
Conflict-free Replicated Data Types have
Abstract Data Types

Abel Nieto Rodriguez

Ph.D. Dissertation

Department of Computer Science
Aarhus University

Denmark

Conflict-free Replicated Data Types have

Abstract Data Types

A dissertation

presented to the Faculty of Natural Sciences

of Aarhus University

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

by

Abel Nieto Rodriguez

July 6, 2023

i

Abstract

This dissertation develops a unified approach to the verification of Conflict-free Replicated

Data Types (CRDTs). In a separate but related line of inquiry, the dissertation explores

a client-centric view of the encoding of causality in separation logic that underpins the

verification of CRDTs.

CRDTs are a class of distributed data structures that are weakly consistent and highly

available. CRDTs achieve high availability by avoiding inter-replica synchronization be-

fore updates; instead, updates are immediately executed locally, which leads to incon-

sistencies among replica states. These inconsistencies are later automatically resolved

through custom conflict-resolution policies.

There are two main families of CRDTs, depending on the implementation technique

used: operation-based (op-based) and state-based. They differ in their replication mecha-

nism and how they meet their consistency model, which typically is causal consistency.

Op-based CRDTs propagate individual local updates to other replicas and rely on an un-

derlying communication protocol that guarantees causal delivery. State-based CRDTs

propagate their entire state to other replicas, and ensure causal delivery by drawing states

from a join semilattice, so that states are merged through joins.

Because the semantics of CRDTs are complicated by their concurrent nature and the

need for conflict resolution, there has been widespread interest in formal method tech-

niques for specifying and verifying CRDTs. Existing techniques, however, are unable to

abstract over the two kinds of CRDT designs. What is missing is a view of CRDTs as ab-

stract data types. Such abstract view of CRDTs would both clarify their semantics (just

what is a CRDT?) and unlock modular verification of client programs against an abstract

CRDT specification, so that clients can reason about a CRDT without knowing how it is

implemented. This would put CRDTs on par with traditional sequential data structures

like sets or maps, which admit different implementations yet are understood abstractly as

a collection of axiomatically-specified operations.

This dissertation fills in the missing abstraction gap by developing a unified approach

to specifying and verifying both classes of CRDTs. This unified approach uses separa-

tion logic to give functional correctness specifications for both op-based and state-based

CRDTs. Drawing on prior work on encoding causality in separation logic, as well as an

expressive specification style that uses CRDT denotations, the dissertation presents CRDT

specifications that enjoy a number of desirable properties: they aremodular, support veri-

fication of whole programs including client code, describe realistic CRDT implementations,

and are formally verified in the Coq proof assistant in a foundational style.

To demonstrate feasibility of the proposed techniques, the dissertation presents a set

of libraries for building formally verified CRDTs. Using these libraries we go on to verify

an extensive family of example CRDTs, including higher-order combinators. Finally, the

dissertation shows how we can give the same specification to two implementations of a

CRDT, so that a client program can be verified against an abstract specification without

knowledge of how the CRDT is implemented.

In a related line of work, the dissertation shows how the encoding of causality in

separation logic that is key to specifying CRDTs is also strong enough to imply a number

of session guarantees. These guarantees serve as reasoning principles for clients of weakly

consistent replicated data types. Additionally, this result is evidence that the modelling

of causality in separation logic correctly captures trace properties of causal consistency.

Together, thematerial in this dissertation expands our ability to formally reason about

weakly consistent replicated data types in a modular, foundational style.

ii

Resumé

Denne Ph.D.-afhandling udvikler en samlet metode og tilgang til at verificere Konflikfrie

Replikerede Datatyper (KRDT’er). I et særskilt men relateret arbejde udforsker afhandlin-

gen et klientfokuseret syn på, hvordan den kausalitet, der underbygger verifikationen af

KRDT’er, enkodes i separationslogik.

KRDT’er er en klasse af distribuerede datastrukturer, der er svagt konsistente og højt

tilgængelige. KRDT’er opnår høj tilgængelighed ved at undgå synkroniseringmellem rep-

likaer, før operationer på datastrukturen udføres. Operationerne bliver i stedet for lokalt

udført med det samme, hvilket kan medføre uoverensstemmelser replikaernes tilstande

imellem. Disse uoverensstemmelser bliver senere automatisk løst gennembrugerdefinerede

konfliktløsningspolitikker.

Der findes to primære familier af KRDT’er, der adskiller sig fra hinanden ved den

anvendte implementationsteknik: operationsbaserede og tilstandsbaserede. De to familier

adskiller sig ved deres replikationsmekanisme og ved, hvordan de realiserer deres konsis-

tenmodel, som typisk er kausal konsistens. Operationsbaserede KRDT’er propagerer indi-

viduelle lokale opdateringer til andre replikaer og afhænger af en underlæggende kommu-

nikationsprotokol, der garanterer kausal levering. Tilstandsbaserede KRDT’er propagerer

hele deres tilstand til andre replikaer og garanterer kausal levering ved at tage tilstande

fra en semilattice, hvor tilstande forenes ved hjælp af en “join”-operation.

Da semantikken af KRDT’er kompliceres af deres samtidige, distribuerede natur og

behovet for konfliktløsning, har der været vidtstrakt interesse for at udvikle formelle

teknikker til at specificere KRDT’er. Eksisterende teknikker er dog ikke i stand til at ab-

strahere over de to typer af KRDT-design. Det, der mangler, er at kunne betragte KRDT’er

som abstrakte datatyper. Et abstrakt syn på KRDT’er vil både klarlægge deres seman-

tik (hvad er en KRDT?), men også gøre det muligt at verificere klientprogrammer mod-

ulært op mod en abstrakt KRDT-specifikation, så klienter kan ræsonnere omkring en

KRDT uden at vide, hvordan den er implementeret. Dette ville placere KRDT’er på niveau

med traditionelle sekventielle datastrukturer, som har forskellige implementationer, men

forstås abstrakt via en række af operationer, der er specificeret aksiomatisk.

Denne Ph.D.-afhandling udfylder dette abstraktionshul ved at udvikle en forenet til-

gang til at specificere og verificere begge klasser af KRDT’er. Denne forenede tilgang

gør brug af separationslogik til at specificere funktionel korrekthed for både operations-

baserede og tilstandsbaserede KRDT’er. Med udgangspunkt i tidligere arbejde, der har

vist, at kausalitet kan enkodes i separationlogik, og eksisterende ekspressive specifika-

tionsteknikker, der benytter KRDT “denoteringer”, udvikler denne PhD-afhandling KRDT-

specifikationer, der nyder godt af en række ønskværdige egenskaber: de er modulære, de

understøtter verifikationen af hele programmer, der inkluderer klientkode, de beskriver

realistiske KRDT-implementaioner, og de er formelt verificerede i bevisassistenten Coq.

For at demonstrere at de fremsatte teknikker er mulige at realisere, udvikler denne

afhandling en række softwarebiblioteker til at bygge formelt verificerede KRDT’er. Ved

hjælp af disse biblioteker verificerer vi en vidstrakt familie af KRDT’er, inklusiv højereor-

dens kombinatorer. Afhandlingen viser også, hvordan vi kan give den samme specifika-

tion af to KRDT-implementationer, så et klientprogram kan verificeres op mod en abstrakt

specifikation, der er uviden om, hvordan KRDT’en er implementeret.

I et særskilt, men relateret arbejde, viser afhandlingen, hvordan enkodningen af kausalitet

i separationslogik, der er nøglen til specificeringen af KRDT’er, også er stærk nok til at

vise en række af sessionsgarantier. Disse garantier tjener som ræsonneringsprincipper for

klienter af svagt konsistente replikerede datatyper. Derudover er resultatet bevis for, at

modellen af kausalitet i separationslogik indfanger de afledte egenskaber af kausal kon-

sistens.

I sin helhed udvikler materialet i denne Ph.D.-afhandling vores evne til at ræsonnere

modulært og formelt omkring svagt konsistente replikerede datatyper.

Acknowledgments

Thank you to all the following:

• My advisor, Lars Birkedal, for his strategic leadership and for assembling the exceptional

team of kind and smart researchers that work on Aneris. Equally importantly, for saving

my skin twice: first when my family and I had to re-locate to Canada mid-PhD, and then

when I had to write this dissertation earlier than originally planned. Lars, you have been

a class act and it has been a pleasure working together.

• My co-advisor, Amin Timany, who knowsmore about Aneris and Coq than anyone else I

know. Technical discussions with Amin were always illuminating and his tenacity when

tackling hard problems is an example I look up to.

• The members of my thesis commitee, Jesper Bengtson and Ilya Sergey, who generously

agreed to read this dissertation.

• Léon Gondelman, without whom this dissertation would not have happened. Léon de-

veloped the technical fundamentals on which the material in this thesis rests, and di-

rected me towards the study of CRDTs.

• Simon Gregersen, who fielded many a technical question on Iris, Aneris, and Coq, and

gracefully agreed to translate the abstract of this dissertation into Danish.

• My co-authors Alban Reynaud and Arnaud Daby-Seesaram, who got up to speed with

Aneris in no time and made our CRDT papers possible. Special thanks to Arnaud for

writing most of the Coq proofs for one of the chapters of this dissertation.

• My friends Magnus, Daniela, Marit, Thor, Aleš, Zahra, Amin and Léon, who brightened

our stay in Denmark.

• My parents, Pedro and Irina, and my brother Alejandro, for their ever-present love and

for helping shepherd the kids so I had time to write this dissertation.

• The biggest thank you of all goes to Marianna, who supported me in completing this

PhD amidst two inter-continental moves, a global pandemic, and two very happy and

demanding children. Let’s do it again!

Abel Nieto Rodriguez

Waterloo, Ontario, Canada, July 6, 2023

iii

To Marianna, Sam, and Jane

Contents

I Overview 1

1 Introduction 2

1.1 Structure of the Dissertation . 2

1.2 An Informal Asynchronous System Model . 3

1.3 Causality in Distributed Systems . 3

1.4 Conflict-free Replicated Data Types . 4

1.5 Abstract Data Types . 12

1.6 Separation Logic for Distributed Systems . 13

2 Contributions 19

2.1 Landscape of CRDT Verification . 19

2.2 Overview of the Dissertation . 21

2.3 Contributions . 26

2.4 Included Publications . 27

2.5 Coq Formalizations . 28

II Publications 29

3 Modular Verification of Op-Based CRDTs in Separation Logic 30

3.1 Aneris Primer . 34

3.2 Main Ideas . 35

3.3 Reliable Causal Broadcast . 38

3.4 OpLib: a Library for Implementing CRDTs . 45

3.5 Implementing CRDTs . 53

3.6 Related Work . 55

3.7 Conclusions . 60

4 Modular Verification of State-Based CRDTs in Separation Logic 62

4.1 Aneris Primer . 66

4.2 Main Ideas . 67

4.3 Background: CRDTs in Separation Logic . 69

4.4 StateLib : a Library for Implementing State-Based CRDTs 73

4.5 Specifying StateLib . 75

4.6 Verifying StateLib . 78

4.7 Verified CRDTs . 86

4.8 Related Work . 88

v

Contents vi

4.9 Conclusions . 90

5 Towards Session Guarantees for Client-Centric Consistency 91

5.1 Background: a Causally-Consistent Distributed Database 92

5.2 Session Guarantees and Causal Consistency 98

5.3 Session Manager Library . 100

5.4 Session Manager Specifications . 103

5.5 Session Guarantees . 104

5.6 Proving the Session Manager . 107

5.7 Related Work . 113

5.8 Conclusions . 113

Bibliography 115

Part I

Overview

1 Introduction

This dissertation argues that it is possible to formally reason about Conflict-free Replicated

Data Types, or CRDTs, as Abstract Data Types; that is, we can treat a CRDT as a collection

of operations, together with laws that the operations must satisfy, but crucially we need not

worry about how the operations are implemented. The slogan is thus

Conflict-free Replicated Data Types have Abstract Data Types

Specifically, I show how to specify a wide class of both operation- and state-based CRDTs

using modern separation logic. These specifications and their associated proofs have a number

of desirable properties:

• They are modular : we can specify CRDTs and their clients independently, and then

compose their correctness proofs.

• They are abstract: a specification can hide implementation details of the CRDT; this

allows us to show that an operation-based CRDT and its state-based counterpart both

implement the same abstract data type.

• They are foundational: the correctness proofs do not rely on any axioms beyond the

definition of the operational semantics of the language we implement the CRDTs in.

• They are machine-verified: all the proofs are checked in the Coq proof assistant, giving

us additional certainty of their correctness.

1.1 Structure of the Dissertation

This dissertation is divided in two parts.

Part I contains two chapters. Chapter 1 is an introduction to causal consistency, CRDTs,

abstract data types, and the use of separation logic for verifying distributed systems. Chapter 2

surveys prior work on verification of CRDTs, as well as summarizes the dissertation’s content

and contributions.

Part II is based on three published papers that I co-authored during my PhD, and consists

of three chapters. The first two chapters develop a unifying methodology for the specifica-

tion and verification of the two types of CRDTs: Chapter 3 deals with operation-based CRDTs

and Chapter 4 is about their state-based counterparts. In reasoning about CRDTs the notion

of causal consistency is key. Chapter 5 explores the specification of a causally-consistent dis-

tributed database from a client-centric perspective, arriving at a set of four session guarantees.

2

An Informal Asynchronous System Model 3

1.2 An Informal Asynchronous System Model

Throughout this chapter we work in an asynchronous system model with an unreliable net-

work, which we now informally describe. Our model is a state-transition system where each

state describes N processes, replicas, or nodes, as well as the state of the network, which con-

tains all in-flight messages. The number of processes N is fixed before execution starts.

After each transition, the state of zero or more processes can change. Additionally, new

messages can be added or removed from the network as they are sent or received. Because the

network is unreliable messages can be dropped, duplicated, or re-ordered while in-flight.

The system is asynchronous because there is no upper bound on how long a message might

take before it is delivered, nor on how slow a process might be relative to others [Lyn96].

The asynchronous model can represent network partitions by arbitrarily delaying delivery of

messages between certain pairs of replicas.

In Part II we will use not an informal model, but the formal operational semantics of

AnerisLang, the OCaml-like language of the Aneris separation logic [Kro+20].

1.3 Causality in Distributed Systems

In an asynchronous systemmodel, it is not always possible to tell which of two events (sending

a message, mutating a local variable, etc.) happened before the other one. This is because there

is no global notion of time that can be used to totally-order events. Instead, we can develop a

partial order on events, called the happens-before relation and denoted with→ [Lam78]:

• If e is the event corresponding to sending a message, and e′ is the event corresponding
to receiving said message, then e→ e′.

• If a process executes event e before it executes another event e′, then e→ e′.

• We can take the transitive closure of the above two rules: if e → e′ and e′ → e′′, then
e→ e′′.

Another name for→ is causal order, and if e→ e′ we say that e is a causal dependency of e′,
or equivalently that e′ causally depends on e. The notion of causality appears in different parts

of this dissertation; two I would like to highlight are causal broadcast and causal consistency.

Causal Broadcast

Causal broadcast originates with the ISIS project as a kind of operationalization of Lamport’s

abstract happens-before relation. ISIS provides a set of building blocks for fault-tolerant dis-

tributed systems [Bir86]; central to this is a broadcast (one-to-many) communication proto-

col called CBCAST [BSS91] (“causal broadcast”). CBCAST provides broadcast and deliver
primitives that guarantee that when the latter returns a messageM it must have previously

returned all causal dependencies of M . In other words, CBCAST delivers messages in a way

that respects the causal order of events. Chapter 3 presents a verified implementation of causal

broadcast.

Conflict-free Replicated Data Types 4

p1: w(x)0 r(x)1
p2: w(x)1 r(x)0

(a)

p1: w(x)0 w(x)1
p2: r(x)1 r(x)0

(b)

Figure 1.1: A process history (a) that is causally consistent but not sequentially consistent,

and one (b) that is not causally consistent. The notation w(x)v stands for writing value v at

memory location x, while r(x)v means reading v from location x.

Causal Consistency

Causal consistency arose in the context of building a shared memory abstraction for dis-

tributed systems [Aha+95]. The idea is to allow behaviours ruled out under sequential con-

sistency [Lam79] in the name of scalability. Figure 1.1 shows a process history that is not

sequentially consistent but is causally consistent. History (a) is not sequentially consistent

because any serialization has to decide whether w(x)0 happened before or after w(x)1. If we
choose the former, then r(x)0 must happen after w(x)0 but before w(x)1, so we end up with

e.g. w(x)0, r(x)0, w(x)1, r(x)1, but this violates p2’s program order.

In causal consistency, the requirement that the same serialization must be consistent with

every process’ program order is relaxed so that we can produce a serialization for each process,

as long as each serialization is consistent with the program order of writes as well as a partial

order that connects writes to corresponding reads. In history (a) from Figure 1.1 this writes-

into order connects w(x) 7→ r(x)0 and w(x)1 7→ r(x)1. Given that, we can produce the two

requisite serializations:

w(x)0, w(x)1, r(x)1

w(x)1, w(x)0, r(x)0

By contrast, in history (b) (still Figure 1.1) we are not allowed to reorder the two writes

in the serialization of p2’s history, because w(x)0 happening before w(x)1 is fixed by p1’s
program order. We cannot serialize p2’s history as w(x)0, w(x)1, r(x)1, r(x)0 because then

the second read must return 1 instead of 0.
Zooming out from the technical details, the notion of causal consistent implies four session

guarantees that provide a more intuitive understanding of what assumptions a program can

make about reads and write under this model [Ter+94]. For example, the monotonic writes

guarantee says that because w(x)0 happens before w(x)1 in p1 according to program order,

the twowrites will be “propagated” in the same order to all other processes. This makes it clear

that history (b) is an invalid behaviour under causal consistency so a client program need not

guard against it. Chapter 5 deals precisely with showing that the definition of causality we

use in this dissertation implies the four session guarantees.

1.4 Conflict-free Replicated Data Types

Conflict-free Replicated Data Types are a class of distributed data structures that are highly-

available and weakly-consistent. By highly-available I mean that a CRDT can continue re-

sponding to user requests even in the presence of network partitions, or if one or more replicas

are down. By weakly-consistent I mean that, unlike in a traditional data structure, two replicas

Conflict-free Replicated Data Types 5

strong consistency weak consistency

S

client

S

update(S′) fail

replica A replica B

partition

S′

client

S

update(S′) ok

replica A replica B

partition

Figure 1.2: Strong vs weak consistency model for a replicated data type.

can concurrently observe the CRDT being in different states. The combination of the above

two features is forced by an impossibility result known as the CAP theorem [GL02], which

says that any distributed data store can only provide at most two of the following: strong

consistency, availability, and partition tolerance.

Figure 1.2 shows how a replicated data type responds to client updates under strong and

weak consistency, given a network partition. On the left, a client tries to update replica A’s
state from S to S′

. Because strong consistency requires that the data type behave as if it were

not replicated, then replica A must reject the client’s update. The system remains strongly

consistent, but is no longer available.

By contrast, weak consistency favours availability over agreement, so replicaA accepts the

client’s update. This means that the data type’s state has now diverged, because each replica

has a different local state. CRDTs adopt this approach. Once the partition heals, we need an

(automated) mechanism for resolving conflicts, hence the term “conflict-free”.

Since their introduction in Shapiro et al. [Sha+11a], distributed systems practitioners have

identified two main classes (or implementation strategies) of CRDTs: operation-based (or op-

based) CRDTs, and state-based CRDTs. The distinction between the two kinds has to do with

how local updates to a CRDT are propagated to other replicas: op-based CRDTs propagate

individual operations, while state-based CRDTs propagate the entire local state.

1.4.1 Strong Eventual Consistency

Weak consistency is a catch-all term that includes any consistency model weaker than sequen-

tial consistency. A more precise and useful consistency model for CRDTs is strong eventual

consistency (SEC) [Sha+11b], which gives two guarantees:

• Convergence: two replicas that have processed the same set of updates must end up in

the same state.

• Eventual delivery: all updates are eventually delivered to all correct replicas.

Note that the former is a safety property (“nothing bad ever happens”) and the latter a

liveness property (“good things eventually happen”). The techniques in this dissertation only

prove safety properties, so when we talk about SEC we usually mean just convergence.

SEC does not imply causal consistency. Figure 1.3 shows a replicated register called x
that satisfies SEC. The register resolves conflicting writes by taking the write that happened

Conflict-free Replicated Data Types 6

p1

p2

p3

w(x)0
•

w(x)1
•

•
r(x)1
• •

r(x)1
•

•
r(x)0
• •

r(x)1
•

Figure 1.3: SEC does not imply causal consistency.

module type GCOUNTER = sig
val init : addr list -> int -> unit
val inc : int -> unit
val read : unit -> int

end

module Client (C: GCOUNTER) = struct
let test addrs i =
C.init addrs i;
C.inc 1;
C.inc 2;
let v = C.read () in
assert (v >= 3)

end

Figure 1.4: Interface of a GCounter CRDT and client code.

last according to program order; it is a “last writer wins” register. This history satisfies SEC

because whenever a process has seen both writes, they choose w(x)1 over w(x)0, so that p2
and p3’s state eventually converge. However, the history is not causally consistent because

w(x)0 is delivered after w(x)1 to p2, violating p1’s program order and monotonic writes.

Nor is SEC implied by causal consistency: history (a) in Figure 1.1 shows an execution

that is causally-consistent, yet both process end up in different states. This is because causal

consistency imposes no restrictions on the order of concurrent writes, but SEC requires that

write conflicts be uniformly resolved across all replicas.

Given the above, the consistency requirements on CRDTs are often extended to imply not

only SEC but also causal consistency.

1.4.2 Example: Grow-Only Counter

We illustrate the differences between op-based and state-based CRDTs via an example: the

grow-only counter (GCounter). A GCounter is a simple replicated counter that can only be

incremented. Its API, shown in OCaml in Figure 1.4 consists of three functions:

• The client should first call initwith a list of addresses where the data structure is repli-

cated, as well as the index of the current replica.

• inc increments the counter’s value by n ∈ N.

Conflict-free Replicated Data Types 7

• read reads the counter’s current value.

Figure 1.4 also shows client code that interacts with the counter, including an assertion

about the counter’s semantics. Because the counter ismonotonic, we know that after executing

the two increments its value must be at least 3. The correctness of the assertion requires causal
consistency; specifically, it requires that reads observe the effects of previous local writes (this

is the “read your writes” session guarantee). This is an example of the kind of reasoning we

would like to be able to carry out formally when working with CRDTs.

1.4.3 Operation-Based CRDTs

Op-based CRDTs propagate individual operations using a causal broadcast algorithm. Because

causal broadcast can reorder concurrent operations, op-based CRDTs need to be designed so

that operations that can happen concurrently are commutative and associative (to guarantee

SEC). For some CRDTs these properties hold naturally: e.g. the GCounter has only one oper-

ation, addition, which satisfies both requirements. In other cases operations are not naturally

commutative. For example, a set-like CRDT might have operations for inserting and remov-

ing an element. In such situations, we need to force commutativity by tweaking the CRDT’s

semantics. For example, we could favour insertions over deletions so that if an element is con-

currently inserted and removed the deletion has no effect. This is the so-called add-wins set.

Dually, we can have deletions prevail over concurrent insertions, so that a concurrent insertion

and deletion results in the element being deleted. This is a remove-wins set. The bigger point is

that CRDT semantics are tricky and some work is required to turn a sequential datatype into

a CRDT.

Figure 1.5 sketches out the implementation of a GCounter as an op-based CRDT. The

counter’s state is initialized to 0. Because the state is mutable and concurrently accessed by

more than one thread, state mutations are guarded by a lock. The read operation simply re-

trieves the current value of the counter. The inc(n) operation increments the counter by n
and then broadcasts the increment to all other replicas using a broadcast primitive provided

by the Broadcast module.

In a background thread, the counter executes the receive function. The function exe-

cutes an infinite loop that first checks whether any operations from other replicas need to

be processed. It does so using a non-blocking deliver primitive that returns an option with

the contents of the remote operation, if one exists. If a remote operation has been received,

receive updates the value of the counter accordingly.
Finally, the init function initializes the broadcasting layer with the addresses of partici-

pating replicas, as well as the index of the current replica within the addresses array. It also

spawns a background thread that executes receive.

Requirements on broadcast and deliver

Two points of note. First, the GCounter easily satisfies SEC because addition is commutative

and associative. Second, the GCounter’s implementation is simple, but relies on the existence

of the broadcast and deliver primitives. These should satisfy the following requirements:

• Because the network is unreliable, broadcast needs to handle dropped messages by re-

sending a message if needed.

Conflict-free Replicated Data Types 8

module OpCounter : GCOUNTER = struct
let st = ref 0
let m = Mutex.create ()

let read () = !st

let inc n =
Mutex.lock m;
st := !st + n;
Mutex.unlock m;
Broadcast.broadcast n

let receive () =
while (true) do
let msg = Broadcast.deliver () in
match msg with
| None -> ()
| Some n ->
lock m;
st := !st + n;
unlock m

done

let init addrs i =
Broadcast.init addrs i;
let _ = Thread.create receive () in ();

end

Figure 1.5: Op-based GCounter.

• Dually, deliver needs to prevent re-delivery of a duplicate message. There needs to be

a way of uniquely identifying a message.

• To guarantee causal consistency, deliver needs to return messages in causal order: that

is, a message can only be delivered once all its causal dependencies have been delivered.

In other words, the correct implementation of op-based CRDTs relies on the existence of

a causal broadcast algorithm in the style of CBCAST.

1.4.4 State-Based CRDTs

State-based CRDTs do not assume that the underlying communication protocol implements

causal broadcast. They instead guarantee SEC by representing the data structure’s state as an

element of a join semi-lattice. A join semi-lattice (which I will sometimes refer to just as a

lattice) is a poset (S,≤,⊔) equipped with a join (or least upper bound) operator ⊔ such that

x ⊔ y ∈ S is defined for all x and y in S, satisfying the following:

Conflict-free Replicated Data Types 9

p1

p2

⊥•
s1 = f(⊥, o1)•

s2 = f(s1, o2) < s1•

⊥
•

s1 = ⊥ ⊔ s1
•

s1 = s1 ⊔ s2
•

Figure 1.6: A non-monotonic mutator leads to lost updates.

• x ⊔ y is an upper bound: x ≤ x ⊔ y and y ≤ x ⊔ y

• x ⊔ y is the least upper bound:

∀u ∈ S, x ≤ u ∧ y ≤ u =⇒ x ⊔ y ≤ u

The following properties of ⊔ are crucial for state-based CRDTs:

• Commutativity: x ⊔ y = y ⊔ x.

• Associativity: (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z).

• Impotence: x ⊔ y ⊔ y = x ⊔ y.

To define a state-based CRDT we then start with a lattice L that can encode the desired

semantics. The CRDT’s initial state is some value v ∈ L: often the initial value is ⊥, if L has

a minimum.

We define amerge function that updates the local state with the contents of remote states.

The merge function is just the join operator of the underlying lattice. Commutativity and

associativity of joins ensure that given a sequence of states (updates) S = s1, . . . , sn, merging

any permutation of S yields the same resulting state. This means the network can re-order

messages sent by different replicas while maintaining convergence. Impotence means that

a replica can merge the same remote state multiple times without effect, so the network is

allowed to duplicate messages.

Finally, we define a mutator function f : L → O → L, where O is the type of supported

operations. Themutator is used to update the local state before the latter is propagated to other

replicas. The mutator should be monotonic: ∀l ∈ L, o ∈ O, l ≤ f(l, o). Monotonicity of the

mutator is needed because otherwise local updates are lost during merges. Figure 1.6 shows a

state-based CRDT replicated over two processes. The initial state is⊥ for both processes. The

first process performs two local updates, but because f is not monotonic we have s2 < s1.
The states s1 and s2 are propagated to p2: s1 is successfully propagated because ⊥ ≤ s1, but
when we try to propagate s2 we run into issues because s2 < s1 implies s1 ⊔ s2 = s1. Now
the two replicas have diverged, and p1’s second update is lost. If f were monotonic, we would

have s1 ≤ s2, s1 ⊔ s2 = s2 and the second update is correctly propagated.

State-Based GCounter

Figure 1.7 shows an OCaml implementation of the state-based GCounter. The main point is

that both the op-based and state-based GCounter satisfy the same interface (COUNTER signa-

ture), so client code such as in Figure 1.4 can use a GCounter without knowing whether it is

op-based or state-based.

Conflict-free Replicated Data Types 10

module StateCounter : GCOUNTER = struct
let st = ref []
let m = Mutex.create ()
let addrs = ref []
let i = ref 0

let read () =
Mutex.lock m;
let r = List.fold_left (+) 0 !st in
Mutex.unlock m;
r

let inc n =
Mutex.lock m;
st := List.mapi (fun j x -> if j = !i then x + n else x) !st;
Mutex.unlock m

let receive_thread () =
while (true) do
let msg = receive () in
match msg with
| None -> ()
| Some (vs) ->
Mutex.lock(m);
st := List.map2 Int.max !st vs;
Mutex.unlock(m)

done

let send_thread () =
while (true) do
List.iter (fun addr -> send addr !st) !addrs

done

let init addrs’ i’ =
i := i’;
addrs := addrs’;
st := List.init (List.length !addrs) (fun _ -> 0);
let _ = Thread.create receive_thread () in
let _ = Thread.create send_thread () in
()

end

Figure 1.7: State-based GCounter.

Conflict-free Replicated Data Types 11

In this implementation the GCounter’s state is not a number, but a list of of N entries

tracking the contributions of every replica to the value of the counter, whereN is the number

of replicas. Joins in this lattice consist of taking pointwise maximums. The initial state is the

list where all entries are 0. The mutator increments the counter’s value by incrementing the

entry corresponding to the local replica.

There are now two background threads: as before the receive_thread incorporates changes
sent from other replicas, but instead of executing individual operations receive_thread now
merges the remote state with the current one. The second background thread is send_thread,
which repeatedly messages the current local state to other replicas for merging. In a realistic

implementation, send_thread would take care to not spam other replicas, using for example

acknowledgements to avoid sending out the same state multiple times.

1.4.5 Trade-offs

The decision of whether to use an op-based or a state-based design incurs a number of trade-

offs. Op-based CRDTs replicate by messaging individual operations. This is attractive if the

CRDT state is large but operations can be represented compactly, for example in text editing

applications [Sha+11a]. The dual situation also occurs: if the state is small it might be more

efficient to batch updates by merging a remote state, as opposed to executing individual op-

erations. Op-based designs require that the underlying communication protocol guarantee

causal delivery, so they might not be an option in situations where e.g. causal broadcast is not

available. By contrast, state-based CRDTs are compatible with an unreliable communication

protocol that can re-order, delete, and duplicate messages. Because causal delivery of opera-

tions is a strong guarantee, op-based CRDTs often have simpler designs than their state-based

counterparts, where one needs to construct a lattice that encodes the right datatype semantics.

There is work on coalescing the advantages of both designs: δ-CRDTs [ASB18] are lattice-based
(so work well with unreliable networks) but replicate by sharing only small fragments of their

state.

1.4.6 Equivalence of CRDT Designs

Since their introduction in Shapiro et al. [Sha+11a] it has been clear that op-based and state-

based CRDTs are “equivalent”, with Shapiro et al. [Sha+11a] remarking:

Interestingly it is always possible to emulate a state-based object using the operation-

based approach, and vice-versa.

To emulate the state-based approach using an op-based CRDT, a replica A broadcasts an

“operation” merge(st), where st is A’s current state. Upon receipt, remote replicas execute

the operation by merging st using the lattice’s join, as in the state-based case.

To emulate the op-based approach using a state-based CRDT, define the lattice to be

(P(Op× Ts),⊆,∪)

That is, a lattice element is a set of pairs (o, t)where o is an operation of the op-based CRDT and

t is a timestamp that is unique, totally-ordered and consistent with causality. Such a timestamp

can be generated at every replica using a local counter and a unique replica identifier (e.g. an

IP address) and is known as a Lamport timestamp [Lam78]. The timestamp’s role is twofold: to

prevent an operation from being delivered twice (both copies will have the same timestamp),

Abstract Data Types 12

module type S = sig
type elt (* element type *)
type t (* type of sets *)
val empty : t
val mem : elt -> t -> bool
val add : elt -> t -> t
val remove : elt -> t ->

end

Figure 1.8: Set ADT in OCaml, abridged.

as well as to establish an order between delivered operations that is consistent with causality

(to emulate causal delivery). The lattice’s partial order is subset inclusion, and join is set union.

One can think of the above design as a “lazy” version of the op-based CRDT, where op-

erations are not immediately applied upon receipt, but instead are kept around so that causal

order can be preserved. Once we need to query the CRDT, we can re-run the operations in

timestamp order to compute a resulting state. This design is further described in the pure

op-based CRDT approach of Baquero et al. [BAS14].

The emulation-based argument for equivalence of CRDTs is enlightening but ultimately

is lacking in explanatory power because we seem to be saying “these two things are the same

abstract thing”, without saying what the abstract thing is.

A related problem is that because we do not have abstract specifications, we focus on guar-

anteeing eventual consistency, which is a crucial safety property but only part of functional

correctness (does the data structure produce the right output for the given input).

1.5 Abstract Data Types

A different perspective on the equivalence of both kinds of CRDTs comes from the notion of

abstract data type (ADT), given by Liskov and Zilles [LZ74]:

An abstract data type defines a class of abstract objects which is completely char-

acterized by the operations available on those objects. This means that an abstract

data type can be defined by defining the characterizing operations for that type.

ADTs are ubiquitous in the standard libraries ofmodern programming languages; inOCaml

they are represented using module system signatures. Figure 1.8 shows an example set ADT,

abridge from OCaml’s standard library. The ADT declares a type for elements and sets of ele-

ments, as well as operations on sets (e.g. add an element, remove an element, etc.). In addition

to describing the set of available operations, an ADT also describes how to use them. For ex-

ample, the set ADT might specify that removing an element that is not present in the set is a

no-op, or alternatively that it might trigger an exception.

Figure 1.4 shows part of the definition of the GCounter ADT. I say “part of” because we

are missing the specifications for the different operations. This example suggests that it might

be possible to show “equivalence” of the two kinds of CRDTs by proving that they can both

implement the same ADTs.

By expressing CRDTs as ADTs we benefit in at least two ways:

Separation Logic for Distributed Systems 13

• We end up with implementations and correctness proofs that are more modular. We can

write client code that uses a CRDT without knowing how it is implemented. This means

we can swap out the implementation at a later point for e.g. optimization purposes,

without modifying the client. Additionally, we can prove the client correct against an

abstract specification that is satisfied by both kinds of CRDTs. Then if we do swap out

the CRDT’s implementation we do not need to modify the client’s proof either.

• We can eschew SEC as the main correctness criterion, instead adopting full functional

correctness (of which SEC is part). The specifications for the ADT operations are more

abstract in that they hide away implementation details. Because the specifications are

more abstract, it is easier to saywhether they capture properties of interest. For example,

a specification for a state-based CRDT might talk about lattices and least upper bounds,

but these are implementation details that obscure what data structure we are implement-

ing (e.g. a counter). If we can write more abstract specifications for the GCounter ADT

and then show that the state-based counter satisfies those specifications, then that gives

us confidence that the state-based implementation is correct.

1.6 Separation Logic for Distributed Systems

To specify and verify that the CRDT implementations in this dissertation meet their desired

safety properties my main tool is the Aneris separation logic [Kro+20]. Aneris is a higher-

order, concurrent, and distributed separation logic built using the Iris program logic frame-

work [Jun+18]. Because Aneris is higher-order, Hoare triples themselves are propositions, so

we can specify higher-order functions like filter and map. By concurrent I mean that Aneris

can reason about multiple threads concurrently executing in the same node and interacting

via shared memory. By distributed I mean that Aneris can reason about multiple nodes that

execute concurrently and communicate solely via message passing. More generally, the re-

quirement to reason about message passing, as opposed to just shared memory, is what sets

distributed algorithms apart from single-node concurrent algorithms.

This section assumes basic familiaritywith separation logic at the level of Reynolds [Rey02]

and sketches out how Aneris can be used to reason about distributed systems. The Aneris

project was started in Krogh-Jespersen et al. [Kro+20] and since then has been used to ver-

ify a variety of distributed algorithms: a load balancer, two-phase commit, a replicated log, a

causally-consistent key-value store, single-decree Paxos, as well as the family of CRDTs de-

scribed in this dissertation [Kro+20; Tim+21; Gon+21; Nie+22; Nie+23]. A separate line of

work has extended Aneris to establish not only partial correctness but also a specific kind of

simulation of transition systems that can be used to obtain liveness results, in addition to safety

results [Tim+21]. Finally, because Aneris is an instantiation of the Iris program logic frame-

work, Aneris proofs can be mechanized in Coq using MoSeL [Kre+18a], a Coq framework for

developing interactive proofs using separation logic. MoSeL provides built-in tactics as well

as general Coq infrastructure (e.g. pretty-printing of the separation logic proof context) that

make writing Aneris proofs very similar to writing regular Coq proofs. As a consequence, all

the safety proofs in this dissertation are mechanized in Coq in a foundational style: the pro-

gram logic rules are proven (in Coq) safe against the operational semantics of Aneris, which is

itself mechanized. There are no assumptions that enlarge the trusted code base beyond those

embedded in the operational semantics, as well as a few standard classical axioms (functional

extensionality, propositional extensionality, and choice).

Separation Logic for Distributed Systems 14

z ∈ Z
s ∈ String

x ∈ V ar, sh ∈ Handle, ℓ ∈ Loc ≜ (infinite countable set)

l ∈ BaseLit ::= z | true | false | () | ℓ | s | z
v ∈Val ::= l | rec f x = e | (v1, v2) | inl v | inr v
⊚1 ::= ∼ | − | i2s | s2i | len
⊚2 ::= + | − | ∗ | quot | rem | & | | | ˆ |

<< | >> | ≤ | < | = | ++

e ∈ Expr ::= v | x | e1 e2 | ⊚1 e | e1 ⊚2 e2 | if e1 then e2 else e3
| find e1 e2 e3 | substring e1 e2 e3 | rand e | (e1, e2) | fst e | snd e
| inl e | inr e | match e with inl x1 ⇒ e1 | inr x2 ⇒ e2 end

| fork {e} | ref e | ! e | e1 := e2 | CAS e1 e2 e3
| makeaddress e1 e2 | getaddress e | socket | socketbind e1 e2
| sendto e1 e2 e3 | receivefrom e | settimeout e1 e2 e3 | start l e

Figure 1.9: Abstract syntax of AnerisLang [Tea23].

1.6.1 The Language of Aneris

Aneris proofs reason about programs written in AnerisLang, a programming language with

support for higher-order functions, mutation, concurrency and message-passing, among other

features. AnerisLang can be thought of as a small, but expressive, untyped subset of OCaml.

In particular, it is eagerly evaluated.

Figure 1.9 shows the abstract syntax of AnerisLang. I would like to highlight a few of

the constructs of the language: as in OCaml ref e creates a mutable reference initialized to

the value of e; a reference can be de-referenced via !e and assigned to via e := e’. Aneris-
Lang supports intra-node concurrency via the fork e expression, which evaluates e in a new

thread that runs concurrently with the originating one. Message passing is done via the sendto
and receivefrom primitives, both of which can be configured to be blocking or non-blocking.

These twomimic a UDP-style, connectionless communication channel that is unreliable, where

messages can be lost, ordered, or duplicated. sendto skt msg dest sends the message msg on
socket skt to the socket address dest; a socket address is an (IP address, port number) pair.

receivefrom skt returns the next message buffered at socket skt if one exists, or nothing if

the socket is empty. Finally, the start ip e expression starts a new node running at IP address

ip that evaluates expression e. Said node runs concurrently with the current node; as a result,

there are two forms on concurrency: intra-node concurrency of multiple threads running on

the same node, and inter-node concurrency of multiple node nodes executing at different IP

addresses. In the operational semantics of Aneris both forms of concurrency are represented

uniformly: the semantics keeps a list of all running threads as a list of (IP address, expression)

pairs. The start expression can only be run in a privileged “system node”: a typical setup

for AnerisLang programs is to have the system node set up the constituents of the distributed

system (via start) but perform no other steps.

Separation Logic for Distributed Systems 15

Definition ping : val := fun: "addr" "server",
let: "skt" := NewSocket ... in
SocketBind "skt" "addr";;
SendTo "skt" #"PING" "server";;
let: "msg" := unSOME (ReceiveFrom "skt") in
assert: ((Fst "msg") = #"PONG").

Definition pong : val := fun: "addr",
let: "skt" := NewSocket ... in
SocketBind "skt" "addr";;
let: "msg" := unSOME (ReceiveFrom "skt") in
let: "sender" := Snd "msg" in
assert: ((Fst "msg") = #"PING");;
SendTo "skt" #"PONG" "sender".

Definition ping_pong_runner : expr :=
let: "pongaddr" := MakeAddress #"0.0.0.0" #80 in
let: "pingaddr" := MakeAddress #"0.0.0.1" #80 in
Start "0.0.0.0" (pong "pongaddr") ;;
Start "0.0.0.1" (ping "pingaddr" "pongaddr").

Figure 1.10: Ping-pong example in AnerisLang, adapted from the Aneris Coq formaliza-

tion [Teab].

An Example Program

Figure 1.10 shows an AnerisLang program that illustrates these features in action and serves

as the “hello world” example for AnerisLang. The example shows two nodes: one messages

the other with “ping” and the other replies with “pong”.

The ping function takes as arguments the socket addresses of the two sockets through

which the nodes communicate. It then creates a new socket and binds it to the given local

socket address. The socket is set to be blocking, meaning that receivefrom waits until a mes-

sage is available before returning. The ping function then sends the message PING to the

remote address. It then waits for a response and asserts that the response is PONG.
The pong function is the dual of ping. It waits (and asserts) for a PING message and then

replies with PONG.
Finally, the ping_pong_runner (the system node) function creates two socket addresses

at different IP addresses using port 80. It then starts the two nodes running ping and pong
respectively. Notice that the system node then terminates, but evaluation continues because

the two spawned nodes are still running.

Errors in AnerisLang are modelled by having the semantics get stuck on an expression.

Specifically, the expression assert false is stuck. Verifying the ping-pong example consists

of proving, using Aneris’ program logic rules, that evaluation of the ping_pong_runner ex-

pression never gets stuck (i.e. that the assertions never fail).

Separation Logic for Distributed Systems 16

Ht-fork

{P } ⟨n; e⟩ {w. True}

{P } ⟨n; fork {e}⟩ {v. v = ()}

Ht-Protocol

e ̸∈Val {P ∗ a Z⇒ ψ} ⟨n; e⟩ {v. Q}

{P ∗ Unallocated({a})} ⟨n; e⟩ {v. Q}

Ht-start

{P ∗ FreePorts(n,P)} ⟨n; e⟩ {w. True}

{P ∗ FreeIp(n)} ⟨S; start n e⟩ {v. v = ()}
Ht-newsocket

{True} ⟨n; socket ()⟩ {z. z n
↪−→ (None, true)}

Ht-send

{(n, p) = m.orig ∗ z n
↪−→ (Some m.orig, b) ∗

m.orig⇝ (R, T) ∗m.dest Z⇒ Φ ∗ Φ(m) }
⟨n; sendto z m.body m.dest⟩

{v. v = |m.body| ∗ z n
↪−→ (Some m.orig, b) ∗

m.orig⇝ (R, T ∪ {m}) }

Ht-send-duplicate

{(n, p) = m.orig ∗m ∈ T ∗ z n
↪−→ (Some m.orig, b) ∗

m.orig⇝ (R, T) ∗m.dest Z⇒ Φ}
⟨n; sendto z m.body m.dest⟩

{v. v = |m.body| ∗ z n
↪−→ (Some m.orig, b) ∗

m.orig⇝ (R, T) }
Ht-recv-non-blocking

{z n
↪−→ (Some (n, p), False) ∗ (n, p)⇝ (R, T) ∗

(n, p) Z⇒ Φ }
⟨n; receivefrom z⟩

{v.
(
v = None ∗ z n

↪−→ (Some (n, p), False) ∗

(n, p)⇝ (R, T)
)
∨(

∃m.m.dest = (n, p) ∗ v = Some (m.body,m.orig) ∗(
(m /∈ R ∗ z n

↪−→ (Some (n, p), False) ∗
(n, p)⇝ (R ∪ {m}, T) ∗ Φ(m)

)
∨
(
m ∈ R ∗

z
n
↪−→ (Some (n, p), False) ∗ (n, p)⇝ (R, T)

)) }
Figure 1.11: Selected program logic rules of Aneris, adapted from the Aneris documenta-

tion [Tea23].

1.6.2 Program Logic Rules

We next take a look at a selection of Aneris program logic rules that reason about concurrency

and message passing. The main judgment in Aneris is the Hoare triple {P } ⟨n; e⟩ {v. Q}. As
usual, this is a partial correctness assertion saying that if P holds, then e can execute at IP

address n without getting stuck (without runtime errors) and, if e terminates, then Q holds.

Notice that e is executed in the context of a specific IP address, and that v is bound in Q.

The Ht-fork says that to prove ⟨n; fork {e}⟩ safe it suffices to prove ⟨n; e⟩ safe at the
same IP address and with the same precondition P .

The rule for starting a new node (as opposed to a new thread within an existing node) is

similar. First, note that we can only prove safety of start n e when the expression executes

from the system nodeS. Additionally, we need knowledge of the proposition FreeIp(n)which
says that no other node has been previously started at IP n. In exchange for “giving in” the

FreeIp(n) resource, we get back a FreePorts(n,P) resource saying that all ports in P are free

at IP n (ports are identified with natural numbers). A port is free if no socket is bound to it.

To summarize, the rule for starting a node and forking a thread are virtually the same, except

Separation Logic for Distributed Systems 17

that nodes have unique identifiers (IP addresses) and state (free ports), so additional resources

are needed to track those.

Allocating a socket with ⟨n; socket ()⟩ returns a socket handle z, as well as the resource
z

n
↪−→ (None, true) indicating that the handle is not yet bound to a port and that the socket is

blocking. It is also possible to create non-blocking sockets.

The HT-Protocol rule introduces one of the key concepts of Aneris: socket protocols. A

socket protocol is a predicate that all messages incoming at a given socket address must satisfy.

A given socket address a is either unallocated, represented by the proposition Unallocated(a),
or has an associated socket protocol, modelled via the proposition a Z⇒ ψ. This rule allows
us to “allocate” a socket protocol provided that the address is previously unallocated. Notice

that the allocation is purely logical: effectively we are saying that from this point in the proof

onward, we guarantee that all messages sent to a satisfy ψ. There is also a dual implication,

receiving from a socket bound at address amust yield a message that satisfies ψ (or a duplicate

message, as we will see below). The restriction that e not be a value is technical in nature

and has to do with the definition of weakest precondition (in terms of which Hoare triples are

defined) in Aneris.

Recall that in Aneris messages can be lost in transit. This means that a node might want

to re-send an old message until receipt is confirmed by the destination. We have seen that

when sending a message we must satisfy the destination’s socket protocol, but socket pro-

tocols are Aneris propositions so they can demand not only knowledge of but also ownership

over a logical resource. For example, the FreeIp(n) resource is non-duplicable: it is not the case
that FreeIp(n) ⊢ FreeIp(n) ∗ FreeIp(n). If a socket protocol requires FreeIp(n) we must give

up ownership of the resource when sending the message. Ownership of the resource is con-

ceptually transferred to the network and, ultimately, to the recipient once they call receive.
This motivates the need for two different rules for sending a message, depending on whether

the message is a duplicate or not. In the latter case, when sending messagem we must prove

Φ(m) for a destination with socket protocol Φ. However, if the message is a duplicate we do

not need to re-prove Φ, since Φ could involve non-duplicable resources.

The Ht-Send rule reasons about non-duplicate messages. Notice that the precondition

requires that the socket by bound to a port, and as mentioned we must satisfy the recipient’s

socket protocol (in particular, this means we must knowwhat their socket protocol is). Finally,

we have themessage history resourcem.orig⇝ (R, T). This resource tracks the setsR and T
of received and transmitted messages at addressm.orig. After sending a messagemwe obtain

back the updated historym.orig⇝ (R, T ∪ {m}).
The Ht-Send-Duplicate rule does not take the socket protocolΦ(m) in the precondition,

but does require that we prove that themessagemwas previously sent:m ∈ T , withm.orig⇝
(R, T).

Finally, we have Ht-Recv-Non-Blocking, the non-blocking version of the receive rule. In

order to verify ⟨n; receivefrom z⟩wemust know that the socket is bound to an address (n, p)
and that it is non-blocking, as well as the message history (R, T) and socket protocol Φ for

that address. The postcondition is a disjunction with three cases. One possibility is that the

socket’s buffer is empty, in which case receivefrom z returns None and the message history is

unchanged. Another option is that receive returns a new message that has not been previously

received. In this case, we learn thatm /∈ R,m.orig⇝ (R∪{m} , T) and cruciallyΦ(m). That
is, in this case the socket protocol holds for the received message. Finally, it could be that the

message was duplicated by the network, so the returned message was already in R. In this

case, the message history is unchanged and we do not learn that socket protocol holds.

Separation Logic for Distributed Systems 18

The rules above are but a small part of Aneris. We direct the reader to Jung et al. [Jun+18]

and Birkedal and Bizjak [BB17] for an introduction to Iris, and to Krogh-Jespersen et al. [Kro+20]

and the Aneris documentation [Tea23] for further discussion of Aneris. The papers Krebbers

et al. [KTB17], Krebbers et al. [Kre+18b] and the Aneris website [Teaa] are starting points for

working with Aneris’ Coq formalization. Part II describes additional Aneris features that are

relevant to formalization of CRDTs.

2 Contributions

This chapter outlines the state of the art in formal verification of CRDTs and, against that

backdrop, explains this dissertation’s contributions.

2.1 Landscape of CRDT Verification

A comprehensive, up-to-date bibliography on CRDTs, including their specification and ver-

ification, can be found at https://crdt.tech/papers.html. Examining it suggests several

themes:

1. CRDTs are amenable to machine-checked verification. Some of the early works on formal-

izing CRDTs relied on pen-and-paper proofs [Bur+14; Got+16; Att+16], but more recent

projects virtually all employ some form of machine-checked verification [ZBP14; Li+14;

Gom+17; Liu+20; NPS20; DFG22; Lad+22; ZWS23]. I speculate that CRDTs make an

attractive target for formal methods due to their self-contained nature: research proto-

types of CRDTs are small (up to hundreds of lines of code) and some of the properties of

interest, notably convergence, the algebraic properties of state-based CRDTs, and com-

mutativity of operations in op-based CRDTs, apply not just to one data structure but

entire classes of them, making it so their formalization “pays off”.

2. Formalmethods practitioners have deployed awide array of techniques towards formalizing

CRDTs. These include program logics [LF21; Tim+21], static analysis [Li+14], transition-

systemmodels [ZBP14; Bur+14; NPS20], bespoke programming languages [DFG22; ZWS23],

type systems [ZWS23], as well as program synthesis [Lad+22]. As usual, there is often

tension between the expressiveness and automation level of a given technique. Fully-

automated techniques tend to verify specific properties (e.g. convergence) [ZWS23;

DFG22], while those are that aremore interactive or require user annotations can accom-

modate more general safety invariants [NPS20]. The use of SMT solvers is ubiquitous

among both kinds of techniques [NPS20; Liu+20; Liu+20; Sou+22; Lad+22; DFG22].

3. There is no agreement on what it means for a CRDT to be correct and, therefore, on what one

ought to prove to verify one. In other words, the set of verified properties varies across

different techniques. There are roughly three possible options:

• The paper introducing CRDTs [Sha+11a] proposes strong eventual consistency as

the defining correctness property for CRDTs, and some verification efforts have

focused on proving SEC [ZWS23; DFG22; Liu+20; Gom+17]. More specifically,

they prove convergence, the safety component of SEC. With the exception of the

Trillium logic [Tim+21], which has one small case study on CRDTs, none of the

19

https://crdt.tech/papers.html

Landscape of CRDT Verification 20

works I am familiar with try to prove eventual delivery or other liveness properties.

SEC is a fine property that emerges naturally from relaxing strong consistency: we

go from “replicas agree on state all the time” to “replicas eventually agree on state”.

But it does not tell the whole story: for example, we can “implement” a replicated

grow-only counter so that every increment increases the value of the counter by 2
instead of by 1. This does not violate SEC, but neither does it capture the counter’s
intended semantics.

• This suggests that we care about is not just SEC but functional correctness. Func-

tional correctness is specifying what the output of an operation on a data structure

should be given its inputs. The word input here should be taken to include the data

structure’s state as well as its prior history of operations.

The seminal work in this camp is Burckhardt et al. [Bur+14]. They observe that

sequential data types can be specified with a function that maps lists of operations

to the resulting data type state. They generalize this to the CRDT setting by re-

laxing the requirement that operations be sequentially sorted. Instead of a list of

operations, we start with a set of operations together with causality metadata. That

is, we specify CRDTs via partial functions from DAGs to their resulting data type

state. The edges in the DAG describe the happens-before relation between CRDT

operations. Notice this specification style gives us converge “for free”, because two

replicas that have observed the same set of operations necessarily end up, as per

the specification (a function), in the same resulting state. Follow up works that

target functional correctness and use this specification style include Zeller et al.

[ZBP14], Kleppmann et al. [Kle+18], and Leijnse et al. [LAB19].

• The final kind of verification task that appears in the literature is invariant preser-

vation. This appears in the context of hybrid CRDT designs where some operations

require coordination while others do not. For example, a CRDT modelling an auc-

tion service needs to guarantee that after the auction is closed no replica can con-

tinue bidding. The associated invariant would be “at most one replica is declared

as winner of the auction”. Another way to think about these hybrid designs is as

CRDTs where some operations are disabled some of the time. Works that focus on

proving invariant preservation include Li et al. [Li+14], Gotsman et al. [Got+16],

and Nair et al. [NPS20].

4. There is variance in how “realistic” the verified CRDTs are. In other words, some verifica-

tion attempts targetmodels of CRDTs [Bur+14; ZBP14; Got+16; NPS20; LF21], while oth-

ers verify runnable code that is either extracted from a theoremprover or directlywritten

and verified in an executable language [Gom+17; DFG22; ZWS23; Li+14; Liu+20].

5. Verification techniquesmostly specialize in one class of CRDT, targeting either op-based [Gom+17;

Kle+18; LF21] or state-based [ZBP14; Liu+20; NPS20; Lad+22; ZWS23] designs, but not both.

Sometimes papers express a desire to generalize their technique to the other kind of

CRDT, but to-date this has proven to be an elusive goal. The one notable exception

is Burckhardt et al. [Bur+14], whose methodology can specify both kinds of CRDTs, but

it should be noted that this paper operates at the level of a highly-abstracted model,

where the differences between both kinds of CRDTs are less clear.

Overview of the Dissertation 21

6. Not many techniques support verification of clients of CRDTs. As every software compo-

nent, in the real world CRDTs do not operate in isolation and work together with other

components. One natural question is whether the verification technique used to cer-

tify that the CRDT is e.g. causally-consistent extend to proving correctness of users or

clients of the CRDT. For example, given a verified GCounter, can we prove that a client

that increments the GCounter twice and then queries will read a value of at least 2? A

follow-up question is whether the client can be verified against the CRDT’s specifica-

tion (as opposed to against the CRDT’s implementation). This is desirable because it

allows us to modify the CRDT’s correctness proof without changing the client’s proof,

as long as the specification remains constant. In other words, the question is whether

the verification technique produces correctness proofs that are modular.

Liang and Feng [LF21] develop the first and only modular verification technique for

CRDTs (with the exception of the work described in this dissertation). They propose

Abstract Converging Consistency (ACC) as a correctness criterion for CRDTs. ACC is as

an extension of SEC that implies not only convergence but also functional correctness.

It does so by relating a concrete implementation of an op-based CRDT to an abstract

specification whose operational semantics allow for re-ordering of operations, and is

therefore less realistic but more obviously correct. They show that ACC directly implies

convergence, as well as prove an abstraction theorem that shows that ACC implies con-

textual refinement of the abstract CRDT by its implementation. Finally, they present a

rely-guarantee style logic for verification of clients against the abstract CRDT model.

Composing their techniques gives an end-to-end safety proof of clients and CRDT im-

plementations.

2.2 Overview of the Dissertation

The main body of the dissertation in Part II is thematically divided in two: specification and

verification of op-based and state-based CRDTs in Chapters 3 and 4, and session guarantees for

client-centric consistency in Chapter 5.

2.2.1 Verification of CRDTs

This dissertation presents a unified approach to specifying and verifying op-based and state-

based CRDTs using separation logic. By unified approach I mean two different things. First,

we can specify both kinds of CRDTs using the same techniques: an extension of the encoding

of causality in separation logic developed by Gondelman et al. [Gon+21], specifications based

on CRDT denotations [Bur+14], and a modular proof technique that can transform purely-

functional, sequential implementations of data structures into fully-fledged CRDTs. Second,

not only can we specify both kinds of CRDTs, but we can also give an op-based CRDT and its

state-based counterpart the same specification. In other words, I show that even though op-

based and state-based CRDTs use wildly different implementation techniques (and specifically,

they achieve causal consistency through two very differentmechanisms), we can abstract away

from these implementation details. As explained earlier in this introduction

Conflict-Free Replicated Data Types have Abstract Data Types

Looking at the rubric in Section 2.1, the work in this dissertation

Overview of the Dissertation 22

1. Is machine checked using the Coq theorem prover. Furthermore, all the results in Part II

are foundational: that is, they depend only on the “foundations of mathematical logic,

without additional assumptions and axioms” [App01]. In particular, unlike other works

which assume causal broadcast as part of their network model when verifying op-based

CRDTs [Gom+17], I implement and verify in Chapter 3 a general Reliable Causal Broad-

cast (RCB) algorithm [BSS91] that is later used as a building block for verifying op-based

CRDTs.

2. Falls within the program logics camp. Specifically, I use the Aneris distributed separation

logic [Kro+20]. Unlike some of the related work [LF21], I do not develop a bespoke pro-

gram logic that is specifically targeted towards reasoning about CRDTs. Instead, we can

express all of the required technical gadgets (safety invariants, state tracking, denota-

tional specifications, causal consistency) through existing features of Aneris (inherited

from Iris) together with the metalogic (Coq): in particular we use Iris invariants and

ghost state based on partial commutative monoids (PCMs). This has the advantage that

our verified CRDT libraries remain fully-compatible with other Aneris developments

(e.g. the causal broadcast algorithm and client code that uses the CRDTs).

3. Verifies not only convergence, but also full functional correctness for both kinds of CRDTs.

I use CRDT denotations to specify both kinds of CRDTs. Even though denotations have

been used in this way before [Bur+14], this is the first time that denotations are used to

describe runnable code, as opposed to high-level descriptions of CRDTs based on transi-

tion systems [Bur+14] or pseudocode [ZBP14].

4. Verifies runnable code, as opposed to abstract models or algorithms. The implementations

verified in this dissertation are written in AnerisLang, which can be thought of a subset

of OCaml. In fact, the CRDT implementations were first written in OCaml and then

translated into AnerisLang via an (unverified) transpiler. AnerisLang has many of the

features of modern programming languages. The CRDT implementations make us of all

of the following: mutation, higher-order functions, intra-node concurrency, locks, and

(realistic) network primitives.

5. Handles both op-based and state-based CRDTs. This is one of the key contributions of

the dissertation, since no prior work provides modular specifications of both kinds of

CRDTs. The techniques of Liang and Feng [LF21] can also produce modular specifica-

tions of op-based CRDTs, but the authors acknowledge that extending their approach to

the state-based setting is challenging:

This paper considers only operation-basedCRDTs. Our resultsmay be adapted

to support state-based CRDTs when assuming causal delivery, but it seems

nontrivial to build abstractions that on the one hand reflect the algorithms’

resistance to unreliable networks, and on the other hand are still useful for

client reasoning. [LF21]

What enables the generality of the techniques presented here is a combination of (a) the

expressive power ofmodern separation logics like Aneris, (b) the encoding of causality in

separation logic byGondelman et al. [Gon+21] and (c) the abstract nature of denotational

specifications. With regards to point (a), for example, one challenge of verifying CRDTs

is that updates to a replica’s state can happen concurrently, but specifying concurrent

Overview of the Dissertation 23

Coq

Aneris

RcbLib

Causal consistency, no duplica-

tion, no creation

OpLib

RcbLib’s guarantees + conver-

gence, functional correctness

Op-Based Combinators

Product, Map

Op-Based CRDTs

GCounter, PN-Counter, Adds-Win

Set, LWW-Register, etc.

StateLib

Causal consistency, convergence,

functional correctness

State-Based Combinators

Product, Map

State-Based CRDTs

GCounter, PN-Counter, GSet, etc.

Common interface

Encoding of causality, denotational specifications

PN-Counter Client

No crashes

OpLib Inputs

• Purely functional,

sequential imple-

mentation

• Labelled transition

system

• Denotation

StateLib Inputs

• Purely functional,

sequential imple-

mentation

• Lattice

• Denotation

Figure 2.1: Overview of the material in Chapters 3 and 4. Green boxes are for op-based CRDTs,

blue boxes for state-based CRDTs, and yellow-boxes for user inputs.

data structures is the bread-and-butter of concurrent separation logic [BB17], so we

can use standard techniques like logically atomic triples [Jun+15] to give specifications

in the face of concurrency. Regarding point (b), Gondelman et al. [Gon+21] observed

that one can reason modularly about causality within separation logic by tracking sets

of writes to a key-value store together with causality metadata (vector clocks). This

dovetails perfectly with (c) the use of denotations for specifying CRDTs as in Burckhardt

et al. [Bur+14], because in their telling the “essence” of CRDTs (their specification) is a

mapping from sets of operations plus causality metadata to a resulting state.

6. Supports verification of client programs. Because we can give functional correctness spec-

ifications to CRDTswe can then verify client programs that use those CRDTs. We show a

client program that uses a counter CRDT while making runtime assertions. We then go

on to prove the client safe (the assertions never fail) by using the counter’s specification,

and without considering the client’s implementation.

Part II of the dissertation substantiate the claims above. Chapters 3 and 4 are about verifi-

cation of op-based and state-based CRDTs, respectively, and are summarized in Figure 2.1.

On Chapter 3 (green component stack in Figure 2.1) I implement and verify a Reliable

Causal Broadcast (RCB) algorithm [BSS91]. RCB is a communication abstraction that strength-

ens the minimal guarantees provided by Aneris’ message passing primitives to include causal

delivery. The RcbLib library implements a modification of RCB known as tagged reliable causal

broadcast that makes it more suitable for building CRDTs [BAS14].

Using RCB, I then verify OpLib: a library for building op-based CRDTs. OpLib turns a

user-provided, purely functional and sequential implementation of a data structure into its

corresponding CRDT. OpLib handles the mutation, concurrency control, and message passing

Overview of the Dissertation 24

that are part of every CRDT implementation. In addition to the sequential implementation,

users also provide a denotation that serves as the CRDT’s specification, as well as a labelled-

transition system model that connects the denotation to its implementation. Using OpLib, I
verify twelve example CRDTs from the literature, including two CRDT combinators. These

combinators allow us to modularly combine CRDT implementations and their proofs to auto-

matically build more complex verified CRDTs.

Similarly, Chapter 4 builds the verification infrastructure needed for verifying state-based

CRDTs (blue component stack in Figure 2.1). This starts with a StateLib library that is the

dual of OpLib. StateLib also takes as input a sequential implementation of a data structure,

as well as its denotation-based specification and a lattice model. Instantiated thus, StateLib
produces a state-based CRDT with the desired semantics. Because state-based CRDTs are

automatically causally consistent, which I formally prove for the first time, StateLib does not

rely on RCB. Using StateLib, I verify five example CRDTs, again including themap and product

combinators. For example, I verify a GCounter CRDT and then instantiate the PN-Counter as

a pair of GCounters.

Both developments in Chapters 3 and 4 use the same encoding of causality in separation

logic that I generalize from Gondelman et al. [Gon+21]. Specifically, this encoding is expressed

as a set of Aneris propositions together with lemmas the propositions satisfy (laws of causal-

ity). Each of the developments in Chapters 3 and 4 defines these propositions differently: in

other words, they each implement the same “causality interface”. Together with the fact that

both developments use specifications based on denotations, this means we can build abstract

specifications for CRDTs that hide whether the CRDTs are op-based or state-based. As proof

of concept, I verify a client program that uses a PN-Counter CRDT (the client uses causal con-

sistency to reason about the results of the counter’s operations). I then implement and verify

two versions of the PN-Counter: one version is built on top of OpLib and RcbLib, and the other
is implemented using the state-based combinators and StateLib. I am able to verify the client

code against the abstract specification of a PN-Counter, so that I can swap out the op-based

code for the state-based code while making only minimal (proof engineering-related) changes.

2.2.2 Session Guarantees for Client-Centric Consistency

The distributed systems literature distinguishes between two kinds of consistency models:

data-centric and client-centric [TS07, Chapter 7].

A data-centric consistency model offers a global view of the system, specifying the order

in which operations are propagated across replicas. In particular, the model specifies which

operations are concurrent and so can be re-ordered.

By contrast, a client-centric consistencymodel is concerned onlywith operations delivered

at a single node (either local operations generated by the node, or operations propagated from

remote replicas) within the context of a session, a sequence of local reads andwrites. Themodel

then specifies the relationship between operations in the session, as well as their propagation

order to other replicas.

The client-centric view of consistency can be broken up into four session guarantees: read

your writes, monotonic reads, monotonic writes, and writes follow reads [Ter+94]. These guar-

antees are intuitive reasoning principles for clients interacting with a weakly-consistent data

type that implements them. For example, the monotonic reads guarantee states that reads al-

ways return values that are “more up-to-date” than values returned by previous reads in the

same session.

Overview of the Dissertation 25

DB1 DB2

C1A

SM

RH RH

C2

SM

C1B

Figure 2.2: Clients using the distributed database via the session manager library. RH is the

request handler, and SM is the client stub. Copied from Gondelman et al. [Gon+21].

Coq

Aneris

Causally-Consistent Database [Gon+21]

Session Manager

MR RYW MW WFR

Figure 2.3: Overview of the verified components in Chapter 5. Each box depicts a component

modularly verified against the specification of the component below.

Chapter 5 proves that the four session guarantees follow from the encoding of causality in

separation logic developed by Gondelman et al. [Gon+21]. In that paper, my co-authors and I

presented a verified implementation of a causally-consistent distributed database (a distributed

key-value store), together with the first modular specifications of the same. Motivated the

modular nature of the specifications and prior results showing that causal consistency implies

all four session guarantees [BSW04], we wondered whether one could use the database in a

setting where the session guarantees are relevant.

The result, presented in Chapter 5, is a session manager library that allows clients to use

the key-value store even when the client and the database are located in different nodes (i.e.

the typical case for client-server designs). Figure 2.2 shows the session manager being used

by remote clients to interact with the database. To that effect, the session manager is divided

into two parts: a request handler component that is co-located with the database and proxies

client requests to it, and a client stub that implements a simple form of RPC for sending client

requests to the server.

Just like the implementation, the proofs of the session guarantees are modular (Figure 2.3).

On top of the specifications for the causally-consistent database in Gondelman et al. [Gon+21],

Chapter 5 builds specifications for the session manager library. These specifications use only

persistent resources, both facilitating client reasoning and reflecting the fact that no client has

exclusive access to the database. Finally, using the session manager specifications I prove the

Contributions 26

Table 2.1: The four session guarantees. Edited from Gondelman et al. [Gon+21].

Guarantee Program

Read Your Writes sconnect(ip); swrite(ip,k,v); sread(ip,k)

Monotonic Reads sconnect(ip); sread(ip,k); sread(ip,k)

Monotonic Writes sconnect(ip); swrite(ip,k1,v1); swrite(ip,k2,v2)

Writes Follow Reads sconnect(ip); sread(ip,k1); swrite(ip,k2,v)

four session guarantees, which appear as client programs (Table 2.1).

Chapter 5 is an extended, self-contained version of Section 5 of Gondelman et al. [Gon+21].

2.3 Contributions

Because the previous sections have been rather discursive, it bears succinctly re-stating the

main contributions of this dissertation.

Chapter 3 and 4

• Present the first unified account of specification and verification of op-based and state-

based CRDTs. In particular, Chapter 4 presents the first modular specifications of state-

based CRDTs.

• Chapter 3 presents the first formally-verified implementation of causal broadcast, a com-

mon distributed systems building block.

• Chapter 4 contains the first formal proof that state-based CRDTs are causally-consistent.

• Develop a proof technique for CRDTs that has a number of desirable properties:

– Proves functional correctness and not just eventual consistency.

– Supports reasoning about clients of CRDTs.

– Reasons at the level of runnable code, as opposed to high-level models.

– Is conducted in a general-purpose separation logic that is not specialized to reason

about CRDTs.

– Is foundationally verified in Coq.

Chapter 5

• Presents the first formal verification of the four session guarantees for client-centric con-

sistency. Specifically, I show that these guarantees hold for Gondelman et al. [Gon+21]’s

causally-consistent database.

• Shows how to encode the guarantees in separation logic, therefore allowing client-side

reasoning using the guarantees.

• All results are foundationally verified in Coq.

Included Publications 27

2.4 Included Publications

Part II consists of three chapters, each of which is based on a publication that I co-authored

during my PhD:

• Chapter 3 is about verification of op-based CRDTs, and is a copy of the OOPSLA’22 paper

by Nieto et al. [Nie+22]

Abel Nieto, LéonGondelman, Alban Reynaud, Amin Timany, and Lars Birkedal.

2022. Modular Verification of Op-Based CRDTs in Separation Logic. Proc.

ACM Program. Lang. 6, OOPSLA2, Article 188 (October 2022), 29 pages.

https://doi.org/10.1145/3563351

The text and figures have only been minimally edited to fit this dissertation’s template.

I was the main author of the paper and had the lead role in all aspects of the research

project, including scoping, conceptualization, proof engineering, and paper writing.

• Chapter 4 is about verification of state-based CRDTs, and is a copy of the ECOOP’23

paper by Nieto et al. [Nie+23]

Abel Nieto, Arnaud Daby-Seesaram, Léon Gondelman, Amin Timany, and

Lars Birkedal. 2023. Modular Verification of State-Based CRDTs in Separa-

tion Logic. In 37th European Conference on Object-Oriented Programming

(ECOOP 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. https:
//doi.org/10.4230/LIPIcs.ECOOP.2023.12

The text and figures have only been minimally edited to fit this dissertation’s template.

I was the main author of the paper and had the lead role in all aspects of the research

project, including scoping, conceptualization, proof engineering, and paper writing. Ar-

naud Daby-Seesaram wrote the majority of the Coq proofs in this Chapter’s formaliza-

tion.

• Chapter 5 is about verification of session guarantees for client-centric consistency. It is

based on the POPL’21 paper by Gondelman et al. [Gon+21]

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany,

and Lars Birkedal. 2021. Distributed causal memory: modular specification

and verification in higher-order distributed separation logic. Proc. ACM Pro-

gram. Lang. 5, POPL, Article 42 (January 2021), 29 pages. https://doi.org/
10.1145/3434323

I was the lead author of Section 5 of the paper, on session guarantees, as well as the

associated Coq development. I also contributed to technical discussions and general

editing of the paper. Chapter 5 is an extended, self-contained, version of Section 5. Parts

of the chapter’s introduction, the entirety of Section 5.1, and some figures are copied

and edited from the paper, as well as the accompanying technical appendix [Gon+20].

The rest is original material.

https://doi.org/10.1145/3563351
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.1145/3434323
https://doi.org/10.1145/3434323

Coq Formalizations 28

2.5 Coq Formalizations

The material in Part II is formalized using Mosel [Kre+18a], a Coq framework for Iris (and

Aneris) developments. The formalizations span over 28000 lines of Coq code, and all three

received a “Reusable” badge after assessment by the corresponding artifact evaluation com-

mittees:

Chapter Artifact Link Artifact Size (LOC)

Chapter 3 https://zenodo.org/record/7055010 14748

Chapter 4 https://zenodo.org/record/7718868 12064

Chapter 5 https://zenodo.org/record/4139601 1883

https://zenodo.org/record/7055010
https://zenodo.org/record/7718868
https://zenodo.org/record/4139601

Part II

Publications

3 Modular Verification of Op-Based CRDTs in

Separation Logic

This chapter is a copy of the OOPSLA’22 paper “Modular Verification of Op-Based

CRDTs in Separation Logic” [Nie+22], of which I was the lead author. The text and figures

have been lightly edited for formatting.

Abstract

Operation-based Conflict-free Replicated Data Types (op-based CRDTs) are a fam-

ily of distributed data structures where all operations are designed to commute, so that

replica states eventually converge. Additionally, op-based CRDTs require that operations

be propagated between replicas in causal order. This paper presents a framework for ver-

ifying safety properties of CRDT implementations using separation logic. The framework

consists of two libraries. One implements a Reliable Causal Broadcast (RCB) protocol so

that replicas can exchange messages in causal order. A second OpLib library then uses

RCB to simplify the creation and correctness proofs of op-based CRDTs. OpLib allows

clients to implement new CRDTs as purely-functional data structures, without having to

reason about network operations, concurrency control and mutable state, and without

having to each time re-implement causal broadcast. Using OpLib, we have implemented

12 example CRDTs from the literature, including multiple versions of replicated registers

and sets, two CRDT combinators for products and maps, and two example use cases of

the map combinator. Our proofs are conducted in the Aneris distributed separation logic

and are formalized in Coq. Our technique is the first work on verification of op-based

CRDTs that satisfies both of the following properties: it ismodular and targets executable

implementations, as opposed to high-level protocols.

To an outside observer, a distributed system ideally appears to function as a single com-

puter, and the fact that the system is composed of multiple collaborating processes is an imple-

mentation detail hidden inside the proverbial black box. This behaviour is formally captured

by the notion of linearizability [HW90], which says that concurrent execution histories of a

linearizable data structure can be re-ordered so that operations appear to take place (a) atom-

ically and (b) in a manner that is consistent with sequential order.

Alas, the CAP
1
theorem [GL02] shows that, in the presence of network partitions, a system

can be either linearizable or available, but not both. Available in this context means that the

nodes in different network partitions can (independently) continue to service client requests,

without waiting for the partitions to heal.

1

Consistency, Availability, Partition tolerance

30

31

Confronted with this consistency vs availability dilemma, practitioners have developed

systems that trade off stronger forms of consistency (e.g. linearizability and sequential con-

sistency) in favour of better availability (e.g. Chang et al. [Cha+08], Sivasubramanian [Siv12],

Tyulenev et al. [Tyu+19], Bailis et al. [Bai+13], Lloyd et al. [Llo+11], and Chodorow and Dirolf

[CD10]). This is possible by adopting weaker consistency models; among such models are

strong eventual consistency (SEC) [Sha+11b] and causal consistency [Aha+95]. For example, in

SEC two processes that read from a replicated register might observe different values even

though no intervening writes have occurred locally (something not possible when reading

from sequentially-consistent local memory from within a process). Eventually, however, the

state of the replicated register at different replicas must converge. More precisely, SEC requires

the following two properties (note the first is a liveness property while the latter is a safety

property):

• (Eventual Delivery) An update delivered to a correct replica is eventually delivered to all

replicas.

• (Convergence) Replicas that have delivered the same updates eventually reach equivalent

states.

Conflict-free Replicated Datatypes (CRDTs) [Sha+11a] are a class of distributed systems

where a data structure (e.g. register, set, or map) is replicated over multiple replicas that mu-

tate its state via local operations. Because replicas are allowed to invoke operations without

coordinating with others, different replicas might arrive at conflicting states. CRDTs resolve

such conflicts automatically. There are two main ways of going about this. One option is to

model the replica state as a (join) semilattice, so that merges are accomplished by taking least

upper bounds (joins); these are state-based or convergent CRDTs. Changes are then propagated

by sending the entire state to other replicas on the (possibly unreliable) network. Another

option is to propagate, instead of the entire state, just the effect of each individual update.

It becomes then necessary to enforce that each operation is executed exactly once (at most

once for the convergence and at least one for the eventual delivery properties above), which

typically requires broadcasting primitives that offer reliable delivery. Furthermore, it is also

necessary to enforce that some or all operations commute so that concurrent operations can

be applied in any order. This last class, known as operation-based (op-based) or commutative

CRDTs, is the focus of this paper.
2

Consider the following example of a counter data structure replicated over two nodes:

(* Node A *)
add 1; add 200

(* Node B *)
add 2; let v = read () in
assert((v = 2) || (v = 3) || (v = 203))

The counter exports two operations: add(z), which adds an integer z to the counter, and

read(), which returns the counter’s current value. This CRDT is known as a positive-negative

counter (PN-Counter)[Sha+11a].

2

From now on whenever we use the term CRDT the reader can safely assume that we mean op-based CRDT,

unless explicitly noted otherwise.

32

One question of interest for the example above is what are the possible values of v. Because
the counter should remain available even ifA andB are partitioned,A’s add(1) should execute
without trying to synchronize withB. This means thatA’s andB’s add operations potentially
happen concurrently. By contrast, when A’s two operations are broadcast to B, they should

be applied byB followingA’s program order. Finally, whenB reads, we do not know whether

A’s updates have been received, but we do expect that the add(2) has been recorded locally.

This means that the possible values for v are 2 (only the local add has been applied), 3 (only

A’s first add has been applied), and 203 (all three adds have been applied). Results like 0, 200
and 202 are not valid answers.

Causal Delivery Our intuitions about valid execution traces in the example above can be

captured by a happens-before or causality relation on events [Lam78]. Let a and b be two

events (possibly taking place at different processes). Then a happens before b (and b is causally
dependent on a), written a→ b, if one of the following holds:

• a and b take place in the same process, and a < b according to program order.

• a is the event of sending a message m and b is the corresponding event where m is

received.

• a→ c and c→ b for some other event c (the transitive closure of the above two rules).

If neither a → b nor b → a, then we say they are concurrent, written a||b. Informally, we say

that events are causally delivered if the following property holds: if an event e is delivered3 to
a replica p, then all events on which e causally depends must have been previously delivered

to p. We can then require that valid PN-counter execution traces satisfy causal delivery of

operations. Indeed, this is a common requirement for many CRDTs in the literature [BAS14].

Reliable Causal Broadcast One way to realize the guarantees of causal delivery is to im-

plement a one-to-many communication protocol known as Reliable Causal Broadcast (RCB)

[CGR11]. In RCB, a group of N replicas send each other messages. The protocol’s interface

consists of two functions: broadcast(msg), which sends messagemsg to all otherN−1 repli-
cas, and deliver(), which returns a received message (if one exists) while respecting causal

order.

Verifying CRDTs Because CRDTs are data structures replicated across multiple processes,

each of which is allowed to reorder concurrent operations, they are challenging to specify and

verify.

The main property of interest for verification is SEC [Sha+11b] which as we mentioned

can be divided into convergence and eventual delivery.
4
However, convergence does not say

how the CRDT’s final state is computed from the set of received operations. Burckhardt et al.

[Bur+14] addressed this question by showing how to give functional correctness specifications

for CRDTs. Another consideration is whether the verified properties can be reused by compo-

nents other than the CRDT: that is, whether the verification technique is modular. The recent

3

Delivery occurs when the event processing layer makes its clients aware of the event; this can take different

forms depending on the specific application.

4

The terminology is not universal: Shapiro et al. [Sha+11a] refers to both properties together as eventual

convergence.

33

work of Liang and Feng [LF21] presents the first modular verification technique for op-based

CRDTs.

An additional design decision is the level of detail at which to model the CRDT that is

the target of verification. There are roughly two options: one can model the CRDT as a high-

level protocol, perhaps assuming that the network is reliable or ignoring node-local concur-

rency. Alternatively, we can implement the CRDT in a general-purpose programming lan-

guage where we have to deal with a plethora of low-level (but realistic) details such as an

unreliable network, concurrency-control, and mutation.

Our work This paper is about proving SEC and functional correctness of op-based CRDTs.

To the best of our knowledge, all prior work on verification of op-based CRDTs consists of

techniques that produce modular specifications but work at the protocol level, or techniques

that work for implementations but are non-modular (see Section 3.6 for a classification of prior

work). The main contribution of our work is to lift that restriction: we can produce modular

specifications of CRDT implementations. Additionally, unlike prior workwhich assumes causal

delivery by the network, our CRDTs include a general-purpose implementation of reliable

causal broadcast. All our proofs are mechanized in Coq. More precisely, the contributions of

this work are as follows:

1. We implemented and verified an RcbLib library for reliable causal broadcast (RCB). To

the best our knowledge, this is the first time a formalization of op-based CRDTs includes

a general-purpose implementation of RCB, as opposed to assuming causal broadcast.

2. On top of the RcbLib library, we implemented and verified an OpLib library for build-

ing op-based CRDTs. Using OpLib, one can create op-based CRDTs as purely-functional

data structures, without having to reason about low-level details like mutation, con-

currency control, and network operations. Similarly, by proving only simple sequential

specifications, OpLib users obtain from the library rich specifications for their CRDTs,

enabling modular reasoning about convergence, causality, and functional correctness.

3. We evaluated OpLib by implementing a collection of 12 CRDTs, including multiple ver-

sions of registers and sets, as well as two combinators for products andmaps. We further

evaluated the modularity of our specifications by verifying a client program that uses a

CRDT obtained via OpLib.

4. We wrote our libraries in a subset of OCaml that is then automatically translated to

AnerisLang, the programming language of the Aneris [Kro+20] distributed separation

logic. Our proofs were conducted in Aneris and are mechanized in Coq.

Structure of the paper The rest of the paper is organized as follows: Section 3.1 gives a quick

primer to the Iris and Aneris program logics. Section 3.2 provides an overview of the key

ideas of our work and presents the concepts that CRDT implementers need to use our libraries.

Section 3.3 describes inmore detailRcbLib’s implementation and correctness proof. Section 3.4

then does the same for OpLib. Section 3.5 discusses our case studies (the implemented CRDTs).

We then take a look at prior work on Section 3.6, and conclude in Section 3.7.

Aneris Primer 34

P,Q ∈ iProp ::= True | False | P ∧Q | P ⇒ Q | P ∨Q | ∀x. P | ∃x. P | · · · higher-order logic

| P ∗Q | P ∗ Q | ℓ 7→ip v | {P } ⟨ip; e⟩ {x. Q} | �P separation logic

| P N | |⇛E1 E2 Iris resources and invariants

Figure 3.1: The fragment of Iris and Aneris relevant to this paper.

3.1 Aneris Primer

Iris [Jun+18] is a state-of-the-art program logic designed to reason about concurrent programs

based on separation logic. Aneris [Kro+20] is a program logic built on top of Iris for reasoning

about distributed systems. Figure 3.1 shows the fragment of Iris and Aneris logic that we need

in this paper:

First and foremost Iris is a higher-order logic with the usual connectives. Note how we

can quantify, both existentially and universally, over any domain, including iProp itself (we

write iProp for the universe of Iris propositions). Iris is a separation logic. Iris propositions

can assert ownership of resources and express their disjointness. The proposition P ∗Q holds

if the owned resources can be split into two disjoint parts where one satisfies P and the other

Q. The magic wand, P ∗ Q, also called separating implication, asserts ownership over

resources that when combined with (disjoint) resources satisfying P would satisfyQ. The so-

called points-to proposition, ℓ 7→ip v, asserts exclusive ownership over the memory location

ℓ stating that the value stored in this location is v. This proposition differs from the standard

separation logic points-to proposition only in that it is annotated with the Ip address of the

node to which it belongs — this is necessary as we are working with a distributed system in

Aneris. Similarly, in Aneris a Hoare-triple {P } ⟨ip; e⟩ {x. Q}, in addition to the program, also

takes the Ip address of the node the program is running on.

The persistently modality, �, captures duplicability of propositions. It allows us to distin-

guish between propositions that are duplicable and those that are not, e.g., points-to proposi-

tions: ℓ 7→ip v ∗ ℓ 7→ip w ⊢ False. Here, ⊢ is the logical entailment relation of Iris. Intuitively,

�P holds if P does and furthermore, P does not assert ownership of any non-duplicable

resources. We say a proposition is persistent if P ⊢ �P ; note that for any proposition P
we always have �P ⊢ P . Persistent propositions are duplicable, i.e., �P ⊢ �P ∗ �P , and
hence they merely express knowledge as opposed to expressing (exclusive) ownership over re-

sources. An example of a persistent proposition is Iris invariants. The invariant P
N

asserts

that P must hold at all times throughout program execution. Hence, throughout a proof, for

the duration of an atomic step of computation, we can access invariants, i.e., we get to know

that the invariant holds before the step of computation and need to guarantee that it also holds

afterwards. The name of the invariant N is used to track accesses to invariants and prevent

them from being accessed in an unsound manner, e.g., accessing the same invariant twice dur-

ing the same atomic step of computation which could result in duplicates of non-duplicable

propositions like the points-to proposition. The update modality,
5 |⇛E1 E2 , allows manipula-

tion of invariants and resources in Iris. The masks E1 and E2 are sets of invariant names and

respectively indicate which invariants hold before and after the “update” takes place. We write

|⇛E for |⇛E E . The update modality is the primary way of working with invariants in Iris. They

5

In Iris jargon this modality is called the fancy update modality; see Jung et al. [Jun+18] for more details.

Main Ideas 35

RcbLib
causal consistency, no

duplication, no creation

OpLib
RcbLib’s guarantees,

convergence, func-

tional correctness

CRDT
OpLib’s guarantees

Client program
no crashes

Denotation

Labelled Tran-
sition System

Purely-functional se-
quential data structure

Figure 3.2: Overview of our development. The OpLib library is parameterized by a CRDT

specification given by the components in the right column. Grey boxes are written in

OCaml/AnerisLang; yellow boxes are written in Coq.

are used in the definition of Iris Hoare-triples in such a way as to enforce the aforementioned

invariant policy of only allowing access to invariants during atomic steps of computation.

Intuitively, the proposition |⇛E1 E2P holds if we can manipulate resources (allocate new re-

sources, or update the existing ones) and manipulate invariants (create new invariants, access

invariants, or reestablish invariants) so as to make sure that P holds. Furthermore, during this

update we can access all invariants in E1 but must ensure that all invariants in E2 hold after

the update is done.

3.2 Main Ideas

This section provides a birds-eye view of the paper, focusing on concepts users need to use

our libraries. Figure 3.2 shows an overview of our work. We structured our development as a

tower of components, each exporting a modular specification.

Higher-level components can then be verified using solely the specifications of its depen-

dencies, without knowledge of the dependency’s implementation. Each box in Figure 3.2 lists

a component and the safety properties guaranteed by its specification. Grey boxes are written

in OCaml;
6
yellow boxes are written in Coq.

3.2.1 RcbLib

At the base of our verified tower of components we have a library implementing a reliable

causal broadcast protocol [CGR11]. This library is built on top of UDP, so it makes minimal

assumptions about network guarantees. In particular, messages can be dropped, re-ordered,

and duplicated by the network. The library deploys a suite of techniques, such as sequence

ids, acknowledgments, retransmissions, and a delay queue, to offer three main guarantees:

broadcast messages are delivered in causal order, without duplicates, and ensuring that any

message delivered was previously broadcast by another participant (the no creation property

in Figure 3.2). These are the three safety properties of RCB [CGR11].

6

Later automatically translated to AnerisLang, the programming language of the Aneris distributed separation

logic.

Main Ideas 36

Verifying RcbLib Themain idea for verifyingRcbLib is to generalize the treatment of causality

in Gondelman et al. [Gon+21] to the causal broadcast setting. We now briefly outline our

approach and expand on it in Section 3.3.

The first step is to define separation logic resources tracking the set of broadcast messages

between replicas in two ways: the OwnGlobal(h) resource provides a global view tracking the

set h of all messages broadcast by any replica, while the OwnLocal(i, s) resource provides

a local view tracking the set s of all messages that has been delivered by replica i. Here,

messages are triples (p, vc, o) consisting of the message’s payload p, vector clock vc, and id of
the originating replica o.

The next step is to craft separation logic specifications for RcbLib’s broadcast and deliver
functions. Below, we show a simplified specification for broadcast :

{OwnGlobal(h) ∗ OwnLocal(i, s)}
⟨ipi; broadcast(p)⟩

{m. payload(m) = p ∗ OwnGlobal(h ⊎ {m}) ∗ OwnLocal(i, s ⊎ {m})}

This spec states that in order to broadcast a message with payload p, we need to provide

both the global view and the local view of the broadcasting replica. broadcast can then execute
without errors and return a messagem with payload p. Logically, we know that the global set

of broadcast messages now includes m, and also that node i has delivered (is aware of) the

new message.

In addition to the broadcast and deliver specifications, followingGondelman et al. [Gon+21]

we provide to the user of RcbLib a set of laws governing the above resources. Notably, the

causality law states that, given the ownership of OwnGlobal(h) and OwnLocal(i, s), we can
conclude that

∀m ∈ s,m′ ∈ h. vc(m′) < vc(m) ⇒ m′ ∈ s

i.e., for any message m that has been delivered at node i, if we know of another message m′

that has been broadcast by any other node such that m′
happened before m,

7
then it must

be the case that node i has previously delivered m′
as well. All laws are proven in Coq and

provided as lemmas.

3.2.2 OpLib

Conceptually, an op-based CRDT implementation can be seen as an infinite loop thatmaintains

the CRDT’s state at a given replica. This loop has a number of responsibilities:

1. accept local operations invoked by the user at the replica

2. modify the CRDT’s state as per the effects of local operations

3. propagate local operations to other replicas

4. listen for remote operations communicated via the network

5. modify the CRDT’s state as per the effects of remote operations

7vc(m) stands form’s vector clock, a mechanism for tracking causal dependencies.

Main Ideas 37

One can then observe that there are a number of derived responsibilities that flow from

the ones above: for example, since steps (2) and (5) can happen concurrently, some form of

concurrency control (e.g. locking) is needed. Additionally, because the network is unreliable,

step (3) requires that the CRDT is be able to tolerate dropped messages. Another observation

is that most of the steps above are agnostic to the semantics of the specific CRDT: only when

modifying the CRDT’s state (steps (2) and (5)) do we need to know the inner workings of the

data type’s operations.

These observations suggest a design where the generic responsibilities are factored out

as a library that is parametric on the CRDT’s operations and their effects. Inspired by the

approach in Baquero et al. [BAS14], we instantiate a CRDT via the OpLib library that we

have implemented on top of RcbLib. In our library, all that the user needs to provide is the

data type’s initial state and an effect function that can process new operations. This design

allows a CRDT implementer to focus on the core logic of their data type as a purely-functional

data structure, while delegating to OpLib all the gritty details of inter-replica communication,

concurrency control, and mutation. Because OpLib uses RcbLib for propagating operations

between replicas, clients can rely on the guarantees of causal broadcast. Once instantiated

with the user’s purely functional data type, OpLib turns it into a fully-fledged CRDT that

exports two functions: get_state(), which returns (a copy of) the CRDT’s current state, and

update(op) which updates the state via a new operation op.

Verifying OpLib To verify OpLib we adapt the notion of CRDT denotations [LAB19; Bur+14]

to separation logic. A CRDT denotation J·K : 2Msg ⇀ St is a (partial) function from sets of

messages (a message contains an operation plus causality metadata) to the CRDT state that

results from executing said operations. BothMsg and St vary depending on the specific CRDT.

For example, the denotation for a PN-Counter is a function that maps a set of messages to the

sum of its payloads: JsK =
∑

m∈s payload(m).
Denotations have been previously used to give high-level specifications for CRDTs as well

as CRDT combinators (e.g. products of CRDTs and maps where the value type is an arbitrary

CRDT) [LAB19; Bur+14]. However, those works do not use denotations to verify implemen-

tations. We adapt denotations by constructing a separation logic resource LocSt(i, • s, ◦ r)8
which tracks the sets s and r of local and remote operations, respectively, processed by replica

i. The key insight behind the resource LocSt(i, • s, ◦ r) is that it tracks precisely the set of

processed local operations s, but provides only a lower bound on the set of processed remote

operations r. This captures the intuition that while a CRDT user can control which local

operations they perform, they do not know which additional remote operations have been

propagated from other replicas at a given moment in time. The simplified spec for get_state
below shows how the resource is used:

{LocSt(i, • s, ◦ r)} get_state() {m.∃r′, r ⊆ r′ ∗ m = Js ∪ r′K ∗ LocSt(i, • s, ◦ r′)}

The spec says that prior to calling get_state we must know that replica i has processed
exactly the local messages in s, and at least the remotemessages in r. The function then returns
a statem that is the denotation of the set s ∪ r′, where r′ is a superset of r. This is because in
between calls to get_state the CRDT might have processed additional remote operations.

8

The notation is reminiscent of the so-called authoritative resource algebra [Jun+18].

Reliable Causal Broadcast 38

3.2.3 CRDT Instances

The last element of Figure 3.2 we highlight is the recipe that CRDT implementers follow to

use OpLib:

• First, the CRDT implementer must provide a denotation for their CRDT.

• In order to bridge the abstraction gap between the denotation, stated in terms of the sets

of operations, and the effect function, which must process one operation at a time, the

user provides a second specification in the form of a labelled-transition system (LTS). In

this LTS, states are the CRDT’s states and the transitions are labelled with operations.

That is, a transition s
op→ s′ means that if the CRDT is in state s and an operation op is

received, then it will end up in state s′. Importantly, the denotation and LTS must agree

in the following sense: if h is a set of operations such that JhK = s, and s
op→ s′, then we

must have Jh ∪ {op}K = s′.

• Finally, the user shows that their effect function is coherent with the LTS via a Hoare

triple.

The first two steps are conducted outside separation logic in the meta-logic (Coq), while the

last step requires proving a Hoare triple in Aneris.

We have followed the recipe above to implement 12 CRDTs, including multiple kinds of

registers and sets, as well as two CRDT combinators for products and maps. Our combinators

use Coq typeclasses as in Liu et al. [Liu+20] to automatically generate and prove correctness

of compound CRDTs from constituent CRDTs.

Our examples come from the CRDT literature [Sha+11a; BAS14; LAB19]. Importantly, they

include CRDTs where all operations naturally commute (e.g. PN-Counter) as well as others

that require causality information to make operations commutative (e.g. Last-Writer-Wins

Register and Add-Wins Set). This shows that our approach scales to different CRDT designs.

3.3 Reliable Causal Broadcast

The network primitives (send and receive) provided by AnerisLang are for point-to-point com-

munication: that is, a process communicating with a single other process. They are also, as

previously mentioned, unreliable in a number of ways: messages can get lost, duplicated, and

re-ordered in transit.

A useful abstraction in distributed systems is that of broadcast. In broadcast, or one-to-

many communication, a process transmits the same message to one or more other processes.

There exist different broadcast algorithms providing different guarantees: one such kind is reli-

able causal broadcast (RCB). In RCB, clients are provided with two operations, broadcast(msg)
and deliver() that satisfy the following properties (taken from Cachin et al. [CGR11] and clas-

sified as either liveness or safety properties):

• (RCB1, liveness) Validity: if a correct process p broadcasts a messagem, then p eventu-
ally deliversm.

• (RCB2, safety) No duplication: no message is delivered more than once.

• (RCB3, safety) No creation: if a process delivers a messagemwith sender s, thenmwas

previously broadcast by process s.

Reliable Causal Broadcast 39

Table 3.1: Challenges and techniques employed in RCB’s implementation.

Challenge Technique

Messages can be dropped, re-

ordered and duplicated by the net-

work.

Stop-and-wait protocol [TS07] using sequence ids,

acknowledgments, and retransmissions to handle

unreliable network.

The broadcasting process can be

partitioned from the network be-

fore all processes receive a broad-

cast.

Eager reliable broadcast (retransmissions)

[CGR11].

Messages need to be delivered in

causal order.

Delay delivery ofmessages until causal dependen-

cies are satisfied, using a delay queue and vector

clocks [BSS91].

• (RCB4, liveness) Agreement: if a message m is delivered by some correct process, then

m is eventually delivered by every correct process.

• (RCB5, safety) Causal delivery: for any message m1 that potentially caused a message

m2, i.e.,m1 → m2, no process deliversm2 unless it has already deliveredm1.

In this section, we sketch our implementation of a library for RCB,RcbLib, based on Birman

et al. [BSS91] and Baquero et al. [BAS14]. We proved specifications of our implementation

that satisfy the three safety properties above. In fact, our RCB library implements a slightly

stronger specification than regular RCB, because it exposes to its clients causality information

associated to messages in the form of vector clocks. The additional information provided

by this tagged form of RCB [BAS14] simplifies the task of building CRDTs using OpLib (see

Section 3.5).

3.3.1 Implementation

Since AnerisLang’s network primitives provide few guarantees, RcbLib deploys a few different

techniques in order to achieve the safety properties just mentioned. Some of the challenges

and their solutions are outlined in Table 3.1. Additionally, Figure 3.3 provides a high-level view

of the design of the RCB algorithm. The main components are outlined below.

Receive and send threads RcbLib consists of two concurrent threads that operate on a set of

shared data structures (concurrent accesses are synchronized via a lock). The receive thread

listens for messages on a network socket and places them in a delay queue and a collection of

out-queues. It also acknowledges received messages so other replicas can move on to broad-

casting new messages.

The send thread sends the messages in the out-queues to other replicas following a stop-

and-wait protocol [TS07]. That is, a message is repeatedly sent to another replica until it is

acknowledged by the foreign replica; at which point the send thread pops the relevant out-

queue and moves on to a not-yet-acknowledged message.

Library API The library has two client APIs: deliver and broadcast. The former removes

a message m from the delay queue such that all of the message’s causal dependencies have

previously been delivered (i.e. a message that comes next according to causal order). If no such

Reliable Causal Broadcast 40

Figure 3.3: Structure of the reliable causal broadcast library.

message exists, deliver returns None; otherwise it returns Some m. The broadcast function

broadcasts a message to all replicas (except to the current one). It does so by placing the

message in all out-queues, so it can be later picked up by the send thread. broadcast(p) returns
a new messagem′

containing the payload p together with the vector clock assigned tom′
and

the issuing replica’s id. Because a replica doesn’t broadcast to itself it must use the return value

of broadcast if it wants to process the newly-broadcast messagem′
.

Vector clocks We use vector clocks to keep track of logical time [Fid87; Mat+88]. A vector

clock is an array of non-negative integers; there is one array entry per replica in the system,

and each entry records the number of events that originate at the corresponding replica. It is

possible to merge two vector clocks by taking the maximum of their entries pointwise. We

can define a partial order ≤vc on vector clocks by lifting ≤ (from N) pointwise. The following
result then holds: let a and b be events. then a→ b iff vc(a) < vc(b).

Replicas maintain internal state with their current vector clock. Every sent messagem is

also tagged with a vector clock vc(m). When broadcast is called, the replica increments its

entry within the internal vector clock and tags the event with it. When the receive thread

receives a new message, its vector clock is not immediately merged with the replica’s vector

clock; instead, the merge is delayed while the message waits in the delay queue.

Delay queue In order to ensure causal delivery of messages, RCB stores messages received

from other processes in a delay queue. That is, we do not deliver received messages immedi-

ately to the user. Given the internal vector clock vi and a messagem from the delay queue, we

can determine whether (a) all causal dependencies of the message have been previously deliv-

ered and (b) the message has not been previously delivered. We do this using the following

delivery condition [BSS91]:

canDeliver(m, vi) ≜ ∀k ∈ {1 . . . n}

{
vc(m)[k] = vi[k] + 1 if k = origin(m)

vc(m)[k] ≤ vi[k] otherwise

Once the delivery condition form is met, it is safe (causally consistent) to deliverm to the

user in the next invocation of deliver. At that point, the internal vector clock vi can be updated
by merging it with vc(m).

Reliable Causal Broadcast 41

Out queues Consider the following scenario. There are three processesA,B andC . A broad-

casts a messagem to B and C . After A has sentm to B, but before it has a chance to send it

to C , the network becomes partitioned into two partitions {A} and {B,C}. Now B receives

m, but C will not receive m until the partition is healed. This violates the agreement (RCB4)

property of Section 3.3 because the partition might never heal, so C might never get m. Ad-

ditionally, suppose that B creates a new messagem′
, which is now causally dependent onm:

m→ m′
. Even thoughB andC are in the same partition, C cannot deliverm′

until it delivers

m first (a causal dependency). The whole system is stuck because one process is partitioned.

For this reason, RCB implements a form of eager reliable broadcast [CGR11]. That is, every

process re-broadcasts every single message received to every other process (taking care to not

enter into loops). Eager rebroadcasting is inefficient, since for every message sent there are

O(n2) re-broadcasts in a system with n replicas (as opposed to O(n), which is the best case

for broadcast). We have chosen this mechanism for the first iteration of the RCB library due

to its simplicity.

Given the need to re-broadcast messages, and because the network is unreliable, each

process maintains a set of out queues, one per other process in the system (so n queues per

node). Each queue contains the outbound messages that need to be sent to a specific process,

but have not yet been acknowledged by that process. Messages are copied from the delay

queue to the out queues, and are removed from the out queues when acknowledged by the

intended recipient.

Seen vector Amessage could be receivedmultiple times by the same process: because the net-

work generated a duplicate or the message was re-broadcast multiple times by other processes.

In either case, we need a mechanism to avoid re-delivery of the same message; in other words,

we need to avoid putting the samemessage twice in the delay queue. To this effect, we use vec-

tor clocks as sequence identifiers. Given amessagem, the pair (origin(m), vc(m)[origin(m)])
uniquely identifies a message in the system. We can then construct a seen vector where the ith

entry gives us the highest sequence id of a message originating from process i that has been
previously received. We only place a message originating at process i in the delay queue if its

sequence id is higher (by one) than the current value of seen[i].

3.3.2 Specification

As mentioned in Section 3.2, the specifications for deliver and broadcast (shown in Figure 3.4)

use separation logic resources that keep track of the local and global states of the broadcast.

The local resource OwnLocal(i, s) tells us that in process i RcbLib has previously delivered

exactly the messages in s. Similarly, the global resourceOwnGlobal(h) implies that h is exactly
the set ofmessages that have been broadcast by any replica. We alsomaintain a global invariant

RcbInv that ensures that global and local states are compatible. The invariant states that at all

times if we combine all local states we obtain the global state, and furthermore that the local

states satisfy causal delivery.

Deliver Figure 3.4 shows the specification of RCB’s deliver function. The intuition is that

before calling deliver we should know which messages have been previously delivered at this

process (via ownership of a resource OwnLocal(i, s)). After deliver returns, there are two

possibilities:

Reliable Causal Broadcast 42

DeliverSpec

⟨OwnLocal(i, s)⟩

⟨ipi; deliver()⟩

⟨v. ∃s
′ ⊇ s.OwnLocal(i, s′) ∗(
(v = None ∧ s′ = s) ∨

(∃w, a. v = Some w ∗ IsLocEv(a,w) ∗

s′ = s ∪ {a} ∗ a /∈ s ∗

a ∈ Maximals(s′) ∗ origin(a) ̸= i ∗

OwnGlobalSnapshot({⌊a⌋}))
) ⟩N

BroadcastSpec

⟨OwnLocal(i, s) ∗ OwnGlobal(h)⟩

⟨ipi; broadcast(v)⟩

⟨w. ∃a. IsLocEv(a,w) ∗ a /∈ s ∗ ⌊a⌋ /∈ h ∗

payload(a) = v ∗ origin(a) = i ∗

a ∈ Maximals(h ∪ {⌊a⌋}) ∗

a ∈ Maximum(s ∪ {a}) ∗

OwnLocal(i, s ∪ {a}) ∗

OwnGlobal(h ∪ {⌊a⌋})

⟩N

Figure 3.4: Logically-atomic specifications for deliver and broadcast . N is any namespace

containing the global invariant’s name.

• No messages were available for delivery, so the function returns None, and we get back
our unchanged OwnLocal(i, s).

• There was a message a available for delivery. In this case, the function returns Some w,
wherew is the physical counterpart to a, reflected by the predicate IsLocEv(a,w). Addi-
tionally, we receive back a resourceOwnLocal(i, s∪{a}). That is, we logically record the
delivery of the new message. Crucially, we know that a ̸∈ s, meaning that the returned

message has not been previously delivered. Additionally, we get to know that a ismaxi-

mal with respect to vector clock order in the set s∪{a}. This means that no previously-

received message could causally depend on a (but a can depend on previous messages).

Finally, we obtain the resource OwnGlobalSnapshot({⌊a⌋}), 9
which serves as proof

that the returned message ⌊a⌋ did not “come out of thin air”: it was properly recorded

in the global state. In general, owning a global snapshot OwnGlobalSnapshot(r) gives
us a lower bound r on the set of all messages sent: if we own both OwnGlobal(h) and
OwnGlobalSnapshot(r) we can conclude r ⊆ h. The OwnGlobalSnapshot(r) resource

9

The notation ⌊a⌋ stands for the erasure of a. This is a technical detail we inherited from the development in

Gondelman et al. [Gon+21], because we represent local and global events differently. The erasure of a local event

a gives us the corresponding global event ⌊a⌋.

Reliable Causal Broadcast 43

is persistent (Section 3.1), meaning that we can make copies of it freely; this makes

snapshots useful as certificates that a certain message was broadcast by RCB.

Broadcast Figure 3.4 also shows the specification of broadcast. Intuitively, the effect of broad-
cast is to generate a new message, which in our framework needs to be recorded both as part

of the global state as well as of the local state of the process calling broadcast. This is why
in the precondition of broadcast we need to provide both OwnGlobal(h) and OwnLocal(i, s).
The function then returns a local event w and its logical representation a, as evidenced by the
predicate IsLocEv(w, a). A few points worth pointing out:

• Unlike in traditional implementations of RCB,where broadcast returns unit, our broadcast
returns the generated message (or local event) corresponding to the broadcast value. For

example, if replica i broadcasts the value 2, then broadcast(2) returns a tuple (2, vc, i)
for some vector clock vc that is globally maximal. In general, the return value is of the

form (payload, vc, origin). This is why we call our implementation tagged RCB, as per

Baquero et al. [BAS14].

• As expected, the newly generated message has not been previously recorded. This is

given by a ̸∈ s and ⌊a⌋ ̸∈ h.

• We obtain back resources OwnGlobal(h ∪ {⌊a⌋}) and OwnLocal(i, s ∪ {a}), showing
that the event has been properly recorded both locally and globally.

Logical Atomicity The observant reader might have noticed two peculiar points about the

specs above.

First, the broadcast spec requires the user to provide the global state resourceOwnGlobal(h).
Separation logic is all about modular specification, so a global resource that tracks all broad-

cast events would seem to be antithetical to separation logic. However, we find that the global

resource is useful when reasoning about closed programs, because it allows us to state invari-

ants of the form “all messages ever sent satisfy a safety property P ” (e.g. in a system with two

replicas, all messages are sent by one of the replicas).

A more practical concern is how to get two processes to concurrently broadcast messages,

since it would seem that the broadcast spec requires exclusive ownership of OwnGlobal(h); it
in fact does not. The reason is that our specs do not use regular Hoare triples, but instead rely

on logically-atomic triples [Jun+15]. Instead of the regular {P } e {Q} wewrite ⟨P ⟩ e ⟨Q⟩N . The

intuition is the following: if we can prove the atomic triple above, then e is evaluated until a

certain step (its linearization point [HW90]) at which pointP holds, possibly after opening any

invariant that is not in theN namespace. After the atomic step, Q then holds, and all opened

invariants need to be closed. So Q does not necessarily hold when the function terminates,

but it always holds after the linearization point. The advantage of atomic triples is that we are

allowed to open invariants when proving the precondition P . This is useful in the broadcast
spec, because the global resource OwnGlobal(h) is likely to be kept in an Iris invariant by

most clients of RCB (otherwise clients will not be able to concurrently broadcast messages).

Our definition of atomic triples is adapted from that in Perennial [Cha+19].

Resource lemmas As mentioned in Section 3.2.1, in addition to the specs above and the re-

sources that track messages, we proved a number of lemmas (e.g. causality) that serve as

Reliable Causal Broadcast 44

reasoning principles for using the resources. Because our treatment of causality is an adapta-

tion of Gondelman et al. [Gon+21], the reader can consult that paper for the full list of resource

lemmas.

Safety Properties Wenow showhowRcbLib satisfies the three the safety properties presented
in Section 3.3.

(RCB2) No duplication This property follows from the deliver spec (Figure 3.4); specifically,

the postcondition guarantees that the delivered message a (if one exists), was not previously

delivered to the same process (OwnLocal(i, s ∪ {a}) ∗ a ̸∈ s).

(RCB3) No creation We prove this as a property of local state resources:

GlobalInv
NGI ∗ OwnLocal(i, si) ∗ OwnLocal(j, sj) ∗ e ∈ si ∗ origin(e) = j ⊢

|⇛E ∃e
′.e′ ∈ sj ∧ ⌊e′⌋ = ⌊e⌋

Here, you can imagine i as the process that has just received message e. If i can assert

that m originated in process j, and we also have knowledge of the local state of j in the

form of OwnLocal(j, sj), then the lemma guarantees that e is in fact also present in sj (or,

more precisely, that one can find messages in both local histories with equal erasures). The

lemma above holds in the presence of a global invariant GlobalInv
NGI

that RcbLib maintains

to coordinate the local state resources of different replicas.

(RCB5) Causal delivery This is the main resource lemma, which was already informally de-

scribed in Section 3.2.1. The full form also holds under the global invariant, and uses global

snapshots instead of the full global state:

GlobalInv
NGI ∗ OwnLocal(i, s) ∗ OwnGlobalSnapshot(h) ⊢ |⇛E ∀a ∈ s, w ∈ h. vc(w) < vc(a) ⇒

∃a′ ∈ s. ⌊a′⌋ = w

3.3.3 Correctness Proof and Its Relationship to Gondelman et al. [Gon+21]

As we mentioned in Section 3.2.1, our proof that RcbLib’s implementation meets the specifi-

cations in Figure 3.4, as well as our proofs of the safety lemmas that follow under the global

invariant, are based on the proof recipe outlined in Gondelman et al. [Gon+21]. Gondelman

et al. [Gon+21] implement and specify a causally-consistent distributed key-value store, also

within separation logic using Aneris. The proof recipe they outline (which we follow) can be

summarized thus:

• First, model the distributed system as a state-transition system, where each state tracks

the set of events at each replica.
10

Additionally, we track the global state of the system

as the union of local events.

• Next, we embed the model in separation logic by using Aneris’s ghost theory to cre-

ate separation logic resources that represent knowledge of the local and global states.

10

For them, an event is a write to the key-value store; for us, an event is a delivered message.

OpLib: a Library for Implementing CRDTs 45

Σ = N
σ0i = 0

preparei(inc, n) = inc

effecti(inc, n) = n+ 1

evali(rd, n) = n

Figure 3.5: Specification of op-based counter CRDT from Baquero et al. [BAS14].

For example, Gondelman et al. [Gon+21] construct a resource Seen(i, s) indicating that
replica i has received at least the writes in s. Our analogous resource is OwnLocal(i, s),
which captures the knowledge the replica i has delivered exactly the messages in s.

• Construct a global invariant (another proposition) that implies that the aforementioned

resources describe reachable states in the state-transition system. For example, if we

own OwnLocal(i, s), we can then conclude (provided the global invariant holds) that s
is not an arbitrary set of messages, but instead satisfies certain safety properties (e.g. s
is causally-closed, the origin field of messages is in the right range, etc.). This is also the

step where we prove the resource laws (e.g. causality and no-creation).

• Finally, to verify the code running in each replica, establish a lock invariant [BB17] that

tracks the set of events that have been processed by the replica so far. In doing so, one

has to carefully pick the right (combination of) resource algebras (RAs) from which to

draw the separation logic resources, so that the right properties hold and invariants can

be preserved.

We were also able to reuse part of Gondelman et al. [Gon+21] Coq’s development in our

proof of RcbLib. To be clear, we do not claim the proof recipe above as our contribution.

Instead, our contribution is producing for the first time modular specifications for a general-

purpose library for causal broadcast. By contrast, Gondelman et al. [Gon+21] deal with causal-

ity specifically within the context of a key-value store. In addition, our implementation in-

cludes multiple techniques to improve reliability (e.g. sequence ids, acknowledgements, eager

re-broadcasts) that are not present in Gondelman et al. [Gon+21]. See Section 3.6 for additional

details.

3.4 OpLib: a Library for Implementing CRDTs

Figure 3.5 shows a specification for a counter CRDT
11

taken from Baquero et al. [BAS14].

This is not a separation-logic specification; instead, the counter is specified by instantiating

several generic components: a set of states Σ (the naturals), an initial state (0), and a function

effect that given a counter state and an operation returns the resulting state (the counter has

only one kind of operation: add). 12
This style of specification is used throughout the CRDT

11

Sometimes referred to as a grow-only or G-Counter, because the counter can only be incremented.

12

The spec also shows two other functions: prepare which builds an “internal” operation from an “external”,

user-provided operation (this can often by taken to be just the identity); and eval which queries the CRDT’s state.

OpLib: a Library for Implementing CRDTs 46

literature [Sha+11a; BAS14; Bur+14] and it is a useful one because it allows us to focus on the

parts of a CRDT that are truly unique to the CRDT in question. By contrast, the spec leaves

many details unspecified: how are messages sent from one replica to others (some kind of

broadcast), what happens when the current replica tries to update its state concurrently with

a remote update being processed (we need locking), how is the replica state persisted across

operations (mutable state). These details are common across different CRDTs, so it would be

useful to factor their implementation into a separate library that can then be instantiated by

CRDT implementer. This is what we have done with our OpLib library, which reuses our RCB

implementation from Section 3.3 to provide the scaffolding for implementing op-based CRDTs.

3.4.1 Implementation

OpLib’s code is shown in Figure 3.6. To use the library, the user calls oplib_init and provides

serialization and deserialization functions (ser and deser) for the CRDT’s operations, together
with the addresses of replicas (addrs), the current replica id (rid) andmost importantly the logic

for the specific CRDT being implemented (crdt). The crdt value has the following polymorphic

type:

type repIdTy = int (* replica id *)
type ’opTy msgTy = (’opTy * vector_clock) * repIdTy
type (’opTy, ’stateTy) effectFnTy = ’opTy msgTy -> ’stateTy -> ’stateTy
type (’opTy, ’stateTy) crdtTy = ’stateTy * (’opTy, ’stateTy) effectFnTy

That is, as in Figure 3.5, a CRDT is specified by its initial state and an effect function that

knows how to transition from a state to the next. Unlike Figure 3.5, however, we now have

executable OCaml code instead of a high-level specification.

Going back to oplib_init, the function uses the RcbLib library to obtain a pair of functions

for delivering (receiving) and broadcasting messages to other replicas. It then allocates a ref-

erence to store the CRDT state (starting with the initial state provided by the user) and then

forks an apply_thread that listens for messages sent by remote replicas, so we can apply their

effects. Finally, oplib_init returns a pair of functions (get_state, update) that the user can call

to query the CRDT’s state and update it, respectively.

The apply_thread function runs an infinite loop that first tries to deliver the next message

in causal order (using RcbLib) and then, if one exists, updates the CRDT’s state using the

user-provided effect function.
Finally we have the user-facing functions get_state and update. The former returns a

copy of CRDT’s current state; the latter uses RCB to broadcast the new operation op to other

replicas. RcbLib returns the user-provided operation wrapped with causality information (so

an operation becomes a message); update then uses the newly-created message and the effect
function to update the CRDT state.

Three points of note: first, effect is a pure function: given a state and a message it returns

the resulting state. Second, concurrent accesses to the internal state (e.g. concurrent execu-

tions of apply_thread and update) are synchronized via a lock. Finally, notice that OpLib does
not directly invoke any network operations (e.g. creating a network socket, sending amessage,

etc.); instead, all of the networking functionality is encapsulated in RcbLib.

OpLib: a Library for Implementing CRDTs 47

let oplib_init ser dser addrs rid crdt =
let res = rcb_init ser dser addrs rid in
let (del, br) = res in
let crdt_res = crdt () in
let (init_st, eff) = crdt_res in
let st = ref (init_st ()) in
let lock = newlock () in
fork (apply_thread lock del st) eff;
(get_state lock st, update lock br st eff)

let get_state lock st () =
acquire lock;
let res = !st in
release lock;
res

let update lock br st effect op =
acquire lock;
let msg = br op in
st := effect msg !st;
release lock

let apply_thread lock del st eff =
loop_forever (fun () ->

acquire lock;
begin
match (del ()) with
Some msg -> st := eff msg !st

| None -> ()
end;
release lock;)

Figure 3.6: Code of OpLib library.

OpLib: a Library for Implementing CRDTs 48

{ gcounter(i, k)} ⟨ipi; query()⟩ {m. k ≤ m ∗ gcounter(i,m)} QuerySpec

{ gcounter(i, k)} ⟨ipi; incr()⟩ {(). ∃m. k < m ∗ gcounter(i,m)} IncrSpec

Figure 3.7: G-Counter specification from Timany et al. [Tim+21].

3.4.2 Specification

We start by arguing why, for CRDTs, resources like LocSt(i, • s, ◦h) that track the set of

executed operations are preferable to those that track the CRDT’s state. Another way to say

this is that CRDTs benefit from having intensional
13
specifications.

From counters to replicated counters Consider a simple counter module exposing two func-

tions: incr() increases the counter’s value by one, and read() returns the counter’s current

value. If used in a sequential setting, one can imagine being able to prove the following speci-

fications: {c 7→ n} incr(c) {c 7→ n+ 1} and {c 7→ n} query() {v.v = n}. Now we move to a con-

current or distributed setting, where the previous specs are still provable but no longer useful,

because we need to be able to increment the counter concurrently. To solve this problem, we

can track a lower bound of the counter’s value, instead of the counter’s exact value. Then

every time we increment, we can increment the lower bound by one. This is precisely how

Timany et al. [Tim+21] structure their specification of a G-Counter CRDT: they have a resource

gcounter(i,m), meaning that at replica i the counter’s value is at least m (Figure 3.7).

This works but has at least two drawbacks. First, the incr spec is unable to distinguish

between a properly-implemented counter and one that increments the state by two instead of

one every time incr is called. Second, even if we are able to fix the previous issue, perhaps by

tracking “contributions” as in Birkedal and Bizjak [BB17], we face an even thornier problem if

we consider not an increment-only counter, but one that additionally has a decrement opera-
tion. The problem there is what to write in incr’s post-condition. Since the counter’s state is
no longer monotonic, if we start with a gcounter(i,m), we can end up with a gcounter(i, k)
where k can be greater, equal, or less thanm. We have lost all knowledge about the counter’s

state.

Consider what happens if instead of trying to track the counter’s state we track the oper-

ations that the counter has processed. First, it makes sense to split said operations into those

that are generated locally and the ones that come from other replicas. This is because a replica

“knows” the operations it has performed, but it does not knowwhat operations have been per-

formed remotely until query or incr are called. Figure 3.8 show these new intensional specs.

Ownership of the resource gcounter(i, s, h) conveys knowledge that at replica i we have pro-
cessed exactly the operations in s and at least the operations in h. In this case an operation

is a pair (inc, i) containing the operation type (we only have one kind of operation: inc) and
the replica id. Logically, calling query involves trading our knowledge of gcounter(i, s, h) for
knowledge of gcounter(i, s, h′), where h ⊆ h′. That is, after calling query we might become

aware of additional remote operations, but the set s of local operations does not change. By
contrast, in calling incrwe trade gcounter(i, s, h) by gcounter(i, s∪{(inc, i)}, h′)with h ⊆ h′.
This means that after incr returns the set of local operations has grown by exactly one element

13

In the sense of Roscoe [Ros96], as opposed to the more common extensional specifications that focus on the

observable effects of operations.

OpLib: a Library for Implementing CRDTs 49

{gcounter(i, s, h)} ⟨ipi; query()⟩ {m. ∃h′ ⊇ h. m = |s ∪ h′| ∗ gcounter(i, s, h′)} QuerySpec

{gcounter(i, s, h)} ⟨ipi; incr()⟩ {(). ∃h′ ⊇ h. gcounter(i, s ∪ {(inc, i)} , h′)} IncrSpec

Figure 3.8: Intensional G-Counter specifications.

(as expected), and also new remote operations might have been processed as well. This spec-

ification style solves our problems because it allows us to track what the current thread’s

contribution is to the counter’s state. It also scales well to handling a dec operation: the incr
spec would not change; we would just need to adjust query’s spec so that the result m is not

just the number of recorded operations |s ∪ h′| but instead takes into account whether each

operation is an inc or a dec.

Scaling up to CRDTs via denotations The idea of tracking operations as opposed to state (Fig-

ure 3.8) can be applied to specifying additional CRDTs in addition to the G-Counter. We just

need two additional ingredients: first, abstract away the function that computes the CRDT’s

current state from the set of received operations (so instead of returning |s ∪ h′| in query we
want f(s ∪ h′) for some f). Second, when operations are not naturally commutative (for ex-

ample, a replicated register that stores the “last” write) CRDTs use causality information to

re-introduce commutativity. This is precisely what Burckhardt et al. [Bur+14] do with their

notion of operation contexts which “include all we need to know about a[n] [. . .] execution

to determine the return value of a given operation” Burckhardt et al. [Bur+14]; we will use

the related notion of CRDT denotations from Leijnse et al. [LAB19]. The definitions below are

implicitly parameterized by a given CRDT; specifically by its set of operations Op and states

St.

Definition (Events). The set of events is the product Event ≜ Op×VC×N, where VC is the

type of vector clocks and the third component denotes the originating replica id for the event.

We lift the partial order of vector clocks to events.

Definition (Denotations). A denotation J·K : P(Event) ⇀ St is a partial function from sets

of events to states.

As an example, the following is the denotation for a multi-value register CRDT. A multi-

value register stores only concurrent writes; writes that come later in causal order replace

earlier ones. The set Op of operations is just {write(z)|z ∈ Z}.

JsKmv-reg = {(w, vc)|∃o.(write(w), vc, o) ∈ s ∧ vc ∈ Maximals(s)}

A nice feature of denotations is that they support specifying higher-order CRDT combina-

tors. For example, given denotationsA andB, we can form their product (another denotation)

A×B, defined in Section 3.5.

We can give specifications for OpLib’s get_state and update functions that are parametric

on the denotations of the CRDT being implemented. These are shown in Figure 3.9.

GetStateSpec We use the get_state() function to query the CRDT’s state. To verify a call

to get_state(), we need to provide the local state resource LocSt(i, • s, ◦h). When the call

completes, we get back LocSt(i, • s, ◦h′) for some h′ ⊇ h. That is, we now logically know

OpLib: a Library for Implementing CRDTs 50

GetStateSpec

⟨LocSt(i, • s, ◦h)⟩

⟨ipi; get_state()⟩

⟨v. ∃h′w. h′ ⊇ h ∗ StCoh(w, v) ∗

LocSt(i, • s, ◦h′) ∗ Js ∪ h′K = w⟩
N

UpdateSpec

⟨LocSt(i, • s, ◦ r) ∗ GlobSt(h)⟩

⟨ipi; update(v)⟩

⟨(). ∃a r′. r′ ⊇ r ∗ a /∈ s ∗ a /∈ h ∗ payload(a) = v ∗

origin(a) = i ∗ a ∈ Maximals(h ∪ {a}) ∗

a ∈ Maximum(s ∪ r′ ∪ {a}) ∗

LocSt(i, • s ∪ {a} , ◦ r′) ∗ GlobSt(h ∪ {a})
⟩N

Figure 3.9: Logically-atomic specs for get_state and update whereN must contain the global

invariant’s name.

that the CRDT has received additional remote operations (namely h′ \ h), and that the local

operations have not changed (because we were holding the local resource, of which there is

only one copy per replica). The return value v of get_state is coherent with a logical represen-

tation of the state w; this is given by the predicate StCoh(w, v). We do this because the logical

version of the state w might offer a “cleaner” representation of the state that is not polluted

by the idiosyncrasies of AnerisLang’s design, of which v is a value. For example, w might be a

triple while AnerisLang only supports pairs, sow’s encoding of v uses nested pairs. Finally, we
know that the (logical version of the) return value is the denotation of the observed operations:

Js ∪ h′K = w.

UpdateSpec To update the CRDT, we call update(v), where v is some operation.
14

As a pre-

condition, wemust provide the local and global state resources, LocSt(i, • s, ◦ r) andGlobSt(h),
respectively. The update function returns unit. We get back updated resources LocSt(i, • s ∪
{a} , ◦ r′) and GlobSt(h∪{a}); the latter is because around the linearization point exactly one
event has been added to the entire system, namely the new event a containing the operation

v. This new event originates at node i, and is maximal with respect to all other events in h,
and the maximum of the (local) events in s∪ r′ ∪ {a}: this is just like in the broadcast spec in
Figure 3.4. The new local resource LocSt(i, • s ∪ {a} , ◦ r′) indicates that we are now aware

of exactly one additional local event a, as well as zero or more remote events r′ ⊇ r. Finally,
a /∈ h, indicating that every update generates a new event.

Labelled-transition systems We have seen that denotations provide a high-level specification

of a CRDT. The problem, however, is that denotations are too high-level. Specifically, the

denotation has access to the entire set of operations performed on the data type, whereas in

14

Notice when the user calls update they do not know what vector clock will be assigned to the operation; that

happens internally once RCB broadcasts the message.

OpLib: a Library for Implementing CRDTs 51

VC = representation of vector clocks

RepID = N (replica ids)

St = P(Z× VC)

Event = {write(z)|z ∈ Z} × VC× RepID

payload(write(z), _, _) = z

orig(_, _, r) = r

→ = {(st, ev, st′)|st′ = (payload(ev), orig(ev)) ∪ filter(λe.e ≥ ev)ev}
σ0 = ∅

Figure 3.10: Labelled-transition system for a multi-value register.

reality operations arrive one at a time (either from remote updates or due to local function

calls). The solution is to give a second, lower-level specification for CRDTs, one that is closer

to the running program. We do so using labelled-transition systems (LTS). Our LTS is a tuple

(St, Event, →, σ0) containing the set St of (CRDT) states, the set Event of events which serve

as labels (recall that events contain operations plus causality metadata), a (partial) transition

function→: St× Op⇀ St, and an initial state σ0.
Figure 3.10 shows a sample LTS for a multi-value register. A register state St is a set of pairs

{(z, t)} containing a value z written to the register together with a timestamp t (a vector clock)
of when the write occurred. The transition labels Event are triples (write(z), t, r) containing
a value z written, its timestamp t, and a replica id r of the process that issued the write. The

transition relation st
ev−→ st′ is set up such that from a state st and given an event ev we

can move to st′ if st′ consists of ev plus all elements of st that happened concurrently with

ev. Finally, the initial state σ0 is the empty set. Notice we assumed the new event ev does not
happen before any of the writes already in st (that is, we assumed that ∀e.e ∈ st =⇒ ev ≥ e).
This assumption is justified because OpLib is implemented using RcbLib, so we can assume

that an operation’s causal dependencies are delivered before the operation itself is, so that if

ev < e for some e ∈ st, then ev ∈ st (a contradiction).
We integrate labelled-transition systems into OpLib specs by defining coherence properties

between (a) a denotation and the corresponding LTS and (b) the LTS and the effect function
supplied by the CRDT implementer. The coherence properties are shown in Figure 3.11.

The coherence between denotation and its LTS is given by two requirements. First, the

denotation of the empty set of events should be the initial LTS state σ0. Second, if JsK = p and
p steps to p′ through a transition labelled e, we must have Js ∪ eK = p′. This last implication

is weakened to hold only for new messages e that are valid with respect to the set of existing

events s, written Valid(s, e).
The validity predicate encodes assumptions we can make about arriving messages because

of guarantees provided by causal broadcast. That is, if Valid(s, e) holds, then e /∈ s (there are
no duplicates), e ∈ Maximals(s ∪ {e}) (no already-delivered message causally depends on

e), EventsExt(s ∪ {e}) (vector clocks uniquely identify messages) and EventsTotal(s ∪ {e})
(messages originating at the same replica can be totally ordered).

Finally, coherence between the LTS and the effect function is specified via a Hoare triple.

OpLib: a Library for Implementing CRDTs 52

Validity of new messages

Valid(s, e) ≜ e /∈ s ∧ e ∈ Maximals(s ∪ {e}) ∧ EventsExt(s ∪ {e}) ∧ EventsTotal(s ∪ {e})
EventsExt(s) ≜ ∀e e′.e ∈ s ∧ e′ ∈ s ∧ vc(e) = vc(e′) =⇒ e = e′

EventsTotal(s) ≜ ∀e e′.e ∈ s ∧ e′ ∈ s ∧ origin(e) = origin(e′) ∧ e ̸= e′ =⇒ e < e′ ∨ e > e′

Coherence of denotation and LTS

J∅K = σ0

∀s p e p′.Valid(s, e)∧

JsK = p ∧ p e→ p′ =⇒ Js ∪ eK = p′

Coherence of LTS and effect function

EffectSpec

{StCoh(s, st) ∧ EvCoh(e, ev) ∧ JSK = s ∧ Valid(S, e) }
⟨ipi; effect(ev, st)⟩

{st′. ∃s′. StCoh(s′, st′) ∧ s e−→ s′ }
Figure 3.11: Coherence properties relating the denotation, labelled-transition system, and ef-
fect function.

15
The spec says that if we are to execute effect(ev, st), then we must know that ev and st

are coherent with their logical counterparts s and e, respectively. Additionally, there must be

some set of events S such that JSK = s and e must be a valid new message with respect to S
(so Valid(S, e)). If that is the case, then if effect terminates it will return a new physical state

st′ such that s
e−→ s′, where s′ is the logical view of st′. That is, the spec says that if we step

from st to st′ via ev using effect in the physical world, then we can step from s to s′ via e using
the LTS in the logical world.

Library interface As shown in Figure 3.6, a user of OpLib starts by calling oplib_init with a

number of arguments. One of them, named crdt in Figure 3.6, is a pair (init_st, effect) consist-
ing of the data type’s initial state and its effect function, respectively. The initial state must

be coherent with the LTS’s initial state σ0, so StCoh(σ0, init_st), and the effect function must

satisfy EffectSpec from Figure 3.11. When oplib_init returns, it gives back a pair of functions
(get_state, update) that satisfy GetStateSpec and UpdateSpec from Figure 3.9.

3.4.3 Correctness Proof

The core of OpLib’s correctness proof is a lock invariant [BB17] asserting that the CRDT’s

internal state equals the denotation of the set of operations processed so far. The logical re-

sources needed to enforce this invariant are divided across three areas of responsibility: first, a

global invariant tracks the set of messages sent by all replicas, as well as the per-replica deliv-

ered messages. This global invariant also asserts that messages are sent via the RCB protocol,

allowing us to inherit all resource-related lemmas from Section 3.3 (e.g. causal delivery). Next,

the aforementioned lock invariant also tracks the messages delivered by a specific replica; the

messages are divided in two groups: local and remote. Finally, we have the user-resources such

as LocSt(i, • s, ◦h) that are useful for verifying client programs. We use a number of resource

15

Notice that, unlike the spec for update and get_state, the effect spec is given by a regular Hoare triple, as

opposed to a logically-atomic triple. This is because effect only manipulates pure propositions and does not require

any exclusive resources that need to be stored in invariants.

Implementing CRDTs 53

Table 3.2: Library metrics (lines of code).

Library OCaml Coq Spec Coq Proof

RcbLib 196 2151 2703

OpLib 86 1352 2224

total 282 3503 4927

Table 3.3: CRDTs implemented on top of OpLib (lines of code).

CRDT OCaml Coq Spec Coq Proof

Positive-Negative Counter 25 88 108

Grown-only Counter 26 88 116

Two-Part Set 25 80 73

Add-Wins Set 34 103 228

Remove-Wins Set 53 99 386

Grow-Only Set 22 74 57

Last-Writer-Wins Register 54 136 365

Multi-Value Register 35 93 195

Product Combinator 30 148 187

Map Combinator 34 153 340

Table of Positive-Negative Counters 22 29 38

Table of Last-Writer-Wins Registers 22 38 39

Closed Example 17 287 99

total 399 1416 2231

c
o
m
b
i
n
e
d
t
o
m
a
k
e

c
o
m
b
i
n
e
d
t
o
m
a
k
e

u
s
e
d
b
y
c
l
i
e
n
t

Simple

CRDTs

Combinators

Compound

CRDTs

algebras, including Timany and Birkedal [TB21]’s monotone construction, to carefully coordi-

nate these different logical resources: for example, to prove that ownership of LocSt(i, • s, ◦h)
really does grant precise knowledge of the set of delivered local messages s, but only partial

knowledge of the remotely-delivered messages h.
We refer the reader to our Coq development for full details on the proof. Table 3.2 shows

the number of lines of OCaml and Coq code needed to implement and verify both RcbLib and
OpLib.

3.5 Implementing CRDTs

In order to put OpLib to test we have implemented twelve CRDTs using this library. These

CRDTs consist of eight simple CRDTs, two CRDT combinators, and two compound CRDTs

which apply the map combinator to one of the simple CRDTs. Below, we will briefly explain

these examples and discuss and summarize what is depicted in Table 3.3. The relatively low

number of lines of code required to implement (in OCaml) and verify the CRDTs enumerated

in Figure 3.3 shows the usefulness and success of our methodology of building CRDTs on top of

the RcbLib and OpLib libraries. Moreover, as we will discuss below, the most intricate CRDTs

in Table 3.3, i.e., the last two rows, are those with smallest implementation and verification

codes thanks to our compositional approach using CRDT combinators.

Implementing CRDTs 54

Counters We have implemented two counter variants: Grow-only Counter which can only

have non-negative values and can only be incremented, and Positive-Negative Counter which

can be both incremented and decremented. These two CRDTs are the simplest examples we

have implemented. Part of the size of the Coq code is caused by having to show that the

operations are commutative and associative; basic arithmetic facts which nonetheless need to

be established formally in Coq.

Sets The only operation of the Grow-Only Set CRDT allows adding an element to the set.

The Add-Wins Set and Remove-Wins Set CRDTs on the other hand support both adding ele-

ments and removing elements. They treat the removal operation differently though. The issue

with the removal operation is that it causes ambiguity in case of concurrent operations which

add and remove the same element. The Add-Wins Set and Remove-Wins Set, as their names

indicate, resolve this ambiguity in favour of addition and removal respectively. Despite their

apparent similarity these two CRDTs are conceptually different as can be seen in the differ-

ence in the number of lines of Coq code required to prove their correctness. The difference

is that for the Add-Wins Set CRDT we only remember the additions in the local state. When

we receive a removal operation we simply remove any element that was added strictly before

that removal operation. This makes sense as an addition that is received after a removal can

never be affected by it — in worst case, it is an addition concurrent with a removal which by

definition wins. On the other hand, in the Remove-Wins Set CRDT we also need to track all

remove operations in the local state of each replica as additional operations received after a

removal operation can be invalidated by that removal operation. The Two-Part Set CRDT is

conceptually simply obtained by gluing two Grow-Only Set CRDTs together. It tracks two

sets and operations can add elements to either set. In practice, this CRDT could be obtained

by combining the Grow-Only Set CRDT with the Map Combinator as a map with the domain

being a fixed set of two elements (see below). However, we chose to implement this CRDT as

a yet another simple example from scratch. All set CRDTs are parameterized by the collection

of elements that can be stored in sets. In the OCaml code this means that the code is param-

eterized by a type variable for the type of elements of the set. It is only required that these

elements can be serialized as we need to communicate them over the network.

Registers We have implemented two simple registers: a Multi-Valued Register and a Last-

Writer-Wins Register. Just like sets these CRDTs are also parameterized by the collection of

values that can be stored in these registers. The difference between these two CRDTs is the

way they handle the issue of concurrent write operations. The Multi-Valued Register simply

collects all possible values (time-wise maximal write operations) and presents them to the user

of the register along with their corresponding time-stamp. The idea is that the user will have

the authority to disambiguate the situation. The Last-Writer-Wins Register on the other hand

considers the latest write in the set of maximal concurrent writes and considers that to be the

valid value of the register. The concurrent nature of the events in our settings means that this

method of disambiguation is not always viable. After all, concurrent events can be observed in

different orders by different replicas. To obtain a complete disambiguation strategy the Last-

Writer-Wins Register considers the latest write from the replica with the highest replica id to

prevail.

Related Work 55

Combinators We have implemented two CRDT combinators: the Product Combinator and

theMapCombinator. The Product Combinator takes twoCRDTs and constructs a CRDTwhere

the state is the product of two states. The operations of Product CRDT are pairs of operations

which take effect component-wise. TheMap Combinator is a versatile combinator which takes

a CRDT and constructs the CRDT of finite maps, i.e., tables, of that CRDT. The state of the Map

CRDT is a map with keys ranging over strings and value ranging over the states of the given

CRDT. An operation is a pair of a string, the key to which the operation applies, together with

an operation of the underlying CRDT. The map is initially empty. Every time an operation is

received for a key that does not exist in the map it is first initialized with the initial state of

the given CRDT before the operation is applied to it.

Compound CRDTS As illustrative examples we have implemented two compound CRDTs.

Both of these examples use the Map Combinator. One makes a table of Last-Writer-Wins

Registers while the other makes a table of Positive-Negative Counters. The fact that these

relatively complicated CRDTs can be constructed and proven correct with very little effort is

excellent evidence for the success of our methodology. We obtain full-functional correctness

of these essentially databases, albeit with single-column tables, in under 50 lines of Coq code

including the boilerplate for including necessary Coq libraries, etc.

A concrete closed example As a minimal smoke test for our OpLib library we prove safety (i.e.

the program does not crash) of a simple example program. More precisely, using the so-called

adequacy theorem of Aneris, we obtain that when this program is executed, as per the oper-

ational semantics of AnerisLang, it does not get stuck. This example initializes two replicas

of Positive-Negative Counters with initial state 0. The first replica adds 1 to the counter and

the second replica adds 2. They both proceed to read the value of the counter after adding to

it. Intuitively, we expect the first replica to either read 1 or 3 while the second replica could

read 2 or 3; and this is what both replicas assert as their last operation. This makes sense as

each replica will definitely observe its own performed operation but might or might not have

observed the operation performed by the other replica when it reads the counter. The assert

command in AnerisLang is designed to evaluate its boolean and ignore it if it evaluates to true

(it returns unit) and crash otherwise; hence showing safety of the example does indeed estab-

lish that the result each replica obtains when reading the counter is as expected. Intuitively,

to establish this property, we simply need to enforce, using an invariant, that the global state

(tracked using the proposition GlobSt(h)) has at most two operations in it: an addition of 1

to the counter originating in the first replica and an addition of 2 originating from the second

replica. Therefore, each replica by knowing its own local state (tracked using the proposition

LocSt(i, • s, ◦ r)), and using the relation between the global and local states of CRDTs, can

conclude that the value read is the expected one.

3.6 Related Work

The literature on verification of CRDTs has grown over the years to produce many different

approaches. In order to place our work within the mosaic of existing logics and tools, we iden-

tify several design criteria that help us build a taxonomy of the sub-field. For each criterion,

we propose a concrete question that helps us classify each of the pieces of related work accord-

ing to the criterion. Table 3.4 lists our proposed criteria and how to identify whether a paper

Related Work 56

Table 3.4: Classification criteria for CRDT verification techniques.

Criterion Question

Target Does the technique target op-based or state-based CRDTs? Most veri-

fication efforts target one of the two kinds of CRDT, but not both.

Implementation Does the paper claim to automatically produce executable code?

Convergence Can the technique prove convergence [Sha+11b]? Convergence means

that if two replicas have received the same set of events, then they are

in equivalent states.

Eventual Delivery Can the technique prove eventual delivery [Sha+11b]? Eventual de-

livery means that an update delivered to a correct replica eventually

reaches all correct replicas. This is a liveness property.

Causality If required, does the paper show that messages are delivered in causal

order? The alternative is either that causal delivery is not required for

the specific CRDT implemented, or it is required but is then assumed.

Functional Correctness Can the technique prove functional correctness? That is, are there

specifications that show how the outputs of CRDT operations depend

on their inputs?

Modularity Does the paper show an example of a client that uses the CRDT’s spec-

ification to verify some property? For example, given a G-Counter

CRDT can we show that if a replica calls inc twice the counter’s value
is at least two?

Mechanization Are the proofs mechanized in a proof assistant?

meets each of them. Table 3.5 then looks at whether related work meets each criterion. Some

works do not fit neatly in their assigned classes, nor do we argue that our choice of questions

is canonical. We nevertheless think that posing concrete questions leads to a classification that

is imperfect but useful.

We structure our discussion of related work around Table 3.5. Most techniques target

either state-based CRDTs or op-based CRDTs, but not both. The exception is Burckhardt et al.

[Bur+14], which focuses mostly on specifying both kinds of CRDTs via denotations, but not

on verification.

Verification of state-based CRDTs As explained in Burckhardt et al. [Bur+14] state-based ap-

proaches guarantee causal delivery “for free”. This is because communicating an entire state

is (logically) equivalent to sending an operation together with all its causal dependencies.

The only modular state-based approach that we are aware of is Timany et al. [Tim+21].

This is also the only relatedwork that proves eventual delivery. Like us, Timany et al. [Tim+21]

use the Aneris separation logic; however, unlike us they only verify one example CRDT (a G-

Counter), and their specification style (which tracks states as opposed to sets of operations)

is less expressive than ours (see Section 3.4). To prove liveness, Timany et al. [Tim+21] de-

velop an extension to the Iris program logic framework called Trillium, which allows them to

show that the CRDT implementation refines a state-transition system. It would be interesting

to restructure our development to use Trillium, since we already show that our CRDT imple-

mentations implement a labelled-transition system. Finally, Timany et al. [Tim+21] focus on

(one) state-based CRDT, whereas we verify multiple op-based CRDTs (see Section 3.7 for a

Related Work 57

T
a
b
l
e
3
.5
:
C
o
m
p
a
r
i
s
o
n
o
f
d
i
ff
e
r
e
n
t
C
R
D
T
v
e
r
i
fi
c
a
t
i
o
n
t
e
c
h
n
i
q
u
e
s
.
“
E
v
e
n
t
.
D
e
l
.”
s
t
a
n
d
s
f
o
r
e
v
e
n
t
u
a
l
d
e
l
i
v
e
r
y
,
a
n
d
“
F
.C
.”
f
o
r
f
u
n
c
t
i
o
n
a
l
c
o
r
r
e
c
t
n
e
s
s
.

P
a
p
e
r

T
a
r
g
e
t

I
m
p
l
e
m
e
n
t
a
t
i
o
n

C
o
n
v
e
r
g
e
n
c
e

E
v
e
n
t
.
D
e
l
.

C
a
u
s
a
l
i
t
y

F
.C
.

M
o
d
u
l
a
r
i
t
y

M
e
c
h
a
n
i
z
a
t
i
o
n

B
u
r
c
k
h
a
r
d
t
e
t
a
l
.
[
B
u
r
+
1
4
]

b
o
t
h

✓
✓

Z
e
l
l
e
r
e
t
a
l
.
[
Z
B
P
1
4
]

s
t
a
t
e

✓
f
r
e
e

✓
✓

N
a
i
r
e
t
a
l
.
[
N
P
S
2
0
]

s
t
a
t
e

✓
1
6

f
r
e
e

T
i
m
a
n
y
e
t
a
l
.
[
T
i
m
+
2
1
]

s
t
a
t
e

✓
✓

✓
f
r
e
e

✓
✓

✓

G
o
m
e
s
e
t
a
l
.
[
G
o
m
+
1
7
]

o
p

✓
✓

✓
L
i
u
e
t
a
l
.
[
L
i
u
+
2
0
]

o
p

✓
✓

✓
✓

✓
L
i
a
n
g
a
n
d
F
e
n
g
[
L
F
2
1
]

o
p

✓
✓

✓
N
a
g
a
r
a
n
d
J
a
g
a
n
n
a
t
h
a
n
[
N
J
1
9
]

o
p

✓
✓

t
h
i
s
w
o
r
k

o
p

✓
✓

✓
✓

✓
✓

1
6

I
n
a
d
d
i
t
i
o
n
t
o
c
o
n
v
e
r
g
e
n
c
e
,
N
a
i
r
e
t
a
l
.
[
N
P
S
2
0
]
p
r
o
v
e
o
t
h
e
r
s
a
f
e
t
y
p
r
o
p
e
r
t
i
e
s
f
o
r
s
p
e
c
i
fi
c
C
R
D
T
s
.

Related Work 58

discussion of how our approach could be extended to the state-based setting).

Verification of op-based CRDTs Liu et al. [Liu+20] extend Liquid Haskell [Vaz+14] by annotat-

ing typeclass declarations with refinement types. Their system can later typecheck typeclass

instances against the declarations. As a case study, they define a typeclass for op-based CRDTs

and implement several instances, including a map combinator similar to ours. Instances of the

CRDT class enjoy a strong convergence property that says that certain allowed permutations

of a set of operations lead to the same final state. Additionally, they show functional correct-

ness of their multi-set implementation by a simulation argument with respect to an abstract

denotational specification (similarly to how we use denotations). They design their CRDTs

so that they do not have to assume causal delivery, although in the process they do end up

implementing parts of a causal broadcast algorithm (e.g. a delay queue).

The main difference between Liu et al. [Liu+20] and our work is how modular the ap-

proaches are. In Liu et al. [Liu+20] there does not seem to be a way to use strong convergence

to verify a client program that uses a CRDT.
17

By contrast, as shown in Section 3.5 we can

use our separation logic resources that track local and global states not only to show con-

vergence and functional correctness, but also to verify clients. Additionally, we were able to

verify causal broadcast as a general purpose library which is then re-used by our CRDT library.

In their work, only the “business-logic” part of the CRDT is verified: that is their CRDTs are

purely-functional data structures that are unaware of the existence of other replicas. By con-

trast, we verify not only the purely-functional part of a CRDT, but also all of its logic all the

way through to network operations.

Liang and Feng [LF21] introduce the first technique that produces modular specifications

for op-based CRDTs. Specifically, they strengthen SEC to arrive at a trace property called Ab-

stract Converging Consistency (ACC), which combines SEC with functional correctness. Func-

tional correctness is obtained by relating a concrete CRDT modelΠ to its abstract counterpart

Γ. In proving the relation, one is allowed to re-order certain abstract (commutative) operations

that satisfy an arbitration relation ▷◁. Once we prove ACC, an abstraction theorem gives us

contextual refinement: meaning that in every program we can substitute the concrete CRDT

by the abstract one (its spec) and still obtain the same results. The paper then introduces a

rely-guarantee style logic to prove specification for clients using the CRDT.

Our work differs from Liang and Feng [LF21]’s in several aspects. First, their CRDTs,

including the concrete variants, are closer to what we would call specifications and not ex-

ecutable implementations. This is because they represent CRDTs as collections of functions

that go from state to state via operations (this is very similar to our LTS-based models). In

contrast, our CRDT implementations are written in OCaml and so must deal with many de-

tails associated with running code: e.g. message serialization, network sockets, node-local

concurrency, and mutation. Second, when proving functional correctness of a client in their

system one proves a judgment of the form ⊢ {P} with (Γ, ▷◁) do C1|| . . . ||Cn{Q}. That is,
the existence of the CRDT is baked into the top-level term that one reasons about, and the

CRDT Γ is distinguished from the clients Ci. By contrast, in our setting the CRDT and client

code are both written in AnerisLang, and our reasoning principles come in the form of stan-

dard separation-logic resources (e.g. LocSt(i, • s, ◦h)). We expect that our approach makes it

17

This is backed by the fact that they do not verify the client applications (a text editor and event calendar) that

use their CRDTs.

Related Work 59

easier to re-use a verified CRDT as a component of a larger system; for example, we were able

to create and use CRDT combinators.

Nagar and Jagannathan [NJ19] present a framework for automated verification of op-based

CRDTs, as well as multiple examples of verified CRDTs. Importantly, their technique is para-

metric on the (axiomatized) consistency model afforded by the underlying communication

protocol, so that the same CRDT implementation can be verified under e.g. eventual consis-

tency and causal consistency.

There are multiple differences between this paper and our work. Their tool targets au-

tomated verification of high-level CRDT implementations (labelled-transition systems), while

we do interactive verification of low-level OCaml-like code (including concurrency, mutation,

higher-order functions, serialization of network messages, etc.). Additionally, the property

they verify is convergence, while we verify convergence and functional correctness. Another

difference is that their technique is parametric on a consistency model. By contrast, we fix

causal consistency as the guarantee of our broadcast protocol. However, instead of axiomatiz-

ing the consistency guarantees, we implement and verify a general purpose library for causal

broadcast. Finally, their verification engine is built specifically for (automated) verification

of op-based CRDTs. By contrast, we conduct our proofs in a vanilla distributed separation

logic (Aneris), using standard features like invariants and ghost state. This means that we are

able to compose our proofs and specs with other verification efforts that do not target CRDTs.

For example, we composed the proofs of our CRDT library with those of the causal broadcast

library.

Verified causally-consistent key-value store Gondelman et al. [Gon+21] implement and ver-

ify a causally-consistent distributed key-value store, also using Aneris. Even though the term

“CRDT” does not appear in their paper, they implement andmodel causal delivery of key-value

store operations, and more generally their key-value store is very close to being a CRDT. It

is not because it violates SEC: in certain execution traces, we can end up with replicas that

have received the same set of writes, yet the same key is mapped to different values. This is

because their tie-breaking mechanism for concurrent writes is to take the write that arrives

later, which is sensitive to network delays. Additionally, their db replicas do not re-transmit

dropped messages, and they do not re-broadcast messages. As mentioned in Section 3.3 we

adapt Gondelman et al. [Gon+21]’s modelling of causality in separation logic so that it is appli-

cable to a general-purpose RCB protocol. In fact, our table-of-registers example from Table 3.3

is also a key-value store where the above reliability issues are addressed. Our work can be

then seen as generalizing the approach in their paper to apply to a wide range of CRDTs, as

opposed to a bespoke key-value store.

Verified causal broadcast Redmond et al. [Red+22] implement and verify a library for causal

broadcast in Liquid Haskell. Specifically, they define a predicate on library states called process

local causal delivery (PLCD). Their main result is a theorem stating that PLCD is preserved by

arbitrary sequences of the three library operation: receive, deliver, and broadcast. They then

shows that if every process satisfies PLCD then the entire system satisfies a (global) definition

of causal delivery. This is done at the model level, with the entire system modelled as an STS.

The paper then uses the verified library to build an (unverified) replicated key-value store.

The store code is responsible for network operations, concurrent access to library state via the

Conclusions 60

STM monad, and (de)serialization of messages. The authors evaluate the key-value store by

load-testing it with multiple replicas and clients.

The main difference between Redmond et al. [Red+22] and our work is the scope of the

verified components. Redmond et al. [Red+22] verify that applying a sequence of library oper-

ations starting from an initial empty state preserves PLCD. These operations are pure functions

without side effects; network operations and concurrency are instead handled by an unverified

library client (their key-value store). By contrast, we verify both the state manipulation func-

tions and also their wrapper code that performs network operations, as well as concurrency

control. Another key difference is that in our work we use the verified causal broadcast library

as a building block over which to implement and verify our CRDT library, showing that our

approach is modular. Redmond et al. [Red+22] also implement clients on top of their causal

broadcast library, but their clients are unverified. Finally, Redmond et al. [Red+22] present a

performance evaluation of their causal broadcast library, whereas we have not evaluated ours.

3.7 Conclusions

We have verified implementations of multiple op-based CRDTs in separation logic. We struc-

tured our development as a collection of libraries. First, we verified an RcbLib library for

reliable causal broadcast. On top of RcbLib we then verified an OpLib library for building op-

based CRDTs. CRDT implementers can use OpLib to specify their CRDTs as purely-functional

data structures, without having to worry about low-level implementation details such as net-

work operations and concurrency control. Finally, using OpLib we verified multiple CRDT

instances: some are naturally commutative, while others use causality information and meta-

data to make operations commutative. That we were able to handle different kinds of CRDTs,

including higher-order combinators, shows the applicability of our technique to a variety of

scenarios. Our approach both can verify realistic implementations (as opposed to high-level

protocols) and is modular (we can verify components in isolation and put their proofs back

together to obtain verified stacks of components).

Future work: state-based CRDTs Anatural question iswhether our techniques could be adapted

to verify state-based CRDTs. More precisely, whether local and global resources can track

operations in that setting even though the entire CRDT state is sent between replicas, as op-

posed to sending one operation at a time. We think the answer is yes; the insight is that

when two CRDT states, which are lattice elements, are merged by taking their least upper

bound, the operations that generated those states can also be merged.
18

That is, logically

we can also take the least upper bound in the powerset lattice of operations, so that if we

are in a state LocSt(i, • s, ◦h) and a foreign replica sends their state that resulted from op-

erations coming from a set q, then we can update our state to LocSt(i, • s, ◦h ∪ q′), where
q′ = {e ∈ q|origin(e) ̸= i}. The goal of this line of work would be to produce a common

specification style for both kinds of CRDTs, so that clients can use a CRDT without worrying

about which implementation strategy was used.

Retrospective on our proofs The RcbLib project was sparked by the observation that we can

disentangle the logical account of causality in Gondelman et al.’s work from the application

18

This idea appeared in Burckhardt et al. [Bur+14]; the challenge would be to adapt it to separation logic so we

can verify implementations modularly.

Conclusions 61

domain of their paper (a distributed key-value store). The main challenge was then to use a

similar flavour of separation logic resources to verify a general-purpose reliable causal broad-

cast library. In particular, to provide reliability RcbLib deploys a number of techniques (se-

quence ids, acknowledgements, retransmissions) not present in Gondelman et al.’s work that

complicate the proofs.

The challenge in verifying OpLib was in adapting the notion of CRDT denotation to a

separation logic setting. In particular, it was challenging to construct the LocSt(i, • s, ◦ r)
resource that tracks local events precisely and remote events loosely. From LocSt(i, • s, ◦ r)
we can connect the return value of get_state to the denotation of the set of delivered local

events.

What worked well: our Coq formalization makes extensive use of typeclasses to provide

clean interfaces between each of the components (e.g. there are typeclasses for denotations, the

LTS model, and the local and global resources). Additionally, in order to make the verification

of our examples manageable we had to structure OpLib so that it would abstract away as much

as possible from a CRDT implementation. This worked well; for instance, one of the authors

verified most of the example CRDTs without having prior involvement in the verification of

OpLib (they relied solely on OpLib’s specification). Once the OpLib interface was ironed out,

we were able to verify OpLib and its clients in parallel.

What did not work as well: it was more challenging than we expected to connect OpLib’s

logical resources to their RcbLib counterparts. This is necessary so OpLib can inherit all the

resource laws that RcbLib provides (e.g. so we can rely on causality when reasoning about

CRDTs). Establishing the connection was trickier than we thought because RcbLib’s events
have untyped payloads (we make no assumptions about the contents of broadcast messages),

while OpLib uses typed payloads (for a specific CRDT we know the shape of its operations).

This kind of impedance mismatch required proving many additional auxiliary lemmas, thus

increasing OpLib’s proof effort.

4 Modular Verification of State-Based CRDTs in

Separation Logic

This chapter is a copy of the ECOOP’23 paper “Modular Verification of State-Based

CRDTs in Separation Logic” [Nie+23], of which I was the lead author. The text and figures

have been lightly edited for formatting.

Abstract

Conflict-free Replicated Data Types (CRDTs) are a class of distributed data struc-

tures that are highly-available and weakly consistent. The CRDT taxonomy is further

divided into two subclasses: state-based and operation-based (op-based). Recent prior

work showed how to use separation logic to verify convergence and functional correct-

ness of op-based CRDTs while (a) verifying implementations (as opposed to high-level

protocols), (b) giving high level specifications that abstract from low-level implementa-

tion details, and (c) providing specifications that are modular (i.e. allow client code to

use the CRDT like an abstract data type). We extend this separation logic approach to

verification of CRDTs to handle state-based CRDTs, while respecting the desiderata (a)–

(c). The key idea is to track the state of a CRDT as a function of the set of operations

that produced that state. Using the observation that state-based CRDTs are automatically

causally-consistent, we obtain CRDT specifications that are agnostic to whether a CRDT

is state- or op-based. When taken together with prior work, our technique thus provides

a unified approach to specification and verification of op- and state-based CRDTs. We

have tested our approach by verifying StateLib, a library for building state-based CRDTs.

Using StateLib, we have further verified convergence and functional correctness of mul-

tiple example CRDTs from the literature. Our proofs are written in the Aneris distributed

separation logic and are mechanized in Coq.

Conflict-free Replicated Data Types (CRDTs) are a class of distributed data structures that

trade off strong consistency in favour of high availability. That is, local updates are not blocked

by inter-replica synchronization; instead, they are immediately applied locally, and then prop-

agated to other replicas. Because of the lack of synchronization, CRDTs need a mechanism for

resolving conflicting updates: a typical strategy is to make all updates commutative, so that

they can be applied in any order.

There are two main implementation strategies for CRDTs, differing in how updates are

propagated. Operation-based (op-based) CRDTs propagate local updates by reifying updates

as operations, which are then transmitted to other nodes. Once these (now remote) operations

are received by other replicas, they can be applied to their local states so they can “catch up”.

By contrast, in state-based CRDTs, an update is first applied to the local state, and then the

62

63

state is propagated to other replicas. This is achieved by letting the state be an element of

a join-semilattice, constraining updates to be monotonic, and combining local and remote

states via the lattice’s join operator. The choice of implementation style for a CRDT (op vs

state-based) incurs several trade-offs. Op-based based CRDTs are conceptually simpler, but

make assumptions about the underlying delivery mechanism (e.g. at most once delivery). By

contrast, the state-based approach can easily cope with duplicates and messages delivered out

of order, because the merge operation (modelled with joins) is idempotent, associative, and

commutative. On other hand, not only must the datatype semantics be encoded via joins, but

also sending the entire state across the network might be inefficient.

Figure 4.1 shows a grow-only counter (g-counter) CRDT implemented in both styles. A

g-counter is a datatype with two operations: it can be read and it can be incremented by a

non-negative number. The op-based implementation defines the counter’s initial state (0), an
effect function that adds the value we are incrementing by to the counter’s current state,

and a read function that is just the identity. An event is a tuple containing an operation (the

value to increment by) plus metadata, including the replica id where the operation originated.

The state-based g-counter is more complex. The counter’s state is kept as a list of integers

tracking each replica’s contribution to the counter’s value. The initial state is the list of all

zeroes with size numRep, the number of replicas. A mutator function takes the current state

and the increment value, and returns the updated list where the right entry, as determined by

the operation’s origin, was incremented. The merge function takes two states and computes

their join in the underlying lattice. For the g-counter, we take the pointwise maximum of the

two lists. Finally, to read the value of the g-counter we just sum all entries in the state list.

These purely functional implementations capture the g-counter’s core logic, but do not show

how events are propagated between replicas.

The standard consistency model for CRDTs is Strong Eventual Consistency (SEC). SEC can,

in turn, be divided into two sub-properties: convergence (two replicas that have processed the

same set of updates must be in the same state) and eventual delivery (any update sent by a

replica will eventually be delivered to all other replicas).

Additionally, the guarantees of SEC are sometimes strengthened to imply causal consis-

tency [BSS91], meaning that the causal order of updates is respected. In other words, given

updates u and w, if u happened before w at a replica [Lam78], then umust be processed before

w at all other replicas. Causal consistency captures programmer’s intuitions on how the order

of operations should be preserved; for example, it implies that reads are monotonic: a read

always returns data that is “fresher” than what previous reads have returned.

4.0.1 Denotational Specifications

Specifying CRDTs is tricky because of their replicated nature and relaxed consistency model.

Some works adopt SEC as the correctness criteria and do not provide functional correctness

specifications of CRDTs [NPS20; Gom+17; NJ19]. Eventual consistency is a key correctness

property, but this approach has at least two (related) shortcomings. First, given, e.g., a g-

counter implementation, proving SEC shows that different replicas eventually converge, but

does not tell us what they converge to. This means we cannot rule out bugs such as subtracting

instead of adding in the definition of effect in Figure 4.1. Another problem is that by focusing

on SEC we cannot abstract away from implementation details. For example, Figure 4.1 shows

two g-counter implementations that use different techniques, but we should be able to reason

64

(* op-based g-counter *)
let init = 0

let effect st e =
let (op, _, _) = e in
st + op

let read st = st

(* state-based g-counter *)
let init = List.init numRep (fun _ -> 0)

let mutator st e =
let (op, src) = e in
List.mapi (fun i c ->
if i = src then c + op else c)

let merge st1 st2 =
let max = fun p ->
Int.max (fst p) (snd p) in

List.map max (List.combine st1 st2)

let read = List.fold_left (+) 0

Figure 4.1: Op-based and state-based OCaml implementations of a grow-only counter. numRep
is the number of replicas.

about a g-counter as an abstract data type [LZ74], without worrying about whether it is op-

based or state-based.

Burckhardt et al. [Bur+14] were the first to give functional correctness specifications of

CRDTs. Their key observation is that just like a sequential data type (e.g., a queue) can be

specified as a partial function from a list of operations to a (final) state, a replicated data type

can be specified as a partial function from a set of events to a state. As in Figure 4.1, an event

contains an operation plus additional metadata, including the id of the replica that created the

operation and a timestamp. The timestamps induce a partial or total order on the set of events

and, furthermore, that order is consistent with causality.
1

We call this partial function from sets of events to the CRDT’s state after processing the

events a denotation.
2
For example, the denotation for a g-counter is JsK =

∑
e∈s e.o, where

s is a set of events and e.o extracts e’s operation (the value to increment by). In this partic-

ular case we do not use the event metadata to specify the g-counter, but we do so for other,

more complex, CRDTs where all operations do not naturally commute. Note that any CRDT

specification that uses denotations trivially satisfies the convergence part of SEC, because J·K
1

In Burckhardt et al. Burckhardt et al. [Bur+14] a visibility relation is used to order events, instead of a times-

tamp.

2

The term is due to Leijnse et al. [LAB19], who recast Burckhardt et al.’s formalism in a style more amenable

to specifying CRDT combinators.

65

is insensitive to the order in which events arrive at different replicas: if they have received

the same set of events, then their states will be the same. Also notice that denotations are by

nature closer to the informal op-based specification in Figure 4.1 than to the state-based one.

This is because op-based CRDTs are framed in terms of individual operations.

4.0.2 Verifying with Denotations

The papers by Burckhardt et al. [Bur+14] and Leijnse et al. [LAB19] are concerned with spec-

ifying CRDTs, but there is still a need for a mechanism that ties the high-level specifications,

given in terms of denotations, to executable code written using features of a modern program-

ming language: e.g., mutation, node-local concurrency, and higher-order functions. The recent

work of Nieto et al. [Nie+22] connects denotations to low-level CRDT implementations using

the Aneris distributed separation logic [Kro+20]. Specifically, they show how to build separa-

tion logic propositions that track the local state of a CRDT, where, e.g., the return value of a

read is then given by a denotation of the local state. Nieto et al. demonstrate their approach

by verifying a library for building op-based CRDTs: the library user (the CRDT implementer)

instantiates the library with a purely-functional implementation of the CRDT (similar to the

op-based example in Figure 4.1), and obtain in return a replicated data type. The library handles

network operations, concurrency control, and mutation of local state. Nieto et al. exclusively

reason about operation-based CRDTs. As future work, the authors include a high-level sketch

of how their techniques might be adapted to the state-based setting.

There is then, to the best of our knowledge, an unexplored gap in the literature for verifying

functional correctness of state-based CRDTs using modular specifications.

Related to the last point, existing approaches to verifyingCRDTs target either op-based [Gom+17;

Liu+20; LF21; NJ19; Nie+22] or state-based [Tim+21; NPS20; ZBP14] CRDTs, but never both

kinds. This is important because it means that it is not possible to give the same specification

to two implementations of the same replicated data type, where each uses a different imple-

mentation strategy (as in Figure 4.1). Having specifications that hide away implementation

details is something we take for granted for sequential data types (e.g. a set abstract data type

can be implemented both via a linked list and a hash table, but both implementations can be

given the same specification). It would be useful to have the same hold for CRDTs.

4.0.3 Contributions

We fill the gaps identified above through the following contributions:

1. We give the first modular specification of a general class of state-based CRDTs. Our

specifications are given in the Aneris distributed separation logic and our proofs are

mechanized in Coq.

2. Furthermore, when taken togetherwithNieto et al. [Nie+22], ourwork provides a unified

framework for the specification and verification of both kinds of CRDTs. This is because

our specifications of state-based CRDTs are compatible with Nieto et al.’s specifications

of op-based CRDTs. We emphasize this point by re-verifying the example client program

in Nieto et al. that uses a positive-negative counter CRDT, except we swap their op-

based counter by a state-based equivalent. Crucially, the client’s safety proof remains

Aneris Primer 66

virtually unchanged,
3
showing that it is possible to specify CRDTs while hiding their

implementation strategy.

3. We give the first formal proof that state-based CRDTs are causally-consistent.

4. We evaluate our approach by verifying a set of example CRDTs from the literature. The

evaluation shows that our techniques can handle a variety of CRDTs, including counters,

sets, and higher-order combinators.

4.1 Aneris Primer

Aneris [Kro+20] is a distributed separation logic built on top of the Iris program logic frame-

work [Jun+18]. Aneris is designed to reason about safety properties of distributed systems

written in AnerisLang, which can be thought of as a subset of OCaml deeply embedded in

Coq. This subset includes support for higher-order functions, mutable state, node-local con-

currency (including the ability to fork new threads dynamically), as well as expressions for

sending and receiving messages over UDP-style sockets. The operational semantics models

an unreliable network: once sent, messages can be dropped, re-ordered, arbitrarily-delayed,

and duplicated.

Figure 4.2 shows the fragment of Aneris most relevant to this paper. First, notice that the

logic includes the usual connectives of a higher-order logic. The separation logic connectives

include the separating conjunction P ∗Q, indicating ownership of a resource that can be split

into two parts, one satisfying P and the other satisfyingQ. The magic wand P ∗ Q denotes

resources that, when combined with a resource satisfying P then together satisfy Q. The

points-to proposition ℓ 7→ip v grants exclusive ownership of memory location ℓ on the node

with IP address ip alongside the knowledge that value v is stored in ℓ. In other words, only

the owner of this resource is allowed to read or modify ℓ’s contents. As usual, the Hoare triple
{P } ⟨ip; e⟩ {x. Q} is a partial correctness assertion for expression e running on the node with

IP address ip. Notice that in the postcondition we bind the return value of e to x, whose scope
extends over Q.

Aneris inherits from Iris a notion of invariant. An invariant P
N
(N being the name— see

below), once established at a point in a proof, asserts that the proposition P hold throughout

the execution of the program from that point on and is respected by all threads and nodes. This

is enforced by the program logic and is reflected in the invariant opening rule. The invariant

opening rule allows invariants to be accessed around atomic expressions. That is, it allows us

to assume that the invariant holds before the atomic step and enforces that after the atomic step

executes, the invariant needs to be closed again, meaning that we have to show that it holds

again after the execution of the atomic step. The notation P
N

says that P is an invariant

with namespace N . One can think of N as an identifier for the invariant that helps the logic

keep track of which invariants are open at any given point in the proof: this is important

because an invariant that is currently open cannot be re-opened.

The points-to proposition ℓ 7→ip v is but one example of the kind of resources that one

can assert ownership over. In fact, the user of the logic can define new kinds of resources

by creating partial-commutative monoids (PCMs): monoids where the product is commutative

3

Modulo some manual editing of Nieto et al.’s proof development, which could be further eliminated with

additional Coq engineering work that refactors some typeclasses

Main Ideas 67

P,Q ∈ iProp ::= True | False | P ∧Q | P ⇒ Q | P ∨Q | ∀x. P | ∃x. P | · · · higher-order logic

| P ∗Q | P ∗ Q | ℓ 7→ip v | {P } ⟨ip; e⟩ {x. Q} separation logic

| P N | a γ
invariants and resources

| �P | |⇛E1 E2 modalities

Figure 4.2: Aneris fragment adapted from Nieto et al. [Nie+22].

and partial. Given a PCM M and a ∈ M the proposition a
γ
asserts ownership of ghost state

a. Here, γ is the ghost name under which a is stored. Crucially, a
γ ∗ b

γ
is equivalent to the

monoid product a · b γ
. The logic guarantees that the product of all resources stored under

the same ghost name is well-defined: hence by choosing appropriate monoids we can tweak

the properties of ghost state.

The proposition �P , read persistently P , tells us that P holds and it does not assert own-

ership of any exclusive resources. We say that P is a persistent proposition if P ⊢ �P .
Persistent propositions are duplicable in the sense that �P ⊢ �P ∗ �P . Finally, the update
modality |⇛E1 E2P says that P holds after updating (allocating or modifying) resources; fur-

thermore, we can assume that all invariants in the set E1 hold when establishing P but must

also (re)establish all invariants in the set E2. The notation |⇛E is shorthand for |⇛E E .

4.2 Main Ideas

The main idea of this paper is that, from a user’s perspective, whether a CRDT is op-based

or state-based is an implementation detail, and one that ought not affect the data structure’s

specification. To capture this idea formally we reach for two tools: separation logic proposi-

tions for tracking the global and local states of the CRDT as a function of sets of events (user

operations), and high-level specifications for the CRDT based on denotations.

To track a CRDT’s state we construct propositions GlobSt(sg) and LocSt (i, sown, sfor) for
global and local states, respectively, as well as a global invariant GlobInv. Ownership of the

global state tells us that sg is exactly the set of all events issued by any replica. An event

is a triple (op, source, time) where op is the user-provided operation (e.g. inc(10) for a g-

counter), source is the id of the replica that issued the operation (ids are just natural numbers),

and time is a logical timestamp that allows us to order events according to the usual happens-

before relation. Ownership of the local state LocSt (i, sown, sfor) tells us that replica i has
issued exactly the events in sown, and that it has received at least the events in sfor, which all

originate outside of i (we only get an approximation of the events from outside of i because in
between two user interactions with the CRDT at replica i, new merge operations might have

taken place).

Once the above propositions have been defined, we prove a comprehensive suite of “re-

source lemmas” that allow a client to reason about the state of the CRDT. For example, we

prove that if a user knows both GlobSt(sg) and LocSt (i, sown, sfor), and they can find events

e and e′ where e ∈ sown ∪ sfor (e is in the local state), e′ ∈ sg (e
′
is in the global state) and e′

happens before e, then e′ must have been received at replica i as well: e′ ∈ sown ∪ sfor. This is

Main Ideas 68

an encoding of causality in separation logic [Gon+21; Nie+22]. We do not claim this formula-

tion as a contribution; instead, our contribution is defining the above predicates in such a way

that they can track state-based CRDTs, and then proving existing lemma statements for our

definitions. In effect, we have re-implemented an existing interface. This is crucial because it

means that from a client’s perspective it does not matter what kind of CRDT (state-based or

op-based) they are working with: they all satisfy the same laws.

Technical Challenges Resource lemmas like causality hold only in the presence of the global

invariant GlobInv. This invariant guarantees that at all times the state of the system is valid.

The system state is a tuple s⃗l of the local state at every replica. Defining a notion of validity

suitable for state-based CRDTs is one of the tricky technical parts of our proof. Two compli-

cations arise: how to represent local states, and how to represent time.

Defining local state as an element of the lattice over which the CRDT is implemented does

not work, becausewe lose track of the individual events. For example, wemight remember that

the state of the counter is [4, 5], but not that it resulted from three events: two increments

of 2 each at replica 0, and one increment of 5 at replica 1. Remembering events is needed to

show the resource lemmas. We therefore represent local states as sets of events, but now we

need a way to link these sets of events to the lattice element that is computed at runtime. We

do this with denotations, which are functions from sets of events to lattice elements. In our

proof, a local invariant ensures that, for every replica i, if s is the set of tracked events for i
and the runtime CRDT state at i is st, we must have JsK = st. The definition of denotation

for a state-based CRDT must then satisfy a number of coherence properties with respect to

the underlying lattice: for example, we require that, under certain conditions, if JsK = st and
Js′K = st′, then Js ∪ s′K = st ⊔ st′. In other words, our proof tracks the logical state with a

free lattice of events, while the implementation computes using the CRDT-specific lattice. The

denotation is the homomorphism between the two.

For lemmas like causality we also need to be able to compare events according to time.

Prior work on op-based CRDTs implements a causal broadcast library that tags each event

with a (physical) vector clock
4
that serves as a timestamp [Nie+22]. In our setting, since state-

based CRDTs do not assume causal broadcast, we use a purely logical notion of time. Given

an event e, its timestamp is taken to be the set of events that e causally depends on. This set is
computed at the point e is created: if e was issued at replica i where the local state is an event

set s, then e causally depends on every element of s. This works because we can show that

local states are always dependency-closed: if e′ ∈ s and ed is a dependency of e′, then ed ∈ s
as well. Our definition of logical time allows us to give the first formal proof that state-based

CRDTs are causally-consistent.

Verified Examples With the above in place we turn to the verification of different state-based

CRDTs. We implemented and verified five CRDTs from the literature [Sha+11a]: a grow-only

counter, a positive-negative counter, an add-only set, a combinator for products of CRDTs,

and a combinator for maps from strings to an underlying CRDT type. We implemented these

examples in two steps: first, we implemented a StateLib library that factors out all the com-

mon elements in different examples: network calls, merging of remote states, and concurrency

control. The library takes as input a purely-functional implementation of a state-based CRDT,

4

A vector of integers, with one entry per node in the system. The ith entry tells us how many updates have

been done by replica i.

Background: CRDTs in Separation Logic 69

in the form of a triple (init_st, mutator, merge), where init_st is the CRDT’s initial (lat-
tice based) state, mutator is a function that takes a state and an operation and produces the

next state, and merge implements the lattice’s least upper bound operation. StateLib requires

that the CRDT implementer proves the aforementioned coherence properties (e.g., that merg-

ing two states is the same as taking the denotation of the union of their corresponding event

sets) about their purely-functional implementation. Given this core logic, the library returns

a fully-fledged replicated data type and two functions, get_state and update, to query and

update the state of the data-structure. In the second step, we wrote purely-functional imple-

mentations for each of the previously-mentioned examples and proved the relevant coherence

properties so the library can be instantiated with them. The modular design of the library

allows us to prove the library safe just once, and then re-use that proof to obtain safety proofs

for each of the CRDTs.

Finally, we wanted to validate our claim that a client need not know whether the CRDT

they are interacting with is state-based or not. We did this by using the example in Ni-

eto et al. where they verify a client program together with an op-based positive-negative

counter [Nie+22]. We were able to swap their op-based counter with our state-based positive-

negative counter while leaving the proof virtually unmodified (small technical changes are re-

quired, but these could be eliminated with further Coq engineering). This shows that CRDTs

can be true abstract data types, and can be specified while abstracting away implementation

details.

The rest of the paper is structured as follows: Section 4.3 gives an overview of the CRDT

resource lemmas in Nieto et al. [Nie+22], which we re-prove in the state-based context. Sec-

tions 4.4, 4.5, and 4.6 present StateLib’s design, specification, and safety proof, respectively.

Section 4.7 describes the verified example CRDTs, as well as the proof of the client program

that is agnostic to the CRDT class. Section 5.7 surveys related work and Section 4.9 concludes.

4.3 Background: CRDTs in Separation Logic

We give an overview of the separation logic approach to verification of op-based CRDTs in

Nieto et al. [Nie+22]. Specifically, they introduce abstract separation logic resources (abstract

predicates) for tracking the local and global states of a CRDT. The abstract resources are later

used in the specifications of CRDT operations. Nieto et al. reason only about op-based CRDTs,

but in this paper we show how to instantiate the abstract resources so that we can verify state-

based CRDT implementations as well. As we will later see, this allows clients to reason about

a CRDT while remaining agnostic of the CRDT’s implementation strategy.

4.3.1 Time, Events, and Denotations

We start by giving a few definitions that we will use throughout the paper.

Logical time allows us to order events in a distributed system using causal order. Time is

axiomatized by a triple (Time,≤t, <t), where Time is a set of timestamps,≤t is a partial order

on timestamps, and <t is the strict version of ≤t. For example, for working with op-based

CRDTs, Nieto et al. instantiate logical time by taking timestamps to be vector clocks and ≤t

to be the associated pointwise ordering.

Logical events represent operations that are executed by the CRDT, together withmetadata.

A logical event is a triple (op, source, time) ∈ Event ≜ Op× N× Time. Here Op is the type

of operations on the CRDT (e.g. Op ≜ {inc(n) | n ∈ N} for a g-counter), source is the id of the

Background: CRDTs in Separation Logic 70

replica that generated the event, and time is a timestamp. For an event ewe write e.o, e.s, and
e.t for the operation, source, and timestamp of e, respectively.

Given two event sets s and s′, we say that s is a causally-closed subset of s′, written s ⊆cc s
′
,

if s ⊆ s′ and
∀e e′, e ∈ s′ ⇒ e′ ∈ s′ ⇒ e.t ≤t e

′.t⇒ e′ ∈ s⇒ e ∈ s

That is, if we start with two events from s′ and the later one e′ (according to timestamp order-

ing) is in s, then e (its causal dependency) must be in s as well.
Finally, we use denotations to specify CRDTs. A denotation is a tuple (Op,St, sinit : St, J·K :

P(Event)⇀ St). For example, as in Figure 4.1, for a g-counter we could haveOp as previously
defined, St ≜ N, sinit ≜ 0, and JsK =

∑
e∈s unwrap(e.o) with unwrap(inc(n)) = n. We could

have also chosen St to be the set of lists of naturals of length N , where N is the number of

replicas. This latter denotation would be closer to the state-based implementation.

It is useful for denotations to be partial because we can avoid giving a meaning to ill-

formed sets of events. For example, suppose we have s = {a, b} with a.t = b.t but a ̸= b. We

might know that in practice events with equal timestamps must be equal, so s can never arise

during an execution. We might then choose JsK to be undefined.

4.3.2 Separation Logic Resources

So far we have not shown any Aneris definitions. We do so in Figure 4.3, which shows the

types of different abstract separation logic resources (predicates) that, together with associated

lemmas, can be used to reason about the state of CRDTs. Specifically, these resources appear

in the pre and post-conditions of functions that operate on a CRDT. The abstract resources

are designed to be generic so they can be used with multiple CRDTs. Indeed, Nieto et al.

[Nie+22] verified multiple op-based example CRDTs using these resources, and we have also

verified multiple state-based examples. Notice that Figure 4.3 does not show the definition

of the resources. The reader can think of Figure 4.3 as defining an interface in the software

engineering sense. Nieto et al. implement this interface for op-based CRDTs, while we re-

implement it for state-based CRDTs. For space reasons, we do not show the entire interface;

the full interface can be found in the accompanying Coq code.

The defined resources are as follows: there is a global invariant GlobInv that holds through-
out the CRDT’s existence. Then we define resources for tracking global (GlobSt) and lo-

cal (LocSt) states. The intuition is that if GlobSt(sg) holds, then we know that sg is ex-

actly the set of events issued by any CRDT replica in the system. Similarly, ownership of

LocSt (i, sown, sfor) tells us that replica i has processed exactly the events in sown and at least
the events in sfor. The events in sown (the “own” events) must have all originated at i, while
the ones in sfor (the “foreign” events) must all originate outside of i. This is because a client of
the CRDT knows exactly which events it has issued, but is potentially not aware of all events

that have been received “in the background” since the last interaction with the CRDT.

Global and local states are exclusive (not shown in Figure 4.3), meaning that only one copy

of the resource (or one per replica in the case of local state) can exist: e.g., GlobSt(sg) ∗
GlobSt(s′g) ∗ ⊥.

By contrast, the interface also declares global and local snapshots (GlobSnap and LocSnap),
which are persistent (duplicable) and give us a lower bound on global and local states, respec-

tively. Snapshots are useful as a “certificate” that an event was generated by a given replica:

this is the case if one can prove, e.g., that GlobSnap(sg) and e ∈ sg for an event e. The use of

Background: CRDTs in Separation Logic 71

Resources (abstract predicates)

(Global invariant) GlobInv : iProp

(Global state) GlobSt : P(Event) → iProp

(Global snapshot) GlobSnap : P(Event) → iProp

(Local state) LocSt : N → P(Event) → P(Event) → iProp

(Local snapshot) LocSnap :→⇒ P(Event) → P(Event) → iProp

Global state laws

(GlobStTakeSnap) ∀E s,N ↑ ⊆ E ⇒ GlobInv ∗ GlobSt(s) ∗
|⇛EGlobSt(s) ∗ GlobSnap(s)

(GlobSnapIncl) ∀E s s′,N ↑ ⊆ E ⇒ GlobInv ∗ GlobSnap(s) ∗ GlobSt(s′) ∗
|⇛E s ⊆ s′ ∗ GlobSt(s′)

Local state laws

(LocSnapIncl) ∀E i sown sfor s
′
own s

′
for,N ↑ ⊆ E ⇒ GlobInv ∗ LocSnap(i, sown, sfor) ∗

LocSt
(
i, s′own, s

′
for
)

∗ |⇛E sown ∪ sfor ⊆cc s
′
own ∪ s′for ∗ LocSt

(
i, s′own, s

′
for
)

(LocSnapExt) ∀E i i′ sown sfor s
′
own s

′
for, LocSnap(i, sown, sfor) ∗ LocSnap(i′, s′own, s

′
for) ∗

|⇛E ∀e e′, e ∈ sown ∪ sfor ⇒ e′ ∈ s′own ∪ s′for ⇒ e.t = e′.t⇒ e = e′

(LocSnapProv) ∀E i sown sfor e,N ↑ ⊆ E ⇒ e ∈ sown ∪ sfor ∗ GlobInv ∗
LocSnap(i, sown, sfor) ∗ |⇛E ∃sg,GlobSnap(sg) ∗ e ∈ sg

(GlobSnapProv) ∀E i sown sfor sg,N ↑ ⊆ E ⇒ GlobInv ∗ LocSt (i, sown, sfor) ∗
GlobSnap(sg) ∗ |⇛E LocSt (i, sown, sfor) ∗
∀e, e ∈ sg ⇒ EV_Orig(e) = i⇒ e ∈ sown

(Causality) ∀E i sown sfor sg,N ↑ ⊆ E ⇒ GlobInv ∗ LocSt (i, sown, sfor) ∗
GlobSnap(sg) ∗ |⇛E LocSt (i, sown, sfor) ∗
∀e e′, e ∈ sg ⇒ e′ ∈ sown ∪ sfor ⇒ e <t e

′ ⇒ e ∈ sown ∪ sfor

Figure 4.3: CRDT resources and selected lemmas, from Nieto et al. [Nie+22].

Background: CRDTs in Separation Logic 72

global snapshots as certificates is validated by lemma GlobSnapIncl (Figure 4.3). The lemma

says that under the global invariant, if we own GlobSnap(sg) and GlobSt(s′g), then we must

have sg ⊆ s′g. This conclusion holds under the update modality |⇛E , which means that it holds

possibly after opening (and closing) all invariants in the mask E. The premise N ↑ ⊆ E tells

us that the global invariant’s namespaceN ↑
is part ofE. This means that GlobInvmust not be

open when the lemma is called (because the proof of the lemma opens GlobInv). LocSnapIncl
provides similar inclusion guarantees for local snapshots, but note that we actually get the

stronger causally-closed inclusion ⊆cc, as opposed to just ⊆.

GlobStTakeSnap allows us to take snapshots of global states. LocSnapExt says that if two
events in a local snapshot have equal timestamps, then the events must be equal.

Finally, we have three lemmas that tie together local and global states. LocSnapProv says
that if e is tracked locally, then there must exist some global snapshot GlobSnap(sg) such
that e ∈ sg. That is, all local events are also tracked globally. GlobSnapProv says that if an

event e ∈ sg has origin i and we know GlobSnap(sg) (e is tracked globally), then e must also

be in the local state for i. Finally, Causality is our definition of causality in separation logic.

This take on causality was originally developed for reasoning about a causally-consistent key

value store by Gondelman et al. [Gon+21], and later generalized by Nieto et al. [Nie+22] so

it can apply to events in an arbitrary CRDT. The lemma is as follows: suppose we have two

events e and e′ such that e′ was recorded locally at node i (that is, e′ ∈ sown∪sfor and we know
LocSt (i, sown, sfor)). Next suppose that e happened before e

′
, and e is a logically tracked event

(which we can show by presenting GlobSnap(sg) with e ∈ sg). Then causal delivery requires

that e be observed locally at i as well: i.e., e ∈ sown∪sfor. Gondelman et al. [Gon+21] show how

this definition of causality is strong enough to prove four session guarantees (monotonic reads,

monotonic writes, read your writes, and writes follow reads) that programmers intuitively

expect when interacting with a causally-consistent datatype.

Reasoning With Resources To tie all the above together, Figure 4.4 shows how the previously-

discussed resources can be used to specify the inc operation on a g-counter CRDT. We assume

that inc both increments the counter and returns its current local value. The precondition

for calling inc at replica i requires knowledge of both LocSt (i, sown, sfor) and GlobSt(sg).
This is because every single increment must be tracked both locally at the replica where it is

performed and globally. In the postcondition we get back LocSt (i, sown ∪ {e} , s′for), where e
is the event generated by the increment and sfor ⊆ s′for. Notice that the “own events” grow by

exactly one event, e, but the “foreign events” grow to some superset s′for of sfor. This is because
since the last time inc was called any number of new events could have been propagated

from other replicas to replica i. Notice how we connect the implementation to its functional

correctness specification by saying that the return value v is the denotation of the locally-

observed events sown ∪{e}∪ s′for. Finally, observe that by using denotations we automatically

obtain convergence (the safety part of SEC), because the return value is a function of a set of

events, so two replicas that have seen the same set of events must return the same result.

Resources for State-Based CRDTs Two difficulties arise when instantiating the resource in-

terface for state-based CRDTs.

1. How should we track local state? The replica state in an implementation of a state-based

CRDT is a lattice element. By contrast, the resource interface logically tracks replica states as

sets of events (operations). The solution is to link the two representations via a denotation: if

StateLib : a Library for Implementing State-Based CRDTs 73

IncSpec

{LocSt (i, sown, sfor) ∗ GlobSt(sg)}
⟨ipi; inc(n)⟩

{v. ∃e s′for. s′for ⊇ sfor ∗ e /∈ sg ∗ e.o = n ∗ e.s = i

Jsown ∪ {e} ∪ s′forK = v ∗ LocSt
(
i, sown ∪ {e} , s′for

)
∗ GlobSt(sg ∪ {e})}

Figure 4.4: Simplified spec of an increment operation, which returns the counter’s current

value.

the logical state is LocSt (i, sown, sfor), then the physical state must be Jsown ∪ sforK, which in

turn must be drawn from the appropriate lattice. The link is also needed when propagating a

replica’s state to other replicas. In the implementation, a replica sends a message containing

its entire state e, so others can merge it. Logically, we require that the sent state be paired with

a local snapshot whose denotation is e.
2. How do we track time to prove causal consistency? For their treatment of op-based

CRDTs, Nieto et al. [Nie+22] implemented a causal broadcast algorithm that ensures that ev-

ery message sent by a CRDT replica is delivered in causal order. This is achieved via vector

clocks in the standard way. But state-based CRDTs should not rely on causal broadcast; in

fact, one of the main advantages of the state-based approach is that messages can be delivered

out-of-order and re-delivered without causing issues (because of the properties of least upper

bound). It is not immediately clear why the state-based design satisfies causal delivery. The

first key observation is that if we start with a replica state st and look at the event set s that
produced it, i.e., JsK = st, then s “has no holes” with respect to causality. That is, if we take

an event e ∈ s and e′ is another event that happened before e, then it must be the case that

e′ ∈ s as well. This is formalized via the notion of dependency-closure (Section 4.6.1). The

second observation is that when a new operation o is applied to a local state st with JsK = st,
it (logically) generates a new event e′ with e′.o = o. e′’s causal dependencies are exactly the

events in s. This is important because it means that we can track an event’s dependencies

purely logically, without the need for vector clocks. Using these ideas we are able to prove that

the (Causality) lemma holds for state-based CRDTs (Lemma 4.6.6). To our knowledge, this is

the first formal proof that state-based CRDTs are causally-consistent.

4.4 StateLib : a Library for Implementing State-Based CRDTs

We have structured our CRDT implementations so that common functionality is factored out

into a separate library, which can then be instantiated as needed by different CRDT examples.

The library, called StateLib, is responsible for maintaining the CRDT’s internal state and

inter-replica propagation. The library’s code is shown in Figure 4.5, together with an abridged

example instantiating a grow-only set (g-set) CRDT, a set to which we can add elements, but

from which we cannot remove them [Sha+11a].

We start by describing the init function, which is the library’s entry point. A CRDT

implementer calls init with the following arguments: serialization and de-serialization func-

tions, a list of all replica addresses, the current replica id, and a crdt parameter that describes

how the specific CRDT being instantiated should behave. The serialization functions have the

expected types: type ’s serT = ’s -> string and type ’s deserT = string -> ’s. The

StateLib : a Library for Implementing State-Based CRDTs 74

let get_state lock st () =
acquire lock;
let res = !st in (* LP *)
release lock;
res

let rec loop_forever thunk =
thunk ();
loop_forever thunk

let apply deser lk sh st merge : =
loop_forever (fun () ->
let msg =
unSOME (receiveFrom sh) in

let st’ = deser (fst msg) in
acquire lk;
st := merge !st st’;
release lk)

let update lk mut i st op =
acquire lk;
st := mut i !st op; (* LP *)
release lk

let sendToAll sh dstl i msg =
let j = ref 0 in
let rec aux () =
if !j < list_length dstl then
if i = j then (j := !j +1; aux ())
else begin
let dst =
unSOME (list_nth dstl !j) in

sendTo sh msg dst;
j := !j + 1
aux ()

end
else ()

in aux ()

let broadcast ser lk sh st dstl i =
loop_forever(fun () ->
Unix.sleepf 2.0;
acquire lk;
let s = !st in
release lk;
let msg = ser s in
sendToAll sh dstl i msg)

let init ser deser addrs rid crdt =
let ((init_st, mut), merge) = crdt in
let st = ref (init_st ()) in
let lk = newlock () in
let sh = socket () in
let addr = unSOME (list_nth addrs rid) in
socketBind sh addr;
fork (apply deser lk sh st merge);
fork (broadcast ser lk sh st addrs rid);
let get = get_state lk st in
let upd = update lk mut rid st in
(get, upd)

(* G-Set instantiation *)

let mutator i st op = set_add op st
let merge st1 st2 = set_union st1 st2
let init_st = set_empty
let gset_crdt = ((init_st, mutator), merge)

(* Instantiate via *)
let (get, upd) = init ... gset_crdt

Figure 4.5: StateLib implementation and a G-Set example. Linearization points are marked

with an LP comment.

Specifying StateLib 75

crdt argument has type (’o,’s) crdT, parameterized on operations and states:

type ’s mergeT = ’s -> ’s -> ’s
type (’o,’s) mutT = int -> ’s -> ’o -> ’s
type (’o,’s) crdtT = ((’s * (’o,’s) mutT) * ’s mergeT)

That is, a value of type (’o, ’s) crdtT is a triple (init_st, mutator, merge) containing

an initial state, a mutator function, and a merge function. The mutator takes a replica id,

the current state, and a new operation, and returns the state that results after applying the

operation locally. The merge function takes two states and returns their least upper bound.

Back to the body of init, we see that it unpacks the crdt argument. It then allocates a

local reference to hold the current state of the CRDT, a lock to control updates to the state, and

a socket over which it can communicate with other replicas. The function then spawns two

concurrent threads, apply and broadcast, in charge of receiving updates from other replicas

and propagating local updates, respectively. Finally, init returns a pair of functions get_state
and update allowing the library user to query and update the CRDT state.

Both get_state and update have simple implementations. The former just dereferences

the local state, while the latter uses the user-provided mutator to compute the CRDT’s next

state. Both operations are guarded by a lock.
5

The apply function, which is spawned off as a separate thread from init, is responsible
for receiving updates from other replicas and then merging them with the local state, using

the user-provided merge function. The call to receiveFrom blocks until a message is available

at the given socket handle. The function unSOME : ’a option -> ’a unwraps a value of an

option type, crashing if the argument is None. Notice that the received message needs to be

deserialized via the user-provided deser function. Also notice that apply does not terminate,

but mutates the CRDT’s state.

The dual of apply is broadcast, which is tasked with propagating the local state to other

replicas. This function also runs on a separate thread, and loops forever, working solely via

side effects. The broadcast function retrieves a copy of the local state, serializes it, and then

calls a helper function sendToAll. This helper takes a list of IP addresses dstl, the current

replica id i and the message (state) to be sent. It then loops over the elements of dstl and

sends the message to each of them (taking care to not send a message to itself).

Finally, Figure 4.5 sketches how one might implement a g-set via the library. We represent

the state with a sequential set. The mutator is just set insertion, merge is implemented via set

union, and the initial state is the empty set. We can then package these three components into a

tuple gset_crdt, and provide the latter as an argument to init (together with the serialization
functions and replica IP addresses). From init we get back a pair functions for querying the

current value of the set and updating it.

4.5 Specifying StateLib

The StateLib library has two interfaces: an internal interface used by the CRDT implementer,

consisting of the init function, and an external interface used by the CRDT client, consisting

of get_state and update.
5

In the case of get_state, loads in AnerisLang are atomic, so the lock is not strictly needed; however, deref-

erences are not atomic in OCaml [DSM18], which we use to run our code, so we use a lock.

Specifying StateLib 76

InitStSpec: J∅K = initSt

MutatorSpec

{JsK = st ∧ e.o = op ∧ e.s = i ∧ e /∈ s

∧ CohVal(s ∪ {e}) ∧Maximum(e)s ∪ {e}}
⟨ipi; mut(st, op)⟩

{st′. Js ∪ {e}K = st′ ∧ st ≤L st
′ }

MergeSpec

{Js1K = st1 ∧ Js2K = st2 ∧ SectIncl(s1, s2)

∧ CohVal(s1) ∧ CohVal(s2) ∧ CohVal(s1 ∪ s2)}
⟨ipi; merge(st1, st2)⟩

{st′. st1 ⊔ st2 = st′ ∧ Js1 ∪ s2K = st′ }

sect(s, i) ≜ {e ∈ s | e.s = i}
SectIncl(s, s′) ≜ ∀i. sect(s, i) ⊆ sect(s′, i) ∨ sect(s′, i) ⊆ sect(s, i)

CohVal(s) ≜
a version of “local state validity” (Section 4.6.1) that does not

imply depclosed(s).

CrdtSpec((initSt,mut,merge)) ≜ InitStSpec(initSt) ∗MutatorSpec(mut) ∗MergeSpec(merge)

InitSpec

{ . . . ∗ CrdtSpec(crdt) }
⟨ipi; init(addrs, repId, crdt)⟩

{(get_state, update). LocSt (i, ∅, ∅) ∗ GetStateSpec(get_state) ∗ UpdateSpec(update) }
Figure 4.6: Internal specifications. GetStateSpec and UpdateSpec are defined in Figure 4.7.

4.5.1 Internal Interface

Recall that StateLib is initialized by the CRDT implementer through an init function, taking
in (de-) serialization functions for the CRDT state, a list of replica IP addresses, and finally a

crdt argument describing the lattice being implemented (Figure 4.5). This last parameter is

a triple crdt = (initSt,mut,merge) consisting of the CRDT’s initial state initSt ∈ LatSt, a
mutator function mut : LatSt → Event → LatSt, and a merge function merge : LatSt →
LatSt → LatSt.

The CRDT implementer first defines a poset (LatSt,≤L) and then proves that it is a lattice.
Because our tracking of replica states is defined in terms of event sets (Figure 4.3) we need a

way to connect said events to the physical CRDT state, which is a lattice element. Intuitively,

we would like to guarantee that the CRDT’s physical state is the denotation of the set of

events received so far. For this to be true, we need certain coherence properties between

event sets, their denotations, and lattice elements. These are shown in Figure 4.6 and consist

of specifications for initSt, mut and merge.
InitStSpec says that the denotation of the empty set of events must be the initial state.

MutatorSpec says that if we start in a state st = JsK and through a mutation get to a state

st′ = mut(st, op), then we can also arrive at st′ by taking the denotation Js∪{e}K, where e is
the event containing op. We also need to show that the mutator is monotonic: we must have

st ≤L st′ in the lattice order. In proving these goals we get to make additional assumptions

about s and e. Specifically, we can assume that s is a set of events that is valid with respect to

coherence (we explain validity in Section 4.6.1); additionally, we know that e is the maximum

element with respect to timestamp ordering in the set s ∪ {e}. Intuitively, this is because e is
a new event being added, so it has every event in s as a causal dependency.

MergeSpec shows coherence of merges. Here we start with two states st and st′ that we

Specifying StateLib 77

GetStateSpec

⟨LocSt (i, sown, sfor) ⟩

⟨ipi; get_state()⟩

⟨v. ∃s′forw. s′for ⊇ sfor ∗ StCoh(w, v) ∗

LocSt
(
i, sown, s

′
for
)
∗ Jsown ∪ s′forK = w⟩

N

UpdateSpec

⟨LocSt (i, sown, sfor) ∗ GlobSt(sg)⟩
⟨ipi; update(v)⟩

⟨(). ∃e s′for. s′for ⊇ sfor ∗ e /∈ sown ∗ e /∈ sg ∗ e.o = v ∗

e.s = i ∗ e ∈ Maximals(sg ∪ {e}) ∗

Maximum(e)sown ∪ s′for ∪ {e} ∗

LocSt
(
i, sown ∪ {e} , s′for

)
∗ GlobSt(sg ∪ {e})

⟩N

Figure 4.7: External specifications. N is any invariant namespace that includes GlobInv’s
name. Adapted from Nieto et al. [Nie+22].

want to merge to get a third state st′′. We know that JsK = st and Js′K = st′, and we would

like to conclude that Js ∪ s′K = st′′ and also that merge is in fact computing the least upper

bound, so st ⊔ st′ = st′′. Once again we get to assume validity of the relevant event sets, and

now additionally we know an inclusion property of sections (a section is a subset of events

that originates at a specific replica). The proposition SectIncl(s, s′) tells us that if we look

at any particular section, say section i, then either sect(s, i) is a subset of sect(s′, i), or the
other way around. Intuitively, this is because sections are always “complete”: if a replica has

received event (6, 5), it must have also received all events in the range (6, 1), . . . , (6, 4).
We package the three specifications in the assertion CrdtSpec(crdt), which asserts that

each of the components of the crdt tuple satisfies the corresponding spec above. Finally we

have specification for the init function. In the precondition of InitSpec, we assert that the

crdt argument satisfies CrdtSpec. In the postcondition, we learn that init returns a pair of

functions get_state and update that satisfy the same-named specifications (described in the

next section). We also gain ownership of the resource LocSt (i, ∅, ∅), indicating that the local
replica has yet to receive any events (because it has just been initialized).

4.5.2 External Interface

StateLib’s external interface consists of two functions: get_state, which takes no arguments

and returns the local state of the CRDT, and update, which takes an operation, updates the

local state, and returns a Unit. Figure 4.7 shows specifications for both functions; these spec-

ifications are identical to the ones for the same-named functions in Nieto et al.’s library for

op-based CRDTs [Nie+22]. This is by design: by proving that our library meets the same

specification as the equivalent library for op-based CRDTs we then make it possible for client

programs to use (and reason about) a replicated data type without knowledge of whether the

data type is op-based or state-based. That is, we hide implementation details to turn CRDTs

into true abstract data types.

Verifying StateLib 78

Looking at Figure 4.7, the reader will notice that the specifications use angle brackets in-

stead of braces: i.e. we write ⟨P ⟩e⟨Q⟩N , instead of the usual Hoare triple {P}e{Q}. The

former is a logically-atomic triple [Jun+18]. The motivation for these triples is that Aneris in-

variants can only be opened around atomic steps (otherwise concurrent threads might observe

invariant violations); this means we cannot use a specification {P}e{Q} if we need to open

an invariant to prove P , provided e is not atomic, as is the case for both get_state and update.
In particular, the precondition of update requires the global state GlobSt(sg), which a client is

likely to keep in an invariant because it is shared by all (concurrent) replicas. Logically-atomic

triples solve this problem by allowing us to open invariants when proving the pre-condition.

Their informal semantics are as follows: if we know ⟨P ⟩e⟨Q⟩N , then we know that e executes
without crashing (although it might not terminate) provided that P holds. When proving P
we are allowed to use any invariants that are not in namespace N .

6
We also need to show

that if Q holds we can close any invariants that were open when proving P . Another point
of view is that P and Q hold around a linearization point in e; the linearization points for

get_state and update are marked with an LP comment in Figure 4.5.

The specification of get_state can be read as follows. Before calling get_state we should
know the local state at replica i: LocSt (i, sown, sfor); afterwards, the function returns a phys-

ical state v which is coherent with a logical statew, 7 the local state is now LocSt (i, sown, s
′
for)

where s′for ⊇ sfor (reflecting the fact the set of local events is unchanged, but additional remote

events might have been received), and the returned value w is the denotation of sown ∪ s′for.
Notice that the fact that the returned value is a function of the set of received events auto-

matically gives us the safety part of eventual consistency (convergence): if two replicas have

received the same set of events, then they are in the same state.

The specification of update says thatwe need to knowboth the local state LocSt (i, sown, sfor)
at replica i and the global stateGlobSt(sg). This is because every event needs to be tracked both
locally and globally. The function does not return anymeaningful value, but we do get (logical)

knowledge that the set of events has expanded: locallywe nowknow LocSt (i, sown ∪ {e} , s′for)
with sfor ⊆ s′for, and globally we have GlobSt(sg ∪ {e}). The new event e (e /∈ sg) has
the value we are updating by as its payload (e.o = v) and it originates at replica i. Fi-

nally, we know that this new event is more recent than any other locally-received event

(Maximum(e)sown ∪ s′for ∪ {e}), and we also know that no other event (even globally) has

the new event as its dependency: e ∈ Maximals(sg ∪ {e}).

4.6 Verifying StateLib

To prove that StateLibmeets its external specificationwe follow a proofmethodology inspired

by previous Aneris developments [Gon+21; Nie+22]:

1. We first model the CRDT as a state-transition system (STS), where the STS states are

tuples detailing the state of the CRDT both globally and at each replica (Section 4.6.1). Transi-

tions correspond to mutations and merges. Crucially, we show that transitions preserve state

validity, a safety invariant from which we can derive properties of interest (e.g., causality).

This is done in the meta-logic (i.e., Coq) and outside of separation logic.

6

This is to prevent a user of StateLib from opening the global invariant, which is needed by StateLib. In-

variants cannot be reopened, to preserve soundness of the logic.

7

The state coherence predicate StCoh(w, v) links the physical and logical states. This is useful when the

physical state has a more involved representation due to limitations of AnerisLang: for example, v might be a pair

of pairs while w is a 3-tuple, because AnerisLang only supports pairs.

Verifying StateLib 79

2. We then embed the STS model inside Aneris via a combination of invariants and ghost

state (defined via PCMs, see Section 4.6.3). We use state validity and the properties of the

relevant PCMs to show that the resource interface from Section 4.3 holds.

3. Finally, using the separation logic resources defined in the previous step, we prove that

StateLib’s implementation meets its external specification (Section 4.6.4).

The rest of Section 4.6 is technical in nature, so the reader interested in an overview of our

work can skip to Section 4.7. We highlight Lemmas 4.6.5 and 4.6.6, which, to our knowledge,

are the first formal proofs that state-based CRDTs are causally-consistent.

4.6.1 State-Transition System Model

Wemodel the execution of a CRDT via an STS that keeps track of the per-replica state, as well

as the global state. We then show a number of safety invariants that hold for any execution

of the STS. In later sections we show how the AnerisLang implementation simulates the STS,

therefore inheriting its safety properties. We use the simulation to prove the resource laws in

Figure 4.3.

The readermight wonderwhywe develop this STSmodel when state-based CRDTs already

have a well-understood model that is lattice-based. We do this because our goal is to prove that

StateLib satisfies general functional correctness specifications that apply to both state-based

CRTDs and op-based CRDTs. To this end we write our high-level specifications in terms of

denotations, which talk about sets of events instead of lattice elements. This is why we need

the STS model below. At an operational level, the STS model is needed to define the ghost

state in Section 4.6.3 and as such is not directly exposed to the user.

We start by defining a purely logical notion of time that allows us to reason about causality

in the absence of vector clocks. Logical time for state-based CRDTs is a triple LogTimest ≜
(P(EvId),⊆,⊂), where EvId ≜ N × N. Here EvId is the set of event ids, which are pairs

(r, n) of a replica id and a sequence number, respectively. We show that LogTimest satisfies
the requirements on logical time from Section 4.3.1.

Given a set d ∈ P(EvId) of event ids we can extract the subset that originates at a given

replica id via a section: sect(d, i) ≜ {(i, n) | (i, n) ∈ d}. We can also compare event ids, but

only if they are in the same section: (s, n) ≤ (s, n′) ≜ n ≤ n′.
We define logical events as triples (op, src, time) ∈ Op×N×P(EvId). We tag each event e

with the set of event ids of its causal dependencies e.t and are then able to sort events according
to causal order. For example, if e.t = {(1, 1)} and e′.t = {(1, 1), (2, 1)}, then e.t <t e

′.t. Let
s ∈ P(Event). We lift causal dependencies to sets of events: deps(s) ≜

⋃
e∈s e.t.

The id of an event e can be computed by counting the number of dependencies that origi-

nate at e’s origin: id(e) = (e.s, |sect(e.t, e.s)|). This way of computing event ids makes sense

only if we assume that sequence numbers (a) start at 1 and (b) there are no “holes” in the ids

stored in e.t. In our proof we maintain an invariant that implies these two properties.

To ensure causal consistency, we care about event sets that are closed with respect to

causal dependencies. Let s be a set of events, then s is dep-closed, written depclosed(s), if
∀e ∈ s, id ∈ e.t,∃e′ ∈ s, id(e′) = id. For example, if e ∈ s and (1, 2) ∈ e.t, then we must

have e′ ∈ swith id(e′) = (1, 2). Dep-closure is preserved by set union, which is key because it
will allow us to link logical and physical states when we take least upper bounds of the latter.

We now define local states, which track the state of the CRDT at a given replica. Unlike in

the implementation the replica state will not be a lattice element, but a set of events: Lst =
P(Event). We lift sections to local states: if s ∈ Lst then sect(s, i) ≜ {e | e.s = i}.

Verifying StateLib 80

Recall that numRep ∈ N denotes the number of replicas. We define global states Gst ≜
P(Event)×LstnumRep. The intuition for a global state (sg, s⃗l) ∈ Gst is that the first component

sg gives us a global view of the system (we will ensure that sg equals the union of all sl, i). The
second component s⃗l is a vector of length numRep containing the local state at each replica.

Definition 4.6.1 (State-transition system model). The state-transition system model is S =

(Gst, initS ,→S). STS states are elements of Gst and initS ≜ (∅, ∅⃗) is the initial state. The

transition relation →S∈ Gst× Gst is defined by the following two inference rules:
8

sl, i = s d = deps(s) n = |sect(d, i)|+ 1 t = {(i, n)} ∪ d e = (op, i, t)
TUpdate

(sg, s⃗l) →S (sg ∪ {e}, s⃗l[i 7→ s ∪ {e}])

s ⊆ sl, j depclosed(s)
TMerge

(sg, l⃗) →S (sg, l⃗[i 7→ sl, i ∪ s])

The TUpdate rule models the execution of a new operation at a particular replica. The

premises say that the local state at replica i is s and d is the set of dependencies of all events

in s. Then we compute the sequence number for the new event: since it originates in i this
needs to be exactly one larger than the number of dependencies in d that come from i, hence
n = |sect(d, i)| + 1. Then we build a timestamp for the new event: every (old) event in s
should be a causal dependency of the new event, plus the new event’s id is also a dependency,

so t = {(i, n)} ∪ d. Finally we build the new event e = (op, i, t). Given all the above, we can

take a step in the STS from a state (sg, s⃗l) to a state that includes the new event e. Because
e is new, it should be added both to the global state and the local state for i. The notation

s⃗l[i 7→ s′] stands for the vector that is like s⃗l except that the ith entry is now s′.
The TMerge rule models merge operations where a replica updates its state by receiving

and merging a (potentially old) state that was sent by another replica. In the rule, we start

with some subset s of the local state at replica j. It is crucial that said subset be dep-closed so

that we can preserve causality. In the rule’s conclusion, we merge s with the state at replica

i. That is, we can think of this rule as saying that replica j transmitted its state to replica i,
which subsequently merged it. Finally, notice that the fact that s is a subset of sl, j and not

exactly sl, j allows us to model the delay imposed by the network on message transmission

— the fact that s is a dep-closed subset of sl, j means that s is a version of the state of the jth

replica from the past.

4.6.2 Safety Invariants

The goal of the STS model is to allow us to show a number of safety invariants about the

execution of the system. We do this through the notions of local and global state validity. Let

s ∈ Lst. Then s is a valid local state, written LocStValid(s), if all the following hold:

8

As usual→∗
S denotes the reflexive transitive closure of→S .

Verifying StateLib 81

(DepClosed) depclosed(s)

(SameOrigComp) ∀i, ∀e e′ ∈ sect(s, i), e.t <t e
′.t ∨ e.t = e′.t ∨ e′.t <t e.t

(ExtId) ∀e e′ ∈ s, id(e) = id(e′) ⇒ e = e′

(ExtTime) ∀e e′ ∈ s, e.t = e′.t⇒ e = e′

(OrigRange) ∀e ∈ s, e.s < numRep

(SeqIdComplete) ∀e ∈ s, n ∈ N, 0 < (e.s, n) ≤ id(e) ⇒ (e.s, n) ∈ e.t

(SeqIdNon0) ∀e ∈ s, r n ∈ N, id(e) = (r, n) ⇒ 0 < n

(EvIdMon) ∀e e′ ∈ s, e.s = e′.s⇒ e.t ≤t e
′.t⇒ id(e) ≤ id(e′)

(EvIdIncl) ∀e ∈ s, id(e) ∈ e.t

(EvIdTime) ∀e e′ ∈ s, id(e) ∈ e′.t⇒ e.t ≤t e
′.t

The different requirements on valid local states are as follows. (DepClosed) requires that a
valid state s be also dep-closed. (SameOrigComp) says that events with the same origin can

be totally ordered by timestamp ordering. (ExtId) and (ExtTime) say that events with equal

id, resp. timestamp, must be equal. (OrigRange) ensures that replica ids are in the expected

range. (SeqIdComplete) says that if e ∈ s and e’s id is e.g. (4, 10), then all timestamps in

the range (4, 1) . . . (4, 9) must also be in e’s dependencies. (SeqIdNon0) says that all event
ids have a sequence number that starts at 1. (EvIdMon) requires that timestamps ordering

and event id ordering agree. (EvIdIncl) says that an event id must be included in the event’s

dependencies. Finally, (EvIdTime) requires that if e’s id is in the dependencies of e′ then e
must have in fact happened before e′ according to timestamp ordering. The definition of local

state validity has been simplified with respect to prior developments [Gon+21; Nie+22]. This

is because these works use vector clocks as their notion of logical and physical time, whereas

we only track time logically via sets of dependencies.

From local state validity we obtain a number of derived lemmas. For example, we can

relate dep-closed and causally-closed subsets:

Lemma 4.6.2. Let s ⊆ sg where depclosed(s) and LocStValid(sg). Then s ⊆cc sg.

Proof. We have to show that if e ∈ s, e′ ∈ g and e′.t ≤t e.t we also have e′ ∈ s. From

LocStValid(g) we get depclosed(g). From Lemma ?? we know that id(e′) ∈ e.t. Since e ∈ s,
which is dep-closed, then ∃e′′ ∈ s such that id(e′′) = id(e′). Since both e′ and e′′ are in g,
and LocStValid(g), then we can apply (ExtId) to conclude e′ = e′′, which gives us e′ ∈ s, as
needed.

Let s be a set of events such that LocStValid(s). The following lemma says we can always

generate a “fresh” event id by incrementing the sequence number.

Lemma 4.6.3. Let d = deps(s) and n = |sect(d, i)|+ 1. Then (i, n) /∈ d.

Proof. Since s is valid, we know depclosed(s). Suppose that (i, n) ∈ deps(s). Then we must

have e ∈ s with id(e) = (i, n). Unfolding the definition of event id, we get |sect(e.t, i)| =
n. But we have e.t ⊆ d, so sect(e.t, i) ⊆ sect(d, i). This means that n = |sect(e.t, i)| ≤
|sect(d, i)| < n, a contradiction.

Verifying StateLib 82

Now we define validity of global states. Let q = (sg, s⃗l) ∈ Gst. Then q is a valid global

state, written GlobStValid(q), if all the following hold:

(InclLocal) sg =
⋃

1≤i≤numRep sl, i

(InclOrig) ∀e ∈ sg, e ∈ sl, e.s

(GlobValid) LocStValid(sg)

(LocValid) ∀1 ≤ i ≤ numRep, LocStValid(sl, i)

Given a global state (sg, s⃗l), global state validity amounts to requiring that sg be the union

of the sl, i (InclLocal), that events be present in the local state from which they supposedly

originate (InclOrig), that the global state sg itself be valid if treated as a local state (GlobValid)
and that each local state be valid (LocValid). The definition of global state validity is essentially
unchanged from prior work [Gon+21; Nie+22].

The definitions of local and global state validity are motivated by two desiderata: they

must be invariants, i.e. hold for all reachable states (including the initial state); and they must

imply the CRDT resource lemmas from Figure 4.3 “at the model level”.

Theorem 4.6.4 (Validity invariant). Let q ∈ Gst such that initS →∗
S q. Then GlobStValid(q).

Proof. The proof is by induction on the derivation of initS →∗
S s. First note thatGlobStValid(initS),

which holds trivially because all local states are empty. In general, we have g →S g′ with
GlobStValid(g), and have to show that both TUpdate and TMerge preserve global validity.

We do this by unfolding definitions. We only show preservation of (DepClosed) below: the
other predicates are handled similarly and the reader can consult our mechanized proof for

details.

Case (TUpdate): we need to prove LocStValid(g ∪ {e}) and LocStValid(s ∪ {e}), where
g, s and e are as in Definition 4.6.1. Since we are only showing dep-closedness, this amounts to

showing depclosed(g∪{e}) and depclosed(s∪{e}). For the latter, notice that GlobStValid(g)
implies depclosed(s), so it suffices to show that ∀r ∈ e.t, ∃e′ ∈ s ∪ {e} such that id(e′) = r.
Let r be one of e’s dependencies, so by construction r ∈ {(i, n) ∪ deps(s)}. If r = (i, n) then
we can choose e′ = e, because id(e′) = (i, |sect(e′.t, i)|) = (i, |sect(deps(s), i) ∪ {(i, n)}|) =
(i, |sect(deps(s), i)|+1) = (i, n), where the next-to-last equality is justified by Lemma 4.6.3. If

r ∈ deps(s), then the result follows because s is dep-closed. Finally, to show depclosed(g∪{e})
we proceed as above and note that s ⊆ g.

Case (TMerge): herewe only need to show depclosed(⃗li∪s), where s ⊆ l⃗j and depclosed(s).
This follows because the union of two dep-closed sets is also dep-closed.

We use validity to show model-level counterparts of the lemmas in Figure 4.3. Intu-

itively, ownership of GlobSt(sg) tells us that the global state is (sg, s⃗l), whereas if we know
GlobSnap(s′g) all we can say is that s′g ⊆ sg. Similarly, ownership of LocSt (i, sown, sfor)
corresponds to knowing that the local state sl, i (which we can assume to be valid) equals

sown ⊎ s′for (disjoint union), with sfor ⊆ s′for. The local snapshot LocSnap(i, sown, sfor) give us
sown ⊎ sfor ⊆ sl, i. With this analogy in mind, here is the model-level version of causality.

Lemma 4.6.5 (Model-level causality). Let q = (sg, s⃗l) and GlobStValid(q). Also let e ∈ s ⊆cc

sl, i and e
′ ∈ sg, with e

′.t <t e.t. Then e
′ ∈ s.

Verifying StateLib 83

Proof. FromGlobStValid(q)we can conclude LocStValid(sl, i), which in turn gives us depclosed(sl, i).
Since sl, i ⊆ sg, by Lemma 4.6.2 we get sl, i ⊆cc sg. Since we assumed s ⊆cc sl, i, we can use

transitivity of ⊆cc to conclude s ⊆cc sg. This implies the conclusion.

4.6.3 Separation Logic Encoding

The next step in the proof is to encode the validity invariant using separation logic. We do this

using a combination of Iris invariants and resources [Jun+18]. Recall that Iris invariants are

propositions that hold throughout the execution of the operational semantics and resources

are elements of partial commutative monoids (PCMs).

Here we use resources whose ownership reveals what state the system is partially in (e.g.

the set of events received by a specific replica). In particular, we use three main PCM con-

structions, which we review below:
9

1. The authoritative PCM Auth(M), where M is itself a PCM. Given a PCM X, we can

define the extension order on elements of the carrier as follows: x ≤X y ≜ ∃z, x · z = y.
The authoritative construction gives us two kinds of resources: a full part •M g and one or

more fragmental parts ◦M s, where g, s ∈ M. Ownership of the full part is exclusive, while

ownership of a fragment ◦M s is exclusive or persistent depending on whether ownership of

s is exclusive or persistent in M. The fragmental parts are guaranteed to be smaller than the

full part according to extension order, so that if we own •M g
γ ∗ ◦M s

γ
we can conclude

s ≤M g. We also have that ◦M g · ◦M s = ◦M (g · s).
2. The fractional PCM Frac(X), whereX is a carrier set. Elements of this monoid are of the

form sp, where s ∈ X and p ∈ Q(0,1]. This PCM allows us to split and re-combine fractions of

a resource: sp+q = sp · sq . We also know that if we own multiple fractions then they must add

to less than 1. This is useful to e.g. make a proposition exclusive (non-duplicable) by defining

it as a fraction greater than
1
2 as no two copies of such a resource can be owned separately.

We also know that all fractions agree on the underlying element: sp
γ ∗ rq

γ
implies s = r.

3. The monotone PCM Mono(R), where R ⊆ X × X is a pre-order on a carrier set

X [TB21]. This PCM allows us to liftR to the extension order of Mono(R): any x ∈ X can be

injected into Mono(R) via a principalR function such that xRy ⇐⇒ principalR(x) ≤Mono(R)

principalR(y). Combining this with the authoritative PCM gives us a monoid Auth(Mono(R))
where if we know •M principalR(g)

γ ∗ ◦M principalR(s)
γ
we can conclude sRg. We instan-

tiate this construction with R =⊆cc.

We use the defined invariants and resources to prove the interface described in Figure 4.3.

In this section, we sketch out proofs for some of the interface lemmas.

The global invariant uses the predicate GI below. The predicate states that there exists a

(model-level) global state h which is valid. Furthermore, it asserts ownership of global and

local resources defined by the predicates GR(sg) and LR(i, sl, i), respectively.

GI ≜ ∃h ∈ Gst.h = (sg, s⃗l) ∗ GlobStValid(h) ∗ GR(sg) ∗
numRep∗
i=1

LR(i, sl, i)

Given the above definition and an invariant name ι, we can instantiate the GlobInv predicate
from Figure 4.3 by allocating an Aneris invariant stating that GI holds after every execution

step: GlobInv ≜ GI

ι
.

9

We use a few additional PCMs in the Coq formalization but elide those additional structures here for the sake

of brevity.

Verifying StateLib 84

The global resource predicate GR(sg) asserts ownership of two pieces of ghost state, both

of which precisely track the value of sg: GR(sg) ≜ s
1
3
g

γgst

∗ •S sg
γgsnap

.

The ghost state s
1
3
g is drawn from the Frac(Gst) PCM. Its purpose is to track the global set

of events. The remaining
2
3 fraction is kept outside of the invariant as the user-facing resource

GlobSt from Figure 4.3: GlobSt(sg) ≜ s
2
3
g

γgst

. Because the fraction in GlobSt is greater than
a half, we can prove that GlobSt(sg) is exclusive (GlobStExcl, Figure 4.3).

The second part of GR(sg) asserts ownership of •S sg. Here, S is the PCM of finite sets

of events, with set union as composition. This means that p ≤S q iff p ⊆ q. Consequently,
•S sg

γgsnap ∗ ◦S s′g
γgsnap

implies s′g ⊆ sg. We keep the full part in the invariant and use

the fragmental part to define global snapshots: GlobSnap(s) ≜ ◦S s′g
γgsnap

. Note that these

fragmental parts are persistent (duplicable) as the set union operation is idempotent.

The next step is to define the local resources predicate LR(i, s) which tracks in the invari-

ant the local resources for replica i:

LR(i, s) ≜ ∃sown sfor ssub, s = sown ∪ sfor ∗ sown ∪ ssub ⊆cc sown ∪ sfor

∗ LocEv(i, sown) ∗ ForEv(i, sfor) ∗ ForEv(i, ssub) ∗ s
1
3
own

γowni
∗ s

1
2
for

γfori
∗ s

1
3
sub

γsubi

∗ •M principal⊆cc
(sown ∪ sfor)

γccfori ∗ •M principal⊆cc
(sown ∪ ssub)

γccsubi

The predicate LR(i, s) says that s can be broken up into two (disjoint) sets sown and sfor. The
sets are disjoint because every event in sown originates at replica i, whereas all events in sfor
originate outside of replica i. This is expressed by the predicates LocEv(i, p) = ∀e ∈ p.e.s = i
and ForEv(i, p) = ∀e ∈ p. e.s ̸= i, respectively. Additionally, there is a third set ssub which is

a subset of sfor (this is implied by sown ∪ ssub ⊆cc sown ∪ sfor). The intuition for sown and sfor
is that they precisely track the set of events that have been delivered at replica i and originate
at i or outside of i, respectively. However, the user at replica i is not aware of all those events:
specifically, while the user is aware of (the effects of) all its local events, it might not have

observed all events that originate outside of i. The set ssub precisely tracks the set of remote

events, ForEv(i, ssub), that replica i has observed and is aware of. The tracking of all these

event sets is precise because of the ownership of the fractions s
1
3
own

γowni
∗ s

1
2
for

γfori
∗ s

1
3
sub

γsubi
.

Additionally, the invariant has “read-only” access to the three pieces of ghost state because it

does not possess the full fractions. Before pressing on with the definition of LR(i, s), let us
look at the definition of local state and snapshot from Figure 4.3:

LocSt (i, sown, ssub) ≜ s
1
3
own

γowni
∗ s

2
3
sub

γsubi
∗ LocSnap(i, sown, ssub)

LocSnap(i, sown, ssub) ≜ LocEv(i, sown) ∗ ForEv(i, ssub) ∗ ◦M principal⊆cc
(sown ∪ ssub)

γccsubi

Notice that ownership of the local state resource gives us knowledge of some but not all

of the missing fractions for sown and ssub: s
1
3
own

γowni
∗ s

2
3
sub

γsubi
. This corresponds to our

intuition that ssub tracks the set of events the user is aware of. Notice that local state does not
contain a fraction of sfor, because otherwise the library could not accept remote updates in a

background thread.

We next explain the use of the PCMM ≜ Mono(⊆cc), where⊆cc: Event×Event. We use

two instances of this PCM, each under a different family of ghost names: γccsubi and γccfori . The

Verifying StateLib 85

local state contains just γccsubi and the invariant contains both γccsubi and γccfori . The intuition
for holding the fragmental part ◦M principal⊆cc

(sown ∪ ssub) is to allow us to prove inclusion

of local snapshots (LocSnapIncl, Figure 4.3).
We can now sketch the proof of the causality lemma. This proof is representative of our

methodology: use the properties of the different PCMs to identify parts of a (valid) global state

we are currently in, and then rely on a model-level lemma to get the result we want.

Lemma4.6.6 (Causality, Figure 4.3). GlobInv ∗ LocSt (i, o, s) ∗ GlobSnap(h) ∗ |⇛ιLocSt (i, o, s) ∗
∀e e′, e ∈ h⇒ e′ ∈ o ∪ s⇒ e <t e

′ ⇒ e ∈ o ∪ s.

Proof. We open the global invariant and learn that the current global state (sg, s⃗l) is valid. We

also obtain global resources s
1
3
g

γgst

∗ •S sg
γgsnap

and local resources s
1
3
own

γowni
∗ s

1
3
sub

γsubi
,

where sown ∪ ssub ⊆cc sown ∪ sfor = sl, i. From LocSt (i, o, s) we get o
1
3

γowni ∗ s
2
3

γsubi
,

which tells us that o = sown and s = ssub. From GlobSnap(h) we get ◦S h
γgsnap

, which tells

us that h ⊆ sg. This means we have e ∈ sg and e
′
is in a causally-closed subset of sl, i, so we

can finish by applying Lemma 4.6.5.

There are two additional resources in the definition of LR(i, s): s
1
2
for

γfori
and

•M principal⊆cc
(sown ∪ sfor)

γccfori
. These are used in the definition of the lock invariant and

socket protocol, respectively. We explain them in the next section.

In addition to proving the resource lemmas from Figure 4.3, we also need to show that

the PCMs we have chosen can make frame-preserving updates that are compatible with the

two transitions (TUpdate and TMerge) from Definition 4.6.1. We refer to reader to our Coq

formalization for details.

4.6.4 Safety Proof

StateLib’s init function allocates a reference with the CRDT’s initial state and spawns two

concurrent threads: apply receives states from other replicas and merges them with the cur-

rent state, and broadcast regularly sends the current state to all other replicas. Access to the

(shared) local state is coordinated via a spinlock. The associated lock invariant [BB17], de-

fined by the predicate LI(i, ℓ) below, is the key ingredient of the library’s safety proof (ℓ is
the memory location holding the CRDT’s state). When a thread acquires the lock, it gets to

assume LI(i, ℓ); unlike a regular invariant, which needs to be restored after a single atomic

step, a lock invariant need not be restored until the thread releases the lock.

LI(i, ℓ) ≜ ∃st sown sfor. LocEv(i, sown) ∗ ForEv(i, sfor) ∗ ℓ 7→ip st

∗ Jsown ∪ sforK = st ∗ s
1
3
own

γowni
∗ s

1
2
for

γfori

The lock invariant says that the CRDT’s state is always the denotation of some set of events

sown∪sfor (ip is the IP address of replica i). Additionally, the invariant holds resources s
1
3
own

γowni
∗

s
1
2
for

γfori
which guarantee that the we are “in sync” with the logical state recorded for replica

i in the global invariant GlobInv. Notice the lock invariant keeps γfori and not γsubi because
the library knows exactly the set of foreign events that have been processed so far. The table

below summarizes where the different fractions of γowni , γfori and γsubi are kept:

Verified CRDTs 86

γowni γfori γsubi

Global invariant
1
3

1
2

1
3

Lock invariant
1
3

1
2

Local state
1
3

2
3

As part of the proof we also need to define StateLib’s socket protocol SP(i, st); i.e. a pred-
icate that holds for all states st received by a replica (which dually creates a proof obligation

whenever a replica messages others). The abridged version below assumes that st is already
deserialized and that i is the replica id of the message’s sender:

SP(i, st) ≜∃s′own s′for. LocEv(i, s′own) ∗ ForEv(i, s′for) ∗ Js′own ∪ s′forK = st

∗ LocStValid(s′own ∪ s′for) ∗ ◦M principal⊆cc
(s′own ∪ s′for)

γccfori

The socket protocol assumes that the received state st is the denotation of the union s′own∪
s′for, where s

′
own and s

′
for are event sets that are local and foreign, respectively, relative to the

message’s sender (not relative to the receiver). Additionally, we know that s′own ∪ s′for is a
causally closed subset of the events recorded at replica i (in particular, we know the sender is

not accidentally including events that have not been previously recorded).

Since both apply and broadcast recurse forever, their specifications are not very interest-
ing: in particular, we do not care about their post-conditions. We do care about preserving the

lock and global invariants as they execute. We briefly sketch the proof of apply. Before apply
updates the CRDT state via st := merge !st st’, we know that all the following hold: the

global invariant GlobInv, the lock invariant LI(i, st), and the socket protocol SP(j, st′), where
i and j are the ids of the local and sender replicas, respectively, and i ̸= j. We open the lock

invariant and get !st = Jsown∪sforK∗ s
1
3
own

γowni
∗ s

1
2
for

γfori
. Similarly, from the socket protocol

we know that st’ = Js′own∪s′forK∗LocStValid(s′own∪s′for)∗ ◦M principal⊆cc
(s′own ∪ s′for)

γccfori
.

We would like to apply the coherence lemma (MergeCoh), which tells us that merging two

states is the same as (1) merging the corresponding events that generated those states, and

(2) then taking the denotation of the union of the event sets. The premises of (MergeCoh)
all follow from local state validity after opening the global invariant, and from the fact that

◦M principal⊆cc
(s′own ∪ s′for)

γccfori
proves that the events we are merging have been previously

recorded. The resulting logical state is s
1
3
own

γowni
∗ (sfor ∪ s′own ∪ {e ∈ s′for|e.s ̸= i})

1
2

γfori
.

The proof of get_state uses the lock invariant to conclude that the returned state is the

denotation of the set of events received so far. It then uses the global invariant: specifically

the relation sown ∪ ssub ⊆cc sown ∪ sfor in the definition of LR(i, s) to update the local state

to LocSt (i, o, f ′). The proof of update uses the preservation of global validity under a TUp-
date transition (Theorem 4.6.4) to show that GlobInv is preserved. We refer the reader to our

formalization for additional details.

4.7 Verified CRDTs

To test StateLib we verified five example CRDTs from the literature: grow-only counter (g-

counter), grow-only set, product combinator, map combinator, and positive-negative counter

Verified CRDTs 87

(pn-counter). We also verified a closed program consisting of client code that uses the pn-

counter. This closed program appears in Nieto et al. [Nie+22], and we were able to swap out

their op-based pn-counter for our state-based version without modifying their safety proof.
10

We used the closed example as a case study in giving our state-based CRDT the same specifi-

cation as its op-based counterpart, hiding implementation details in the process.

In this section we focus on describing the pn-counter and the closed program. A pn-

counter is a data structure that supports two operations: add(z) adds the integer z, which
may be negative, to the counter, and get_value returns the counter’s current value. The initial
value is 0. The denotation for pn-counter used in Nieto et al. [Nie+22] is JsK =

∑
e∈s e.o. We

implemented the counter as a wrapper over the product prod(g-counter, g-counter). We

now explain how g-counter and prod work.
The g-counter is a simpler version of pn-counter where we can only add non-negative

numbers. Operations are of the form add(n)with n ∈ N. IfN is the number of CRDT replicas,

the lattice state is a vector c⃗ with N entries. The ith entry tracks the contribution of replica i
to the counter’s state. The initial value is the 0-vector of length N . The mutator is defined as

mut(c⃗, e) = s[e.s 7→ c⃗e.s + e.o], and merges are done by taking the maximum of two vectors

pointwise. The denotation JsK is the pointwise sum of all the vectors in s.
Given two CRDTs CA = (OpA, StA, initA,mutA,mergeA) and CB = (OpB, StB, initB,

mutB,mergeB), their product is CA×B = (OpA × OpB, StA × StB, initA × initB,mutA×B,
mergeA×B). Both the mutator and merge function operate in a component-wise fashion. The

denotation JsK splits s into two sets sA and sB of A-events and B-events, respectively. It then

computes the pair (JsAKA, JsBKB). Additionally, our product combinator is parameterized by

a predicate P ⊆ OpA × OpB that all product operations must satisfy, so to be more precise

the set of operations of a product is {q ∈ OpA × OpB | P (q)}. This predicate is useful for
defining the pn-counter because we will restrict product operations to alter at most one of the

two components.

We then implement the pn-counter as awrapper over the product prod(g-counter, g-counter).
Specifically, we wrap the product’s get_state and update as follows (sum_entries is the func-
tion that sums all the entries of a vector):

let pncounter_add z =
if z >= 0 then prod_update((z, 0))

else prod_update((0, -z))

let pncounter_get_value () =
let (v1, v2) = prod_get_state () in
(sum_entries v1) - (sum_entries v2)

In the instantiation of the product, we choose P (o1, o2) ≜ o1 = 0 ∨ o2 = 0, giving us a bi-

jection between pn-counter operations (integers) and product operations (pairs of naturals, at

least one of which is zero). The bijection is key to the proof because at different points we need

to switch between the external view of the state LocSt (i, sown, sfor) (where sown and sfor are
sets of pn-counter operations) and the internal one (where they are sets of product operations)

without loss of information. We refer the reader to our Coq formalization for details on the

proof, but do want to mention that the proof of the pn-counter wrapper ended up being more

challenging than we had anticipated, in part due to technical subtleties introduced by the shift

in viewpoint alluded to before.

10

We have added one additional property to the common CRDT resource interface (an excerpt of which was

shown in Figure 4.3), and thus we extended the proof of Nieto et al. [Nie+22] such that this additional property is

also proved for their op-based library.

Related Work 88

Finally, we describe the closed program we verified. This example shows client code inter-

acting with a pn-counter. The relevant snippet is shown below: we have two replicas, A and

B, each of which increments the counter, reads it, and then asserts that the read returns one

of two possible values. InA the possible values are 1 and 3, depending on whether the remote

operation add 2 has been propagated from B to A by the time the read happens. In either

case, the add 1 must be visible by the subsequent read because the latter happened later ac-

cording to program order: this is the so-called reads-follow-writes session guarantee [Gon+21].

An analogous situation happens for replica B.

(* replica A *)
add 1;
let r = get_value () in
assert (r = 1 || r = 3)

(* replica B *)
add 2;
let r = get_value () in
assert (r = 2 || r = 3)

The reader can consult Nieto et al. [Nie+22] formore details on the proof that the assertions

in the example above do not fail, but the important part is that we were able to swap out the

op-based counter implementation by our state-based counter, while (almost) keeping the proof

intact. The two implementations are quite different: the op-based implementation relies on a

causal broadcast algorithm, while ours does not and instead relies on lattice properties, as well

as on applications of the product combinator. The fact that both implementations meet the

same specification is good evidence that the denotation-based separation logic specifications

are general, flexible, and can hide implementation details.

4.8 Related Work

As previously mentioned, the idea of specifying CRDTs as a partial function from event his-

tories (including causality metadata) to the data type’s state comes from Burckhardt et al.

[Bur+14]. We also learned from their paper that state-based CRDTs can be thought of as

transitively delivering (the effects of) events when states are merged, which in turn makes it

possible to prove, as we have done, that state-based CRDTs are causally-consistent.
11

Leijnse et al. [LAB19] reformulate the above specification style so it can be better applied

to higher-order combinators, coining the term CRDT denotation. They work solely with spec-

ifications, and do not implement these combinators nor verify an implementation.

The idea of tracking the state of a concurrent data structure via a logical set of opera-

tions that is divided into contributions by the current thread and those originating from other

threads, as in our LocSt (i, o, f) resource, has previously appeared in the context of the FCSL

logic (where they are termed “self” and “other” contributions, respectively) [Nan; Del+16].

The Compass separation logic framework [Dan+22] (also Iris-based) can be used to specify

and verify functional correctness of concurrent data structures in a relaxed memory model.

There are a number of commonalities with our work: their specs are also given as logically-

atomic triples that track the state of a data structure as a function of the set of writes that are

visible by a given thread. They develop a notion of logical views that is similar to our local

snapshots LocSnap(i, o, f) (without the distinction between own and foreign events): own-

ership of a view provides a lower bound on the set of observed events, and the views contain

11

They do mention that state-based CRDTs are causally-consistent, but there is no formal proof, or even a

precise lemma statement.

Related Work 89

logical metadata that tracks the happens-before relation between writes. The main difference

with our work is that we operate at the intersection of weak consistency and message passing,

whereas their work is in the context of shared memory.

Zeller et al. [ZBP14] implement and formally verify multiple state-based CRDTs in Is-

abelle/HOL. To our knowledge, they are the first to explicitly link denotation-style specifica-

tions to their lattice-based implementations. Like us, they prove both convergence and func-

tional correctness. There are twomain differences with our work: their systemmodel is an STS

where the states map each replica id to the replica state (this is very similar to our STS model

from Section 4.6.1). By contrast, in our work the system model is the operational semantics of

AnerisLang, with support for mutation, node-local concurrency, higher-order functions, etc.

This means that while their technique can only be used to reason about a CRDT in isolation,

ours can verify a system where the CRDT and a client (or a larger distributed system of which

the CRDT is a small part) are executing together, and where both of these are implemented in a

realistic programming language. The second difference is that in Zeller et al.’s work one needs

to come up with a different invariant that implies coherence between the denotation and the

lattice for each implemented CRDT, as well as proving for each example that the invariant is

preserved by the different transitions. In our work, we prove just one invariant, global state

validity, and the CRDT implementer then needs to prove coherence given that global validity

holds.

Nair et al. [NPS20] verify several state-based CRDTs. These are not “pure” CRDTs in the

sense that some of data structure’s operations are at times disabled. For example, they show

how to verify a distributed lock implemented as a CRDT (the release-the-lock operation can

only be enabled if the local replica owns the lock). Proof wise, this means that sometimes

it is useful to enforce example-specific invariants on the CRDT being verified: it would be

interesting to modify StateLib so it can support these user-defined invariants and so can

tackle the examples presented in their paper.

Gondelman et al. [Gon+21] verify functional correctness of a causally-consistent key-value

store using Aneris. Their work introduces the encoding of causality in separation logic that

we use. However, their key-value store is not a CRDT because it violates convergence. Addi-

tionally, their work is closer to op-based CRDTs because writes are propagated individually.

Timany et al. [Tim+21] develop an extension of Aneris called Trillium where one simul-

taneously proves both safety and also that the program being verified refines an STS model.

Unlike in our work, where the STS is used just to prove safety, their refinement is history-

preserving, which allows them to prove liveness properties as well. As one case study, they

show that a state-based G-Counter CRDT is eventually consistent. They do not tackle any

other (more complex) CRDTs, and their specification of theG-Counter relies on the fact that the

G-Counter is monotonic. It would be interesting to recast our work using the Trilliummethod-

ology with the goal of showing that any CRDT implemented via StateLib is eventually-

consistency (that is, additionally showing eventual delivery).

The closest related work is Nieto et al. [Nie+22], fromwhich we inherit the CRDT resource

interface from Figure 4.3, the modular structure of the implementation (a core library that can

be instantiated for different CRDT examples), as well as the general structure of the proof: a

state-transition systemmodel that is embedded in the logic, as well as a lock invariant that ties

the denotation-style specification to the lattice-based state. The main difference is that their

paper deals exclusively with op-based CRDTs: as mentioned in Section 4.3.2 adapting their

technique to the state-based setting leads to a number of technical challenges we had to solve

in our approach.

Conclusions 90

4.9 Conclusions

We have shown how to give modular specifications to realistic state-based CRDT implementa-

tions using the Aneris separation logic. Our specifications show both convergence and func-

tional correctness relative to an abstract denotational model of the CRDT.

We have explored our approach by implementing and verifying a library, StateLib, for

building state-based CRDTs. Our library takes as input a purely-functional implementation of

a state-based CRDT’s core logic, together with coherence proofs between the CRDT’s lattice-

based and denotation-based models. The library then produces as output a fully-fledged CRDT

that is replicated over multiple nodes. Using the library we implemented and verified multiple

example CRDTs from the literature.

When taken together with Nieto et al. [Nie+22], our work presents a unified framework

for the specification and verification of op- and state-based CRDTs. To show that we can

abstract away from the fact that a CRDT is state-based, we re-prove Nieto et al.’s interface

for resources tracking CRDT state using a new definition of resources that is compatible with

state-based CRDTs. We test this approach by showing that one can start with a client program

that uses an op-based counter CRDT, swap out the counter’s implementation by our state-

based implementation, and recover the safety proof for the entire closed programwhilemaking

minimal changes to the original proof.

5 Towards Session Guarantees for Client-Centric

Consistency

This chapter is an extended, self-contained, version of Section 5 of the POPL’21 pa-

per “Distributed Causal Memory: Modular Specification and Verification in Higher-Order

Distributed Separation Logic” [Gon+21], which I co-authored. Parts of the chapter’s intro-

duction, the entirety of Section 5.1, and some figures are copied and edited from the above

paper, as well as the accompanying technical appendix [Gon+20]. The rest is original

material.

Abstract

Client-centric consistency models describe what assumptions a client program can

make when interacting with a replicated data type. Specifically, the four session guaran-

tees: monotonic reads, read your writes, monotonic writes, and writes follow reads specify

how client operations relate to prior local observations, without regard for concurrent up-

dates performed by other clients. We show how these session guarantees follow from the

encoding of causality in separation logic developed by Gondelman et al. [Gon+21]. We do

this by implementing and verifying a session manager library on top of Gondelman et al.

[Gon+21]’s verified causally-consistent database. The session manager allows interaction

with the database in a client-server setting. Even though the session-manager’s specifi-

cations are weaker than those of the key-value store and rely exclusively on persistent

(non-ephemeral) resources, they are strong enough to imply the four session guarantees.

To our knowledge, our work is the first formally-verified treatment of session guarantees.

We have formalized all the presented results in the Coq proof assistant.

The distributed systems literature distinguishes between two kinds of consistency models:

data centric and client centric [TS07, Chapter 7].

Data centric consistency models constrain the order of operations across multiple replicas

and account for concurrent updates. Causal consistency [Aha+95] is a data centric consistency

model because it restricts the order of operations to respect causal order. In Gondelman et al.

[Gon+21] my co-authors and I presented the first specification and verification of an imple-

mentation of a causally-consistent distributed database that supports modular verification of

full functional correctness of clients and servers. This chapter is an extended version of a case

study included in that paper. The case study investigates the use of the verified distributed

database from the perspective of client-centric consistency.

Client-centric consistencymodels constrain how operations by a single client relate to prior

operations performed by the same client,without regard for concurrent updates.
1
There are four

1

Clients are assumed to execute operations sequentially, without intra-node concurrency.

91

Background: a Causally-Consistent Distributed Database 92

client-centric consistencymodels, usually called session guarantees [Ter+94]; they are read your

writes (RYW), monotonic reads (MR), writes follow reads (WFR), and monotonic writes (MW).

Each of these guarantees is a principle for reasoning about operations that happen within a

session, a sequence of writes performed by a client against one or more database replicas.

The session guarantees are attractive as reasoning principles because they offer an intuitive

perspective for client application programmers. For example, consider the following scenario,

lifted from Tanenbaum and Steen [TS07, Chapter 7]. A mail application is geo-replicated and

weakly-consistent. A client connects to replica A and retrieves a list of unread emails. Within

the same session, the client then connects to a different replica B and again retrieves a list

of unread emails. Because of weak consistency, it is possible that a specific unread email is

present in replica A but not replica B. This could manifest as an email “disappearing” from the

list of unread emails displayed by the mail client, which might be unintuitive to the user. The

monotonic reads guarantee rules out this scenario by ensuring that

If a process reads the value of a data item x, any successive read operation on x
by that process will always return that same value or a more recent value [TS07].

In our example, if replica B is missing some of the previously-retrieved emails then either the

client is re-directed to a more up-to-date replica, or replica B “catches up” before replying to

the client’s request.

This chapter develops a separation-logic based account of session guarantees for our causally-

consistent database. We show that our definition of causality is strong enough to imply all four

session guarantees. Specifically, we implement a session manager library that allows clients

to interact with the distributed database in a client-server setting (through message passing).

We give specifications for the session manager that use only persistent (duplicable) resources,

simplifying client reasoning. Even though these specifications are weaker than the original

database read and write specifications from Gondelman et al. [Gon+21], they are expressive

enough to imply the session guarantees. We then prove the session guarantees as four client

programs that interact with the database through the session manager.

The minor hedging in the section’s title (“Towards Session Guarantees”) comes from a

simplifying assumption we make in our development. We assume that a client connects to

the same replica throughout a session. These tethered sessions are in fact the common case

in a client-server interaction, because switching between replicas is inefficient (but sometimes

necessary because of e.g. server failure). We explicitly leave the verification of a more-realistic

session manager that can multiplex over different replicas as future work.

5.1 Background: a Causally-Consistent Distributed Database

We now review the specification of the causally-consistent distributed database in Gondelman

et al. [Gon+21].

Two simple, illustrative examples of causal dependency are depicted in Figure 5.1; pro-

grams executed on different nodes are separated using double vertical bars. Notice that in our

setting all database keys are uninitialized at the beginning and the read operation returns an

optional value indicating whether or not the key is initialized. In both examples, the read(x)
command returns the value 37, as indicated by the comment in the code, as the preceding

wait command waits for the effects of write(y, 1) to be propagated. In the topmost example

(illustrating direct causal dependence) the write(x, 37) command immediately precedes the

Background: a Causally-Consistent Distributed Database 93

write(x, 37)

write(y, 1)

∥∥∥∥∥ wait(y = 1)

read(x) // reads Some 37

write(x, 0)

write(x, 37)

∥∥∥∥∥ wait(x = 37)

write(y, 1)

∥∥∥∥∥ wait(y = 1)

read(x) // reads Some 37

Figure 5.1: Two examples of causal dependency: direct (left) and indirect (right, [Llo+11]).

Copied from Gondelman et al. [Gon+21].

write(y, 1) command on the same node; hence any node that observes 1 for key y should also
observe 37 for key x. However, in the bottommost example, the write(y, 1) command is exe-

cuted on the middle node only after the value of 37 is observed for key x on that node; hence,

in this example too, any node that observes 1 for key y should also observe 37 for key x.

5.1.1 Overview

Gondelman et al. [Gon+21]’s specifications are based on a mathematical model tracking the

abstract state of the local key-value store at every replica, i.e., the history of updates. The

specification represents this model using Iris’s ghost theory to track auxiliary state (state that

is not physically present at runtime and only tracked logically for verification purposes). The

history of updates consists of the following information:

1. For each replica, we track a local history of all memory updates that the replica has ob-

served since its initialization. It includes both local write operations (which are observed

immediately) and updates due to synchronization with other replicas.

2. We also track an abstract global memory that, for each key, keeps track of all write events

to that key (by any replica in the system).

We refer to the elements of local histories as apply events and to the elements of the abstract

global memory as write events. Both apply and write events carry all the necessary informa-

tion about the original update, including the logical time of the corresponding apply or write

operation. We implement logical time using vector clocks, but all that matters is that it is a

partial order. The ordering is defined such that it reflects causal order: if the time of event e
is strictly less than the time of e′, then e′ causally depends on e, and if the time of e and e′ are
incomparable, then e and e′ are causally independent. This allows us to formulate the causal

consistency of the distributed database as follows:

If a node observes an apply event a, it must have already observed

all write events of the abstract global memory that happened before

(according to logical time) the write event corresponding to a.
(Causal Consistency)

The specifications we give to the read and write operations reflect the effects of these

Background: a Causally-Consistent Distributed Database 94

events

(K, v, t, o) ∈ WriteEvent ≜ Keys× Value×Time×N
(K, v, t, o,m) ∈ ApplyEvent ≜ Keys× Value×Time×N×N
Maximals(X) ≜ {x |x ∈ X ∧ ∀y ∈ X.¬(x.t < y.t)}

Maximum(X) ≜

{
Some x if x ∈ X ∧ ∀y ∈ X. x ̸= y =⇒ y.t < x.t

None otherwise

Observe : ℘fin(ApplyEvent) fin−⇀ ApplyEvent

⌊·⌋ : ApplyEvent
fin−⇀ WriteEvent

Memory

si ∈ LocalHistory ≜ ℘fin(ApplyEvent)

M ∈ GlobalMemory ≜ Keys
fin−⇀ ℘fin(WriteEvent)

Figure 5.2: Mathematical model of distributed causal memory with abstract notion of validity.

Edited from from Gondelman et al. [Gon+21].

operations on the tracked histories. The intuitive reading of the specifications is as follows:

• Either, read(K) returns nothing, in which case we know that the local history

contains no observed events for key K.

• Or, read(K) returns some value v, in which case we know that there is an

apply event a in the local history with value v; a has a corresponding write

event in the global memory; and a is a maximal element (w.r.t. time and hence

causality) in the local history.

(Read Spec)

After the write operation write(K, v) there is a new write event w added to the

global memory and a new apply event a corresponding to it in the local history,
and a is the maximum element (w.r.t. time and hence causality) of the local

history, i.e., the event a causally depends on all other events in the local history.
(Write Spec)

5.1.2 Mathematical Model

In this section we formalize the mathematical model of causality. Figure 5.2 shows the model

definitions and properties needed to reason about clients.

In the model, a write event is represented as a four-tuple (K, v, t, o) consisting of a key, a

value, the time, and the index of the replica onwhich the write event happened. In the concrete

implementation time is represented using vector clocks, but to reason about client code, all

we need is an abstract notion of time, and therefore our model uses a notion of logical time

represented by a partial order≤ (we write< for the strict version of it). We can decide whether

two write eventsw1 andw2 are causally related by comparing their times: ifw1.t < w2.t, then

Background: a Causally-Consistent Distributed Database 95

Table 5.1: Propositions to track the state of the key-value store. Copied from Gondelman et al.

[Gon+21].

Proposition Intuitive meaning

Seen(i, s) The set s is a causally closed subset of the local history of replica i

Snap(K, h) The set h is a subset of the global memory for key K

K⇀u h The global memory for key K is exactly h

We say s is a causally closed subset of s′ if: s ⊆ s′∧∀a1, a2 ∈ s′. a1.t < a2.t∧a2 ∈ s⇒ a1 ∈ s.

w1 must have happened before w2, and w2 is causally dependent on w1. When w1.t and w2.t
are incomparable, then the events w1 and w2 are causally independent or concurrent.

To account for how write events are applied locally on each replica we use the notion of

an apply event. Thus an apply event only makes sense in the context of a particular replica.

Formally, given a replica i, an apply event is represented by a five-tuple a = (K, v, t, o,m),
where m is the number of write events applied on replica i. We refer to m as the sequence

identifier of a. When i = o, the apply event corresponds to a write operation invoked on the

replica itself, whereas if i ̸= o, then the apply event corresponds to a write event received

from replica i. Given an apply event a = (K, v, t, o,m), we denote by ⌊a⌋ the write event

(K, v, t, o), which we refer to as the erasure of a.
The local history of replica i, written si, is the set of all apply events observed by the

replica since its initialization. The abstract global memory, written M , is a finite map from

keys to finite sets of write events. We model the local key-value store for a replica i simply as

a finite map from keys to values.

Given a set X of write or apply events, Maximals(X) (resp. Maximum(X)) denotes the
set of maximal events (resp. the maximum event) w.r.t. the time ordering. Note that, for

any events e, e′ ∈ Maximals(X), the time of e and e′ are incomparable and hence e and e′

are causally unrelated. Given a non-empty set of apply events A, the event Observe(A) is
the maximum element of A w.r.t. the ordering of sequence identifiers. (If A is empty, we let

Observe(A) be some default apply event).

5.1.3 Specification

Iris Predicates to Represent the State of the Key-Value Store. Recall the intuitive specifications

that we gave for the read and write operations on our distributed database in Section 5.1.1.

These specs only assert that certain write/apply events are added to the global memory/local

history. Hence, it suffices to have a persistent proposition in the logic that asserts the partial

information that certain events are indeed part of the local history or global memory. For

this purpose, we introduce the persistent abstract predicates Seen and Snap which intuitively

assert knowledge of a subset of the local history, and global memory, respectively. These

abstract predicates and their intuitive meaning are presented in Table 5.1. Notice that the Seen
predicates assert knowledge of a subset of the local history that is causally closed as defined

in the figure. In addition to the partial knowledge about the global memory represented using

the Snap predicate, it is also useful to track the precise contents of the global memory for each

key. We do this using the ephemeral abstract proposition K ⇀u h which, intuitively, asserts

that the set of all write events for the key K is h. We can track the precise contents of the

global memory because all write events in the global memory can only originate from a write

Background: a Causally-Consistent Distributed Database 96

Properties of global memory, i.e., Snap and⇀u predicates:

Snap(K, h) ∗ Snap(K, h′) ⊢ Snap(K, h ∪ h′) (Snap union)

K⇀u h ⊢ K⇀u h ∗ Snap(K, h) (Take Snap)

GlobalInv
NGI ∗ K⇀u h ∗ Snap(K, h′) ⊢ |⇛E K⇀u h ∗ h′ ⊆ h (Snap inclusion)

GlobalInv
NGI ∗ Snap(K, h) ∗ Snap(K, h′) ⊢ |⇛E ∀w ∈ h,w′ ∈ h′.

w.t = w′.t⇒ w = w′
(Snap extensionality)

Properties of local histories, i.e., the Seen predicate:

GlobalInv
NGI ∗ Seen(i, s) ∗ Seen(i, s′) ⊢ |⇛E Seen(i, s ∪ s

′) (Seen union)

GlobalInv
NGI ∗ Seen(i, s) ∗ Seen(i′, s′) ⊢ |⇛E ∀a ∈ s, a′ ∈ s′. a.t = a′.t⇒

a.k = a′.k ∧ a.v = a′.v

(Seen global extensionality)

GlobalInv
NGI ∗ Seen(i, s) ∗ Seen(i, s′) ⊢ |⇛E ∀a ∈ s, a′ ∈ s′. a.t = a′.t⇒

a = a′
(Seen local extensionality)

GlobalInv
NGI ∗ Seen(i, s) ∗ a ∈ s ⊢ |⇛E ∃h. Snap(a.k, h) ∗ ⌊a⌋ ∈ h (Seen provenance)

Causality in terms of resources and predicates:

GlobalInv
NGI ∗ Seen(i, s) ∗ Snap(K, h) ⊢ |⇛E ∀a ∈ s, w ∈ h. w.t < a.t⇒

∃a′ ∈ s|K. ⌊a′⌋ = w

(Causality)

The set s|K is the set of apply events in s with key K: s|K ≜ {a ∈ s | a.k = K}.

Figure 5.3: Laws governing database resources. Themask E is any arbitrary mask that includes

NGI. Copied from Gondelman et al. [Gon+21].

operation on the distributed database. On the other hand, we cannot have precise knowledge

about local histories because at any point in time, due to concurrency, a replica may observe

new events.

In addition to the abstract predicates just discussed, the client will also get access to a

global invariant GlobalInv
NGI

which, intuitively, asserts that there is a valid global state, and

that the predicates Seen, Snap, and ⇀u track this global state.
2
Clients need not know the

definition of this invariant and can just treat it as an abstract predicate.

5.1.4 Laws Governing Database Resources

The laws governing the predicates Seen, Snap, and ⇀u, are presented in Figure 5.3. Notice

that most of these laws only hold under the assumption that the global invariant holds. This

can also be seen in the fact that they are expressed in terms of an update modality with a mask

2 NGI is a fixed name of the global invariant.

Background: a Causally-Consistent Distributed Database 97

that enables access to the global invariant. All of these laws make intuitive sense based on

the intuitive understanding of the predicates Seen, Snap, and⇀u. For instance, the law (Snap
union) asserts that if we know that the sets h and h′ are both subsets of the global memory

for a key K, then so must the set h ∪ h′. The extensionality laws essentially state that events

are uniquely identifiable with their time: if two events have the same time, then they are the

same event. Note that the law (Seen union), as opposed to the law (Snap union), requires

access to the invariant. This is because, we need to establish causal closure (see Figure 5.1)

for s ∪ s′ in the conclusion of the law with respect to the local history tracked in the global

invariant. The most important law in Figure 5.3 is the law (Causality). This law allows us to

reason about causality: if a replica i has observed an event a that has a time greater than a

write event w, i.e. a causally depends on w, then replica i must have also observed w (it must

have a corresponding apply event a′). Notice that the causal closure property of local histories
s for which we have Seen(i, s) in Figure 5.1 is crucial for the (Causality) law to hold.

5.1.5 Specs for the Read and Write Operations

Figure 5.4 shows the specification for reading from and writing to the distributed database

locally on a replica i.

Read Specification. The post condition of the read operation asserts that the client gets back

a set of apply events s′, Seen(i, s′), observed by replica i performing the read operation such

that s′ ⊇ s. The reason for the s′ ⊇ s relation is that during the time since performing the

last operation by replica i, i.e., when we had observed the set s, some write events from other

replicas may have been applied locally.

When read(K) is executed on a replica i, it either returns None or Some v for a value v. If
it returns None, then the local memory does not contain any values for key K. Hence the local

history s′ restricted to key K, s′|K should be empty cf. the definition of s′|K in Figure 5.3.

Otherwise, if it returns Some v, then the local memory contains the value v for key K.

This can happen only if the local memory of the replica at the key K has been updated, and the

latest update for that key has written the value v. Consequently, the local history s′ must have

recorded this update as the latest apply event a for the key K, i.e., Observe(s′|K) = a. Hence
a ∈ Maximals(s′|K). The reader may wonder why a is not the maximum element, but only

in the set of maximal elements. To see why, suppose that just before the read operation was

executed, two external causally-unrelated writes have been applied locally on replica i, so that
the local history recorded them as two distinct apply events whose times are incomparable.

Naturally, one of two writes must have been applied before the other and the latest observed

apply event must correspond to the subsequent second write event. However, as the apply

operation is hidden from the client, there is no way for the client to observe which of the two

writes is the latest. Consequently, all the client can know is that the latest observed event a
is one of the most recent local updates for key K, i.e., among the maximal elements. Naturally,

the write event ⌊a⌋ should be in the abstract global memory. This is expressed logically by the

proposition Snap(K, {⌊a⌋}).

Write Specification. The postcondition of the write specification ensures that after the exe-

cution of write(K, v), the client gets back the resources K⇀u h⊎{⌊a⌋} and Seen(i, s′ ⊎{a}),
where a and ⌊a⌋ are respectively the apply and write events that model the effect of the write

Session Guarantees and Causal Consistency 98

ReadSpec

{Seen(i, s)}

⟨ipi; read(K)⟩

{v. ∃s′ ⊇ s. Seen(i, s′) ∗(
(v = None ∧ s′|K = ∅) ∨

(∃a ∈ s′|K. v = Some a.v ∗ Snap(K, {⌊a⌋}) ∗ a ∈ Maximals(s′|K) ∗ Observe(s′|K) = a)
)}

WriteSpec

{Seen(i, s) ∗ K⇀u h}

⟨ipi; write(K, v)⟩

{(). ∃s′ ⊇ s. ∃a. K = a.k ∗ v = a.v ∗ Seen(i, s′ ⊎ {a}) ∗ K⇀u h ⊎ {⌊a⌋} ∗

a = Maximum(s′ ⊎ a) ∗ ⌊a⌋ ∈ Maximals(h ⊎ {⌊a⌋}) }
Figure 5.4: Read and write specifications. Copied from Gondelman et al. [Gon+21].

operation. The mathematical operation ⊎ is the disjoint union operation on sets; A ⊎ B is

undefined if A ∩B ̸= ∅.

As for read, the new set of apply events s′ can be a superset of s. Contrary to read, the

postcondition for write states that a = Maximum(s′⊎a), i.e., that a is actually the most recent

apply event. This matches the intuition that the update write(K, v) causally depends on any

other apply event previously observed at this replica.

While a is themaximum apply event locally, its erasure ⌊a⌋ is only guaranteed to be among

the maximal write events, i.e., ⌊a⌋ ∈ Maximals(h ⊎ {⌊a⌋}). Intuitively, this is because there
can be other write events in h, performed by other replicas, that we have not yet locally ob-

served. As those events are not observed on our replica, the newly added write event ⌊a⌋ does
not causally depend on them and hence does not have a strictly greater time—in practice those

write events have times that are incomparable to that of ⌊a⌋ as neither depend on the other.

5.2 Session Guarantees and Causal Consistency

Having reviewed the treatment of causal consistency in Gondelman et al. [Gon+21], we now

move on to present the session guarantees as originally defined by Terry et al. [Ter+94]. We

will use the following (informal) auxiliary definitions:

Session Guarantees and Causal Consistency 99

DB(R, t) The set of writes received by replica R at or before time t.

WriteOrder(w1,w2) A predicate that is true if write w1 should be ordered before w2.

RelevantWrites(S, t, r) The smallest set of writes that is complete for read operation r
and DB(S, t). A set of writes W is complete with respect to a

read r and replica state DB(S, t) if for any subsetD of DB(S, t)
that also contains W (i.e. W ⊆ D ⊆ DB(S, t)), the result of

executing r against W is the same as the result of executing r
against D.

The four guarantees, copied from Terry et al. [Ter+94], are:

• Read Your Writes: If read r follows write w in a session and r is performed at replica S
at time t then w is included in DB(S, t).

• Monotonic Reads: If read r1 occurs before r2 in a session, and r1 accesses serverS1 at time

t1 and r2 accesses server S2 at time t2, then RelevantWrites(S1, t1, r1) ⊆ DB(S2, t2).

• Writes Follow Reads: If read r1 precedes write w2 in a session and r1 is performed at

server S1 at time t1, then for any server S2, if w2 is in DB(S2, t2) then for any w1 ∈
RelevantWrites(S1, t1, r1) we have w1 ∈ DB(S2, t2) and WriteOrder(w1,w2).

• Monotonic Writes: If write w1 precedes write w2 in a session, then for any server S2, if
w2 ∈ DB(S2, t) then w1 ∈ DB(S2, t) andWriteOrder(w1,w2).

Or, more informally:

• RYW: reads observe writes not older than preceding writes.

• MR: reads observe writes not older than writes observed by preceding reads.

• WFR: writes and writes observed through preceding reads propagate to all replicas in

program order.

• MW: writes propagate to all replicas in program order.

Notice that RYW andMR talk about what writes are observed within a single replica, while

WFR and MW talk about the order of writes in all replicas.

Connection to Causal Consistency Because events that happen in the same session are causally-

ordered (in a total way), and session guarantees talk about enforcing a propagation order that

respects session order, it is not surprising that session guarantees have some connection to

causal consistency. In fact, Brzezinski et al. [BSW04] formalize the trace semantics of both

causal consistency and session guarantees and prove that causal consistency implies all four

session guarantees.

This motivates our work in this section. We would also like to obtain a version of the

session guarantees from our embedding of causality in separation logic, both because session

guarantees are useful as reasoning principles, and also because it would be evidence that our

definition of causality is in the right track.

Session Manager Library 100

DB1 DB2

C1A

SM

RH RH

C2

SM

C1B

Figure 5.5: Clients using the distributed database via the session manager library. Copied

from Gondelman et al. [Gon+21].

5.3 Session Manager Library

In the examples in Gondelman et al. [Gon+21, Section 4.5] each client program is co-located

on the same node as the database replica that it reads from and writes to. By contrast, in a

client-server architecture, a client might interact with multiple replicas (servers), and clients

and replicas are located on different nodes.

Because the session guarantees assume a client-server setting, we implement a session

manager library that allows clients located in a different node to read and write from the dis-

tributed database. The library consists of two components: a client stub that proxies requests

to the server, and a request handler that handles the requests server-side. Figure 5.5 illus-

trates how clients (C1A, C1B, and C2) running on different nodes communicate with multiple

database replicas (DB1 and DB2) via the session manager stub (SM) and request handler (RH).

5.3.1 Session Manager Stub

Figure 5.6 shows the code of the client stub. The client stub is responsible for proxying client

requests (mostly reads or writes) to a remote replica, so it implements a simple form of remote

procedure call.

The types sm_req and sm_res define the set of requests a client issues and the server’s

responses, respectively. An InitReq initializes the session. A ReadReq k reads the current

value of k at the contacted replica. A WriteReq (k, v) writes the value v under key k.
The helper function listen_wait_for_seqid takes a socket and a sequence id, a natural

number that uniquely identifies each request. The function blocks until a message with the

given sequence id is available at the socket. The sequence id is then incremented and the

function returns the received message.

The session_exec function executes a request req at the database replica with address

server_addr. Executing a request consists of serializing the request object, sending a mes-

sage to the server, and then waiting for a response with the right sequence id number using

listen_wait_for_seqid. Because we want requests within a session to be totally-ordered,

execution of a request is serialized with a lock.

Session Manager Library 101

type db_key
type db_val

type sm_req =
InitReq

| ReadReq of db_key
| WriteReq of db_key * db_val

type sm_res =
InitRes

| ReadRes of db_val
| WriteRes

let rec listen_wait_for_seqid skt seq_id =
let res_raw = listen_wait skt in
let res = deser_res (fst res_raw) in
let tag = fst res in
let vl = snd res in
if (tag = !seq_id) then
(seq_id := !seq_id + 1;
vl)

else
listen_wait_for_seqid skt seq_id

let session_exec skt seq_id lock server_addr req =
acquire lock;
let msg = ser_req req in
sendTo skt msg server_addr;
let res = listen_wait_for_seqid skt seq_id in
release lock;
res

let sm_setup client_addr =
let skt = socket () in
socketbind skt client_addr;
let seq_id = ref 0 in
let lock = newlock () in
let connect_fn server_addr =
session_exec skt seq_id lock server_addr InitReq;
()

in
let read_fn server_addr key =
session_exec skt seq_id lock server_addr (ReadReq key)

in
let write_fn server_addr key vl =
session_exec skt seq_id lock server_addr (WriteReq (key, vl));
()

in
(connect_fn, read_fn, write_fn)

Figure 5.6: Session manager stub. Runs client-side. Copied from Gondelman et al. [Gon+20].

Session Manager Library 102

let rec request_handler skt rd_fn wr_fn =
let req_raw = listen_wait skt in
let sender = snd req_raw in
let req = deser_req (fst req_raw) in
let seq_id = fst req in
let res =
match (snd req) with
| Some InitReq -> InitRes
| Some ReadReq k -> ReadRes (rd_fn k)
| Some WriteReq (k, v) -> wr_fn k v; WriteRes
| None -> assert false

in
sendTo skt (ser_res (seq_id, res)) sender;
request_handler skt rd_fn wr_fn

let server dbs db_id req_addr =
let fns = init dbs db_id in
let rd_fn = fst fns in
let wr_fn = snd fns in
let skt = socket () in
socketbind skt req_addr;
request_handler skt rd_fn wr_fn

Figure 5.7: Request handler. Runs server-side. Copied from Gondelman et al. [Gon+21].

Finally, the function sm_setup is the entry point the client calls to initialize the session

manager stub. The function takes a local socket address from which to connect to a server.

It then sets up some internal state, including the sequence id counter which is initialized to

0. sm_setup returns a 3-tuple with three closures: connect_fn, read_fn, and write_fn for

initializing a session, reading a key, and writing to a key. All these closures take as argument a

server_addr parameter with the address of the server to contact. The client is responsible for

selecting the right server: in the examples we show later the client always contacts the same

replica.

5.3.2 Request Handler

Figure 5.7 shows the code of the request handler, which runs server-side.

The function request_handler takes a socket on which to listen for requests and read

and write functions to access the database. It then loops waiting for a request. When one

is received, it is deconstructed and pattern matched against. For InitReq, the handler just

acknowledges receipt of the message. For ReadReq and WriteReq, the handler calls the read
or write functions on the database, and then sends a response possibly containing the return

value (for reads). The response is then sent to the client.

The server function initializes the database by calling the database’s init function [Gon+21].
It then obtains read and write functions to access the database. After setting up a socket to

listen on, the function calls request_handler.

Session Manager Specifications 103

SM-connect

{sai Z⇒ ΦDBi}

⟨ipclient; sconnect(ipi)⟩

{∃s.Seen(i, s) ∗∗k∈Keys ∃hk.Snap(k, hk) ∗ GlobalInv
NGI}

SM-read

{sai Z⇒ ΦDBi ∗ Seen(i, s) ∗ k ∈ Keys ∗ Snap(k, h)}
⟨ipclient; sread(ipi, k)⟩

{v.∃s′ ⊇ s, h′ ⊇ h. ∗ Seen(i, s′) ∗ Snap(k, h′)∗((
v = None ∗ s′|k = ∅

)
∨
(
∃a,w. v = Some w ∗ a.v = w ∗ a.k = k ∗ a ∈ Maximals(s′|k) ∗ ⌊a⌋ ∈ h′

))}
SM-write

{sai Z⇒ ΦDBi ∗ Seen(i, s) ∗ k ∈ Keys ∗ Snap(k, h)}
⟨ipclient; swrite(ipi, k, v)⟩

{∃a, s′ ⊆ s, h′ ⊆ h. a.k = k ∗ a.v = v ∗ Seen(i, s′) ∗ Snap(k, h′)

∗ a ̸∈ s ∗ a′ ∈ s′ ∗ ⌊a⌋ ̸∈ h ∗ ⌊a′⌋ ∈ h′ ∗ ⌊a⌋ ∈ Maximals(h′) ∗Maximum(s′) = Some a}
Figure 5.8: Session manager specifications. Copied from Gondelman et al. [Gon+21].

In summary, the session manager library provides a thin wrapper over the database so that

the latter can be used in a client-server setting.

5.4 Session Manager Specifications

The public session manager API consists of three functions: sconnect, sread, and swrite. 3

Within a session, the client is supposed to call connect once and then follow up with a series

of reads and writes. The intuition for the specifications of these three functions is a combi-

nation of two observations: (a) we would like to use only the persistent resources Seen(i, s)
and Snap(k, hk,) and (b) in every interaction with the database (whether a read or a write)

we “update” our understanding of the database’s current state. Within the logic, this update

happens by providing our “old” copy of Seen(i, s) and Snap(k, hk) and obtaining back fresher
copies Seen(i, s′) and Snap(k, h′k), where fresher means s ⊆ s′ and hk ⊆ h′k. In other words,

local and global snapshots are monotonically updated.

With this in mind, Figure 5.8 shows specifications for the session manager functions.

The specification for sconnect has one precondition: the proposition sai Z⇒ ΦDBi , mean-

ing that the socket address sai we are connecting to corresponds to replica running the ith

request handler (where request handler order is just the DB replica order). We will later ex-

plain the socket protocol ΦDBi . There is no physical return value, but there is a (purely logical)

postcondition granting knowledge of various facts. We learn that the database’s internal state

3

We use sread instead of read to differentiate between the session manager API and the database API.

Session Guarantees 104

is at least Seen(i, s) for some s. Additionally, we learn that for every key k there is a his-

tory of updates that includes at least hk. We also learn of the existence of the (opaque to the

client) global invariant GlobalInv
NGI

. Knowledge of the GlobalInv
NGI

is necessary to use

the resource lemmas (e.g. the causality lemma in Figure 5.3).

The specification for sread takes in its precondition four propositions: the socket inter-

pretation sai Z⇒ ΦDBi , local and global snapshots Seen(i, s) and Snap(k, h) (for the key k we

are reading), as well as knowledge that the key is valid. sread returns a value v and propo-

sitions Seen(i, s′) and Snap(k, h′), with s ⊆ s′ and h ⊆ h′. As explained, this represents

the fact that subsequent reads return values that are more up-to-date than what a client has

previously observed. Just like in the postcondition of the database’s read function, there are

two possibilities. Possibly the key has not been set, in which case v = None and the section

s′|k is empty. Alternatively, the returned value is Some w and the value w of the key comes

from an apply event a that is maximal. The erasure of a is present in the global snapshot.

Finally we describe the specification of swrite. The preconditions of swrite are the same

as those of sread. Similarly, in the postcondition we obtain updated resources Seen(i, s′) and
Snap(k, h′). We also know that the written pair (k, v) corresponds to an apply event a that

is new (was not previously present in h), but is now present in both s′ and h′. The usual

maximality conditions hold for a.

5.5 Session Guarantees

The session guarantees describe the relationship between reads and writes happening within

the same session. Our version of the guarantees are separation logic specifications for four

programs. Each program consists of a client connecting to the database and performing two

reads or writes (hence the four combinations):

Guarantee Program

Read Your Writes sconnect(ip); swrite(ip,k,v); sread(ip,k)

Monotonic Reads sconnect(ip); sread(ip,k); sread(ip,k)

Monotonic Writes sconnect(ip); swrite(ip,k1,v1); swrite(ip,k2,v2)

Writes Follow Reads sconnect(ip); sread(ip,k1); swrite(ip,k2,v)

Figure 5.9 shows specifications for each of the four guarantees. All four specifications take

as a precondition knowledge that we are connecting to a database replica, expressed via the

socket interpretation sai Z⇒ ΦDBi . The specifications have been simplified by omitting some

administrative network-related resources.

Read Your Writes The specification for RYW says that there are apply (local) events aw and

ar corresponding to the client’s write and read operations. These two events are recorded in

the local history Seen(i, s) (s is also existentially quantified). Crucially, the value vr returned
by the read (notice that the read cannot return None, since we have just written to the same

key) is not less recent than the written value: ¬(ar.t < aw.t). The event containing vr could
be the same, more recent, or concurrent compared to the write event.

Monotonic Reads The MR specification has a postcondition with three disjunctions, depend-

ing on which reads returned an empty result. In particular, notice the “missing” case because

Session Guarantees 105

SM-read-your-writes

{sai Z⇒ ΦDBi}

⟨ipclient; sconnect(ipi); swrite(ipi, k, vw); sread(ipi, k)⟩

{vo. ∃s, aw, ar, vr. vo = Some vr ∗ aw.k = k ∗ aw.v = vw ∗ ar.k = k ∗ ar.v = vr

∗ Seen(i, s) ∗ aw, ar ∈ s ∗ ¬(ar.t < aw.t)
}

SM-monotonic-reads

{sai Z⇒ ΦDBi}

⟨ipclient; sconnect(ipi); let v1 = sread(ipi, k) in let v2 = sread(ipi, k) in (v1, v2)⟩

{vo.
∃vo1, vo2. vo = (vo1, vo2)

∗



(∃s.vo1 = None ∗ vo2 = None ∗ Seen(i, s) ∗ s|k = ∅)

∨

(∃s, v2, a2.vo1 = None ∗ vo2 = Some v2 ∗ Seen(i, s)

∗ a2.k = k ∗ a2.v = v2 ∗ a2 ∈ Maximals(s|k))

∨

(∃s, v1, v2, a1, a2.vo1 = Some v1 ∗ vo2 = Some v2 ∗ Seen(i, s)

∗ a1.k = k ∗ a1.v = v1 ∗ a2.k = k ∗ a2.v = v2 ∗ a1 ∈ s ∗ a2 ∈ Maximals(s|k)

∗ ¬(a2.t < a1.t))


}

SM-monotonic-writes

{sai Z⇒ ΦDBi}

⟨ipclient; sconnect(ipi); swrite(ipi, k1, v1); swrite(ipi, k2, v2)⟩

{∃s1, a1, a2. a1.k = k1 ∗ a1.v = v1 ∗ a2.k = k2 ∗ a2.v = v2

∗ Seen(i, s1) ∗ a1, a2 ∈ s1 ∗ a1.t < a2.t

∗ (∀j, a, s2, a2.Seen(j, s2) ∗ a ∈ s2 ∗ a2.t ≤ a.t

≡−∗⊤ ∃a′1, a′2. ⌊a′1⌋ = ⌊a1⌋ ∗ ⌊a′2⌋ = ⌊a2⌋ ∗ a′1, a′2 ∈ s2 ∗ a′1.t < a′2.t)
}

SM-writes-follow-reads

{sai Z⇒ ΦDBi}

⟨ipclient; sconnect(ipi); let v = sread(ipi, kr) in swrite(ipi, kw, vw); v⟩

{vo. ∃s1, aw. aw.k = kw ∗ aw.v = vw ∗ Seen(i, s1) ∗ aw ∈ s1

∗



vo = None

∨

∃ar, vr. vo = Some vr ∗ ar.k = kr ∗ ar.v = vr ∗ ar ∈ s1 ∗ ar.t < aw.t

∗ (∀j, a, s2, a2.Seen(j, s2) ∗ a ∈ s2 ∗ aw.t ≤ a.t

≡−∗⊤ ∃a′r, a′w. ⌊a′r⌋ = ⌊ar⌋ ∗ ⌊a′w⌋ = ⌊aw⌋ ∗ a′r, a′w ∈ s2 ∗ a′r.t < a′w.t)

}
Figure 5.9: Session guarantees. Copied from Gondelman et al. [Gon+21].

Session Guarantees 106

if the first read returns a result then the key is populated, so the second read cannot return

None. The options are thus

• If both reads return empty, then the section s|k from the local snapshot Seen(i, s) must

be empty.

• If the first read returns something but the second one returns nothing, then all we know

is that the returned value is maximal.

• In the third case, let v1 and v2 be the values returned by the first and second read, re-

spectively. Let a1 and a2 be the corresponding apply events, both present in Seen(i, s).
Then again we can conclude that the second read corresponds to an event that is not

less recent than the event of the first read.

Monotonic Writes The specification for MW says that there are two events a1 and a2 cor-

responding to the first and second write, respectively. Because both writes happened in the

same session, we can conclude that the second one is strictly more recent than the first one:

a1.t < a2.t (in particular, we know they are not concurrent). We also know that both writes

are recorded at replica i because a1 and a2 are in Seen(i, s1).
Recall that the MW guarantee says that not only are the writes in the expected order at

the replica where they were executed, but that they are propagated in that same order by all

other replicas. This is reflected in the specification through the implication

∀j, a, s2, a2.Seen(j, s2) ∗ a ∈ s2 ∗ a2.t ≤ a.t

≡−∗⊤ ∃a′1, a′2. ⌊a′1⌋ = ⌊a1⌋ ∗ ⌊a′2⌋ = ⌊a2⌋ ∗ a′1, a′2 ∈ s2 ∗ a′1.t < a′2.t

What we are saying here is that for any replica j, if we can prove that its state includes

the snapshot Seen(j, s2) and there is an event a in s2 that is at least as recent as a2 (the event
corresponding to the second write), then events like a1 and a2 are also present in s2 and have
the right order. By “an event like a1” we mean an event a′1 whose erasure equals the erasure
of a1 (in particular, they have the same key and value). Finally, notice that this is not a regular

implication: instead it is a view shift≡−∗⊤. This is because in order to prove the implication we

need to use the causality lemma, which requires opening the global invariant GlobalInv
NGI

.

In other words, the MW specification says that if we wait long enough the two write events

will appear in any replica in the right order.

Writes Follow Reads The specification ofWFR has a postcondition containing the write event

aw ∈ s1, with Seen(i, s1). Then follows a disjunction:

• If the read returns None, then we do not learn anything else because there is no initial

read event.

• If the read returns a value vr , then we learn of the existence of a read event ar ∈ s1. We

also know that the read and write events are properly sequenced: ar.t < aw.t. Then
follows an implication identical to the monotonic writes example: this implication says

that the read event is executed before the write event in all nodes that are sufficiently

up-to-date.

Proving the Session Manager 107

5.5.1 Proving the Guarantees

Given the sessionmanager’s specifications, the proofs of the session guarantees follow straight-

forwardly by (1) obtaining initial local and global snapshots from the postcondition of sconnect
and (2) threading the local and global snapshots through calls to sread and swrite. We show

the proof outline for MW:

{sai Z⇒ ΦDBi}
⟨ipclient; sconnect(ipi)⟩

{Seen(i, s) ∗∗k∈Keys ∃hk.Snap(k, hk) ∗ GlobalInv
NGI}

{Snap(k1, hk1)}
⟨ipclient; swrite(ipi, k1, v1)⟩

{Seen(i, s′) ∗ Snap(k1, h′k1) ∗ s ⊆ s′ ∗ hk1 ⊆ h′k1
a1 ∈ s′ ∗ ⌊a1⌋ ∈ h′k1 ∗ a1.k = k1 ∗ a1.v = v1 }

{Snap(k2, hk2)}
⟨ipclient; swrite(ipi, k2, v2)⟩

{Seen(i, s′′) ∗ Snap(k2, h′k2) ∗ s
′ ⊆ s′′ ∗ hk2 ⊆ h′k2

a2 ∈ s′′ ∗ a2 ∈ h′k2 ∗ a2.k = k2 ∗ a2.v = v2 ∗Maximum(s′′) = Some a2
a1 ∈ s′′ ∗ a1.t < a2.t

}
At this point, we are left with proving the implication

∀j, a, s2, a2.Seen(j, s2) ∗ a ∈ s2 ∗ a2.t ≤ a.t

≡−∗⊤ ∃a′1, a′2. ⌊a′1⌋ = ⌊a1⌋ ∗ ⌊a′2⌋ = ⌊a2⌋ ∗ a′1, a′2 ∈ s2 ∗ a′1.t < a′2.t

This follows by two applications of the causality lemma (Figure 5.3) and the properties of

erasure. To apply causality we need the global invariant, but we know of it from the postcon-

dition of sconnect.

5.6 Proving the Session Manager

The session manager’s safety proof can be conceptually divided into three parts: the proofs of

the request handler and client stub, and the definition of the socket protocol that acts as “glue”

between the previous two components (and allows their modular verification).

5.6.1 Ghost State

Before we can tackle the socket protocol we need to define some auxiliary ghost state, i.e.

logical state used solely to reason about the program. The intuition is that we use the ghost

state to track the correspondence between a sequence ID and the associated client request.

Figure 5.10 shows the definition of logical requests and associated ghost state. A logi-

cal request has type SMReq, which is a tagged union, and is either a connection request, a

read request, or a write request. A connection request ConnReq(i) models the start of a ses-

sion tethered to the ith replica. A read request ReadReq(i, k, s, h) reads key k from the ith

replica. It also includes the previously observed local and global snapshots, so that the server

Proving the Session Manager 108

Logical requests

SMReq ≜ ConnReq(i) ∈ N
⊎ ReadReq(i, k, s, h) ∈ N×Keys× LocalHistory× GlobalMemory

⊎WriteReq(i, k, v, s, h) ∈ N×Keys× Value×LocalHistory× GlobalMemory

Mapping of sequence ids to requests

SeqId ≜ N
ReqMap ≜ Auth(Map(SeqId,Agree(SMReq)))

x ∈ ReqMap =⇒ x =

{
•m mapping is exactly m

◦m mapping is at least (includes)m

IsReq(γ, n, r) ≜ ◦ReqMap {n 7→ ag(r)} γ

Properties of request resources

persistent(IsReq(γ, n, r)) (ReqPers)

⊤ ⊢ |⇛∃γ. •ReqMap ∅
γ

(ReqInit)

IsReq(γ, n, r) ∗ IsReq(γ, n, r′) ⊢ r = r′ (ReqAgree)

n ̸∈ keys(m) ∗ •ReqMapm
γ ⊢ |⇛ •ReqMap (m ∪ {n 7→ ag(r)}) γ ∗ IsReq(γ, n, r) (ReqAlloc)

•ReqMapm
γ ∗ IsReq(γ, n, r) ⊢ n ∈ keys(m) (ReqElem)

Figure 5.10: Requests and associated resources.

can reply with a proof that the new snapshots are a superset of the old ones. A write re-

quest WriteReq(i, k, v, s, h) writes value v to key k at the ith replica. It too includes snapshot

information.

Next we define the ghost state for tracking sequence ids, natural numbers, to the corre-

sponding requests. We build our ghost state using standard Iris combinators [BB17]. The

resource algebra ReqMap of request maps is

Auth(Map(SeqId,Agree(SMReq)))

The elements of this resource algebra are either full parts of the form •m or fragmental parts

of the form ◦m. The extension order ⪯ of the underlying maps is given by m1 ⪯ m2 if

keys(m1) ⊆ keys(m2) and both maps agree on the mapped values for the set of common

keys. The agreement is enforced by the agreement construction Agree(SMReq): ag(r) is the
constructor that injects a request into this resource algebra.

We then define the request resource IsReq(γ, n, r). Intuitively, this proposition says that r
is the nth request issued by a client. The resource is defined as the fragmental part containing

the singleton map ◦ReqMap {n 7→ ag(r)} γ
.

Finally, we prove a number of lemmas about the request resource. (ReqPers) says that

IsReq(γ, n, r) is persistent, so it can duplicated. This is useful because in the proof the client

will “send” a copy of IsReq(γ, n, r) as a certificate that r really is the nth request; the cer-

tificate will then be returned by the server. (ReqInit) shows we can initialize the full part of

Proving the Session Manager 109

the resource with the empty map of requests. (ReqAgree) shows that there can only be one

request with sequence number n: this is also crucial for matching up the server’s responses

with the client’s requests. (ReqAlloc) shows that we can allocate a new request by picking a

new sequence ID. Finally, (ReqElem) shows that a certified request has necessarily been seen

before.

5.6.2 Socket Protocol

Recall that a socket protocol is a predicate on messages that must be satisfied by all messages

received at a socket address (modulo duplicated messages). One can think of the socket pro-

tocol in a dual way: from the sender’s perspective, the protocol is a proof obligation; from

the receiver’s perspective, it is an assumption. Figure 5.11 shows the definition of the socket

protocols for the request handler and client stub.

We first define the set of logical responses as a tagged union. Notice that only reads include

extra information in a response: the value v that was read. The responses for starting a session
and writing to the database are just acknowledgements that the operation has completed (but

they do communicate additional logical information, such as the knowledge of local and global

snapshots).

The request handler uses as family of socket protocols ΦDBi , parameterized on the replica

ID i. The protocol says that we can assume that the sender of the message uses a socket

protocol ψ. We also require a certificate IsReq(γ, n, r) showing that the request was made by

the client stub (who as we will see produces these request resources). Based on the kind of

request we receive, we then compute a pair (P,Q) of pre- and post-conditions for the request.
The request handler can assume P and will need to prove Q(q) in order to reply to the client,

where q is the response to the request. This is expressed via the proposition

�

(
∀mres, q. IsValidRes(mres, n, q) ∗ IsReq(γ, n, r) ∗ ReqResMatch(r, q) ∗

Q(q) ∗ ψ(mres)

)
This proposition says that for all responses mres, provided that Q(q) (the postcondition), to-
gether with some other facts, holds then we know the client’s socket protocol ψ(mres) holds
of the response. In other words, we can respond to the client provided we know Q(q). Notice
also that we need to “send back” a copy of IsReq(γ, n, r): this is so the client can match their

request to the response. Additionally, notice that the entire proposition is under the persis-

tently modality. Intuitively, this means when replying to the client we need to prove Q(q)
using only persistent propositions. The reason for using the persistently modality is that it

makes the verification of the request handler easier: specifically, we can “remember” (by du-

plicating the above proposition) what form an answer to a request should have, even if the

request is duplicated.

Finally, to compute the pre- and post-conditions for a request, we pattern match on the

request type. The preconditions include the local and global snapshots, so we can prove that

the response is more up-to-date than the request. The postconditions are exactly the postcon-

ditions used by the session manager specifications in Figure 5.8.

The client’s socket protocol Φclientγ is parameterized on the ghost name γ (created by the

client when allocating the ghost state for tracking the mapping of sequence IDs to requests).

This socket protocol requires the certificate IsReq(γ, n, r) and then connects the request r to
a response q (corresponding to mres), and then in turn connects q to the appropriate session

manager postcondition from Figure 5.8.

Proving the Session Manager 110

Logical responses

SMRes ≜ ConnRes() ⊎ ReadRes(v) ⊎WriteRes()

Request handler’s (server) socket protocol

ψ client’s socket protocol

n request sequence id

γ client-supplied ghost name

r, q logical request and response

m,mres physical request and response

P,Q pre and post conditions obtained from the request

ΦDBi(m) ≜ ∃ψ, n, γ, r, P,Q.
m.orig Z⇒ ψ ∗ IsValidReq(m.body, n, r) ∗ IsReq(γ, n, r) ∗ ReqDb(r) = i ∗
(P,Q) = SelectPrePost(r) ∗
P ∗

�

(
∀mres, q. IsValidRes(mres, n, q) ∗ IsReq(γ, n, r) ∗ ReqResMatch(r, q) ∗

Q(q) ∗ ψ(mres)

)

SelectPrePost(ConnReq(i)) = (⊤, λq.ConnectPost(i))

SelectPrePost(ReadReq(i, k, s, h)) =

(
k ∈ Keys ∗ Seen(i, s) ∗
Snap(k, h)

, λq.
∃v. q = ReadRes(v)∗

ReadPost(i, k, s, h, v)

)

SelectPrePost(WriteReq(i, k, v, s, h)) =

(
k ∈ Keys ∗ Seen(i, s) ∗
Snap(k, h)

, λ_.WritePost(i, k, v, s, h)

)
IsValidReq(s, n, r) ≜

Does themessage body s contain the logical request
r with sequence number n?

ReqResMatch(r, q) ≜ Does the request r match the response q?

ReqDb(r) ≜ The replica ID for request r.

ConnectPost, ReadPost, WritePost ≜ postconditions in Figure 5.8

Client stub’s socket protocol

Φclientγ (m) ≜ ∃n, r, q, v.
IsValidRes(m.body, n, q) ∗ IsReq(γ, n, r) ∗ ReqResMatch(r, q) ∗
SelectResPost(r, q, v)

SelectResPost(ConnReq(i), q, v) = ConnectPost(i)

SelectResPost(ReadReq(i, k, a, h), q, v) = (q = ReadRes(v) ∗ ReadPost(i, k, a, h, v))
SelectResPost(WriteReq(i, k, v, a, h), q, v) = WritePost(i, k, v, s, h)

IsValidRes(s, n, q) ≜
Does the message body s contain the logical re-

sponse q with sequence number n?

Figure 5.11: Client and server socket protocols

Proving the Session Manager 111

5.6.3 Request Handler Proof

Recall that the request handler (Figure 5.7) consists of set up code that initializes the database

replica, obtains accessors for reading and writing to the database, and then enters an infinite

“loop” (implemented via recursion) waiting for requests and then replying to them.

We do not show the full proof of the request handler, but instead highlight a few key ideas:

• Just like at the implementation level the request handler is a thin layer over the dis-

tributed database, its correctness proof “just” re-arranges the pre- and post-conditions

of the database specifications to meet the handler’s specifications. For example, the ses-

sion manager functions require that we “grow” the local and global snapshots Seen(i, a)
and Snap(k, h) into snapshots Seen(i, a′) and Snap(k, h′) with a ⊆ a′ and h ⊆ h′.
Examining the database’s read and write specifications in Figure 5.4, notice that they

already take a local snapshot in the precondition and return an updated copy. To grow

the global snapshot we use the (Take Snap) lemma (Figure 5.3) to turn a user points-to

k ⇀u h
′′⊎{w} into the persistent predicate Snap(k, h′′⊎{w}), and then use the (Snap

Union) lemma to obtain Snap(k, h) ∗ Snap(k, h′′ ⊎ {w}) ⊢ Snap(k, h ∪ h′′ ⊎ {w}). We

can then let h′ = h ∪ h′′ ⊎ {w} as needed.

• Related to the previous point, notice that in order to execute a write operations against

key k of the database we need the exclusive resource k ⇀u h. This resource is not

provided by the session manager, because the latter uses online persistent resources. To

that effect we maintain a memory invariant MemInv
NMI

:

MemInv ≜∗k∈Keys ∃hk.k ⇀u hk

That is, we keep all the points-to resources for the database in an invariant: the request

handler can then open the invariant and retrieve the right points-to when writing to the

local replica.

• Finally, in order to verify the infinite loop in the request handler we use a loop invariant:

LI ≜ ∃R, T. sa⇝ (R, T) ∗∗m∈R ΦDBi(m)

The invariant says that the set of messages received at socket address sa (on which the

request handler is communicating) isR. Furthermore, for every received messagemwe

know that ΦDBi(m) holds. In particular, we know that we can respond to the sender of

the request by satisfying the post-condition in ΦDBi . This means we can respond just by

forwarding the operation to the database and returning whatever the database returned.

Recall that the post-condition ofΦDBi is under the persistently modality, so we can reuse

the post-condition as needed to reply to duplicated messages.

5.6.4 Client Stub Proof

Themain challenge in verifying the client stub is in building a logical notion of session. Specif-

ically, once we send a request to the server, we need a way to correlate that sent request to

the response provided by the server. We build the logical session using the authoritative re-

source •ReqMapm. Herem is a map from sequence IDs (natural numbers) to associated logical

requests. In particular, the entry in the map with the highest sequence ID corresponds to the

Proving the Session Manager 112

last (in-flight) request, which is the one for which we need an answer (by the time we are send-

ing request n all requests numbered less than n have already been answered). We link the map

m to the client’s physical state via a lock invariant isLock(ip, ℓsid, LockInvip(ℓsid, γ, z, a)). The
isLock predicate is standard from Iris [BB17], and should be read as saying that at node ip the

memory location ℓsid is protectedwith a lock that guarantees the proposition LockInvip(ℓsid, γ, z, a).
When a thread acquires the lock, it gains access to the guarded proposition. Dually, to release

the lock we have to prove that the guarded proposition continues to hold. The LockInv is

defined thus:

LockInvip(ℓsid, γ, z, sa) ≜ ∃n,m,R, S.
ℓsid 7→ip n ∗ •ReqMapm

γ ∗ (∀m ≥ n,m ̸∈ dom(m)) ∗
z

ip
↪−→ socket sa ∗ sa⇝ (R, T) ∗

∗msg∈R ∃n′, q.IsValidRes(msg.body, n′, q) ∗ n′ < n

The lock invariant says that there is a current sequence number n, a request map m, and

received and transmitted message sets R and T such that the memory location ℓsid points to
n and the mapm does not include any requests with sequence number greater than or equal

to n. We also assert ownership of the full part •ReqMapm. Intuitively, this means the client

know exactly the set of previously-issued requests (this makes sense because it is the client

that issued said requests). The invariant says that the socket handle z points to the socket

with address sa and that on address sa we have sent and received the sets of messages R and

T , respectively. Finally, we assert that all received messages correspond to valid responses to

some request, but crucially all the already-received responses have sequence number strictly

less than n.

listen_wait_for_seqid The helper listen_wait_for_seqid s n loops until a responsewith
sequence ID n is received. To verify it we require in the precondition of the function the cer-

tificate IsReq(γ, n, r) indicating that the current request is r. We also get to assume the lock

invariant, since by the time we enter this function session_exec has acquired the lock. The

postcondition of the function is the preserved lock invariant together with knowledge that

the response satisfies the postcondition of the appropriate session manager API (i.e. connect,

read, or write, depending on the type of response). After receiving a message, we consider two

cases:

• If the message’s sequence ID is not n, then we can proceed by Löb induction.

• If the sequence ID is n, then again we consider two cases:

– If the receivedmessagemsg is new, thenwe can assume the socket protocolΦclienti(msg),
which already implies the postcondition of the session manager API. However, we

still need to know that the message we received is a response to the same request

that we issued. We do so issuing the (ReqAgree) property from Figure 5.10 and we

are done.

– If the received message is not new, then we use the part of the lock invariant that

says that all previously-received messages have sequence number< n, arriving at
a contradiction.

Related Work 113

session_exec The session_exec function acquires the lock, sends appropriate request to

the server, waits for a response using listen_wait_for_seqid then releases the lock. To ver-

ify this function, we take as a precondition all propositions needed to send a message (e.g.

Seen(i, s) and Snap(k, h)). Before sending amessage, we use the (ReqAlloc) lemma Figure 5.10

to insert a new key in the mapm corresponding to the new message being created. (ReqAlloc)

gives us the certificate IsReq(γ, n, r) needed for the server’s socket protocol. After calling

listen_wait_for_seqid we can assume the latter’s postcondition, which implies the post-

conditions of the session manager functions. In order to release the lock we need to prove

that the lock invariant continues to hold. This is the case because, among others, not only did

we allocate a new logical request, but we also incremented the sequence ID pointer inside the

session manager.

sm_setup The verification of sm_setup is straightforward since all we need to do is allocate

a few logical resources (e.g. for the lock) and call session_exec, which does the heavy lifting.

5.7 Related Work

The four session guarantees were introduced in Terry et al. [Ter+94] as a way for clients to

selectively-strengthen theweak-consistency guarantees of their Bayou replicated database [Pet+96].

In addition to defining the guarantees, they also show how to implement them, both naively

and more efficiently using version vectors.

A number of papers have formally defined session guarantees in terms of event histo-

ries [BSW04; ZW10], as well explored the relation between the guarantees and PRAM [BSW03]

and causal consistency [BSW04].

Client-centric consistency has experience somewhat of a renaissance with the adoption of

cloud storage and NoSQL solutions [Vog09]. These systems usually implement some form of

eventual consistency, which might or might not imply the session guarantees. Some of these

systems do not explicitly advertise support for specific session guarantees, but nevertheless

support them in practice, at least for a percentage of requests or in “typical” scenarios (e.g.

absent server failures) [BK13].

Because the session guarantees are designed so they can be observed by clients, they are

amenable to benchmarking by client code [BT11; Wad+11]. Viewed from this perspective,

support for a consistency guarantee is not a binary question, but instead a quantifiablemeasure

that is more akin to system availability. For example, Bermbach and Tai [BT11] show that, as

of 2011, 12% of reads to Amazon S3 violated monotonic reads.

The related work section of the paper that this chapter is based on [Gon+21] lists multiple

formal method techniques that target verification of weakly-consistent data stores [CBG15;

Got+16; Kak+18; LBC16]. None of these specify or verify session guarantees.

5.8 Conclusions

We have shown four session guarantees that apply to Gondelman et al. [Gon+21]’s causally

consistent database. We did so by implementing and verifying a session manager library that

uses Gondelman et al. [Gon+21]’s distributed database in a client-server setting. The session

guarantees then follow as four example clients that use the session manager. Ours is the first

formal treatment of session guarantees that we are aware of, and in line with prior work

Conclusions 114

our results confirm that causal consistency implies all four session guarantees. This serves as

evidence that Gondelman et al. [Gon+21]’s definition of causality in separation logic accurately

captures the essence of causal consistency.

Future Work Our session manager specifications use only persistent resources. This opens

up the window for automatic verification of clients of the session manager, since ephemeral

resources are harder to work with, and so some clients of the session manager might not need

the full power of separation logic.

As previously mentioned, our sessions make the simplifying assumption that a client only

connects to one server. It would be interesting to relax this assumption; in order to do so we

would need to change the implementation of Gondelman et al. [Gon+21]’s causally consistent

database so that database operations return the associated vector clocks. Exposing vector clock

would in turn allow us to extend the session manager with replica selection logic.

Bibliography

[Aha+95] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and

Phillip W. Hutto. “Causal Memory: Definitions, Implementation, and

Programming”. In: Distributed Comput. 9.1 (1995), pp. 37–49. doi:

10.1007/BF01784241 (cit. on pp. 4, 31, 91).

[ASB18] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. “Delta state replicated

data types”. In: J. Parallel Distributed Comput. 111 (2018), pp. 162–173. doi:

10.1016/j.jpdc.2017.08.003 (cit. on p. 11).

[App01] Andrew W Appel. “Foundational proof-carrying code”. In: Proceedings 16th

Annual IEEE Symposium on Logic in Computer Science. IEEE. 2001, pp. 247–256

(cit. on p. 22).

[Att+16] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison,

Hongseok Yang, and Marek Zawirski. “Specification and Complexity of

Collaborative Text Editing”. In: ACM Symposium on Principles of Distributed

Computing. PODC 2016. ACM, July 2016, pp. 259–268. doi:

10.1145/2933057.2933090 (cit. on p. 19).

[Bai+13] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. “Bolt-on causal

consistency”. In: Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. 2013,

pp. 761–772. doi: 10.1145/2463676.2465279 (cit. on p. 31).

[BAS14] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. “Making operation-based

CRDTs operation-based”. In: Proceedings of the First Workshop on the Principles

and Practice of Eventual Consistency, PaPEC@EuroSys 2014, April 13, 2014,

Amsterdam, The Netherlands. Ed. by Marc Shapiro. ACM, 2014, 7:1–7:2. doi:

10.1145/2596631.2596632 (cit. on pp. 12, 23, 32, 37–39, 43, 45, 46).

[BK13] David Bermbach and Jörn Kuhlenkamp. “Consistency in distributed storage

systems: An overview of models, metrics and measurement approaches”. In:

Networked Systems: First International Conference, NETYS 2013, Marrakech,

Morocco, May 2-4, 2013, Revised Selected Papers. Springer. 2013, pp. 175–189

(cit. on p. 113).

[BT11] David Bermbach and Stefan Tai. “Eventual consistency: How soon is eventual?

An evaluation of Amazon S3’s consistency behavior”. In: Proceedings of the 6th

Workshop on Middleware for Service Oriented Computing. 2011, pp. 1–6 (cit. on

p. 113).

[BB17] Lars Birkedal and Ales Bizjak. “Lecture Notes on Iris: Higher-Order Concurrent

Separation Log”. In: (2017) (cit. on pp. 18, 23, 45, 48, 52, 85, 108, 112).

115

https://doi.org/10.1007/BF01784241
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1145/2933057.2933090
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2596631.2596632

Bibliography 116

[BSS91] Kenneth Birman, Andre Schiper, and Pat Stephenson. “Lightweight Causal and

Atomic Group Multicast”. In: ACM Transactions on Computer Systems (TOCS) 9.3

(1991), pp. 272–314. doi: 10.1145/128738.128742 (cit. on pp. 3, 22, 23, 39, 40, 63).

[Bir86] Kenneth P. Birman. ISIS: A System for Fault-Tolerant Distributed Computing.

Tech. rep. USA, 1986 (cit. on p. 3).

[BSW03] Jerzy Brzezinski, Cezary Sobaniec, and Dariusz Wawrzyniak. “Session

guarantees to achieve PRAM consistency of replicated shared objects”. In:

International Conference on Parallel Processing and Applied Mathematics.

Springer. 2003, pp. 1–8 (cit. on p. 113).

[BSW04] Jerzy Brzezinski, Cezary Sobaniec, and Dariusz Wawrzyniak. “From Session

Causality to Causal Consistency”. In: PDP. IEEE Computer Society, 2004,

pp. 152–158 (cit. on pp. 25, 99, 113).

[Bur+14] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.

“Replicated Data Types: Specification, Verification, Optimality”. In: 41st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL

2014. ACM, Jan. 2014, pp. 271–284. doi: 10.1145/2535838.2535848 (cit. on
pp. 19–23, 32, 37, 46, 49, 56, 57, 60, 64, 65, 88).

[CGR11] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. “Introduction to

Reliable and Secure Distributed Programming”. In: Springer Science & Business

Media, 2011. Chap. 3 (cit. on pp. 32, 35, 38, 39, 41).

[CBG15] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. “A Framework for

Transactional Consistency Models with Atomic Visibility”. In: 26th International

Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4,

2015. 2015, pp. 58–71. doi: 10.4230/LIPIcs.CONCUR.2015.58 (cit. on p. 113).

[Cha+19] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich.

“Verifying concurrent, crash-safe systems with Perennial”. In: Proceedings of the

27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON,

Canada, October 27-30, 2019. Ed. by Tim Brecht and Carey Williamson. ACM,

2019, pp. 243–258. doi: 10.1145/3341301.3359632 (cit. on p. 43).

[Cha+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,

Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and

Robert E. Gruber. “Bigtable: A Distributed Storage System for Structured Data”.

In: ACM Trans. Comput. Syst. 26.2 (2008), 4:1–4:26. doi:

10.1145/1365815.1365816 (cit. on p. 31).

[CD10] Kristina Chodorow and Michael Dirolf. MongoDB - The Definitive Guide:

Powerful and Scalable Data Storage. O’Reilly, 2010 (cit. on p. 31).

[Dan+22] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen,

William Mansky, Jeehoon Kang, and Derek Dreyer. “Compass: strong and

compositional library specifications in relaxed memory separation logic”. In:

Proceedings of the 43rd ACM SIGPLAN International Conference on Programming

Language Design and Implementation. 2022, pp. 792–808 (cit. on p. 88).

[DFG22] Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. “VeriFx: Correct

Replicated Data Types for the Masses”. In: (July 2022). eprint: 2207.02502
(cit. on pp. 19, 20).

https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/1365815.1365816
2207.02502

Bibliography 117

[Del+16] Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and

Anindya Banerjee. “Concurrent data structures linked in time”. In: arXiv

preprint arXiv:1604.08080 (2016) (cit. on p. 88).

[DSM18] Stephen Dolan, K. C. Sivaramakrishnan, and Anil Madhavapeddy. “Bounding

data races in space and time”. In: PLDI. ACM, 2018, pp. 242–255 (cit. on p. 75).

[Fid87] Colin J Fidge. “Timestamps in Message-Passing Systems That Preserve the

Partial Ordering”. In: (1987) (cit. on p. 40).

[GL02] Seth Gilbert and Nancy A. Lynch. “Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services”. In: SIGACT News 33.2

(2002), pp. 51–59. doi: 10.1145/564585.564601 (cit. on pp. 5, 30).

[Gom+17] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and

Alastair R. Beresford. “Verifying Strong Eventual Consistency in Distributed

Systems”. In: Proc. ACM Program. Lang. 1.OOPSLA (2017), 109:1–109:28. doi:

10.1145/3133933 (cit. on pp. 19, 20, 22, 57, 63, 65).

[Gon+20] Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and

Lars Birkedal. Distributed Causal Memory: Modular Specification and Verification

in Higher-Order Distributed Separation Logic - Technical Appendix. 2020 (cit. on

pp. 27, 91, 101).

[Gon+21] Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and

Lars Birkedal. “Distributed Causal Memory: Modular Specification and

Verification in Higher-Order Distributed Separation Logic”. In: Proc. ACM

Program. Lang. 5.POPL (2021), pp. 1–29. doi: 10.1145/3434323 (cit. on pp. 13,

21–27, 36, 42, 44, 45, 59, 68, 72, 78, 81, 82, 88, 89, 91–96, 98, 100, 102, 103, 105, 113,

114).

[Got+16] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and

Marc Shapiro. “’Cause I’m strong enough: reasoning about consistency choices

in distributed systems”. In: Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2016, St. Petersburg, FL, USA, January 20 - 22, 2016. Ed. by Rastislav Bodík and

Rupak Majumdar. ACM, 2016, pp. 371–384. doi: 10.1145/2837614.2837625
(cit. on pp. 19, 20, 113).

[HW90] Maurice Herlihy and Jeannette M. Wing. “Linearizability: A Correctness

Condition for Concurrent Objects”. In: ACM Trans. Program. Lang. Syst. 12.3

(1990), pp. 463–492. doi: 10.1145/78969.78972 (cit. on pp. 30, 43).

[Jun+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,

and Derek Dreyer. “Iris from the ground up: A modular foundation for

higher-order concurrent separation logic”. In: J. Funct. Program. 28 (2018), e20.

doi: 10.1017/S0956796818000151 (cit. on pp. 13, 18, 34, 37, 66, 78, 83).

[Jun+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,

Lars Birkedal, and Derek Dreyer. “Iris: Monoids and Invariants as an Orthogonal

Basis for Concurrent Reasoning”. In: Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2015, Mumbai, India, January 15-17, 2015. 2015, pp. 637–650. doi:

10.1145/2676726.2676980 (cit. on pp. 23, 43).

https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3434323
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/78969.78972
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980

Bibliography 118

[Kak+18] Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan.

“Alone together: compositional reasoning and inference for weak isolation”. In:

Proc. ACM Program. Lang. 2.POPL (2018), 27:1–27:34. doi: 10.1145/3158115
(cit. on p. 113).

[Kle+18] Martin Kleppmann, Victor B F Gomes, Dominic P Mulligan, and

Alastair R Beresford. “OpSets: Sequential Specifications for Replicated Datatypes

(Extended Version)”. In: (May 2018). eprint: 1805.04263 (cit. on p. 20).

[Kre+18a] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,

Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer.

“MoSeL: a general, extensible modal framework for interactive proofs in

separation logic”. In: PACMPL 2.ICFP (2018), 77:1–77:30. doi: 10.1145/3236772
(cit. on pp. 13, 28).

[Kre+18b] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,

Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer.

“MoSeL: a general, extensible modal framework for interactive proofs in

separation logic”. In: Proc. ACM Program. Lang. 2.ICFP (2018), 77:1–77:30. doi:

10.1145/3236772 (cit. on p. 18).

[KTB17] Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive proofs in

higher-order concurrent separation logic”. In: Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,

France, January 18-20, 2017. 2017, pp. 205–217 (cit. on p. 18).

[Kro+20] Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch,

Simon Oddershede Gregersen, and Lars Birkedal. “Aneris: A Mechanised Logic

for Modular Reasoning about Distributed Systems”. In: Programming Languages

and Systems - 29th European Symposium on Programming, ESOP 2020, Held as

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2020, Dublin, Ireland, April 25-30, 2020, Proceedings. 2020, pp. 336–365. doi:

10.1007/978-3-030-44914-8_13 (cit. on pp. 3, 13, 18, 22, 33, 34, 65, 66).

[Lad+22] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and

Joseph M. Hellerstein. “Katara: Synthesizing CRDTs with Verified Lifting”. In:

Proceedings of the ACM on Programming Languages 6.OOPSLA2 (Oct. 2022),

pp. 1349–1377. doi: 10.1145/3563336. eprint: 2205.12425 (cit. on pp. 19, 20).

[Lam78] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed

System”. In: Commun. ACM 21.7 (1978), pp. 558–565. doi:

10.1145/359545.359563 (cit. on pp. 3, 11, 32, 63).

[Lam79] Leslie Lamport. “How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs”. In: IEEE Trans. Computers 28.9 (1979),

pp. 690–691 (cit. on p. 4).

[LAB19] Adriaan Leijnse, Paulo Sérgio Almeida, and Carlos Baquero. “Higher-Order

Patterns in Replicated Data Types”. In: PaPoC@EuroSys. ACM, 2019, 5:1–5:6. doi:

10.1145/3301419.3323971 (cit. on pp. 20, 37, 38, 49, 64, 65, 88).

https://doi.org/10.1145/3158115
1805.04263
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/3563336
2205.12425
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3301419.3323971

Bibliography 119

[LBC16] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. “Chapar: certified causally

consistent distributed key-value stores”. In: Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2016, St. Petersburg, FL, USA, January 20 - 22, 2016. 2016, pp. 357–370. doi:

10.1145/2837614.2837622 (cit. on p. 113).

[Li+14] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and

Viktor Vafeiadis. “Automating the Choice of Consistency Levels in Replicated

Systems”. In: USENIX Annual Technical Conference. ATC 2014. USENIX, June

2014, pp. 281–292 (cit. on pp. 19, 20).

[LF21] Hongjin Liang and Xinyu Feng. “Abstraction for Conflict-Free Replicated Data

Types”. In: PLDI ’21: 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, Virtual Event, Canada, June

20-25, 20211. Ed. by Stephen N. Freund and Eran Yahav. ACM, 2021, pp. 636–650.

doi: 10.1145/3453483.3454067 (cit. on pp. 19–22, 33, 57, 58, 65).

[LZ74] Barbara H. Liskov and Stephen N. Zilles. “Programming with Abstract Data

Types”. In: SIGPLAN Symposium on Very High Level Languages. ACM, 1974,

pp. 50–59 (cit. on pp. 12, 64).

[Liu+20] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and

Niki Vazou. “Verifying Replicated Data Types with Typeclass Refinements in

Liquid Haskell”. In: Proc. ACM Program. Lang. 4.OOPSLA (2020), 216:1–216:30.

doi: 10.1145/3428284 (cit. on pp. 19, 20, 38, 57, 58, 65).

[Llo+11] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.

“Don’t settle for eventual: scalable causal consistency for wide-area storage with

COPS”. In: Proceedings of the 23rd ACM Symposium on Operating Systems

Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011. 2011,

pp. 401–416. doi: 10.1145/2043556.2043593 (cit. on pp. 31, 93).

[Lyn96] Nancy A Lynch. Distributed algorithms. Elsevier, 1996 (cit. on p. 3).

[Mat+88] Friedemann Mattern et al. Virtual Time and Global States of Distributed Systems.

Univ., Department of Computer Science, 1988 (cit. on p. 40).

[NJ19] Kartik Nagar and Suresh Jagannathan. “Automated Parameterized Verification

of CRDTs”. In: CAV (2). Vol. 11562. Lecture Notes in Computer Science. Springer,

2019, pp. 459–477 (cit. on pp. 57, 59, 63, 65).

[NPS20] Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. “Proving the Safety of

Highly-Available Distributed Objects”. In: Programming Languages and Systems -

29th European Symposium on Programming, ESOP 2020, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2020,

Dublin, Ireland, April 25-30, 2020, Proceedings. Ed. by Peter Müller. Vol. 12075.

Lecture Notes in Computer Science. Springer, 2020, pp. 544–571. doi:

10.1007/978-3-030-44914-8_20 (cit. on pp. 19, 20, 57, 63, 65, 89).

[Nan] Aleksandar Nanevski. Separation logic and concurrency. Oregon programming

languages summer school, 2016 (cit. on p. 88).

https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1145/3428284
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1007/978-3-030-44914-8_20

Bibliography 120

[Nie+23] Abel Nieto, Arnaud Daby-Seesaram, Léon Gondelman, Amin Timany, and

Lars Birkedal. “Modular Verification of State-Based CRDTs in Separation Logic”.

In: 37th European Conference on Object-Oriented Programming. ECOOP 2023.

Schloss Dagstuhl, July 2023. doi: 10.4230/LIPIcs.ECOOP.2023.12 (cit. on
pp. 13, 27, 62).

[Nie+22] Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, and Lars Birkedal.

“Modular verification of op-based CRDTs in separation logic”. In: Proc. ACM

Program. Lang. 6.OOPSLA2 (2022), pp. 1788–1816 (cit. on pp. 13, 27, 30, 65,

67–73, 77, 78, 81, 82, 87–90).

[Pet+96] Karin Petersen, Mike Spreitzer, Douglas Terry, and Marvin Theimer. “Bayou:

replicated database services for world-wide applications”. In: Proceedings of the

7th workshop on ACM SIGOPS European workshop: Systems support for worldwide

applications. 1996, pp. 275–280 (cit. on p. 113).

[Red+22] Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper. “Verified Causal

Broadcast with Liquid Haskell”. In: arXiv preprint arXiv:2206.14767 (2022). doi:

10.48550/arXiv.2206.14767 (cit. on pp. 59, 60).

[Rey02] John C Reynolds. “Separation logic: A logic for shared mutable data structures”.

In: Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. IEEE.

2002, pp. 55–74 (cit. on p. 13).

[Ros96] A. W. Roscoe. “Intensional Specifications of Security Protocols”. In: CSFW. IEEE

Computer Society, 1996, pp. 28–38 (cit. on p. 48).

[Sha+11a] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A

comprehensive study of Convergent and Commutative Replicated Data Types.

Research Report 7506. INRIA, Jan. 2011 (cit. on pp. 5, 11, 19, 31, 32, 38, 46, 68, 73).

[Sha+11b] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski.

“Conflict-Free Replicated Data Types”. In: Stabilization, Safety, and Security of

Distributed Systems - 13th International Symposium, SSS 2011, Grenoble, France,

October 10-12, 2011. Proceedings. Ed. by Xavier Défago, Franck Petit, and

Vincent Villain. Vol. 6976. Lecture Notes in Computer Science. Springer, 2011,

pp. 386–400. doi: 10.1007/978-3-642-24550-3_29 (cit. on pp. 5, 31, 32, 56).

[Siv12] Swaminathan Sivasubramanian. “Amazon dynamoDB: a seamlessly scalable

non-relational database service”. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ,

USA, May 20-24, 2012. 2012, pp. 729–730. doi: 10.1145/2213836.2213945 (cit. on
p. 31).

[Sou+22] Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and

KC Sivaramakrishnan. “Certified Mergeable Replicated Data Types”. In: 43rd

ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI 2022. ACM, June 2022, pp. 332–347. doi:

10.1145/3519939.3523735. eprint: 2203.14518 (cit. on p. 19).

[TS07] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - principles

and paradigms, 2nd Edition. Pearson Education, 2007. isbn: 978-0-13-239227-3

(cit. on pp. 24, 39, 91, 92).

https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.48550/arXiv.2206.14767
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/3519939.3523735
2203.14518

Bibliography 121

[Tea23] The Aneris Team. Aneris Documentation.

https://github.com/logsem/aneris/blob/master/documentation.pdf. Last
updated: March 15, 2023. Accessed: June 15, 2023. 2023 (cit. on pp. 14, 16, 18).

[Teaa] The Aneris Team. Aneris Coq Formalization.

https://github.com/logsem/aneris. Accessed June 20, 2023 (cit. on p. 18).

[Teab] The Aneris Team. Ping Pong Example. https://github.com/logsem/aneris/
tree/master/aneris/examples/ping_pong_done. Accessed June 15, 2023

(cit. on p. 15).

[Ter+94] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer,

Marvin Theimer, and Brent B. Welch. “Session Guarantees for Weakly

Consistent Replicated Data”. In: Proceedings of the Third International Conference

on Parallel and Distributed Information Systems (PDIS 94), Austin, Texas, USA,

September 28-30, 1994. 1994, pp. 140–149. doi: 10.1109/PDIS.1994.331722
(cit. on pp. 4, 24, 92, 98, 99, 113).

[TB21] Amin Timany and Lars Birkedal. “Reasoning about Monotonicity in Separation

Logic”. In: CPP. ACM, 2021, pp. 91–104. doi: 10.1145/3437992.3439931 (cit. on
pp. 53, 83).

[Tim+21] Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Léon Gondelman,

Abel Nieto, and Lars Birkedal. “Trillium: Unifying refinement and higher-order

distributed separation logic”. In: arXiv preprint arXiv:2109.07863 (2021). doi:

10.48550/arXiv.2109.07863 (cit. on pp. 13, 19, 48, 56, 57, 65, 89).

[Tyu+19] Misha Tyulenev, Andy Schwerin, Asya Kamsky, Randolph Tan, Alyson Cabral,

and Jack Mulrow. “Implementation of Cluster-wide Logical Clock and Causal

Consistency in MongoDB”. In: Proceedings of the 2019 International Conference

on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,

June 30 - July 5, 2019. 2019, pp. 636–650. doi: 10.1145/3299869.3314049 (cit. on
p. 31).

[Vaz+14] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and

Simon L. Peyton Jones. “Refinement Types for Haskell”. In: ICFP. ACM, 2014,

pp. 269–282. doi: 10.1145/2628136.2628161 (cit. on p. 58).

[Vog09] Werner Vogels. “Eventually consistent”. In: Communications of the ACM 52.1

(2009), pp. 40–44 (cit. on p. 113).

[Wad+11] Hiroshi Wada, Alan D Fekete, Liang Zhao, Kevin Lee, and Anna Liu. “Data

Consistency Properties and the Trade-offs in Commercial Cloud Storage: the

Consumers’ Perspective.” In: CIDR. Vol. 11. 2011, pp. 134–143 (cit. on p. 113).

[ZWS23] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. “Type-Checking

CRDT Convergence”. In: Proceedings of the ACM on Programming Languages

7.PLDI (June 2023). doi: 10.1145/3591276 (cit. on pp. 19, 20).

[ZBP14] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. “Formal Specification

and Verification of CRDTs”. In: FORTE. Vol. 8461. Lecture Notes in Computer

Science. Springer, 2014, pp. 33–48. doi: 10.1007/978-3-662-43613-4_3 (cit. on
pp. 19, 20, 22, 57, 65, 89).

https://github.com/logsem/aneris/blob/master/documentation.pdf
https://github.com/logsem/aneris
https://github.com/logsem/aneris/tree/master/aneris/examples/ping_pong_done
https://github.com/logsem/aneris/tree/master/aneris/examples/ping_pong_done
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1145/3437992.3439931
https://doi.org/10.48550/arXiv.2109.07863
https://doi.org/10.1145/3299869.3314049
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3591276
https://doi.org/10.1007/978-3-662-43613-4_3

Bibliography 122

[ZW10] Yuqing Zhu and Jianmin Wang. “Client-centric consistency formalization and

verification for system with large-scale distributed data storage”. In: Future

Generation Computer Systems 26.8 (2010), pp. 1180–1188 (cit. on p. 113).

	Overview
	Introduction
	Structure of the Dissertation
	An Informal Asynchronous System Model
	Causality in Distributed Systems
	Conflict-free Replicated Data Types
	Abstract Data Types
	Separation Logic for Distributed Systems

	Contributions
	Landscape of CRDT Verification
	Overview of the Dissertation
	Contributions
	Included Publications
	Coq Formalizations

	Publications
	Modular Verification of Op-Based CRDTs in Separation Logic
	Aneris Primer
	Main Ideas
	Reliable Causal Broadcast
	OpLib: a Library for Implementing CRDTs
	Implementing CRDTs
	Related Work
	Conclusions

	Modular Verification of State-Based CRDTs in Separation Logic
	Aneris Primer
	Main Ideas
	Background: CRDTs in Separation Logic
	StateLib : a Library for Implementing State-Based CRDTs
	Specifying StateLib
	Verifying StateLib
	Verified CRDTs
	Related Work
	Conclusions

	Towards Session Guarantees for Client-Centric Consistency
	Background: a Causally-Consistent Distributed Database
	Session Guarantees and Causal Consistency
	Session Manager Library
	Session Manager Specifications
	Session Guarantees
	Proving the Session Manager
	Related Work
	Conclusions

	Bibliography

