5

one before-hand, due to the definition of NP. It is worth noting that this definition is
a bit too restrictive, as it is known that the class of languages for which there exists
interactive proofs for, is, in fact, as large as PSPACE [LFKN90, Sha90], however the
interactive proofs for PSPACE are not practical for the prover and will not entertain
this further here.

Now, having defined what zero-knowledge means to a protocol, we are left with the
task of how to show that a protocol satisfies it. From the above discussion, this is not
immediately obvious, as all we’ve done is conclude that a verifier should learn nothing
in regards to the witness.

However, how to exactly define learn nothing, turns out to be an intricate task.

1.1.1 Simulation

Simulation is a key to how we try to define the concept of learning nothing. Now that
we know that any protocol satisfying zero-knowledge must mean that V learns nothing,
then it seems appropriate to define what exactly we mean by this. We mentioned that V
shouldn’t learn anything, except that x ∈ L, but what does this mean mathematically?
The simulation paradigm seeks to answer this question. This paradigm is one of the
most important contributions to cryptography and it has been used to define security
notions in a wide variety of cryptographic branches, such as zero-knowledge, multi-party
computation and public-key cryptography [Gol01, HL10, CDN15, Lin16].

The concept of simulation in this context, is a way of comparing something that
happens in a real world, to that of an ideal world. In this ideal world, we make the
assumption that the primitive in question is secure by definition. Specifically, in the
ideal world, there is no prover and we only consider a potentially malicious verifier V∗
as well as the statement x. We then see a simulator Sim as an imaginary entity that is
spawned in the ideal world, thus, whatever Sim produces, corresponds to the information
that an attacker V∗ would be able to compute on his own in this ideal world (as the
Sim is not actually the prover). We can then compare this information to what the
verifier V∗ sees in the real world, where V∗ actually does run a protocol with a prover
P. Finally, we can define that a proof system is (computationally) zero-knowledge, if for
any probabilistic polynomial-time malicious verifier V∗ there exists an efficient simulator
Sim that can produce a view of V∗ (i.e. all the information that V∗ observes as partt of
the protocol), that is indistinguishable from the real world. If that is indeed the case,
then V∗ must have learned nothing new in the real world, as Sim does not know the
secret of P in the first place.

To this end, another benefit of the simulation paradigm, is that once a protocol in
the real world has been shown to be indistinguishable from the ideal world, one can
henceforth use the ideal definition as part of other protocols. This simplifies proofs
significantly, as we can assume the ideal version is correct by definition. This allows
us to prove submodules of protocols secure and replace them with their ideal version
in the overall protocol. We are then left with a protocol that neither exists in the real
world nor the ideal world. For this, we create a hybrid world in which we then prove
the protocol secure. This kind of composition is known as the Universal Composition

6 CHAPTER 1. INTRODUCTION

framework or the UC-model [Can00].
Having established that a protocol satisfying zero-knowledge means having a protocol

based on a problem that is difficult to solve, we will now consider what this actually
means.

1.1.2 Dificulty of Problems

What remains is how we actually pick problems or computations that we hope are
difficult (unfortunately we cannot prove that the problems are difficult, without also
resolving P 6= NP , at which point we’d probably have bigger problems).

When creating a new protocol, the authors usually base this on exisiting problems
that have shown long-standing resistance to attempts from experts trying to design
efficient algorithms solving these problems.

We therefore propose new constructions based on existing well-established assump-
tions, by showing that the security of our new construction is captured by the security
of some well-established assumption. This is what is known as a cryptographic reduc-
tion: Let A be some well-established assumption. A proof under this assumption A, is a
proof that, if there exist any adversary B that can somehow abuse the construction in
polynomial time, then there exist some other adversary B’ that can, also in polynomial
time, contradict the assumption A. More specifically, these reductions typically work by
the authors providing an explicit adversary B’ that runs B internally in order to break
the assumption A.

The idea of proving security by reduction creates an interesting string of seemingly
unrelated primitives that are all used in completely different situations and achieving dif-
ferent goals, but they are connected by their security reduction to some well-established
assumptions. This notion of proving security was presented in [GM82].

1.1.3 Brief Introduction to Algebra

We’ve established (on a high level) what an interactive proof is and how we prove it to
be secure. If we then make up a protocol and implement it using our regular numbers
(i.e. . . . ,−3,−2,−1, 0, 1, 2, 3, . . . ad infinitum), it turns out we’d run into problems.
The easiest explanation to this problem, is that we can simply not represent all of
these numbers on computers, as we have a finite amount of space. We therefore must
construct finite sets of numbers over which we can implement our protocols, but these
things must be defined in such a way that any hardness assumptions (the so-called
“difficult” problems mentioned in Section 1.1.2) are acrtually hard.

This section contains a very brief introduction to field and ring arithmetics. If the
reader is familiar with this, then feel free to skip this. The integers are the usual numbers
. . . ,−3,−2,−1, 0, 1, 2, 3, . . . ad infinitum, which are represented by the set Z. Addition
and multiplications of two elements a, b ∈ Z leads to another element c ∈ Z, meaning
the set Z is closed under these operations. This also holds true for subtraction, since it
can be defined from addition. It is not the case for division however. Consider 5

2 which
is 2.5, which is not an integer (but instead a real or rational number).

1.1. INTERACTIVE PROOFS 7

Rings using the definition of the integer set Z, we define the concept of rings. A ring
is a set R which has two binary operations, additions and multiplication, satisfying the
following properties:

1. Addition is/has:

associative meaning that a+ b) + c = a+ (b+ c) for all a, b, c ∈ R

commutative meaning that a+ b = b+ a for all a, b ∈ R

identity meaning that there exists an element b such that a+ b = a for all a ∈ R.
I.e., b = 0

inverse meaning that for all a ∈ R, there exists some −a so that a+ (−a) = 0

2. Multiplication is/has:

associative meaning that a · b) · c = a · (b · c) for all a, b, c ∈ R

identity meaning that there exists an element b such that a · b = a for all a ∈ R.
I.e., b = 1

left/right distributivity a · (b+ c) = (a · b)+(a · c) and (b+ c) ·a = (b ·a)+(c ·a)
for all a, b, c ∈ R

If the multiplicative operator of some ring is commutative as well, then that ring is
called a commutative ring. If a ring R, in addition to satisfying the above, also has the
following property:

Multiplication Inverse meaning that for all a ∈ R, a 6= 0, there exists some a−1

called the multiplicative inverse of a so that a · a−1 = 1

then we call R a field.
Interestingly, the set of integers Z does form a ring (which the avid reader can check

for themselves), but it does not form a field, as the only non-zero integers that have
multiplicative inverses are −1 and 1.

To salvage this situation, we can equip the set Zwith a modulo M , denoted as
Z/MZ of oftentimes just ZM . As an example of a ring, consider R = Z16. Now, the set
R contains the integers 0, . . . , 15 and any operation is followed by a modulo 16. This
is still not a field however. For instance, an inverse does not exist for 4 ∈ Z16. If we
instead equip Z with a modulo p that happens to be a prime, we get what is known as
a prime field Zp. An example of such a field is Z17. Here, one can check that for any
non-zero value x ∈ Z17, there exists an inverse such that x · x−1 = 1. As such, Z17 is a
field.

It turns out that prime fields in particular has some very nice properties when creating
cryptographic protocols and this field (no pun intended), has seen a lot of research. Less
common has it been for rings to get much interest, but as of lately more protocols has
started appearing with focus on working over the ring Z2k for some integer k [CDE+18,
BBMH+21b, GNS21, BBMHS22a].

8 CHAPTER 1. INTRODUCTION

1.1.4 Computation over Z2k

An interesting structure that has already been briefly introduced in Section 1.1.3 is the
set of integers modulo 2k, denoted as Z2k . Most existing research has been focused on
the topic of zero-knowledge over fields. This is primarily due to the difficulties of working
over rings rather than fields, such as rings having zero-divisors as well as them lacking
multiplicative inverses for all elements. There are however several reasons why working
in this particular area may be of interest.

Computers work in powers of two Computer hardware architectures typically run
using 32-bit or 64-bit integers. This corresponds directly to arithmetics over Z2k

for k = 32 or k = 64, respectively. This avoids having to implement the reduction
modulo p operation in software. For some choices of p, so-called Mersenne primes,
this reduction can be implemented fairly cheaply. We postulate however, that
with proper implementations, implementing protocols directly for the underlying
hardware, i.e. working over a ring Z2k rather than a finite field, could lead to an
improvement in performance.

Specialized protocols Some protocols and primitives can, particularly well, utilize
working over Z. One example of this, is being able to use the algebraic structure
of linearly-homomorphic IT-MACs based on VOLE so that one can take multiple
commitments [x0], ..., [xk−1], where [xi] ∈ F2k and xi ∈ F2, and pack these into a
single IT-MAC for x ∈ F2k . This procedure is injective. Secondly, some operations
such as truncation and integer comparisons are trivialized when working over Z2k

instead of Fp for some prime p.
Furthermore, it holds true that
Functions such as truncations and integer comparisons are trivialized when working
over F2.

There are however also some issues with working over rings Z2k for any integer k. In
Z16 for instance, the polynomial x3 − 8 has 4 roots, 2, 6, 10, 14. Instead, if we work over
the prime field Z17 and consider the same polynomial, x3 − 8, there is only a singular
root; 2. This, in practice, is known as the Schwartz-Zippel lemma [Zip79, Sch80]. This
also has an effect on any protocol utilizing information-theoretic message authentication
codes (or IT-MACs). The security of these relies on equations of the type X · δ + γ = 0
to have only one possible solution for X (provided that δ 6= 0). However, as we have
just seen a very similar situation during the discussions on polynomials, this is not the
case when considering rings Z2k , where the above polynomial was defined over k = 4 (or
rings in general). In the more general case where the ring is simply Z2k , it turns out
that, for the equation X · δ+ γ = 0, if we let δ = 2k−1 and γ = 0, then if we let X be any
even number, then X · δ + γ = 0 is true. Thus, working over a ring breaks this type of
system. This has implications when we try to design zero-knowledge protocols requiring
the prover to commit to certain values and then later open these, as this uses this exact
type of equation, it allows the prover to break the binding property of the commitment
scheme used.

1.2. CIRCUIT BASED PROOFS 9

1.2 Circuit Based Proofs

Having introduced the two (or three) primary models of computation; over Zp, over Z2k

(or Z2), we are now ready to introduce a way of actually implementing these interactive
protocols that was introduced earlier.

Arithmetic circuits are a model of computation [CD98] that differs from the Turing
machines mentioned above. In this model, we instead consider circuits having gates and
wires, where all (except for one) gates having input wires represent some operation. If
a gate has no input wire, it represents a circuit input wire, which is used to supply the
input to the circuit. The single wire that originates from a gate but which does not
have an output gate, is the output wire. The input wires are then fed with inputs to the
computation and processed through the gates in order to obtain values for the internal
wires representing the intermediate results achieved from computing the operations of
the gates. Finally, the output wire is reached, where the final result of the computation
can be obtained from.

The gates in the circuit represent operations over a ring, which allows for the two
binary operations addition and multiplication. In this case, each gate is represented by
either addition or multiplication. A typical choice of ring is the set of integers modulo
a prime p, Zp (i.e. a field). When this particular type of ring is picked, every non-zero
element x ∈ Zp has the extra property of having a multiplicative inverse (or rather, for
x,∈ Zp, there exists some y ∈ Zp so that x

y = 1). Fields, having this exact property, are
more malleable and permit the use of special techniques and constructions that are not
possible were it not for this property.

A particular choice of field, is the set {0, 1} with the operations AND and XOR.
In this case, the modulo used is 2 and arithmetic circuits defined over this field are
known as binary circuits. These are highly important in many use cases, as particular
computations are more easily defined when considering binary representations. Another
commonly used field is that of Zp for a large prime p.

1.3 Commitments

Making a commitment simply means that a party in a protocol picks some value from a
finite set of values and then commit to this choice once and for all, so that the party can
no longer change this. The idea is originally due to [BCC88]. As an informal example:

• P wants to commit to a number x. To do so, P writes down the number x on a
piece of paper, and then puts this piece of paper in a locked box.

• P gives this box to V.

• P can now choose to open this commitment by giving the key to V.

This simple example highlights two basic properties of any commitment scheme:

10 CHAPTER 1. INTRODUCTION

1. When P gives away the box to V, P can no longer change the choice of made, as
this is stashed inside the locked box. Thus, when/if P opens the box to V, V can
be sure that it is indeed the number picked initally by P. This is known as the
binding property.

2. The piece of paper being stashed inside a locked box, means V can’t tell the
number, even by having the box. This is known as the hiding property.

Apart from these two basic properties, commitment schemes can be what is known
as homomorphic. Formally, this describes the transformation of data in a structure
preserving way, but to give a brief summary, it means that certain operations can be
computed on the data that has been committed to, whilst allowing P to eventually open
the commitment correctly. A particular type of homomorphic property is when commit-
ments are linear or additive. This allows for certain linear operations to be performed
on the committed values, such as addition. This turns out to be very useful when con-
sidering circuit-based zero-knowledge proofs, as circuits are comprised of addition and
multiplication gates.

To give an example, let Zp be a finite field defined from a large prime p:

• P commits to x, y ∈ Zp, resulting in P and V having [x], [y].

• P and V [z]← Add([x], [y])

• P computes z ← Open([z]).

• Now, V can trust that z = x + y, due to the homomorphic properties of the
commitment scheme.

However, if P and V has to do any multiplications, it becomes more tricky. This is
not supported by this particular commitment scheme, so the two parties will have to
do something else. There are however various ways of achieving this, either by using
so-called Beaver Triples [Bea92] (an idea we will elaborate on in Section 1.5) or by
more complicated means [WYKW21a]. There also exist fully homomorphic commitment
schemes. These allow for local computation of both addition and multiplication of hidden
values, but instantiating these usually require costly public key cryptography [MSM+22]
and for our applications it is not worth it, to instantiate such constructions.

There exists many ways of instantiating a commitment scheme satisfying the above
properties, but in this thesis we focus on one in particular. This specific construction is
based on Vector Oblivious Linear-Function Evaluation or VOLE. Before we can introduce
this primitive, we must first describe another primitive called Oblivious Transfer

1.4 Oblivious Transfer
Oblivious Transfer is not strictly something that is considered in this thesis, but it is
used as a tool in some constructions, which is why we give a proper introduction to
it. Furthermore, while future sections are derived from oblivious transfer, they can

1.4. OBLIVIOUS TRANSFER 11

stand alone without the reader having a thorough understanding of oblivious transfer.
Regardless of this, we now introduce oblivious transfer.

Imagine that Bob has two padlocks with no distinguishing features, apart from that
fact that Bob has a single key to exactly one of them. Bob then marks the padlocks with
a 0 and 1 respectively and lets c ∈ {0, 1} represent which padlock he can open. Bob then
gives both padlocks to Alice, who writes a message on two pieces of paper, puts these
into two boxes, denoted by b0 and b1, respectively. Alice then locks the two boxes with
their correspondent padlock and gives them back to Bob. Now, Bob can open exactly
one box bc, i.e. the one locked with padlock c, while not learning anything about the
other box. Additionally, Alice learns nothing of which box Bob could open.

Formally, this is defined as a 1−2 oblivious transfer (or OT) protocol [Rab05], is one
in which a sender S knows two bits b0, b1 and a receiver R has a single choise c ∈ {0, 1}.
The protocol allow R to learn exactly bc, but nothing about the other bit. Likewise, S
learns nothing about c, i.e., which choiceR made. This simple notion, can be generalised
to what is known as 1− n OT. Perhaps obvious from the name, this allows R to input
a challenge c ∈ {0, . . . , n − 1} instead and symmetrically S inputs b0, . . . , bn−1, but the
same aforementioned guarantess holds true for this case as well.

An additional abstraction we can make, is to define random OT. In this setting, the
sender and receiver instead get (b0, b1 and c, bc, respectively. Oftentimes we disregard c
when considering random OTs.

Lastly, something which will be required later on, is the term extension in the context
of Oblivious Transfers [IKNP03] (more commonly called OT-extension). Here, it refers
to reducing the cost of doing many OTs by working in two phases:

setup in this first phase, a small number of seed OTs are produced using standard
(relatively expensive) techniques.

extension in this second phase, the seed OTs are extended to create many more OTs
with a much lower cost than the seed OTs. This second phase is usually based on
much cheaper cryptography known as symmetrical cryptography.

This extension phase is of particular interest, as it has been proven to be impossible
to create OTs using strictly symmetrical cryptography [IR90].

Lastly, we can define correlated oblivious transfer (or COT). In this case, the receiver
learns (b, w = v +∆ · b where ∆, v ∈ F2 and the sender learns (v, v +∆). Here we say
that b is the choice bit of the receiver. An interesting thing to note here is that since we
are working in F2, the receiver either learn v or v+∆, based on the choice bit b ∈ {0, 1}.

1.4.1 Oblivious Linear Evaluation

We can then make a generalization of Oblivious Transfer and COTs, which we call
Oblivious Linear Evaluation. An Oblivious Linear Evaluation (or OLE), is a two-party
protocol between a sender and a receiver. The protocol yields a tuple of correlated values
(r,m, k,∆) such that

m = k +∆ · r.

12 CHAPTER 1. INTRODUCTION

This idea seems very close to COTs and in fact it is the same idea, just in a larger field.
Formally, when we consider the binary setting, we consider COTs, but this differentiation
is not always made, and then the general term OLE will be used in all cases.

The receiver receives (k,∆) and the sender receives (m, r). Now that we get into the
territory of what we need to explain the results of this thesis, we’ll formalize this further.
The value r obtained by the receiver is defined such that r ∈ Fp whereas the remaining
values come from the the extension field Fpℓ : ∆,m, k ∈ Fpℓ . The extension field Fpℓ is
defined via Fp so that Fp ⊆ Fpℓ . We define ∆ as a global key, which is sampled uniformly
once and then kept by the receiver throughout the protocol. For each OLE, k ∈ Fpℓ is
sampled randomly and likewise is x ∈ Fp. Due to addition of k, this makes m ∈ Fpℓ look
random as well.

This can be done in batches (where ∆ is fixed across the batches but the values and
keys are fresh), at which point this is called vector-OLE (or VOLE). We then write

M[r] = K[r] + ∆ · r ∈ Fpℓ .

The reason why the introduction of VOLE is necessary, is because we can build
information-theoretic message authentication codes (IT-MACs) [NNOB11, DPSZ11] from
these. In turn, we can build a commitment scheme from these IT-MACs which is linearly
homomorphic. This comes with a significant boost in efficiency both in communication
as well as computation, as this can be done through extension techniques (something
we briefly introduce later), as compared to earlier techniques. To simplify notation, we
redefine the sender S to be the prover P and the receiver R to be the verifier V. Now, the
prover receives (r,M[r]) and the verifier recieves (K[r],∆). The prover can then commit
to any value x ∈ Fp of the provers choice, by going through the following steps (which
we define as Input):

1. The prover computes δ ← r − x and then δ to the verifier.

2. The verifier computes K[x] = K[r] + δ ·∆.

3. Finally, M[x] = M[r]. Now, the tuple (x,M[x]) held by the prover and the tuple
(∆,K[x]) held by the verifier, is a commitment to x, henceforth denoted as [x].

The point from Step 3 follows from:

M[x] = K[x] + ∆x

= (K[r] + δ ·∆) +∆x

= (K[r] + (r − x) ·∆) +∆x

= (K[r] + ∆r −∆x)−∆x

= K[r] + ∆r

= M[r]

1.4. OBLIVIOUS TRANSFER 13

which shows that we can turn the new commitment into the old by substituting the
provided values.

Despite us having been calling the above a commitment scheme, we have yet to show
that this is in fact a secure one. We do this, by showing that the scheme satisfies the
binding and hiding property, that was shown in Section 1.3.

hiding The property of hiding is satisfied from the fact that the verifier obtains no
information on the committed-to value x. This follows from the security of the
(V)OLE construction used, as this ensures that the verifier obtains no information
regarding (r,M[r]). Now, since the verifier has no information about r, the verifier
can’t deduce anything from seeing δ = r − x.

binding The property of binding is satisfied from the fact that the prover has no infor-
mation regarding (K[r],∆) (which also follows from the security of the (V)OLE).
Specifically, if the prover wishes to change its value x to some x′, this requires
changing M[x] to M[x′] ← M[x] + ∆(x′ − x), but, since the prover has no infor-
mation on ∆, this can only be done by guessing ∆ ∈ Fpℓ , which happens with
probability 1

|F
pℓ
| , where |Fpℓ | means the size of the extension field.

We say that the prover and verifier runs the following operation [x] ← Input(x) on
the prover-known input x, resulting in the commitment [x]. We also define the procedure
CheckZero([x]) as simply having P and V open the value and check that it is 0. Rather
than do this on a per-element basis, this procedure can be run in batches of several field
elements, but as this procedure is more complicated and not required for our needs, we
will not touch on this anymore.

Finally, all we have left to show, is that this type of commitment scheme is, in fact,
additively homomorphic. If P and V hold two authenticated values [x] and [y], then
they can locally compute [z] = [x + y]. This is done by having P compute z ← x + y
as well as M[z] ← M[x] + M[y]. V locally computes K[z] ← K[x] + K[y]. This becomes
apparent once we write out the above equations:

M[z] = K[z] + ∆z

M[x] +M[y] = (K[x] + ∆x) + (K[y] + ∆y)

= (K[x] + K[y]) + ∆(x+ y)

The above set of operations is denoted as [z] = [x] + [y] for brevity.
Similarly, this holds true for addition as well as multiplication with any public value

y ∈ Fp, which results in [z] = [x+ y] or [z] = [x · y]. Both of these operations follow the
above steps, are these are denoted as [z]← [x] + y and [z] = [x] · y, respectively.

This does not hold true however, for multiplication of two hidden values. Consider
the following:

[x] · [y] = (K[x] + ∆x) · (K[y] + ∆y)

= ∆2xy +∆K[x]y +∆K[y]x+ K[x]K[y]

14 CHAPTER 1. INTRODUCTION

which contains terms such as ∆2xy. Here, each term contains values known by either
the prover or the verifier, making them not immediately locally computable without
communication. It is worth noting that if we take a commitment (x,M[x]) held by the
prover and K[x] held by the verifier, then we can view these instead as a polynomial so
that f(y) = M[x] − x · y. Now K[x] = f(∆) = M[x] − ∆ · x. If we then multiply the
polynomial defined above with another f ′(y) = M[x′]− y · x′:

f · f ′(y) = M[x]M[x′] + (xM[x′] + x′M[x])y + xx′y2

we see that the final term contains xx′ · y2 which is the only term of degree 2. This
however, is so far locally computable. The prover then define polynomial q(y) = M[z] +
z · y where the prover claims that z = x · x′. This requires committing to z, so the
verifier learns K[z] = q(∆). Now, to show that this is true, the prover can send over the
polynomial

y · q(y)− f · f ′(y)

where y · q(y) = yM[z] + zy2. Thus, if z = x · x′, the term of degree 2 disappears. On
the verifier side of things, the verifier has mackeyx · K[x′] = f · f ′(∆) and can compute
K[x]K[x′]−∆·K[z], which, as on the prover side, removes the final term of highest degree,
if the computation is correct. While only working on a single multiplication, this idea is
not more efficient than a regular multiplication. Howver, this idea generalizes to some
degree d, i.e. the prover and verifier can combine d multiplications. The final remark
to make regarding this idea, is that the polynomial that the prover sends over must be
masked by a degree d− 1 polynomial, to mask the remaining terms.

While the above may have seemed like a detour, it is a fact we will need later on
in this thesis. See step 2 in Figure 1.3 for an example of how multiplication can be
computed using additively homomorphic commitments in a simpler fashion than what
was just described, using multiplication triples.

Finally, we define the ideal functionality F l,p
VOLE (Figure 1.1) that we can use to

generate VOLE for our zero-knowledge protocol. A protocol satisfying this functionality
over Fp can be found in [WYKW21a].

This functionality has two steps; an initilization step in which the verifier gets the
global key ∆ and an extension step which allows the prover and verifier to generate
random VOLEs. The last thing to notice here is that each step allows for either the
prover or the verifier to be malicious, in which case they sample their own values rather
than having them be random. This is an important part, as it allows the simulator later
on to choose the values, when interacting with either a maliicous prover or a malicious
verifier, but it also gives more power to the adversary.

1.5 Commit and prove

This is a way of proving satisfiability of a circuit in zero-knowledge. In this case, the
prover commits to each input ([w1], . . . , [wn]) ← Input(w1, . . . , wn). The prover and
verifier then utilise the homomorphic properties of the commitment as well as some

1.5. COMMIT AND PROVE 15

Functionality F l,p
VOLE

Initialize: On receiving Init from P and V, sample ∆ ← F if V is honest.
Otherwise, receive ∆ ∈ F from V. Store the global key ∆ and send ∆ to V.
Ignore all subsequent Init commands.

Extend: On receiving (Extend) from P and V:

1. Sample r ← Fp,K[r]← Fpℓ and compute M[r] = K[r] + ∆ · r ∈ Fpℓ .

• If P is corrupted: receive r,M[r] from A and let K[r] = M[r]− r ·∆.
• If V is corrupted: recieve K[r] from A and let M[r] = K[r] + r ·∆.

2. Output (r,M[r]) to P and K[r] to V.

Figure 1.1: Ideal functionality for generating VOLE.

communication in order to go through the circuit gate by gate and by the end of it
the prover can open [o] (where we let o be the output of the ciruit), to show that the
input satisfies the circuit. Now, before we give a zero-knowledge protocol that uses
the idea of commit and prove, we must first provide an additional functionality FPREP

(Figure 1.2), which is used to instantiate F l,p
VOLE as well as allowing P and V to get

so-called multiplication triples which are authenticated. These are sets [a], [b], [c] so that
[c] = [a] · [b]. The triple-generation step follows the same pattern as the extension
step from F l,p

VOLE (Figure 1.1), as it allows an adversarial prover or verifier to pick their
own values, but apart from that ensures that the multiplication triples are correctly
generated.

We now provide a simple zero-knowledge protocol Πzk (Figure 1.3).
The keen-eyed reader may notice that this requires getting a triple [a], [b], [c] so that

[c] = [a] · [b]. These can be generated in various ways, but usually comes at a cost, since
it requires the prover and verifier to communicate, but at this point in time, techniques
do exist to lower this cost tremendously. For now, we assume that there simply exists a
way for P and R to get these, by using the functionality FPREP (Figure 1.2).

The above strategy does not utilize that P knows the underlying secrets. Recently,
people started using this aspect to a higher degree, by simply allowing the prover to com-
pute z ← x·y and then commit to z. The prover and verifier then push the verification of
this to a final verification phase. An example of this is Wolverine [WYKW21a] in which
the prover and verifier can avoid the expensive multiplication triples by using something
they denote as faulty triples. These are multiplication triples that are generated by
the prover and as such are potentially incorrect. It turns out, that if the verification
phase use a cut-and-choose technique [BCC88] to check the multiplications computed
during the circuit-evaluation, then the verifier will notice with very high probability, if

16 CHAPTER 1. INTRODUCTION

Functionality FPREP

Initialize: On receiving Init from P and V, send Init to F l,p
VOLE. V receives its

global MAC key ∆ ∈ Fpℓ .

Extend: For (Extend), the parties send (Extend) to F l,p
VOLE. P receives

(M[r], r) ∈ (Fpℓ × Fp) and V receives K[r] ∈ Fpℓ so that M[r] = K[r] + ∆ · r.

Triple: On input (Triple) from P and (Triple) from V,

1. If V is honest, then sample K[a],K[b],K[c] ← Fpℓ . Otherwise receive
K[a],K[b],K[c]← Fpℓ from the adversary-

2. If P is honest, sample a, b ← Fp, otherwise receive a, b the adversary. Let
c = a · b.

3. If P is honest, then compute M[a] = K[a] + ∆ · a, M[b] = K[b] + ∆ · b
and M[c] = K[c] + ∆ · c. Otherwise receive M[a],M[b],M[c] ∈ Fpℓ from the
adversary and recompute K[a] = M[a]−∆ ·a ∈ Fpl , K[b] = M[b]−∆ · b ∈ Fpl

and K[c] = M[c]−∆ · c ∈ Fpl .

4. Output ((a,M[a]), (b,M[b]), (c,M[c])) to P and (K[a],K[b],K[c]) to V.

Figure 1.2: Ideal functionality for preprocessing for the zero-knowledge protocol.

1.5. COMMIT AND PROVE 17

Protocol Πzk

Preprocessing:

1. The prover and verifier send Init to FPREP, which returns a uniform ∆ ∈ Fpr

to V.

2. For i ∈ in, P and V send (Extend) to FPREP, returning authenticated values
[λi]: {[λi]}i∈in.

3. For i ∈ mul, P and V send (Triple) to FPREP, obtaining {[ai], [bi], [ci]}i∈mul

so that ci = ai · bi for i ∈ mul.

Online:

1. For i ∈ in, P sends Λi = wi − λi ∈ Fp to V. Then both parties compute
[wi] = [λi] + Λi.

2. for each gate, P and V does the following:

Add On input [x], [y] use the homomorphic addition property and output
[x] + [y].

Mul On input [x], [y] for the i’th multiplication gate, the prover and verifier
do the following:
(a) P and V computes and opens e = [x] + [ai] and d = [y] + [bi]

(b) Finally compute [z] = [ci] + e · [y] − d · [ai] so that z = ab + xy +
ay − ya− ab = xy

3. Finally, P and V run CheckZero([wo]−1) where wo is the value of the output
gate.

Figure 1.3: The protocol for ZK proofs using the Commit and Prove technique

18 CHAPTER 1. INTRODUCTION

Functionality Fzk

Prove: On input (Prove, C, w) from P and (Verify, C) from V, send accept to V,
if C(w) = 1, otherwise send reject to V.

Figure 1.4: Ideal functionality for ZK proofs.

the prover lied in either the multiplication or the faulty triples. More recently, one can
use QuickSilver [YSWW21a] to generate correct multiplication triples, or simply apply
QuickSilver directly to the multiplications from the prover. The technique described in
Section 1.4.1 where we converted commitments based on VOLE into polynomials that
could then be locally multiplied together, is very reminiscent of QuickSilver.

Now, as long as the commitments are binding and hiding, then it is clear that this
way of evaluating a circuit guarantess correctness, soundness and zero-knowledge. Cor-
rectness follows from each gate being evaluated and the prover never lying, so each
addition and multiplication will be correct. Soundness comes from the fact that the
commitments are binding, so the prover can never change any of the underlying values
and since the verification check (or the beaver triples) is/are correct, then the prover
can never get through the check while having done anything dishonestly. Finally, zero-
knowledge follows from the commitments being hiding. Informally, the verifier simply
cannot tell which values are being worked on.

Now, to prove that the setup described above is secure and correct, we must first
define what takes place in the ideal world. Here we have the functionality Fzk (Figure 1.4)
in which we consider a black-box which takes the input of both users and outputs either
accept or reject, dependant on if C(w) = 1 or not, respectively.

The functionality Fzk (Figure 1.4) shows that both the prover and verifier agree on
the circuit C that is being used, but only the prover knows the witness w.

Our goal is then to prove that we can describe a simulator Sim which interacts with
an adversary and the functionality, while generating a view which is indistinguishable
from the real interaction between a prover and a verifier.

Theorem 1. Protocol Πzk UC-realizes Fzk in the FPREP-hybrid model. In particular, no
environment Zcan distinguish the ideal world execution from the real world execution,
except with probability at most ϵopen.

Proof sketch. We will first consider the case of a malicious prover (thus proving sound-
ness) and then afterwards consider the case of a malicious verifier (thus proving zero-
knowledge as well as showing proof of knowledge, a term we will encounter again in
Section 1.6 during our introduction of SNARKs). In both cases we will construct a
probabilistic-polynomial-time (PPT) simulator Sim which is given access to Fzk and which
will run the PPT adversary A as a subroutine while emulating the functionality F l,p

VOLE
for A. The simulator Sim will pass all communication between the adversary A and the
environment Z.

1.5. COMMIT AND PROVE 19

Malicious Prover Sim interacts with the adversary A:

1. Sim emulates F l,p
VOLE for A by choosing a uniform ∆ ∈ Fpℓ and keeping track of all

the values {λi}i∈in (and their corresponding MAC tags), which are used to commit
to the input as well as {(ai, bi, ri)}i∈mul (and their corresponding MAC tags) which
are used to commit to the multiplication triples, all of which are sent to F l,p

VOLE by
A. Sim then emulates FTRIPLES by recording {ci}i∈mul as well the corresponding
MAC tags which are sent by A to FTRIPLES.

2. When A sends {Λi}i∈in, Sim sets wi = λi + Λi for i ∈ in (i.e. Sim now knows the
witness)

3. Sim then runs the rest of the protocol as an honest verifier using the value ∆ as
well as the keys defined in the step 1. If the honest verifier outputs reject, then
Sim sends (Prove, C,⊥) to Fzk and aborts. If the honest verifier outputs accept,
then Sim sends (Prove, C, w) to Fzk, using w as defined above.

We assume that A does not guess ∆ correctly, which holds true except with probability
ϵopen = 1

|F| . It is then clear that the view of A is perfectly simulated by Sim, as,
whenever the simulator Sim (simulating the verifier) outputs reject, then the real verifier
outputs reject as well, since the simulator sends ⊥ to Fzk. Lastly we need to consider the
probability of the malicious prover winning, i.e. having the simulator outputs accept,
despite the fact that the witness w sent by Sim results in C(w) = 0, i.e. the witness isn’t
correct.

If C(w) = 0, then it must be the case that wo = 0. This follows from the addition
being allowed through the additively homomorphic commitments and the multiplication
being guaranteed through the correct multiplication triples in addition to the homomor-
phic commitments. Thus, all that remains is the probability of the adversary A opening
some incorrect value by the end of the protocol, which happens with probability at most
ϵopen. This completes the proof for the case of a malicious prover.

Malicious verifier If Sim recieves reject from Fzk, then it simply aborts. Otherwise
Sim interacts with the adversary A in the following way:

1. Sim emulates F l,p
VOLE by recording the global key ∆ and the keys for all of the

authenticated values which are sent to the functionality by A. Sim then samples
uniform values for {λi}i∈in and {(ai, bi, ri)}i∈mul and compute their MAC tags.

2. Sim then executes steps 2-3 of Πzk by simulating the honest prover using the input
w = 0in (i.e. using 0 for each value of the witness).

3. In the final step, Sim computes K[wo] (using the keys send to F l,p
VOLE by A) and

then sets M[wo] = K[wo]+∆. Lastly, it uses M[wo] to run CheckZero([wo]−1) with
A.

The view of A which is simulated by Sim, is distributed identically to its view in the
real protocol execution, since the commitments to the input are hiding.

20 CHAPTER 1. INTRODUCTION

This completes the proof of soundness and the proof of zero-knowledge of the zero-
knowledge protocol Πzk (Figure 1.3). Arguing correctness of the protocol is as simple as
stating that the addition gates follows from the additively homomorphic commitments
and that the multiplication gates are correct by the argument in the protocol. Thus, if
the prover inputs a correct witness so that C(w) = 1, then CheckZero will be satisfied.

1.5.1 Limiting Interaction

Whenever we have discussed protocols in the previous pages, there has been interaction
between the prover and verifier. Either by the prover simply sending values to the
verifier or the verifier sending challenges to the prover. It turns out that most zero-
knowledge proofs follow this exact formular. While this works for some applications,
other applications may struggle with this pattern, as they are directly harmed by the
communication required, either through poor internet or simply the need for both the
prover and verifier to be online at the same time. Fortunately, thanks to the seminal
work of Amos Fiat and Adi Shamir [FS87], there exists a way of turning most interactive
protocols into non-interactive protocols. These are attractive not only theoretically, but
due to the reasons above, also practically.

Before introducing the technique brought forth by Fiat and Shamir, we must first dis-
cuss which types of protocols that can be transformed from interactive to non-interactive.
Specifically, the construction must be a public-coin protocol. These are a special case of
the general interactive proofs that were introduced in Section 1.1, in which the random
choices made the verifier (e.g. when sampling the challenge for the prover) are made
public or simply based on only public information. This idea was first introduced by
Babai [Bab85] in the form of a game called the Arthur-Merlin game in which the verifier
is played by the mere human Arthur whom has no special powers, while the prover is
played by the almighty wizard Merlin who has unbounded resources (both properties
that are brought into the game between the two). The game works the following way:
Merlin sends the first message a1 to Arthur who who then uniformly at random sam-
ples a challenge c1 from a set of public random bit-strings B1 (essentially flipping public
coins), Merlin then sends a second message a2 to which Arthur responds with c2 sampled
similarly from B2 and so on. The game ends with a final message from Merlin, at which
point Arthur either accepts or rejects, based on the input and the exchange of messages.
The point here being that Merlin is unaware of exactly which challenges Arthur send
before these have been sent, despite the challenges coming from publically flipped coins.

Now, Fiat and Shamir offered a generic transformation from a public-coin interactive
protocol to a non-interactive protocol. This was achieved by replacing an honest verifier
by having the prover hash its first message, using some hash function H, as well as a
statement to derive the corresponding challenge that would have been publically sampled
by the verifier, thus removing the need for interaction between the prover and verifier.
This concludes with us essentially having a protocol only consisting of a prover, but
then how do we prove security of it? Can we simply rely on the fact that if the original
construction is provably secure, so is this new transformed version? Notably, how can
we stop the prover from cheating and creating false proofs?

1.5. COMMIT AND PROVE 21

1.5.2 Modelling Security of The Fiat-Shamir Heuristic and Basic Us-
age

Formally, assume a proveably secure interactive protocol, denoted as Π, and let FS(·)
denote the Fiat-Shamir transformation. Can we then assume that FS(Π,H) is secure,
provided that H is some standard cryptographic hash function? To answer this question,
we must first provide some additional background. Thus far, we have only (albeit never
mentioned this explicitly) considered the standard model. In this model, we only consider
an adversary who is limited by amount of time and computational power. To this end,
several works exist [GT03, BDG+13] stating that it is indeed not the case, that we can
simply assume that FS(Π,H) is secure. We therefore now consider a new model, the
random oracle model. The random oracle model (or ROM) is an idea that was originally
introduced by Bellare and Rogaway [BR93]. In this model we assume the existence of a
so-called random oracle O which we informally describe in the following way:

• Anyone has access to the oracle O

• On any distinct input, O returns a uniformly random bit string of fixed length

• O keeps track of every single input and will output the same bit string for the
same input, regardless of who queried it.

Obviously, we cannot have such an oracle exist in real life. Additionally, it turns out
that, even if we argue that something is secure in this model when we have access to
the ideal oracle, things might still not work out when we try to instantiate the random
oracle using a hash function, as shown by [CGH98, GT03]. Specifically, [CGH98] show
that there exist signature and encryption schemes that are secure in the random oracle
model, but fail for every concrete instantiation of any hash function. This shows that
it is impossible to generically replace the random oracle used in the proof, with a hash
function. This negative result shows that one has to be exceptionally careful when
picking a function H by considering the inner-workings of the protocol Π. Despite this
observation, the random oracle model has gained a large following and it has turned out
to be trusted by cryptographers in general.

Now, the protocol Πzk that was described in Figure 1.3 cannot properly utilize Fiat-
Shamir by the simple fact that hardly any interaction takes place to begin with, since
most of what happens, is the prover sending values to the verifier. This was done to
make the protocol less complicated to explain, however, we must now go back on this
slightly. To this end, we introduce a way of opening the committed-to values in a batch.
This not only lowers the communication required, which would otherwise be two field
elements per opening, but it also forces interaction into the protocol. The following
approach is due to [WYKW21a].

The prover wishes to opening values n values x1, . . . , xn ∈ Fp (which all has corre-
sponding tags and keys).

1. P sends x1, . . . , xn to V.

22 CHAPTER 1. INTRODUCTION

2. V picks uniform χ1, . . . , χn ∈ Fp and sends these to P.

3. P computes M[x] =
∑n

i=1 χi ·M[xi] and sends this to V.

4. V computes x =
∑n

i=1 χi · xi ∈ Fp and K[x] =
∑n

i=1 χi · K[xi] ∈ Fp. The verifier V
accepts the opened values if and only if M[x] = K[x] + ∆ · x.

The soundness of this approach follows from the following lemma

Lemma 1. Let x1, . . . , xn ∈ Fp and M[x1], . . . ,M[xn] ∈ Fp be arbitrary values known
to P, and let ∆ and {K[xi] = M[xi] − ∆ · xi}ni=1, for uniform ∆ ∈ Fp be given to V.
The probability that P can successfully open values (x′1, . . . , x

′
n) 6= (x1, . . . , xn) to V is at

most 2/p

Proof. The proof of this can be found in [WYKW21a].

Now, note that this protocol requires the sending of random values {χi}ni=1 from V
to P. A common trick to decrease the communication at this point, would be to instead
have V sample a random seed and then send this over to P, who can then sample these
n values themself using a pre-selected hash function h and the seed. However, even this
requires communication from the verifier to the prover.

Instead, we can use the Fiat-Shamir heuristic and then compute the set of coefficients
{χi}ni=1 as the output of a hash function hash, which is now evaluated on the values
{xi} which are sent by P in the first step. Now, this can be shown ([WYKW21a]) to
have a soundness error of at most (qH+2)/p. In this case, qH represents the number of
queries to the random oracle that P makes, thus it is an upperbound on the hashes that
are computed by the adversary.

To this end, we have introduced an interactive protocol Πzk in Figure 1.3. We have
then enhanced this protocol by adding a batch opening which allows the prover to open
more values in cheaper fashion than if they were to be opened one-by-one. Lastly, we
have argued that we can take this batch-opening protocol and make it completely non-
interactive using the Fiat-Shamir heuristic as defined above.

1.6 SNARKs

So far we have primarily been discussing zero-knowledge protocols for circuits (which is
also the type of protocol we described in Figure 1.3). These proofs are mostly linear in
the communication taking place between the prover and verifier and so is the time it
takes for them to do computations during it to either generate the proof or verify it. This
naturally comes from evaluating the circuit gate-by-gate. This amount of communication
works very well for smaller circuits, but it quickly becomes a potential problem for large
circuits (many millions of gates). This is where Succint Non-interactive Arguments of
Knowledge or (SNARKs) [BCCT12] comes into the picture. These are a type of proof
system with some very specific properties. The name itself alludes to a few of these that
we have not yet encountered.

1.6. SNARKS 23

Succinct The size of the proof is very small compared to the size of the statement or
the witness. Specifically, it should be sublinear in the size of the witness or the
statement. It is also very easy to verify and should take very little time.

Argument Back in Section 1.1 we described soundness as the property that a cheating
prover P∗ shouldn’t be able to convince a verifier of a false statement. We now alter
the scope of this slightly by (probably reasonably) assuming that the prover have
bounded computational resources. If soundness only holds true for a polynomial-
time P∗, then a protocol is said to be an argument rather than a proof. Thus, for
SNARKs, we consider it fair if a prover with unlimited compute power can create
a SNARK that verifies without being correct.

of Knowledge For a prover to be able to construct a valid proof, there exists a so-
called extractor that is capable of extacting a valid witness (i.e. the knowledge)
for the statement. Thus, if the prover does not know a witness, the prover cannot
construct a proof, as otherwise the extractor would be able to extract the valid
witness.

The final property, them being non-interactive, is something we have already touched
upon before during our discussion of Fiat-Shamir when applied to regular circuit-based
proofs. The idea is the same for SNARKs. Finally, if the SNARK also satisfies zero-
knowledge, we write zk-SNARK.

From this, we can conclude that zk-SNARKs are a particular type of proof system
in which the proofs are very small, the verification process is fast, the proofs are non-
interactive and we assume the prover is polynomially bounded in terms of computation.
The latter however does not mean that it is cheap for a prover to create a zk-SNARK. In
fact, this turns out to be one of the downsides of using zk-SNARKs compared to vole-zk
as described above, it can be very costly both in terms of time but also the memory
required by the prover [Tha22]. A direct comparison in terms of prover- and verifier time
as well as communication and prover memory between a vole-zk protocol and several
different zk-SNARK proof systems can be found in [WYKW21a].

This does however not mean that both proof systems aren’t needed. Particularly,
vole-zk occupies a different part of the overall space than existing zk-SNARKs. It bal-
ances the burden of work of the prover with the verifier as well as the communication,
rather than put the vast majority of the work on the prover, which is exactly what zk-
SNARKs do. This results in zk-SNARKs only being viable for small-scale computations
or requiring expensive hardware. This is not to say that no constructions exist in which
the prover uses only sublinear memory [COS20], but such schemes are currently much
slower than those using linear memory [Set20].

Lastly, something worth discussing is the assumptions used by zk-SNARKs. Many
constructions [BCC+16, BBB+18, WTs+18, CHM+20] are based on discrete-log type
assumptions, which are assumptions that do not hold against a quantum polynomial-
time adversary [Sho97]. What we mean by this, is that whenever (if ever?) a general-
purpose quantum computer is built, it would render any construction based on these
assumptions insecure. This is not to say that all zk-SNARK constructions will fail, just

24 CHAPTER 1. INTRODUCTION

that a lot of work has and is being put into this side of the field. Some constructions
[GMNO18, BBHR18, AHIV17] are plausibly post-quantum. Work based on VOLE-based
commitments are believed to be secure in the advent of a quantum compute, as they are
based on variants of the Leaning Parity with Noise (LPN) assumption, which is believed
to be secure post-quantum.

1.7 Applications

We consider different types of applications for the two different types of zero-knowledge
proofs we have seen thus far: VOLE-based zero-knowledge over circuits and SNARKs.
An important thing to note, that was not brought up in Section 1.6 on SNARKs, is that
SNARKs can be recursive. A recursive SNARK allows the prover to collect (or com-
pose) several SNARKs into a single SNARK whose size is smaller than if the composed
SNARKs had simply been concatenated. Taking this idea slightly further, this can not
only be used to collect many proofs into one, but also to prove slightly more complex
statements. Essentially, if a prover proves a statement that results in a large proof (al-
beit still a SNARK), then the prover can create another SNARK to prove knowledge of
the original proof, but now in a more compact fashion.

This idea of recursive SNARKs has a lot of applications in the realm of blockchains (or
other applications utilizing Merkle trees [Mer79] and the likes). Here, one can consider
an entire block of transactions which requires a proof that each of them are correct and
valid. Having a SNARK for each would take up too much space, despite the succinctness
of the individual proofs. Instead, one can split up the transactions in several subproofs
and use a recursive SNARK to combine them all into a single proof. One could also
consider a block that hasn’t been completely filled up with transactions yet. Rather than
wait for the entire block before beginning the proof, the prover can now ahead of time
start creating the separate subproofs. This is known as streaming the proof generation
and it results in a very small delay of the complete proof at the end. SNARKs fit these
purposes very well, as one wants to minimize the size of the proofs on the blockchain, as
these must be uploaded and communicated among many people, thus large proofs lead
to much more communication. If one instead considers applications of VOLE-based zero-
knowledge over circuits, these differ vastly from those of SNARKs. Here we highlight
two: (1) proving properties of a program [CHP+23] and (2) proofs of machine-learning
tasks [WYX+21a, LXZ21]. In (1) a prover wants to prove to a verifier that the prover
knows an exploit for a specific program. This can be done by encoding both the program
and the exploit to a circuit format (i.e. the exploit is encoded into the witness and the
input to the circuit and the program is encoded into some verification circuit). The
purpose of this type of proof would be to show that an exploit exist, for instance as part
of a bug bounty program, to get the bounty before giving over the exploit. In (2) we
consider machine-learning. A machine-learning model can require huge effort to train
and because of this, the owner may only provide the model as a paid service. Because of
this, whoever wants to use this model must send their input to the owner who then runs
the model and sends back the answer. To avoid the need of this trust-based system, the

1.7. APPLICATIONS 25

owner of the model can, using a scalable zero-knowledge protocol, publicly commit to the
machine-learning model and then prove in zero-knowledge that the committed model was
correctly applied to the users input which yielded the result that was previously claimed.

Both of these use-cases potentially require millions (or billions) of gates to model
either the program or the machine-learning model. This quickly becomes far too large
for a SNARK to handle, as the time and memory consumption of the prover would grow
beyond what is reasonable (or possible in some cases).

Instead, VOLE-based proofs are much more scalable, since the computational re-
sources required by the prover and verifier are roughly the same as what would be
needed to simply evaluate the statement using the witness in the clear (i.e. the prover
gives the witness to the verifier). In addition to this, the memory required by the prover,
when considering VOLE-based proofs, is roughly proportional to the memory required
to simply verify the statement when given the witness. This turns out to be incredibly
useful, as the witness can sometimes be so large that it does not fit in memory, despite
the proof being able to be verified efficiently in a streaming manner. On the other hand,
VOLE-based proofs would be quite bad for blockchain applications, as they require sig-
nificantly more communication (or if we only consider non-interactive proofs, then they
result in significantly larger proofs). In addition to this, VOLE-based proofs are not
necessarily the best choice if the verifier has to be able to verify a proof quickly (like
they can with SNARKs), as the verification time usually scales linearly with the size of
the circuit.

In conclusion, both SNARKs and VOLE-based ZK proof systems have a reason to
exist, but these reasons do not overlap, as they solve entirely different problems.

26 CHAPTER 1. INTRODUCTION

1.8 Overview

As seen in the introduction, we can build both interactive as well as non-interactive
zero-knowledge protocols based on linearly-homomorphic commitments that we build
from information-theoretic (IT) MACs. As also shown, these IT MACs can be built
efficiently from vector oblivious linear-function evaluations when we are working over a
large prime field Fp. The goal of this thesis is to push forward the study of cryptographic
constructions based on this particular type of commitment in multiple directions.

The main body of this thesis focus on multiple things

1. Optimising and expanding on what is possible using circuit-based cryptography
by increasing the number of settings in which we can efficiently use circuit-based
zero-knowledge proofs based on VOLE as well as providing gadgets that lower the
overall gate-count.

2. Optimising protocols in the so-called Random Access Memory (or RAM) model.

1.8.1 Expanding on the possibilities of circuit-based cryptography

In this thesis we investigate the possibilities of going beyond the gate-by-gate paradigm
of circuit-based cryptography. When one evaluates a circuit gate-by-gate it naturally
brings with it a linear running time in the size of the circuit. While this is fine for
smaller circuits, it can be detrimental when the circuits consist of millions or billions of
gates, if the constants related to the linear costs are too high.

A recent line of work has been investigating the scalability of zero-knowledge pro-
tocols for very large statements which are represented by circuits with billions of gates
[WYKW21a, BMRS21a, DIO20, YSWW21a, DILO22]. This is primarily done by build-
ing certain gadgets that can do specific often-used primitives more efficient, than if they
were naïvely implemented using a regular circuit or by utilizing the structure of the
computation coupled with techniques from polynomial arithmetics, allowing certain op-
erations to be performed more efficiently than linearly in the number of gates. In the
first case, the goal is to decrease the overall number of gates required, while the second
case requires looking at the problems in a different way. A third approach to making
zero-knowledge more efficient, is considering other domains of computation, as some
functions are known to be more efficient when expressed as a circuit over a particular
domain.

In this thesis we propose new gadgets for often used techniques, by giving protocols
for integer truncation, integer comparison and field switching. While integer truncation
and integer comparison are self-explanatory, field switching is a bit more obscure. It turns
out, that there are operations that are much more efficient when represented in a specific
field. For instance, comparisons or bit operations are more efficient when expressed over
F2 while integer arithmetics best fits into Fp for some prime p. The problem with this, is
that most state-of-the-art zero-knowledge compilers operate over a single domain. If this
is Fp, then any arithmetics over F2 will require costly bit-decompositions and thereafter

1.8. OVERVIEW 27

emulation of the binary circuit logic in Fp. This is in particular where being able to
switch between fields turns out to be very useful.

Meanwhile, neither of the above mentioned fields capture arithmetics modulo 2k

efficiently. When working over the ring Z2k most protocols that are designed to work
over Fp turn out to be insecure due to properties of working over a field no longer being
present. It is however of recent interest, to be able to work over the ring Z2k . For
instance, since CPUs perform arithmetic in Z2k , working in this ring leads to a much
simpler translation of program code into a satisfiable circuit C for which a prover can
prove knowledge of a satisfying witness.

All of the chapters in this section has in common that they use VOLE, but apart from
that they strive to improve performance of circuit-based zero-knowledge in various direc-
tions, either by proposing optimizations to gadgets that are often used in protocols or by
allowing the protocols to work more efficiently over various domains such as F2,Fp or Z2k

Chapter 2: MozZ2karella: Efficient Vector-OLE and Zero-Knowledge
Proofs over Z2k

This chapter is based on the following published work [BBMHS22a]. The results were
also presented at CRYPTO 2022. For the full version, including appendices see [BBMHS22b]
(this thesis contains a version of this where the appendices have been moved to their
locations within the paper).

Background This chapter considers ways of generating vector-OLE (VOLE) over
rings Z2k as well as zero-knowledge protocols working over this domain. Lately, a lot
of effort has been put in to produce VOLEs over finite fields Fp for some large prime p
[BCGI18, BCG+19b, WYKW21a]. All of these works rely on the Leaning-Parity with
Noise (or LPN) assumption, albeit efficient, their protocols would be insecure when run
over a ring Z2k . As such, the most efficient way of generating this correlated random-
ness over Z2k (while maintaining an actively secure protocol), would instead be [Sch18].
This paper builds on the idea of OT-extension in which the prover and verifier generate
a small set of correlated OTs in an expensive setup phase and then extend these into
many more, through a much cheaper extension phase. The paper however, only uses
techniques that work both over rings as well as fields, while still being actively secure,
thus allowing for the generation of VOLE over the ring Z2k . Unfortunately, this has the
drawback of requiring quadratic communication in the bit length of the VOLE.

On a somewhat related note, the above discussion focuses on protocols having active
security. If one is only interested in semi-honest security (and multi-party computation),
other works do exist [SGRR19, BCG+19b] for generating correlated OTs or VOLEs over
rings Z2k .

There has been little to no work on protocols for circuits over Z2k in the commit-and-
prove setting however. Prior work by Baum et al.[BBMH+21b] (Chapter 3 of this thesis),
have shown how to adapt VOLE-based information-theoretic MACs for zero-knowledge
over Z2k , using techniques from multiparty-computation [CDE+18]. They then present

28 CHAPTER 1. INTRODUCTION

two variations of zero-knowledge protocols that uses the new information-theoretic MACs
as well as an (adapted to Z2k) multiplication check from Wolverine [WYKW21a] in
the first variation and one which uses a multiplication check (also adapted to Z2k)
from Mac’n’Cheese [BMRS21a]. More recently, a more efficient zero-knowledge protocol
called QuickSilver [YSWW21a] was presented, but this unfortunately only works over
finite fields.

Contribution Firstly, this work addresses the question of building a linearly-homomorphic
commitment scheme over Z2k and in turn builds efficient protocols for generating VOLE
over the ring Z2k . It succesfully builds a maliciously secure protocol with efficiency that
is comparable to the state-of-art over finite fields [BCG+19a, WYKW21a]. The protocol
for generating VOLE is rooted in [WYKW21a], but it required the introduction of a
new consistency check for verifying correctness of the VOLE extension, which is tailored
specifically to handle any challenges which comes with working over Z2k , such as dealing
with additional leakage during the protocol for single-point VOLE. This requires a new
assumption that we denote as Leaky Regular LPN. This is a variant of the Regular LPN
assumption which leaks part of the error vector, but we show that this doesn’t hurt the
overall hardness of the problem, as long as certain measures are taken.

Secondly, this work shows how to adapt QuickSilver [YSWW21a] to work over Z2k .
This uses the aforementioned VOLE protocol and is able to prove circuit satisfiability
over Z2k , by lifting ideas from the world of multi-party computation [CDE+18] as well
as careful analysis of the roots of the used polynomials. In doing so, we obtain an effi-
cient zero-knowledge protocol that we call QuarkSilver, yielding comparable efficiency to
QuickSilver.

Chapter 3: Appenzeller to Brie: Efficient Zero-Knowledge Proofs for
Mixed-Mode Arithmetic and Z2k

This chapter is based on the following published work [BBMH+21b]. The results were
also presented at CCS 2021. For the full version, including appendices see [BBMH+21a]
(this thesis contains a version of this where the appendices have been moved to their
locations within the paper).

Background As some operations are much more efficient when working with bits
rather than large field elements, a much used operation is computing bit decompositions
of field elements. The tried and tested way of converting committed-to values between
their binary decomposition and the value itself, in some prime field Fp is to have P
compute, as well as commit to, the binary decomposition of the hidden value x ∈ Fp,
denoted by [x0]p, . . . , [xm−1]p and then prove that not only are each of the values truly
bits, but also that x =

∑m−1
i=0 2ixi. When using a linearly homomorphic commitment

scheme, such as the one achieved by using VOLE, the latter operation comes for free.
The first proof however, proving that each field element is a bit, turns out to be very
costly. The prover must show that xi · (xi − 1) = 0 ∀i, and multiplications require com-

1.8. OVERVIEW 29

munication, when using the aforementioned linearly homomorphic commitment scheme.
Now, equipped with the proven bit decomposition of some value x ∈ Fp, one still has to
mimic the logic of whatever binary circuit had to be computed to begin with, requiring
further work and communication. Additionally, before this computation can take place,
this requires communicating the bit decomposition in Fp. Consider a 60-bit integer com-
mitted to in some prime field Fp, doing the above will require the prover to commit to
an additional 60 values in Fp, in addition to what it requires to check consistency of the
multiplications.

As briefly touched upon in Section 1.2, it is sometimes desired to work over binary
representations i.e. F2 or when having the proven bit decomposition in Fp, despite the
heavy costs listed above. This is because it can allow for much more efficient circuits than
when working over the value x ∈ Fp rather than the bit decomposition [x1]p, . . . , [xm]p.
A particular example is truncation. Consider some committed-to value [x]p, x ∈ Fp

for some prime p as well as its bit decomposition ([x0]p, . . . , [xm−1]p) (where P knows
the underlying values and V does not). Now, computing a truncation of the hidden
value [x]p requires both proving the size of the underlying value (i.e. its bit-length)
and that the correct number of bits were truncated off. If instead the prover have
previously committed to the bit decomposition ([x0]p, . . . , [xm−1]p), then computing the
truncation of l bits is as simple as outputting ([x0]p, . . . , [xm−1−l]p). This can be done
locally without communication. This operations becomes even more efficient if working
over F2 is an option, as communicating the values ([x0]2, . . . , [xm−1]2) would require less
communication than the same values over Fp.

Contribution In this chapter we present a new way of converting between values from
Fp (or Z2k) and the boolean field F2 in zero-knowledge, that is inspired by research from
secure multiparty computation [EGK+20]. We find several optimizations as well as the
need for a consistency check during the adaption of the protocol to zero-knowledge.
This new conversion check results in the prover and verifier having values [x]M and
([x0]2, . . . , [xm−1]2) so that x =

∑m
i=0 2

i · xi. Therefore, since this conversion protocol
can be run directly as a sub-protocol within a circuit, it removes the need for ever
emulating the logic of binary circuits in Fp or vice versa, as one can compute directly
within F2 and then later on convert the binary values back into Fp. Additionally, the
conversion protocol removes the need for ever having the bit decomposition committed
to in Fp. We then show how to use this new conversion protocol, as a way to compute
truncation of field elements in Fp as well as compute comparisons. The idea is that when
we show that a value [x]M can be represented by m bits ([x0]2, . . . , [xm−1]2), then we
indirectly show that x < 2m as well, i.e. it also works as a range proof.

Finally, while protocols over both Fp and F2 are well-studied, there has been less
work on protocols over the ring Z2k . This paper takes a step in this direction by design-
ing the above protocols such that they also work over a ring Z2k . In addition to this,
it is also the first paper to show how to use the VOLE-based commitments for ZK over
Z2k . This paper present two variations of zero-knowledge protocols that uses the new
information-theoretic MACs as well as an (adapted to Z2k) multiplication check from

30 CHAPTER 1. INTRODUCTION

Wolverine [WYKW21a] in the first variation and one which uses a multiplication check
(also adapted to Z2k) from Mac’n’Cheese [BMRS21a]. This provides flexibility in the
high-level application of these protocols. Here it is worth mentioning that this result
was later improved on in Mozzarella [BBMHS22a] (Chapter 2 of this thesis).

Chapter 4: Cheddar – Oh, Range Proofs for VOLE-based Zero-Knowledge!

This paper is currently a draft and has as such not been published anywhere yet.

Background As we have already covered, zero-knowledge proofs allow a prover to
prove to a verifier that a specific statement is true while revealing no additional infor-
mation. This idea works for arbitrary functions that the prover wants to prove and these
functions can be modelled as general circuits. However, rather than use general circuits
(and naïve implementations), oftentimes protocols designed for specific purposes are sig-
nificantly more efficient. One of these types of protocols are Range Proofs. A range
proof allows a prover to prove to a verifier that some committed-to value x lies in some
public range a ≤ b so that a ≤ x ≤ b.

Range proofs are a fascinating primitive, as they can be used alone in applications
such as [Cha90], e-voting [Gro05, ABG+21], e-cash [CHL05], or lattice-based cryptog-
raphy in general where security and correctness is based on the smallness of certain
integers and vectors [CMM19, LLM+16, GHL22]. Also of interest in recent years is ver-
ifiability of large-scale neural network inference [LXZ21]. The main difficulty here lies
in the fact that a lot of non-linear operations cause a loss in accuracy when the values
are represented as fixed-point numbers, something that the linear operations require,
so range proofs can be used to convert between fixed-point numbers and floating-point
numbers, which can then be utilized in the protocols to obtain maximum accuracy.

A recent technique due to Baum et al.[BBMH+21b] (Chapter 3 of this thesis) build a
range proof by using their field switching protocol. A consequence of proving correctness
of bit decompositions is that it shows what the bit length of a value x is at most. At
the time, this was the state-of-the-art technique, however, it suffers from requiring a lot
of range proofs at a time, to be efficient. Specifically, it is at its best efficiency when
checking 220 range proofs at a time. This comes from requiring a cut-n-choose step, that
is insecure below this threshold. In addition to requiring many at a time, it also only
allows a fixed range for the entire batch.

Protocols for range proofs usually fall into two main paradigms: (1): range proofs
based on n-ary decomposition [Gro11, CCs08, BBB+18, BBMH+21b], or (2): range
proofs based on square decomposition [Bou00, Lip03, Gro05, CPP17, GHL22]. Square
decomposition involves the prover and verifier computing [x] − a and b − [x] and then
for the prover to decompose the product of x − a and b − x into four squares so that
([x] − a)(b − [x]) = α2 + β2 + γ2 + δ2 [Lip03] and thus proving that both numbers are
positive, which shows that a ≤ x ≤ b. This is usually done using an integer commitment
scheme so that no overflow can happen during the computations but it can also involve
an approximate range proof where the prover shows that the values (α, β, γ, δ) are all

1.8. OVERVIEW 31

bounded so by some predetermined bound β. While the approximate range proof is much
more efficient, it also has a slack that allows the values to be off by at most this slack,
while the proof still succeeds. This slack is based on the number of values involved in the
proof and usually means the values must either be small or few values can be used in each
proof [BN20, GHL22]. The former, n-ary decomposition involves the prover decomposing
x into field elements (such as bits in the case of binary decomposition) and then prove
that each of those fit within a predetermined range as well as the decomposition being a
correct decomposition. The aforementioned work due to Baum et al.[BBMH+21b] also
fall into this category.

Now, the different approaches each have their pros and cons. Particularly, computing
the square decompositions becomes a bottle neck when considering two large values or
two many values. They therefore works best on smaller values and smaller batches of
range proofs. They do however not require a lot of communication, as the primary com-
munication is committing to the squares computed by the prover. The other approach
of n-ary decomposition has the problem of potentially requiring more communication, as
the decomposition has to be communicated (and committed to). It is however relatively
cheap to compute. Depending on the value of n, this approach works better for slightly
larger batches, compared to square decomposition, as some techniques can be used to
more efficiently perform the equality checks required by this approach, when the batches
aren’t too small. Finally, we put the approach of [BBMH+21b] in its own category, as
this approach communicates the decomposition in F2 rather than Fp, thus saving on
communication here. This saving however, requires a very large batch of range proofs
at a time or else it becomes efficient significantly more inefficient.

Contribution This chapter provides three novel ways of generating range proofs where
each way has its pros and cons. The first way utilizes the square decomposition, but we
avoid the expensive part of requiring an integer commitment scheme by instead using a
significantly cheaper approximate range proof on each value (α, β, γ, δ) and thus show
that the values won’t overflow when squared or added together. Let s ∈ Fq be a secret
vector (that the prover has committed to) and C be a public matrix sampled by the
verifier. The way the approximate range proof is usually done is by computing [y] = C[s]
and then show that [y] is still small. We show that by sampling the matrix C according
to particular distribution, we can lower the slack caused by the approximate range proof
drastically, thus allowing us to run our protocol on either many more values or larger
values than related work.

The second range proof we propose is in the n-ary decomposition paradigm. The
prover has committed to x and claims that 0 ≤ x ≤ 2k − 1 for some public value
k. Additionally, the prover and verifier have agreed on some value n for which the
prover computes x0, . . . , x(k/n)−1 so that x =

∏k/n
i=0 2

i·nxi. The prover then defines
the polynomial f(X) =

∏2n−1
i=0 i − X and checks correctness of the polynomials. The

primary cost of this proof comes from checking the correctness of the polynomials, which
can be done using a variation of QuickSilver [YSWW21a]. Instead of having to write
polynomials in a degree-separated format as well as using polynomial operations, we

32 CHAPTER 1. INTRODUCTION

propose seeing the commitments as 1-degree polynomials and then combine d of these
1-by-1 to generate a degree d polynomial. Note now that the degree d term will consist
only of the underlying values x0, . . . , xd−1, which must evaluate to 0, if the prover is
honest. Thus, we can mask the remaining polynomial of degree d− 1 and send this over
so that the verifier can check this is done correctly. This simplifies the protocol and for
the simply polynomials we use, we expect this to be faster. A second approach is to
use Mac’n’Cheese [BMRS21a], who proposed a disjunction proof, which can be used to
show that one of the values x0, . . . , xd−1 is 0 and thus the values fit.

The final proof is also in the n-ary decompositional paradigm. Given commitments
[a1], . . . , [an] over a large finite field Fq, the prover wants to show that all ai ∈ [0, 2m) for
some m < log2(|Fq|). That is, they can be represented as ai =

∑m
j=1 2

j−1 · bi,j with all
bi,j ∈ {0, 1}. The prover then computes polynomials p1, . . . , pm, q1, . . . , qm ∈ Fq[X] such
that pj(i) = bi,j and qj(i) = 1 − bi,j = 1 − pj(i) for i ∈ [n], j ∈ [m] but through certain
techniques can avoid ever sending over the entire decompositions.

1.8.2 Considering the RAM model

Statements presented as circuits, either Boolean or arithmetic is what this thesis is
primarily about. Unfortunately, this approach can fall short in instances such as set
membership, private database search, verification of program execution or something as
simple as binary search. In these particular cases, we can utilize a different type of com-
putation. Specifically, random-access-machines (RAM) rather than circuits. Consider
the case of binary search. Here a RAM that searches for a specific value in a sorted list
of n values can do so in only log n memory accesses. This is in contrast to the canonical
approach using circuits where it is at least required for the circuit to parse the entire
list as input after which comparisons can be made to find the correct value. This means
that the size of the circuit at least depends linearly on the size of the list. When we want
to utilize this notion of RAM in zero-knowledge proofs, we consider the RAM model.

In this model, we consider the case of the prover and verifier having access to a shared
memory of size N . The prover can store values at certain addresses in the memory and
can then afterwards read the values from those same addresses. Key to this model
though, is the verifier can never know which operation is being performed and can thus
not know which addresses are getting read or written to, or which value is being read
or written. Meanwhile, the verifier can keep track of the fact that nothing is being read
that has not been written.

In general, the RAM model is preferable to using circuits whenever the computations
involve sparse data-dependent accesses across very large datasets, as the RAM model
allows reading from and writing to independent addresses across a large shared array.
In addition to this, it also has the benefit of most real-world computations already be-
ing expressed in terms of RAM machines, thus allowing zero-knowledge proofs in the
RAM model to handle statements that are written in ordinary programming languages
[HYDK21]. This opens the door for allowing a broad audience to use widely available
tools to build efficient proofs of arbitrary statements written in regular programming
languages, rather than having to use obscure zero-knowledge or multiparty computa-

1.8. OVERVIEW 33

tion frameworks. As such, it is necessary for zero-knowledge proofs in the RAM model
to be as efficient as possible, so recently the RAM model has seen a lot of interest
[BCG+13, BFR+13, BCTV13, HMR15, MRS17, BCG+18, HK20a, FKL+21, DOTV22]

Chapter 5: Pecorino: More Efficient Zero-Knowledge for RAM Pro-
grams

This paper has not been published yet and is currently not on eprint.

Background Developing protocols for zero-knowledge proofs in the RAM model has
been of interest for a few years at this point. Early on, protocols would use a permutation
network in order to enfore consistency of memory accesses [BCG+13, BCTV13, WSH+14]
within the shared memory. This permutation network would take two lists, denoted by
tr and trsort, where tr essentially is a list of tuples containing operations, values, addresses
as well as timestamps and trsort is tr sorted on addresses followed by timestamps. The
task of the permutation network is then to check that these two lists contain the same
values and operations by showing that tr = π(trsort for a permutation π. This comes
at a cost though, as the network used [Ben64] has a logarithmic overhead per memory
access. Recently, [FKL+21], managed to get rid of this expensive permutation network,
by instead utilising a polynomial-based permutation check. They still have the two lists tr
and trsort containing the trace of memory accesses and the same list which is (supposedly)
sorted, respectively. They then pack each tuple into a single value, by utilizing the
structure of their commitments (specifically they use VOLE based commitments), and
as a result get two lists of field elements. They then define two polynomials

p(X) =
∏
i

(tr[i]−X) q(X) =
∏
i

(trsort[i]−X)

and simply check equality between the two polynomials by evaluating them on a random
value r, i.e.

p(r)
?
= q(r),

which, when using techniques due to QuickSilver [YSWW21a], is much faster and re-
quires little communication, compared to using the permutation network. These pro-
tocols do not translate well to non-interactive protocols, as they are private-coin (i.e.
cannot be transformed using the Fiat-Shamir heuristic). More recently, de Saint Guil-
hem et al.[DOTV22] proposed a public-coin constant-overhead zero-knowledge protocol
in the RAM model which can be transformed using the Fiat-Shamir heuristic, as they
transform any public-coin zero-knowledge system into a proof of RAM programs. This
work [DOTV22] is based on the work due to [FKL+21], but in addition to being po-
tentially non-interactive, their protocol is also the first protocol allowing values from a
prime field, rather than only supporting boolean values.

Taking a step back; the purpose of this sorting network used by [FKL+21], is to sort
two lists containing tuples (value, address, timestamp, operation). By sorting these en-
tries on address and then timestamp, the authors can ensure that the prover P performs

34 CHAPTER 1. INTRODUCTION

all reads after a write has been performed on a particular address. While the sorting is
not the expensive part, ensuring that it’s sorted correctly and that the operations match
in regards to having reads after writes, is quite expensive. Specifically, the check in-
volves checking that for all adjacent tuples ([li], [di] and ([li+1], [di+1]) (where each tuple
contains an address and value, respectively), either li < li+1 or li = li+1 and di = di+1.
This represents the case when the shared memory is only readable and not writeable.
In the latter case, the check requires extra if-statements to check that the operations
match.

Contribution In this chapter we present our new ZK-RAM protocol with linear over-
head in both the word size and the circuit complexity. The key idea of our approach is
to avoid using the expensive sorting network which is used to sort the entire memory
as part of the consistency check. The purpose of the check is to ensure that read and
write operations on each address are performed in correct order (i.e. the prover must
write to an address before reading it and these must be done in correct order). After
the sorting has been done by the prover, the prover must additionally prove that the
sorting is done correctly. Both of these checks require several multiplications as part of
several comparisons, as each adjacent entry must be checked. This sorting network or
some variant thereof is used by all previous work. Instead of using this sorting network,
we assert that a set of read operations equals a set of write operations by keeping track
of each performed operation in new manner. In order to keep track of the order of
operations, instead of timestamps (which are used as tiebreakers after having sorted on
addresses), we assert the order of operations by using challenges supplied by the veri-
fier. For each write, the verifier sends over a single field element which is used as this
challenge. Now, if the prover wants to read this address again, the prover must commit
to this challenge. As these are all unique with probability 1/|F|, the prover can’t guess
these in advance, and as such cannot ever read an address that has not been written to
first, as the prover would have to guess the challenge. Additionally, to make this trick
work, we introduce a new primitive called ReadAndWriteBack. During this operation, the
verifier sends the random challenge that the prover writes into an array keeping track of
all write operations. Whenever a read operation takes place, the prover then writes the
same randomness value (in addition to other information such as the value and address
of the read) into an array keeping track of the read operations. The verifier also does
this, except on committed-to values. This results in a protocol which is roughly 5× more
efficient than [FKL+21] in terms of time spent per access.

Finally, the prover and verifier assert equality between the two arrays. Now, the
prover can never have read a value before it was written, as that would require the
prover to guess which value the verifier would send over during the write operation.
This allows us to skip the sorting network in its entirety. Finally we also show how to
make our protocol non-interactive by applying the Fiat-Shamir heuristic to compute the
random values sent over by the verifier during the interactive variant.

1.9. ADDITIONAL PUBLICATIONS 35

1.9 Additional Publications
In addition to the works described in this thesis, the author has contributed to the
following result [MHOY21] which proposes the first threshold ring signature where the
size of the signatures scale linearly with the number of signers t.

1.9.1 Stronger Notions and a More Efficient Construction of Threshold
Ring Signatures

[MHOY21] Alexander Munch-Hansen, Claudio Orlandi, and Sophia Yakoubov.
Stronger no- tions and a more eicient construction of threshold ring signatures. In
Patrick Longa and Carla Ràfols, editors, LATINCRYPT 2021, volume 12912 of
LNCS, pages 363381. Springer, Heidelberg, October 2021. Full version available
at https://eprint.iacr.org/2020/678.pdf

https://eprint.iacr.org/2020/678.pdf

36 CHAPTER 1. INTRODUCTION

Part II

Publications

37

Chapter 2

MozZ2karella: Efficient Vector-OLE
and Zero-Knowledge Proofs Over
Z2k

2.1 Introduction

Zero-knowledge (ZK) proofs allow a prover to convince a verifier that some statement
is true, without revealing any additional information. They are a fundamental tool in
cryptography with a wide range of applications. A common way of expressing statements
used in ZK is with circuit satisfiability, where the prover and verifier hold some circuit C,
and the prover proves that she knows a witness w such that C(w) = 1. Typically, C is
an arithmetic circuit defined over a finite field such as F2 or Fp for a large prime p, but
the same idea works for any finite ring.

A recent line of work [WYKW21a, YSWW21a, BMRS21a, DIO21a] builds highly
scalable zero-knowledge proofs based on vector oblivious linear evalution, or VOLE.
VOLE is a two-party protocol often used in secure computation settings, which allows
a receiver holding ∆ to learn a secret linear function w−∆ ·u = v of a sender’s private
inputs u,w. VOLE-based ZK protocols have the key feature that the overhead of the
prover is very small: compared with the cost of evaluating the circuit C in the clear, few
additional computational or memory resources are needed. This allows proofs to scale to
handle very large statements, such as proving properties of complex programs. On the
other hand, potential drawbacks of using VOLE are that the communication complexity
is typically linear in the size of C – unlike SNARKs (e.g. [MBKM19, BBHR19]) and
MPC-in-the-head techniques (e.g. [AHIV17]), which can be sublinear – and proofs are
only verifiable by a single, designated verifier.

VOLE Constructions. In a length-n VOLE protocol over some ring R, the sender
has input two vectors u,w ∈ Rn, while the receiver has input ∆ ∈ R, and receives
as output v ∈ Rn as defined above. In applications such as ZK proofs, it is actually
enough to construct random VOLEs, or VOLE correlations, where both parties’ inputs
are chosen at random. The most efficient approaches for generating random VOLE are
based on the method of Boyle et al. [BCGI18], which relies on an arithmetic variant of
the learning parity with noise (LPN) assumption. The protocol has the key feature that
the communication cost is sublinear in the output length, n.

The original protocol of [BCGI18] has only semi-honest security (or malicious security
using expensive, generic 2-PC techniques). Later, dedicated maliciously secure protocols
over fields were developed [BCG+19a, WYKW21a], which essentially match the cost

39

40 CHAPTER 2. MOZZ2KARELLA

of the underlying semi-honest protocols, by using lightweight consistency checks for
verifying honest behavior. In general, these protocols assume that R is a finite field.

ZK Based on VOLE. The state-of-the-art, VOLE-based protocol for proving circuit
satisfiability in zero-knowledge is the QuickSilver protocol. QuickSilver, which builds
upon the previous Line-Point ZK [DIO21a] protocol, works for circuits over any finite
field Fq, and has a communication cost of essentially 1 field element per multiplication
gate. Concretely, QuickSilver achieves a throughput of up to 15.8 million AND gates
per second for a Boolean circuit, or 8.9 million multiplication gates for an arithmetic
circuit over the 61-bit Mersenne prime field. Another approach is the Mac’n’Cheese
protocol [BMRS21a], which can also achieve an amortized cost as small as 1 field element,
but with slightly worse computational costs and round complexity.

ZK Over Rings. While most ZK protocols are based on circuits over fields, it can
in certain applications be more desirable to work with circuits over a finite ring such
as Z2k . For instance, to prove a property of an existing program (such as proving a
program contains a bug, or does not violate some safety property) the program logic
and computations must all be emulated using a circuit. Since CPUs perform arithmetic
in Z2k , this is a natural choice of ring that leads to a simpler translation of program
code into a satisfiable circuit C.

Unfortunately, not many existing ZK proof systems can natively support computa-
tions over rings. The recent work of [BBMH+21b] gave the first ZK protocol over Z2k

based on VOLE over Z2k , obtaining a proof system with a communication cost of O(1)
ring elements per multiplication gate (for large rings), asymptotically matching QuickSil-
ver over large fields. However, a major drawback of their protocols is that they require
maliciously secure VOLE over Z2k , which is much more expensive to build: the only
known instantiation of this [Sch18] would increase the concrete communication of their
ZK protocol by 1–2 orders of magnitude. Finally, another approach to zero-knowledge
proof systems over rings has been proposed based on SNARKs [GNS21]. When using
Z2k , this work obtains a designated-verifier SNARK, however, the scheme has not been
implemented, and suffers from a dependency on expensive, public-key cryptography, as
in many field-based SNARKs.

2.1.1 Contributions

In this work, we address the question of building efficient protocols for VOLE and zero-
knowledge proofs over Z2k . Firstly, we show how to build a maliciously secure VOLE
protocol over Z2k , with efficiency comparable to state-of-the-art protocols over finite
fields [BCG+19a, WYKW21a]. Our protocol introduces new consistency checks for ver-
ifying correctness of VOLE extension, which are tailored to overcome the difficulties of
working with the ring Z2k . Secondly, using our VOLE over Z2k , we show how to adapt
the QuickSilver protocol [YSWW21a] to the ring setting, obtaining an efficient ZK pro-
tocol called QuarkSilver that is dedicated to proving circuit satisfiability over Z2k . Here,

2.1. INTRODUCTION 41

we extend techniques from the MPC world [CDE+18] to be suitable for our ZK proof.
Finally, we implemented and benchmarked both our VOLE and ZK protocols to demon-
strate their performance. In a high-bandwidth, low-latency setting, our implementation
achieves a throughput of 13–50 million VOLEs per second for 64 bit to 256 bit rings
with 40 bit statistical security while transmitting only ≈ 1 bit per VOLE. Our QuarkSil-
ver implementation is able to compute and verify 1.3 million 64 bit multiplications per
second.

2.1.2 Our Techniques

Below, we expand on our contributions, the techniques involved and some more relevant
background.

Challenge of Working in Z2k .

Before delving into our protocols, we first briefly recap the main challenges when working
with rings like Z2k , compared with finite fields. When using VOLE for zero-knowledge,
VOLE is used to commit the prover to its inputs and intermediate wire values in the
circuit. This is possible by viewing each VOLE output M[x] = ∆ · x + K[x] as an
information-theoretic homomorphic MAC in the input x.

When working over a finite field, it’s easy to see that if a malicious prover can come
up with a valid MAC M[x] on an input x 6= x, for the same key K[x], then the prover
can recover the MAC key ∆ from the relation:

M[x]−M[x] = ∆ · (x− x)

However, this relies on x−x being invertible, which is usually not the case when working
over a ring such as Z2k . Indeed, if x− x = 2k−1, then the prover can forge a MAC M[x]
with probability 1/2, since M[x]−M[x] mod 2k now only depends on the least significant
bit of ∆.

The SPDZ2k protocol [CDE+18] for multi-party computation showed how to work
around this issue by extending the modulus to 2k+s, for some statistical security param-
eter s. This way, it can be shown that the lower s bits of the key ∆ are still enough to
protect the integrity of the lower k bits of the message x.

Indeed, this was exactly the type of MAC scheme used in the recent work on con-
versions and ZK over rings [BBMH+21b]. However, as in the SPDZ2k protocols, further
challenges arise when handling more complex protocols for verifying computation on
MACed values.

Maliciously Secure VOLE Extension in Z2k .

Current state-of-the-art VOLE protocols all stem from the approach of Boyle et al. [BCGI18],
which builds a pseudorandom correlation generator based on (variants of) the learning
parity with noise (LPN) assumption. This approach exploits the fact that sparse LPN
errors can be used to compress secret-sharings of pseudorandom vectors, allowing the two

42 CHAPTER 2. MOZZ2KARELLA

parties to generate a long, pseudorandom instance of a VOLE correlation in a succinct
manner.

These protocols proceed by first constructing a protocol for single-point VOLE, where
the sender’s input vector has only a single non-zero entry. Then, the single-point VOLE
protocol is repeated t times, to obtain a t-point VOLE where the sender’s input is viewed
as a long, sparse, LPN error vector. Finally, by combining t-point VOLE and the LPN
assumption, the parties can locally transform this into pseudorandom VOLE by appling
a linear mapping.

Using this blueprint leads to (random) VOLE protocols with communication much
smaller than the output length. This can be seen as a form of VOLE extension, where
in the first step, a small “seed” VOLE of length m � n is used to create the single-
point VOLEs, and then extended into a longer VOLE of length n. In the Wolverine
protocol [WYKW21a], it was additionally observed that when repeating this process, it
can greatly help communication if m of the n extended outputs are reserved and used
to bootstrap the next iteration of the protocol, saving generation of fresh seed VOLEs.

With semi-honest security, the above approach can easily be instantiated over rings,
following the protocols of [SGRR19, BCG+19a]. When adapting this protocol to mali-
cious security, our main technical challenge is that previous works over fields [BCG+19a,
WYKW21a] used a consistency check to verify correctness of the outputs, which involved
taking random linear combinations over the field. Due to the existence of zero divisors,
this technique does not directly translate to Z2k . One possible approach, similarly to
the MAC scheme described above, is to increase the size of the ring to, say, Z2k+s , and
use computations in the larger ring to ensure that the VOLEs are correct modulo 2k.
However, the problem is, it would then no longer be compatible with the bootstrapping
technique of [WYKW21a]: to check consistency, the seed VOLE must be in the larger
ring Z2k+s , however, since the outputs are only in Z2k , they can’t then be used as a seed
for the next execution! One solution would be to start with an even larger ring (Z2k+2s),
and keep decreasing the ring size after each iteration, but this would be far too expensive
when done repeatedly.

Instead, we take a different approach. First, we adopt a hash-based check
from [BCG+19a], which verifies correctness of a puncturable pseudorandom function
based on a GGM tree, created during the protocol. This hash check (which we optimize
by using universal hashing instead of a cryptographic hash function) works over rings as
well as fields, however, it does not suffice to ensure consistency of the entire protocol.
On top of this, we incorporate a linear combination check, however, one with binary
coefficients instead of coefficients in the large ring. This type of check can be used over a
ring, but allows a cheating prover to try to bypass the check and cheat successfully with
probability 1/2. Nevertheless, we show that by allowing some additional leakage in the
single-point VOLE functionality, we can still simulate the protocol with this check. For
our final VOLE protocol, this leakage implies that a few noise coordinates of the LPN
error vector may have leaked.

While previous protocols also allowed a limited form of leakage [BCG+19a, WYKW21a],
in this case, ours is more serious since entire noise coordinates can be leaked with prob-

2.1. INTRODUCTION 43

ability 1/2. To counter this, we analyze the state-of-the-art attacks on LPN, and show
how to adjust the parameters and increase the noise rate accordingly.

Similarly to [WYKW21a], we focus on using the “primal” form of LPN, which was
also used for semi-honest VOLE over Z2k in [SGRR19]. While the “dual” form of LPN,
as considered in [BCGI18, BCG+19a, CRR21], achieves lower communication costs (and
does not rely on bootstrapping), it involves a more costly matrix multiplication, which
is expensive to implement. In [BCG+19a], dual-LPN was instantiated using quasi-cyclic
codes to achieve Õ(n) complexity, but this approach does not readily adapt to rings
instead of fields; it is plausible that the fast, LDPC-based dual-LPN variant proposed
in [CRR21] can be adapted to work over rings, but the security of this assumption has
not been analyzed thoroughly.

Efficient Zero-Knowledge via QuarkSilver in Z2k .

Given VOLE, the standard approach to obtaining a ZK proof is using the homomorphic
MAC scheme described above. There, the prover first commits to the input w as well
as all intermediate circuit wire values of C(w). Then, the prover must show consistency
of all the wire values and that the output wire indeed contains 1. Since the MACs
are linearly homomorphic, the main challenge is verifying multiplications. In QuickSil-
ver [YSWW21a], to verify that committed values x, y, z satisfy x · y = z, the parties
locally compute a quadratic function on their MACs and MAC keys, obtaining a new
value which has a consistent MAC only if the multiplication is correct.

The catch is that this new MAC relation being checked leads to a quadratic equation
in the secret key ∆, instead of linear as before, which is chosen by a possibly dishonest
prover. If this quadratic equation has a root in ∆, then the check passes. In the field case,
this is not a problem as there are no more than two solutions to a quadratic equation, so
we obtain a soundness error of 2/|F|. However, with rings, there can be many solutions.
For instance, with

f(X) = aX2 + bX + c (mod 2k),

if a = 2k/2 and b = c = 0 then any multiple of 2k/4 is a possible choice for X, i.e. the check
would erroneously pass for 23k/4 choices of ∆. To remedy this, we reduce the number of
valid solutions by working modulo 2ℓ for some ℓ > k, and adding the constraint on the
solution that ∆ ∈ {0, . . . , 2s − 1}, where s is a statistical security parameter.

An additional challenge is that when checking a batch of multiplications, we actually
check a random linear combination of a large number of these equations, which again
leads to complications with zero divisors. By carefully analyzing the number of bounded
solutions to equations of this type, and extending techniques from SPDZ2k [CDE+18]
for handling linear combinations over rings, we show that it suffices to choose ℓ ≈
k + 2(σ + log σ) to achieve 2−σ failure probability in the check. Overall, we obtain a
communication complexity of ℓ bits per input and multiplication gate in the circuit.

44 CHAPTER 2. MOZZ2KARELLA

2.2 Preliminaries

2.2.1 Notation

We use lower case, bold symbols for vectors x and upper case, bold symbols for matrices
A. We use κ as the computational and σ as the statistical security parameter. In our
UC functionalities and proofs, Z denotes the environment, and S is the simulator, while
A will refer to the adversary.

2.2.2 Vector OLE

Vector OLE (VOLE) is a two party functionality between a sender S and a receiver R
to obtain correlated random vectors of the following form: S obtains two vectors u,w,
and R gets a random scalar ∆ and a random vector v so that w = ∆ · u+ v holds.

We parameterize the functionality with two values ℓ and s such that s ≤ ℓ. The
scalar ∆ is sampled from Z2s , and the vectors u,v,w are sampled from Zn

2ℓ
where n

denotes the size of the correlation. We require that the equation w = ∆ · u + v holds
modulo 2ℓ. The ideal functionality is described in Figure 2.1.

As in SPDZ2k [CDE+18], we can implement F ℓ,s
vole2k using the oblivious transfer proto-

col (OT) of [Sch18]. Basing VOLE on OT has the drawback of quadratic communication
costs in the ring size, since it requires one OT of size ℓ bit for each of the ℓ bits of a ring
element. Hence, we would use this approach only once to create a set of base VOLEs.
Then we can use the more efficient protocol presented in Section 2.4 to repeatedly gen-
erate large batches to VOLEs.

2.2.3 Equality Test

In our work, we use an equality test functionality FEQ (Figure 2.2) between two parties
P,V where V learns the input of P. The equality check functionality can be imple-
mented using a simple commit-and-open protocol, see e.g. [WYKW21a]. When using a
hash function with 2κ bit output (modeled as random oracle) to implement the commit-
ment scheme, the equality check of ℓ bit values can be implemented with ℓ + 3κ bit of
communication.

2.2.4 Zero-Knowledge Proofs of Knowledge

In Figure 2.3 we provide an ideal functionality for zero-knowledge proofs. The function-
ality implies the standard definition of a ZKPoK as it is:

Complete because whenever C(w) = 1 then an honest verifier will accept.

Knowledge Sound because it outputs true iff P inputs, and thus knows, a satisfying
assignment w for C.

Zero-Knowledge because nothing beyond the check C(w)
?
= 1 is leaked to V.

2.2. PRELIMINARIES 45

VOLE for Z2k : F ℓ,s
vole2k

Let ℓ ≥ s.

Init This method is the first to be called by the parties. On input (Init) from
both parties proceed as follows:

1. If R is honest, sample ∆ ∈R Z2s and send ∆ to R.
2. If R is corrupt, receive ∆ ∈ Z2s from S.
3. ∆ is stored by the functionality.

All further (Init) queries are ignored.

Extend On input (Extend, n) from both parties proceed as follows:

1. If R is honest, sample v ∈R Zn
2ℓ

. Otherwise receive v ∈R Zn
2ℓ

from S.
2. If S is honest, sample u ∈R Zn

2ℓ
and compute w := ∆·u+v ∈ Z2ℓ . Otherwise

receive u ∈ Zn
2ℓ

and w ∈ Zn
2ℓ

from S and then recompute v := w−∆ ·u ∈ Zn
2ℓ

3. Send (u,w) to S and v to R.

Global-key Query If S is corrupted, receive (Guess, ∆′) from S with ∆′ ∈ Z2s .
If ∆′ = ∆, send success to S and ignore subsequent global-key queries. Otherwise,
send abort to both parties and abort.

Figure 2.1: Ideal functionality VOLE over Z2k .

Equality Test: FEQ

On input VP from P and VV from V:

1. Send VP and (VP
?
= VV) to V.

2. If V is honest and VP = VV , or V is corrupted and sends continue, then send
(VP

?
= VV) to P

3. If V is honest and VP 6= VV , or V is corrupted and sends abort, then send
abort to P.

Figure 2.2: Ideal functionality for equality tests.

46 CHAPTER 2. MOZZ2KARELLA

Zero-Knowledge Functionality Fk
ZK

Prove: On input (prove, C, w) from P and (verify, C) from V where C is a circuit
over Z2k and w ∈ Zn

2k
for some n ∈ N: Send true to V iff C(w) = 1, and false

otherwise.

Figure 2.3: Ideal functionality for zero-knowledge proofs for circuit satisfiability.

2.2.5 The LPN Assumption Over Rings

The Learning Parity with Noise (LPN) assumption [BFKL94] states that, given the
noisy dot product of many public vectors ai with a secret vector s, the result is indis-
tinguishable from a vector of random values. Adding noise to indices is done by adding
a noise vector e at the end, consisting of random values.

We rely on the following arithmetic variant of LPN over a ring ZM , as also considered
in [BCGI18, SGRR19].

Definition 1 (LPN). Let DM
n,t be a distribution over Zn

M such that for any t, n,M ∈ N,
Im(DM

n,t) ∈ Zn
M . Let G be a probabilistic code generation algorithm such that G(m,n,M)

outputs a matrix A ∈ Zm×n
M . Let parameters m, n, t be implicit functions of security

parameter κ. The LPNG
m,n,t,M assumptions states that:

{(A,x) | A← G(m,n,M), s ∈R Zm
M , e← DM

n,t,x := s ·A+ e}
≈C {(A,x) | A← G(m,n,M),x ∈R Zn

M}.

There exists two flavours of the LPN assumption; the primal (Definition 1) and the
dual (Definition 2).

Definition 2 (Dual-LPN). Let DM
n,t and G be defined as in Definition 1. Let n′, n ∈ N

be defined so that n′ > n and then let G⊥ be a probabilistic code generation algorithm
such that G⊥(n′, n,M) outputs a matrix in {H ∈ Zn′×n

M | rank(H) = n∧∃A ∈ Im(G(n′−
n, n′,M)) .A·H = 0}. Let parameters n, n′, t be implicit functions of security parameter
κ. The dual-LPNG

n′,n,t,M assumption states that:

{(H,x) | H← G⊥(n′, n,M), e← DM
n,t,x := e ·H}

≈C {(H,x) | H← G⊥(n′, n,M),x ∈R Zn
M}.

Informally, the main advantage of the primal version of LPN is that there exist
practical (and implemented) constructions of the LPN-friendly codes required for this.
Specifically, one can choose the code matrix A from a family of codes G supporting linear-
time matrix-vector multiplication, such as d-local linear codes so that each column of A
has exactly d non-zero entries. According to [Ale03], the hardness of LPN for local linear
codes is well-established. Its main disadvantage however, is that its output size can be

2.2. PRELIMINARIES 47

at most quadratic in the size of the seed, as intuitively, a higher stretch would make
it significantly easier for an adversarial verifier to guess enough noiseless coordinates to
allow efficient decoding via Gaussian Elimination [AG11].

The main advantage of the dual variant is that it allows for an arbitrary polynomial
stretch. However, the compressive mapping used within the dual variant cannot have
constant locality and is more challenging to instantiate. Recently, Silver [CRR21] pro-
posed an instantiation of dual-LPN based on structured LDPC codes, which have been
practically implemented over finite fields, and may plausibly also work over rings.

Attacks on LPN

We recall the main attacks on LPN, following the analysis of [EKM17, BCGI18, BCG+19a].
We refer to [EKM17] for a more thorough overview. Let DM

n,t be the noise distribution
with Hamming weight t. Recall that the LPN secret dimension is m, while the number
of samples is n. We define the average noise rate to be r = t/n.

Pooled Gaussian Elimination This attack recovers x from b = x ·A+e by guessing
m non-noisy coordinates of b, performs Gaussian elimination to find x and verifies
that the guess of the m non-noisy coordinates was correct. [EKM17] introduced
Pooled Gaussian elimination in order to reduce the samples required by regular
Gaussian elimination. In Pooled Gaussian elimination, the adversary guesses m
non-noise samples by picking them at random from a pool of fixed N = m2 log2m
LPN samples in each iteration, and then inverts the corresponding subsystem to
get a potential solution x′ and then checks if x′ = x. For LPN with noise rate r,
this attacks recovers the secret in time m3 log2 m

(1−r)m using m2 log2m samples.

Information Set Decoding (ISD) [Pra62] Breaking LPN is equivalent to breaking
its dual variant, which may be interpreted as the task of decoding a random linear
code from its syndrome. The best algorithms for this are improvements of Prange’s
ISD algorithm, which tries to find a size-t subset of the rows of B (the parity-check
matrix of the code used within the Dual-LPN assumption) that spans e ·B.

The BKW Algorithm [BKW03] This is a variant of Gaussian elimination which
achieves subexponential complexity, even for high-noise LPN. It requires a subex-
ponential number of samples and can solve LPN over F2 in time 2O(m/ log(m/r))

using 2O(m/ log(m/r)) samples.

Combinations of the above [EKM17] The authors of [EKM17] conducted an ex-
tended study of the security of LPN and they described combinations and refine-
ments of the previously mentioned attack (called well-pooled Gauss attack, hybrid
attack and the well-pooled MMT attack). All of these attacks achieve subexponen-
tial time complexity, but require as many samples as their time complexity.

Scaled-down BKW [Lyu05] This is a variant of the BKW algorithm, tailored to LPN
with polynomially-many samples. It solves the LPN problem in time 2O(m/ log log(m/r)),

48 CHAPTER 2. MOZZ2KARELLA

using m1+ϵ samples (for any ϵ > 0) and has worse performance in time and number
of samples for larger fields.

Statistical Decoding [DAT17]1 The goal of all of the previous attacks is to recover
the secret x, whereas this attack directly attempts to distinguish b = x · A + e
from random. By the singleton bound, the minimal distance of the dual code of
C is at most m+ 1, hence there must be a parity-check equation for C of weight
m+ 1, that is, a vector v such that A · vT = 0. Then, if b is random, b · vT = 0
with probability at most 1/|F|, whereas if b is a noisy encoding, it goes to zero
with probability roughly ((n−m− 1)/n)rn [BCGI18].

Note that some of the above attacks are specialized to LPN over F2, while others
work for more general fields. When working in Z2ℓ , though, one can always reduce the
LPN instance modulo 2 and run the distinguisher for the problem in F2.

Dealing with Reduction Attacks Over Rings.

When working over a ring ZM instead of a finite field, we must take care that the presence
of zero divisors does not weaken security. For instance, a simple reduction attack was
pointed out in [LWYY22], where noise values can become zero after reducing modulo a
factor of M (for instance, in Z2k , reducing the LPN sample modulo 2 cuts the number
of noisy coordinates in half, significantly reducing security). To mitigate this attack, we
always sample non-zero entries of the error vector e and matrix A to be in Z∗M , that
is, invertible mod M .2 While [LWYY22] did not consider the effect on the matrix A,
we observe that if A is sparse then its important to ensure that its sparsity cannot also
be decreased through reduction.3 With these countermeasures, we are not aware of any
attacks on LPN in ZM that perform better than the field case.

We elaborate below on our choice of primal-LPN distribution.

Choice of Matrix over ZM .

We choose a random, sparse matrix A with d non-zero entries per column. We choose
each non-zero entry randomly from Z∗M , to ensure that it remains non-zero after re-
duction modulo any factor of M . We fix the sparsity to d = 10, as in previous
works [BCGI18, SGRR19, WYKW21a], which according to [ADI+17, Zic17] suffices
to ensure that A has a large dual distance, which implies the LPN samples are unbi-
ased [CRR21].

1Statistical Decoding is also known as Low-Weight Parity Check [ADI+17, Zic17].
2This countermeasure was missing from the original version of this paper, before [LWYY22] was

available.
3On the other hand, the LPN secret s must not be chosen over Z∗

M , but instead uniformly over ZM ,
since if e.g. s was known to be odd over Z2k then solving the reduced instance modulo 2 would be trivial.

2.3. SINGLE-POINT VECTOR OLE 49

Noise Distribution in ZM .

The noise distribution DM
n,t is chosen to have t expected non-zero coordinates. This can

be done on expectation with a Bernoulli distribution, where each coordinate is either
zero, or non-zero (and uniform otherwise) with probability t/n. In our applications, we
instead use an exact noise weight, where DM

n,t fixes t non-zero coordinates in the length-n
vector.

Invertible Noise Terms. When working over a ring ZM , we sample the non-zero
noise values to be in Z∗M , that is, invertible mod M . This prevents the reduction attack
mentioned above, which would otherwise reduce the expected noise weight by a factor
of two for M = 2k.

Uniform vs Regular Noise Patterns. For fixed-weight noise, we speak of two types
of error; regular or uniform. We call uniform errors the case where DM

n,t is the uniform
distribution over all weight-t vectors of Zn

M with non-zero values in Z∗M . Implementing
LPN-based PCGs with uniform errors has previously been investigated by [YWL+20,
SGRR19]. It is commonly implemented by utilising a sub-protocol to place a single non-
zero value within a vector of length n′ � n and then using Cuckoo hashing to generate
a uniform distribution over n from several of these smaller vectors, ending up with the
t points distributed randomly across the n coordinates.

Our construction uses a regular noise distribution for the primal-LPN instance. Here,
the noise vector in Zn

M is divided into t blocks of length bn/tc, such that each block has
exactly one non-zero coordinate. Generally, using LPN with regular errors is practically
more efficient than for uniform errors [YWL+20, WYKW21a].

2.3 Single-Point Vector OLE
Single-point VOLE is a specialized functionality that generates a VOLE correlation
w = ∆ ·u+v (see Section 2.2.2) where u has only one non-zero coordinate α ∈ [n]. We
consider a variant where uα is not only non-zero, but additionally also required to be
invertible.

We present an ideal functionality for single-point VOLE F ℓ,s
sp-vole2k in Figure 2.4. In

the functionality, S obtains u,w ∈ Zn
2ℓ
×Zn

2ℓ
, and R gets ∆,v ∈ Z2s×Zn

2ℓ
. As in the full

VOLE functionality F ℓ,s
vole2k we allow S to attempt to guess ∆. Additionally, F ℓ,s

sp-vole2k
also allows R to obtain leakage on the non-zero index:

1. R is allowed to guess a set I ⊆ [n] that should contain the index α. Upon correct
guess, if |I| = 1 then it learns uα while if |I| > 1 the functionality continues. If
α /∈ I then the functionality aborts.

2. R is also allowed a second query for a set J ⊂ [n] that might contain α where
|J | = n/2. If R guesses correctly then the functionality outputs α, while it aborts
otherwise.

50 CHAPTER 2. MOZZ2KARELLA

Single-Point VOLE for Z2ℓ: F
ℓ,s
sp-vole2k

This functionality extends the functionality F ℓ,s
vole2k (Figure 2.1). In addition to

the methods (Init) and (Extend), it also provides the method (SP-Extend) and a
modified global-key query.

SP-Extend On input (SP-Extend, n) with n ∈ N from both parties the function-
ality proceeds as follows:

1. Sample u ∈R Zn
2ℓ

with a single entry invertible modulo 2ℓ and zeros every-
where else, v ∈R Zn

2ℓ
, and compute w := ∆ · u+ v ∈ Zn

2ℓ
.

2. If S is corrupted, receive u ∈ Zn
2ℓ

with at most one non-zero entry and
w ∈ Zn

2ℓ
from S, and recompute v := w −∆ · u.

3. If R is corrupted:
(a) Receive a set I ⊆ [n] from S. Let α ∈ [n] be the index of the non-zero

entry u, and let β := uα. If I = {α}, then send (success, β) to R. If
α ∈ I and |I| > 1, then send success to R and continue. Otherwise send
abort to both parties and abort.

(b) Receive either (continue) or (query, J) from S. If (continue) was received,
continue with Step 3c. If (query, J) with J ⊂ [n] and |J | = n

2 was received
and α ∈ J , then send α to S. Otherwise, send abort to all parties, and
abort.

(c) Receive v ∈ Zn
2ℓ

from S, and recompute w := ∆ · u+ v.
4. Send (u,w) to S and v to R.

Global-key Query If S is corrupted, receive (Guess, ∆′, s′) from S with s′ ≤ s
and ∆′ ∈ Z2s′ . If ∆′ = ∆ (mod 2s

′
), send success to S. Otherwise, send abort to

both parties and abort.

Figure 2.4: Ideal functionality for a leaky single-point VOLE.

2.3. SINGLE-POINT VECTOR OLE 51

The leakage is somewhat inherent to our protocol which we use to realize F ℓ,s
sp-vole2k.

Protocol Overview.

Our protocol Πℓ,s
sp-vole2k (Figure 2.5) achieves active security using consistency checks

inspired by the constructions from [BCG+19a] and [WYKW21a]. We now give a high-
level overview.

As a setup, we assume functionalities F ℓ,s
vole2k, FOT and FEQ. For F ℓ,s

vole2k we assume
that R called (Init) already, thus setting ∆. Additionally, we require two pseudorandom
generators (PRGs; with certain extra properties that we clarify in Section 2.3.1) to
create a GGM tree. Recall, the GGM construction [GGM84] builds a PRF from a length-
doubling PRG, by recursively expanding a PRG seed into 2 seeds, defining a complete
binary tree where each of the n leaves is one evaluation of the PRF. We use this to build
a puncturable PRF, where a subset of intermediate tree nodes is given out, enabling
evaluating the PRF at all-but-one of the points in the domain.

The sender S begins by picking a random index α from [n], and β randomly from
Z∗
2ℓ

. This defines the vector u where uα = β and every other index is 0. S and R use a
single VOLE from F ℓ,s

vole2k to authenticate β, resulting in the receiver holding γ and the
sender holding δ, β such that δ = ∆ · β + γ.

To extend this correlation to the whole vector u, R computes a GGM tree with 2n
leaves. We consider all n leaves that are “left children” of their parent as comprising the
vector v. Using log2(n) instances of FOT, S learns all “right children” as well as all of
the “left children” except the one at position α – meaning that the sender learns v for
all indices except α. S now sets wi = vi for i 6= α. This gives a valid correlation on
these n− 1 positions, because since ui = 0 for i 6= α, we have that wi = ∆ · ui + vi.

What remains in the protocol is for S to learn wα = ∆ · uα + vα without revealing
α and β to R. Using the output of the VOLE instance, if R computes d← γ−

∑n
j=1 vj

and sends d to S, then S can compute

wα = δ − d−
∑

j∈[n]\{α}

wj

= δ −
(
γ −

∑
i∈[n]

vi

)
−

∑
j∈[n]\{α}

wj

= δ − γ + vα = ∆ · β + vα

which is exactly the missing value for the correlation. While this protocol can somewhat
easily be proven secure against a dishonest S (assuming that the hybrid functionalities
are actively secure), a corrupted R can cheat in two ways:

1. It can provide inconsistent GGM tree values to the FOT instances, thus leading to
unpredictable protocol behavior.

2. It can construct d incorrectly.

52 CHAPTER 2. MOZZ2KARELLA

To ensure a “somewhat consistent” GGM tree (and inputs to FOT) we use a check that
sacrifices all the leaves that are “right children”. Here, R has to send a random linear
combination of these, over a binary extension field, with S choosing the coefficients. The
check makes sure that if it passes, then the “left children” are consistent for every choice
of α that would have made S not abort. This reduces arbitrary leakage to an essentially
unavoidable selective failure attack (due to the use of FOT).

To prevent the second attack, the sender and receiver use an additional VOLE from
F ℓ,s

vole2k and perform a random linear combination check to ensure correctness of the
value d. Due to the binary coefficients used in the linear combination over Z2ℓ , our
check only has soundness 1/2. This, however, suffices to prove security if we relax the
functionality by allowing a corrupt receiver to learn α with probability 1/2. This way,
in the simulation in our security proof, if the challenge vector χ is such that the receiver
passes the check despite cheating, the simulator can still extract a valid input using its
knowledge of α.

The full protocol is presented in Figure 2.5. Before proving security of it, we first
recap the Puncturable PRF from GGM construction and its security properties.

2.3.1 Checking Consistency of the GGM Construction

We use the GGM [GGM86] construction to implement a puncturable PRF F with do-
main [n] and range {0, 1}κ.

In a puncturable PRF (PPRF), one party P1 generates a PRF key k, and then both
parties engage in a protocol where the second party P2 obtains a punctured key k{α}
for an index α ∈ [n] of its choice. With k{α}, it is possible for P2 to evaluate F at all
points [n] \ {α} so that F (k, i) = F (k{α}, i) for i 6= α, while nothing about F (k, α) is
revealed. More formally:

Definition 3 (Adapted from [BCG+19a]). A puncturable pseudorandom function (PPRF)
with keyspace K, domain [n] and range {0, 1}κ is a pseudorandom function F with an
additional keyspace Kp and 3 PPT algorithms KeyGen, Gen, PuncEval such that

KeyGen on input 1κ outputs a random key k ∈ K.

Gen on input n, k outputs {F (k, i), k{i}}i∈[n] where k{i} ∈ Kp.

PuncEval on input n, α, k{α} outputs vα such that vα ∈ ({0, 1}κ)n.

where F (k, i) = vα
i for all i 6= α and no PPT adversary A, given n, α, k{α} as input,

can distinguish F (k, α) from a uniformly random value in {0, 1}κ except with probability
negl(κ).

For simplicity, we describe the algorithms for domains of size n = 2h for some h ∈ N.
By pruning the tree appropriately, the procedures can be adapted to support domain
sizes that are not powers of two. Throughout the coming sections, we let α1, . . . , αh be
the bit decomposition of α =

∑h−1
i=0 2i · αh−i, and let αi denote the complement. Let κ

2.3. SINGLE-POINT VECTOR OLE 53

Single-Point VOLE for Z2ℓ: Πℓ,s
sp-vole2k

For the (Init) and (Extend) operations, the parties simply query F ℓ,s
vole2k.

SP-Extend For (SP-Extend, n): Let h := dlog ne and σ′ := σ + 2h.

1. The parties send (Extend, 1) to F ℓ,s
vole2k. S receives a, c ∈ Z2ℓ and R receives

b ∈ Z2ℓ such that c = ∆ · a+ b (mod 2ℓ) holds.
2. S samples α ∈R [n], β ∈R Z∗

2ℓ
and lets u ∈ Zn

2ℓ
be the vector with uα = β

and ui = 0 for all i 6= α.
3. S sets δ := c and sends a′ := β− a ∈ Z2ℓ to R. R computes γ := b−∆ · a′ ∈

Z2ℓ . Now, δ = ∆ · β + γ (mod 2ℓ).

4. R computes k ← GGM.KeyGen(1κ), runs (v, t, (K
i
0,K

i
1)i∈[h],K

h+1
1) ←

GGM.Gen(n, k), and sends K
h+1

:= K
h+1
1 ∈ F2σ′ to S.

5. Write α =
∑h−1

i=0 2i · αh−i, for αi ∈ {0, 1}. For i ∈ [h], the parties call FOT

where S, acting as the receiver, inputs αi and R inputs (Ki
0,K

i
1)i∈[h] to FOT.

S receives K
i
:= K

i
αi

.
6. Check the GGM tree:

(a) S samples ξ ∈R Fn
2σ′ and sends ξ to R.a

(b) R computes Γ := 〈ξ, t〉 ∈ F2σ′ and sends Γ to S.
(c) S runs vα ← GGM.PuncEval(n, α, (K

i
)i∈[h+1]) followed by

GGM.Check(n, α, (K
i
)i∈[h+1], ξ,Γ). If the latter returns ⊥, S aborts.

Otherwise it has obtained (vj)j∈[n]\{α}.
7. R sends d := γ −

∑n
j=1 vj ∈ Z2ℓ to S. S defines w ∈ Zn

2ℓ
such that wj := vj

for j ∈ [n] \ {α} and wα := δ − d−
∑

1≤j≤n

j ̸=α
wj . Then w = ∆ · u+ v.

8. Check consistency of d:
(a) The parties send (Extend, 1) to F ℓ,s

vole2k. S receives x, z ∈ Z2ℓ and R
receives y∗ ∈ Z2ℓ such that z = ∆ · x+ y∗ (mod 2ℓ) holds.

(b) S samples χ ∈R {0, 1}n with HW(χ) = n
2 and sends it to R.b

(c) S computes x∗ := χα · β − x ∈ Z2ℓ and sends x∗ to R. R computes
y := y∗ −∆ · x∗ ∈ Z2ℓ . Then z = y +∆ · χα · β.

(d) S computes VS :=
∑n

i=1 χi ·wi−z, andR computes VR :=
∑n

i=1 χi ·vi−y.
They send VS , VR to FEQ. If it returns (abort), then abort.

9. S outputs (u,w), and R outputs v.
aInstead of sending the whole vector ξ, S can send a κ bit random seed which is then expanded

with a PRG to obtain ξ.
bAgain, S can send a short seed instead of χ.

Figure 2.5: Protocol instantiating F ℓ,s
sp-vole2k in the (F ℓ,s

vole2k, FOT, FEQ)-hybrid model.

54 CHAPTER 2. MOZZ2KARELLA

be a computational and σ be a statistical security parameter. Define σ′ := σ + 2 log n
and let G : {0, 1}κ → {0, 1}2κ and G′ : {0, 1}κ → Z2ℓ × F2σ′ be two PRGs.

Recall that to achieve malicious security when generating a PPRF key in our protocol,
we use the redundancy introduced from extending the domain to size 2n, and check
consistency by letting the receiver provide a hash of all the right leaves of the GGM
tree. In order for the right leaves of the GGM tree to fix a unique tree, we require the
PRG used for the final layer G′ : {0, 1}κ → Z2ℓ × F2σ′ to satisfy the right-half injectivity
property4 as defined below.

Definition 4. We say that a function f = (f0, f1) : {0, 1}κ → Z2ℓ×F2σ′ , x 7→ (f0(x), f1(x))
is right-half injective, if its restriction to the right-half of the output space f1 : {0, 1}κ →
F2σ′ is injective.

In order to achieve active security of our construction, we provide an additional algo-
rithm Check, together with a finite challenge set Ξ. This algorithm, on input n, α, k{α},
a challenge ξ and a checking value Γ outputs > or ⊥.

Definition 5 (PPRF consistency). Let F be a PPRF and let Ξ be a challenge set whose
size depends on a statistical security parameter σ. Consider the following game for
Check:

1. (k{1}, . . . , k{n}, state)← A(1κ, n).

2. ξ ∈R Ξ

3. Γ← A(1κ, state, ξ)

4. For all α ∈ [n], let vα ← PuncEval(1κ, α, k{α}).

5. Define I := {α ∈ [n] | > = Check(n, α, k{α}, ξ,Γ)}.

6. We say A wins the game if there exists α 6= α′ ∈ I such that there is an index
i ∈ [n] \ {α, α′} with vαi 6= vα

′
i .

We say that F has consistency if no algorithm A wins the above game with probability
more than 2−σ.

Our algorithms GGM.KeyGen,GGM.Gen, GGM.PuncEval, GGM.Check, which are used
to generate the key, set up the punctured keys, evaluate and check consistency of the
punctured keys in our protocol are then as follows:

1. GGM.KeyGen(1κ) samples k ∈ {0, 1}κ uniformly at random and outputs it.

2. GGM.Gen(n, k) where n = 2h and k ∈ {0, 1}κ is a key:

(a) Set K0
0 ← k.

4As noted in [BCG+19a], this can be replaced with a weaker notion of right-half collision resistance,
which is easier to achieve in practice.

2.3. SINGLE-POINT VECTOR OLE 55

(b) For each level i ∈ [h], and for j ∈ {0, . . . , 2i−1 − 1} compute (Ki
2j ,K

i
2j+1) ←

G(Ki−1
j).

(c) For i ∈ [h], set K
i
0 ←

⊕2i−1−1
j=0 Ki

2j and K
i
1 ←

⊕2i−1−1
j=0 Ki

2j+1.
(d) For j ∈ [2h] compute vj , tj ← G′(Kh

j−1), and set v := (v1, . . . , v2h) and t :=
(t1, . . . , t2h).

(e) Compute K
h+1
1 ←

∑
j∈[2h] ti.

(f) Output (v, t, (K
i
0,K

i
1)i∈[h],K

h+1
1).

3. GGM.PuncEval(n, α, (K
i
)i∈[h+1]) where n = 2h, α ∈ [n], and K

i ∈ {0, 1}κ:

(a) Set K1
α1
← K

1.
(b) For each level i ∈ {2, . . . , h}:

i. Let x :=
∑i−1

j=1 2
j−1 · αi−j

ii. For j ∈ {0, . . . , 2i−1 − 1} \ {x}, compute (Ki
2j ,K

i
2j+1)← G(Ki−1

j).

iii. Compute Ki
2x+αi

← K
i ⊕
⊕

0≤j<2i−1

j ̸=x

Ki
2j+αi

.

(c) For the last level h+ 1:
i. For j ∈ [2h] \ {α} compute (vj , tj)← G′(Kh

j−1)

(d) Output (vj)j∈[2h]\{α}.

4. GGM.Check(n, α, (K
i
)i∈[h+1], (ξi)i∈[n],Γ) where n = 2h, and K

i ∈ {0, 1}κ, ξi ∈ F2σ′ ,
and Γ ∈ F2σ′ :

(a) For j ∈ [2h] \ {α} recompute tj as in GGM.PuncEval.

(b) Compute tα ← K
h+1 −

∑
j∈[2h]\{α} tj .

(c) If Γ =
∑

i∈[n] ξi · ti, output >. Otherwise, output ⊥.

In comparison to Definition 3 GGM.Gen computes a compressed version of all keys.
The pseudorandomness for GGM, as defined in Definition 3, follows from the standard
pseudorandomness argument of the GGM construction [KPTZ13, BW13, BGI14].

The following theorem shows that the check ensures that a corrupted P1 cannot
create an inconsistent GGM tree, where P2 obtains different values depending on α.

Theorem 2 (Consistency of the GGM Tree). Let n = 2h ∈ N, σ′ = σ + 2h, and G,G′

as above, and let A be any time adversary. If G′ is right-half injective, then A can win
the game in Definition 5 with probability at most 2−(σ+1).

To give the proof, we first define two lemmata which will simplify the proof.

Lemma 2. For n, σ ∈ N, the set Hn
σ := {z 7→ 〈z, ξ〉 | ξ ∈ Fn

2σ} of functions Fn
2σ →

F2σ is a universal family of hash functions, i.e., for any two x 6= y ∈ Fn
2σ , we have

Prh∈RHn
σ
[h(x) = h(y)] = 2−σ.

56 CHAPTER 2. MOZZ2KARELLA

Proof. Halevi and Krawczyk [HK97] give the proof for ∆-universality for prime fields, but
it works in the same way for normal universality and other finite fields: Let x 6= y ∈ Fn

2σ ,
and let zh denote the vector corresponding to h ∈ Hn

σ. W.l.o.g. assume x1 6= y1. Then

Pr
h∈RHn

σ

[h(x) = h(y)] = Pr
h∈RHn

σ

[〈zh,x〉 = 〈zh,y〉]

= Pr
h∈RHn

σ

[
zh,1 · (x1 − y1) = −

n∑
i=2

zh,i · (xi − yi)
]
= 2−σ,

since zh,1 · (x1 − y1) is uniform in F2σ and independent of the right-hand side.

Lemma 3. For n, σ ∈ N, and any z1, . . . , zn ∈ F2σ , the collision probability is

Pr
h∈RHn

σ

[
∃i, j ∈ [n] . zi 6= zj ∧ h(zi) = h(zj)

]
≤ n(n− 1)

2
· 2−σ ≤ 2−(σ−2 log(n)+1).

Proof. We first apply the union bound and then use that Hn
σ is a universal family of

hash functions:

Pr
h∈RHn

σ

[∃i, j ∈ [n] . zi 6= zj ∧ h(zi) = h(zj)]

= Pr
h∈RHn

σ

 ∨
i,j∈[n]

zi 6= zj ∧ h(zi) = h(zj)


≤

∑
1≤i<j≤n

Pr
h∈RHn

σ

[zi 6= zj ∧ h(zi) = h(zj)] =
n(n− 1)

2
· 2−σ

≤ n2

2
· 2−σ =

(2logn)2

2
· 2−σ = 22 log(n)−1 · 2−σ = 2−(σ−2 log(n)+1)

Proof of Theorem 2. If A wins, then there exists indices α 6= α′ ∈ I such that vα and
vα′ are not consistent. So we have an index i ∈ [n] \ {α, α′} with vαi 6= vα

′
i . The values

vαi and vα
′

i were derived from the keys Kh,α
i and Kh,α′

i using G′:

G′(Kh,α
i) = (vαi , c

α
i) G′(Kh,α′

i) = (vα
′

i , cα
′

i)

Since vαi 6= vα
′

i , we have Kh,α
i 6= Kh,α′

i . Due to the right-half injectivity of G′ it follows
cαi 6= cα

′
i and, thus, also tα 6= tα

′ . Finally, 〈ξ, tα〉 = 〈ξ, tα′〉 = Γ must hold.
By Lemma 2, the function h(t) := 〈ξ, t〉 is a universal hash function sampled uni-

formly from the family {t 7→ 〈ξ, t〉 | ξ ∈ Fn
2σ′}. Note that Step 4 is deterministic and

the (vα, tα) depend only on the values that A produced in Step 1. This implies that ξ
is independent of the tα. So the adversary can only win the game if there is a collision
among the tα under the randomly sampled hash function h. By Lemma 3, we can bound
this probability by 2−(σ

′−2h+1) = 2−(σ+1).

2.3. SINGLE-POINT VECTOR OLE 57

2.3.2 Security of Πℓ,s
sp-vole2k

Theorem 3. The protocol Πℓ,s
sp-vole2k (Figure 2.5) securely realizes the functionality F ℓ,s

sp-vole2k
in the (F ℓ,s

vole2k, FOT, FEQ)-hybrid model: No PPT environment Z can distinguish the real
execution of the protocol from a simulated one except with probability 2−(σ+1) + negl(κ).

Due to the complexity of the proof, we give a brief intuition on how it goes.
In the proof, we construct simulators for a corrupted sender and receiver. For the

corrupted sender, the simulator follows the protocol by behaving like an honest receiver,
but additionally extracts α from the interactions of the dishonest sender with FOT and
β from the VOLE. Its choice of GGM tree as well as other messages are used to define
a consistent vector w that it sends to the functionality. A subtlety here is simulating
the equality check in Step 8d of the protocol, as a corrupt sender can pass this with an
ill-formed x∗ if it can guess a portion of ∆ used in the VOLE-functionality correctly. The
simulator must make a key query to F ℓ,s

sp-vole2k to simulate the success event correctly.
Another issue is that d sent by an honest receiver has a different distribution than
how it is chosen in the simulation, but we show that any distinguisher can break the
pseudorandomness of the GGM PPRF.

In the simulation for the corrupted receiver, the simulator first translates FOT inputs
into leakage queries to the functionality. For this, we know that due to Step 6c any
adversarial choice leads to consistent GGM tree leaves, so the simulator chooses the set
of indices where the check in this Step would pass as leakage input to the functionality
F ℓ,s

sp-vole2k. This query then allows the simulator to create a valid transcript: if the
attacker guessed α exactly correct (the set is of size 1), then the simulator obtains β
from the functionality and can directly follow the protocol with the honest inputs. If
the adversary instead guessed a set of size > 1 correctly that contains the secret α, then
the simulator can reconstruct the whole GGM tree and thus a potential input v. This
furthermore allows the simulator to detect an inconsistent d that is sent by the corrupt
receiver. An inconsistent d can be shown to translate into a selective failure attack on
the equality check in Step 8d of the protocol, which requires the simulator to make the
second leakage query. If it succeeds, then it obtains α and can adjust vα accordingly.
Below, we formally give the proof of Theorem 3.

Proof of Theorem 3. First we cover the case of a corrupted sender, then that of a cor-
rupted receiver.

Malicious Sender. The simulation is setup as follows: S simulates a party S∗ in
its head and gives control to Z, and sends (corrupt, S) to F ℓ,s

sp-vole2k. It also simulates
instances of F ℓ,s

vole2k, FOT, and FEQ. Since the calls to (Init) and (Extend) are simply
forwarded to F ℓ,s

vole2k, S can just simulate the interaction with the ideal functionality.
The main part of proof is the simulation of (SP-Extend, n). Let h := dlog ne.

1. S simulates the call (Extend, 1) to F ℓ,s
vole2k and receives a, c ∈ Z2ℓ from S∗.

2. Receive a′ ∈ Z2ℓ from S∗. Compute β := a′ + a and set δ := c.

58 CHAPTER 2. MOZZ2KARELLA

3. Compute k ← GGM.KeyGen(1κ) and execute (v, t, (K
i
0,K

i
1)i∈[h],K

h+1
1)←

GGM.Gen(n, k).

4. Send K
h+1
1 to S∗.

5. Simulate invocation of FOT: Record S∗’s inputs α1, . . . , αh, and send K
i
αi

for
i ∈ [h] to S∗. Compute α :=

∑h−1
i=0 2i · αh−i ∈ [n].

6. Receive ξ ∈ Fn
2s′

from S∗ with s′ := σ + 2h.

7. Compute Γ := 〈ξ, t〉 and send Γ to S∗.

8. Define u ∈ Zn
2ℓ

such that uα = β and ui = 0 for i ∈ [n] \ {α}.

9. Sample d ∈R Z2ℓ and send it to S∗.

10. Define w ∈ Zn
2ℓ

such that wi = vi for i ∈ [n] \ {α} and wα = δ − d−
∑

i∈[n]\{α}wi.

11. S simulates the second call (Extend, 1) to F ℓ,s
vole2k and receives x, z ∈ Z2ℓ from S∗.

12. Receive χ ∈ {0, 1}n from S∗. If HW(χ) 6= n
2 , abort.

13. Receive x∗ ∈ Z2ℓ from S∗, and compute x′ := x + x∗ (for an honest sender, we
have x′ = χα · β).

14. Compute VS :=
∑

i∈[n] χi ·wi − z ∈ Z2ℓ (the honest S’s input to FEQ), and record
S∗’s actual input V ′S = VS + ε to FEQ.

15. If x′ = χα · β:

• If V ′S = VS : Simulate successful equality check, and send u,w as S’s outputs
to F ℓ,s

sp-vole2k.
• If V ′S 6= VS : Simulate failing equality check and abort.

16. If x′ = χα · β + η with η 6= 0 (mod 2ℓ): Let v ∈ N be maximal such that 2v | η. It
must be v < r.

• If 2v ∤ ε, then simulate a failing equality check and abort.
• If 2v | ε, then compute

∆′ :=
ε

2v
·
(η

2v

)−1
∈ Z2r−v

where the division is computed over Z. If r−v > s and ∆′ ≥ 2s, then simulate
a failing equality check and abort. Otherwise set s′ := min(s, r− v) and send
(Guess, ∆′, s′) to F ℓ,s

sp-vole2k. If it returns success, then simulate a successful
equality check. If it aborts, then simulate a failing equality check and abort.

2.3. SINGLE-POINT VECTOR OLE 59

17. If S∗ sends (Guess, ∆̃) to the simulated F ℓ,s
vole2k, then S sends (Guess, ∆̃, s) to

F ℓ,s
sp-vole2k and returns the answer to S∗. If F ℓ,s

sp-vole2k aborts, then S also aborts.

Claim 1 (Indistinguishability of the Simulation for Corrupted Sender). No PPT envi-
ronment Z that chooses to corrupt the sender S can distinguish the real execution of the
protocol from the simulation described above, except with probability negl(κ).

Proof of Claim. The simulation of (Init) and (Extend), i.e., sending (Init) and (Extend)
to F ℓ,s

vole2k, is identical to what would happen in the real protocol. Now we consider the
simulation of (SP-Extend, n):

The call (Extend, 1) to the simulated F ℓ,s
vole2k results in S∗ obtaining two values of its

choice a, c ∈ Z2ℓ – as in the real protocol. S creates the GGM tree honestly. Hence, the
message K

h+1
1 from the simulated receiver and the outputs that S∗ receives from FOT

are consistent and distributed as in the real protocol, and Γ is computed in the same
way the real receiver would do it.

We leave the message d aside for a while, and focus on the remaining protocol first.
From the second call (Extend, 1) to the simulated F ℓ,s

vole2k, S∗ again obtains two values
of its choice x, z ∈ Z2ℓ .

Finally, we must make sure that the simulated FEQ behaves as in the real protocol:

The honest S would input VS :=
∑

i∈[n] χi·wi−z ∈ Z2ℓ to FEQ, whereas the corrupted
sender can send some arbitrary V ′S = VS + ε. The R normally computes its input as
VR :=

∑
i∈[n] χi · vi− y ∈ Z2ℓ , where y was computed as y := y∗−∆ · x∗, ∆ and y∗ were

received from F ℓ,s
vole2k and x∗ from S∗. So, in the simulation S does not know the right

values of y∗ and ∆.

S computes x′ := x+ x∗ (Step 13) and as noted above, we would have x′ = χα · β if
S∗ behaved honestly. We obtain α ∈ [n] from the simulation of FOT (Step 5) and have
received χ from S∗ (Step 12), so we know χα. S computes β := a′+ a from S∗’s output
a from F ℓ,s

vole2k and its message a′ to R (Step 2). While an honest S would compute
a′ := β − a, sending an arbitrary a′ is just equivalent to choosing a different value for β.
Hence, S knows χα · β and can check whether x′ = χα · β (⋆) holds.

If the equality (⋆) holds (Step 15), R would input VR = VS to FEQ. Hence, we can
simulate a successful equality check if V ′S = VS , and a failing equality check with an
abort otherwise – as in the real protocol.

On the other hand, if the equality (⋆) does not hold (Step 16), define η 6= 0 mod 2ℓ

such that x′ = χα · β + η. This means, S∗ has send a corrupted x∗, but the equality
check might nevertheless pass if the errors ε in V ′S and η in x′ cancel out.

60 CHAPTER 2. MOZZ2KARELLA

On one hand, we have R’s input VR to FEQ which depends on η:

VR =
∑
i∈[n]

χi · vi − y

=
∑
i∈[n]

χi · vi − y∗ +∆ · x∗

=
∑
i∈[n]

χi · vi − y∗ +∆ · (x′ − x)

=
∑
i∈[n]

χi · vi − y∗ +∆ · (χα · β + η − x)

= VS +∆ · η

On the other hand, we have S∗’s input V ′S = VS + ε. So the equality test should pass if
and only if

∆ · η = ε (mod 2ℓ) (2.1)

holds. While S does not know the right value of ∆, it can use the global key query of
F ℓ,s

sp-vole2k.
As above, define v ∈ N such that 2v is the largest power of two that divides η. For

Equation (2.1) to hold, 2v must also divide ε. If this is not the case, S can safely simulate
a failing equality test. Assuming 2v divides both η and ε, we can divide both sides of
Equation (2.1) by 2v and reduce the modulus accordingly.

∆ · η
2v

=
ε

2v
(mod 2r−v)

Since η
2v must be odd, we can solve for ∆.

∆ =
ε

2v
·
(η

2v

)−1
(mod 2r−v)

Let ∆′ := ε
2v ·
(η
2v

)−1
mod 2r−v be the result of the computation. We know that ∆ ∈ Z2s .

So, if r− v ≥ s, then it must be ∆′ = ∆ for the equality check to hold, and the abort in
case ∆′ ≥ 2s is safe. If r − v < s, then ∆′ must consist of the lower r − v bits of ∆ for
the check to hold. Hence, the global key query (Guess, ∆′, min(s, r − v)) of S results in
an abort of F ℓ,s

sp-vole2k exactly when the equality test would fail.
To summarize, all messages (and abort) are distributed perfectly indistinguishable

in protocol and simulation, except for d. We now show that any distinguisher Z for
malicious senders can break the pseudorandomness (Definition 3) of the PPRF. For this,
consider that in the real protocolR computes d := γ−

∑n
j=1 vj ∈ Z2ℓ , where γ := b−∆·a′

and R received ∆, b from F ℓ,s
vole2k and a′ from S. On the other hand, in the simulation

it is sampled uniformly at random as d ∈R Z2ℓ . The reason is that in the simulation, S
never learns the secret key ∆ that the ideal F ℓ,s

sp-vole2k has generated for the honest R –
only the environment learns it.

2.3. SINGLE-POINT VECTOR OLE 61

We can now use any PPT environment Z that can distinguish both to break pseu-
dorandomness as follows: First, observe that Z is fixed and that a reduction can make
manipulations to the inner state of its security game. We construct a special simulator
Ŝ. Consider an execution of Z using Ŝ and let it first extract the point α where S will
puncture the PPRF in the protocol from the hybrid FOT.
Ŝ forwards α to the PPRF security game as in Definition 3 and obtains all seeds K

i

for keys that it will input into the FOT to deliver to the sender.
It also obtains a point v∗α which by the security game is either F (k, α) or uniformly

random. Since our reduction can control the security experiment of Z and therefore
controls F ℓ,s

sp-vole2k it has access to ∆ that is generated by the functionality. It computes
d as d = γ − v∗α −

∑n
j=1,j ̸=α vj and uses d as its message to S. For all other purposes, Ŝ

just acts like S.
By construction, if v∗α is uniformly random then d is distributed as in the simulation,

while if v∗α = F (k, α) then d is identical to the real protocol. Hence any Z that distin-
guishes both breaks Definition 3. By assumption, any PPT algorithm (in κ) can only
do so with probability at most negl(κ). ■

Malicious Receiver. The simulation is setup as follows: S simulates a party R∗ in
its head and gives control to Z, and sends (corrupt, R) to F ℓ,s

sp-vole2k. It also simulates
instances of F ℓ,s

vole2k, FOT, and FEQ.
For the call to (Init), S receives ∆ ∈ Z2s from R∗, and sends ∆ to F ℓ,s

sp-vole2k. Calls to
(Extend) are simply forwarded to F ℓ,s

vole2k, and S can just simulate the interaction with
the ideal functionality. The main part of proof is the simulation of (SP-Extend, n). Let
h := dlog ne.

1. S simulates the call (Extend, 1) to F ℓ,s
vole2k and receives b ∈ Z2ℓ from R∗.

2. Send a′ ∈R Z2ℓ to R∗.

3. Receive K
h+1
1 from R∗.

4. Simulates the calls to FOT and records R∗’s inputs (K
i
0,K

i
1)i∈[h].

5. Sample ξ ∈R Fn
2s′

with s′ := σ + 2h, and send ξ to R∗.

6. Receive Γ from R∗.

7. For α ∈ [n], compute vα ← GGM.Eval(n, α, (K
1
α1
, . . . , K

h
αh
,K

h+1
)).

8. Define

I :=
{
α ∈ [n] | GGM.Check(n, α, (K

1
α1
, . . . , K

h
αh
,K

h+1
), ξ,Γ) = >

}
.

S sends I to F ℓ,s
vole2k. If it aborts, then simulate the abort of S.

62 CHAPTER 2. MOZZ2KARELLA

9. If the outputs vα are not consistent, i.e., vαj 6= vα
′

j for some α 6= α′ ∈ I and
j ∈ [n] \ {α, α′}, then abort the simulation (by Theorem 2, this should happen
with negligible probability).

10. Case |I| = 1: F ℓ,s
sp-vole2k sends (success, β). With this information, we can basically

follow the remaining protocol:

(a) Note that we now know the real α that F ℓ,s
sp-vole2k has chosen since I = {α}.

Hence, we can compute u ∈ Zn
2ℓ

such that uα = β and ui = 0 for all i 6= α.
(b) Moreover, compute a := β − a′, and δ := ∆ · a+ b.
(c) Receive d′ ∈ Z2ℓ from R∗.
(d) Compute w ∈ Zn

2ℓ
such that wi := vi for all i 6= α, and wα := δ−d′−

∑
i ̸=αwi.

(e) S simulates the second call (Extend, 1) to F ℓ,s
vole2k and receives y∗ ∈ Z2ℓ from

R∗.
(f) Sample x ∈R Z2ℓ and set z := ∆ · x+ y∗.
(g) Sample χ ∈R {0, 1}n with HW(χ) = n

2 and compute x∗ := χα · β − x and
send them to R∗.

(h) Compute VS :=
∑n

i=1 χi ·wi− z. Record the value V ′R that R∗ sends to FEQ.
(i) If VS 6= V ′R: Make F ℓ,s

sp-vole2k abort by sending (query, ∅), and simulate failing
equality test with VS as S’s input.

(j) If VS = V ′R: Send (continue) to F ℓ,s
vole2k and simulate successful equality test.

(k) Compute v := w −∆ · u, and send v to F ℓ,s
sp-vole2k as R’s output.

11. Case |I| > 1: F ℓ,s
sp-vole2k sends (success)

(a) Let v1, . . . , vn denote the leaves of the GGM tree. (We can recover these from
(vαj)j∈[n]\{α} and (vα

′
j)j∈[n]\{α′} for two different α, α′ ∈ I.

(b) Define d := (b − ∆ · a′) −
∑n

j=1 vj ∈ Z2ℓ , i.e., the value that an honest R
would send. Receive d′ = d + ε ∈ Z2ℓ from R∗, where ε denotes a possible
error added by R∗.

(c) S simulates the second call (Extend, 1) to F ℓ,s
vole2k and receives y∗ ∈ Z2ℓ from

R∗.
(d) Sample χ ∈R {0, 1}n with HW(χ) = n

2 and x∗ ∈R Z2ℓ and send them to R∗.
(e) Compute VR :=

∑n
i=1 χi · vi − (y∗ −∆ · x∗) ∈ Z2ℓ , i.e., the value an honest R

would send to FEQ. Record the actual value V ′R that R∗ sends to FEQ.
(f) If ε = 0:

• If V ′R = VR: Send (continue) to F ℓ,s
vole2k and simulate successful equality

test.
• If V ′R 6= VR: Send (query, ∅) to F ℓ,s

vole2k and simulate failing equality test
with VR as S’s input.

2.3. SINGLE-POINT VECTOR OLE 63

(g) If ε 6= 0:
• If V ′R = VR, define J := {i ∈ [n] | χi = 0} and V ∗ := VR − ε.
• If V ′R = VR − ε, define J := {i ∈ [n] | χi = 1} and V ∗ := VR.
• If V ′R 6∈ {VR, VR − ε}, define J := ∅. Sample b ∈R {0, 1} and set V ∗ :=

VR − b · ε. Although the equality check will never pass, we cannot abort
directly, since R∗ learns S’s input. Hence, we need to supply a value
that looks right, where the error ε is subtracted with 1/2 probability
corresponding to the probability that χα = 1.

Send (query, J) to F ℓ,s
vole2k. If it aborts, simulate failing equality test with V ∗

as S’s input and simulate S aborting. Otherwise, receive α ∈ [n] from F ℓ,s
vole2k

and simulate successful equality test.
(h) We now know the correct value α chosen by the ideal functionality. Let

v′ ∈ Zn
2ℓ

such that v′α = vα− ε and v′i = vi for i ∈ [n] \ {α}. S sends v′ as R’s
output to F2,s

vole2k.

Claim 2 (Indistinguishability of the Simulation for Corrupted Receiver). No PPT en-
vironment Z that chooses to corrupt the receiver R can distinguish the real execution of
the protocol from the simulation described above except with probability 2−(σ+1).

Proof of Claim. The simulation of Init, i.e., sending (Init) to F ℓ,s
vole2k, results again in a

view of R∗ which is identical to that in the real protocol. Note that S now learns the
global key ∆ since it is chosen by R∗.

Now we consider the simulation of (Extend, n) with n = 2h.
The call (Extend, 1) to the simulated F ℓ,s

vole2k results in R∗ obtaining a value of its
choice b ∈ Z2ℓ – as in the real protocol.

The first difference already occurs in Step 2, where the simulator sends a randomly
samples a′ ∈R Z2ℓ , whereas the real sender S would compute a′ := β − a. In the
simulation we don’t know β, but a is distributed uniformly at random. Hence, from
V ∗’s view a′ is distributed identically in both cases.

If we learn the correct β from F ℓ,s
sp-vole2k later on (we will, e.g., in Step 10), then we

can compute a := β − a′ and c := ∆ · a + b and pretend that we received (a, c) from
F ℓ,s

sp-vole2k during the first call to (Extend, 1), and these values will still be consistent with
the view of R∗.

The next Steps 3-6 simulate the transfer of the punctured PRF key. The message ξ
send in Step 5 is sampled in the same way as the real R would do it.

Now we need to make sure that S simulates an abort if and only iff the consistency
check of the GGM tree fails. In the simulation, we don’t know the real value of α that
the ideal functionality chooses, but we can collect all possible values of α for which the
check passes in the set I. In the real execution, S would abort if and only if the real α is
not contained in this set. Hence, in Step 8 we use the first query and send I to F ℓ,s

sp-vole2k.
In the case that R∗ has managed to create an inconsistent GGM tree which passes

the check, then S aborts the simulation in Step 9, but by Theorem 2, this happens only

64 CHAPTER 2. MOZZ2KARELLA

with probability 2−(σ+1). Therefore, we assume in the following that the GGM tree is
consistent.

In case |I| = 1 (Step 10), we have recovered the correct value of α since it must be
I = {α}, and F ℓ,s

sp-vole2k sends use the correct value of β. So we can compute S’s output u
(Step 10a) and values a and δ which are consistent with the simulation (Step 10b). Then
S can behaves in the same way as the real S, and simulate the equality test accordingly.
Since S can compute w in Step 10d and already knows ∆ and u, it can successfully
recover v (Step 10k) and send it to F ℓ,s

sp-vole2k to select R’s output.
In case |I| > 1 (Step 11), we do not learn α and β from the query. We can, however,

compute v in Step 11a, since we have (at least) two different vα, vα′ . This allows us
to compute the value d that an honest R would send, when we receive the (possibly
maliciously chosen) message d′ = d+ ε from R∗ (Step 11b). If ε 6= 0, then we know that
R∗ is cheating, but we can only abort the simulation if R∗ is also caught by the check
in the real protocol.

From the simulation of the (Extend, 1) call to F ℓ,s
vole2k, we learn the value y∗ that

R∗ has chosen. The coefficient vector χ is sampled uniformly at random as in the real
protocol.

Since S uses the received d to compute the value of w at position α, the error ε is
propagated and S instead computes w′α = wα−ε, and S’s input to FEQ is V ′S = VS−χα ·ε.
Hence, to make the equality check pass, R∗ needs to adjust its input value V ′R to account
for the error ε iff χα = 1. Otherwise, it need to send the same value VR that the honest
R would send. We can compute this value (Step 11e).

If ε = 0 (R∗ has sent the correctly computed d, covered in Step 11f), we know that
the sender’s input VS matches the honest R’s input VR. Hence, we can simulate a
successful equality test if R∗’s actual input V ′R = VR, and simulate an abort otherwise.

If ε 6= 0 (R∗ has sent an incorrect value d′ = d + ε, covered in Step 11g), then we
know that it must be VS = VR−χα ·ε for the check to pass. So, if V ′R 6∈ {VR, VR−ε}, we
can simulate a failing equality test, where the sender used either of the values as input
with probability 1/2. Since we do not know α, we cannot just lookup the value of χα

in χ, but we can make a query to the ideal F ℓ,s
sp-vole2k whether α ∈ J for some index set

J . If V ′R = VR, we set J as the set of indices where χ is 0, and if V ′R = VR − ε, we set
J as the set of indices where χ is 1. Hence, J will contain exactly those values for α for
which the the equality check would pass: if V ′R = VR, then it must be χα = 0 so that the
error ε disappears, and if V ′R = VR − ε, then it must be χα = 1 so that ε is propagated.
Hence, the equality test passes iff α ∈ J . So we query the ideal F ℓ,s

sp-vole2k and simulate
a failing test if it aborts. Otherwise, it sends us the value of α, and we can adjust the
position α in R∗’s output v corresponding to the error ε (Step 11h).

The simulation is perfect unless S aborts it, which happens with probability at most
2−(σ+1) if R∗ manages to create an inconsistent GGM tree which passes the check. ■

Theorem 3 follows from the combination of the two claims stating the indistinguisha-
bility of the simulations.

2.4. VECTOR OLE CONSTRUCTION 65

2.3.3 Protocol Complexity

Let n ∈ N, h := dlog ne, and σ′ := σ + 2h. For one call to (SP-Extend, n), we

• use 2× VOLE (of length 1× Z2ℓ),

• use h× OT (on strings of length κ),

• use 1× EQ for Z2ℓ elements,

• transfer 3× Z2ℓ elements,

• transfer 2× F2σ′ elements, and

• transfer 2× {0, 1}κ PRG seeds.

Overall, using the equality test sketched in Section 2.2.3 and Silent OT [BCG+19a,
YWL+20, CRR21], we transfer 4ℓ+ 2σ + 4dlog ne+ (5 + 2dlog ne)κ bit plus the costs of
2 VOLEs.

2.4 Vector OLE Construction
Given our single-point VOLE protocol, we build a protocol for random VOLE extension
over Z2ℓ by running t single-point instances of length n/t, and concatenating their out-
puts to obtain a weight t VOLE correlation of length n. Then, these (together with some
additional VOLEs) can be extended into pseudorandom VOLEs by applying the primal
LPN assumption over Z2ℓ with regular noise vectors of weight t. Since our single-point
protocol introduces some leakage on the hidden point, we need to rely on a variant of
LPN with some leakage on the regular noise coordinates.

2.4.1 Leaky Regular LPN Assumption

The assumption, below, translates the leakage from the single-point VOLE functionality
(Figure 2.4) into leakage on the LPN error vector. Note that there are two separate
leakage queries: the first of these allows the adversary to try and guess a single predicate
on the entire noise vector, and aborts if this guess is incorrect. This is similar to previous
works [BCG+19a, WYKW21a], and essentially only leaks 1 bit of information on average
on the position of the non-zero entries. The second query, in Step 5 is more powerful,
since for each query made by the adversary, the exact position of one noise coordinate
is leaked with probability 1/2. Intuitively, this means that up to c coordinates of the
error vector can be leaked with probability 2−c.

Definition 6. Let A← G(m,n, 2ℓ) ∈ Zm×n
2ℓ

be a primal-LPN matrix, and consider the
following game Gb(κ) with a PPT adversary A, parameterized by a bit b and security
parameter κ:

1. Sample e = (e1, . . . , et) ← Zn
2ℓ

, where each sub-vector ei ∈ Zn/t

2ℓ
has exactly one

non-zero entry in Z∗
2ℓ

, in position αi, and sample s← Zm
2ℓ

uniformly

66 CHAPTER 2. MOZZ2KARELLA

2. A sends sets I1, . . . , It ⊂ [n/t]

3. If αj ∈ Ij for all j ∈ [t], send OK to A, otherwise abort. Additionally, for any j
where |Ij | = 1, send ej to A

4. A sends sets J1, . . . , Jt ⊂ [n/t]

5. For each Ji where |Ji| = n/(2t): if αi ∈ Ji, send αi to A, otherwise abort

6. Let y0 = s ·A+ e and sample y1 ← Zn
2ℓ

7. Send yb to A

8. A outputs a bit b′ (if the game aborted, set the output to ⊥)

The assumption is that |Pr[AG0(κ) = 1]− Pr[AG1(κ) = 1]| is negligible in κ.

We now discuss how the additional leakage in our leaky variant of the LPN assump-
tion (Definition 6) affects the hardness of the problem.

The Security Game.

Recall the security game from Definition 6 where the adversary A can make two queries
for the indices of the non-zero entries in the error vector e, an I-query (Step 2) and a
J-query (Step 4).

For each query, A sends a collection of sets I1, . . . , It ⊆ [nt] (resp. Ji1 , . . . , Jih ⊆ [nt]
with h ∈ [0, t] and all ij ∈ [t] different) to the challenger. The adversary then learns
whether αi ∈ Ii for all i ∈ [t] (resp. αij ∈ Jij for all j ∈ [h]) where αi is the index of the
non-zero entry in the subvector ei. If this is not the case, i.e., there is an index i ∈ [t]
such that αi 6∈ Ii (resp. ij such that αij 6∈ Ji), then the game aborts.

The I-query is similar to previous works [BCG+19a, WYKW21a], and essentially
only leaks 1 bit of information on average on the position of the non-zero entries: The
adversary then learns whether αi ∈ Ii for all i ∈ [t]. In the case that one of the sets
contain only the correct index Ii = {αi}, our variant additionally reveals the non-zero
value βi. Compared to previous works, the adversary is then able to remove the noise
and, thus, learns n

t instead of n
t − 1 noiseless equations.

The J-query is more powerful: For each i ∈ [t], the adversary has the option to
make a guess by sending a subset Ji ⊆ [nt] of size n

2t (sets of other sizes are ignored).
In contrast to the I-query, the adversary learns the correct index αi for each successful
guess Ji of this form. If there is a guess Ji of this form such that αi 6∈ Ji, the game
aborts. However, due to the size restriction, every guess independently succeeds with
probability 1/2. Hence, except with probability at most 2−σ, the adversary will not
learn more than σ noisy coordinates αi without without the game aborting.

2.4. VECTOR OLE CONSTRUCTION 67

Estimating Security of Leaky LPN.

Let h(i, j) := (i− 1) · (nt)+ j be an index function which computes the index of a length
n vector that corresponds to the jth entry of the ith subvector of length n

t . We use Ak

to denote the kth column of A.
Suppose the adversary has received an LPN sample y = s ·A + e and learned the

position αi of the noise in block ei. Then it knows that yh(i,αi) = s ·Ah(i,αi) + βi holds
for the (unknown) noise value βi. It also knows that yh(i,j) = s ·Ah(i,j) holds for all other
indices in this block j ∈ [nt] \ {αi}, i.e., it now has n

t − 1 linear equations of the secret
vector s without noise. In the worst case, these could be used to recover n

t − 1 entries of
s.

Now the adversary can to learn up to σ noisy coordinate except with negligible
probability. Therefore, we must tolerate the leakage of up to σ · (nt − 1) noise-free
equations or the same number of entries of s. Hence, it can transform the given LPN
instance into a smaller instance where the σ affected blocks are removed and the secret
is σ · (nt − 1) entries smaller. and we require that it is still infeasible for the adversary
to solve this smaller LPN instance.

To summarize, we assume that an instance of the leaky LPN problem with parameters
(m, t, n) is as hard as a standard LPN instance (Definition 1) with reduced parameters
(m′, t′, n′) = (m− σ · (nt − 1), t− σ, n− σ · nt). Hence, we must choose (m, t, n) such that
n is large enough for our application and that the (standard) regular LPN problem with
parameters (m′, t′, n′) is hard to solve.

Estimating Security of Standard LPN.

We initially estimated the security of standard regular LPN (Definition 1) with the
reduced parameters (m′, t′, n′) following Boyle et al. [BCGI18] as

log2

(
m′ + 1

(1− m′

n′)t
′

)
bits,

based on their estimation of the cost of the low-weight parity-check attack.
Recently, Liu et al. [LWYY22] found that the above estimate is very conservative,

and the pooled Gauss attack performs better for all practical parameters. They provide
a script to compute more precise estimates, and we refer to their work for more details.
As mentioned in Section 2.2.5, by choosing the LPN noise values to be odd, we avoid
the reduction attack from Liu et al., which would otherwise halve the noise rate.

2.4.2 Vector OLE Protocol

Our complete VOLE protocol is given in Figure 2.6. It realises the functionality F ℓ,s
vole2k

(Figure 2.1), which is the same functionality used for base VOLEs in our single-point pro-
tocol. This allows us to use the same kind of “bootstrapping” mechanism as [WYKW21a],
where a portion of the produced VOLE outputs is reserved to be used as the base VOLEs
in the next iteration of the protocol.

68 CHAPTER 2. MOZZ2KARELLA

In the Init phase of the protocol, the parties create a base VOLE of length m, defining
the random LPN secret u, given to the sender, and the scalar ∆, given to the receiver.
Then, in each call to Extend, the parties run t instances of F ℓ,s

sp-vole2k to generate c =
(c1, . . . , ct) and e = (e1, . . . , et) for the sender and b = (b1, . . . , bt) for the receiver. The
sender then simply computes x ← u ·A + e ∈ Zn

2r and z ← w ·A + c ∈ Zn
2r and the

receiver computes y = v ·A + b ∈ Zn
2r . This results in the sender holding x, z and the

receiver holding y such that z = x ·∆+ y. The first m entries of these are reserved to
define a fresh LPN secret for the next call to Extend, while the remainder are output by
the parties.5

Theorem 4. The protocol Πℓ,s
vole2k in Fig. 2.6 securely realizes the functionality F ℓ,s

vole2k
in the F ℓ,s

sp-vole2k-hybrid model, under the leaky regular LPN assumption.

Proof of Theorem 4. We first consider the case of a corrupt sender, and then separately
a corrupt receiver.

Malicious sender. We construct a simulator as follows. In the Init phase, the simu-
lator first forwards (Init) to F ℓ,s

vole2k, and then receives u,w from A, as its input to the
(Extend) command of F ℓ,s

sp-vole2k.
In the Extend phase, the simulator receives vectors ei, ci from A, for i ∈ [t], and

defines e = (e1, . . . , et), c = (c1, . . . , ct). The simulator then computes x, z as in the
protocol, updates the vectors u,w accordingly, and finally sends (x[m : n), z[m : n)) ∈
Zℓ
2ℓ
× Zℓ

2ℓ
as input to the F ℓ,s

vole2k functionality.
Whenever A sends a key query command to F ℓ,s

sp-vole2k, the simulator sends the query
to F ℓ,s

vole2k and forwards its response to A. If F ℓ,s
vole2k aborts, the simulator aborts.

Indistinguishability. Since there is no interaction in the protocol, and in the ideal
world, the outputs of both parties are computed the exact same way as the real protocol,
it is clear that the two executions are perfectly indistinguishable.

Malicious receiver. To simulate the Init phase, the simulator first receives ∆ from A
and forwards this to F ℓ,s

vole2k, and then receives v ∈ Zm
2ℓ

from A.
In the Extend phase, the simulator samples a random noise vector (e1, . . . , et), and

uses this to respond to the leakage queries from A, just as F ℓ,s
sp-vole2k would. If any query

aborts, it sends abort to F ℓ,s
vole2k and aborts. If the queries are successful, it receives bi

from A, for i ∈ [t], then defines b = (b1, . . . ,bt). It then computes y = v · A + b,
updates v as an honest R would, and sends the last n−m entries of y to F ℓ,s

vole2k.

Indistinguishability. First, note that the probability of abort is identical in both the
real and ideal executions, since the simulator responds to the leakage queries using a

5In our implementation, we actually reserve m+ 2t of the outputs, since we need 2 extra VOLEs for
each execution of the protocol for Fℓ,s

sp-vole2k.

2.4. VECTOR OLE CONSTRUCTION 69

VOLE for Z2k : Πℓ,s
vole2k

Parameters Fix some parameters:

• n: LPN output size
• m: LPN secret size
• t: number of error coordinates for LPN (assume that t | n)
• n/t: size of a block in regular LPN
• A ∈ Zm×n

2ℓ
is the generator matrix used in primal-LPN

Init This must be called by the parties first and is executed once.

1. S and R send (Init) to F ℓ,s
sp-vole2k, and R receives ∆ ∈ Z2s .

2. S and R send (Extend,m) to F ℓ,s
sp-vole2k. S receives u,w ∈ Zm

2ℓ
, and R receives

v ∈ Zm
2ℓ

, such that w = ∆ · u+ v over Z2ℓ .

Extend This protocol can be executed multiple times.

1. For i ∈ [t], S and R send (SP-Extend, n/t) to F ℓ,s
sp-vole2k which returns ei, ci

to S and bi to R such that ci = ∆ · ei + bi over Zn/t

2ℓ
, and ei ∈ Zn/t

2ℓ
has

exactly one entry invertible modulo 2ℓ and zeros everywhere else.
2. Define e := (e1, . . . , et) ∈ Zn

2ℓ
, c := (c1, . . . , ct) ∈ Zn

2ℓ
, and b :=

(b1, . . . ,bt) ∈ Zn
2ℓ

. Then S computes x := u · A + e ∈ Zn
2ℓ

, and
z := w ·A+ c ∈ Zn

2ℓ
. R computes y := v ·A+ b ∈ Zn

2ℓ
.

3. S updates u,w by setting u := x[0 : m) ∈ Zm
2ℓ

and w := z[0 : m) ∈ Zm
2ℓ

,
and outputs (x[m : n), z[m : n)) ∈ Zℓ

2ℓ
× Zℓ

2ℓ
. R updates v by setting

v := y[0 : m) ∈ Zm
2ℓ

and outputs y[m : n) ∈ Zℓ
2ℓ

.

Figure 2.6: Protocol for VOLE over Z2k in the F ℓ,s
sp-vole2k-hybrid model. Based

on [WYKW21a].

70 CHAPTER 2. MOZZ2KARELLA

random noise vector, just as F ℓ,s
sp-vole2k does in the real execution. It remains to show

that the distribution of the parties’ outputs in the ideal execution is indistinguishable
from the actual protocol.

For simplicity, we consider the case of a single call to Extend; handling multiple calls
follows with a standard hybrid argument, and the fact that the LPN secret used in
subsequent calls is independent of previous outputs. Suppose there is an environment
Z who controls an adversary A corrupting the receiver, and Z can distinguish between
the two executions. We construct a distinguisher D for the leaky LPN assumption,
as follows. D starts by simulating an execution of Πℓ,s

vole2k, as in the above simulation,
until it reaches the leakage queries in the F ℓ,s

sp-vole2k instances. Here, D receives t queries
I1, . . . , It ⊂ [n/t], forwards these to the leaky LPN challenger and uses its response
to respond to A. For the second set of leakage queries, it sends the sets J1, . . . , Jt to
the challenger, and again uses its response to simulate the response to A. If the LPN
challenger aborts, the simulation is aborted. Finally, D receives the vector yb from the
LPN challenger, and uses its last n −m entries to define the honest sender’s output x,
which is given to Z; the output z is defined to be ∆ · x+ y.

Notice that the way the leakage queries are simulated is identical to the ideal func-
tionality F ℓ,s

sp-vole2k. It follows that if b = 0 in the leaky LPN game, then the view of Z
is identical to the real execution, while if b = 1, the view is the same as the ideal world.
Therefore, the distinguishing advantage of D is the leaky LPN game is the same as that
of Z.

Communication Complexity When we instantiate the single-point VOLE with our
protocol Πℓ,s

sp-vole2k from Section 2.3, use the equality test sketched in Section 2.2.3, and
Silent OT [BCG+19a, YWL+20, CRR21], our VOLE extension protocol Πℓ,s

vole2k with
LPN parameters, (m, t, n) requires m + 2t base VOLEs and 4tℓ + 2tσ + 4tdlog n/te +
(5 + 2dlog n/te)tκ bit of communication. The costs for the single-point VOLE protocol
are broken down in Section 2.3.3.

2.5 QuarkSilver: QuickSilver Modulo 2k

We now construct the QuarkSilver zero-knowledge proof system, which is based on a
similar principle as the QuickSilver protocol. The main technique to achieve soundness
in QuickSilver [YSWW21a], similar to LPZK [DIO21a], is that a dishonest prover can
only cheat in multiplication checks if it can come up with a quadratic polynomial of a
certain form, which has a root ∆ unknown to the prover. This is straightforward over
fields, but over Z2k there might be many more than just two roots for a polynomial.
Before constructing the zero-knowledge protocol, we therefore give upper-bounds on the
number of roots of certain quadratic polynomials over Z2k .

2.5.1 Bounded Solutions to Quadratic Equations in Z2k

We examine the roots of the following polynomial modulo 2ℓ:

2.5. QUARKSILVER: QUICKSILVER MODULO 2K 71

f(x) = ax2 + bx+ c

We are only interested in the case where a 6= 0 mod 2k, while b and c may be chosen
arbitrarily by the adversary. Finally, we also only look at roots x ∈ {0, . . . , 2s−1}, since
the secret MAC key ∆ is sampled from this range.

Towards giving a bound, we will use the following basic fact about modular square
roots.

Proposition 1. Let a ∈ Z be an odd number. Then x2 = a mod 2ℓ has at most 4
solutions.

Proof of Proposition 1. Clearly, if there exists one solution x then there are 3 more
solutions −x, x + 2ℓ−1 and −x + 2ℓ−1. We now show that these are the only such
solutions.

For the sake of contradiction, let y be such that y2 = a mod 2ℓ. Then

x2 − y2 = (x− y)(x+ y) = 0 mod 2ℓ.

Both x, y must be odd as a is odd, hence both x + y and x − y are a multiple of 2. If
x+y = 0 or x−y = 0 then x = ±y. Assuming this is false, then there exist odd numbers
f, g as well as positive i, j such that

x+ y = f2i , x− y = g2j and i+ j ≥ ℓ.

Since these equations hold over the integers, we additionally get that

(x+ y) + (x− y) = 2x = f2i + g2j ⇒ x = f2i−1 + g2j−1

where in the last step we divide over the integers. Since x must be odd, we have that
either i or j must be 1. If i = 1 then

x− y = g2ℓ−1 ⇒ x = y mod 2ℓ−1

whereas we get x = −y mod 2ℓ−1 if j = 1.

We also use a version of Hensel’s lemma (see e.g. [Hac07]), which allows lifting certain
solutions to an equation modulo p up to solutions modulo pℓ.

Lemma 4 (Hensel’s lemma). Let p be prime, f(x) be a polynomial with integer coeffi-
cients and f ′(x) its derivative. If there exists an integer x∗ such that

f(x∗) = 0 mod pi and f ′(x∗) 6= 0 mod p

then there is a unique integer y modulo pi+1 satisfying

f(y) = 0 mod pi+1 and x∗ = y mod pi

72 CHAPTER 2. MOZZ2KARELLA

Note that any solution to f(x) = 0 modulo pℓ is also a solution modulo p. Hence,
if the derivatives of all the roots modulo p are non-zero, we are guaranteed that there
are no more than two solutions modulo higher powers. The challenging case is when the
derivative is zero. We now show the following.

Lemma 5. Let f(x) ∈ Z[x] be a quadratic equation such that 2r is the largest power of
2 dividing all coefficients. Then for any ℓ, s, s′ ∈ N such that ℓ− r > s′ there are at most
2max{(2s−s′)/2,1} solutions to f(x) = 0 mod 2ℓ in {0, . . . , 2s − 1}.

Proof. First, we will divide f(x) by 2r, the largest power of two that divides all coeffi-
cients, then redefine f accordingly and solve:

f(x) = ax2 + bx+ c = 0 mod 2ℓ−r

where now at least one of {a, b, c} is odd.

Case 1: a and b are odd. We can use Lemma 4, since the derivative f ′(x) = 2ax+ b
is odd and, therefore, non-zero modulo 2. This means any solution modulo 2 lifts to a
unique solution modulo higher powers, so there are at most 2 solutions modulo 2ℓ−r.

Case 2: a is odd and b is even. Since a is invertible modulo 2ℓ−r, we can complete
the square: Define g(y) := a · y2 + t with t := c − b2/4 · (a−1 mod 2ℓ−r). Then we have
f(x) = g(y) (mod 2ℓ−r) using the substitution y = x+ b/2 · (a−1 mod 2ℓ−r):

g(y) = a ·
(
x+ b/2 · (a−1 mod 2ℓ−r)

)2
+ c− b2/4 · (a−1 mod 2ℓ−r)

= a · x2 + b · x+ b2/4 · (a−1 mod 2ℓ−r) + c− b2/4 · (a−1 mod 2ℓ−r)

= ax2 + bx+ c = f(x) (mod 2ℓ−r)

So, to solve for x we can now solve ay2 = −t mod 2ℓ−r for y, where the original
constraint for x now puts y in the interval {b/2·(a−1 mod 2ℓ−r), . . . , b/2·(a−1 mod 2ℓ−r)+
2s − 1}. Since this substitution is just a constant shift, the maximal number of possible
solutions in any interval of length 2s for g directly translates into an upper bound on
the number of solutions for f in the solution space.

Letting t′ = t · (a−1 mod 2ℓ−r), we now want to solve:

y2 = −t′ (mod 2ℓ−r) (2.2)

• Case (2a): t′ = 0 (mod 2ℓ−r). Then, the solutions y are all the multiples of
2(ℓ−r)/2. In an interval of length 2s, there can be at most 2s/2(ℓ−r)/2 < 2s−s

′/2 of
these.

• Case (2b): t′ 6= 0 (mod 2ℓ−r). Let 2v
′ be the largest power of two dividing

t′. Since −t′ is a square, v′ must be even so we can write v′ = 2v for some

2.5. QUARKSILVER: QUICKSILVER MODULO 2K 73

v ≤ (ℓ− r− 1)/2. Write −t′ = u · 22v for some odd u ∈ Z, and let z = y/2v, so we
have

z2 = u (mod 2ℓ−r−2v). (2.3)

Any solution y for (2.2) satisfies y = z ·2v mod 2ℓ−r−2v for some z that is a solution
to (2.3). So, there is a k ∈ Z such that

y = z · 2v + k · 2ℓ−r−2v (2.4)
⇒ y2 = z2 · 22v + 2 · z · k · 2ℓ−r−v + k2 · 22(ℓ−r−2v)

⇒ y2 = −t′ + z · k · 2ℓ−r−v+1 (mod 2ℓ−r).

To bound the number of solutions y, it suffices to bound the number of z and
k satisfying the above. For the y’s to be distinct mod 2ℓ−r, we need k < 22v,
which means there are 2v+1 possibilities for k, given by k = i · 2v−1 for all i ∈
{0, . . . , 2v+1 − 1}. Since z is odd, from Proposition 1 there are no more than 4
solutions to (2.3), which are of the form ±z0 and 2ℓ−r−2v−1 ± z0 for some z0.
However, it is easy to see that plugging z := z0 + 2ℓ−r−2v−1 into (2.4) gives the
same set of solutions for y as with z := z0, so we only need to count ±z0. Overall,
this shows there are at most 2v+2 solutions y to (2.4).
Since each solution in the set defined in Equation (2.4) (with k = i ·2v−1) is spaced
apart by 2ℓ−r−v−1, any interval of size 2s contains no more than 2s−ℓ+r+v+1 of
these. From the fact that v ≤ (ℓ− r − 1)/2, we get

2s−ℓ+r+v+1 ≤ 2(ℓ−r−1)/2−ℓ+r+s+1) = 2(−(ℓ−r)+1+2s)/2 ≤ 2(2s−s
′)/2

as required (where the last inequality holds since ℓ− r > s′).

Case 3: a is even, b is odd. In this case, f(x) = x + c mod 2 is linear, hence, the
unique solution x = c mod 2 gives a unique solution modulo 2ℓ−r via Lemma 4.

Case 4: a, b are even, c is odd. Here, f(x) = 0 has no solutions modulo 2, so also
no solutions modulo any higher power.

2.5.2 Bounded Solutions for a Generalized Setting

In the previous subsection, we analyzed the setting that one would end up with when
constructing a soundness argument for our check for one multiplication. In order to
amortize this check to t multiplications, we generalize the security game in the following
theorem.

Theorem 5. Let ℓ, s, k ∈ N+ so that ℓ ≥ k+2s and consider the following game between
a challenger C and an adversary A:

74 CHAPTER 2. MOZZ2KARELLA

1. C chooses ∆ ∈ Z2s uniformly at random.

2. A sends δ0, . . . , δt ∈ Z such that not all δi for i > 0 are 0 mod 2k.

3. C chooses χ1, . . . , χt ← Z2s uniformly at random and sends these to A.

4. A sends b, c ∈ Z.

5. A wins iff (δ0 +
∑

i χiδi)∆
2 + b∆+ c = 0 mod 2ℓ.

Then A can win with probability at most (ℓ− k + 2) · 2−s+1.

The proof of Theorem 5 follows a similar way as Lemma 1 of [CDE+18]. The key
observation is that Step 3 determines an upper-bound on r, the largest number such
that 2r divides all coefficients of the polynomial. This is because no choice of b, c can
increase r as it also must divide the leading coefficient, which is randomized. By the
random choice of the χi, one can show that the larger r is, the smaller the chance that
it divides δ0 +

∑
i χiδi. Since a larger r leads to more roots of the polynomial, we can

then bound the overall attack success for each possible r.
In the proof of Theorem 5, we will use the following statement.

Proposition 2. Let ℓ, k, s ∈ N+ so that ℓ ≥ k+ s, and δ0, . . . , δt ∈ Z be values such that
not all δi for i > 0 are 0 mod 2k. Then for any j ∈ {0, . . . , ℓ− k}

Pr

δ0 +∑
i∈[t]

χi · δi = 0 mod 2k+j

∣∣∣∣∣∣ χ1, . . . , χt ← Z2s

 ≤ 2−min(j,s).

The proof is an adaptation of the proof of Part iii of Lemma 1 of [CDE+18].

Proof of Proposition 2. Let j ∈ {0, . . . , ℓ − k} be arbitrary. Without loss of generality
assume that δt 6= 0 (mod 2k). Let v ∈ N be maximal such that 2v | δt. This implies
v < k. Define S := δ0+

∑
i∈[t] χi ·δi and S′ := −δ0−

∑
i∈[t−1] χi ·δi, and let W := min(ℓ, e)

where e ∈ N is maximal such that 2e | S.
Suppose W = k+ j. By definition, 2W | S which is equivalent to S = 0 (mod 2k+j).

Rewrite the equation as χt · δt = S′ (mod 2k+j). By the definition of v, both sides must
be multiples of 2v. So we can divide by 2v over the integers and reduce the modulus
accordingly. Then δ/(2v) is odd and, thus, invertible modulo 2k+j−v. Since v < k, we
have k + j − v > j, and can reduce the modulus further to 2j :

χt =
S′

2v
·
(
δt
2v

)−1
(mod 2j). (2.5)

The left-hand side χt is distributed uniformly at random in Z2s and independent of the
right-hand side. Hence, if j < s, then Equation (2.5) holds with probability at most 2−j .
For j ≥ s, it holds with probability at most 2−s. The proposition follows.

2.5. QUARKSILVER: QUICKSILVER MODULO 2K 75

Proof of Theorem 5. Let a = δ0+
∑

i χiδi mod 2ℓ, then A wins iff f(∆) = a∆2+b∆+c =
0 mod 2ℓ. Let r be the largest value such that 2r divides all a, b, c. We have that

Pr[A wins] ≤
ℓ∑

i=0

Pr[A wins, r = i]

=Pr[A wins | r ∈ {0, . . . , k − 1}] · Pr[r ∈ {0, . . . , k − 1}]

+

ℓ∑
i=k

Pr[A wins, r = i]

≤Pr[A wins | r ∈ {0, . . . , k − 1}] +
ℓ∑

i=k

Pr[A wins, r = i]

≤2−min{(ℓ−k)/2,s−1} +

ℓ−k∑
j=0

Pr[A wins, r = k + j]

(2.6)

Here, in the last step we use Lemma 5 where we set ℓ := ℓ and s′ := ℓ− k.
By definition of r, if r = k + j and A wins, then 2k+j must divide a. Therefore

Pr[A wins, r = k + j]

=Pr[A wins, r = k + j, 2k+j divides a]

=Pr[A wins, r = k + j | 2k+j divides a] · Pr[2k+j divides a].

Claim 3. For j ∈ {0, . . . , ℓ− k}, the following inequalities holds (with λ := ℓ− k − s):

a) Pr[2k+j divides a] ≤ 2−min{j,s},

b) Pr[A wins, r = k + j | 2k+j divides a] ≤ 2−min{(s+λ−j)/2,s}+1,

c) Pr[A wins, r = k + j] ≤ 2−s+1.

Proof of Claim.

a) Follows directly from Proposition 2.

b) By Lemma 5 for ℓ := ℓ, r := k + j, s′ := ℓ − r − 1 = s + λ − j − 1 and any
j ∈ {0, . . . , ℓ−k}, there are at most 2max{(2s−s′)/2,1} ≤ 2max{(s+j−λ)/2,0}+1 solutions
in the range {0, . . . , 2s − 1} to the equation f(x) = 0 (mod 2ℓ). Since there are 2s

choices for ∆, this means that

Pr[A wins, r = k + j | 2k+j divides a] ≤ 2max{(s+j−λ)/2,0}+1

2s

= 2max{(−s+j−λ)/2,−s}+1 = 2−min{(s+λ−j)/2,s}+1.

76 CHAPTER 2. MOZZ2KARELLA

c) Combining the previous two parts, we obtain

Pr[A wins, r = k + j]

= Pr[A wins, r = k + j | 2k+j divides a] · Pr[2k+j divides a]

≤ 2−min{(s+λ−j)/2,s}+1 · 2−min{j,s}

= 2−min{(s+λ−j)/2,s}+1−min{j,s}.

For j ∈ {0, . . . , s}, this can be simplified to

Pr[A wins, r = k + j] = 2−min{(s+λ−j)/2,s}+1−j

= 2−min{(s+λ+j)/2,s+j}+1

(⋆)

≤ 2−min{(2s+j)/2,s+j}+1

= 2−min{s+j/2,s+j}+1

= 2−s−j/2+1

≤ 2−s+1,

where we use the fact that λ ≥ s at step (⋆), which follows from the assumption
ℓ − k ≥ 2s and the definition of λ. For j ∈ {s, . . . , ℓ − k}, we obtain the bound
directly from Part a):

Pr[A wins, r = k + j]

= Pr[A wins, r = k + j | 2k+j divides a] · Pr[2k+j divides a]

≤ Pr[A wins, r = k + j | 2k+j divides a] · 2−min{j,s}

≤ 2−min{j,s} = 2−s ≤ 2−s+1. ■

Continuing from Equation (2.6), we use the Claim proved above and the fact that
ℓ ≥ k + 2s to get

Pr[A wins]
(2.6)
≤ 2−min{(ℓ−k)/2,s−1} +

ℓ−k∑
j=0

Pr[A wins, r = k + j]

≤ 2−min{s,s−1} +

ℓ−k∑
j=0

2−s+1

≤ 2−s+1 +

ℓ−k∑
j=0

2−s+1

≤ (ℓ− k + 2) · 2−s+1.

2.5. QUARKSILVER: QUICKSILVER MODULO 2K 77

Corollary 1. Let σ ≥ 7 be a statistical security parameter. By setting s := σ+log σ+3
and ℓ := k + 2s, any adversary A can win the game from Theorem 5 with probability at
most 2−σ.

Proof of Corollary 1. Plugging in the values of s and ℓ into the winning probability
stated in the theorem gives us:

Pr[A wins] ≤ (ℓ− k + 2) · 2−s+1

= (k + 2s− k + 2) · 2−s+1

= (2s+ 2) · 2−s+1

= (2σ + 2 log σ + 8) · 2−σ−log σ−2.

By taking the logarithm of both sides, we get

log Pr[A wins] ≤ log(2σ + 2 log(σ) + 8)− σ − log(σ)− 2

(⋆)

≤ log(4σ)− σ − log(σ)− 2

= log(σ) + 2− σ − log(σ)− 2

= −σ,

where we use that 2σ+2 log(σ)+8 ≤ 4σ (⋆) holds for all σ ≥ 7. Hence, we have bounded
the winning probability as Pr[A wins] ≤ 2−σ.

2.5.3 QuarkSilver

We now construct the QuarkSilver zero-knowledge proof system. Its main building block
are linearly homomorphic commitments instantiated from VOLEs over Z2ℓ .

Linearly Homomorphic Commitments.

As in the A2B [BBMH+21b] zero-knowledge protocols, we use linearly homomorphic
commitments from VOLE to authenticate values in Z2k : Define a commitment [x] to a
value x ∈ Z2k known to the prover by a global key ∆ ∈R Z2s and values K[x],M[x] ∈R Z2ℓ

with ℓ ≥ k + s so that
K[x] = M[x] + x̃ ·∆ (mod 2ℓ) (2.7)

holds for x̃ = x (mod 2k). Here the prover knows x̃ and M[x], and the verifier knows ∆
and K[x]. To open the commitment, the prover reveals x̃,K[x] to the verifier who checks
that the aforementioned equalities hold.

The commitment scheme is linearly homomorphic, as no interaction is needed to
compute [a · x + b] from [x] for publicly known a, b ∈ Z2k : P,V simply update x̃,K[x]
and M[x] in the appropriate way modulo 2ℓ. The same linearity also holds when adding
commitments. Unfortunately, the upper ℓ − k bits of x̃ may not be uniformly random
when opening a commitment. To resolve this, the prover instead opens [x + 2ky] using
a random commitment [y].

78 CHAPTER 2. MOZZ2KARELLA

QuarkSilver Πk
QS

The prover P and the verifier V have agreed on a circuit C over Z2k with n inputs
and t multiplication gates, and P holds a witness w ∈ Zn

2k
so that C(w) = 1.

Preprocessing phase The preprocessing phase is independent of C and just
needs upper bounds on the number of inputs and multiplication gates of C as
input.

1. P and V send (Init) to F ℓ,s
vole2k, and V receives ∆ ∈ Z2s .

2. P and V send (Extend, n + t + 2) to F ℓ,s
vole2k, which returns authenticated

values ([µi])i∈[n], ([νi])i∈[t], [o], and [π], where all µ̃i, ν̃i, õ, π̃ ∈R Z2ℓ .

Online phase

1. For each input wi, i ∈ [n], P sends δi := wi − µ̃i to V, and both parties
locally compute [wi] := [µi] + δi.

2. For each gate (α, β, γ, T) ∈ C, in topological order:
• If T = Add, then P and V locally compute [wγ] := [wα] + [wβ].
• If T = Mul and this is the ith multiplication gate, then P sends di :=

wα · wβ − ν̃i, and both parties locally compute [wγ] := [νi] + di.
3. For the ith multiplication gate, the parties hold ([wα], [wβ], [wγ]) with K[wi] =

M[wi] + w̃i ·∆ for i ∈ {α, β, γ}.
• P computes A0,i := M[wα] ·M[wβ] ∈ Z2ℓ and A1,i := w̃α ·M[wβ] + w̃β ·

M[wα]−M[wγ] ∈ Z2ℓ .
• V computes Bi := K[wα] · K[wβ]−∆ · K[wγ] ∈ Z2ℓ .

4. P and V run the following check:
(a) Set A∗0 := M[o], A∗1 := õ, and B∗ := K[o] so that B∗ = A∗0 +A∗1 ·∆.
(b) V samples χ ∈R Zt

2s and sends it to P.
(c) P computes U :=

∑
i∈[t] χi·A0,i+A∗0 ∈ Z2ℓ and V :=

∑
i∈[t] χi·A1,i+A∗1 ∈

Z2ℓ , and sends (U, V) to V.
(d) V computes W :=

∑
i∈[t] χi·Bi+B∗ ∈ Z2ℓ , and checks that W = U+V ·∆

(mod 2ℓ). If the check fails, V outputs false and aborts.
5. For the single output wire wh, both parties hold [wh]. They first compute

[z] := [wh] + 2k · [π]. Then P sends z̃ and M[z] to V who checks that z̃ = 1
(mod 2k) and K[z] = M[z] + z̃ ·∆. V outputs true iff the check passes, and
false otherwise.

Figure 2.7: Zero-knowledge protocol for circuit satisfiability in the F ℓ,s
vole2k-hybrid model

with s := σ + log(σ) + 3 and ℓ := k + 2s for statistical security parameter σ.

2.5. QUARKSILVER: QUICKSILVER MODULO 2K 79

How QuarkSilver Works.

QuarkSilver follows the established commit-and-prove paradigm for zero-knowledge proofs.
For the commitments, we use the linearly homomorphic commitments described above.
For a circuit with n inputs and t multiplications, we start by generating n + t + 2
authenticated random values [r1], . . . , [rn+t+2] with r̃i ∈R Z2ℓ for i ∈ [n + t + 2], i.e.
commitments to random values. For this, P and V call (Extend, n+ t+ 2) to F ℓ,s

vole2k. P
then commits to w using the first n random commitments. Next, the parties evaluate
the circuit topologically, computing commitments to the outputs of linear gates using
the homomorphism of [·]. For each multiplication gate, P commits to the output using
another unused random commitment. It then remains to show that the commitment
to the output of the circuit is a commitment to 1 and that all commited outputs of
muliplication gates are indeed consistent with the committed inputs.

To verify the committed output wire, QuarkSilver uses the “blinded opening” proce-
dure that was introduced above. This procedure will consume another random commit-
ment. To check validity of a multiplication, observe that for 3 commitments [wα], [wβ], [wγ]
with γ = α · β mod 2k it holds that

K[wα] · K[wβ]−∆ · K[wγ]︸ ︷︷ ︸
B

=

M[wα] ·M[wβ]︸ ︷︷ ︸
A0

+∆ · (w̃α ·M[wβ] + w̃β ·M[wα]−M[wγ])︸ ︷︷ ︸
A1

,

where P can compute A0, A1 while V can compute B. Hence, by sending A0, A1 to
V the latter can check that the relation on B,∆ holds. Instead of sending these for
every multiplication, we check all t relations simultaneously by having V choose a string
χ← Zt

2s , so that the prover instead sends (
∑

i χiA0,i,
∑

i χiA1,i) while the verifier checks
the relation on

∑
i χiBi and ∆. Since revealing these linear combinations directly might

leak information, P will first blind the opening with the remaining random commitment
from the preprocessing.

While the completeness and zero-knowledge of the aforementioned protocol follows
directly, we will explain the soundness in more detail in the security proof. The full
protocol is presented in Figure 2.7.

Security of the QuarkSilver Protocol

Theorem 6. The protocol Πk
QS (Figure 2.7) securely realizes the functionality Fk

ZK in
the F ℓ,s

vole2k-hybrid model when instantiated with the parameters s := σ + log(σ) + 3 and
ℓ := k + 2s: No unbounded environment Z can distinguish the real execution of the
protocol from a simulated one except with probability 2−σ+1.

As our protocol is an adaption of QuickSilver [YSWW21a], the structure of our proof
is also similar. The main difference, lies in the proof of soundness of the multiplication
check.

80 CHAPTER 2. MOZZ2KARELLA

Proof of Theorem 6. We divide the proof of security into two parts. First we cover the
case of a corrupted prover, then that of a corrupted verifier. In each case we define a
PPT simulator S.

Corrupted Prover: The simulation is set up as follows: S simulates a party P∗
in its head and gives control to Z, and sends (corrupt, P) to Fk

ZK. It also simulates an
instance of F ℓ,s

vole2k. We assume that the circuit C is known.

1. Simulation of the preprocessing phase: S simulates the (Init) and (Extend, n+t+2)
calls to F ℓ,s

vole2k. For (Init), it samples ∆ ∈R Z2s . Since P∗ acts as the sender S
towards F ℓ,s

vole2k, it is allowed to choose the sender’s output of the (Extend) call.
Hence, S receives (µ̃i,M[µi]), (ν̃j ,M[νj]), (õ,M[o]), (π̃,M[π]) ∈ Z2ℓ × Z2ℓ for i ∈ [n]
and j ∈ [t] from P∗. Then S can compute matching values K[µi],K[νj],K[o],K[π] ∈
Z2ℓ according to Equation (2.7).

2. To simulate the online phase, S executes the steps of V while also keeping track of
P∗’s wire values:

• For every circuit input i ∈ [n] it receives δi ∈ Z2ℓ from P∗ and computes V’s
part of [wi] := [µi] + δi, as well as w̃i := µ̃i + δi ∈ Z2ℓ .

• For every addition gate (α, β, γ) it computes V’s part of [wγ] := [wα] + [wβ],
as well as w̃γ := w̃α + w̃β ∈ Z2ℓ and M[wγ] := M[wα] +M[wβ].

• For the ith multiplication gate (α, β, γ) it receives di ∈ Z2ℓ from P∗ and com-
putes V’s part of [wγ] := [νi]+ di, as well as w̃γ := ν̃i+ di ∈ Z2ℓ . Additionally
it computes Bi := K[wα] · K[wβ] + ∆ · K[wγ].

• S sends χ ∈R Zt
2s to P∗ and receives two values U ′, V ′ ∈ Z2ℓ as response. It

computes W :=
∑

i∈[t] χi ·Bi +B∗ ∈ Z2ℓ where B∗ := K[o].

• If W 6= U ′ + V ′ ·∆ (mod 2ℓ), then S sends (Prove, C, ⊥) on behalf of P∗ to
Fk
ZK and simulates an aborting V.

• For the single output wire wh, S already holds K[wh] and computes K[z] :=
K[wh]+2k ·K[π]. Then it receives two values z̃,M[z] ∈ Z2ℓ from P∗ and checks
if K[z] ?

= M[z] + z̃ ·∆ holds and z̃ = 1 (mod 2k). If this is the case, then S
sends (Prove, C, w) with w := (w̃i mod 2k)i∈[n] on behalf of P to Fk

ZK.

Since S behaves like an honest V towards P∗, the view of P in the simulation perfectly
matches its view in the real protocol. Now we need to show that V outputs the same in
the simulation and in the real execution, except with negligible probability. If the honest
V rejects the proof in the protocol, then also V’s output of the ideal Fk

ZK is false. Now
we need to bound the probability that the honest V accepts the proof, but the ideal Fk

ZK

still outputs false, i.e., P∗ has successfully fooled V into accepting a proof of a wrong
statement.

A corrupted P∗ not knowing a valid witness for the circuit can try to cheat in
two ways: It can try to circumvent the multiplication check in Step 4 or it can try to

2.5. QUARKSILVER: QUICKSILVER MODULO 2K 81

open [z] in Step 5 to an invalid value. The latter succeeds with probability at most
2−s [BBMH+21b].

Now we consider the former case: For the ith multiplication gate (α, β, γ), let
w̃γ = w̃α · w̃β + ei (mod 2ℓ), where w̃α, w̃β , w̃γ ∈ Z2ℓ are the values contained in the
commitments [wα], [wβ], [wγ] and ei ∈ Z2ℓ is a possible error. Suppose that not all ei = 0
(mod 2k) for i ∈ [t], i.e., there is an error in the lower k bits that we care about.

Then we have (all over Z2ℓ)

K[wγ] = M[wγ] + w̃γ ·∆
= M[wγ] + (w̃α · w̃β + ei) ·∆
= M[wγ] + (w̃α · w̃β) ·∆+ ei ·∆,

and

Bi = K[wα] · K[wβ]−∆ · K[wγ]

= (M[wα] + w̃α ·∆) · (M[wβ] + w̃β ·∆)−∆ · (M[wγ] + w̃γ ·∆)

= (M[wα] + w̃α ·∆) · (M[wβ] + w̃β ·∆)−∆ · (M[wγ] + (w̃α · w̃β + ei) ·∆)

= (M[wα] ·M[wβ]) + (w̃α ·M[wβ] +M[wα] · w̃β −M[wγ]) ·∆− ei ·∆2

= Ai,0 +Ai,1 ·∆− ei ·∆2,

where Ai,0 and Ai,1 denote the values that an honest P would compute. So now Bi is the
result of evaluating a quadratic polynomial at ∆ instead of a linear one. The equations
for all gates are aggregated using the random linear combination:

W =
∑
i∈[t]

χi ·Bi +B∗

=
∑
i∈[t]

χi ·
(
Ai,0 +Ai,1 ·∆− ei ·∆2

)
+A∗0 +A∗1 ·∆

=

∑
i∈[t]

χi ·Ai,0 +A∗0

+

∑
i∈[t]

χi ·Ai,1 +A∗1

 ·∆−
∑

i∈[t]

χi · ei

 ·∆2

= U + V ·∆−

∑
i∈[t]

χi · ei

 ·∆2

(2.8)

Here, U, V denote the values that an honest P would send to V. The corrupted P∗ may
choose to send some values U ′ := U +eU and V ′ := V +eV instead. Note that V accepts
the proof if W = U ′+V ′ ·∆ holds. By subtracting Equation (2.8) from this, we get that
V accepts if

0 = eU + eV ·∆+

∑
i∈[t]

χi · ei

 ·∆2 (mod 2ℓ). (2.9)

holds.

82 CHAPTER 2. MOZZ2KARELLA

The steps in the protocol corresponding exactly to the game defined in Theorem 5:
Initially, ∆ ∈R Z2s is sampled. When committing to the results of the multiplications, P∗
defines the error values e1, . . . , et ∈ Z2ℓ where not all of the ei are 0 modulo 2k if P∗ tries
to cheat. After P∗ has committed itself on the ei, V samples the coefficients χ1, . . . , χt ∈R
Z2s of the random linear combination. Finally, the prover responds by choosing values
eU , eV ∈ Z2ℓ , and wins the game, i.e., cheats successfully, if Equation (2.9) holds. Hence,
we can apply Corollary 1 to bound the probability that this happens with 2−σ.

By the union bound, no adversary can break the soundness of the protocol except
with probability at most 2−s + 2−σ ≤ 2−σ+1.

Corrupted Verifier: The simulation of the verifier’s view is straightforward: S
simulates a party V∗ in its head and gives control to Z, and sends (corrupt, V) to Fk

ZK.
It also simulates an instance of F ℓ,s

vole2k. We assume that the circuit C to prove is known.

1. Simulation of the preprocessing phase: S simulates the (Init) and (Extend, n+t+2)
calls to F ℓ,s

vole2k. Since V∗ acts as the sender S towards F ℓ,s
vole2k, it is allowed to choose

its outputs. For (Init), S receives ∆ ∈ Z2s from V∗, and K[µi],K[νj],K[o],K[π] ∈ Z2ℓ

for i ∈ [n] and j ∈ [t] from V∗.

2. To simulate the online phase, S proceeds as follows:

• For every circuit input i ∈ [n] it sends a random δi ∈R Z2ℓ to V∗, and computes
K[wi] := K[µi]− δi ·∆.

• For the ith multiplication gate (α, β, γ) it sends a random di ∈R Z2ℓ to V∗,
and computes K[wγ] := K[νi]−di ·∆ and Bi := K[wα] ·K[wβ]+∆ ·K[wγ] ∈ Z2ℓ

as the honest V would do.

• S receives χ ∈ Zt
2s from V∗.

• It computes W :=
∑

i∈[t] χi ·Bi+B∗ ∈ Z2ℓ where B∗ = K[o]. Then it samples
V ′ ∈R Z2ℓ and sets U ′ := W − V ′ ·∆, and sends (U ′, V ′) to V∗.

• For the output wire wh, S already holds K[wh]. It samples π̃ ∈R Z2ℓ , and
computes z̃ := 1 + 2k · π̃ ∈ Z2ℓ and K[z] := K[wh] + 2k · K[π] ∈ Z2ℓ . Finally it
sends z̃ as well as M[z] := K[z]−∆ · z̃ ∈ Z2ℓ to V∗.

The view of V∗ is distributed exactly as in the real execution of the protocol: The values
δi and di are distributed uniformly in Z2ℓ and therefore completely mask the circuit
inputs and the output values of the multiplication gates, respectively. Moreover, the
values U, V computed by the honest P are also distributed uniformly at random due to
the masking with A∗0 and A∗1, respectively, under the condition that W = U + V · ∆
holds. Hence, the values U ′, V ′ sent to V∗ by S are distributed identically, since we can
recover the value W ′ that an honest V would compute. Finally, the last message is a
valid opening of a commitment [1] where the upper ℓ − k bits have been randomized
using [π].

2.5. QUARKSILVER: QUICKSILVER MODULO 2K 83

Zero-Knowledge Functionality Fk
ZK-2

Prove: On input (Prove, {f1, . . . , ft}, w) from P and (Verify, {f1, . . . , ft}) from
V where f1, . . . , fn are polynomials of degree ≤ 2 in n variables over Z2k and
w ∈ Zn

2k
: Send true to V iff fi(w) = 0 for all i ∈ [t], and false otherwise.

Figure 2.8: Ideal functionality for zero-knowledge proofs for sets of degree-2 polynomi-
als.

General Degree-2 Checks.

Yang et al. [YSWW21a] also provide zero-knowledge proofs for sets of t polynomials of
degree d in n variables (in total), where the communication consists of n+d field element –
independent of t. With the results proved in Section 2.5.2, we can directly instantiate
this protocol with d = 2. This allows us to verify arbitrary degree-2 relations including
the important use case of inner products. Extending the check for higher-degree relations
is principally possible. However, the number of roots of the corresponding polynomials
grows exponentially with increasing degree. Hence, to achieve the same soundness, we
would need to increase the ring size further, which reduces the efficiency.

We now give the full protocol as well as its security proof.
We formally specify the ideal zero-knowledge functionality for degree-2 relations in

Figure 2.8, and prove in the following that protocol Πk
QS-2 (Figure 2.9) realizes this

functionality.

Theorem 7. The protocol Πk
QS-2 (Figure 2.9) securely realizes the functionality Fk

ZK-2
in the F ℓ,s

vole2k-hybrid model when instantiated with the parameters s := σ + log(σ) + 3
and ℓ := k + 2s: No unbounded environment Z can distinguish the real execution of the
protocol from a simulated one except with probability 2−σ+1.

Proof. The proof is similar to the proof of Theorem 6. We divide the proof of security
into two parts. First we cover the case of a corrupted prover, then that of a corrupted
verifier. In each case we define a PPT simulator S.

Corrupted Prover: The simulation is set up as follows: S simulates a party P∗
in its head and gives control to Z, and sends (corrupt, P) to Fk

ZK-2. It also simulates an
instance of F ℓ,s

vole2k. We assume that the circuit C is known.

1. Simulation of the preprocessing phase: S simulates the (Init) and (Extend, n + 1)
calls to F ℓ,s

vole2k. For (Init), it samples ∆ ∈R Z2s . Since P∗ acts as the sender S
towards F ℓ,s

vole2k, it is allowed to choose the sender’s output of the (Extend) call.
Hence, S receives (µ̃i,M[µi]), (õ,M[o]) ∈ Z2ℓ ×Z2ℓ for i ∈ [n] from P∗. Then S can
compute matching values K[µi],K[o] ∈ Z2ℓ according to Equation (2.7).

84 CHAPTER 2. MOZZ2KARELLA

QuarkSilver for general degree-2 relations Πk
QS-2

The prover P and the verifier V have agreed on a set of polynomials in n variabled
f1, . . . , ft ∈ Z2k [X1, . . . , Xn]

≤2, and P holds a witness w ∈ Zn
2k

so that fi(w) = 0
for all i ∈ [t]. Write fi = fi,0 + fi,1 + fi,2 where fi,h contains the degree-h terms
of fi.

Preprocessing phase The preprocessing phase is independent of C and just
needs upper bounds on the number of inputs and multiplication gates of C as
input.

1. P and V send (Init) to F ℓ,s
vole2k, and V receives ∆ ∈ Z2s .

2. P and V send (Extend, n + 1) to F ℓ,s
vole2k, which returns authenticated values

([µi])i∈[n] and [o], where all µ̃i, õ,∈R Z2ℓ .

Online phase

1. P commits to its witness w by sending δi := wi − µ̃i for i ∈ [n] to V, and
both parties locally compute [wi] := [µi] + δi.

2. For each fi, i ∈ [t]:
• V computes Bi :=

∑
h∈[0,2] fi,h(K[w1], . . . ,K[wn]) ·∆2−h

• P defines gi(X) ∈ Z2ℓ [X] as gi(X) :=
∑

h∈[0,2] fi,h(M[w1] + w̃1 ·
X, . . . ,M[wn] + w̃n ·X) ·X2−h and computes coefficients Ai,h ∈ Z2ℓ such
that gi(X) = Ai,0+Ai,1 ·X+Ai,2 ·X2. Note that Ai,2 = fi(w1, . . . , wn) =
0 if P is honest.

3. P and V run the following check:
(a) Set A∗0 := M[o], A∗1 := õ, and B∗ := K[o] so that B∗ = A∗0 +A∗1 ·∆.
(b) V samples χ ∈R Zt

2s and sends it to P.
(c) P computes U :=

∑
i∈[t] χi·A0,i+A∗0 ∈ Z2ℓ and V :=

∑
i∈[t] χi·A1,i+A∗1 ∈

Z2ℓ , and sends (U, V) to V.
(d) V computes W :=

∑
i∈[t] χi ·Bi+B∗ ∈ Z2ℓ , and accepts iff W = U+V ·∆

(mod 2ℓ) holds.

Figure 2.9: Zero-Knowledge protocol for circuit satisfiability in the F ℓ,s
vole2k-hybrid model

with s := σ + log(σ) + 3 and ℓ := k + 2s for statistical security parameter σ.

2.5. QUARKSILVER: QUICKSILVER MODULO 2K 85

2. To simulate the online phase, S executes the steps of V while also keeping track of
P∗’s values:

• For every input i ∈ [n] it receives δi ∈ Z2ℓ from P∗ and computes V’s part of
[wi] := [µi] + δi, as well as w̃i := µ̃i + δi ∈ Z2ℓ and M[wi] := M[µi].

• For the ith polynomial fi it computes Bi, Ai,0, and Ai,1 as in Step 2.
• S sends χ ∈R Zt

2s to P∗ and receives two values U ′, V ′ ∈ Z2ℓ as response. It
computes W :=

∑
i∈[t] χi ·Bi +B∗ ∈ Z2ℓ where B∗ := K[o].

• If W 6= U ′ + V ′ ·∆ (mod 2ℓ), then S sends (Prove, {f1, . . . , ft}, ⊥) on behalf
of P∗ to Fk

ZK-2 and simulates an aborting V.
• Otherwise S sends (Prove, {f1, . . . , ft}, w) with w := (w̃i mod 2k)i∈[n] on

behalf of P to Fk
ZK-2.

Since S behaves like an honest V towards P∗, the view of P in the simulation perfectly
matches its view in the real protocol. Now we need to show that V outputs the same in
the simulation and in the real execution, except with negligible probability. If the honest
V rejects the proof in the protocol, then also V’s output of the ideal Fk

ZK-2 is false. Now
we need to bound the probability that the honest V accepts the proof, but the ideal Fk

ZK

still outputs false, i.e., P∗ has successfully fooled V into accepting a proof of a wrong
statement.

A corrupted P∗ not knowing a valid witness for the circuit can try to circumvent the
check in Step 3: For the ith polynomial fi, let 0 = f(w̃1, . . . , w̃n) (mod 2ℓ) + ei, where
w̃j ∈ Z2ℓ is the value contained in the commitment [wj], for j ∈ [n], and ei ∈ Z2ℓ is a
possible error. Suppose that not all ei = 0 (mod 2k) for i ∈ [t], i.e., there is an error in
the lower k bits that we care about.

Then we have (over Z2ℓ)

Bi =
∑

h∈[0,2]

fi,h(K[w1], . . . ,K[wn]) ·∆2−h

=
∑

h∈[0,2]

fi,h(M[w1] + w̃1 ·∆, . . . ,M[wn] + w̃n ·∆) ·∆2−h

= gi(∆) = Ai,0 +Ai,1 ·∆− ei ·∆2

where Ai,0 and Ai,1 denote the values that an honest P would compute. So Bi is the
result of evaluating a quadratic polynomial at ∆.

By the exact same argument as in the proof of Theorem 6, we can can conclude theat
no adversary can break the soundness of the protocol except with probability at most
2−σ.

Corrupted Verifier: The simulation of the verifier’s view is straightforward: S
simulates a party V∗ in its head and gives control to Z, and sends (corrupt, V) to Fk

ZK.
It also simulates an instance of F ℓ,s

vole2k. We assume that the circuit C to prove is known.

86 CHAPTER 2. MOZZ2KARELLA

1. Simulation of the preprocessing phase: S simulates the (Init) and (Extend, n + 1)
calls to F ℓ,s

vole2k. Since V∗ acts as the sender S towards F ℓ,s
vole2k, it is allowed to

choose its outputs. For (Init), S receives ∆ ∈ Z2s from V∗, and K[µi],K[o] ∈ Z2ℓ

for i ∈ [n] from V∗.

2. To simulate the online phase, S proceeds as follows:

• For every input i ∈ [n] it sends a random δi ∈R Z2ℓ to V∗, and computes
K[wi] := K[µi]− δi ·∆.

• For the ith polynomial fi, it computes Bi as the honest V would do in Step 2.
• S receives χ ∈ Zt

2s from V∗.
• It computes W :=

∑
i∈[t] χi ·Bi+B∗ ∈ Z2ℓ where B∗ = K[o]. Then it samples

V ′ ∈R Z2ℓ and sets U ′ := W − V ′ ·∆, and sends (U ′, V ′) to V∗.

The view of V∗ is distributed exactly as in the real execution of the protocol: The values
δi are distributed uniformly in Z2ℓ and therefore completely mask the inputs. Moreover,
the values U, V computed by the honest P are also distributed uniformly at random due
to the masking with A∗0 and A∗1, respectively, under the condition that W = U + V ·∆
holds. Hence, the values U ′, V ′ sent to V∗ by S are distributed identically, since we can
recover the value W ′ that an honest V would compute.

2.6 Experiments

In this section we report on the performance of our VOLE protocol Πr,s
vole2k (Section 2.4)

and our zero-knowledge proof system QuarkSilver (Section 2.5). We implemented the
protocols in the Rust programming language using the swanky framework6. Our im-
plementation is open source and available on GitHub under https://github.com/
AarhusCrypto/Mozzarella.

Our implementation is generic, it allows to plugin any ring type that implements cer-
tain interfaces. We implement Z2ℓ based on 64, 128, 192 and 256 bit integers. Depending
on the size of ℓ, we choose the smallest of these types. Hence, running the protocol with,
e.g., ℓ = 129 and ℓ = 192 has exactly the same computational and communication costs.
In our experiments, we choose one representative ring for each considered size. It is pos-
sible to further optimize the communication cost of the implementation by transmitting
exactly ℓ bits instead of the complete underlying integer value at the additional cost for
the (un)packing operations.

2.6.1 Benchmarking Environment

All benchmarks were run on two servers with Intel Core i9-7960X processors that have
16 cores and 32 threads. Each server has 128GiB memory available. They are connected
via 10 Gigabit Ethernet with an average RTT of 0.25ms.

6swanky: https://github.com/GaloisInc/swanky

https://github.com/AarhusCrypto/Mozzarella
https://github.com/AarhusCrypto/Mozzarella
https://github.com/GaloisInc/swanky

2.6. EXPERIMENTS 87

We consider different network settings: For the LAN setting, we use the network as
described above without further restrictions. To emulate a WAN setting, we configure
Traffic Control in the Linux kernel via the tc (8) tool to artificially restrict the band-
width to 100Mbit/s, and increase the RTT to 100ms. Finally, to explore the bandwidth
dependence of our VOLE protocol, we consider a set of network settings with 20, 50,
100 and 500Mbit/s as well as 1 and 10Gbit/s bandwidth, and an RTT of 1ms.

2.6.2 VOLE Experiments

In this section, we evaluate the performance of our VOLE protocol Πℓ,s
vole2k (Section 2.4).

We consider the setting of batch-wise VOLE extension: Given set of nb base VOLEs,
we use our protocols to expand them to no + nb VOLEs to obtain a batch of no VOLEs
plus nb VOLEs that can be used as base VOLEs to generate the next batch. We do not
consider here how the initial set of base VOLEs are created. As performance measure we
use the run-time and communication per generated VOLE correlation in one iteration
of the protocol.

LPN Parameter Selection.

For a triple of LPN parameters (m, t, n), our protocol extends nb = m+2 · t base VOLEs
to n new ones. Hence, for a target batch size no, we need to find (m, t, n) such that
n ≥ no + nb and the corresponding LPN problem is still considered infeasible w.r.t. the
security parameters.

As suggested in prior work [SGRR19, YWL+20, WYKW21a], we pick the public
LPN matrix A ∈ Zm×n

2ℓ
as a generator of a 10-local linear code (i.e. each column of

A contains exactly 10 uniform non-zero entries). As discussed in Section 2.2.5, each
non-zero entry is picked randomly from Z∗

2ℓ
(i.e. odd), to ensure that reduction modulo

2 does not reduce sparsity. This results in fast computation of the expansion u ·A (for
some u ∈ Z2ℓ), as each entry involves only 10 positions of u. We then pick (m, t, n) such
that all known attacks on the LPN problem require at least 2κ operations [BCG+19a,
WYKW21a] (see also Section 2.2.5). Note that, as our variant of the regular LPN
assumption (Definition 6) leaks blocks of the noise vector, we must pick t such that
our protocols are secure in advent of leaking up to σ ∈ {40, 80} blocks. To do this, we
assume that leaking the noisy index within a single block of Πℓ,s

sp-vole2k directly gives an
index of the secret and then subtract the leaked block from the noise vector as well as
the corresponding index from the secret and make sure that the new problem is still
infeasible to solve.

For a given no we experimentally find the LPN parameter set (m, t, n) that gives
us the best performance while satisfying the above conditions. Concretely, we start by
selecting a number no of VOLEs that we want to produce in each iteration. Then we
search for parameters (m, t, n) for the leaky LPN problem that gives us κ = 128 bits of
security (see above) such that additionally n ≥ no + (m + 2t) holds. The latter allows
us to generate no usable VOLEs in each iteration while keeping m+2t values to run the
next execution of our extension protocol.

88 CHAPTER 2. MOZZ2KARELLA

In our experiments, we set no ∈ {107, 108}. We then tried different secret sizes m
in the interval [105, 106], computed the required number of noise coordinates t so that
the leaky LPN problem is sufficiently hard, and benchmarked our protocol. This gave
us parameter sets with the same security properties and output size, out of which we
selected the best performing one.

If we fix some values of m and no (in the ranges stated above) and compare the
required noise coordinates with and without the extra leakage, then we need about 1.5×
(resp. 2.1×) more noise coordinates to compensate for the leakage for σ = 40 bits (resp.
80 bits) of statistical security.

We chose LPN parameters targeting a level of κ = 128 bits of computational security,
and used the approach of Boyle et al. [BCGI18] to estimate the hardness of the LPN
problem. Recently, Liu et al. [LWYY22] noted that this significantly underestimates
the hardness of the LPN problem. Using their estimation, our parameters yield about
153–158 bits of security. Hence, we could reduce the parameters to get a more efficient
instantiation of our protocol. We chose to use LPN with odd noise values in Z2k to resist
the reduction attack of Liu et al. [LWYY22], which otherwise reduces the effective noise
rate by half. In case of a potential future attack on LPN with odd noise, with the same
impact, we would still achieve 103–109 bits of security.

For more details regarding the choice of LPN parameters and how we estimate the
hardness of the leaky LPN problem, we refer to Section 2.4.1.

General Benchmarks.

For each statistical security level σ ∈ {40, 80}, we selected two LPN parameter sets
(m, t, n) targeting VOLE batch sizes of no ∈ {107, 108}. We execute the protocol in
two different network settings with four different ring sizes ℓ ∈ {64, 104, 144, 244} (one
representative for each of the underlying integer types) for each of the parameter sets.
Table 2.1 contains the results of our experiments.

With increasing ring size ℓ the costs increase as the arithmetic becomes more costly
and more data needs to be transferred. Moreover, with a larger batch size the costs per
VOLE decrease. In terms of run-time and communication costs, it is more efficient to
generate a larger amount of VOLEs at once. However, the required resources, e.g., mem-
ory consumption, also increase with the batch size. In the WAN setting, a larger batch
size is especially more efficient, since the effect of the higher latency is less pronounced
on the amortized run-times.

Although the chosen LPN parameter sets worked well in our case, other combinations
of m and t can yield a similar performance with same security, while influencing the
computation and communication cost slightly. Such an effect can be noticed in the first
parameter sets, where the communication cost decreases when going from σ = 40 to
σ = 80. It is a trade-off, and we deem experimental verification necessary to choose the
best-performing parameter set.

2.6. EXPERIMENTS 89

Table 2.1: Benchmark results of our VOLE protocol. We measure the run-time of the
Extend operation in ns per VOLE and the communication cost in bit per VOLE. The
benchmarks are parametrized by the ring size ℓ (i.e., using Z2ℓ). The computational
security parameter is set to κ = 128. For statistical security σ ∈ {40, 80}, we target
batch sizes of no = 107 and no = 108, and use the stated LPN parameters (m, t, n).

σ ℓ
Run-time Communication

LAN WAN S → R R → S total

40

m = 553 600, t = 2186, n = 10 558 380

64 27.3 190.8 0.467 0.927 1.394
104 40.7 186.7 0.509 0.955 1.464
144 55.2 212.6 0.551 0.983 1.534
244 80.7 255.0 0.593 1.011 1.604

m = 773 200, t = 15 045, n = 100 816 545

64 20.1 46.0 0.318 0.636 0.954
104 33.2 58.9 0.347 0.655 1.002
144 46.7 75.1 0.376 0.674 1.050
244 76.7 102.8 0.405 0.694 1.098

80

m = 830 800, t = 2013, n = 10 835 979

64 27.6 171.9 0.431 0.853 1.284
104 42.6 194.1 0.469 0.879 1.349
144 59.4 217.1 0.508 0.905 1.413
244 89.3 277.4 0.547 0.931 1.477

m = 866 800, t = 18 114, n = 100 913 094

64 21.4 48.2 0.383 0.765 1.148
104 34.3 61.0 0.418 0.789 1.206
144 49.2 76.0 0.453 0.812 1.264
244 79.8 106.8 0.487 0.835 1.322

90 CHAPTER 2. MOZZ2KARELLA

Table 2.2: Run-times in ns per VOLE in different bandwidth settings, when generat-
ing ca. 107 VOLEs with 5 threads and statistical security σ ≥ 40. The parameter ℓ
denotes the size of a ring or field element. The numbers for Wolverine are taken from
[WYKW21a].

ℓ 20Mbit/s 50Mbit/s 100Mbit/s 500Mbit/s 1Gbit/s 10Gbit/s

this work

64 110.0 68.7 55.0 50.2 50.6 50.4
104 142.0 95.2 80.1 73.2 71.5 73.6
144 178.6 134.7 119.3 111.6 112.6 113.3
244 266.3 219.1 201.7 194.5 193.7 196.5

Wolverine 61 101.0 87.0 85.0 85.0 85.0 —

Comparison with Wolverine.

We compare the efficiency of our VOLE extension protocol with that of
Wolverine [WYKW21a]. While we use different hardware, we try to replicate their
benchmarking setup by restricting our benchmark to maximal 5 threads and up to 64GiB
memory, and select LPN parameters to generate no ≈ 107 VOLEs. The results are
given in Table 2.2, where we list our run-times in different bandwidth settings with the
corresponding numbers given in [WYKW21a]. Note that Wolverine uses the prime field
F261−1, whereas we instantiate our protocol with different larger rings Z2ℓ . In network
settings with at least 50Mbit/s bandwidth, we achieve similar or better performance for
the ring sizes up to 128 bit.

Bandwidth Dependence.

Table 2.2 also shows how the available bandwidth affects the performance of our protocol.
We observe that increasing the network bandwidth beyond 100Mbit/s does not improve
the run-time significantly. This indicates that the required computation is the bottleneck
above this point.

2.6.3 Zero-Knowledge Experiments

We explore at what rate our QuarkSilver protocol (Section 2.5) is able to verify the
correctness of multiplications. In our experiments we check for N ≈ 107 triples of the
form ([wi,α], [wi,β], [wi,γ]) for i ∈ [N] that wi,α · wi,β = wi,γ (mod 2k) holds. Assuming
the prover has already committed to 2N values ([wi,α], [wi,β]), we execute the following
three steps:

1. vole: Perform the Extend operation of Πs,ℓ
vole2k to create the necessary amount of

VOLEs (at least N + 1).

2. mult: Step 2 of Πk
QS (Figure 2.7) to commit to the results wi,γ := wi,α ·wi,β of the

multiplications.

2.6. EXPERIMENTS 91

Table 2.3: Overview of the required ring size ℓ and size s of ∆ that different zero-
knowledge proofs require to verify circuits over Z2k with σ bits of statistical security.

σ k
Π

Z
2k

ComZK-a [BBMH+21b] Π
Z
2k

ComZK-b [BBMH+21b] QuarkSilver (this work)

s := σ ℓ := k + s s := σ ℓ := k + 2s s := σ + log(σ) + 3 ℓ := k + 2s

40 32 40 72 40 112 49 130
64 40 104 40 144 49 162

80 32 80 112 80 192 90 212
64 80 144 80 224 90 244

3. check: Steps 3 and 4 of Πk
QS to verify that the multiplications are correct modulo 2k.

While the execution of Πs,ℓ
vole2k in Step 1 is parallelized, the further steps are executed in

a single thread, and there is still room for optimizations, e.g., using smaller integers for
the coefficients of the random linear combination and better interleaving computation
and communication.

For the protocol to be secure, bounds on the ring size ℓ as well as the statistical
security σ must be satisfied. We compare those bounds to those of related works in
Table 2.3.

For statistical security levels of σ = 40 and σ = 80, we run the protocol with ring
sizes ℓ = 162 and ℓ = 244, respectively. This corresponds to the required ring size ℓ to
enable zero-knowledge proof over Z2k with k = 64. It also covers the k = 32 setting,
since the corresponding rings (with ℓ ∈ {130, 212}) are implemented in the same way.

In Table 2.4 we list the achieved run-times and communication costs per multipli-
cation and show how they are distributed over the three steps of the protocol. We
clearly see that the costs are dominated by Step 2, where the majority of the communi-
cation happens (one Z2ℓ element per multiplication). Additional benchmarks show that
increasing the bandwidth to more than 500Mbit/s does not increase the performance.

With a completely single-threaded implementation (including single-threaded VOLEs),
we can verify about 0.9 million multiplications per second for statistical security param-
eter σ = 40 and ring Z2162 , compared to (single-threaded) QuickSilver’s up to 4.8 million
multiplications per second over the field F261−1, as reported by Yang et al. [YSWW21a].
This is a factor 5.3 difference.

When looking at the performance of Z2162 compared to F261−1, we see that Z2162

ring elements are represented by three 64 bit integers compared to F261−1 field elements
which fit into a single integer. While this results in 3× more communication, the com-
putational costs are also higher: In microbenchmarks, arithmetic operations in Z2162 are
2.1− 2.5× slower compared to the corresponding operations in F261−1 (e.g., Z2162 multi-
plications require 6 IMUL/MULX instructions, F261−1 multiplications need one MULX
instruction). Moreover, the compiler can automatically vectorize element-wise computa-
tions on vectors of field elements with AVX instruction due to the smaller element size,
but this is (at least currently) not possible with the larger ring. Computation on rings
also results in a slightly higher rate of cache misses, which we attribute to the fact that

92 CHAPTER 2. MOZZ2KARELLA

Table 2.4: Benchmark results of our QuarkSilver protocol. We measure the run-time
of a batch of ≈ 107 multiplications and their verification in ns per multiplication and
the communication cost in bit per multiplication. The benchmarks are parametrized by
the statistical security parameter σ, and the computational security parameter is set to
κ = 128. For σ = 40, we use the ring of size ℓ = 162, for σ = 80, we use ℓ = 244.

σ
Run-time Communication

LAN WAN S → R R → S total

40

vole 78.5 265.5 0.5 1.0 1.5
mult 663.2 2 101.5 192.0 0.0 192.0
check 28.2 38.2 0.0 0.0 0.0

total 769.9 2 405.2 192.5 1.0 193.5

80

vole 125.3 345.6 0.5 0.9 1.5
mult 680.7 2 767.2 256.0 0.0 256.0
check 42.3 52.4 0.0 0.0 0.0

total 848.3 3 165.2 256.5 0.9 257.5

more field elements than ring elements fit in a cache line, simply due to their size.
We want to stress that this direct comparison is not necessarily fair, though: The

Mersenne prime modulus p = 261 − 1 has been chosen because it allows to implement
the field arithmetic very efficiently. The plaintext space has roughly the same size in
both settings (64 vs. 61 bit), but the arithmetic on the secrets is entirely different which
is the main difference of our work to the field-based approach of QuickSilver. While
QuarkSilver supports 64 bit arithmetic natively (which is one of the main points of
considering Z2k protocols), things are more complicated with fields. To emulate 64 bit
arithmetic in a prime field, the prime modulus has to have size ≥ 128 bit (so no modular
wraparound occurs during multiplications) which means more communication and more
complicated arithmetic. Then, one also has to commit to the correct reduction modulo
264 and prove that the reduction is computed correctly, e.g., with range proofs or using
the truncation protocols of Baum et al. [BBMH+21b] – both are not cheap, in particular
given they are needed for each multiplication mod 264 (and possibly additions, too).
Moreover, with a prime modulus of this size one cannot take advantage of a Mersenne
prime (the nearest Mersenne primes would be p = 2127 − 1 (too small) and p = 2521 − 1
(much larger)) to increase computational efficiency.

Acknowledgements

This work is supported by the European Research Council (ERC) under the Euro-
pean Unions’s Horizon 2020 research and innovation programme under grant agree-
ment No. 803096 (SPEC), the Carlsberg Foundation under the Semper Ardens Re-
search Project CF18-112 (BCM), the Independent Research Fund Denmark (DFF) un-

2.6. EXPERIMENTS 93

der project number 0165-00107B (C3PO), the Aarhus University Research Founda-
tion, and the Defense Advanced Research Projects Agency (DARPA) under Contract
No. HR001120C0085. Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency (DARPA). Distribution Statement
“A” (Approved for Public Release, Distribution Unlimited). We thank the ENCRYPTO
group at TU Darmstadt for allowing us to use their servers for our experiments.

94 CHAPTER 2. MOZZ2KARELLA

Chapter 3

Appenzeller to Brie: Efficient Zero-
Knowledge Proofs for Mixed-Mode
Arithmetic and Z2k

3.1 Introduction
Zero-knowledge proofs are a cryptographic primitive where a prover convinces a verifier
that a statement is true. The verifier should be convinced only of true statements even if
the prover is malicious, and moreover, the verifier should not learn anything beyond the
fact that the statement holds. Current state-of-the-art zero-knowledge (ZK) protocols
for arbitrary functions work over either Zp for a large p or Z2. The computation is
typically modeled as a circuit of operations that equal the operations of the underlying
field, and the efficiency of a proof depends on the number of gates that the circuit has.

A recent line of work has been investigating the scalability of ZK protocols for very
large statements, represented as, for instance, circuits with billions of gates. This can
be seen in work such as zero-knowledge from garbled circuits [JKO13, FNO15, ZRE15,
HK20b] and vector oblivious linear evaluation (VOLE) [WYKW21b, BMRS21b, DIO21b,
YSWW21b]. To handle complex statements, protocols in this setting often have the
drawback of requiring more interaction compared with other approaches such as MPC-
in-the-head, SNARKs or PCPs, thus sacrificing on proof sizes and public verifiability.
However, the advantage is that these protocols typically have lower overhead for the
prover, in terms of computational and memory resources, thus scaling better as the
statement size increases.

Certain functions are known to be “more efficient” to express as circuits over a
specific domain. For example, comparisons or other bit operations are most efficient
when expressed over Z2, while integer arithmetic best fits into Zp. At the same time,
neither of these captures arithmetic modulo 2k efficiently, which is the standard model
of current computer architectures. Most state-of-the-art ZK compilers only operate over
a single domain, so for example, if this is Zp for a large prime p, then any comparison
operation will first require a costly bit-decomposition, followed by emulation of the binary
circuit logic in Zp. If there was instead a way to efficiently switch representations, a more
suitable protocol over Z2 could be used instead, for certain parts of the computation.

3.1.1 Our Contributions

In this work, we address the above shortcomings, by introducing efficient conversion pro-
tocols for “commit-and-prove”-type ZK, such as recent VOLE-based protocols. We then
build on these conversions by presenting new, high-level gadgets for common operations

95

96 CHAPTER 3. APPENZELLER TO BRIE

like truncation and comparison. Finally, we supplement this with efficient ZK protocols
for arithmetic circuits over Z2k , which are also compatible with our previous protocols.

Below, we give a more detailed, technical summary of these contributions.

Commit-and-prove setting. Our protocols work in the commit-and-prove paradigm,
where the prover first commits to the secret witness, before proving various properties
about it. Assume we have two different commitment schemes, working over Z2 and ZM ,
and denote by [x]2 or [x]M that the value x ∈ ZM has been committed to in one of the
two respective schemes.

Note that our protocols are completely agnostic as to the commitment scheme that
is used, provided it is linearly homomorphic. However, in practice a fast instantia-
tion can be obtained using information-theoretic MACs based on recent advances in
VOLE [BCGI18, SGRR19, BCG+19a, YWL+20] from the LPN assumption. This has
been the approach taken in recent VOLE-based ZK protocols [WYKW21b, BMRS21b],
which exploit the high computational efficiency and low communication overhead of
LPN-based VOLE.

Conversions. The goal of our conversion protocol is to verify that a sequence of com-
mitted bits [x0]2, . . . , [xm−1]2 correspond to the committed arithmetic value [x]M , where
x =

∑m−1
i=0 2ixi mod M .

In the MPC setting, Escudero et al.[EGK+20] showed how to use extended doubly-
authenticated bits, or edaBits, for this task. edaBits are random tuples of commit-
ments (([ri]2)

m−1
i=0 , [r]M) that are guaranteed to be consistent. By preprocessing random

edaBits, [EGK+20] showed how conversions between secret values can then be done
efficiently in MPC in an online phase. Note that in MPC, the edaBits are actually
secret-shared and known to nobody; however, the protocol of [EGK+20] starts by first
creating private edaBits known to one party, and then summing these up across the
parties to obtain secret-shared edaBits. In the ZK setting, the prover knows the values
of the edaBits, so the second phase can clearly be omitted.

With this observation, a straightforward application of edaBits leads to the following
basic conversion protocol between prover P and verifier V:

1. P commits to [x0]2, . . . , [xm−1]2.

2. P and V run the edaBits protocol to generate a valid committed edaBit ([r0]2,
. . . , [rm−1], [r]M).

3. P uses ([r0]2, . . . , [rm−1]2, [r]M) to convert [x0]2, . . . , [xm−1]2 into [x]M correctly.

In the last step, P will first commit to [x]M , then open [x + r]M to V, and finally
prove that x+ r equals the sum of the committed bits [xi]2 and [ri]2. The latter check
requires the verification of a binary circuit for addition modulo M over Z2.

In our protocol, we introduce several optimizations of this approach, tailored to the
ZK setting. Firstly, we observe that in the ZK setting, it is not necessary to create
random verified edaBits, if we can instead just apply the edaBit verification protocol

3.1. INTRODUCTION 97

to the actual conversion tuples ([x0]2, . . . , [xm−1]2, [x]M), from the witness. This change
would remove the need for the binary addition circuits in the last step. Unfortunately,
the protocol of [EGK+20] cannot be used for this setting, as it uses a cut-and-choose
procedure where a small fraction of edaBits are opened and then discarded, which may
leak information on our conversion tuples. Instead, we present a new edaBit consistency
check where the cut-and-choose step does not leak on the secret conversion tuples used
as input, essentially by replacing the uniformly random permutation of edaBits with
a permutation sampled from a more restricted set. This requires a careful analysis to
show that the modified check still has a low enough cheating probability.

Comparison & Truncation. Using our efficient conversion check, we give new pro-
tocols for verifying integer truncation and integer comparison on committed values. A
natural starting point would be to adapt the MPC protocols in [EGK+20], which also
used edaBits for these operations. However, a drawback of these protocols is that in
addition to edaBits, they use auxiliary binary comparison circuits, which add further
costs. We show that in the ZK setting, these can be avoided, and obtain protocols which
only rely on our efficient conversion check.

As a building block of our protocols, we make use of the fact that our edaBit con-
sistency check can easily be used to prove that a committed value x ∈ ZM is at most m
bits in length, for some public m. We then show that integer truncation in ZM can be
decomposed into just two length checks, by exploiting the fact that the prover can com-
mit to arbitrary values dependent on the witness. Then, given truncation, we can easily
obtain a comparison check, which shows that a committed bit [b]2 encodes b = (x

?
< y),

where [x]M , [y]M are committed.

ZK for Arithmetic Circuits over Z2k . Our conversion, truncation and comparison
protocols can all be made to work with either a field Zp, or a ring Z2k , giving flexibility in
high-level applications. While ZK protocols for Zp and Z2 have been well-studied, there
is less work on protocols for circuits over Z2k , especially in the commit-and-prove setting.
We take the first step towards this, by showing how to use VOLE-based information-
theoretic MACs for ZK over Z2k , by adapting the techniques from SPDZ2k [CDE+18].
Given the MACs, which serve as homomorphic commitments in Z2k , we show how to effi-
ciently verify multiplications on committed values. We present two possible approaches:
the first is based on a simple cut-and-choose procedure, adapted from [WYKW21b] for
binary circuits; in the second approach, we adapt the field-based multiplication check
from [BMRS21b] to work over rings, which requires some non-trivial modifications.

Since these protocols use VOLE-based information-theoretic MACs, we obtain ZK
protocols in the preprocessing model, assuming a trusted setup to distribute VOLE (or
short seeds which expand to VOLE [BCGI18]). Removing the trusted setup can be
done with an actively secure VOLE protocol over Z2k . We note that the LPN-based
construction of [BCGI18] also works over Z2k (as implemented in [SGRR19]), although
currently only with passive security. It is an interesting future direction to extend
efficient actively secure protocols [BCG+19a, WYKW21b] to the Z2k setting.

98 CHAPTER 3. APPENZELLER TO BRIE

Concrete Efficiency. We analyze the efficiency of our protocols, in terms of the
bandwidth requirements and the amount of VOLE or OT preprocessing that is needed.
We moreover present benchmarks based on an implementation of our conversion protocol
and estimate the cost of Z2k -VOLEs that are necessary for our Z2k -protocols.
Compared to a “baseline” protocol consisting of a straightforward application of
edaBits [EGK+20] to ZK, our optimized conversion protocol reduces communication
by more than 2×, while also reducing the number of used VOLEs by around 4×. When
comparing to a “naive” solution that decomposes the input as bits modulo p, we reduce
both the overall communication and the required number of VOLEs by a factor m where
m is the bit-length of the value.
In our implementation, we show the concrete efficiency of our conversion protocols. For
example, to convert 210 32-bit values our system requires 9.6 s using [WYKW21b] (9.3ms
amortized per conversion) and 7.5 s using [YSWW21b] (7.3ms amortized). For 220 32-
bit elements, this increases to 181.7 s for [WYKW21b] (173 ţs amortized) and 92.1 s for
[YSWW21b] (87.8 ţs amortized).
Our Z2k Zero-Knowledge proofs achieve amortized communication costs of k+s bits and
consume one VOLE to open a commitment (where s is a statistical security parameter
and k + s bits are necessary to represent committed ring element), and 2k + 4s bits
plus three VOLEs, to verify a multiplication. This is competitive with state-of-the-art
protocols for large fields such as [WYKW21b, BMRS21b], which need to transfer 2–3
field elements .

3.1.2 Related Work

Our work builds upon concretely efficient zero-knowledge protocols from VOLE, which
were first given in [WYKW21b, BMRS21b, DIO21b]. While [WYKW21b, BMRS21b] use
VOLE-based information-theoretic MACs in a black-box way, Line-Point ZK [DIO21b]
takes a non-black-box approach, which reduces communication to just 1 field element per
multiplication in a large field. More recently, Quicksilver [YSWW21b] extends this to
arbitrary fields, including boolean circuits. Since the core of our protocol uses potentially
faulty information to verify edaBits, the techniques from QuickSilver could be plugged
in to cheaply verify these faulty components, which would simplify much of our security
analysis and slightly reduce costs. We analyze this approach in Section 3.6. This is
very similar to the approach taken in the concurrent work Mystique [WYX+21b], which
uses Quicksilver directly for conversions. Since QuickSilver and Mystique make non-
black-box use of VOLE-based MACs, these would not be applicable in settings based on
other types of homomorphic commitments, or applications such as proofs of disjunctions
in [BMRS21b], which assumes a black-box commitment scheme. Thus, while our protocol
has higher communication costs, it is more general and may be of use in a wider range
of applications.

Another related work is Rabbit [MRVW21], which provided improved protocols for
secure comparison and truncation based on edaBits, in the MPC setting. Similarly to
our work in ZK, Rabbit allows to avoid the large “gap” between the field size and the
desired message space when running these protocols; however, our techniques in the ZK

3.2. PRELIMINARIES 99

setting are different.
In LegoSNARK [CFQ19] the authors show how to combine different succinct ZK

proof systems. Our work differs as we focus on the setting where data is represented
in different rings of possibly constant size for each subtask, whereas [CFQ19] relies on
large groups.

3.2 Preliminaries

In this section we introduce several primitives which are used throughout the construc-
tions in this paper.

3.2.1 Notation

We use M to denote a modulus which is either a large prime p, or 2k. As a short hand,
≡k denotes equality modulo 2k. We use [x]M or [x]2 to denote authenticated values (see
Sections 3.2.3 and 3.2.4) from the plaintext space ZM or Z2, and write just [x] when the
modulus is clear from the context. We let s denote a statistical security parameter and
[n] denote the set {1, . . . , n}.

3.2.2 Zero-Knowledge Proofs

Zero-knowledge proofs (of knowledge) are interactive two-party protocols that allow
the prover P to convince a verifier V that a certain statement is true (and that it
possesses a witness to this fact). This happens in a way such that V does not learn
anything else besides this fact that it could not compute by itself. Instead of using the
classical definition by Goldwasser et al. [GMR85], we define zero-knowledge using an
ideal functionality FZK for satisfiability of circuits C: On input (Prove, C, w) from P and
(Prove, C) from V the functionality FZK outputs > to V iff. C(w) = 1 holds, and sends
⊥ otherwise [WYKW21b].

Following previous works (e.g. [WYKW21b, BMRS21b]), we use the commit-and-
prove strategy to instantiate FZK using homomorphic commitments (see Section 3.2.4).
These allow the prover P to commit to its witness w. Then the circuit C can be evaluated
on the committed witness to obtain a commitment to the output, which is opened to
prove that indeed C(w) = 1 holds.

3.2.3 VOLE and Linearly Homomorphic MACs

Oblivious transfer (OT) [EGL82] is a two-party protocol, where the receiver can obliv-
iously inputs a bit b to choose between two messages m0,m1 held by the sender to
obtain mb. In correlated OT (COT) [ALSZ13] the messages are chosen randomly given
a sender-specified correlation function, e.g. x 7→ x+ δ such that m1 = m0 + δ holds over
some domain. Thus, the receiver obtains mb = δ · b+m0.

100 CHAPTER 3. APPENZELLER TO BRIE

While OT inherently requires relatively costly public key cryptography [IR89], OT
extension [IKNP03] allows to expand a small number of regularly computed OTs into a
large number of OTs using only relatively cheap symmetric key cryptography.

Oblivious linear-function evaluation (OLE) [NP99, IPS09] is an arithmetic general-
ization of COT allowing a receiver to evaluate a secret linear equation α ·X + β (over a
field Fp or ring Z2k) held by the sender at a point of its choice x to obtain y = α · x+ β.
This can be extended into vector OLE (VOLE) [ADI+17] where x and β are vectors of
the same length rather than single field elements. Subfield VOLEs [BCG+19b] extends
this concept such that the elements of α and β live in an extension field Fpr ⊃ Fp. Ran-
dom (subfield) VOLE, where inputs are chosen randomly by the functionality, is easier
to realize and can be used to instantiate normal VOLE, by sending correction values.

We use information-theoretic message authentication codes (MACs) to authenticate
values in finite fields Zp and rings Z2k . The case Z2k is discussed in Section 3.5.2 where
we adapt the work of [CDE+18] to the zero-knowledge setting. For fields Zp, we use
BeDOZa-style MACs [BDOZ11] which can be generated as follows: To authenticate
values x1, . . . , xn ∈ Zp known to P, random keys ∆,K[x1], . . . ,K[xn] ∈R Zp are chosen
by V, and then P obtains the MACs M[xi] ← ∆ · xi + K[xi] ∈ Zp. We use the notation
[xi]p for this. To open [x]p, P sends x and M[x] to V, who checks that M[x] = ∆ ·x+K[x]
holds. These authentications are linearly homomorphic: Given authenticated values [x]p
and [y]p and public values a, b, P and V can locally compute [z]p for z := a · x + y + b
by setting M[z] := a ·M[x] +M[y] and K[z] := a · K[x] + K[y] −∆ · b. For large enough
p, this is secure since forgery would imply correctly guessing a random element of Zp.
For smaller p, the keys ∆ and K[xi] are instead chosen from an extension field Zpr

such that pr is large enough. The MACs can be efficiently computed with (subfield)
VOLE [WYKW21b, BMRS21b].

3.2.4 Homomorphic Commitment Functionality

As discussed in Section 3.2.2, we use the commit-and-prove paradigm for our zero-
knowledge protocols. To this end, we define a commitment functionality. It allows the
prover P to commit to values, and choose to reveal them at a later point in time, such
that the verifier V is convinced that the values had not been modified in the meantime.
Moreover, the functionality allows to perform certain operations of the underlying alge-
braic structure on the committed values, and to check if these satisfy certain relations.

The commitment functionality can be instantiated using linearly homomorphic
information-theoretic MACs (see Section 3.2.3). For finite fields Zp, this was shown with
the protocols Wolverine [WYKW21b] and Mac’n’Cheese [BMRS21b]. We refer to their
works for details. For rings Z2k , we present an instantiation in Section 3.5.2.

We formally define the homomorphic commitments using the ideal functionality
FR
ComZK given in Figure 3.1. The parameter R denotes the message space, which is

in our case either a ring Z2k or a field Zp. In addition to the common Input and Open
operations, which enables P to commit to a value and reveal it to V at a later point, we
also model Random and CheckZero, for generating commitments of random values and
verifying that a committed value equals zero, respectively, which enables more efficient

3.2. PRELIMINARIES 101

implementations. Moreover, FR
ComZK allows via Affine to compute affine combinations

of committed values with public coefficients yielding again a commitment of the result.
Finally, CheckMult allows to verify that a set of committed triples satisfy a multiplicative
relation, i.e. for each triple, the third commitment contains the product of the first two
committed values.

Since the commitment functionality is based on information-theoretic MACs, we use
the same notation [x] to denote a committed value x ∈ R. We use this shorthand to
to simplify the presentation of higher-level protocols without explicitly mentioning the
commitment identifiers. We use also shorthands for the different methods of FR

ComZK,
e.g. we write something like [z]← a · [x] + [y] + b when invoking the Affine method. We
write [x]M , if the domain ZM of the committed values is not clear from the context, or
if we have to distinguish commitments over multiple different domains.

3.2.5 Extended Doubly-Authenticated Bits

A doubly-authenticated bit (or daBit for short) is a bit b that is authenticated in both a
binary and arithmetic domain, i.e. a tuple ([b]2, [b]M). daBits can be used to convert a
single bit from the binary to the arithmetic domain or vice versa [RW19, MRVW21].

Their generalization, called edaBits (due to Escudero et al.[EGK+20]), is defined as
m bits b0, . . . , bm−1 which are each authenticated in the binary domain while their sum is
authenticated in the arithmetic one, i.e. ([b0]2, . . . , [bm−1]2, [b]M), for some m ≤ dlogMe.
These edaBits allow for optimized conversions of authenticated values, and allow to
securely compute truncations or extract the most significant bit of a secret value in
MPC.

We now quickly recap their edaBits generation protocol (originally defined in the
multi-party computation context) as we build upon their construction later. The con-
struction of [EGK+20] consists of two different phases: in the first phase, each party lo-
cally samples edaBits and proves to all other parties that they were computed correctly.
Then, in a second phase, these local contributions are combined to global, secret edaBits.
In our setting however, only the prover will use edaBits, thus it is clear that the second
phase can be omitted. Our sampling protocol will only have to ensure that each edaBit
([x0]2, . . . , [xm−1]2, JxK) is indeed consistent, i.e. that x =

∑m−1
i=0 xi2

i mod M .
The first phase of the edaBit sampling routine of [EGK+20] then works as follows

(when adapted to the zero-knowledge setting):

1. The prover locally samples (NB+C)m bits ri,j for j ∈ [NB+C] and i ∈ {0, . . . ,m−
1}. It then combines these into the NB + C values rj ←

∑m−1
i=0 2iri,j yielding

edaBits {(ri,j)m−1i=0 , rj}j∈[NB+C].

2. The prover then commits to the binary values ri,j over Z2 and to the combined
values rj over ZM .

3. The prover and verifier engage in a check that ensures that the committed values
of the prover are consistent. For this, the prover first opens C of the NB + C
committed tuples to show consistency (where the choice is made by the verifier).

102 CHAPTER 3. APPENZELLER TO BRIE

Homomorphic Commitment Functionality FR
ComZK

The functionality communicates with two parties P,V as well as an adversary S
that may corrupt either party. S may at any point send a message (abort), upon
which FR

ComZK sends (abort) to all parties and terminates. FR
ComZK contains a state

st that is initially ∅.

Random On input (Random, id) from P,V and where (id, ·) /∈ st:

1. If P is corrupted, obtain xid ∈ R from S. Otherwise sample xid ∈R R
uniformly at random.

2. Set st← st ∪ {(id, xid)} and send xid to P.

We use the shorthand [x]← Random().

Affine Combination On input (Affine, ido, id1, . . . , idn, α0, . . . , αn) from P,V
where (idi, xidi) ∈ st for i = 1, . . . , n and (ido, ·) /∈ st:

1. Set xido ← α0 +
∑n

i=1 αi · xidi and st← st ∪ {(ido, xido)}.

We use shorthands such as [z]← a · [x] + [y] + b.

CheckZero On input (CheckZero, id1, . . . , idn) from P,V and where (idi, xidi) ∈ st
for i = 1, . . . , n:

1. If xid1 = · · · = xidn = 0, then send (success) to V, otherwise send
(abort) to all parties and terminate.

We use the shorthand CheckZero([x1], . . . , [xn]).

Input On inputs (Input, id, x) from P and (Input, id) from V and where (id, ·) /∈ st:

1. Set st← st ∪ {(id, x)}.

We use the shorthand [x]← Input(x).

Open On input (Open, id1, . . . , idn) from P,V where (idi, xidi) ∈ st for i =
1, . . . , n:

1. Send xid1 , . . . , xidn , to V.

We use the shorthand x1, . . . , xn ← Open([x1], . . . , [xn]). Moreover, we
might use the following macro: x ← Open([x], lst) denotes that P sends
x to V and they add [x]− x to the list lst.

MultiplicationCheck Upon P & V inputting (CheckMult, (idx,i, idy,i, idz,i)
n
i=1)

where (idx,i, xi), (idy,i, yi), (idz,i, zi) ∈ st for i = 1, . . . , n:

1. Send (success) to V if xi · yi = zi holds for all i = 1, . . . , n, otherwise
send (abort) to all parties and terminate.

We use the shorthand CheckMult(([xi], [yi], [zi])
n
i=1).

Figure 3.1: Functionality modeling homomorphic commitments of values in the ring R.

3.3. CONVERSIONS BETWEEN Z2 AND ZM 103

Then the NB edaBits are distributed into N buckets of size B. B − 1 of the
edaBits are then used to verify that the remaining edaBit per bucket is consistent
without leaking information about it.

4. If the check passes, then the remaining edaBit in each of the N buckets is known
to be consistent.

The main challenge in this protocol is the bucket check in the penultimate step;
[EGK+20] show that certain consistency checks can be performed in an unreliable man-
ner, while still being hard to cheat overall, which leads to a complicated analysis.

3.3 Conversions between Z2 and ZM

In this section we present our protocol for performing proofs of consistent conversions in
mixed arithmetic-binary circuits that will work with any such ZK protocol as described
in the preliminaries.

3.3.1 Conversions and edaBits in ZK

In secure multi-party computation, edaBits are used to compute a conversion of a
value JxK that is secret-shared among multiple parties. In the zero-knowledge setting,
the prover knows the underlying value x, so there is no need to convert JxK securely
into its bit decomposition ([x0]2, . . . , [xm−1]2) online. Instead, the prover can commit
to ([x0]2, . . . , [xm−1]2, [x]M) in advance, which would itself form a valid edaBit if the
conversion is correct. We call the inputs and outputs of conversion operations conversion
tuples.

Definition 7 (Conversion Tuple). Let M ∈ N+, m ≤ dlog2(M)e, x ∈ ZM and xi ∈ Z2.
Then the tuple ([x0]2, . . . , [xm−1]2, JxK) is called a conversion tuple. We call ([x0]2, . . . ,
[xm−1]2, JxK) consistent iff x =

∑m−1
i=0 2ixi mod M .

Our conversion protocol in this section provides an efficient way to verify that a large
batch of conversion tuples are consistent, i.e. that the committed values are indeed valid
edaBits. We note that an alternative approach would be to directly apply the method
of [EGK+20] — here, first a set of random, verified conversion tuples is created, and
then one of these is used to check the actual conversion tuple in an online phase. Un-
fortunately, this online phase check itself involves verifying a binary circuit for addition
mod M , which introduces additional expense. We therefore design a new protocol to
avoid this, with further optimizations.

Our protocols perform conversions on committed values in Z2 and ZM , where we
recall that M is either a large prime or 2k. We model these commitments using the
functionality F2,M

ComZK in Figure 3.2, which extends two instances of FR
ComZK for R = Z2

and R = ZM and simply parses all method calls to the respective instance.
Finally, we define the ideal functionality for verifying conversions FConv in Figure 3.3.

This functionality extends F2,M
ComZK with a single method VerifyConv. It essentially checks

whether or not the two representations of some hidden value are consistent.

104 CHAPTER 3. APPENZELLER TO BRIE

Functionality F2,M
ComZK

F2,M
ComZK communicates with two parties P,V. It contains two separate instances of

the commitment functionality FR
ComZK, one for R = Z2 and the other for R = ZM .

Commitments are denoted as [·]2 and J·K, respectively.
The parties can use the functions of FR

ComZK with respect to both domains Z2 and
ZM , so all functions are parameterized by a domain unless apparent from context.
Then, any use of [·]2 or J·K interfaces are dealt with in the same way as FR

ComZK.

Figure 3.2: Ideal functionality modeling communication using commitments over mul-
tiple domains.

Functionality FConv

FConv extends the existing functionality F2,M
ComZK, thus containing two commitment

instances:

1. [·]2 allows to commit to values from Z2; and

2. [·]M allows to commit to values from ZM ,

plus the interface VerifyConv. It is assumed that the id’s used for VerifyConv
have been used with the respective instance of Input prior to calling this method.

VerifyConv: Upon P and V inputting (VerifyConv, N,m,

{(id(j)0 , . . . , id
(j)
m−1), id

(j)}j∈[N]):

1. If c(j) =
∑m−1

i=0 2ic
(j)
i for all j ∈ [N] then output success to V, otherwise

output abort.

Figure 3.3: Functionality FConv checking edaBits

3.3. CONVERSIONS BETWEEN Z2 AND ZM 105

Functionality FDabit

This functionality extends F2,M
ComZK with the extra function VerifyDabit that takes

a set of IDs {(id0,j , id1,j)}j∈[N] and verifies that bid
0,j

= bid
1,j where bid

0,j ∈ Z2 an
bid

1,j ∈ ZM for all j ∈ [N]. It is assumed that the id’s have been Input prior to
calling this method.

Verify: On input (VerifyDabit, N, {(id0,j , id1,j)}j∈[N]) by P and V where
(id0,j , bid

0,j
), (id1,j , bid

1,j
) ∈ st.

1. If bid0,j = bid1,j for all j ∈ [N], then output success to V, otherwise
output abort.

Figure 3.4: Functionality FDabit checking daBits.

3.3.2 The Conversion Verification Protocol ΠConv

The following protocol ΠConv verifies the correctness of a batch of N conversion tuples.
ΠConv uses FDabit (Figure 3.4) to verify correctness of daBits (recall, a daBit is an
edaBit of length 1), which is needed in one stage of the protocol. Later, we show how
to remove most of the daBit check to improve efficiency.

ΠConv also uses multiplication triples, namely, random values [x]2, [y]2, [z]2 where z =
x · y; one multiplication triple can then be used to verify a multiplication on committed
inputs at a cost of two openings in Z2, using a standard technique. In our case, however,
we allow the prover to choose all the triples, without verifying their consistency.

On a high level, ΠConv, in Figure 3.5, consists of three phases:

1. Initially, P commits to auxiliary random edaBits, daBits and multiplication
triples necessary for the check. The daBits are verified separately, and then V
chooses a random permutation.

2. After permuting the edaBits and multiplication triples, both parties run an im-
plicit cut-and-choose phase. Here, P opens C of the edaBits and triples, which
are checked by V.

3. We place each conversion tuple into one of N buckets, each of which contains a con-
version tuple ([c0]2, . . . , [cm−1]2, JcK), and a set of B edaBits {([r0]2, . . . , [rm−1]2, JrK)i}B−1i=0 .
None of these have been proven consistent, but C edaBits coming from the same
pool have been opened in the previous step. Now, over B iterations the prover
and verifier for each j ∈ [B] compute Jc + rjK = JcK + JrjK and use an addition
circuit to check that ([e0]2, . . . , [em]2) = ([c0]2, . . . , [cm−1]2) + ([r0]2, . . . , [rm−1]2).
The addition circuit is evaluated using the multiplication triples (which also may
be inconsistent).

106 CHAPTER 3. APPENZELLER TO BRIE

Protocol ΠConv

Assume that FDabit contains N committed conversion tuples
{[c(i)0]2, . . . , [c

(i)
m−1]2, [c

(i)]M}i∈[N].

// P commits auxiliary values for conversion check. daBits are then verified.
1. P commits to the following values using FDabit:

(a) Random edaBits ([r
(j)
0]2, . . . , [r

(j)
m−1]2, [r

(j)]M)j∈[NB+C].
(b) Random daBits ([b(j)]2, [b

(j)]M)j∈[NB].
(c) Random multiplication triples

([x(j)]2, [y
(j)]2, [z

(j)]2)j∈[NBm+Cm]

2. P and V send (VerifyDabit, NB, {([b(j)]2, Jb(j)K)}j∈[NB]) to FDabit.
// P and V shuffle the auxiliary values and a subset gets opened and verified.
3. V samples uniformly random permutations π1 ∈ SNB+C , π2 ∈ SNB, π3 ∈

SNBm+Cm and sends them to P.

4. Both parties shuffle the edaBits [r
(j)
0]2, . . . , [r

(j)
m−1]2, [r

(j)]M locally ac-
cording to π1. They then shuffle [b

(j)
2]2, [b

(j)
M]M according to π2 and

[x(j)]2, [y
(j)]2, [z

(j)]2 according to π3.
5. Run a cut-and-choose procedure as follows:

(a) P opens {[r(j)0]2, . . . , [r
(j)
m−1]2, [r

(j)]M}NB+C
j=NB+1 (the last C edaBits) to-

wards V, who in turn checks that r(j)
?
=
∑m−1

i=0 2i · r(j)i .
(b) P opens the x, y values for the last Cm triples {[x(j)]2, [y(j)]2}NBm+Cm

j=NBm+1

and proves to V that CheckZero([z(j)]2−x(j) ·y(j)) for all opened triples.

// P and V verify each conversion tuple in a bucket.
6. For the i’th conversion tuple [c0]2, . . . , [cm−1]2, [c]M , do the following for

j ∈ [B]:

(a) Let [r0]2, . . . , [rm−1]2, [r]M be the (i−1)·B+j’th edaBit and [c+r]M =
[c]M + [r]M .

(b) Let ([e0]2, . . . , [em]2)←
bitADDcarry([c0]2, . . . , [cm−1]2, [r0]2, . . . , [rm−1]2).

(c) Convert [em]M ← convertBit2A([em]2)
using the (i− 1) ·B + j’th daBit ([b]2, [b]M).

(d) Let [e′]M ← [c+ r]M − 2m · [em]M .
(e) Let ei ← Open([ei]2) for i = 0, . . . ,m− 1. Then run CheckZero([e′]M −∑m−1

i=0 2i · ei).

7. If any of the checks fail, V outputs abort. Otherwise it outputs success.

Figure 3.5: Protocol ΠConv to verify Conversion Tuples

3.3. CONVERSIONS BETWEEN Z2 AND ZM 107

Procedure convertBit2A

Input A daBit ([r]2, [r]M) and a commitment [x]2.

Protocol

1. c← Open([r]2 ⊕ [x]2).
2. Output [x]M ← c+ [r]M − 2 · c · [r]M .

Figure 3.6: Procedure to convert bit from Z2 to ZM .

Procedure bitADDcarry

Input Commitments [x0]2, . . . , [xm−1]2, [y0]2, . . . , [ym−1]2.

Protocol Let c0 = 0.

1. Compute [ci+1]2 = [ci]2⊕ (([xi⊕ ci]2)∧ ([yi⊕ ci]2)), ∀i ∈ {0, . . . ,m− 1}
2. Output [zi]2 = [xi ⊕ yi ⊕ ci]2, ∀i ∈ {0, . . . ,m− 1} and [cm]2.

Figure 3.7: A ripple-carry adder

For the checks within each bucket, we use the two sub-protocols convertBit2A (Fig-
ure 3.6) and bitADDcarry (Figure 3.7). The former converts an authentication of a bit
[b]2 into an arithmetic authentication JbK while the latter adds two authenticated values
([x0]2, . . . , [xm−1]2) and ([y0]2, . . . , [ym−1]2). This uses a ripple-carry adder circuit, which
satisfies the following weak tamper-resilient property, as observed in [EGK+20].

Definition 8. A binary circuit C : Z2m
2 → Zm+1

2 is weakly additively tamper resilient,
if given any additively tampered circuit C∗, obtained by flipping the output of any fixed
number of AND gates in C, one of the following two properties hold:

1. ∀(x, y) ∈ Z2m
2 : C(x, y) = C∗(x, y); or

2. ∀(x, y) ∈ Z2m
2 : C(x, y) 6= C∗(x, y)

Note that the type of additive tampering in Definition 8 models the errors induced
by faulty multiplication triples, when used to evaluated a circuit in ZK or MPC. Intu-
itively, the definition says that the output of the tampered circuit is either incorrect on
every possible input or equivalent to the original un-tampered circuit. This gives us the
property that an adversary cannot pass the verification protocol using a tampered circuit
with both a good conversion tuple and a bad one. Thus, if any provided multiplication
triples are incorrect, then the check at those positions would only pass with either a
good or a bad conversion tuple (or edaBit), but not both.

108 CHAPTER 3. APPENZELLER TO BRIE

While bitADDcarry will ensure that (assuming correct triples) ([e0]2, . . . , [em]2) are
computed as required, care must be taken regarding Jc + rjK as this may not be repre-
sentable by m bits any longer (but rather m + 1). To remedy this, we use a daBit to
convert [em]2 into an arithmetic authentication JemK to remove the carry from Jc + rjK
by computing Je′K = Jc + rjK − 2m · JemK. Now all that remains is to open Je′K (which
“hides” c using rj) as well as ([e0]2, . . . , [em−1]2) and check that e′

?
=
∑m−1

i=0 2i · ei.

Remark 1. When M = 2k, we can optimize ΠConv by removing the conversion step
6(d), which uses daBits. Instead, we simply ignore the carry bit and set em = 0, then
in step (f), we can compute e′ by first opening 2k−m(c+ r), then divide this by 2k−m to
obtain e′ = c+ r mod 2m. This can then be compared with

∑m−1
i=0 ei, as required.

Our implementation shows that our approach outperforms or is competitive with all
prior work. We discuss the implementation and the concrete performance in Section 3.6.

3.3.3 Proof of security

For clarity (due to its sheer size), this proof is written in its own section (Section 3.3.4).
We summarize the proof below.

In order to prove the security of ΠConv, we first observe that instead of letting P
choose multiplication triples, we might equivalently model this by letting P specify cir-
cuits instead (that will be evaluated instead of the Ripple Carry Adder). Then, we define
an abstraction of the protocol as a balls-and-bins type game, similar to [EGK+20], and
analyze the success probability of an adversary in this game.A winning in this abstrac-
tion rather than in the protocol ΠConv. We make this abstraction, as a straightforward
analysis of the conversion protocol is rather complex. This is due to there being multiple
ways for A to pass the check with a bad conversion tuple. The first is by corrupting K
conversion tuples, then corrupting K · B edaBits and hoping that these end up in the
right buckets, canceling out the errors in the conversion tuples. The second approach is
to corrupt a set of edaBits and then guess the arrangement of these, thus yielding how
many circuits A would have to corrupt in order to cancel out the errors of the conver-
sion tuples. Furthermore, conversion tuples (andăedaBits) may be corrupted in several
ways. To avoid these issues, we describe an abstract security game which only provides
a better chance for the adversary to win than the original protocol. In summary, we
show the following:

Theorem 8. The probability of ΠConv not detecting at least one incorrect conversion
tuple is upper bounded by 2−s whenever N ≥ 2s/(B−1) and C = C ′ = B for bucket size
B ∈ {3, 4, 5}.

The proof can be found in Section 3.3.4. The approach is similar to that of [EGK+20],
however in our case since the conversion tuples are now fixed to be one per bucket, we
have not taken a random permutation across all edaBits and conversion tuples. There-
fore, we need a different analysis to show that this restriction on the permutation still
suffices.

Using this, in Section 3.3.4 we then prove security of ΠConv:

3.3. CONVERSIONS BETWEEN Z2 AND ZM 109

Theorem 9. Let N ≥ 2s/(B−1), C = C ′ = C ′′ = B and B ∈ {3, 4, 5} such that
s

B−1 > B, then protocol ΠConv (Figure 3.5) UC-realises FConv (Figure 3.3) in the FDabit-
hybrid model. Specifically, no environment Z can distinguish the real-world execution
from the ideal-world execution except with probability at most 2−s.

3.3.4 Proof of Security of the Basic Conversion Protocol

This section contains the proof of security for our conversion tuple verification protocol
ΠConv (Section 3.3.2). In Section 3.3.4 we seek to create an abstraction to the cut-and-
choose procedure (Step 5 of ΠConv), that is easier to analyse. Firstly we present a game
called the RealGame which differs only slightly from the cut-and-choose procedure.
Secondly we present the SimpleGame which further abstracts details away, but we
argue that it still represents the cut-and-choose procedure. In Section 3.3.4 we show that
our cut-and-choose procedure used within ΠConv is secure, by showing that for specific
parameters, a malicious prover is incapable of winning the SimpleGame by passing the
check with an inconsistent conversion tuple, unless with negligible probability. Lastly, in
Section 3.3.4 we prove that 9 holds true, by showing that ΠConv (Figure 3.5) UC-realises
FConv (Figure 3.3) in the FDabit-hybrid model.

Security of the Cut-and-Choose Game

Initially (In section 3.3.4) we focus on abstracting the cut-and-choose procedure by
defining a new game called the RealGame. Within this game, some details have been
omitted, such as the prover and verifier no longer producing multiplication triples, but
instead the prover picks an additively tampered binary circuit directly. In Section 3.3.4
we then further abstract the cut-and-choose game, by defining the SimpleGame in
which edaBits, multiplication triples or daBits no longer exist, but instead only balls
and triangles. This turns the analysis into a balls-and-bins type game and allows us to
show that the prover only hits specific combinations allowing the prover to cheat, with
negligible probability.

The RealGame In order to prove the security of ΠConv, we define an abstract game
RealGame (Figure 3.8). In this abstraction, the prover (or A) will pick additively
tampered binary circuits directly, rather than individual multiplication triples. Apart
from this change, the check run on each Conversion Tuple within each bucket is the same
(step 6). We define all elements used to verify the consistency as checking tuples. These
checking tuples contain an edaBit, a daBit and a potentially tampered circuit.

This game models the conversion verification protocol closely, but is also difficult to
analyze. We therefore make some simplifying assumptions about this game and arrive
at the SimpleGame that we present in the next section.

The SimpleGame We define an additional abstraction to the RealGame. This
SimpleGame is even simpler in the sense that it no longer considers edaBits, triples

110 CHAPTER 3. APPENZELLER TO BRIE

The RealGame

1. A prepares N + (NB + C) authenticated edaBits (representing the N
conversion tuples and NB + C edaBits required to run the check),
{([rj0]2, . . . , [r

j
m−1]2, [r

j]M)}j∈[N+NB+C], NB + C ′ potentially tampered cir-
cuits {Cj,∗}j∈[NB+C′] and lastly NB daBits {([bj]2, [bj]M)}j∈[NB]. These
are all send to the challenger.

2. The challenger shuffles the N edaBits representing conversion tuples, then
shuffles the remaining as well as the circuits using 3 permutations.

3. The challenger opens C checking edaBits and C ′ of the circuits. If any of
the edaBits or circuits are inconsistent, terminate.

4. The challenger pairs up the remaining NB circuits with the NB daBits
according to their permutations.

5. The challenger lets the shuffled list of the N edaBits be the first edaBit
of each bucket before pairing up the remaining NB checking edaBits and
NB circuits with the buckets.

6. Within each of the buckets, for every pair of edaBits ([r0]2, . . . , [rm−1]2, JrK)
(where this is the first of the bucket) and ([s0]2, . . . , [sm−1]2, JsK) take the
next circuit C∗ and compute (c0, . . . , cm)← C∗(r0, . . . , rm−1, s0, . . . , sm−1).
Compute c←

∑m−1
i=0 ci2

i and check r + s− 2m · cm
?
= c.

A wins if all of the checks pass and there is a least one inconsistent edaBit as the
top element of a bucket.

Figure 3.8: An abstraction of the cutNchoose protocol used to verify conversion tuples

3.3. CONVERSIONS BETWEEN Z2 AND ZM 111

The SimpleGame

1. A prepares N + (NB+C) balls and corrupts b of the NB+C balls. These
are all sent to the challenger.

2. The challenger opens C of the NB+C balls at random and checks whether
all C are good. If any of these balls are bad, then terminate.

3. The challenger shuffles the initial N and the remaining NB balls individually
and then associates the initial N balls individually with N buckets. The
challenger then randomly assigns the remaining NB balls to the N buckets
which each have capacity B. The arrangement of balls is send to A.

4. A prepares NB +C ′ triangles and corrupts t of them. These are all sent to
the challenger.

5. The challenger opens C ′ of the triangles at random and checks whether all
C ′ are good. If any of these triangles are bad, then terminate.

6. The challenger shuffles the remaining NB triangles and randomly assigns
these to the N buckets.

7. The challenger runs the bucketcheck procedure (Figure 3.10).

8. If bucketcheck returns 1, the challenger accepts the first ball of each bucket,
otherwise terminate.

A wins if the protocol has not terminated at this point and at least one bad ball
is accepted by the challenger.

Figure 3.9: A game working as a further abstraction of the RealGame

or daBits. We argue that this simplified game SimpleGame models the RealGame,
before analyzing the probability of success for the SimpleGame.

Within the SimpleGame edaBits are transformed into balls in such a way that
a good edaBit is a clear ball () and bad (corrupt) edaBits are shades of gray balls
(I.e. or) where each shade defines a different kind of corruption. Likewise, a good
circuit is a clear triangle () and bad circuits are gray triangles (). A bad ball (or
triangle) is bad in the sense that it helps the adversary win the game. Everyone is given
access to the public function f that takes two balls and a triangle and outputs 0 or 1.
This function f is isomorphic to the winning condition in step 6 of RealGame and is
modelled by the bucket check procedure shown in Figure 3.10. Finally, the adversary
wins if bucketcheck does not abort, meaning that A passed all the checks, and there is
at least one bad ball in the output.

112 CHAPTER 3. APPENZELLER TO BRIE

Simplified bucket check for conversion tuples

Input
N buckets and a function f . Each bucket contains B +1 balls {x1, . . . , xB}
and B triangles {y1, . . . , yB}.

Protocol
For each bucket, run the following check:

1. Check the configuration of [x1, xi|yi−1], ∀i ∈ [2, B].
• If [x1, xi|yi−1] ∈ {[, |], [, |], [, |]} return reject.
• If [x1, xi|yi−1] ∈ [, |] and f(, ,) = 0 return reject.
• If [x1, xi|yi−1] ∈ [, |] and f(, ,) = 0 return reject.

2. Otherwise return accept.

If all checks returns accept, then output 1. Otherwise output 0.

Figure 3.10: A bucket check procedure used to check consistency of conversion tuples in
the SimpleGame

In each check within the buckets, two balls are placed as well as one triangle. If
the size of the buckets B = 3, then one bucket contains four balls [B1, B2, B3, B4] and
three triangles [T1, T2, T3]. The bucketcheck procedure then checks all of the configura-
tions [B1, B2, T1], [B1, B3, T2], [B1, B4, T3] and check if any of these configurations are
{[, , }, {[, , }, {[, , } in which case the check fails and terminate. When there
are two bad balls and one triangle (good or bad) however, whether or not to terminate
depends on the type of the bad balls. This means we consider bad balls to be of different
types (i.e. the prover provide conversions tuples and edaBits with different types of
corruption) and we distinguish these with different color shades. As a result of this, the
procedure might terminate if the configuration matches [, ,] and in other cases it
terminates due to [, ,]. As the adversary will need to match the balls with triangles,
an isomorphic argument can be made using different shadings for the triangles.

For clarity, we list the different advantageous (for the adversary) combinations of
balls and triangles in Table 3.1. If the configurations within the buckets match those of
the first three entries of Table 3.1 then bucketcheck will not terminate. If any match the
penultimate entry or the final entry, then bucketcheck terminates if the output of f is 0.

We now show that RealGame can be modeled as SimpleGame such that if Sim-
pleGame is secure, then so is RealGame.

Lemma 6. Security against all adversaries in SimpleGame implies security against
all adversaries in RealGame.

Proof. (Sketch.) We argue the security of our revised RealGame by showing that if
there exists an efficient adversary B that wins RealGame with non-negligible proba-

3.3. CONVERSIONS BETWEEN Z2 AND ZM 113

Table 3.1: Favorable combinations of balls and triangles for the adversary
Circles Triangles

/
/

bility, then there exists an efficient adversary A against SimpleGame that wins with
non-negligible probability. A will simulate the RealGame challenger and then use B to
win SimpleGame.

Keep in mind that the point of SimpleGame is to mix circles and triangles where
a gray triangle () corresponds to a faulty binary addition circuit and an empty triangle
() represents a regular binary addition circuit, but both of these representations are
purely semantics.

As mentioned, the adversary A simulates the challenger of RealGame and then
uses B to win SimpleGame. B sends a batch of edaBits and a set of circuits (and
daBits) to A. A randomly permutes the edaBits and then transforms them into circles.
A does the same with the circuits (and corresponding daBits), except these are turned
into triangles. Now, whether a circle (or triangle) is good or bad depends entirely on
whether or not the edaBit (or circuit) is consistent or not.
A sends the set of circles to the challenger of SimpleGame, who then throws them

randomly in buckets and sends these back to A. The same happens with the set of
triangles. In RealGame, A pairs the edaBits and the circuits according to the same
arrangement as what was given to A from the SimpleGame challenger. These are
then given to B. If B is capable of winning RealGame, then B can be used to win the
SimpleGame, as the configuration given by A to B is indistinguishable from that given
by a real challenger of RealGame. This is due to the same permutation and due to the
function f being used within the SimpleGame: f is created specifically to mimic the
checking procedure of RealGame, so this behaves in an indistinguishable way as well.

If B wins RealGame with non-negligible probability, then A wins the SimpleGame
with the same probability.

Analysis of the Cut and Choose procedure

We will now prove that this cut-and-choose protocol is sound, as stated in 8.
In order to pass the bucketcheck, the adversarial prover will have to fill every bucket

with (ball, ball, triangle) arrangements according to Table 3.1.
We will now analyze the probability of success of an adversarial prover, i.e. that

the prover gets through all three checks described in bucketcheck with at least one
inconsistent conversion tuple. Throughout this analysis we will use b to denote the
number of bad balls (of the edaBits within checking tuples) and t to denote the number

114 CHAPTER 3. APPENZELLER TO BRIE

of bad triangles. We assume that N ≥ 2
s

B−1 .
First consider the openings taking place during the first two checks.

Opening C balls: In the first check, C of the NB + C balls are opened and checked
for consistency. Thus

Pr[C balls are good] =
(
NB+C−b

C

)(
NB+C

C

) ≈ (1− b

NB + C

)C

For b = (NB+C)α (where 1/(NB+C) ≤ α ≤ 1), the probability can be written as
(1−α)C . To bound this success probability using the statistical security parameter
s, we consider α ≥ 2s/B−1

2s/B
and C = B:

Pr[C balls are good] ≈ (1− α)C = (2−s/B)B = 2−s

We conclude that if the challenger opens C = B balls, then A must corrupt less
than an α (for α = 2s/B−1

2s/B
) fraction of the balls in order to achieve the respective

success probability. We summarize in the following lemma.

Lemma 7. The probability of A passing the second check in SimpleGame is less
than 2−s, if the adversary corrupts more than α fraction of triangles for α = 2s/B−1

2s/B

and the challenger opens C triangles.

Opening C ′ triangles: The second check if very similar to the first check as the number
of balls is the same as the triangles. We therefore arrive at the following statement,

Pr[C ′ triangles are good] =
(
NB+C′−t

C′

)(
NB+C′

C′

) ≈ (1− t

NB + C ′

)C′

Using similar argumentation but bounding by a β fraction rather than α and letting
C ′ = C = B, we conclude

Pr[C ′ triangles are good] ≈ (1− β)C = (2−s/B)B = 2−s

Lemma 8. The probability of A passing the second check in SimpleGame is less
than 2−s, if the adversary corrupts more than β fraction of triangles for β = 2s/B−1

2s/B

and the challenger opens C ′ triangles.

The Lemmas 7 & 8 imply that whenever the fraction or bad ball or triangles is large
enough, the adversary would already lose during the first two checks. We now analyze
the probability of hitting arrangements that pass bucketcheck in such a way that A wins
with respect to small enough fractions of faulty balls and triangles.

3.3. CONVERSIONS BETWEEN Z2 AND ZM 115

Bucketcheck procedure: We here consider the probability of filling a bucket of size
B with bad balls and triangles as this case may allow the adversary to win with an
inconsistent conversion tuple. The challenger has already fixed an arrangement of NB
balls into the N buckets. Once this ball arrangement is fixed, it leads to a restriction
on the number of favorable arrangements of triangles. As an illustration, consider the
following arrangement of 9 balls with N = 3 buckets of size 3 and that A has corrupted
K = 1 buckets and that this happens to be the first bucket after having been shuffled.

{(, ,), (, ,), (, ,)}
Note that we use different shades of grey for different types of bad balls.

Using Table 3.1 we see there are two possible favorable combinations of triangles.

{(, ,), (, ,), (, ,)}
{(, ,), (, ,), (, ,)}

This is due to the last entry of Table 3.1 saying that whenever there are two bad balls,
the check may pass using a good triangle ([, ,]) or a bad triangle ([, ,]). In this
example, let f(, ,) = 1 (and f(, ,) = 1) in which case the second arrangement
is the favorable arrangement.

As a result of this discussion, the probability of passing bucketcheck depends on the
probability of hitting that specific arrangement of triangles among all possible arrange-
ments of triangles. Thus, the probability of A passing the last check of bucketcheck given
a specific arrangement of balls Li is given by

Pr[A passes bucketcheck|Li] ≤ 1/

(
NB

t

)
where t = NBβ. Thus,

Pr[A passes bucketcheck|Li] ≤
(NBβ)! · (NB · (1− β))!

NB!

as we know 0 ≤ β ≤ 1.
Now, to give an upper bound for Pr[A passes bucketcheck] we provide an upper bound

of the probability for different ranges of α and β where the total probability is given by

Pr[A passes bucketcheck] =
∑
i

Pr[A passes bucketcheck|Li] · Pr[Li]

where Li is a given arrangement. If we can then argue for all possible 1
NB ≤ α ≤

2s/B−1
2s/B

, the probability for Pr[A passes bucketcheck|Li] (for some configuration Li), can
be bounded by 2−s, then

Pr[A passes bucketcheck] ≤
∑
i

2−s · Pr[Li]

We now try to bound Pr[A passes bucketcheck|Li]. To this end, we will consider
three different ranges from which t might come from, as defined by the monotonicity of
the binomial coefficient

(
NB
t

)
.

116 CHAPTER 3. APPENZELLER TO BRIE

Case I. Let B ≤ t ≤ (NB −B). Now

Pr[A passes bucketcheck|Li] ≤ 1/

(
NB

t

)
This probability is maximal at t = B or t = NB −B as given by

Pr[A passes bucketcheck|Li] =
B! · (NB −B)!

NB!

=
B

NB
· B − 1

NB − 1
· · · 1

NB − (B − 1)

Now, given that N ≥ 2s/B, we arrive at

Pr[A passes bucketcheck|Li] ≤
(

1

ss/B

)B

= 2−s

Lastly we note that

Pr[Li] =
(NB − b)!

NB!

where b describes the number of bad balls (and in turn NB − b is the number of good
balls). Combining these two last equations, we conclude

Pr[A passes bucketcheck] ≤ NB!

(NB − b)!
· 2−s · (NB − b)!

NB!

when t ∈ [B,NB −B].

Case II. Let t > NB −B. Whenever t is greater than NB −B, A will not be able to
pass the initial phase where C = B triangles are opened.

Case III. Due to this type of game being very difficult to analyse generally, we in-
stead consider it for the specific bucket sizes in our theorem statement. We will begin
by looking at a bucket size of 3 and then analyse t = 0, t = 1 and t = 2.

Bucket size 3: For a bucket of size 3 and t = 0 the analysis has already been done
in [EGK+20], who show that the success probability is < 2−s.

For t = 1, however, the adversary could now also hope to place a bad triangle in the
top spot of a bucket. This does not change the number of cases though, as the case of
having a good ball and a bad triangle in the top spot is equivalent to having a good ball
and a bad triangle in any other spot of the bucket. Furthermore, increasing the amount
of triangles does not increase the probability of A hitting a favorable permutation (as
already argued in Case I), we conclude that t = 1 remains similar to [EGK+20].

Lastly, we consider t = 2. Now the adversary has to compensate for an extra bad
triangle, compared to the previous case. In this case we encounter a specific arrangement

3.3. CONVERSIONS BETWEEN Z2 AND ZM 117

that could be an issue regarding our way of analysing these cases. We will argue, however,
that this is not a problem.

The following arrangement

{(, ,), (, ,), (, ,), (, ,)}

could lead to an adversary filling up more buckets than intended. Let a predefined K
such that 1 ≤ K ≤ N−1 exist such that A wants to pass the test with K bad conversion
tuples. Now, we could define b = KB+1 bad balls for K = 2 and then with t = 2 arrive
at the above arrangement. This arrangement however, allows A to actually cheat in 3
buckets rather than 2, since if A hits the following arrangement of triangles

{(, ,), (, ,), (, ,), (, ,)}

the bucket check could pass with three conversion tuples instead. To remedy this situa-
tion, observe that A does not simply win by filling buckets with bad balls and triangles,
but more specifically these buckets must also contain a corrupt conversion tuple. There-
fore, if A only created K = 2 inconsistent conversion tuples (and let’s assume these are
within the first two buckets), then the third bucket will fail, regardless of the triangles
hitting the correct arrangement to satisfy three bad elements and in turn three bad
buckets. As such, this would not be a favorable arrangement.

When B = 3 and t = 2, there are a total of 6 favorable arrangements for A when
K is fixed. For example, for N = 4, B = 3, K = 2, t = 2, these are the six possible
configurations that are favorable for A.

{(, ,), (, ,), (, ,), (, ,)}

{(, ,), (, ,), (, ,), (, ,)}

{(, ,), (, ,), (, ,), (, ,)}

{(, ,), (, ,), (, ,), (, ,)}

{(, ,), (, ,), (, ,), (, ,)}

{(, ,), (, ,), (, ,), (, ,)}

Note that the darker balls are such that f(, ,) = 1 in all the listed configurations,
forcingA to specifically hit the in those spots (i.e. forcing that only a single permutation
of the triangles will be favorable).

For all of the above cases, the success probability of A in the bucket check can be
expressed as

Pr[A passes bucketcheck] ≤
(
N

K

)(
KB

g1 + b1

)(
(N −K)B

b2

)
1(

NB
KB−g1+b2

) 1(
NB
t

) (3.1)

where g1 is the total number of good balls in the K buckets containing bad conversion
tuples, b1 is the total number bad balls of a different kind from (represented as) and

118 CHAPTER 3. APPENZELLER TO BRIE

b2 is the total number of bad balls having been placed in the remaining N −K buckets
containing good conversion tuples. Now, for each possible configuration (when varying
g1, b1, b2 and K but keeping t = 2 static), the probability of A winning is maximum
at K = 1 or K = N − 1. Considering all possible favorable configurations, the second
that we list (with g1 = 0, b1 = 1, b2 = 1) has the highest probability of success with
K = N − 1. (

N

N − 1

)(
3(N − 1)

1

)(
3(N − (N − 1))

1

)
1(
3N

3(N−1)+1

) 1(
3N
2

)
= N · (3N − 3) · 3 1(

3N
3N−2

) 1(
3N
2

)
=

3N − 3

3N − 1
· 2

3N
· 2

3N − 1

≤ 3N − 3

3N − 1
· 2−s/2 · 2−s/2 ≤ 2−s, given N ≥ 2s/2

Bucket size 4: We’ve already considered the cases of t = 0, t = 1 and t = 2, so now we’ll
consider t = 3.

For the case when B = 4 and t = 3 there are a total of 10 favorable configurations
for A when K is fixed. For example, for N = 4 and K = 2, there are the 10 cases:

{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}

Using eq. 3.1 we can compute the probabilities of success for all these cases at K = 1 and
K = N − 1 in order to find the best possible scenario for A. By doing so, we conclude
that the 9’th case has the highest probability of success at K = N − 1. Considering this
case, the probability is computed as,

Pr[A passes bucketcheck] ≤
(

N

N − 1

)(
(N − 1) · 4

2

)
·
(
4

1

)
1(
4N

4(N−1)+1

) 1(
4N
3

)

3.3. CONVERSIONS BETWEEN Z2 AND ZM 119

= N ·
(
4N − 4

2

)
· 4 · (4N − 3)! · 3!)

(4N)!
· 3! · (4N − 3)!

(4N)!

= 8(N − 1) · (4N − 5) · 3

4N
· 3

4N
· 2

4N − 1
· 2

4N − 1
· 1

4N − 2
· 1

4N − 2

≤ 8(N − 1) · (4N − 5) · (2−s/3)6, given N ≥ 2s/3

Bucket size 5: As per the last bucket size, the analysis from the previous cases car-
ries over for t = 0, 1, 2 and 3. In this case, we will consider t = 4, as this is the only
remaining for t < B.

For the case where B = 5 and t = 4, there are 15 favorable arrangements for A when
K is a fixed integer. For instance, for N = 4 and K = 2, these are the cases.

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

Again, by using eq. 3.1, we compute the different probabilities of success of all 15
cases in similar fashion to our analysis of B = 3 and B = 4 and conclude that the
13’th case has the highest probability of winning at K = N − 1. We now describe this
probability.

Pr[A passes bucketcheck] ≤
(

N

N − 1

)(
(N − 1) · 5

2

)
·
(
5

2

)
1(
5N

5(N−1)+2

) 1(
5N
4

)
= N ·

(
5N − 5

2

)
·
(
5

2

)
· (5N − 3)! · 3!

(5N)!
· 4! · (5N − 4)!

(5N)!
≤ 2−s, given N ≥ 2s/4

We summarize the analysis as follows.

120 CHAPTER 3. APPENZELLER TO BRIE

Lemma 9. The probability of A passing bucketcheck in SimpleGame is less than 2−s

given N ≥ 2s/B−1 and the challenger opens C = B balls and C ′ = B triangles during
the first two checks of SimpleGame for B ∈ {3, 4, 5} given s such that s

B−1 > B.

Proof. This lemma follows from a case-by-case analysis of the bucketcheck procedure, in
combination with Lemmas 7 & 8.

Combining Lemma 6 and Lemma 9 completes the proof of Theorem 8.

Proof of Security of the Protocol ΠConv (Theorem 9)

Proof. We first consider a malicious prover and then afterwards we consider the case
of a malicious verifier. In both cases we construct a simulator S given access to FConv

that runs the adversary A as a subroutine. We implicitly assume that S passes all
communication between A and Z.
Malicious Prover. S sends (corrupted,P) to the ideal functionality FConv. S creates
a copy of the verifier V, and runs this verifier according to the protocol ΠConv, while
letting the prover P∗ behave as instructed by the adversary A.

1. In the setup-phase, P∗ sends edaBits {(rj0, . . . , r
j
m−1, r

j)}j∈[NB+C],
daBits {(bj , b′,j)}j∈[NB+s] and triples {(xj , yj , zj)}j∈[NBm+Cm]. S records and
forwards all of these to FConv.

2. S runs FDabit with the input provided by P∗. If FDabit returns abort, then send
abort to FConv and terminate. Otherwise continue.

3. S randomly sample permutations π1 ∈ SNB+C , π2 ∈ SNB+s and π3 ∈ SNBm+Cm

and send these to P∗ before shuffling the values provided by P∗.

4. The simulator emulates the Cut-phase by calling Open on the last C edaBits and
triples and ensuring the consistency of each. If any check fail, send abort to FConv

and terminate.

5. For each bucket during the Choose-phase, S emulate bitADDcarry by running like
an honest verifier and convertBit2A by calling this using FConv.

6. S runs the rest of the protocol as an honest verifier. If the honest verifier outputs
abort, then S sends abort to FConv and terminate. If the honest verifier outputs
success, then S sends (VerifyConv, N, {[c(j)0]2, . . . , [c

(j)
m−1]2, [c

(j)]M}j∈[N]) to FConv

(essentially forwarding the call made originally by P∗).

The messages that P∗ receives from S have the same distribution as in the real proto-
cols. Whenever the verifier simulated by S outputs abort (as in the protocol), then the
verifier in the ideal setting outputs abort as well (since S sends abort to FConv). The only
case where P∗ may distinguish between the ideal and real, is if the simulated verifier
run by S outputs success but at least one conversion tuple is inconsistent, in which case
FConv will abort. But if at least one conversion is inconsistent, then by Theorem 8 the

3.3. CONVERSIONS BETWEEN Z2 AND ZM 121

probability with which P∗ avoids being caught in Step 6 of ΠConv is at most 2−s.

Malicious Verifier. S sends (corrupted,V) to the ideal functionality FConv. It also
creates copies of the prover P and verifier V∗, and runs the prover according to the
protocol ΠConv, while letting the verifier behave as instructed by the environment Z. If
S receives abort from FConv, then it simply outputs abort and terminate. Otherwise S
interacts with the verifier as follows:

1. S samples random values corresponding to the edaBits
{(rj0, . . . , r

j
m−1, r

j)}j∈[NB+C], daBits {(bj , bj)}j∈[NB+s] and triples
{(xj , yj , zj)}j∈[NBm+Cm] and commits to these by calling (Input, ·, ·) using F2,M

ComZK
in the appropriate domain.

2. If V∗ at any outputs abort, then send abort to FConv and terminate.

3. S sends (VerifyDabit, NB + s, {([bj]2, Jb′,jK)}j∈[NB+s]). If this call returns abort,
then output abort and terminate. Otherwise continue.

4. On receiving π1, π2, π3, S locally shuffles the sampled values.

5. During the Cut-phase, S opens the last C edaBits, triples and daBits honestly,
as it knows the underlying values.

6. During the remainder of the protocol, S runs like an honest prover.

7. Lastly, S sends

(VerifyConv, N, {[c(j)0]2, . . . , [c
(j)
m−1]2, [c

(j)]M}j∈[N])

to FConv (again, forwarding the initial call) and outputs whatever V outputs.
In both the ideal and real execution all values sent from the honest prover (or sim-

ulator) to the verifier, are hidden by F2,M
ComZK. This ensures indistinguishability between

the two transcripts. Specifically, the randomly sampled edaBits, triples and daBits
are indistinguishable from ones sampled by the prover during a real execution, due to
F2,M
ComZK. Any calls to VerifyDabit will fail in the real only if the same call would fail in

the ideal world, due to the usage of FFDabit in both. Same goes for CheckZero. Lastly,
bitADDcarry only involves the prover sending values to the verifier, allowing the verifier
to reach the same value. An honest prover uses correct circuits and therefore no infor-
mation is leaked. Thus, the view of V∗ simulated by S is distributed identically to its
view in the real protocol execution.

3.3.5 Faulty daBits

A crucial error was discovered in this section, which forces a bound on the bit-lengths of
the values that we can check with the conversion check, when using the strategy involving
faulty daBits. We consider this bound too unrealistic for the use-cases we present, and
as a result, this section has been removed for now.

122 CHAPTER 3. APPENZELLER TO BRIE

Functionality FVerifyTrunc

The functionality FVerifyTrunc extends F2,M
ComZK with VerifyTrunc that verifies trun-

cations of committed values from ZM . The function takes a set of IDs
{(id0,j , id1,j)}j∈[N] of elements aid

0,j
, aid

1,j ∈ ZM and a set of integers {mj}j∈[N]

such that mj ∈ [M] represents by how much aid
0,j is truncated to reach aid

1,j for
j ∈ [N]. It is assumed that the underlying values of the id’s have been Input prior
to calling this method.

VerifyTrunc: Upon P and V inputting (VerifyTrunc, N, {mj , (id0,j , id1,j)}j∈[N]):

• Check that aid
1,j

= baid
0,j

2m
j c, for each j ∈ [N]. If all checks pass, output

success, otherwise abort.

Figure 3.11: Functionality FVerifyTrunc that verifies a truncation

3.4 Truncation and Integer Comparison

In this section, we provide protocols for verifying integer truncation and comparison.
With truncation, we mean that given integers l,m and two authenticated values x, x′ of
l and l − m bits, we want to verify that x′ corresponds to the upper l − m bits of x,
i.e. x′ = b x

2m c over the integers. Integer comparison is then the problem of taking two
authenticated integers and outputting 0 or 1 (authenticated) depending on which input
is the largest. Both protocols take as input both the input and output of the function
from the prover and then verify the correctness of the provided data.

We also describe a novel way of checking the length of an authenticated integer.
We ask the prover to provide not only the authenticated ring element, but also its bit
decomposition. By proving consistency of these two representations, the prover shows
that the authenticated ring element can be represented by the provided bit decomposition
of which we can check the length. The naïve way of achieving this would be using a
protocol for integer comparison or a less-than circuit. However, both of these ways would
require auxiliary consistent edaBits in addition to possibly other operations. Instead,
we only have to verify that the input forms a consistent edaBit and therefore save
anything beyond that.

We note that the integers in this section are signed in the interval [−2l−1, 2l−1), but
the protocols are all defined over a modulus M ≥ 2l where M is either a prime p or
2k. Given an integer α ∈ [−2l−1, 2l−1), this can be represented by a corresponding ring
element in ZM .

3.4. TRUNCATION AND INTEGER COMPARISON 123

3.4.1 Truncation

In Figure 3.11 we present a functionality FVerifyTrunc that takes a batch of commitmentsJajK and their supposed truncations (by mj bits) Ja′jK. The functionality ensures that
the truncations are correct, namely, a′j = b

aj

2m
j c. Note that this functionality we realise

is flexible, in that it can support a large batch of truncations, each of which may be of
a different length.

We now construct a protocol for verifying truncations, which can securely realise
FVerifyTrunc using just a single call to our batch conversion functionality, FConv, on a
vector of tuples that is twice the length of the number of truncations. For the protocol,
we will have that in addition to each input JaK, the prover also provides:

• the truncated value JatrK of JaK and its bit decomposition ([a0tr]2, . . . , [a
l−m−1
tr]2)

• the initial m bits of JaK; Ja′K = Ja mod 2mK as well as its bit decomposition
([a′0]2, . . . , [a

′
m−1]2)

Having access to JatrK and Ja′K allows the verifier then to check that a = 2m · atr +
a′, which is sufficient to prove the claim.Observe that running ΠConv on JatrK and
([a0tr]2, . . . , [a

l−m−1
tr]2) not only shows consistency between the binary and arithmetic

representations, but also that JatrK can be represented by l −m or less bits (same goes
for Ja′K and its bit decomposition).

We first define an ideal functionality FCheckLength (Figure 3.12) that encapsulates this
concept of using FConv as a way of bounding the size of an authenticated value.

The protocol ΠCheckLength ensures that JaK can be represented by m bits, as it proves
consistency between the two representations of a. The security of this protocol directly
follows from using FConv. The cost of the protocol also directly follows from the consis-
tency check described in Figure 3.5.

Note that ΠCheckLength and ΠVerifyTrunc do not utilise anything specific about M except
2l ≤M and both work for Zp and Z2k .

Theorem 10. The protocol ΠVerifyTrunc (Figure 3.14) UC-realizes FVerifyTrunc (Figure 3.11)
in the FCheckLength-hybrid model.

Before giving the proof, we make the following observations. First, if correct infor-
mation is provided by P, then the protocol completes. Intuitively, if the prover provides
a correct Ja′K = Ja mod 2mK and JatrK, then when both of these are subtracted fromJaK, then it will be equal to 0 as required by CheckZero.

CheckLength on (Ja′K,m): This ensures that Ja′K can be represented by m bits.

CheckLength on (JatrK, l −m): This ensures that JatrK can be represented by l−m bits.

CheckZero(JaK− (2m · JatrK + Ja′K)): This check ensures correctness of the two valuesJa′K and JatrK. As we know that they are both of correct length (m and l − m
respectively), 2m · atr + a′ exactly represents all values in [0, 2l− 1]. Therefore, the
truncation must be correct.

124 CHAPTER 3. APPENZELLER TO BRIE

Functionality FCheckLength

This functionality extends F2,M
ComZK with the extra function VerifyLength that takes

a set of IDs {idj}j∈[N] of elements xid
j ∈ ZM and a set of integers {mj}j∈[N]

such that mj ∈ [M] represents the supposed lengths of the elements {xidj}j∈[N].
FCheckLength communicates with two parties P, V. It is assumed that the under-
lying values of the id’s have been Input prior to calling this method.

VerifyLength: Upon P and V inputting (VerifyLength, N, {mj , idj}j∈[N]) :

• Check that xid
j may be described by mj bits for all j ∈ [N]. Output

success if so, otherwise abort.

Figure 3.12: Functionality to verify length of commitments

Protocol ΠCheckLength

Input A set of tuples {JxjK,mj , }j∈[N] where xj ∈ [0, 2l) and mj defines the
claimed bitlength of xj .

Protocol

1. For each j ∈ [N], P commits to [xj0]2, . . . , [x
j
mj−1]2.

2. Let m = maxj{mj}, and for i = mj , . . . ,m − 1, let [xji]2 denote
a dummy commitment to zero (which can be easily obtained with
CheckZero).

3. Run FConv on {([xj0]2, . . . , [x
j
m−1]2, JxjK)}j∈[N] and output what FConv

outputs.

Figure 3.13: Protocol ΠCheckLength that verifies that committed elements are bounded.

3.4. TRUNCATION AND INTEGER COMPARISON 125

Protocol ΠVerifyTrunc

Input A set of tuples {JajK,mj , JajtrK}j∈[N] where aj ∈ [0, 2l), mj defines the
number of bits that has been truncated and JatrK represents the supposed
truncation.

Protocol

1. For each j ∈ [N], P commits to the least-significant m bits of JajK,
denoted as Ja′K = Jaj mod 2mK .

2. The parties call FCheckLength with input {Ja′K,mj}j∈[N] ∪ {JajtrK, l −
mj}j∈[N].

3. For each j, let JyK = JajK− (2m · JajtrK + Ja′K) and run CheckZero(JyK).
Abort if any of the checks fail. Otherwise output success.

Figure 3.14: Protocol to verify the truncation of an element from ZM

We now proceed with the proof.

Proof. We consider a malicious prover and a malicious verifier separately. In both cases
we will construct a simulator S given access to FVerifyTrunc that will emulate FCheckLength.
We implicitly assume that S passes all communication between the adversary (either P∗
or V∗ dependent on the case) and the environment Z.

Malicious Prover. S sends (corrupted,P) to the ideal functionality FVerifyTrunc. It
also creates copies of the prover P∗ and verifier V, and runs the verifier according to the
protocol ΠVerifyTrunc, while letting the prover behave as instructed by the environment
Z.

1. S forwards Input on Ja′K.
2. S forwards any calls to FCheckLength. If any calls to FCheckLength returns ⊥, then S

outputs ⊥ to FVerifyTrunc and abort.

3. For the remainder of the protocol, S acts like an honest verifier.

4. Lastly, S forwards the call (VerifyTrunc, ·, ·).

The only avenue for P∗ to distinguish the ideal from the real world is the case of passing
the verification check with an incorrect truncation. As argued above, this can never
happen. This completes the proof for the case of a malicious prover.

Malicious Verifier. S sends (corrupted,V) to the ideal functionality FVerifyTrunc. It

126 CHAPTER 3. APPENZELLER TO BRIE

also creates copies of the prover P and verifier V∗, and runs the prover according to the
protocol ΠVerifyTrunc, while letting the verifier behave as instructed by the environment
Z. If S receives ⊥ from FConv, then it simply abort. Otherwise S interacts with the
verifier as follows:

1. S forwards the call (VerifyTrunc, N, {mj , JajK, JajtrK}j∈[N]). If FVerifyTrunc returns ⊥,
output ⊥ to V∗ and abort.

2. For each j ∈ [N] S commits to a random value Ja′K using Input of FCheckLength. We
assume that simulated commitments to aj , a

′,j already exist in FCheckLength.

3. For each iteration j ∈ [N], let l be the size of aj and m be the size of a′,j . S runs
(CheckLength, ida

′,j
,m) and

(CheckLength, ida
j
tr , l −m) in FCheckLength towards the verifier.

4. S then computes yj ← aj − (2m · ajtr + a
′,j) using FCheckLength and then runs

(CheckZero, idy
j
), which it makes output success.

The view of V∗ simulated by S is distributed identically to its view in the real protocol.
Any value being communicated to V∗ is hidden in the commitment functionality.

For comparison, we now describe a “naïve” way of truncating some value JaK where
a ∈ [0, 2l) ⊂ ZM , without doing any conversions to Z2. Informally, the prover providesJaK as well as its supposed bit decomposition (Ja0K, . . . , Jal−1K) authenticated in ZM . The
prover then has to convince the verifier that each authenticated JaiK is a bit and that
they all sum up to JaK, thus proving the correctness of the bit decomposition. Lastly,
the prover and verifier can individually sum up most-significant l −m bits, resulting in
the truncated value JatrK.

This protocol is much more expensive than our edaBit-based approach, due to work-
ing in ZM for all operations. Each bit must be committed to by a commitment over
ZM , which itself requires log2(M) bits of communication. Furthermore, the checking
of each JaiK for i ∈ [l] requires a multiplication, leading to further interaction. To give
an example, we analyze the cost of this protocol when using Wolverine [WYKW21b] to
check the multiplications (alternative protocols such as [BMRS21b] could also be used,
but this does not significantly change the costs). For l multiplications in ZM , Wolver-
ine runs a total of (B − 1) · l iterations, each requiring 1 multiplication triples, for a
total of (3(B − 1)) · l random authentications and (B − 1)l fix (where fix corresponds
to inputting a specific value into the commitment functionality) in ZM . Secondly, each
iteration opens 2 values and performs a single CheckZero. All calls to CheckZero may
be batched together and performed at the end, but the other 2 must be done in each
iteration, for a total of l · ((B − 1) · 2) + 1 openings in ZM . Lastly, in step 3, all the
checks for ai(1− ai)

?
= 0 are batched together for a total of 1 opening. Throughout this

analysis, we assume we’re working in a small field such that log(M) ≤ s for some security
parameter. If instead it holds that log(M) > s, then we can save a factor (B − 1) in
these costs.

3.4. TRUNCATION AND INTEGER COMPARISON 127

Protocol ΠNaiveTrunc

Input JaK and it’s supposed bit decomposition (Ja0K, . . . , Jal−1K).
Protocol

1. For i = 0, . . . , l − 1 compute JyiK = JaiK · (1− JaiK).
2. Let JyK←∑l−1

i=0JaiK2i.
3. Run CheckZero(JyK, Jy0K, . . . , Jyl−1K), output abort if the check fails and

terminate.
4. Let JatrK←∑l−m

i=0 Jal−m+iK2i.
Output JatrK.

Figure 3.15: Protocol that naïvely truncates a by m bits

Table 3.2: Comparison of the costs of ΠNaiveTrunc (Figure 3.15) and ΠVerifyTrunc (Fig-
ure 3.14).

#Openings F2 #Openings ZM #Faulty triples F2 #Faulty triples ZM

Naïve log(M) ≤ s 0 l((B − 1) · 2) + 2 0 (B − 1)l
Naïve log(M) > s 0 l · 2 + 2 0 l
Ours Bl + 2B 2B + 1 Bl 0

#(e)dabit COTs #(e)dabit VOLEs #Bits from fix

Naïve log(M) ≤ s 0 0 2(B − 1)l log2(M)
Naïve log(M) > s 0 0 2l · log2(M)
Ours Bl + 2B 4B (B + 1)l + (4B + 2) log2(M)

A breakdown of the costs of ΠNaiveTrunc compared to those of our optimized protocol
ΠVerifyTrunc (Figure 3.14) is given in Table 3.2, where we list both if log(M) ≥ s but
also log(M) > s . In both cases, for typical parameters (e.g. l = 32 ≈ logM and
B = 3–5) the naive protocol has much higher communication cost than ours, since the
number of ZM openings scales with the bit-length l. To give a concrete number, e.g.
for the Zp variant with l = 32 ≈ logM , when verifying a batch of around a million
multiplications and 40-bit statistical security, we can use a bucket size B = 3. This
leads to the communication of 8256 bits when using the naïve compared to only 960
when using ours, when we disregard the construction of the random authentications in
Z2 and Zp for both protocols.

3.4.2 Integer Comparison

We now discuss how to compare two signed, l-bit integers α and β. The way the protocol
works is by having the prover (and verifier) compute JαK − JβK and have the prover
compute the truncation of this which is only the most significant bit. Now we may run

128 CHAPTER 3. APPENZELLER TO BRIE

ΠVerifyTrunc on the truncation and use the truncation as the output of the comparison.
We remark that, similarly to previous works in the MPC setting [Cd10, EGK+20], this
gives the correct result as long as α, β ∈ [−2l−2, 2l−2), so that α − β ∈ [−2l−1, 2l−1), so
this introduces a mild restriction on the range of values that can be supported.

3.5 Interactive Proofs over Z2k

In this section, we provide the foundations for an interactive proof system that natively
operates over Z2k . First, we show how linearly homomorphic commitments for Z2k can
be constructed from VOLE in Section 3.5.1. Then, in Section 3.5.2, we present two
protocol variants which instantiate FZ

2k

ComZK, and prove their security in Section 3.5.3.

3.5.1 Linearly Homomorphic Commitments from Vector-OLE

To construct linearly homomorphic commitments over the ring Z2k , we use a variant of
the information-theoretic MAC scheme from SPDZ2k [CDE+18]: Let s be a statistical
security parameter. To authenticate a value x ∈ Z2k known to P towards V (denoted as
[x]), we choose the MAC keys ∆ ∈R Z2s and K[x] ∈R Z2k+s , and compute the MAC tag
as

M[x] := ∆ · x̃+ K[x] ∈ Z2k+s (3.2)

where x = x̃ mod 2k, i.e. x̃ is a representative of the corresponding congruence class of
integers modulo 2k. Then P gets x̃ and M[x], whereas V receives ∆ and K[x].

Initially x̃ may be chosen as x̃ = x ∈ {0, . . . , 2k − 1}. Applying the arithmetic
operations described below can result in larger values though, which do not get reduced
modulo 2k because all computation happens modulo 2k+s. For a commitment [x] we
always use x̃ to denote the representative held by P.

This MAC schemes allows us to locally compute affine combinations: E.g. for [z]←
a · [x] + [y] + b with public a, b ∈ Z2k , the parties compute z̃ ← a · x̃ + ỹ + b and
M[z]← a ·M[x] +M[y], as well as K[z]← a · K[x] + K[y]−∆ · b. Then we have

M[z] ≡k+s a ·M[x] +M[y]

≡k+s a · (∆ · x̃+ K[x]) + (∆ · ỹ + K[y])

≡k+s ∆ · (a · x̃+ ỹ) + (a · K[x] + K[y])

≡k+s ∆ · (a · x̃+ ỹ + b) + (a · K[x] + K[y]−∆ · b)
≡k+s ∆ · z̃ + K[z].

While we can initially set x̃ = x, a result of a computation (here z̃) might be larger than
2k − 1, but for the computation we only care about the lower k bits of z̃ (denoted as z).

As in SPDZ2k , the MACs are obtained using vector OLE over rings. We describe the
protocols in the Fs,r

vole2k-hybrid model (cf. Figure 3.16); in Section 3.5.4, we discuss how
to instantiate this VOLE functionality. To open a commitment [x], first the upper s bits
of x̃ need to be randomized, by computing [z] ← [x] + 2k · [r] with random r̃ ∈R Z2k+s .

3.5. INTERACTIVE PROOFS OVER Z2k 129

Vector Linear Oblivious Evaluation for Z2k : Fs,r
vole2k

Init This method needs to be the first one called by the parties. On input (Init)
from both parties the functionality

1. If V is honest, it samples ∆ ∈R Z2s and sends ∆ to V.
2. If V is corrupt, it receives ∆ ∈ Z2s from S.
3. ∆ is then stored by the functionality.

All further Input queries are ignored.

Extend On input (Extend) from both parties the functionality proceeds as fol-
lows:

1. If both parties are honest, sample x,K[x] ∈R Z2r and compute M[x]←
∆ · x+ K[x] ∈R Z2r .

2. If V is corrupted, it receives K[x] ∈ Z2r from S instead.
3. If P is corrupted, it receives x,M[x] ∈ Z2r from S instead, and com-

putes K[x]← M[x]−∆ · x ∈ Z2r .
4. (x,M[x]) is sent to P and K[x] is sent to V.

Figure 3.16: Functionality for vOLE with key size s and message size r. Based on
Fp,r
sVOLE from [WYKW21b, Fig. 2].

Then, z̃ and M[z] are published and the MAC equation (Equation (3.2)) is verified.
Following [WYKW21b, DNNR17], we implement more efficient batched checks based
on a random oracle in protocol ΠZ

2k

ComZK-a (Figures 3.17 & 3.18) and protocol ΠZ
2k

ComZK-b
(Figure 3.19).

3.5.2 Instantiation of FZ
2k

ComZK

In this section, we present two protocols Π
Z
2k

ComZK-a and Π
Z
2k

ComZK-b which instantiate the
FZ

2k

ComZK functionality (Figure 3.1). These are adaptions of the Wolverine [WYKW21b]
and Mac’n’Cheese [BMRS21b] protocols to the Z2k setting and differ mainly in the
implementation of the CheckMult method.

For CheckZero, we use in both variants the batched check from [WYKW21b, DNNR17]
based on a random oracle H : {0, 1}∗ → {0, 1}s: First, the upper s bits (resp. the
upper 2s bits in Π

Z
2k

ComZK-b) of each value [xi] are randomized by computing [yi] ←
[xi] + 2k · [ri] with random ri. Then P sends the upper bits pi of all the ỹi and a
hash h := H(M[y1], . . . ,M[yn]) to V. Finally, V uses the pi to recompute the MAC tags
M[yi]

′ ← ∆ · 2k · pi + K[yi] and verifies that h
?
= H(M[y1]

′, . . . ,M[yn]
′) holds.

130 CHAPTER 3. APPENZELLER TO BRIE

A previous version of this paper used a version of the batched check described in
SPDZ2k [CDE+18] based on a random linear combination. This would have been more
efficient since it does not require sending the randomized upper bits of each value sepa-
rately. Unfortunately, due to a bug in their proof this check is not sound, so we cannot
use it here. A less efficient adaption of the check could be used if one wants to avoid
using a random oracle, though.

Π
Z
2k

ComZK-a (Figures 3.17 & 3.18) adapts the bucketing approach from
Wolverine [WYKW21b]: Let C,B ∈ N be the parameters of the bucketing scheme. To
check that a collection of triples ([ai], [bi], [ci])ni=1 satisfy a multiplicative relation, i.e. ai ·
bi = ci for i = 1, . . . , n, the prover creates a set of ℓ := n ·B+C unchecked multiplication
triples of commitments. After randomly permuting the ℓ triples according to the choice
of the verifier, C triples are opened and checked by the verifier. The remaining nB triples
are evenly distributed into n buckets. Then, each multiplication (ai · bi

?
= ci) is verified

with the B triples of the corresponding bucket with a variant of Beaver’s multiplication
trick [Bea92]. For the check to pass despite an invalid multiplication ai · bi 6= ci, the
adversary needs to corrupt exactly those triples that end up in the corresponding bucket
for that multiplication.

For Π
Z
2k

ComZK-b (Figure 3.19), we have adapted the multiplication check of
Mac’n’Cheese [BMRS21b], which is similar to the Wolverine [WYKW21b] optimization
for large fields and SPDZ-style [DPSZ12] sacrificing of multiplication triples. The sound-
ness of this type of check is based on the difficulty of finding a solution to a randomized
equation. If a multiplicative relation does not hold, the adversary needs to guess a ran-
dom field element in order to pass. Thus the original scheme needs a large field to be
sound. In the Z2k -setting, there are multiple obstacles that we have to overcome. First,
we would like to also support small values of k (e.g. k = 8 or 16). Simultaneously, we
also have to deal with zero divisors (which complicate the check) which were no issue
in the field setting. Moreover, even though the commitment scheme (see Section 3.5.1)
uses the larger ring Z2k+s it only authenticates the lower k bits of x̃ and cannot prevent
modifications of the upper bits, which might lead to additional problems. We overcome
these challenges by further increasing the ring size from Z2k+s to Z2k+2s , so that the
commitment scheme provides authenticity of values modulo 2k+s. We use the additional
s bits to avoid overflows when checking correctness of the multiplicative relations mod-
ulo 2k with an s bit random challenge. Increasing the ring leads to larger storage and
communication requirements – the values x̃,M[x],K[x] now require k + 2s bits. We
discuss the communication complexity of both variants in Section 3.6.1.

3.5.3 Proofs of Security

In this section we formally state the security guarantees of our protocols. and give an
overview of the corresponding proofs.

3.5. INTERACTIVE PROOFS OVER Z2k 131

Protocol Π
Z
2k

ComZK-a (Part 1)

Each party can abort the protocol by sending the message (abort) to the other
party and terminating the execution.

Init For (Init), the parties send (Init) to Fs,k+s
vole2k. V receives its global MAC key

∆ ∈ Z2s .

Random For (Random), the parties send (Extend) to Fs,k+s
vole2k so that P receives

M[r], r ∈ Z2k+s and V receives K[r] ∈ Z2k+s so that M[r] = ∆ ·r+K[r] holds.
This is denoted as [r].

Affine Combination For [z]← α0 +
∑n

i=1 αi · [xi], the parties locally set

• z̃ ← α0 +
∑n

i=1 αi · x̃i (by P),
• M[z]←

∑n
i=1 αi ·M[xi] (by P),

• K[z]← −∆ · α0 +
∑n

i=1 αi · K[xi] (by V).

CheckZero Let H : {0, 1}∗ → {0, 1}s denote a random oracle. For
(CheckZero, [x1], . . . , [xn]), the parties proceed as follows:

1. If one of the xi is not equal to 0, then P aborts.
2. They run [r1], . . . , [rn] ← Random() and compute [yi] ← [xi] + 2k · [ri]

for i = 1, . . . , n.
3. P sends p1, . . . , pn to V where pi := (ỹi − yi)/2

k denotes the upper s
bits of ỹi.

4. P computes h ← H(M[y1], . . . ,M[yn]) and sends h ∈ {0, 1}2λ to the
verifier.

5. Finally, V computes M[yi]
′ ← ∆ · 2k · pi+K[yi] ∈ Z2k+s for i = 1, . . . , n,

checks h
?
= H(M[y1]

′, . . . ,M[yn]
′) and outputs (success) if the equality

holds and aborts otherwise

Input For (Input, x), where x ∈ Z2k is known by P, the parties first run [r] ←
Random(). Then P sends δ := x− r mod 2k to V, and they compute [x]←
[r] + δ.

Open For (Open, [x1], . . . , [xn]), P sends x1, . . . , xn to V, and they compute [zi]←
[xi]− xi for i = 1, . . . , n, followed by CheckZero([z1], . . . , [zn]). The result of
the latter is returned.

Figure 3.17: Protocol Π
Z
2k

ComZK-a instantiating FZ
2k

ComZK using a Wolverine-
like [WYKW21b] multiplication check.

132 CHAPTER 3. APPENZELLER TO BRIE

Protocol Π
Z
2k

ComZK-a (Part 2)

MultiplicationCheck Let B,C ∈ N be parameters of the protocol. On input
(CheckMult, ([ai], [bi], [ci])

n
i=1) the parties proceed as follows:

1. P aborts if ai · bi 6= ci (mod 2k) for some i = 1, . . . , n.
2. Let ℓ := n ·B + C, and initialize lst← ∅
3. They compute ([xi], [yi])

ℓ
i=1 ← Random() so that P receives (xi, yi)

ℓ
i=1.

4. P computes zi ← xi · yi for i = 1, . . . , ℓ, and they run ([zi])
ℓ
i=1 ←

Input((zi)
ℓ
i=1).

5. V samples a permutation π ∈R Sℓ and sends it to P.
6. They run (xπ(i), yπ(i), zπ(i))

C
i=1 ←

Open(([xπ(i)], [yπ(i)], [zπ(i)])
C
i=1, lst).

7. V checks if xπ(i) · yπ(i) = zπ(i) for i = 1, . . . , C, and aborts otherwise.
8. For each (aj , bj , cj) with j = 1, . . . , n and for each (xπ(k), yπ(k), zπ(k))

with k = C + (j − 1) ·B + 1, . . . , C + j ·B, they compute
(a) d← Open([aj]− [xπ(k)], lst) and e← Open([bj]− [yπ(k)], lst) and
(b) [wk]← [zπ(k)]− [cj] + e · [xπ(k)] + d · [yπ(k)] + d · e

9. Finally, they run (CheckZero, lst, ([wk])
ℓ
k=C+1). If successful and the

check in Step 7 also passed, V outputs (success) and aborts otherwise.

Figure 3.18: Protocol Π
Z
2k

ComZK-a instantiating FZ
2k

ComZK using a Wolverine-
like [WYKW21b] multiplication check.

3.5. INTERACTIVE PROOFS OVER Z2k 133

Protocol Π
Z
2k

ComZK-b

Much of the protocol is identical to Π
Z
2k

ComZK-a (Figures 3.17 and 3.18) with the
exception that the MACs are now computed in the larger ring Z2k+2s . Init,
Random, Affine Combination, Input and Open work exactly as in Π

Z
2k

ComZK-a,
although using Fs,k+2s

vole2k .

CheckZero Let H : {0, 1}∗ → {0, 1}s denote a random oracle. For
(CheckZero, [x1], . . . , [xn]), the parties proceed as follows:

1. If one of the xi is not equal to 0, then P aborts.
2. They run [r1], . . . , [rn] ← Random() and compute [yi] ← [xi] + 2k · [ri]

for i = 1, . . . , n.
3. P sends p1, . . . , pn to V where pi := (ỹi − yi)/2

k denotes the upper 2s
bits of ỹi.

4. P computes h ← H(M[y1], . . . ,M[yn]) and sends h ∈ {0, 1}2λ to the
verifier.

5. Finally, V computes M[yi]
′ ← ∆ ·2k ·pi+K[yi] ∈ Z2k+2s for i = 1, . . . , n,

checks h
?
= H(M[y1]

′, . . . ,M[yn]
′) and outputs (success) if the equality

holds and aborts otherwise

CheckZero’ CheckZero′ denotes a variant of the above which checks that x̃i =
0 (mod 2k+s), and is only used in the multiplication check below. The
difference is that only the upper s bits of the x̃i are hidden by the pi (now
from Z2s) instead of the upper 2s bits. The macro Open′([x], lst) is similarly
an adaption revealing the lower k + s bits and using CheckZero′.

MultiplicationCheck The parties proceed on input
(CheckMult, ([ai], [bi], [ci])

n
i=1) as follows:

1. P aborts if ai · bi 6= ci (mod 2k) for some i = 1, . . . , n.
2. Let lst := ∅.
3. Generate ([xi])

n
i=1 ← Random() followed by [zi] ← Input(xi · bi) for

i = 1, . . . , n.
4. V sends a random value η ∈R Z2s to P.
5. Compute εi ← Open′(η · [ai]− [xi], lst) for i = 1, . . . , n.
6. Run CheckZero′((η · [ci]− [zi]− εi · [bi])ni=1, lst). If successful, V returns

(success), otherwise abort.

Figure 3.19: Protocol Π
Z
2k

ComZK-b instantiating FZ
2k

ComZK using a Mac’n’Cheese-
style [BMRS21b] multiplication check.

134 CHAPTER 3. APPENZELLER TO BRIE

Proof of Π
Z
2k

ComZK-a

We state the security of our protocol as follows:

Theorem 11. The protocol ΠZ
2k

ComZK-a(Figures 3.17 & 3.18) securely realizes the func-
tionality FZ

2k

ComZK: No environment can distinguish the real execution from a simulated
one except with probability (qcz + qcm) · 2−s+1 + qcm ·

(
nB+C

B

)−1, where qcz is the sum of
calls to CheckZero and Open, and qcm the number of calls to CheckMult.

We prove the theorem in the UC model by constructing a simulator that generates
a view indistinguishable to that in a real protocol execution. In the case of a corrupted
verifier, the simulation is perfect. For a corrupted prover, the distinguishing advan-
tage depends on the soundness properties of the CheckZero and CheckMult protocols in
Π

Z
2k

ComZK-a. These are stated in the following two lemmata. The proof of Theorem 11 is
given afterwards.

Lemma 10. If P∗ and V run the CheckZero protocol of Π
Z
2k

com−a with commitments
[x1], . . . , [xn] and xi 6≡k 0 for some i ∈ {1, . . . , n} then V outputs (success) with probability
at most εcz := 2−s+1.

Proof of Lemma 10. Suppose P∗ and V run the protocol on commitments [x1], . . . , [xn],
but (x1, . . . , xn) 6≡k (0, . . . , 0). Hence, there is an index i∗ ∈ {1, . . . , n} with xi∗ 6≡k 0.
Thus, also yi∗ 6≡k 0. Write ỹi∗ = 2k · pi∗ + δ with δ ∈ Z2k \ {0}. Let p′i ∈ Z2s for
i = 1, . . . , n denote the values sent by the prover instead of p1, . . . , pn and define a :=
(∆ · 2k · p′1 + K[[]y1], . . . ,∆ · 2k · p′n + K[[]yn]). Let h = H(a) be the message an honest
prover would send, and h′ ∈ {0, 1}s the message that P∗ actually sends. V outputs
success, if h′ = h holds. We make a case distinction on how P∗ could produce such an
h′:

1. First, P∗ could try to compute the message a that V inputs into H, and then
compute h′ := H(a) = h. To this end, given M[[]yi∗] = ∆ · ỹi∗ + K[[]yi∗], P∗ needs
to come up with a value M[[]yi∗]

′ = ∆ · 2k · p′i∗ +K[yi∗]. Let v ∈ N maximal such
that 2v | δ. By computing

∆ =
M [yi∗]−M [yi∗]

′

2v
·
(
2k · (pi∗ − p′i∗) + δ

2v

)−1
(mod 2k+s−v),

P∗ could recover ∆ ∈ Zs. Hence, this strategy is successful with probability at
most 2−s.

2. If P∗ is not able to compute a, then h = H(a) is uniformly random from P∗’s
view. So whatever message h′ it sends, h = h′ holds with probability at most 2−s.

By the union bound, P∗ can produce such an h′ with probability at most 2−s+1.

Note that the CheckZero protocol is based on the batch check from [WYKW21b,
DNNR17],

3.5. INTERACTIVE PROOFS OVER Z2k 135

Lemma 11. If P∗ and V run the CheckMult protocol of ΠZ
2k

com−a with parameters B,C ∈
N such that C ≥ B and inputs ([ai], [bi], [ci])

n
i=1 and there exists an index 1 ≤ i ≤ n

such that ai · bi 6≡k ci then V outputs (success) with probability at most εcm + εcz with
εcm :=

(
nB+C

B

)−1, and εcz the soundness error of CheckZero given in Lemma 10.

Proof of Lemma 11. Suppose P∗ and V run the CheckMult protocol with inputs as de-
scribed in the lemma.

If the proposed multiplication triples ([xi], [yi], [zi])
ℓ
i=1 are valid, i.e. xi · yi = zi for

i = 1, . . . , ℓ, and all commitments are opened to the correct values, then the values wk 6= 0
for the invalid input triples due to the correctness of Beaver multiplication [Bea92]. So
the verifier outputs (failure).

Therefore, P∗ has two possible options: 1. It can try to cheat during the CheckZero
in Step 9 to reveal some different values d′, e′ 6= d, e or wk 6= 0 in Step 8. This succeeds
with probability at most εcz (see Lemma 10). 2. It can choose to generate invalid
multiplication triples. This can only be successful, if no invalid triples are detected
in Step 7, and then invalid triples are paired up with invalid inputs in the right way.
Weng et al. [WYKW21b] have formalized this as a “balls and bins game”. According
to Lemma 2 of [WYKW21b], an adversary wins this game with probability at most
εcm =

(
nB+C

B

)−1.
By the union bound, P∗ can make V output (success) with probability at most

εcz + εcm.

Note that the CheckMult protocol is based on the corresponding check from Wolver-
ine [WYKW21b], and the same analysis also applies to the Z2k case.

We now state the proof of Theorem 11.

Proof of Theorem 11. To show security in the UC-model, we construct a simulator S
with access to the ideal functionality FZ

2k

ComZK. The environment can choose to corrupt
one of the parties, whereupon S simulates the interaction for the corrupted party. We
cover the two cases separately, and first consider a corrupted prover, then a corrupted
verifier.

Throughout the proof, we assume that the parties behave somewhat sensible, e.g.
they use correct value identifiers, both parties access the functionality in a matching
way, and that the simulator can always detect which method is to be executed.

Malicious Prover S sends (corrupted,P) to the ideal functionality FZ
2k

ComZK. It also
creates copies of the prover P∗ and verifier V, and runs the verifier according to the
protocol Π

Z
2k

ComZK-a, while letting the prover behave as instructed by the environment.
For this, S simulates the functionality of Fs,k+s

vole2k with corrupted P. If the simulated
P aborts the protocol, S sends (abort) to FZ

2k

ComZK. The method calls are simulated as
follows:

For Random, the parties call the Expand of Fs,k+s
vole2k to generate a commitment [r] of

the form M[r] = ∆ · r̂ + K[r]. Since, P∗ is corrupted, it is allowed to choose its outputs

136 CHAPTER 3. APPENZELLER TO BRIE

r̂,M[r] ∈ Z2k+s . S sends (Random) on behalf of P∗ to FZ
2k

ComZK and chooses r := r̂ mod 2k

as value of the commitment. Hence, P∗ receives r̂,M[r] ∈R Z2k+s as in the real protocol
(in the Fs,k+s

vole2k-hybrid model). And S keeps track of all the commitments generated.
Affine is purely local, so there is no interaction to be simulated. S instructs the

ideal functionality to perform the corresponding operations and computes the resulting
commitments.

For CheckZero, S first simulates the calls to Random, and runs the protocol with the
simulated parties. Then it sends the CheckZero message to FZ

2k

ComZK. If the simulated
verifier aborts, then S sends (abort) to FZ

2k

ComZK, which results in the ideal verifier abort-
ing. To show that the verifier’s output is indistinguishable between the real execution
and the simulation we combine the following two facts: 1. If the verifier aborts in the
real execution, then it does the same in the simulation. This holds by definition of the
simulation. 2. If the verifier outputs (success) in the real execution, then it does the
same in the simulation except with probability at most εcz (defined in Lemma 10). We
show the contraposition, i.e. if the verifier aborts in the simulation, then it does the
same in the real execution except with the given probability. By definition of FZ

2k

ComZK,
the premise hold if one of the input commitments contains a non-zero value. Thus, we
can apply Lemma 10, which gives us the desired consequence.

For Input, the parties first invoke Random to obtain a commitment [r], so S simulates
this (see above). Input is the only method, where the prover has a private input. The
simulator can extract it from P∗’s message δ ∈ Z2k by computing x ← δ + r (it knows
r because it simulates the Fs,k+s

vole2k functionality). Then S can send (Input, x) on behalf
of the corrupted prover to the ideal functionality FZ

2k

ComZK. For correctness, note that a
commitment [r] + (x− r) contains the value x iff. [r] is a commitment to r.

Since Open is implemented in terms of Affine and CheckZero, and we have that a
commitment [x] contains a value x iff. [x]−x is a commitment to 0. We can simulate the
methods as describe above. Hence, the simulation of Open fails exactly if the simulation
of CheckZero fails.

CheckMult is simulated in the same way as CheckZero. Here, we apply Lemma 11,
and get that the output of V is the same in the simulation and in the real execution
except with probability at most εcz + εcm.

This concludes the proof for the case of a corrupted prover. As shown above, we can
simulate its view perfectly for all methods. Overall, by the union bound, the environment
has an distinguishing advantage of

(qcz + qcm) · εcz + qm · εcm.

Malicious Verifier The setup of the simulation in case of a corrupted verifier V∗ is
similar as before. S sends (corrupted,V) to the ideal functionality FZ

2k

ComZK. It creates
copies of the prover P and verifier V∗. The prover is run according to the protocol,
whereas the environment controls the verifier. For this, S simulates the functionality of
Fs,k+s

vole2k with corrupted V. For all methods, since V does not have any private inputs no

3.5. INTERACTIVE PROOFS OVER Z2k 137

input extraction is necessary. So the simulator can just send the corresponding message
on behalf of the verifier to FZ

2k

ComZK. The method calls are simulated as follows:
During initialization, S allows V∗ to choose its MAC key ∆ with the simulated Fs,k+s

vole2k
functionality.

For Random, the parties call the Expand of Fs,k+s
vole2k to generate a commitment [r] of

the form M[r] = ∆ · r̂ + K[r] where V∗ can choose K[r]. S sends (Random) on behalf of
V∗ to FZ

2k

ComZK.
As before, Affine is purely local, so there is no interaction to be simulated. S in-

structs the ideal functionality to perform the corresponding operations and computes
the resulting commitments.

For CheckZero, S sends the respective message to FZ
2k

ComZK. If it aborts, then S
instructs the simulated P to also abort by sending (abort) to the simulated V, which
finishes the simulation. Otherwise, S simulates the normal protocol execution: It
first simulates the calls to Random. Since FZ

2k

ComZK did not abort, we know that x1 =
· · · = xn = 0. We also know ∆,K[x1], . . . ,K[xn],K[r1], . . . ,K[rn], so we can sample
p1, . . . , pn ∈R Z2s and compute M[yi]

′ ← ∆ · 2k · pi + K[xi] + 2k · K[ri] for i = 1, . . . , n.
Then, the pi and h := H(M[y1]

′, . . . ,M[yn]
′) are as expected by the verifier.

For Input, S first simulates the call to Random as above, and then sends a random
value δ ∈R Z2k to the simulated verifier. Also, S sends (Input) on behalf of V∗ to FZ

2k

ComZK.
For Open, S sends the Open on behalf of V∗ to FZ

2k

ComZK and receives the committed
values x1, . . . , xn ∈ Z2k as output. It sends these values to the simulated verifier, and
then simulates Affine and CheckZero as above. So the view is distributed identically to
the real protocol.

For CheckMult, S sends the corresponding message on behalf of the corrupted verifier
to FZ

2k

ComZK. If it aborts, then S instructs the simulated P to also abort by sending (abort)
to the simulated V. Otherwise, S simulates the complete protocol using the constant
value 0 for all of the prover’s commitments. Because the simulated P behaves like
an honest prover, it samples all multiplication triples ([xi], [yi], [zi])

ℓ
i=1 correctly. Since

the view of the V is distributed identically to the real execution and independent of
the prover’s real inputs: The opened triples in Step 6 are uniformly distributed, valid
multiplication triples. The values d, e revealed in Step 8a are distributed uniformly in
Z2k , and the CheckZero passes since the wk are all 0.

This concludes the proof for the case of a corrupted verifier. As shown above, we can
simulate its view perfectly for all methods. Overall, the environment has a distinguishing
advantage as stated in the theorem.

Proof of Π
Z
2k

ComZK-b

The formal statement of security is given in the following theorem:

Theorem 12. The protocol ΠZ
2k

ComZK-b (Figure 3.19) securely realizes the functionality
FZ

2k

ComZK: No environment can distinguish the real execution from a simulated one except

138 CHAPTER 3. APPENZELLER TO BRIE

with probability (qcz + qcm) · 2−s+1 + qcm · 2−s, where qcz is the sum of calls to CheckZero
and Open, and qcm the number of calls to CheckMult.

Proof of Theorem 12. Since most of ΠZ
2k

ComZK-b is actually identical to Π
Z
2k

ComZK-a we will
refer to the Proof of Theorem 11 for these parts, and focus on the differences here.

The subroutines CheckZero and CheckZero′ are only very slightly modified from the
CheckZero from Π

Z
2k

ComZK-a. The latter is exactly the same as in before, but for the larger
message space Z2k+s , and the former additionally hides some more bits. Hence, the same
Lemma 10 can be applied here.

The remaining part of the proofs considers the different implementation of CheckMult:

Malicious Prover The setup of the simulation is the same as in the Proof of Theo-
rem 11, i.e. S sends (corrupted,P) to the ideal functionality FZ

2k

ComZK and simulates copies
of prover and verifier.

For the method CheckMult, S can exactly simulate the protocol since it knows all
the commitments, and η is sampled uniformly at random from Z2s .

If the simulated verifier aborts, it sends (abort) to FZ
2k

ComZK. Thus, if the verifier aborts
in the real execution, then it does the same in the simulation. On the other hand, if the
verifier aborts in the simulation, then by Lemma 12 it also aborts in the real protocol,
except with probability εcz + ε′cm.

Malicious Verifier Again, we have the same setup as before, i.e. the simulator sends
(corrupted,V) to the ideal functionality FZ

2k

ComZK and simulates copies of prover and veri-
fier.

For CheckMult, we use the same strategy as in the Proof of Theorem 11: S sends
the corresponding message on behalf of the corrupted verifier to FZ

2k

ComZK. If it aborts,
then S instructs the simulated P to also abort by sending (abort) to the simulated V.
Otherwise S simulates the complete protocol using the constant value 0 for all of the
prover’s commitments so that the verifier’s view is the same as in the real execution.

Summarizing, we have shown that no environment can distinguish the simulation
from a real execution of the protocol with more than the stated advantage.

Except for the simulation of CheckMult, the proof of Theorem 12 is largely similar
to the proof of Theorem 11. Again, we first prove a lemma about the soundness error
of the CheckMult operation, that we use to show indistinguishability of our simulation.
The proof is included here, since it shows why the adaption of the SPDZ-style sacrificing
check from large fields to the Z2k setting is secure.

Lemma 12. If P∗ and V run the CheckMult protocol of ΠZ
2k

ComZK-b with inputs ([ai], [bi], [ci])ni=1

such that there exists an index 1 ≤ i ≤ n such that ai · bi 6≡k ci, then V outputs
(success) with probability at most ε′cm + εcz with ε′cm := 2−s, and εcz the soundness
error of CheckZero given in Lemma 10.

3.5. INTERACTIVE PROOFS OVER Z2k 139

Proof of Lemma 12. Suppose P∗ and V run the CheckMult protocol with inputs as de-
scribed in the lemma. Since CheckZero′ is a variant of CheckZero from Π

Z
2k

ComZK-a for the
larger message space Z2k+s , we can apply Lemma 10 again: Hence, a P∗ that tries to
cheat during CheckZero′ is detected by V except with probability εcz.

Now assume this does not happen, all the zero checks are correct, and V accepts.
Let i be an index of an invalid triple such ai · bi 6≡k ci. Then, P has chosen zi ∈ Zsk+s

such that

0 ≡k+s η · ci − zi − εi · bi ≡k+s η · ci − zi − η · ai · bi + xi · bi
⇐⇒ zi − xi · bi ≡k+s η · (ci − ai · bi).

Let v ∈ N be maximal such that 2v divides ci − ai · bi. Since (ai, bi, ci) is an invalid
triple modulo 2k, it is v < k. Now we divide both sides of the equation by 2v while also
reducing the modulus to obtain:

(zi − xi · bi)/2v ≡k+s−v η · (ci − ai · bi)/2v

Since (ci − ai · bi)/2v is odd, it is invertible modulo 2k+s−v and we can move it to the
other side, getting

(zi − xi · bi)/2v · ((ci − ai · bi)/2v)−1 ≡k+s−v η.

Since k > v, we have k + s − v > s, and the prover would have guessed all s bits of
η ∈ Zss which happens only with probability 2−s. Therefore, by the union bound, P∗
can make V output (success) with probability at most εcz + 2−s.

3.5.4 Instantiating VOLE mod 2k

Our ZK protocol over Z2k requires an actively secure protocol for VOLE in Z2k+s . Un-
fortunately, this means we cannot take advantage of the most efficient LPN-based proto-
cols [BCG+19a, WYKW21b], which currently only have an actively secure setup protocol
over fields. We consider two possible alternatives. First, as done in [CDE+18], we can
use the protocol for correlated oblivious transfer over general rings from [Sch18], which
gives an amortized communication cost of s(k + s) bits per VOLE. This is quadratic in
the bit length, which will be a bottleneck for our ZK protocols in terms of communica-
tion.
Alternatively, we can obtain sublinear communication using LPN-based VOLE, but us-
ing generic actively secure 2-PC for the setup. Here, we can use either the primal variant
of LPN over rings, as done in [SGRR19], or dual-LPN based on quasi-cyclic codes, as
used over Z2 in [BCG+19a] (these can also be defined over Z2k under an analogous hard-
ness assumption). Since dual-LPN has lower communication, in the following we assume
this variant. Now, for the setup procedure, if we produce a VOLE of length N = 107

with parameters (c, t) = (4, 54) from [BCG+19a], the bottleneck is around 2t log(cN/t)
AES evaluations in 2-PC, which gives a total of ≈ 1 AND gate per VOLE output. Using
a TinyOT-like protocol [HSS17] combined with LPN-based OT [BCG+19a, YWL+20],

140 CHAPTER 3. APPENZELLER TO BRIE

each AND gate needs around 32 bits of communication, more than an order of magnitude
less than the first approach (note that TinyOT incurs a much larger round complexity).
For future work, an important problem is to adapt the current techniques for actively se-
cure VOLE over fields to the ring setting, which would greatly reduce the preprocessing
cost.

3.6. EVALUATION 141

Table 3.3: Amortized communication cost in bits per instruction. k is the size of the mod-
ulus, s depends on the statistical security parameter, B is the bucket size of ΠZ

2k

ComZK-a.
Protocol 1 CheckZero 1 Open 1 CheckMult

Π
Z
2k

ComZK-a s & 1 VOLE k + s & 1 VOLE 3B(k + s) & 4B VOLE
Π

Z
2k

ComZK-b 2s & 1 VOLE k + 2s & 1 VOLE 2k + 4s & 3 VOLE

3.6 Evaluation

3.6.1 Communication Complexity

Proofs over Z2k

In the protocol ΠZ
2k

ComZK-a, V samples a permutation π in CheckMult and sends it to P.
To reduce the communication costs, V can send a random seed instead, which both
parties expand with a PRG to derive the desired random values. In this way, V needs to
transfer only λ bits (for a computational security parameter λ) instead log2(n · B + c)!
bits for CheckMult.

As described in Section 3.5.1 and Section 3.5.2, we need to randomize the upper s or
2s bits when doing a CheckZero or Open operation. We note that in Π

Z
2k

ComZK-a Step 8a and
Π

Z
2k

ComZK-b Step 5 the values get already masked with uniformly random values directly
before the Open operation. Hence, the extra masking step during Open can be omitted.
A similar optimization can be applied in ΠConv.

The amortized communication costs per checked commitment and multiplication
triple of both protocols are given in Table 3.3.

Verifying Conversions

The amortized costs for verifying the correctness of a single conversion tuple ([x0]2, . . . ,
[xm−1]2, JxK) are given in Table 3.4, in terms of the amount of communication required,
and preprocessed correlated OTs or VOLEs. Note that to simplify the table, we assume
that m ≈ logM , and so count the cost of sending one ZM element in the protocol as
m bits. Also, in this analysis we ignore costs that are independent of the number of
conversions being checked. In Section 3.6.2, we give a more detailed breakdown of these
costs, including complexities of the sub-protocols bitADDcarry and convertBit2A.

The “naïve” way of verifying the a conversion would be to have the prover provide
both a set of bits χ = {[x0]p, . . . , [xm−1]p} as well as the value [x]p and then verify that
each element in χ is in fact a bit, as well as that they sum to the value [x]p. This requires
sampling m random VOLEs as well as fixing each of these to a value chosen by the prover.
Afterwards the prover proves that each is a bit by computing CheckZero([xi]p · ([xi]p −
1)), [xi]p ∈ χ which requires multiplication triples over Fp as well as communication.
We list the cost of this “naïve” way of verifying the conversion Table 3.4. To verify

142 CHAPTER 3. APPENZELLER TO BRIE

Table 3.4: Costs of verifying conversions between Z2 and ZM in terms of COTs, VOLEs,
and additional communication. The “basic” protocol uses edaBits directly, while “Sec-
tion 3.3” uses our optimizations. “QS-Circuit” and “QS-Poly” refer to variants that
use [YSWW21b] for circuits and sets of polynomials respectively. m ≈ log(M), k de-
notes the bitsize of the converted value, and B is the bucket size. For Z2k , the costs for
Π

Z
2k

ComZK-a are given. The Π
Z
2k

ComZK-b variant requires Bs additional bits of communication
(see Section 3.5.2).

1 Protocol 1 Comm. in bits 1 #COTs 1 #VOLEs

naive, Zp 2m2 0 2m
basic, Zp, log(p) ≤ s 13Bm+ 6m+B − 1 4Bm+ 3m+B − 1 11B − 4
basic, Zp, log(p) > s 10Bm+ 6m+B − 1 4Bm+ 3m+B − 1 8B − 4
Section 3.3, Zp 8Bm+B 4Bm+B 2B
Section 3.3, Z2k 5Bm+Bs− 3B 4Bm− 3B B
QS-Circuit, Zp 4Bm+B 2Bm+B 2B
QS-Circuit, Z2k 3Bm+Bs−B 2Bm−B B
QS-Poly, Zp 3Bm+ 2B Bm+ 2B 2B
QS-Poly, Z2k 2Bm+Bs Bm B

the multiplications we use the basic version of Mac’n’Cheese [BMRS21b]. The “basic”
baseline comparison in Table 3.4 comes from a straightforward application of using
edaBits for ZK, similarly to [EGK+20]. Namely, this protocol would first generate
consistent edaBits using [EGK+20], and then verify the conversion using a single binary
addition circuit (similar to the bucket-check in Figure 3.5, step 6). However, this requires
doing the check with m verified multiplication triples (over Z2) and a single daBit, which
in turn requires an additional verified multiplication (over ZM). To estimate these costs,
we used [WYKW21b] for verifying AND gates at a cost of 7 bits per gate, and [BMRS21b]
for verifying triples in a larger field.

Since COTs and VOLEs can be obtained from pseudorandom correlation generators
with very little communication [YWL+20, WYKW21b], the remaining online commu-
nication dominates. Hence, our optimized protocol from Section 3.3 saves at least 50%
communication. To give a concrete number, e.g. for the Zp variant with m = 32, when
verifying a batch of around a million triples and 40-bit statistical security, we can use
bucket size B = 3, and the communication cost drops from 1442 to 945 bits, a reduction
of around 35%.

Note that, as mentioned in Section 3.1.2, the “basic” approach can be optimized
by verifying multiplications with QuickSilver [YSWW21b] or the amortized version of
Mac’n’Cheese [BMRS21b]. This would bring the basic costs closer to our optimized pro-
tocols, with the downside of making non-black-box use of information-theoretic MACs,
with QuickSilver, or more rounds of interaction and computation, with Mac’n’Cheese.
There are two variants of QuickSilver which prove satisfiability of circuits (“QS-Circuit”)
or of sets of polynomials (“QS-Poly”) respectively. Since bitADDcarry can be either rep-

3.6. EVALUATION 143

resented as a Boolean circuit or as a set of polynomials over F2, we can use both variants
in our conversion protocol.

These results highlight the advantage of our approach compared to using only daBits.
We also see that using QuickSilver or Mac’n’Cheese to check multiplications (as also done
in the concurrent work Mystique [WYX+21b]) reduces communication by 1.5–3x. This
is because verifying a circuit with these protocols is cheaper than evaluating a circuit in
our approach (even using faulty triples).

3.6.2 Sub-protocols

We look at the two sub-protocols convertBit2A and bitADDcarry that is used in our
protocol verifying converion tuples.

Complexity of bitADDcarry

We assume that the input is distributed prior to running the protocol. The bitADDcarry
circuit is implemented as a ripple-carry adder which computes the carry bit at every
position with the following equation

ci+1 = ci ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)), ∀i ∈ {0, . . . ,m− 1} (3.3)

where c0 = 0 and xi, yi are the i’th bits of the two binary inputs. The output is then

zi = xi ⊕ yi ⊕ ci, ∀i ∈ {0, . . . ,m− 1} (3.4)

and the last carry bit cm. This requires m AND gates and as such m rounds of com-
munication. As all the ⊕ can be computed by P1 and P2 locally (and as such requires
no communication), 1 field element must be communicated per round. As this circuit is
evaluated B− 1 times per bucket, it results in a total for (B− 1)m field elements which
must be communicated.

Complexity of convertBit2A

We consider the procedure convertBit2A as defined in Figure 3.6. We assume that the
input (not the daBit) is distributed prior to running the protocol. This sub-protocol
requires a single daBit to convert the bit authenticated in F2 to FM . Having a single
daBit ([r]2, [r]M), we can convert a value [xm]2 by following the following protocol.

1. Compute [c]2 = [xm]2 + [r]2

2. c← Open([c]2)

3. [x]M = c+ [r]M − 2 · c · [r]M .

We note that the only things requiring communication, is the distribution of the daBit
used during the protocol and the opening of the value [c]2. As such, we conclude that
this requires the sending of four field elements (the opening of [c]2 and the sending of
the two bits of the daBit) and the cost of generating 1 daBit.

144 CHAPTER 3. APPENZELLER TO BRIE

Table 3.5: Conversion tuples that must be checked by ΠConv to ensure statistical security
2−s and bucket size B = C.

s B # of conversion tuples

40 3 ≥1 048 576
40 4 ≥ 10 322
40 5 ≥ 1 024
80 5 ≥1 048 576

3.6.3 Experiments

We have implemented the conversion protocol ΠConv in the Rust programming language
using the Swanky library1. The VOLE protocol over the 61-bit field Fp with p = 261− 1
is instantiated using [WYKW21b]. All benchmarks were run on a MacBook Pro 2018,
2.9GHz 6-Core Intel Core i9, 32GB 2 400MHz DDR4, with one thread per party. All
experiments are run in a Docker container running Ubuntu and using tc to artificially
limit the network bandwidth, and simulating 1ms latency.

Experimental Results

Our implementation is currently capable of verifying conversions for m ≤ 60. We there-
fore run our conversion protocol on bit lengths m ∈ {8, 16, 32, 60}. All benchmarks are
run ensuring statistical security of 240, by varying the sizes of B and C according to table
3.5. Lastly, all of these listed benchmarks are run using Wolverine [WYKW21b] to verify
multiplications as in protocol ΠConv of Section 3.3.2. We also implemented the variant
of our protocol using QuickSilver [YSWW21b], which reduces the runtimes by around a
factor of two, thanks to the lower communication and preprocessing requirements.

We benchmarked our conversion protocol ΠConv from Section 3.3, as well as a variant
which uses Quicksilver [YSWW21b] to verify the multiplications in bitADDcarry (instead
of faulty multiplication triples). We run ΠConv to verify N = 1024, 10 322, 1 048 576
conversion tuples yielding bucket sizes of B = C = 5, 4, 3 respectively, and measure the
run-time with different network network bandwiths (20Mbit/s, 50Mbit/s, 100Mbit/s,
500Mbit/s, and 1Gbit/s).

Tables 3.6 and 3.7 show the measured communication and run-times for our main
protocol. Little to no difference is generally seen between 500Mbit/s and 1Gbit/s,
showing that the protocol has a bottleneck regarding local computation (however tiny
this may be).

Tables 3.8 and 3.9 show the measured communication and run-times for the variant
with QuickSilver [YSWW21b].

Compared to our main protocol, we see a reduction in not only communication, but
also the overall running time of the protocol, as both are roughly cut in half. We estimate
that this overall gain in efficiency comes from no longer requiring multiplication triples

1https://github.com/GaloisInc/swanky

https://github.com/GaloisInc/swanky

3.6. EVALUATION 145

Table 3.6: The data transferred in Mbit by the prover P and the verifier V when
verifying N conversion tuples of bit size m with bucket size B = C, using our protocol
from Section 3.3.

2 m = 8 2 m = 16 2 m = 32 2 m = 60

P V P V P V P V

N = 1024, B = C = 5

Init 104.65 19.65 104.65 19.65 104.65 19.65 104.65 19.65
Conv 2.45 0.10 4.09 0.01 7.38 0.02 13.13 0.04

N = 10 322, B = C = 4

Init 105.24 19.65 105.24 19.65 105.24 19.65 105.24 19.65
Conv 19.24 0.10 32.46 0.01 58.89 0.02 107.37 4.48

N = 1048 576, B = C = 3

Init 171.69 19.65 173.92 24.09 178.38 32.98
Conv 1 488.70 57.77 2 522.08 111.09 4 591.06 222.17

to verify the multiplications, leading to reduced communication and fewer preprocessed
COTs. Even if the multiplication triples may be faulty such that for a triple (x, y, z) it
may not be true that x · y = z, they still require additional communication and COTs
when used to verify the bitADDcarry circuits, compared with QuickSilver.

Table 3.10 shows the communication required between the prover and verifier when
verifying 220 conversion tuples, when varying the bit lengths.In this table we use Init to
define the construction of the channels used by the two parties as well as the initial setup
of the Wolverine VOLE protocol and the initial commitments to the provers input. The
row Conv covers the time it takes for the prover and verifier to run ΠConv on the input
provided by the prover. This covers generation of the required edaBits, daBits and
multiplication triples. Here, even for the smallest setting of m = 8 it can already be
seen that the conversion costs dominates both the VOLE setup and the Init phase. In
Table 3.11 we list the time for the same setup except the bit length is fixed at m = 32. It
can be seen that increasing the network bandwidth beyond 100Mbit/s does not improve
the protocol runtime by much. Therefore, for our current implementation, computation
is the limiting factor.

146 CHAPTER 3. APPENZELLER TO BRIE

Table 3.7: Run-time in s when verifying N conversion tuples of bit size m with bucket
size B = C using our protocol from Section 3.3.

m 20Mbit/s 50Mbit/s 100Mbit/s 500Mbit/s 1Gbit/s

N = 1024, B = C = 5

8
Init 13.6 9.7 8.5 7.3 7.4
Conv 0.6 0.6 0.7 0.5 0.6

16
Init 13.6 10.3 8.4 7.4 7.3
Conv 1.2 1.1 1.0 0.9 0.7

32
Init 13.6 9.8 8.5 7.3 7.3
Conv 2.0 2.0 2.3 1.9 2.3

60
Init 13.6 9.8 8.5 7.4 7.4
Conv 4.2 3.0 2.9 4.1 2.2

N = 10 322, B = C = 4

8
Init 13.8 9.8 8.5 7.4 7.4
Conv 1.3 0.8 0.8 0.8 0.8

16
Init 13.7 9.7 8.6 7.4 7.4
Conv 2.5 1.6 1.4 1.4 0.1

32
Init 13.7 9.8 8.6 7.4 7.4
Conv 4.9 2.3 2.6 2.7 2.8

60
Init 13.7 9.7 8.5 7.5 7.4
Conv 9.8 7.3 6.5 6.2 5.5

N = 1048 576, B = C = 3

8
Init 17.4 11.5 9.6 7.8 7.8
Conv 120.3 68.8 52.7 46.6 46.0

16
Init 19.2 13.7 11.0 9.3 9.2
Conv 209.8 123.6 98.5 88.3 87.6

32
Init 22.6 16.4 14.0 12.2 12.1
Conv 399.2 241.0 189.3 173.5 169.6

3.6. EVALUATION 147

Table 3.8: The data transferred in Mbit by the prover P and the verifier V when
verifying N conversion tuples of bit size m with bucket size B = C using QuickSil-
ver [YSWW21b] to verify multiplications.

2 m = 8 2 m = 16 2 m = 32 2 m = 60

P V P V P V P V

N = 1024, B = C = 5

Init 104.65 19.65 104.65 19.65 104.65 19.65 104.65 19.65
Conv 1.46 0.00 2.12 0.00 3.43 0.00 5.72 0.00

N = 10 322, B = C = 4

Init 105.24 19.65 105.24 19.65 105.24 19.65 105.24 19.65
Conv 11.31 0.00 16.60 0.00 27.17 0.00 45.67 0.00

N = 1048 576, B = C = 3

Init 171.69 19.65 173.92 24.09 178.38 32.98
Conv 869.12 26.66 1 282.92 48.88 2 108.28 88.86

148 CHAPTER 3. APPENZELLER TO BRIE

Table 3.9: Run-time in s when verifying N conversion tuples of bit size m with bucket
size B = C using QuickSilver [YSWW21b] to verify multiplications.

m 20Mbit/s 50Mbit/s 100Mbit/s 500Mbit/s 1Gbit/s

N = 1024, B = C = 5

8
Init 13.6 9.8 8.4 7.4 7.3
Conv 0.1 0.1 0.1 0.1 0.1

16
Init 13.8 9.7 8.3 7.4 7.3
Conv 0.1 0.2 0.1 0.1 0.2

32
Init 13.6 9.8 8.4 7.3 7.3
Conv 0.2 0.1 0.3 0.2 0.2

60
Init 13.5 9.7 8.3 7.3 7.4
Conv 0.3 0.2 0.1 0.1 0.2

N = 10 322, B = C = 4

8
Init 13.6 9.7 8.4 7.3 7.3
Conv 0.6 0.4 0.3 0.3 0.3

16
Init 13.7 9.7 8.5 7.4 7.3
Conv 0.9 0.5 0.4 0.4 0.4

32
Init 13.6 9.7 8.4 7.5 7.4
Conv 1.5 0.8 0.6 0.6 0.6

60
Init 13.6 9.7 8.5 7.4 7.4
Conv 2.5 1.3 1.0 1.0 0.9

N = 1048 576, B = C = 3

8
Init 17.4 11.4 9.4 7.8 7.7
Conv 66.6 39.9 30.1 24.8 24.8

16
Init 19.2 13.2 10.9 9.2 9.2
Conv 105.2 65.3 51.2 44.0 43.4

32
Init 22.5 16.3 13.8 12.1 12.1
Conv 180.6 114.4 93.5 81.6 80.0

3.6. EVALUATION 149

Table 3.10: Communication between the prover (P) and verifier (V) required to verify
220 conversion tuples where C = B = 3 with Wolverine [WYKW21b] multiplication
check.

bit size (m) 2 8 2 16 2 32
P V P V P V

init (in Mb) 100.1 10.8 100.1 10.8 100.1 10.8
input (in Mb) 71.7 8.9 73.9 13.4 78.3 22.3
conv (in Mb) 1488.7 57.8 2522.1 111.1 4591.1 222.2

Table 3.11: Run-time in s for verifying 220 conversion tuples with m = 32 and B = C = 3
with multiplication check of [WYKW21b].

Bandwidth 20Mbit/s 100Mbit/s 500Mbit/s 1Gbit/s

Init 22.6 14.0 12.2 12.1
Conv 399.2 189.3 173.5 169.6

150 CHAPTER 3. APPENZELLER TO BRIE

Chapter 4

Cheddar – Oh, Range Proofs for
VOLE-based Zero-Knowledge!

4.1 Introduction

Zero-Knowledge (ZK) proofs allow a prover to prove to a verifier that a certain statement
is true, while revealing no information beyond that the statement is true. The verifier
should only be convinced of statements that are true, regardless of whether or not
the prover is behaving honestly. This idea works for arbitrary functions where the
computation typically is modeled as circuits of operations and the efficiency of a proof
depends on the number of gates that the circuit has. Rather than use general circuits for
everything, oftentimes protocols built for specific purposes tend to be more efficient in
terms of communication and computation. One of these specific types of zero-knowledge
proofs are those that allows a prover to prove that a secret value x (committed or
encrypted) lies in some public range [a, b], meaning that a ≤ x ≤ b. This is what is
known as a zero-knowledge range proof.

Range proofs are a core component in many applications including anonymous cre-
dentials [Cha90], e-voting [Gro05, ABG+21], e-cash [CHL05], or lattice-based cryptogra-
phy in general where security and correctness is based on the smallness of certain integers
and vectors [CMM19, LLM+16, GHL22]. Also of interest in recent years is verifiability
of large-scale neural network inference [LXZ21]. This requires a large number of both
linear operations as well as non-linear operations such as ReLU, Sigmoid, Max Pooling,
SoftMax and the likes. The main difficulty here lies in the fact that these non-linear
operations cause a loss in accuracy when the values are represented as fixed-point num-
bers, something that the linear operations require. To this end, range proofs can also
be used to convert between fixed-point numbers and floating-point numbers, which can
then be utilized in the protocols to obtain maximum accuracy.

As seen above, range proofs have a wide variety of applications and due to this,
many constructions have been proposed. What all of these have in common, is that
they fall into two main paradigms: (1): range proofs based on n-ary decomposition
[Gro11, CCs08, BBB+18], or (2): range proofs based on square decomposition [Bou00,
Lip03, Gro05, CPP17, GHL22].

(1) When considering proves based on n-ary decomposition, the prover will prove state-
ments of the form x ∈ [0, nk) by computing and committing to an n-ary decom-
position (x0, . . . , xk−1) of x. The prover then has to show that x =

∑k−1
i=0 xi · ni

as well as xi ∈ [0, n). If the parties are using a commitment scheme satisfying
some homomorphic properties, the above approach can usually be made into a
generic proof of x ∈ [a, b] instead. In this paradigm, the leading method is Bul-

151

152 CHAPTER 4. CHEDDAR

letproofs [BBB+18] whose approach uses generalized Pedersen commitments to
commit to the bit-decomposition of x as well as an efficient way of proving that all
the committed values are bits. A usual advantage of proofs in this paradigm (one
also Bulletproofs satisfy) is that they won’t need to rely on trusted setups, which
comes in handy when considering real-world applications such as cryptocurrencies,
where it is critical that there exists no central authority. Constructions based on
this paradigm however, require more commitments based on the size of the ranges
as well as n, which can be quite costly in communication.
Recently, a third alternative [BBMH+21b] was proposed, which allows the prover
to commit to the decomposition in a binary field rather than the large field which
x exists in. This saves communication, as the keys and elements are much smaller
and it doesn’t require the prover to prove that the committed-to elements are bits.
It puts no restriction on the types of field.

(2) When considered proves based on square decomposition, the prover initially have
some x where the prover wants to prove that x ∈ [a, b]. This reduces to proving that
x−a and b−x are positive, which in turns means that y = (x−a)(b−x) is positive
(unless both are negative of course). Proving that y is positive, can be done by
having the prover compute four integers (α, β, γ, δ) so that y = α2 + β2 + γ2 + δ2.
The idea of showing that an integer is positive by decomposing it into four squares
was initially proposed by Lipmaa [Lip03]. This can always be done (assuming y
is positive), due to Lagrange’s four square theorem. The prover then commits
to these four squares and shows that (α, β, γ, δ) is a correct decomposition (i.e.
y = α2 + β2 + γ2 + δ2) over the integers. It is crucial that this is over the integers,
as any overflow in this computation can cause an incorrect result. Thus, protocols
based on this paradigm require only a fixed number of commitments. Adding
further to this particular strength, [Gro05] noticed that one can decompose 4y+1
as a sum of three squares rather than 4 (positive integers congruent to 1 mod 4
can always be decomposed like this). This comes at the cost of leaking 1 bit for
each element.
All (until recently) known integer commitment schemes require the use of RSA
groups or large class groups, which both require trusted setups. In a recent work
[CKLR21] however, this was done away with by constructing a bounded integer
commitment scheme, which is based on groups in which the discrete log (DLOG)
problem is hard. The main drawback though of this construction, is that it requires
quite large groups which are not used in standard applications.

4.2 Square Decomposition
In this section we will first describe how to compute both a four-square decomposition
as well as a three-square decomposition. We then discuss a potential optimization to the
way of computing the three-square decomposition; as part of the protocol the prover has
to factor a random integer into its prime factors. If the random integer is a semiprime,

4.2. SQUARE DECOMPOSITION 153

this will succeed. We instead consider a different strategy in which we sample the two
prime numbers first.

4.2.1 Four-Square Decomposition

To write x as four-squares, one can use the following algorithm due to Lipmma [Lip03].

1. Write x in the form x = 2t(2k + 1) where t, k ≥ 0.

2. If t = 1 then:

(a) Choose random a ≤
√
x, b ≤

√
x− a2, such that exactly one of a, b is even.

Let p← x− a2 − b2. Now p ≡ 1 mod 4.
(b) If p is not prime, then go back to step 2a. Otherwise use Cornacchias algo-

rithm (Section 4.2.3) to compute p = c2 + d2.
(c) Output a, b, c, d

3. If t is odd (but not 1), find a representation (a, b, c, d). Let s← 2(t−1)/2 and output
(sa, sb, sc, sd).

4. If t is even, find a representation a2 + b2 + c2 + d2 for x = 2(2k + 1) instead,
using Step 2. Then convert this representation to a representation for x = (2k+1)
instead as follows: Group a, b, c, d so that a ≡ b mod 2 and c ≡ d mod 2. Let
s← 2(t−1)/2 and output (s(a+ b), s(a− b), s(c+ d), s(c− d)).

Which leads to the following theorem

Theorem 13 (four-square decomposition). An integer x can be represented as x =
a2 + b2 + c2 + d2 with integers a, b, c, d if and only if x ≥ 0. Moreover, if x ≥ 0, then the
corresponding representation can be computed efficiently by using the above algorithm.

A proof of the above theorem is due to Lipmaa [Lip03].

4.2.2 Three-Square Decomposition

In this section we will first describe the original algorithm for computing a three-square
decomposition by Rabin and Shallit[RS86], before describing an optimized variation due
to Groth [Gro05] which revolves around factoring. Finally we will discuss probabilities of
whether or not random integers are perfect squares or semiprimes, as part of a potential
optimization to the algorithm due to Groth.

Original Three-Square Decomposition

This algorithm is due to Rabin and Shallit[RS86].

1. If n ≡ 0 mod 4: Compute (x, y, z)← three− squares(n4) and output 2x, 2y, 2z)

154 CHAPTER 4. CHEDDAR

2. If n ≡ 7 mod 8: Output “No representation” and abort

3. If n ≡ 3 mod 8:

(a) Choose random x ≤ b
√
nc

(b) Compute p← 1
2(n− x2)

(c) If p is a prime, let (y, z) ← cornacchia(p) and output (x, y + z, y − z). Oth-
erwise go to Step 3a

4. If n is a perfect square: then output (
√
n, 0, 0)

5. If n ≡ 1 mod 4 or n ≡ 2 mod 4:

(a) Choose random x ≤ b
√
nc

(b) Compute p← (n− x2)

(c) If p is a prime, let (y, z)← cornacchia(p) and output (x, y, z). Otherwise go
to Step 5a

Theorem 14. The preceding algorithm is correct and with high probability returns an
expression of n as the sum of three squares, for all sufficiently large n.

The proof of Theorem 14 can be found in [RS86]. The above algorithm has been
altered slightly from the original. Specifically, we use cornacchia’s algorithm to compute
the two-square decomposition of primes. This algorithm is faster than what Rabin and
Shallit originally proposed and both algorithms rely on Theorem 15. Note that the
above algorithm could potentially return ”No representation” on some integers, which
could leak information on the provers input, in case this is used during a range proof.
A fix for this would be to compute a new input n← 4n+ 1 based on the original input
n. Now, if this new n is positive, then so is the original n. This would force a nice
representation, such that it can always be decomposed, at the cost of working over a
slightly larger input.

Three-Square Decomposition via Factoring

One can also compute a three-square decomposition by factoring an integer into two
prime factors. Groth [Gro05] proposes a way of decompositing 4x+1 into three squares
to show that 4x+1 is positive (thus also showing that x is), such that 4x+1 = a2+b2+c2.
The strategy due to Groth is

1. Guess an even ai at random such that 4x + 1 − a2 is a product of primes on the
form X · Y ≡ 1 mod 4 such that X ≡ 1 mod 4 and Y ≡ 1 mod 4

2. Write each such prime as the sum of two squares: (e, r) ← cornacchia(X) and
(k, l)← cornnachia(Y) using Section 4.2.3, i.e. X = (e2 + r2) and Y = k2 + l2.

3. Let XY = (ek + rl)2 + (el − rk)2 and b = (ek + rl) and c = (el − rk) so that
4x+ 1− a2 = b2 + c2. Output (a, b, c)

4.2. SQUARE DECOMPOSITION 155

Note that while this idea saves communicating 1 field element, it requires prime factor-
ization to be possible in an efficient manner.

Picking the two primes before the square

As part of the algorithm in Section 4.2.2, one first picks a random a and subtract it’s
square from the input p ← 4x + 1 − a2. One then factor p into its prime factors and
hope that the integer p is a semiprime. If this is not the case, one picks a new a and try
again. The factoring step dominates the cost whenever the integers become large. One
might then consider sampling two random primes, compute their product and check if
this is a perfect square instead:

1. Let p = 4x+ 1

2. Guess two random primes X,Y such that XY ≤ p. Compute p′ = p−XY .

3. If p′ is a perfect square (i.e. is
√
p′ an integer), then let a←

√
p′. Otherwise go to

step 2.

4. Write X and Y as the sum of two squares: (e, r) ← cornacchia(X) and (k, l) ←
cornnachia(Y) using Section 4.2.3, i.e. X = (e2 + r2) and Y = k2 + l2.

5. Let XY = (ek + rl)2 + (el − rk)2 and b = (ek + rl) and c = (el − rk) so that
4x+ 1− a2 = b2 + c2. Output (a, b, c)

It is possible to reasonable efficiently sample random primes, thus the question of
whether or not this algorithm would outperform the one from Section 4.2.2, comes down
to whether or not there is a higher probability of hitting a perfect square rather than a
semiprime.

Informally, the number of perfect squares in the range [0, n] is
√
n and the number

of semiprimes π2(n) in the same range is approximately

π2(n) ≈
∑
p≤
√
n

π(bn
p
c)

. In the latter, the summand is approximately n
p logn , so overall this sum is approximately

π2(n) ≈
n

log n

∑
p≤
√
n

1

p

. The sum
∑

p≤
√
n

1
p is asymptotically log log n, so overall

π2(n) ≈
n log log n

log n

. Now, this argument is as simple as the fact that
√
n scales much slower than π2(n),

since n is part of the product of the numerator. We can therefore conclude that there
are significantly more semiprimes than perfect squares.

156 CHAPTER 4. CHEDDAR

To conclude, despite factoring being expensive for large integers, the probability of
hitting a perfect square when considering potential very large integers is much less than
the probability of hitting a semiprime within a few factorizations.

4.2.3 The Algorithm of Cornacchia

Theorem 15 (Fermat-Lagrange Theorem). Every odd prime p is a sum of two squares
if and only if p ≡ 1 mod 4.

In other terms, the theorem state that any odd prime p is a sum of two squares, if
and only if −1 is a quadratic residue bmodp.

Cornacchia’s algorithm finds a solution to the more general problem

x2 + dy2 = p

provided that p is of the form of Theorem 15. Note that a condition for such a solution to
exist, is that −d must be a quadratic residue modulo p, since we must have y 6≡ 0 mod p.

We now describe the algorithm due to Cornacchia. Let p be a prime number and
d be an integer such that 0 < d < p. This algorithm then either outputs an integer
solution (x, y) to the Diophantine equation x2 + dy2 = p or says that such a solution
does not exist.

1. Compute k ←
(
−d
p

)
. If k = −1, then the equation has no solution.

2. Compute an integer x0 such that x20 ≡ −d mod p1. Let x0 ← x0 + kp so that
p/2 < x0 < p. Finally, set a← p, b← x0 and l← b√pc.

3. If b > l, set r ← a mod b, a← b, b← r. Repeat until b ≤ l.

4. If d does not divide p− b2 or if c = (p− b2)/d is not the square of an integer, then
the equation does not have a solution. Otherwise, output (x, y) = (b,

√
c).

For a proof of correctness, we refer to [MN90].

4.2.4 Range proof

A naïve range-proof using a three-square (or four-square) decomposition:

• P wishes to show that x ∈ [a, b] for some commited-to value x.

1. Let y = (x− a)(b− x) and commit to y.
2. Compute three-square decomposition (a, b, c)← three− square(y) such that

y = a2 + b2 + c2.
3. P commits to a, b, c, yielding [a], [b], [c].

1For instance using Shank’s Algorithm

4.2. SQUARE DECOMPOSITION 157

4. P and V compute: [a2], [b2], [c2]

5. P and V run CheckZero([y] − [a2] − [b2] − [c2]). Now, if CheckZero return
success, then output success, otherwise abort.

Clearly, if an integer commitment scheme is used, then the above protocol is correct.
It is also exceptionally cheap in communication and fairly cheap in computation, pro-
vided that the integers used are not too big for the factoring to be computabe. If one
instead use the four-square decomposition, using larger integers only cost more in terms
of local computations.

158 CHAPTER 4. CHEDDAR

4.3 Approximate Range Proofs
When square decomposition is used to prove that an integer is positive, it theoretically
leads to very little communication, as one can get by with as little as three additional
commitments. Practically however, this technique has, up until recently, required the
usage of expensive integer commitment schemes as an overflow in the squaring or addition
of the squares would cause an incorrect result.

In this section we describe an alternative to using integer commitments when creating
a four-square (or three-square) decompositional proof. Specifically, if the prover can just
show that the individual elements of the decomposition (α, β, γ, δ) won’t overflow when
squared or overflow when added together, then an integer commitment scheme won’t be
required. At this point, one might envision ouroboros, the snake eating its own tale, as
what we describe above requires another range proof. Thus, building a range proof using
square decomposition, requires a range proof. Luckily, it turns out that an approximate
range proof is enough where there is both a probability of failure but also a probability
of the value actually falling outside the initial bound by a pre-determined amount. On
a more positive note though, these are much more efficient in terms of communication
and computation.

The main idea is to define a specific slack λ, which we can prove something is off
by at most. This is done by defining the bound β we actually need and then have the
prover show that the secret input vector s is less than β

λ rather than just β. This idea is
not novel [Lyu08], but we briefly describe the general idea. The prover knows a secret
vector s which the prover wants to show is below some bound β. As we want to use this
idea to prove that the square decomposition works over the integers, we must ensure
that no overflow takes place. Thus, β =

√
q−1
2·4 where we work over the field Fq. This

follows from needing signed integers (thus q−1
2) as well as needing to square and add the

4 field elements. We then follow the following template:

1. P has a secret vector s ∈ Fd
q that P wants to show is less than β. As the approxi-

mate proof has a slack of λ and can be off by at most λ, an honest prover must in
fact have the values si ∈ s be less than β

λ .

2. V samples C ∈ Fκ×d
q and sends this to P.

3. P and V compute y = Cs.

4. P computes an exact range proof on each yi ∈ y showing the values are less than
β

Now, when we compute Cs we actually project the high-dimension vector s down
to a lower dimension. We can therefore use the Johnson-Lindenstrauss Lemma to argue
that if we prove the infinity bound of the resulting vector y = Cs, then this is a tight
approximation for the infinity norm of the original s. Specifically, let D−1,0,1 (or D for
short) be defined as a distribution such that Prc←D[c = 0] = 1/2 and Prc←D[c = 1] =
Prc←D[c = 1] = 1/4 from which we sample C.

4.3. APPROXIMATE RANGE PROOFS 159

We present the Johnson-Lindenstrauss Lemma in Fact 1 and then use this in Corol-
lary 1, both of which are originally stated in [GHL21]. The Fact 1 informally states that
when computing the inner product of a vector s and a vector sampled r so that r ∈ N d

where N d is the normal distribution centered at 0 with a variance of 1, then with very
low probability will the outcome be higher than 9.75 times the ℓ2 norm of s.

Fact 1. Let N be the continuous normal distribution centered at 0 with variance 1. Then
for every vector s ∈ Zd it holds that:

Prr←N d

[∣∣∣∣〈s, 1√
2
r

〉∣∣∣∣ > 9.75 · ‖s‖2
]
= Pry←N

[
|y| > 9.75 ·

√
2
]
< 2−141

We then use Fact 1 in the following Corollary 1 which states that the tail of the
distribution on ‖Cs2 can be bounded as if the entries of C were chosen from the zero-
mean continuous Normal distribution of the same variance. This will allow us to use
Fact 1 while choosing C from Dκ×d

−1,0,1.

Corollary 1 (heuristic). Let D be the distribution on {0,±1} as described above. Under
the heuristic, substitution of D with 1√

2
N , for every vector s ∈ Zd:

Prr←Dd [|〈s, r〉| > 9.75‖s‖2] ⪅ 2−141

Which informally converts the probability of Fact 1 into one which instead uses a
discrete distribution instead.

If we couple Corollary 1 with the following observation:

‖s‖∞ ≤ ‖s‖2 ≤
√
d‖s‖∞

we arrive at a bound of the infinity norm using Fact 1 and Corollary 1. Now, using the
above bound on the infinity norm, we arrive at an overall bound of

9.75 ·
√
d · ‖s‖∞

when computing the inner products.

4.3.1 Proof of Smallness

We are now ready to define the proof of smallness that we will use to show that the
elements of s are small. This is what will be used as a subroutine during our range
proof, to prove smallness of the four squares computed by the prover. This allows us to
not do the computation over the integers, as the four squares are proven small enough
for there to occur no wraparound modulo q during the computation.

To begin with, we will describe a lemma that we will need later on, which is a slight
simplification of Lemma 2.5 of [LNS21]. Lemma 13 specifically states the chance of
detecting a vector of high norm by seeing a single large element in the resulting vector,
i.e. if s has a large coefficient, so does 〈c, s〉 with probability at least 1/2. This tells us
that if Cs has small coefficients for a vector s ∈ Fd

q and a matrix C ∈ Dκ×d
−1,0,1, then with

high probability so does s.

160 CHAPTER 4. CHEDDAR

Lemma 13. Let the distribution D−1,0,1 be defined as above, then for all s ∈ Zd
q and C

sampled uniformly at random from Dκ×d
−1,0,1 it holds that

Prc←Dd

[
‖〈c, s〉‖∞ <

1

2
· ‖s‖∞

]
≤ 1

2
and Pr

C←Dκ×d

[
‖〈C, s〉‖∞ <

1

2
· ‖s‖∞

]
≤ 2−κ

Proof. Let si be the coefficient of s such that ‖si‖∞ = ‖s‖∞. We then write

〈c, s〉 = sici + r

for some r ∈ Zq. This naturally leads to two cases that we now consider one by one.

‖r‖∞ ≥ 1
2‖s‖∞: Now, ci have to be ±1 for sici + r < 1

2‖si‖∞ to ever be true. This
implies

Prc←Dd

[
‖〈c, s〉‖∞ <

1

2
‖s‖∞

∣∣∣∣ ‖r‖∞ ≥ 1

2
‖s‖∞

]
≤ Prci←D [|ci| = 1] = 1/2

which shows the first case.

‖r‖∞ < 1
2‖s‖∞: We will show that

‖r + bsi‖∞ ≥
1

2
‖si‖∞ (4.1)

for any b ∈ {−1, 1}. Note that ‖si‖∞ = ‖s‖∞. This implies that

Prc←Dd

[
‖〈c, s〉‖∞ <

1

2
‖s‖∞

∣∣∣∣ ‖r‖∞ <
1

2
‖s‖∞

]
≤ Prci←D [ci = 0] = 1/2

which completes the proof of the lemma. Now, to prove 4.1, we first assume that
|si| ≤ q/2 and that |r| < |si|/2 (due to the integers being signed and the initial
assumption, respectively). Therefore we can conclude that ‖r + bsi‖∞ is either
equal to |r+ bsi| or |r+ bsi ± q|. In the first case it becomes obvious that we have
|r+ bsi| ≥ |bsi| − |r| > si/2 (since ‖r‖∞ < 1

2‖s‖). In the latter case, assume for the
sake of contradiction that u = r + bsi ± q where u < |si|/2, then

q = | ± q| = |r + bsi − u| ≤ |r|+ |bsi|+ |u| < |si|/2 + |si|+ |si|/2 = 2|si| ≤ q

This proof follows [LNS20, Lemma A.1] closely, and is in fact a special case of this
proof for y = 0. This particular lemma (Lemma 13) also holds true for the different
distribution D = B [BL17] (i.e. D is sampled from {0, 1}κ×d), but for Dκ×d

−1,0,1 it allows for
the infinity norm to be less, than when D = B, where B is a uniform binary distribution.
This lemma is important, as it essentially allows us to prove that the result of Cs is
bounded, rather than prove directly that s is bounded.

4.3. APPROXIMATE RANGE PROOFS 161

So now, combining Corollary 1 which tells us that y = Cs is an approximation of
s ∈ Fd

q with a slack of λ = 9.75
√
d‖s‖∞ and Lemma 13, we just need to prove smallness

of y instead of s, where y ∈ Fκ
q . For this there are to main strategies. Either we use

rejection sampling or we use binary decomposition. According to [BN19], if the goal is
to have as little slack as possible (thus allowing for a more adaptable proof of smallness
as we can use more values or larger values before the slack causes the computation to
wraparound modulo q), the prefered way is by hiding the result of the linear combinations
(i.e. compute y = Cs) and then prove exact smallness of these by providing a bit
decomposition, as this allows for a significantly better slack, compared to using rejection
sampling.

When using rejection sampling, the prover will sample random values x1, x2, . . . and
add these to the product y = Cs to mask the resulting values which are all supposed
to be small. The prover then sends these masked values to the verifier who can simply
check that they are small enough (i.e. below some predetermined bound). The rejection
part comes in when one of the values from the prover doesn’t get masked completely. In
this case, the prover will re-sample random values x1, x2, . . . and try again. The hope is
that this rejection step won’t happen too often. Additionally, the prover samples more
random values than needed to hide y and the verifier will then ask the prover to open
some of the values x1, x2, . . . to show that they are in fact as small as the values of y
are supposed to be. This strategy intuitively increases the slack, as the honest prover
will have to add large enough values to hide the elements of y and since the elements
x1, x2, . . . have to be sampled from a larger space than the expected values of y, to avoid
having them be too small too often and thus cause a rejection, this results in adding
values that are potentially significantly larger than the values in y of an honest prover
[BN19]. The other approach keeps the values of y = Cs hidden and instead have the
prover commit to the bit decompositions of each element, show that these hidden values
are actually bits and that they are correct bit decompositions. If the bit decompositions
only consist of some predetermined number of bits, then the verifier knows that all the
values of y are below the correct bound. This adds hardly no additional slack, but it
has the additional cost of having to prove the bit decompositions are correct. So, while
proving exact ranges using bit decompositions yield a better slack, it comes with slightly
more computation as well as communication. As our focus is to be able to prove that as
many decomposed values don’t overflow when squared and summed together as possible,
we consider the approach of proving exact ranges using bit decompositions. This allows
us to either have a larger batch size or use larger values. If instead one has a very low
batch size, the first approach could be considered for an overall cheaper protocol.

Lastly, for this to be a zero-knowledge proof of smallness, we still need to ensure
that the inner product of C and s leaks no information regarding the secret vector s
apart from the bound on each value. We have shown above that if ‖s‖∞ ≤ β, then since
C ∈ Dκ×d

−1,0,1, it holds that ‖Cs‖∞ ≤ 9.75 ·
√
dβ with overwhelming probability, thus we

resolve the problem of leakage by finding the first r such that 9.75 ·
√
dβ < 2r. Let

y = Cs, then it suffices for the prover to show that yi ∈ [−2r, 2r − 1] for all yi ∈ y. This
can be done by having the prover provide κ(r + 1) bits xi0, . . . , x

i
r and then show that

162 CHAPTER 4. CHEDDAR

yi =
∑r

j=0 2
jxij for each element of y, as well as prove that each xij is a bit. We recap

in the following Theorem 16.

Theorem 16. Let k = 9.75 ·
√
d and q be such that (q − 1)/2 > 4kβ. Let r be the first

value such that kβ ≤ 2r − 1. Let λ be the slack and let κ = 128 (i.e. the dimension
of the output of the multiplication with C). Then the above approach is an approximate
proof-of-smallness for the ℓ∞ norm, with slack λ = 9.75

√
d+ 2

Proof. An honest prover will have ‖s‖∞ ≤ β/λ , thus by Corollary 1 as well as the
union bound2, we have that ‖y‖∞ ≤ k‖s‖∞ ≤ 9.75

√
d‖s‖∞ ≤ kβ/λ ≤ β/2 except with

probability 27 ·2−141 = 2−134. As such, an honest prover will only not be able to represent
its values by r + 1 bits, with negligible probability.

If ‖y‖∞ ≥ 2(kβ + 2), then by Lemma 13 Pr [‖s‖∞ < kβ + 2] ≤ 2−κ. Assume for
contradiction that ‖s‖∞ ≥ kβ + 2, then there exist an index i such that either (1)
s[i] ∈ [−(q − 1)/2,−kβ − 2] or (2) s[i] ∈ [kβ + 2, (q − 1)/2]. In case (1), let vi = s+ kβ,
then vi ∈ [−(q−1)/2+kβ,−2], which cannot be expressed as the sum

∑r
j=0 2

rxij . In case
(2), s[i] ∈ [kβ+2, (q−1)/2], thus vi ∈ [2kβ+2, (q−1)/2]∪[−(q−1)/2,−(q−1)/2+kβ−1].
This however, cannot either be represented by the sum

∑r
j=0 2

rxij , as 2r+1−1 = 2kβ+1 <
2kβ+2 as well as [−(q−1)/2,−(q−1)/2+kβ−1] being inexpressible due to the bound
on q.

Finally, to argue that the proof satisfies zero-knowledge, notice that the only thing
sent by the prover is the commitment to the bits (xi0, . . . , x

i
r)i<κ which are all hiding by

the properties of the commitment scheme. Thus, the verifier only learns that each yi
can be represented by r + 1 bits, but nothing else.

From Theorem 16 we can conclude that the overall slack of the proof is λ = 9.75
√
d+2

where d is the dimension of the secret vector. This brings down the slack significantly,
compared to previous state-of-the-art using rejection sampling [GHL22] or when using
exact range proofs [BN20].

4.3.2 Exact Range Proof

We now show how to use the results from the previous section to build an exact range
proof, rather than an approximate one. We give the protocol in Figure 4.1 and then
explain it step-by-step.

We now explain select steps of the protocol.

1. The prover has m values x = x1, . . . , xm ∈ F of which the verifier has commitments
to. If the prover is honest, ∀i xi <

√
q−1

78·
√
m+16

For each value xi, the prover wishes
to show that ai ≤ xi ≤ bi. The values ai, bi are public.

2Since the bound on the infinity norm comes from a bound on the ℓ2 norm based on an inner product,
we must apply this to each entrance when using the matric C

4.3. APPROXIMATE RANGE PROOFS 163

Protocol Πfour−squares

1. P and V have m values ([x1], . . . , [xm]) and m bounds {(ai, bi)}i∈[m]. P
wants to show that for ∀i : ai ≤ xi ≤ bi.

2. For each xi for i ∈ [m], both parties compute [li] = [xi]−ai and [ui] = bi−[xi]
and the prover then finds four non-negative integers αi, βi, γi, δi such that
α2
i + β2

i + γ2i + δ2i = li · ui. P commits to {αi, βi, γi, δi}i∈[m], resulting in
{[αi], [βi], [γi], [δi]}i∈[m].

3. P commits to {α2
i , β

2
i , γ

2
i , δ

2
i }i∈[m]. P then shows that

• [α2
i] = [αi] · [αi]

• [β2
i] = [βi] · [βi]

• [γ2i] = [γi] · [γi]
• [δ2i] = [δi] · [δi]

Let s = ([α1], [β1], [γ1], [δ1], . . . , [αm], [βm], [γm], [δm]).

4. P and V runs CheckZero({[li] · [ui]− [α2
i] + [β2

i] + [γ2i] + [δ2i]}i∈[m])

5. V samples κ vectors ci ← D4m
−1,0,1 for i ∈ [κ] and sends these to P.

6. P and V compute [ui] = 〈ci, s〉. P then computes bit decompositions
{(ui,j)j∈[d/2]}i∈[κ] of each [ui] using d =

√
q−1

(78·
√
m+16)

and Lemma 13, where q

is the order of the field. P commits to the bit decompositions so both parties
get : {([ui,j])j∈[d]}i∈[κ]. Both parties then run CheckZero({[ui] −

∑d
j=0 2

j ·
[ui,j]}i<κ). If CheckZero succeeds, output accept, otherwise reject.

Figure 4.1: A protocol for showing exact range proofs based on the four-squares technique
as well as an approximate range proof for each of the four squares.

164 CHAPTER 4. CHEDDAR

2. For each xi, both parties compute compute li = xi − ai and ui = bi − xi and the
prover then finds four non-negative integers αi, βi, γi, δi such that α2

i+β2
i +γ2i +δ2i =

li · ui. The prover also prove that the multiplication of li and ui is done correctly.

3. The prover must then show equality between the values α2
i , β

2
i , γ

2
i , δ

2
i and the prod-

uct li · ui. The prover also has to show that each of the α’s, β’s, γ’s and δ’s are
squared correctly.

4. Finally, the prover has to show that the squared values still fit within the field
without overflowing and that the addition of the four squares also fit. This is
done by the prover computing an approximate range proof showing that the ℓ∞ of
‖w = [αi, βi, γi, δi] ∈ Fm·4‖∞ <

√
(q − 1)/(2 · 4).

Lemma 14. If β = ‖s‖∞ <
√
q−1

(78·
√
m+16)

, then protocol Πfour−squares (Figure 4.1) proofs
whether or not ∀i ai ≤ xi ≤ bi.

Proof. The approximate proof of step 4 shows that ∀i wi <
√

(q − 1)/(2 · 4), which
implies that step 3 works over the integers, as no overflow can take place. To accurately
prove that the above is true, we need to show that ‖s‖∞ <

√
(q − 1)/2 · 4. For this to

be true, the prover must in fact have all the values be smaller than
√

(q − 1)/2 · 4/λ
where the slack λ = 9.75

√
4m + 2. Thus, step 4 implies that the values input by the

prover are bounded by √
(q − 1)/(2 · 4)

(9.75 ·
√
4m+ 2)

≈
√
q − 1

(78 ·
√
m+ 16)

Which is exactly the bound in the statement of Lemma 14. This means that the
bound is small enough that we can use the ℓ∞ approximate proof from Section 4.3
to show that the decomposed elements won’t overflow when squared nor when added
together. This ensures that both operations work over the integers.

Zero-knowledge of the protocol is guaranteed from the hiding property of the com-
mitment scheme as well as underlying approximation scheme.

This concludes our range proof based on square decomposition. It achieves a signif-
icantly better slack (less of it) compared to previous work, thus allowing the prover to
either prove the range of more values or higher valued values. This protocol works best
for smaller numbers of range proofs at a time due to the negative impact of a higher
number on the slack.

4.4. EXACT PROOFS OF LESSER VALUES 165

4.4 Exact Proofs of Lesser Values

This way of proving ranges falls into the n-ary decomposition, rather than the square
decomposition that we saw in Sections 4.2 and 4.3.

The naïve way of proving that x ∈ [0, 2k) for some x ∈ Fp in this paradigm, is for
the prover to provide k field elements (x0 . . . , xk−1) ∈ Fp × · · · × Fp, show that for each
i ∈ [k], xi ∈ {0, 1} and that x =

∑k
i=0 2

i · xi, i.e., that each xi is a bit and they are a
correct binary decomposition of x. This requires committing to k field elements from
Fp in addition to performing k multiplications to confirm each element is a bit. Using
edaBits allows the prover to instead commit to k xi ∈ F2. Instead, we propose dividing
the element x into chunks of m bit-elements xi instead, thus only requiring the prover
to make k/m commitments, rather than k. The prover and verifier then check that
x =

∑k/m
i=0 2i·mxi. This leaves the prover with the task of proving that each chunk xi

is in [0, 2m − 1]. As before, this can be done by proving range of this particular field
element by bit-decomposing it, but we instead propose two other methods.

Now, before we present the first method, note that we can consider the linearly-
homomorphic MACs originating from VOLE as polynoimials. If we take a commitment
(x,M[x]) held by the prover and K[x] held by the verifier, then we can view these instead
as a polynomial f(y) = M[x] − x · y. Now K[x] = f(∆) = M[x] − ∆ · x. If we then
multiply the polynomial defined above with another f ′(y) = M[x′]− y · x′:

f · f ′(y) = M[x]M[x′] + (xM[x′] + x′M[x])y + xx′y2

we see that the final term contains xx′ · y2 which is the only term of degree 2. This
however, is so far locally computable. The prover then define polynomial q(y) = M[z] +
z · y (i.e. commits to z) where the prover claims that z = x · x′. Now, to show that this
is true, the prover can send over the polynomial

y · q(y)− f · f ′(y)

where y · q(y) = yM[z] + zy2. Thus, if z = x · x′, the term of degree 2 disappears.
On the verifier side, the verifier can compute K[x]K[x′] − ∆K[z], which again removes
the term of the highest degree, like on the prover side. Rather than stop at degree
2 however, this idea generalizes to degree d, provided that the prover can provide a
masking polynomial of degree d − 1 to hide the remaining terms. This idea is a slight
simplifcation of QuickSilver [YSWW21a], since it avoids having to compute polynomials
in their degree-separated form. We suspect this may be faster, if the input polynomials
are simple.

Now, to explain the first method of checking the ranges, we define polynomial f(X) =∏2m−1
i=0 X − i. If xi ∈ [0, 2m − 1], then f(xi) = 0. Now, if x ∈ [0, 2k], then it holds true

for each chunk i ∈ [0, k/m] xi ∈ Fp that f(xi) = 0. To this end, we can evaluate each
polynomial using the above idea. Lastly, if the used commitment scheme is additively
homomorphic, we can assume w.l.o.g. that the range is always [0, 2k), as we can easily
convert between this and any other range [a, b]. Finally, since we will always be checking

166 CHAPTER 4. CHEDDAR

Protocol for computing range proofs

1. P and V have t values ([x0], . . . , [xt−1]) and P wants to show that ∀i : xi ∈
[0, 2k).

2. For each i ∈ [t]: P computes the n-ary decomposition (xi0, . . . , x
i
(k/n)−1 so

that for each j ∈ [(k/n)− 1]: xij ∈ [0, 2n) and xi =
∏k/n

j=0 2
j·nxj . P commits

to each of the elements in the n-ary decompositions.

3. Define the polynomial f(X) =
∏2n−1

i=0 X − i. Now, P proves satisfiability of
f(xij for each i ∈ [t] and j ∈ [n].

4. If the evaluation passes, then each polynomial evaluated to 0 and V accepts.
Otherwise, V rejects.

Figure 4.2: Protocol for computing range proofs using QuickSilver.

that the multiplication is 0, further savings can be made, such as knowing that the
solution polynomial q(y) should always have 0 in its highest degree.

The second method we consider, is using a disjunction proof from Mac’n’Cheese
[BMRS21a]. If we again consider the polynomial fX) =

∏2m−1
i=0 X − i, notice then that

exactly one of the products will be 0, whereas the others will be non-zero. Therefore,
it can be stated as a disjunction proof where the prover shows that exactly one of the
products is 0.

Rather than pick a specific way of showing the ranges now, we will resort to write
that we must prove satisfiability of the polynomials for now.

We present the full protocol in Figure 4.2
We suspect that the main cost of this protocol comes in form of communication when

having to commit to the n-ary decomposition as well as the polynomial evaluation. Both
parts can be tuned in terms of efficiency, as decomposing into larger elements decreases
the number of commitments, at the cost of increasing the degree of the polynomials
that must be evaluated, thus worsening the efficiency of the polynomial evaluation. We
suspect there is a point where this is most efficient, but testing is required to find this
point.

4.5 Idea based on Polynomials

In this section we present a protocol that is based on binary decomposition. Given
commitments [a1], . . . , [an] over a large finite field Fq, we want to prove that all ai ∈
[0, 2m) for some m < log2(|Fq|). That is, they can be represented as ai =

∑m
j=1 2

j−1 · bi,j
with all bi,j ∈ {0, 1}.

4.6. EVALUATION 167

Idea Consider polynomials p1, . . . , pm, q1, . . . , qm ∈ Fq[X] such that pj(i) = bi,j and
qj(i) = 1− bi,j = 1− pj(i) for i ∈ [n], j ∈ [m]. Then we have the following equalities:

pj(i) · qj(i) = 0 for i ∈ [n], j ∈ [m] (4.2)

pj(i) + qj(i) = 1 for i ∈ [n], j ∈ [m] (4.3)

ai =

m∑
j=1

2j−1 · pj(i) for i ∈ [n] (4.4)

If the prover can commit to the pj and qj and show that the three equalities hold, then
it has proven ai ∈ [0, 2m) for all i ∈ [n]: From (4.2), we know that at least one of pj(i)
and qj(i) is 0 since Fq is a field. From (4.3), we get, that only one of the pj(i) and qj(i)
can be 0 and the other must be 1. Hence, pj(i) ∈ {0, 1} and qj(i) = 1 − pj(i). Finally,
(4.4) shows that (p1(i), . . . , pm(i)) is the bit decomposition of ai, and thus ai can have a
value of at most 2m − 1.

4.6 Evaluation

We have implemented the square decomposition technique of Section 4.3.2 in Rust us-
ing the Swanky Library [Gal19] and compared this to our own implementation of range
proofs using the conversion check described in [BBMH+21b] (also implemented in Rust).
Note that both of these implementations are rudimentary and both has room for opti-
mizations.

In Table 4.1 we compare the time in microseconds on average per range proof while
varying the bit sizes. Due to the nature of the approximate range proof, we must
either keep the values low or the batch sizes low, this is however already a discussed
compromise. We see that the protocol based on square decomposition (Figure 4.1) far
outperforms the protocol described in [BBMH+21b] when running on low values (and
few values). It is worth noting that this is expected, as [BBMH+21b] is designed to work
on much larger batches as well as large values. It is however our only other alternative
to the complete naïve implementation.

Range 212 213 214

Total time per proof (in µs) (A2B) 201.97 212.19 242.52
Total time per proof (in µs) (Our) 26.855 27.27 26.43

Table 4.1: Timing our square decomposition proof versus A2B [BBMH+21b] when per-
forming 1000 range proofs using the ranges 212, 213, 214.

In Table 4.2 we show that the running time of our square decomposition protocol is
roughly constant, regardless of the number of range proofs.

In Table 4.3 the story is the same as for Table 4.1. Our protocol uses far less
communication (which is expected), as the square decomposition protocol only requires

168 CHAPTER 4. CHEDDAR

Proofs 1000 1500 2000

Total time per proof (in µs) (Our) 26.855 27.27 26.43

Table 4.2: Timing our square decomposition proof when performing 1000, 1500 or 2000
range proofs using the range 213.

sending over 4 field elements (in addition to the approximate range proof), whereas
the protocol that utilizes the conversion check of [BBMH+21b] must send over 5 field
elements from Fp in addition to a lot of field elements from F2. It is however worth
noting that it is infeasible to use our protocol based on square decomposition on the
number of values that best suit [BBMH+21b], as the approximate range proof would be
insecure to run on basically any value at this point.

Range 212 213 214

Total communication (in KB) (A2B) 225.25 236.00 246.75
Total communication (in KB) (Our) 83.22 83.22 83.22

Table 4.3: Measuring the communication of our square decomposition proof versus A2B
[BBMH+21b] when performing 1000 range proofs using the ranges 212, 213, 214.

Finally, in Table 4.4 we see that both protocols scale basically linearly in the com-
munication.

Number of proofs 1000 1500 2000

Total communication (in KB) (A2B) 236.00 349.77 464.13
Total communication (in KB) (Our) 83.22 118.38 153.53

Table 4.4: Measuring the communication of our square decomposition proof versus A2B
[BBMH+21b] when performing 1000, 1500, 2000 range proofs using on the range 213.

For context, if we instead run [BBMH+21b] using insecure parameters (i.e. at its
most optimal, but with a number of proofs that would be insecure), the communication
drops to 291.53KB for 2000 range proofs on the range 213. While this is still slightly
more, note that it scales far beyond what we can do with square decomposition.

Finally, we have also implemented a prototype of our protocol using n-ary decompo-
sition of Section 4.4. This version only contains the computation of the polynomials and
then the variant of QuickSilver [YSWW21a] that we describe in Section 4.4. Some things
are missing from our QuickSilver implementation, such as the masking of the polynomial
that is sent from the prover to the verifier (and in turn the protocol for creating this
mask). This does mean that the following numbers are very rough estimates (and all
lower than what they would be in the final protocol), but the purpose is to give a general
gist of the effectiveness of the protocol.

In Table ?? we list the communication required by our prototype to prove between
1000 and 2000 proofs, while decomposing the range 224 into smaller chunks of size either

4.6. EVALUATION 169

Number of proofs 1000 1500 2000

Total communication (in KB, 24 47.0 70.56 94.0
Total communication (in KB, 26) 31.75 47.88 63.5

Table 4.5: Measuring the communication of one of our n-ary decomposition protocols
when we show exact ranges where we use polynomials of degree 24 or 26. We run either
1000, 1500 or 2000 proofs on the range [0, 224).

24 or 26 (i.e. m = 4 or m = 6). We see that more communication is required for the
smaller size, as this means sending over more elements, however as we see in Table 4.6,
this comes at a cost. It is significantly more expensive to compute the polynomials when
m = 6.

Number of proofs 1000 1500 2000

Total time per proof (in µs, 24 9.37 10.93 11.02
Total time per proof (in µs, 26) 65.43 71.6 71.24

Table 4.6: Measuring the time of one of our n-ary decomposition protocols when we show
exact ranges where we use polynomials of degree 24 or 26. We run either 1000, 1500 or
2000 proofs on the range [0, 224).

While all of the numbers for our n-ary decomposition protocol are rough estimates,
they show that we can pick m (i.e. the bit size of the values in the decomposition),
to alter either the communication or the computation required for the proofs. What
remains to be implemented, is the generation of the polynomial mask, which adds the
communication of a few extra field elements to the cost. Despite this, these initial
benchmarks show that this protocol has high potential.

Comparing the n-ary decomposition protocol to the square decomposition protocol,
we see that the latter has an almost constant running time per proof, regardless of the
size of the range or of the number of proofs, whereas the former increases in cost based
on the number of proofs or the size of the ranges.

170 CHAPTER 4. CHEDDAR

Chapter 5

Pecorino: More Efficient Zero-
Knowledge for RAM Programs

5.1 Introduction

Zero-knowledge (ZK) proofs allow a prover P to convince a verifier V that it knows some
input w such that P (w) = 1 for program P , with V learning nothing else about w besides
that it satisfies P . There has been a huge amount of work in recent years improving the
concrete efficiency of ZK protocols, both in the non-interactive and interactive settings.
However, most such protocols require that P be represented as a (boolean or arithmetic)
circuit or constraint system, which differs from the standard RAM-model of computation
many programs are written in.

To address this, Ben-Sasson et al. [BCG+13] introduced an approach for compiling
RAM programs to circuits or constraint systems using the following framework:

1. P commits to a list L of memory operations (addr, time, ‘read’ | ‘write’,
value) during the course of the program execution.

2. P sorts this list by (addr, time), producing list L′, commits to L′, and proves to
V that L′ is a valid sorting of L.

3. P and V iterate through L′ to check that the memory operations are consistent,
i.e., that the value read after a write matched the read value.

The most expensive part of this process is usually the sort in Step 2, which inherits a
O(log T) overhead for T accesses to memory due to a permutation network alongside an
assertion that the permutation was correctly sorted. Recently, Franzese et al. [FKL+21]
introduced a new approach—henceforth referred to as the FKLOWW protocol—which
replaces the permutation network with a linear permutation check. This approach allows
for RAM computations over F2 which scales linearly in the word size with the number
of RAM accesses of the program.

In this work, we build off of the FKLOWW protocol, introducing a ZK protocol that
(1) scales linearly in both the word size and the underlying circuit size, (2) works over
arbitrary fields, and (3) has improved performance both in terms of communication and
computation.

5.1.1 The FKLOWW Protocol

Our starting point is the FKLOWW paper discussed above. In this approach—and
similar to the RAM framework of Ben-Sasson et al. [BCG+13]—both parties maintain

171

172 CHAPTER 5. PECORINO

a (committed) list L of all memory accesses, alongside a “timestamp” counter time
initialized to zero. We use the notation [·] to denote a committed value.

For a read or write operation op on a committed address [addr], P generates a com-
mitment to the value [value] and the parties store ([addr], [time], [op], [value]) in L and
increment time. Once all RAM operations have completed, the parties proceed to a
check phase: P (locally) sorts L by its first then second entry and generates commit-
ments for the values of this sorted list—we call the list of sorted tagged values L′. The
parties then check (in ZK) that L′ is indeed a correct sorting. Finally, the parties run
a polynomial equality check to prove that L′ contains the same elements as L, hence
proving that L′ is a sorting of L.

The key insight of the FKLOWW protocol is to replace the sorting network used to
prove that L′ is a sorting of L—which requires O(log T) overhead—with a polynomial
equality check—which requires only O(1) overhead. This polynomial equality check
works as follows: Given a1, . . . , an and b1, . . . , bn, let A(X) =

∏
i(X − ai) and B(X) =∏

i(X − bi). If the lists a and b are permutations of each other, then the polynomials A

and B are equal. We can thus efficiently check whether A
?
= B by having the verifier

send the prover a challenge, e ∈ F, and asserting that A(e) = B(e).
While the FKLOWW protocol is significantly more performant than prior work, it

suffers from two main drawbacks: (1) it requires P to prove that its sorted list L′ is
correctly sorted by proving that entry i is less than or equal to entry i+1, which, while
linear in the word size, requires O(log T) AND gates, thus making the computation super-
linear in the underlying circuit complexity, and (2) due to these comparison operations,
it only works over boolean extension fields.

5.1.2 Our Approach

In this work, we build off of the FKLOWW protocol to construct a ZK-RAM protocol
with linear overhead in both the word size and circuit complexity1 that also works over
any field.

The key idea of our approach is the following:

1. Rather than sorting memory operations, we assert that a set of read operations
equals a set of write operations. This means that instead of combining read and
write operations in a single list, we maintain two lists: one for read operations and
one for write operations.

2. We ensure that the read and write operations respect time by using the order of
commitments with respect to verifier challenges.

The read and write lists consist of triples consisting of (addr, value, challenge). P
and V maintain two lists: a list of reads R and a list of writes W. Initially, W contains

1Given a fixed field F. In particular, neither our approach nor the FKLOWW protocol are truly linear
in either the memory size N or the number of memory accesses T due to achieving a security bound of
O(N + T)/|F|. That is, as N and T grow, the chosen field F must grow as well.

5.1. INTRODUCTION 173

one entry for each value in RAM (that is, the initial size of W equals the size of RAM),
where each challenge is set to 0. Values are initialized as desired by the parties (to
configure the initial RAM values). R is initialized as empty.

The prover maintains a set W∗ of “hot” writes (writes which have not been read
yet). Initially, this set is equal to W.

Rather than exposing distinct read and write operations, we instead (conceptually)
expose only a single operation:

fn ReadAndWriteBack(
addr,
compute_new_value: fn(old_value) -> new_value

) -> (old_value, new_value)

where compute_new_value is a function/closure which determines what value should
be written back as part of this operation. This closure is not allowed to perform any
memory operations on addr, but it is allowed to perform memory operations on other
addresses.

ReadAndWriteBack([addr], f) is implemented as follows.

1. P removes the entry containing addr from W∗, and determines the value value
and challenge challenge stored in that entry.

2. P commits to [value] and [challenge].

3. Both parties add ([addr], [value], [challenge]) to R.

4. The parties compute [value′]← f([value]).

5. V sends P a random field element challenge′.

6. The parties add ([addr], [value′], challenge′) toW, and P adds (addr, value′, challenge′)
to W∗.

Once all memory operations have been completed, P commits to all the entries in
W∗ so that both parties can add W∗ to R. (Note that the size of W ∗ is always the
size of memory.) Finally, the parties use the same permutation check as Franzese et
al. [FKL+21] (originally due to Neff [Nef01]) to assert that R and W are permutations
of each other.

For the sake of exposition—and to more easily compare with the “standard” read-
write RAM interface of other works—we simplify ReadAndWriteBack by applying a re-
striction on the function f , so that ReadAndWriteBack strictly results in a Read or a
Write operation, while hiding this operation. This simplifies comparison with previous
work, but leaves open space for more abstract protocols, which we discuss in more detail
in item 5.3.2.

174 CHAPTER 5. PECORINO

Security

Informally, since P shows that R and W are permutations of each other, and since each
memory entry contains an address, it is not possible for P to cheat by swapping values
intended for one address with values intended for another address. P also cannot claim
that a read returned a value that was never written to that address, since that would
also cause the permutation check to fail.

Now the only remaining attack would be P re-ordering reads (so that a later write
output was given to a previous read). This is not possible since P needs to commit to
the read’s challenge before V has sent it the challenge for any subsequent writes. Thus,
P is unable to guess the challenge of the subsequent read, so it cannot successfully move
it earlier. If P tries to use the challenge of a previous read, then it will be neglecting the
challenge of the write that it should be matched up with. As a result, the permutation
assertion fails. We provide a formal argument of this claim in Theorem 18.

Reducing the Number of Rounds

The protocol as presented requires V to send a challenge value for every read/write
operation. Unfortunately, this adds overhead when run in practice, as the protocol
must pay the latency cost of communicating the challenge on each operation. While
we can avoid this by using the Fiat-Shamir transformation [FS87], doing so comes at a
significant security loss, particularly since our protocol has a number of rounds equal to
the number of RAM accesses. We show in subsection 5.3.3 an approach that removes
this per-round communication while avoiding the need for Fiat-Shamir. In particular,
we present an approach that allows the protocol to proceed in batches, where the verifier
needs to only communicate between batches, and all RAM accesses within a given batch
do not require communication.

5.1.3 Efficiency

Let ρ be the statistical security parameter, T the number of memory operations, N the
memory size, W the bit length of the values stored in RAM (i.e., the word size), and B
the batch size (i.e., the number of RAM accesses per batch). For the fully interactive
mode we have B = 1 and for the fully non-interactive mode we have B = T .

Below, we compare our approach with the FKLOWW protocol. We begin by intro-
ducing some terminology used in the comparison. Both our approach and the FKLOWW
protocol are compatible with VOLE-style ZK protocols, such as Quicksilver [YSWW21a]
and Mac’n’Cheese [BMRS21a]. In these protocols, vector oblivious linear evaluation
(VOLE) [WYKW21a] is used to efficiently generate linearly homomorphic commitments
[r] to random values r known to the prover. These values can then be “fixed” by the
prover to particular values of its choosing by sending the verifier a “fix” value f and
having each party compute [r] − f . We thus use the terminology “Fix bits” to denote
the number of bits that the prover needs to send. Likewise, “challenge bits” denotes the
number of bits the verifier needs to send.

5.1. INTRODUCTION 175

Below, we compare the cost of our approach and the FKLOWW protocol across four
metrics: (1) the number of Fix bits required, (2) the number of challenge bits required,
(3) the number of AND gates required, and (4) the number of multiplication gates (over
some arbitrary finite field F2) required. Note that the FKLOWW protocol requires no
challenge bits, and our approach requires no AND gates.

Read-Only Memory

For read-only memory we have the following costs:
Our Approach FKLOWW

Fix Bits (ρ+W)(T +N) (ρ+W)T
Challenge Bits ρ · T/B 0
AND Gates 0 (W + 2 logN)(N + T)
Mult Gates 2(T +N − 1) 2(T +N − 1)

As both protocols use the same approach to checking a permutation, the cost in
number of multiplication gates is the same. However, the FKLOWW protocol requires
a large number of AND gates to enforce the correct sorting of the list L′, which our
approach avoids. In addition, for cases where the number of memory operations T is
smaller than the size of memory N , the FKLOWW protocol requires fewer Fix bits.

Read-Write Memory

For read-write memory, we follow the convention of Franzese et al. and assume memory
is not initialized to private values (and memory is only initialized through the T memory
operations).

Our Approach Franzese et al.

Fix Bits (ρ+W)(T +N) (ρ+W + logN + 1)T
Challenge Bits ρ · T/B 0
AND Gates 0 T (5 + 2 logN +W + log T)
Mult Gates N + 2(T − 1) 2(T − 1)

Note that the above represents a worst-case comparison for our approach, since each
memory operation is both a read and a write, while in FKLOWW it is a read or a write.
As a result, for many programs, the T value should be halved.

In general, our approach works better for programs that do many accesses on a
smaller amount of memory. If T ≥ N (the program does at least as many memory
accesses as there are addresses), and those T memory operations are read-then-write-
back memory operations (so that each pair of memory operations can be performed as
only a single ReadAndWriteBack operation), then our approach performs better on every
metric above (except for challenge bits).

2As an example, for binary computations F would in practice be F240 .

176 CHAPTER 5. PECORINO

Concrete Comparison To put concrete3 communication numbers to the comparison,
consider a RAM size of 224 with a 32-bit word size and a statistical security parameter
of ρ = 40. Ignoring the communication cost of VOLE preprocessing, for T = 226

memory accesses, our approach requires only 30 bytes per memory access, compared to
FKLOWW’s required 34 bytes per memory access.

5.1.4 Related Work

There has been a long line of work developing zero-knowledge proofs in the RAM model.
Early work by Ben-Sasson et al. [BCG+13, BCTV13] and others [WSH+14] utilized a
routing network to enforce consistency of memory accesses. This approach was fur-
ther utilized in garbled-circuit zero-knowledge protocols [JKO13, FNO15] by Heath and
Kolesnikov [HK20b], resulting in the BubbleRAM [HK20a] and BubbleCache [HYDK21]
systems. However, the routing network approach inherently comes with a logarithmic
overhead per memory access, resulting in relatively high communication per memory ac-
cess: as an example, with a memory size of N = 224 and a 32-bit word size, BubbleCache
requires 240 bytes of communication.

An alternative approach is to utilize oblivious RAM as the means to hiding RAM ac-
cesses [HMR15, MRS17]. However, this line of work focused on asymptotic performance
and resulted in large hidden constants, making an implementation impractical.

As discussed in the Introduction, Franzese et al. [FKL+21] replaced the need for
a routing network (and in turn the use of oblivious RAM), by instead utilizing a
polynomial-based permutation check which then ensures consistency of memory accesses.
Using this approach, they are able to achieve linear (in the word size) communication
complexity and concretely-efficient communication and computation for both the prover
and the verifier. More recently, de Saint Guilhem et al. [DOTV22] proposed a public-coin
constant-overhead zero-knowledge protocol in the RAM model which works over fields
of any characteristic, compared to only boolean in prior work. They achieve this by
modifying Franzese et al.’s approach, achieving the best known result in the public-coin
setting.

5.2 Preliminaries

Our protocol makes use of a Fzk functionality which abstracts away functionality that
allows the prover to commit to values, and for both the prover and verifier to compute
over committed values. See Figure 5.1. This functionality can be instantiated using
several existing protocols [WYKW21a, DIO20, YSWW21a, BBMH+21b, BBMHS22a]
that all have good concrete efficiency while enabling bit packing, which our construction

3We stress that the communication numbers presented in this paragraph are instantiated with FK-
LOWW’s permutation check. Our implementation of our protocol is optimized for a compute-bound
setting (see section 5.5), and so we implemented a permutation check with less computation, in exchange
for more communication.

5.2. PRELIMINARIES 177

Functionality Fzk

Inputs: On input (Input, x) from P, store x and send [x] to both parties.
Constants: On input (Const, x) from both parties, store x and send [x] to both
parties.
Circuit evaluation: On input (Compute, C, [x1], . . . , [xn]) from both parties,
compute y ← C(x1, . . . , xn) and send [y] to both parties.
Open: On input (Open, [x]) from both parties, send x to both parties.

Figure 5.1: Ideal functionality for stateful ZK proofs.

Functionality Fzk-array

Initialize: On input (Initialize, N) from both parties, initialize M1, . . . ,MN to 0
and set result← honest.
Access: On receiving (Access, [op], [a], [v]) from both parties:

1. If a > N , set result← cheating.

2. If op = Read, send [Ma] to both parties.

3. If op = Write, set Ma ← v and send [v] to both parties.

Check: On input Check from V proceed as follows: if P sends cheating then send
cheating to V, otherwise if P sends continue then send result to V.

Figure 5.2: Ideal functionality for private read/write RAM access.

uses when operating over F2. In particular, we utilize packing as part of the permutation
check when operating over F2 (cf. section 5.4).

The goal is to realize the Fzk-array functionality presented in Figure 5.2. This func-
tionality has three interfaces. Initialize initializes the RAM to be of size N . Access is
then used to read or write to the RAM. It takes as input commitments to an operation
(either ‘read’ or ‘write’), an address, and a value. Upon a read, the committed value
at the given address is returned to both parties, and upon a write, the value is written
to the given address and a committed version of that value is returned to both parties.
Finally, Check allows the verifier to check consistency of RAM.

Finally, in the implementation of our protocol—and in the concrete instantiation of
the permutation check—we utilize VOLE-based ZK protocols. We thus provide a brief
description of VOLE below. Vector oblivious linear evaluation (VOLE) is a two-party
function between a sender S and a receiverR in which S andR obtain correlated random
vectors of the following form: S obtains two vectors x ∈ Fn

V and M ∈ Fn
T and R gets

a random scalar ∆ ∈ FT and a random vector K ∈ Fn
T where FV is a (not necessarily

178 CHAPTER 5. PECORINO

proper) subfield of the finite field FT [WYKW21a, BBMHS22a]. The VOLE function
ensures that the correlation M = ∆ · x + K is satisfied. In VOLE-based ZK protocols,
the prover performs the role of R and the verifier performs the role of S.

5.3 New Protocol for ZK Proofs in the RAM Model
In this section we present our novel zero-knowledge proof in the RAM model. We focus
on two variants: In these the prover first commits to an array of values and then (1)
in the read-only case, reads values from this array while hiding both the address which
is read from, as well as the value read, or, (2) in the general case, reads/writes values
from/to the array while hiding both the operation, address and values that are read or
written.

The keystone of our constructions is a function we call ReadAndWriteBack. As
touched upon in subsection 5.1.2, this function is very general, but for the sake of ex-
position, we restrict it slightly. We present the restricted variant here. First off, during
every call to ReadAndWriteBack, we utilize three different lists, each of which is used in
every call. We first describe these lists:

R After a value has been read from the memory, both the prover and the verifier
append the handles for the address, the value, and the challenge value to this list.

W After a value has been written to the memory, both the prover and the verifier
append the handles for the address and the value to this list, but we leave the
random challenge value in plaintext. Initially, this list contains N tuples and it
represents the initial memory.

W∗ After a value has been written to the memory, the prover adds the address, the
new value that was written as well as the corresponding challenge value to this
list. All values are kept in plaintext. The prover removes a tuple corresponding
to the provided address from this list whenever an address is read from memory.
Initially, this list is equal to W, apart from it containing the plaintext versions.

We now describe the restricted ReadAndWriteBack. The function takes as argument
commitments to an address [a], a value [v′] as well as an operation [op]. At a high level,
this function:

1. Performs a read by having the prover look up the address in plaintext in W∗ and
then re-committing to the value v and randomness value c from there. Both P
and V then add ([a], [v], [c]) to R.

2. Both parties agree on a shared function f . Both parties then compute the function
[y]← f([v], [v′], [op]). Lastly, V send a new random value c′.

3. Now both P and V write ([a], [y], c′) to W and P writes (a, y, c′) to W∗, in prepa-
ration for the next operation.

5.3. NEW PROTOCOL FOR ZK PROOFS IN THE RAM MODEL 179

Functionality Fzk-ro-array

Initialize: On input (Initialize, v1, . . . , vN , T) from both parties, construct list
L := (v1, . . . , vN) and set result← honest.
Cheat: On receiving (Cheat) from P, set result← cheating.
Read: On receiving (Read, [a], v) from P and (Read) from V, send [La] to both
parties.
Check: On input Check from V proceed as follows: if P sends cheating then send
cheating to V, otherwise if P sends continue then send result to V.

Figure 5.3: Ideal functionality for private read-only RAM access.

Following this idea, we can tailor ReadAndWriteBack to either do a read or write op-
eration exclusively, by specifying restrictions on the function f . In subsection 5.3.1 we
define how to tailor ReadAndWriteBack to stricly perform read operations and in subsec-
tion 5.3.2 we extend the function to allow for both reading and writing. We elaborate
on the idea of performing both operations for each call, in item 5.3.2.

5.3.1 Read-Only Memory

We begin by describing a simplified version of our full protocol. This version only allows
the prover to read from the shared memory, while keeping both the address and value
private.

A formal description of the functionality Fzk-ro-array is given in Figure 5.3. Our
protocol realizes the functionality Fzk-ro-array in the Fzk-hybrid model and works in three
phases as described briefly below. See Figure 5.4 for the formal description.

We define the function Read from the function ReadAndWriteBack (as informally
described in section 5.3) by essentially removing the operation parameter op as well as
removing the function f , as we are interested in forcing P to write the same value back
to W and W∗, as was read in W∗ in the beginning of the call. This allows P to read the
same value several times.

Initialization The prover initializes the memory by generating the list W∗ and gen-
erating the handles constituting W. The prover generates N handles ([a], [v], [c])
which represents the initial memory. The prover must also keep track ofW∗, which
represents all of the values in memory which has not been read yet. Thus, initially
W =W∗, except all values in the prover’s private W∗ are stored in the clear.

Read The prover looks up the address a inW∗ and then privately commits to the value
and challenge. It then removes the a triple from W∗ and both parties append
([a], [v], [c]) to R. V sends P a new random value c′. Both parties add the tuple
([a], [v], c′) to W and P adds (a, v, c′) to W∗.

180 CHAPTER 5. PECORINO

Check In order for a sequence of Read operations to be correct, the value returned by
each Read must match the value initially written to the given address. To check
this, P commits to W∗, and both parties add the committed ([a], [v], [c]) tuples to
R. Note that the Read operations are correct if W is a permutation of R; that
is, the tuples ([a], [v], [c]) being contained in both W and R ensures that P never
read something that was not already present in the memory W. Thus, P and V
use the permutation check protocol from section 5.4 to ensure that W and R are
permutations.

In the proof, as well as the protocol, we use a function denoted as Pack. This function
packs multiple elements together into a single element, and we formally define this in
section 5.4.

Theorem 17. Protocol Πzk-ro-ram securely realizes the functionality Fzk-ro-array in the
Fzk-hybrid model with statistical error (N + T + 1)/|F|, where N is the size of memory
and T is the number of read operations.

Proof. We build a simulator Sim interacting with the Fzk-ro-array functionality as follows.
Let P∗ be the prover; Sim runs P∗ as a subroutine and runs as follows:

• Initialize: For i ∈ [N], Sim constructs (ai, vi, ci) from the calls P∗ makes to
Fzk(Const), storing the results in list W. Sim initializes list R := ∅ and W∗ :=W.
Sim sends (Initialize, v1, . . . , vN , T) to Fzk-ro-array.

• Read: Sim proceeds as follows:

– Sim extracts a from its handle [a].
– Let v and c be the values P∗ sends to Fzk(Fix). Sim looks up (a, v, c) in W∗

and removes it. If Sim cannot find the tuple in W∗ it calls Fzk(Cheat).
– Sim sends random challenge c′ ← F to P∗, and adds (a, v, c) to R, (a, v, c′) to
W, and (a, v, c′) to W∗.

– Sim sends (Read, [a], v) to Fzk-ro-array.

• Check: Sim proceeds as follows:

– For i ∈ |W∗|: Sim obtains ai, vi, and ci from Fzk(Fix) and adds (ai, vi, ci) to
R. If (ai, vi, ci) does not match the ith tuple in W∗, Sim calls Fzk(Cheat).

– Sim sends random challenge z ← F to P∗.
– For i ∈ [N], let xi ← Pack(R[i]) and yi ← Pack(W[i]). Sim obtains the values

xi − z sent by P∗ to Fzk(Compute). If PolyCheck(x1 − z, . . . , xN − z) 6= 1,
Sim sends cheating to Fzk-array and aborts, outputting whatever P∗ outputs.
Otherwise, Sim sends continue to Fzk-array and halts, outputting whatever P∗
outputs.

5.3. NEW PROTOCOL FOR ZK PROOFS IN THE RAM MODEL 181

Protocol Πzk-ro-ram

Parameters:

• N : Size of memory.

• F: Field to use in protocol.

Common circuits:

• PolyCheck: Arithmetic circuit defined as follows:
PolyCheck(x1, . . . , xM , y1, . . . , yM) = 1 if and only if

∏
xi =

∏
yi.

Initialize(v1, . . . , vN):

1. For i ∈ [N]: P and V compute ([a], [c]) ← Fzk(Const, (i, 0) and [vi] ←
Fzk(Input, vi), storing the result in list W .

2. P and V set list R := ∅. P sets list W∗ :=W.

Read([a]):

1. P finds entry (a, v, c) ∈ W∗ and removes it.

2. P computes [v]← Fzk(Input, v) and [c]← Fzk(Input, c).

3. P and V add ([a], [v], [c]) to R.

4. V sends random challenge c′ ← F to P.

5. P and V add ([a], [v], c′) to W, and P adds (a, v, c′) to W∗.

Check: P holds list W∗ of entries (a, v, c), and P and V hold list W of entries
([a], [v], c) and list R of entries ([a], [v], [c]).

1. For (a, v, c) ∈ W∗: P and V compute [a]← Fzk(Input, a), [v]← Fzk(Input, v),
and [c]← (Input, c), adding ([a], [v], [c]) to R.

2. For i ∈ [N], P and V compute [xi]← Pack(R[i]) and [yi]← Pack(W[i]).

3. V sends random field element z ← F to P.

4. P and V compute [b]← Fzk(Compute,PolyCheck, [x1]−z, . . . , [xM]−z, [y1]−
z, . . . , [yN]− z).

5. P opens [b] to V, who aborts if b 6= 1.

Figure 5.4: Protocol for private read-only RAM access in the Fzk-hybrid model.

182 CHAPTER 5. PECORINO

We now show that the execution of Sim is statistically indistinguishable from the
execution of P∗ in the Fzk-hybrid model. Since the view of P∗ is perfectly simulated,
we need only show that the output of V is statistically indistinguishable. If P∗ behaves
honestly in every operation so that P∗ only reads values that was inserted during ini-
tialization, then the output of V is the same in both the ideal world and the Fzk-hybrid
model. We now consider the case where P∗ tries to cheat. Consider a Read operation in
which P∗ tries to cheat. There is a single way P∗ can cheat. This is by reading a value
that is not present in the memory. There are however two ways P∗ can still win, despite
of this. The first way is by simply committing to some value v′ which isn’t present inW∗
orW, at least not on the given address. This results in R andW not being equal, i.e. R
and W are not permutations of each other and yet the permutation check passes. This
happens with probability at most (N +T)/|F| following the same reasoning as presented
by Franzese et al. [FKL+21].

The second way is by in addition to committing to a wrong value, P∗ also commits
to a wrong challenge. Now, as long the verifier sends over this same commitment in the
future, P∗ can make up the error and still pass the check. We formalize this error in
Theorem 18. The probability of succes in this case, is 1/F.

Combining these, we get that Sim diverges from the ideal world with statistical
probability (N + T + 1)/|F|, completing the proof.

5.3.2 Read and Write Access to the Memory

We now present the full version of our protocol allowing for private reads and writes
from the shared memory, without leaking neither the operation nor the address or the
value.

Informally, we extend the protocol described in subsection 5.3.1 which only allowed
for read operations, by adding back the arithmetic function f . Note that this function
takes as input two values v, v′ as well as an operation op which is either Read or Write
(represented by 0 or 1, respectively). On Read, the function outputs v and on Write the
function outputs v′.

A formal description of the functionality Fzk-array is given in Figure 5.2 and a descrip-
tion of our protocol Πzk-ram realizing the functionality Fzk-array is given in Figure 5.5.

Theorem 18. Protocol Πzk-ram realizes the functionality Fzk-array in the Fzk-hybrid model
with statistical error (N + T + 1)/|F|, where T is the number of read/write operations
and N is the size of memory.

Proof. We build a simulator Sim interacting with the Fzk-array functionality as follows.
Let P∗ be the corrupted prover; Sim runs P∗ as a subroutine and runs as follows:

• Initialize: For i ∈ [N], Sim constructs ([ai], [vi], [ci]) from the calls P∗ makes to
Fzk(Const). Sim then sends (Initialize, N, T) to Fzk-array.

• Access: On input [op], [a], [v′], let v and c be the values P∗ sends to Fzk(Fix),
and let y be the output of Fzk(Compute). Sim sends a random challenge c′ ← F to

5.3. NEW PROTOCOL FOR ZK PROOFS IN THE RAM MODEL 183

Protocol Πzk-ram

Parameters:

• N : Size of memory.

• F: Field to use in protocol.

Common circuits:

• f : Arithmetic circuit defined as follows:
f(v, v′, op) = v if op = Read else v′.

• PolyCheck: Arithmetic circuit defined as follows:
PolyCheck(x1, . . . , xM , y1, . . . , yM) = 1 if and only if

∏
xi =

∏
yi.

Initialize():

1. For i ∈ [N]: P and V compute ([a], [v], [c]) ← Fzk(Const, (i, 0, 0)), storing
the result in list W.

2. P and V set list R = ∅. P sets list W∗ =W.

ReadAndWriteBack([a], [v′], [op]):

1. P finds entry (a, v, c) ∈ W∗ and removes it.

2. P computes [v]← Fzk(Input, v) and [c]← Fzk(Input, c).

3. P and V add ([a], [v], [c]) to R.

4. P and V compute [y]← Fzk(Compute, f, [v], [v′], [op]).

5. V sends random challenge c′ ← F to P.

6. P and V add ([a], [y], c′) to W , and P adds (a, y, c′) to W ∗.

Check: P holds list W∗ of entries (a, v, c), and P and V hold list W of entries
([a], [v], c) and list R of entries ([a], [v], [c]).

1. For (a, v, c) ∈ W∗: P and V compute [a] ← Fzk(Input, a), [v] ← Fzk(Input,
v), and [c]← Fzk(Input, c), adding ([a], [v], [c]) to R.

2. V sends random field element z ← F to P.

3. For i ∈ [N], P and V compute [xi]← Pack(R[i]) and [yi]← Pack(W[i]).

4. P and V compute [b]← Fzk(Compute,PolyCheck, [x1]−z, . . . , [xM]−z, [y1]−
z, . . . , [yN]− z).

5. P opens [b] to V, who aborts if b 6= 1.

Figure 5.5: Protocol for private read/write RAM access in the Fzk-hybrid model.

184 CHAPTER 5. PECORINO

P∗, and adds (a, v, c) to R, (a, y, c′) to W , and (a, y, c′) to W ∗. Finally, Sim sends
(Access, [op], [a], [v]) to Fzk-array and receives [y].

• Check: For i ∈ |W∗|, Sim obtains ai, vi, and ci from Fzk(Fix) and adds (ai, vi, ci)
to R. Next, Sim sends a random challenge z ← F to P∗.
For i ∈ [N], let xi ← Pack(R[i]) and yi ← Pack(W[i]). Sim obtains the values
xi − z send by P∗ to Fzk(Compute). If PolyCheck(x1 − z, . . . , xN − z) 6= 1, Sim
sends cheating to Fzk-array and aborts, outputting whatever P∗ outputs. Otherwise,
Sim sends continue to Fzk-array and halts, outputting whatever P∗ outputs.

We now show that the execution of Sim is statistically indistinguishable from the
execution of P∗ in the Fzk-hybrid model. Since the view of P∗ is perfectly simulated,
we need only show that the output of V is statistically indistinguishable.

Consider a ReadAndWriteBack operation in which P∗ tries to cheat. There are several
possibilities:

• R and W are permutations of each other and yet memory consistency is violated
(i.e., P∗ successfully reads a value that is not equal to a previously written value).
This can happen in two ways. Let ([a], [v], c) be a tuple previously stored in W ,
and consider the tuple ([a], [y], [c′]) committed to by P∗ and stored in R.

1. If v 6= y but c = c′ then P∗ gets caught in the permutation check.
2. If v 6= y and c 6= c′ then P∗ successfully cheats if the verifier provided chal-

lenge, in a subsequent round, c† is such that c′ = c† while the prover is trying
to write y. This happens with probability 1/|F|.

• R andW are not permutations of each other and yet the permutation check passes
(this happens if P∗ commits to a wrong value or tries to use an address a > N).
This happens with probability at most (N + T)/|F| following the same reasoning
as presented by Franzese et al. [FKL+21].

Combining these, we get that Sim diverges from the ideal world with statistical proba-
bility (N + T + 1)/|F|, completing the proof.

Optimizations

Our first optimization is to utilize both the read and the write of ReadAndWriteBack
instead of building Read and Write on top of ReadAndWriteBack. This reveals the opera-
tion, with the benefit of making the protocol twice as efficient, provided that the overall
proof statement allows for this RAM interface.

Our second optimization is that ReadAndWriteBack need not be limited to imple-
menting a Read or Write function, but rather can be called with any function, as long
as the prover and verifier both agree on it. This allows for more abstract functions
to be computed within a single memory access. While this has applications when the
function f is private, we imagine that the biggest improvement comes when the overall

5.3. NEW PROTOCOL FOR ZK PROOFS IN THE RAM MODEL 185

function being computed is public. Now, as the prover is not interested in hiding f ,
ReadAndWriteBack could take a function which could contain public or private values.
For example, it would be possible for the function to be f = x 7→ x+1 so that the overall
call to ReadAndWriteBack would be ReadAndWriteBack([a], x 7→ x+ 1) which represents
a single operation to increment the value at a memory address. Likewise, it is also valid
to compute, given [x′], ReadAndWriteBack([a], x 7→ x+ x′).

Taking this further, the function passed to ReadAndWriteBack can be more than just
a pure computation. It can also invoke ReadAndWriteBack itself4. As a result, there can
be several operations in-flight at any given time, making room for concurrent memory
accesses in an otherwise sequential computation. Furthermore, these generalizations
may also allow the prover to reduce the number of memory operations performed.

5.3.3 Reducing Interaction of Our Protocol

We now present a modification of our protocol that removes the need for the verifier to
send a challenge per-access to the prover. In this approach, the verifier provides an initial
seed before any RAM access, and then the remaining protocol is locally computable by
the prover using a hash function keyed by the seed. Note that the protocol can be made
either fully non-interactive by using the Fiat-Shamir transformation [FS87] to generate
the verifier’s seed, or be used in a batch setting, where the verifier sends a seed only
after B accesses, where B is the batch size.

We present this non-interactive protocol in Figure 5.6. The protocol makes use of a
particular instantiation of Fzk that modifies the Input operation as follows:

On input (Input, x) from P, store x and send [x], xcorr = x−r for a randomly
generated r, and [r] to both parties. We call xcorr the correlation value of [x].

We denote this modified functionality as F ′zk, and use the notation ([c], ccorr)← F ′zk(Input, c)
when knowing the correlation value is important for the protocol5 (otherwise we use
[c]← F ′zk(Input, c)). This functionality can be instantiated by existing VOLE-based ZK
protocols, such as Quicksilver [YSWW21a] and Mac’n’Cheese [BMRS21a].

Given F ′zk, the only change compared to Figure 5.5 is that now, instead of the
prover receiving the challenge from the verifier during each RAM access, it computes
the challenge as a hash of the verifier’s seed sent as part of Initialize and the correction
value for the prior challenge that the prover commits to in Step 2 of ReadAndWriteBack:
that is, challenge c′i+1 = H(seed, ccorri). seed is set to c′i+1 for the generation of the next
challenge.

Theorem 19. Protocol ΠNIzk-ram in Figure 5.6 securely realizes the functionality Fzk-array
in the F ′zk-hybrid model with statistical error (N + T + 1)/|F|+ 2−ρ + (1− (1− 2−ρ)T),
assuming H is a random oracle with an output in {0, 1}ρ.

4So long as this invocation targets an address that is distinct from the target address of any other
in-flight ReadAndWriteBack operation.

5We do not utilize [r] in the protocol; however, we do use it in the proof.

186 CHAPTER 5. PECORINO

Protocol ΠNIzk-ram

Parameters:

• N : Size of memory.
• F: Field to use in protocol.
• H: Hash function modeled as a random oracle.
• ρ: Statistical security parameter.

Common circuits:

• f : Circuit defined as follows: f(v, v′, op) = v if op = Read else v′.
• PolyCheck: Circuit defined as follows: PolyCheck(x1, . . . , xM , y1, . . . , yM) =

1 if and only if
∏

xi =
∏

yi.

Initialize():

1. For i ∈ [N]: P and V compute ([a], [v], [c]) ← Fzk(Const, (i, 0, 0)), storing
the result in list W .

2. P and V set list R = ∅. P sets list W ∗ = W .
3. V samples a random seed from [2ρ] and sends seed to P.

ReadAndWriteBack([a], [v′], [op]):

1. P finds entry (a, v, c) ∈W ∗.
2. P computes [v]← F ′zk(Input, v) and ([c], ccorr)← F ′zk(Input, c).
3. P and V add ([a], [v], [c]) to R.
4. P and V compute [y]← F ′zk(Compute, f, [v], [v′], [op]).
5. P and V compute a random challenge c′ ← H(seed, ccorr).
6. seed← c′.
7. P and V add ([a], [y], c′) to W , and P adds (a, y, c′) to W ∗.

Check: P holds list W ∗ of entries (a, v, c), and P and V hold list W of entries
([a], [v], c) and list R of entries ([a], [v], [c]).

1. For (a, v, c) ∈W ∗: P and V compute [a]← F ′zk(Input, a), [v]← F ′zk(Input, v),
and [c]← F ′zk(Input, c), adding ([a], [v], [c]) to R.

2. V sends random field element z ← F to P.
3. For i ∈ [N], P and V compute xi ← Pack(R[i]) and yi ← Pack(W [i]).
4. P and V compute [b]← Fzk(Compute,PolyCheck, [x1]−z, . . . , [xM]−z, [y1]−

z, . . . , [yN]− z).
5. P opens [b] to V, who aborts if b 6= 1.

Figure 5.6: Protocol for private read/write RAM access in the F ′zk-hybrid model which
avoids the verifier challenge during each RAM access.

5.4. ASSERTING PERMUTATIONS 187

Proof. (Sketch) The proof is largely the same as that for Theorem 18, except now the
challenges are not being sent by the verifier but rather generated based on the correction
values sent by the prover.

The prover can cheat if it can fix some challenge ci equal to some future challenge
cj . We show that the probability of this is 2−ρ. First, note that the correlation value
ccorri binds ci. This is because ccorri = ci − r for some randomly generated r. That is, if
a malicious prover tries to open [ci] to some value c∗i 6= ci, the verifier will detect this,
since [r] + ccorri 6= c∗i .

Let ci = H(seed, ccorr∗), where ccorr∗ denotes the correlation value used to compute ci.
In order for the prover to find a cj equal to ci, it must compute cj = H(seed, ccorrj−1) for
some valid correlation value ccorrj−1.

Note that ccorrj−1 itself is associated with some challenge cj−1 computed as H(seed, ccorrj−2),
etc. Unrolling this, we find that the prover must compute

cj = H(H(. . .H(. . . , ccorri) . . . , ccorrj−2), c
corr
j−1).

However, as H is a random oracle this only holds with probability 2−ρ.
An interesting aspect of the above, is that the analysis relies on the fact that the

prover won’t know when it could’ve cheated. If the collission happens immediatly so that
ci = H(seed, ccorri−1) for ci = ci−1, then the prover can take advantage of this in similar
fashion to the above attack. Now, as already noted, the probability of finding a single
collision is 2−ρ, thus the probability of there being no collisions in T memory operations
is (1− 2−ρ)T . Using this, we find that the probability of the prover immediatly hitting
a collision over T memory operations is 1− (1− 2−ρ)T .

Noting the above two attacks, the prover has an additional 2−ρ + (1 − (1 − 2−ρ)T)
probability of cheating in the noninteractive protocol compared to the interactive variant.

5.4 Asserting Permutations

Our protocol utilizes a permutation check originally due to Neff [Nef01] and used by
Franzese et al. [FKL+21] in their RAM approach. We describe two variants of this
check: one for individual field elements and one for tuples of field elements.

5.4.1 Asserting Permutations of Individual Values

Let R = ([r1], . . . , [rn]) and W = ([w1], . . . , [wn]) denote two lists in Fn. Let f(X) =
Πi(X − [ri]), g(X) = Πi(X − [wi]) be polynomials over F. Let z(X) = f(X) − g(X).
Then R andW are permutations of each other if and only if z(X) is the zero polynomial,
since polynomials are identical under permutation of the roots [Gro09, Nef01]. Let e ∈ F
be a randomly chosen field element. We can check that z(e) = 0 to check that z(X)
is the zero polynomial. Due to the Schwartz-Zippel lemma, the prover can cheat with
probability n

|F| . In our protocol, the verifier samples e and sends it to the prover, both

188 CHAPTER 5. PECORINO

parties compute z([e]), and the parties open this commitment, allowing the verifier to
check that it is zero.

Ensuring Soundness with Small Fields

We want F to be small in order to make the implementation of the zero knowledge proof
scheme efficient. However, the smaller that we make F, the smaller R and W must be
in order to keep the permutation check sound. In particular, the permutation check is
only sound if n ≤ 2−ρ · |FT |, where ρ is the statistical security parameter.

We can increase the soundness of the permutation check at the cost of making it
more computationally expensive.

Run the check twice If n ≤ 2
−ρ
2 · |F|, then running the above polynomial check twice,

with two different random verifier challenges will be sound. This comes at the cost of
double the multiplications of the simple polynomial check.

Karatsuba multiplication If n ≤ 2−ρ · |F|2, then we want to run the polynomial
check over the Galois extension field F2. To do this, we can treat commitments over F2

as pairs of commitments over F. That is, [x]F2 7→ ([xL]F, [xH]F), where xL and xH are the
high and low halves of x respectively. Pairwise linear operations on these commitment
pairs are homomorphic: c · ([a]F2 + [b]F2) = [c · (a + b)]F2 7→ (cL · ([aL]F + [bL]F), cH ·
([aH]F + [bH]F)) = ([(c · (a+ b))L]F, [(c · (a+ b))H]F).

Multiplications of commitments of F2 can be lowered into multiplication of commit-
ments of F using Karatsuba multiplication: ([x]F2

T
· [y]F2

T
) 7→ ([z1]FT

, [z0 − z2]FT
) where

z0 = xL · yL, z1 = (xH + xL)(yH + yL)− z2 − z0, and z2 = xH · yH .
This approach triples the number of F multiplications required, but squares the size

of the permutation allowed, while still being sound. This process can be repeated, as
needed, as the number of memory operations grows6.

5.4.2 Asserting Permutations of Tuples

For our protocol, just asserting that lists of individual field elements are permutations
is not enough—we need to assert that lists of tuples of fields elements are permutations.
To do this we pack our two lists of tuples into two lists of individual field elements, which
we feed into the above single value permutation assertion. There are two ways we can
implement this packing operation. In practice, we use both together. Below we describe
these two approaches, using the field notation for VOLE-based correlations introduced
in section 5.2; namely we use FT and FV , where FV is a subfield of FT .

6In practice, given a statistical security parameter of 2−40 (as a lower bound for |F|), this would
allow 240 memory operations without needing to repeat this process, which should be enough for most
practical applications.

5.5. IMPLEMENTATION AND EXPERIMENTS 189

Using extension fields If FV = Fpr is a proper subfield of FT = Fprk (as is the case
when working in binary), then there is a linear isomorphism L : Fk

pr → Fprk . Because
commitments over FV can also be viewed as commitments over FT , both parties can lever-
age the linear homomorphism of commitments to locally compute L over commitments.
Thus, we define Pack([x1], . . . , [xk]) = [L(x1, . . . , xk)]. Because L is an isomorphism, two
lists of Fk

V are permutations if and only if the Pack-ed lists are permutations. Thus, we
can use above permutation check in tandem with this Pack definition.

Using random projections This approach was introduced by de Saint Guilhem et
al. [DOTV22, §3.2.2]. After the prover has committed to lists W and R of n values in
Fk
T , the verifier can send the prover a random vector: e1, . . . , ek ∈ FT . Then we define

Pack : Fk
T → FT as Pack(x) = x · e. We can then check that the Pack-ed versions

of W and R are permutations of each other to check that the original W and R are
permutations of each other.

5.5 Implementation and Experiments

We have implemented our protocol in Rust using the Swanky Library [Gal19]. We
evaluate the performance of our most general variant, ΠNIzk-ram. Note that ΠNIzk-ram
works similarly to Πzk-ram in case the batch size of ΠNIzk-ram is 1 and that Πzk-ro-ram is
cheaper than Πzk-ram due to not having a multiplexer in the form of the function f .

We ran ΠNIzk-ram using the binary field F2 in the extension field F263 as well as the
prime field Fp for p = 261 − 1. We instantiated the VOLE protocol using Wolver-
ine [WYKW21a] and we use QuickSilver [YSWW21a] for the ZK proofs for polynomials.

We optimized our implementation for small-to-mediums sized servers running in a
data center. Our benchmarks reflect this setting—all benchmarks are run between two
m6.i8xlarge AWS servers, each having a 3rd Generation Intel Xeon Platinum 8375C with
32 vCPUs and 128GiB of RAM. One of the servers is located in North Virginia (us-east-
1) and the other in Oregon (us-west-2). The servers run with roughly 70ms of latency
and 4Gbps of bandwidth.

When considering the boolean case, our implementation is capable of having ad-
dresses as well as values of arbitrary size (at the cost of using a larger field for the
commitments). For our experiments we vary the bit size of the values as indicated
by the concrete tables. This matches previous work [FKL+21], for easier comparison.
Lastly, we set our statistical security parameter to ρ = 40.

Table 5.1 presents the performance of our approach when using F2 with extension
field F263 and varying the memory size from 65536 to 1048576. We can see that the cost
per-access is roughly 6.3–7.3 µs regardless of the memory size, and this includes the cost
of VOLE.

Table 5.2 presents the performance of our approach when using Fp61−1 while varying
the number of operations performed. This indicates a correlation between the number of
calls compared to the memory size, underlining our theoretical contribution mentioned

190 CHAPTER 5. PECORINO

Memory Size 215 218 220

Total per access (in µs) 6.72 6.3 7.3

Table 5.1: Timing ΠNIzk-ram when varying memory size with 222 calls to
ReadAndWriteBack over the field F2 with extension field F263 . We represent the val-
ues by 16 bits. All times include both the cost of VOLE, the call to ReadAndWriteBack
as well as the final consistency check.

Operations 220 222 223 225

Total per access (in µs) 7.87 4.11 3.48 3.22

Table 5.2: Timing ΠNIzk-ram when varying number of calls to ReadAndWriteBack with a
memory size of 216 over the field Fp for p = 261 − 1. All times include both the cost of
VOLE, the call to ReadAndWriteBack as well as the final consistency check.

in subsection 5.1.3, as we see the time drop from 7.87 µs to 3.22 µs, as we increase the
number of calls to ReadAndWriteBack.

Table 5.3 presents the performance of our approach when using a binary word sizes
of 16, 32 and 64 bits (that is, each RAM entry is comprised of varying F2 elements).
Here we fix the memory size to be 65536 and see a per-access cost of at most 5.32 µs
regardless of bit size. We have run the protocol due to Franzese et al. [FKL+21] resulting
in a per-access cost of 25.2 µs, when considering 32 bit values (Table 5.4), making our
approach roughly 5× more efficient. We note that this discrepancy between our numbers
and theirs likely stem from their numbers being reported when limiting the bandwidth
to 100 Mbps (whereas we run our experiments with a bandwidth of 4 Gbps), alongside
the standard caveat that we are comparing two distinct implementations.

Furthermore, it’s worth noting that we utilize a different permutation check for all
of our benchmarks, which does not utilize QuickSilver [YSWW21a]. This permutation
check sees slightly better computation times, at the cost of slightly increasing commu-
nication.

5.5.1 Potential Side-Channel Timing Attack

We note that both our implementation and the prior work of Franzese et al. [FKL+21]
can potentially be attacked through a timing side channel, allowing the verifier to learn

Bit size 16 32 64

Total per access (in µs) 4.06 4.50 5.32

Table 5.3: Timing ΠNIzk-ram when varying the bit size of the values with 223 calls to
ReadAndWriteBack, a memory of size 216 and using the extension field F263 . All times
include both the cost of VOLE, the call to ReadAndWriteBack as well as the final con-
sistency check.

5.5. IMPLEMENTATION AND EXPERIMENTS 191

Bit size 16 32 64

Total per access (in µs) 22.5 25.2 32.0

Table 5.4: Timing the protocol by [FKL+21] when varying the bit size of values with 223

memory operations, a memory of size 216. The times are for each memory operation.

information about the addresses being queried to RAM7. Considering our implemen-
tation first, in Step 1 of ReadAndWriteBack the prover needs to find an entry in W∗
associated with a given address. We implement this lookup by indexing into an array
with the address. However, the time it takes for the prover to read this value from the
array may vary with the value of the address. This timing may leak information about
the address to the verifier. This affects both Πzk-ram and ΠNIzk-ram

8.
Looking at Franzese et al. [FKL+21], their protocol and implementation suffers from

a similar issue: when doing a RAM access the prover needs to look up the value stored
at the provided address and commit to it. As in our implementation, the time required
for this lookup may leak something about the address being queried.

One approach to addressing this issue is to utilize oblivious RAM (ORAM) on W∗.
This use of ORAM would be run entirely on the prover side and used as a means to
hide the timing information from the verifier. Interestingly, this is not the standard use-
case of ORAM, which is often viewed as a client-server protocol. An interesting future
direction is to develop an ORAM protocol optimized for this non-standard setting.

We anticipate that, given the pipelining and concurrency optimizations we already
have in place, switching to use ORAM (in the implementation of the prover) would have
only minimal impact on performance.

7We have not experimentally validated that this timing side channel is indeed a concern in practice.
8If ΠNIzk-ram was made fully non-interactive by using Fiat-Shamir to sample the verifier’s random seed

alongside using a non-interactive instantiation of F ′
zk this attack would of course no longer be relevant.

192 CHAPTER 5. PECORINO

Bibliography

[ABG+21] Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and
Thor Tunge. Lattice-based proof of shuffle and applications to electronic
voting. In Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of
LNCS, pages 227–251. Springer, Heidelberg, May 2021.

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior
Zichron. Secure arithmetic computation with constant computational
overhead. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 223–254. Springer, Heidelberg, Au-
gust 2017.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of
errors. In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP
2011, Part I, volume 6755 of LNCS, pages 403–415. Springer, Heidelberg,
July 2011.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venki-
tasubramaniam. Ligero: Lightweight sublinear arguments without a
trusted setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press,
October / November 2017.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity.
In 44th FOCS, pages 298–307. IEEE Computer Society Press, October
2003.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer and extensions for faster secure computa-
tion. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013, pages 535–548. ACM Press, November 2013.

[Bab85] László Babai. Trading group theory for randomness. In 17th ACM STOC,
pages 421–429. ACM Press, May 1985.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Pri-
vacy, pages 315–334. IEEE Computer Society Press, May 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scal-
able, transparent, and post-quantum secure computational integrity.
Cryptology ePrint Archive, Report 2018/046, 2018. https://eprint.
iacr.org/2018/046.

193

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

194 BIBLIOGRAPHY

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scal-
able zero knowledge with no trusted setup. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of
LNCS, pages 701–732. Springer, Heidelberg, August 2019.

[BBMH+21a] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoit Razet,
and Peter Scholl. Appenzeller to brie: Efficient zero-knowledge proofs
for mixed-mode arithmetic and Z2k . Cryptology ePrint Archive, Report
2021/750, 2021. https://eprint.iacr.org/2021/750.

[BBMH+21b] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoît Razet,
and Peter Scholl. Appenzeller to brie: Efficient zero-knowledge proofs
for mixed-mode arithmetic and Z2k. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021, pages 192–211. ACM Press, November 2021.

[BBMHS22a] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Pe-
ter Scholl. MozZ2karella: Efficient vector-OLE and zero-knowledge
proofs over Z2k . In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 329–358. Springer,
Heidelberg, August 2022.

[BBMHS22b] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter
Scholl. MozZ2karella: Efficient vector-OLE and zero-knowledge proofs
over Z2k . Cryptology ePrint Archive, Report 2022/819, 2022. https:
//eprint.iacr.org/2022/819.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclo-
sure proofs of knowledge. Journal of Computer and System Sciences,
37(2):156–189, 1988.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic cir-
cuits in the discrete log setting. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
327–357. Springer, Heidelberg, May 2016.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Shafi Goldwasser, editor, ITCS 2012,
pages 326–349. ACM, January 2012.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013.

https://eprint.iacr.org/2021/750
https://eprint.iacr.org/2022/819
https://eprint.iacr.org/2022/819

BIBLIOGRAPHY 195

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and
Mary Maller. Arya: Nearly linear-time zero-knowledge proofs for correct
program execution. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part I, volume 11272 of LNCS, pages 595–626. Springer,
Heidelberg, December 2018.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 291–
308. ACM Press, November 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518.
Springer, Heidelberg, August 2019.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compress-
ing vector OLE. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 896–912. ACM Press,
October 2018.

[BCTV13] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive arguments for a von neumann architecture. Cryp-
tology ePrint Archive, Report 2013/879, 2013. https://eprint.iacr.
org/2013/879.

[BDG+13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain,
Yael Tauman Kalai, Adriana López-Alt, and Daniel Wichs. Why “Fiat-
Shamir for proofs” lacks a proof. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 182–201. Springer, Heidelberg, March 2013.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias.
Semi-homomorphic encryption and multiparty computation. In Ken-
neth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 169–188. Springer, Heidelberg, May 2011.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
420–432. Springer, Heidelberg, August 1992.

[Ben64] V. E. Bene. Permutation groups, complexes, and rearrangeable connecting
networks. The Bell System Technical Journal, 43(4):1619–1640, 1964.

https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2013/879

196 BIBLIOGRAPHY

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lip-
ton. Cryptographic primitives based on hard learning problems. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 278–291.
Springer, Heidelberg, August 1994.

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, An-
drew J. Blumberg, and Michael Walfish. Verifying computations with
state (extended version). Cryptology ePrint Archive, Report 2013/356,
2013. https://eprint.iacr.org/2013/356.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. Journal of the ACM
(JACM), 50(4):506–519, 2003.

[BL17] Carsten Baum and Vadim Lyubashevsky. Simple amortized proofs of
shortness for linear relations over polynomial rings. Cryptology ePrint
Archive, Report 2017/759, 2017. https://eprint.iacr.org/2017/759.

[BMRS21a] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl.
Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic cir-
cuits with nested disjunctions. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 92–122, Virtual
Event, August 2021. Springer, Heidelberg.

[BMRS21b] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl.
Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic circuits
with nested disjunctions. 41st Annual International Cryptology Confer-
ence (CRYPTO 2021), 2021.

[BN19] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. Cryptology ePrint Archive, Report 2019/532, 2019. https:
//eprint.iacr.org/2019/532.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages
495–526. Springer, Heidelberg, May 2020.

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an
interval. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 431–444. Springer, Heidelberg, May 2000.

https://eprint.iacr.org/2013/356
https://eprint.iacr.org/2017/759
https://eprint.iacr.org/2019/532
https://eprint.iacr.org/2019/532

BIBLIOGRAPHY 197

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
https://eprint.iacr.org/2000/067.

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols
for set membership and range proofs. In Josef Pieprzyk, editor, ASI-
ACRYPT 2008, volume 5350 of LNCS, pages 234–252. Springer, Heidel-
berg, December 2008.

[CD98] Ronald Cramer and Ivan Damgård. Zero-knowledge proofs for finite field
arithmetic; or: Can zero-knowledge be for free? In Hugo Krawczyk, ed-
itor, CRYPTO’98, volume 1462 of LNCS, pages 424–441. Springer, Hei-
delberg, August 1998.

[Cd10] Octavian Catrina and Sebastiaan de Hoogh. Improved primitives for se-
cure multiparty integer computation. In Juan A. Garay and Roberto De
Prisco, editors, SCN 10, volume 6280 of LNCS, pages 182–199. Springer,
Heidelberg, September 2010.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and
Chaoping Xing. SPD Z2k : Efficient MPC mod 2k for dishonest majority.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 769–798. Springer, Heidelberg, Au-
gust 2018.

[CDN15] Ronald Cramer, Ivan Bjerre Damgård, and Jesper Buus Nielsen. Secure
Multiparty Computation and Secret Sharing, volume 1. Cambridge Uni-
versity Press, 2015.

[CFQ19] Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modu-
lar design and composition of succinct zero-knowledge proofs. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. Cryptology ePrint Archive, Report 1998/011,
1998. https://eprint.iacr.org/1998/011.

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/1998/011

198 BIBLIOGRAPHY

[Cha90] David Chaum. Showing credentials without identification transferring sig-
natures between unconditionally unlinkable pseudonyms. In Jennifer Se-
berry and Josef Pieprzyk, editors, AUSCRYPT’90, volume 453 of LNCS,
pages 246–264. Springer, Heidelberg, January 1990.

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact
e-cash. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 302–321. Springer, Heidelberg, May 2005.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In Anne Canteaut and Yuval Ishai, edi-
tors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020.

[CHP+23] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pernsteiner, and Eran
Tromer. Cheesecloth: Zero-knowledge proofs of real-world vulnerabilities,
2023.

[CKLR21] Geoffroy Couteau, Michael Klooß, Huang Lin, and Michael Reichle. Ef-
ficient range proofs with transparent setup from bounded integer com-
mitments. Cryptology ePrint Archive, Report 2021/540, 2021. https:
//eprint.iacr.org/2021/540.

[CMM19] Núria Costa, Ramiro Martínez, and Paz Morillo. Lattice-based proof of
a shuffle. In Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B.
Rønne, and Massimiliano Sala, editors, FC 2019 Workshops, volume 11599
of LNCS, pages 330–346. Springer, Heidelberg, February 2019.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-
quantum and transparent recursive proofs from holography. In Anne Can-
teaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 769–793. Springer, Heidelberg, May 2020.

[CPP17] Geoffroy Couteau, Thomas Peters, and David Pointcheval. Removing
the strong RSA assumption from arguments over the integers. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 321–350. Springer, Heidelberg,
April / May 2017.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver:
Silent VOLE and oblivious transfer from hardness of decoding structured
LDPC codes. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part III, volume 12827 of LNCS, pages 502–534, Virtual Event, August
2021. Springer, Heidelberg.

https://eprint.iacr.org/2021/540
https://eprint.iacr.org/2021/540

BIBLIOGRAPHY 199

[DAT17] Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding.
In 2017 IEEE International Symposium on Information Theory (ISIT),
pages 1798–1802. IEEE, 2017.

[DILO22] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving
line-point zero knowledge: Two multiplications for the price of one. In
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 829–841. ACM Press, November 2022.

[DIO20] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowl-
edge and its applications. Cryptology ePrint Archive, Report 2020/1446,
2020. https://eprint.iacr.org/2020/1446.

[DIO21a] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowl-
edge and its applications. In 2nd Conference on Information-Theoretic
Cryptography (ITC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2021.

[DIO21b] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowl-
edge and its applications. In 2nd Conference on Information-Theoretic
Cryptography (ITC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2021.

[DNNR17] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranel-
lucci. The TinyTable protocol for 2-party secure computation, or: Gate-
scrambling revisited. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 167–187. Springer,
Heidelberg, August 2017.

[DOTV22] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy,
and Michiel Verbauwhede. Efficient proof of RAM programs from any
public-coin zero-knowledge system. Cryptology ePrint Archive, Report
2022/313, 2022. https://eprint.iacr.org/2022/313.

[DPSZ11] I. Damgard, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. Cryptology ePrint
Archive, Report 2011/535, 2011. https://eprint.iacr.org/2011/535.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[EGK+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and
Peter Scholl. Improved primitives for MPC over mixed arithmetic-
binary circuits. In Daniele Micciancio and Thomas Ristenpart, editors,

https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2022/313
https://eprint.iacr.org/2011/535

200 BIBLIOGRAPHY

CRYPTO 2020, Part II, volume 12171 of LNCS, pages 823–852. Springer,
Heidelberg, August 2020.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized
protocol for signing contracts. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 205–210. Plenum Press,
New York, USA, 1982.

[EKM17] Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II,
volume 10402 of LNCS, pages 486–514. Springer, Heidelberg, August 2017.

[FKL+21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao
Wang, and Chenkai Weng. Constant-overhead zero-knowledge for RAM
programs. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 178–191. ACM Press, November 2021.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi.
Privacy-free garbled circuits with applications to efficient zero-knowledge.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 191–219. Springer, Heidelberg, April
2015.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

[Gal19] Galois, Inc. swanky: A suite of rust libraries for secure computation.
https://github.com/GaloisInc/swanky, 2019.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions (extended abstract). In 25th FOCS, pages 464–479.
IEEE Computer Society Press, October 1984.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[GHL21] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-
interactive publicly verifiable secret sharing with thousands of parties.
Cryptology ePrint Archive, Report 2021/1397, 2021. https://eprint.
iacr.org/2021/1397.

[GHL22] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-
interactive publicly verifiable secret sharing with thousands of parties. In
Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part I, volume 13275 of LNCS, pages 458–487. Springer, Heidelberg,
May / June 2022.

https://github.com/GaloisInc/swanky
https://eprint.iacr.org/2021/1397
https://eprint.iacr.org/2021/1397

BIBLIOGRAPHY 201

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In 14th ACM
STOC, pages 365–377. ACM Press, May 1982.

[GMNO18] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù.
Lattice-based zk-SNARKs from square span programs. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 556–573. ACM Press, October 2018.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

[GNS21] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinoc-
chio: SNARKs for ring arithmetic. Cryptology ePrint Archive, Report
2021/322, 2021. https://eprint.iacr.org/2021/322.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge
University Press, 2001.

[Gro05] Jens Groth. Non-interactive zero-knowledge arguments for voting. In
John Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS 05,
volume 3531 of LNCS, pages 467–482. Springer, Heidelberg, June 2005.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In
Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 192–208.
Springer, Heidelberg, August 2009.

[Gro11] Jens Groth. Efficient zero-knowledge arguments from two-tiered homo-
morphic commitments. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 431–448. Springer, Hei-
delberg, December 2011.

[GT03] Shafi Goldwasser and Yael Tauman. On the (in)security of the Fiat-
Shamir paradigm. Cryptology ePrint Archive, Report 2003/034, 2003.
https://eprint.iacr.org/2003/034.

[Hac07] Peter Hackman. Elementary Number Theory. HHH Productions,
Linköping, 2007.

[HK97] Shai Halevi and Hugo Krawczyk. MMH: Software message authentication
in the Gbit/second rates. In Eli Biham, editor, FSE’97, volume 1267 of
LNCS, pages 172–189. Springer, Heidelberg, January 1997.

https://eprint.iacr.org/2021/322
https://eprint.iacr.org/2003/034

202 BIBLIOGRAPHY

[HK20a] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-knowledge proces-
sor with BubbleRAM. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 2055–2074. ACM Press,
November 2020.

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive
zero-knowledge proofs. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 569–598. Springer,
Heidelberg, May 2020.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols
- Techniques and Constructions. ISC. Springer, Heidelberg, 2010.

[HMR15] Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. Efficient zero-
knowledge proofs of non-algebraic statements with sublinear amortized
cost. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 150–169. Springer,
Heidelberg, August 2015.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost con-
stant round MPC combining BMR and oblivious transfer. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume
10624 of LNCS, pages 598–628. Springer, Heidelberg, December 2017.

[HYDK21] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov.
Zero knowledge for everything and everyone: Fast ZK processor with
cached ORAM for ANSI C programs. In 2021 IEEE Symposium on Secu-
rity and Privacy, pages 1538–1556. IEEE Computer Society Press, May
2021.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 145–161. Springer, Heidelberg, August 2003.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic com-
putation with no honest majority. In Omer Reingold, editor, TCC 2009,
volume 5444 of LNCS, pages 294–314. Springer, Heidelberg, March 2009.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In 21st ACM STOC, pages 44–61.
ACM Press, May 1989.

[IR90] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In Shafi Goldwasser, editor, Advances
in Cryptology — CRYPTO’ 88, pages 8–26, New York, NY, 1990. Springer
New York.

BIBLIOGRAPHY 203

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic statements
efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013, pages 955–966. ACM Press, November 2013.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. Delegatable pseudorandom functions and applications.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013, pages 669–684. ACM Press, November 2013.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. In 31st FOCS, pages 2–10.
IEEE Computer Society Press, October 1990.

[Lin16] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof
technique. Cryptology ePrint Archive, Report 2016/046, 2016. https:
//eprint.iacr.org/2016/046.

[Lip03] Helger Lipmaa. On diophantine complexity and statistical zero-knowledge
arguments. Cryptology ePrint Archive, Report 2003/105, 2003. https:
//eprint.iacr.org/2003/105.

[LLM+16] Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huax-
iong Wang. Zero-knowledge arguments for matrix-vector relations and
lattice-based group encryption. In Jung Hee Cheon and Tsuyoshi Tak-
agi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages
101–131. Springer, Heidelberg, December 2016.

[LNS20] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. Cryp-
tology ePrint Archive, Report 2020/1448, 2020. https://eprint.iacr.
org/2020/1448.

[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Juan
Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages 215–241.
Springer, Heidelberg, May 2021.

[LWYY22] Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. The hardness of LPN
over any integer ring and field for PCG applications. Cryptology ePrint
Archive, Report 2022/712, 2022. https://eprint.iacr.org/2022/712.

[LXZ21] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkCNN: Zero knowledge proofs
for convolutional neural network predictions and accuracy. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2968–2985. ACM
Press, November 2021.

https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2003/105
https://eprint.iacr.org/2003/105
https://eprint.iacr.org/2020/1448
https://eprint.iacr.org/2020/1448
https://eprint.iacr.org/2022/712

204 BIBLIOGRAPHY

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, de-
coding random linear codes, and the subset sum problem. In Chandra
Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors,
Approximation, Randomization and Combinatorial Optimization. Algo-
rithms and Techniques, pages 378–389, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In Ronald Cramer, editor, PKC 2008, volume 4939 of
LNCS, pages 162–179. Springer, Heidelberg, March 2008.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.
Sonic: Zero-knowledge SNARKs from linear-size universal and updat-
able structured reference strings. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
2111–2128. ACM Press, November 2019.

[Mer79] Ralph Charles Merkle. Secrecy, authentication, and public key systems.
Stanford university, 1979.

[MHOY21] Alexander Munch-Hansen, Claudio Orlandi, and Sophia Yakoubov.
Stronger notions and a more efficient construction of threshold ring signa-
tures. In Patrick Longa and Carla Ràfols, editors, LATINCRYPT 2021,
volume 12912 of LNCS, pages 363–381. Springer, Heidelberg, October
2021.

[MN90] François Morain and Jean-Louis Nicolas. On cornacchias algorithm for
solving the diophantine equation. 1990.

[MRS17] Payman Mohassel, Mike Rosulek, and Alessandra Scafuro. Sublinear zero-
knowledge arguments for RAM programs. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210
of LNCS, pages 501–531. Springer, Heidelberg, April / May 2017.

[MRVW21] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer
Wagh. Rabbit: Efficient comparison for secure multi-party computation.
In Nikita Borisov and Claudia Díaz, editors, FC 2021, Part I, volume
12674 of LNCS, pages 249–270. Springer, Heidelberg, March 2021.

[MSM+22] Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli,
Frank H.P. Fitzek, and Najwa Aaraj. Survey on fully homomorphic en-
cryption, theory, and applications. Cryptology ePrint Archive, Report
2022/1602, 2022. https://eprint.iacr.org/2022/1602.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001,
pages 116–125. ACM Press, November 2001.

https://eprint.iacr.org/2022/1602

BIBLIOGRAPHY 205

[NNOB11] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-
party computation. Cryptology ePrint Archive, Report 2011/091, 2011.
https://eprint.iacr.org/2011/091.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evalu-
ation. In 31st ACM STOC, pages 245–254. ACM Press, May 1999.

[Pra62] E. Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryp-
tology ePrint Archive, Report 2005/187, 2005. https://eprint.iacr.
org/2005/187.

[RS86] Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in
number theory. Communications on Pure and Applied Mathematics,
39(S1):S239–S256, 1986.

[RW19] Dragos Rotaru and Tim Wood. MArBled circuits: Mixing arithmetic and
Boolean circuits with active security. In Feng Hao, Sushmita Ruj, and
Sourav Sen Gupta, editors, INDOCRYPT 2019, volume 11898 of LNCS,
pages 227–249. Springer, Heidelberg, December 2019.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701717, oct 1980.

[Sch18] Peter Scholl. Extending oblivious transfer with low communication via
key-homomorphic PRFs. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 554–583. Springer, Hei-
delberg, March 2018.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without
trusted setup. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–737. Springer,
Heidelberg, August 2020.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana
Raykova. Distributed vector-OLE: Improved constructions and imple-
mentation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 1055–1072. ACM Press,
November 2019.

[Sha90] Adi Shamir. IP=PSPACE. In 31st FOCS, pages 11–15. IEEE Computer
Society Press, October 1990.

https://eprint.iacr.org/2011/091
https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187

206 BIBLIOGRAPHY

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Comput-
ing, 26(5):1484–1509, oct 1997.

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. https://people.
cs.georgetown.edu/jthaler/ProofsArgsAndZK.html, 2022.

[WSH+14] Riad S. Wahby, Srinath Setty, Max Howald, Zuocheng Ren, Andrew J.
Blumberg, and Michael Walfish. Efficient RAM and control flow in
verifiable outsourced computation. Cryptology ePrint Archive, Report
2014/674, 2014. https://eprint.iacr.org/2014/674.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE
Symposium on Security and Privacy, pages 926–943. IEEE Computer So-
ciety Press, May 2018.

[WYKW21a] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolver-
ine: Fast, scalable, and communication-efficient zero-knowledge proofs
for boolean and arithmetic circuits. In 2021 IEEE Symposium on Secu-
rity and Privacy, pages 1074–1091. IEEE Computer Society Press, May
2021.

[WYKW21b] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolver-
ine: Fast, scalable, and communication-efficient zero-knowledge proofs
for boolean and arithmetic circuits. 42nd IEEE Symposium on Security
and Privacy (Oakland 2021), 2021.

[WYX+21a] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang.
Mystique: Efficient conversions for zero-knowledge proofs with applica-
tions to machine learning. In Michael Bailey and Rachel Greenstadt, ed-
itors, USENIX Security 2021, pages 501–518. USENIX Association, Au-
gust 2021.

[WYX+21b] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang.
Mystique: Efficient conversions for zero-knowledge proofs with appli-
cations to machine learning. In 30th USENIX Security Symposium
(USENIX Security 21), pages 501–518, 2021.

[YSWW21a] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver:
Efficient and affordable zero-knowledge proofs for circuits and polynomials
over any field. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 2986–3001. ACM Press, November 2021.

[YSWW21b] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver:
Efficient and affordable zero-knowledge proofs for circuits and polynomials

https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://eprint.iacr.org/2014/674

BIBLIOGRAPHY 207

over any field. 28th ACM Conference on Computer and Communications
Security (CCS 2021), 2021.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang.
Ferret: Fast extension for correlated OT with small communication. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1607–1626. ACM Press, November 2020.

[Zic17] Lior Zichron. Locally computable arithmetic pseudorandom generators.
Masters thesis, School of Electrical Engineering, Tel Aviv University, 2017,
2017. http://www.eng.tau.ac.il/~bennyap/pubs/Zichron.pdf.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Ed-
ward W. Ng, editor, Symbolic and Algebraic Computation, pages 216–226,
Berlin, Heidelberg, 1979. Springer Berlin Heidelberg.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 220–250. Springer, Heidelberg, April 2015.

http://www.eng.tau.ac.il/~bennyap/ pubs/Zichron.pdf

	Abstract
	Resumé
	Acknowledgments
	I Introduction and Overview
	Introduction
	Interactive Proofs
	Circuit Based Proofs
	Commitments
	Oblivious Transfer
	Commit and prove
	SNARKs
	Applications
	Overview
	Additional Publications

	II Publications
	MozZ2karella: Efficient Vector-OLE and Zero-Knowledge Proofs Over Z2k
	Introduction
	Preliminaries
	Single-Point Vector OLE
	Vector OLE Construction
	QuarkSilver: QuickSilver Modulo 2k
	Experiments

	Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k
	Introduction
	Preliminaries
	Conversions between Z2 and ZM
	Truncation and Integer Comparison
	Interactive Proofs over Z2k
	Evaluation

	Cheddar – Oh, Range Proofs for VOLE-based Zero-Knowledge!
	Introduction
	Square Decomposition
	Approximate Range Proofs
	Exact Proofs of Lesser Values
	Idea based on Polynomials
	Evaluation

	Pecorino: More Efficient Zero-Knowledge for RAM Programs
	Introduction
	Preliminaries
	New Protocol for ZK Proofs in the RAM Model
	Asserting Permutations
	Implementation and Experiments

