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Abstract

This dissertation is based upon two papers and one manuscript. The first paper “A
Lower Bound for Jumbled Indexing” examines the problem of jumbled indexing:
Given an input string S on an alphabet Σ = {σ1, . . .σδ}, store it in a data structure
such that given frequencies f1, . . . fδ , report all substrings of S where the frequency
of character σi is equal to fi. In other words the problem is a matter of matching
the occurrences of letters as opposed to their relative position in the substring. We
present the first unconditional lower bound for the problem and furthermore we present
the first lower bound which holds for the binary alphabet. We show that if a data
structure has a query time of O(n0.5−o(1)+ k), where k is the size of the output, then
the data structure must use Ω(n2−o(1)) space. This shows that reporting the substrings
matching a frequency is significantly harder than deciding whether such a match
exists, even for a binary alphabet.

In the second paper “Rectangle Stabbing and Orthogonal Range Reporting Lower
Bounds in Moderate Dimensions” we study classical problems within computational
geometry, namely Rectangle Stabbing, Orthogonal Range Reporting and Dominance
Reporting, although in an unusual setting, namely when the dimension is c log(n)
(for some constant c). We show that if a data structure achieves Q(n) = O(n1−γ)
query time, for γ ≥ 2

2+logc , then the space usage must be Ω
(
n1−γn

√
cγ/e−o(

√
cγ)
)
. This

overcomes shortcomings of previous proofs in which results could not be extended
past d = Ω(

√
logn).

The manuscript “Hierarchical Categories in Colored Range Searching” extends
the problem of colored range counting. In colored range counting, the colors are
assumed to be independent and in this body of work we investigate different ways
of assigning a hierarchy among the colors. We study two natural variants and when
the underlying hierarchy has a tree structure, we show interesting connections to
some well-established problems. When the hierarchy is a general DAG we show a
conditional lower bound by reducing the orthogonal vectors problem to both variants.
This shows that neither problem can be solved in less than quadratic time unless
the well established Strong Exponential Time Hypothesis fails. Interestingly for one
of the variants, we give a data structure which uses quadratic preprocessing time,
O(n3/2) space and O(logn) query time. This is one of the rare instances where there
is a polynomial gap between the preprocessing time and the space usage of a data
structure.
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Resumé

Denne afhandling omhandler forskellige geometriske problemstillinger, som skal
behandles med forskellige datastrukturer. Det primære fokus har været at bevise nedre
grænser for hvor hurtigt et problem kan løses eller hvor meget plads en datastruktur
skal bruge. Den første artikel omhandler et strengproblem. Givet en streng S over
et alfabet Σ = {σ1, . . .σδ}, vil vi gemme S i en datastruktur hvor givet en mængde
af frekvenser f1, . . . fδ bliver alle delstrenge af S, hvor σi forekommer fi gange,
rapporteret hurtigt. Dermed er vi interesserede i at finde strenge som har ens frekvenser
og dermed, ulig andre strengproblemer, er vi ligeglade med den relative position af de
enkelte karakterer i strengen. Vi viser at hvis man bruger O(n0.5−o(1)+ k) tid på at
rapportere delstrengene skal man bruge Ω(n2−o(1)) plads. Dette er den første nedre
grænse hvor det også gælder for det binære alfabet. Dette beviser samtidig at det
at rapportere delstrengene er sværere end at besvare hvorvidt der findes mindst en
delstreng som matcher frekvenserne.

Den næste artikel omhandler tre klassiske geometriproblemer. I det første problem
har man en mængde af rektangler i Rd og givet et enkelt punkt i Rd vil man gerne
rapportere hvilke rektangler som indeholder punktet. I det andet problem har man
en mængde af punkter i Rd og givet et rektangel vil man besvare hvilke punkter er
indenfor rektanglet. Det sidste problem er givet en mængde af punkter i Rd og derefter
et nyt punkt, hvilke punkter er mindre end det nye punkt i alle koordinater. Vi viser at
hvis dimensionen er høj nok, er disse tre problemer ækvivalente. Vi viser at hvis man
bruger O(n1−γ) tid, hvor γ ≥ 2

2+logc , skal man bruge Ω
(
n1−γn

√
cγ/e−o(

√
cγ)
)

plads.
Den tredje artikel udvider endnu et klassisk geometriproblem. Givet en mængde af

punkter i Rd , hvor alle punkter er blevet tildelt en farve og derefter givet et rektangel,
vil vi tælle hvor mange forskellige farver der findes indenfor rektanglen. Dette
problem har været studeret længe, men i tidligere studier antager man at farverne er
uafhængige. I denne artikel beskriver vi to naturlige udvidelse af problemet, hvor vi
danner struktur imellem de forskellige farver. Når strukturen er en træstruktur, viser
vi for begge problemer interessante forbindelser til allerede etablerede problemer. Når
strukturen er en orienteret acyklisk graf viser vi en reduktion fra ortogonale vektorer
problemet og dermed får vi en kvadratisk betinget nedre grænse for begge varianter.
For den ene variant beskriver vi en datastruktur, som bruger kvadratisk forbehandling,
men kun O(n3/2) plads og kan besvare forespørgsler i O(logn) tid. Dermed er der et
polynomisk hul imellem forbehandlingstiden og pladsen en datastruktur skal bruge.
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Chapter 1

Introduction

This thesis is based upon two papers and one manuscript. The first paper “A Lower
Bound for Jumbled Indexing” was presented at the Symposium on Discrete Algo-
rithms (SoDA) 2020 and describes the first unconditional lower bound for the jumbled
indexing problem. The second paper “Rectangle Stabbing and Orthogonal Range
Reporting Lower Bounds in Moderate Dimensions” was presented at the Canadian
Conference on Computational Geometry (CCCG) 2021 and gives a lower bound
trade-off for rectangle stabbing, orthogonal range reporting and dominance report-
ing in moderate dimension. Subsequently, this paper was invited to the Journal of
Computational Geometry and it is this journal version which is included in this thesis.
The last manuscript titled “Hierarchical Categories in Colored Range Searching” is
currently in submission for the International Symposium on Algorithms and Compu-
tation (ISAAC) 2022 and presents an extension on the classical problem of colored
range counting.

The dissertation is structured in the following way: The thesis is split into two
major parts, part I which is an overview and summary of the two papers and the
manuscript and part II which contains the two papers and the manuscript as they
were presented or submitted. In section 1.1, I present the general area of range
searching, including orthogonal range searching and colored counting. In section 1.2,
I discuss the different ways one can lower bound problems and data structures through
conditional lower bounds and unconditional lower bounds. In chapter 2, I present
the overall ideas and intuition which led to the paper “A Lower Bound for Jumbled
Indexing”, furthermore I present some simplified versions of the proofs from the
paper. In chapter 3, the intuition behind the second paper “Rectangle Stabbing and
Orthogonal Range Reporting Lower Bounds in Moderate Dimensions” and some
auxiliary proofs which were omitted from the original paper is presented. In chapter 4,
a summary of the ideas and motivation for our manuscript to ISAAC is given.

My Contribution

The first paper “A Lower Bound for Jumbled Indexing” was a project I continued
which Ingo van Duijn, Jesper Sindahl Nielsen and Peyman Afshani had already started
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4 CHAPTER 1. INTRODUCTION

working on. They had the initial idea for the string construction in the lower bound, but
their construction used more than three character. I helped improve the construction
down to two characters. Furthermore the connection to additive combinatorics was
something Peyman and I worked out together, which is a vital piece in the lower
bound when the number of elementary intervals is low. I wrote the ternary section
while Peyman Afshani wrote the binary section.

The second paper “Rectangle Stabbing and Orthogonal Range Reporting Lower
Bounds in Moderate Dimensions” was a new project Peyman Afshani and I worked
on together. In this paper I was involved in the idea generation and wrote most of the
paper on my own, only with minor modifications from Peyman Afshani.

The manuscript “Hierarchical Categories in Colored Range Searching” was again
a project Peyman Afshani and I started. All the ideas were thought out together with
Peyman Afshani and the construction of the conditional lower bound was given by
Kasper Green Larsen. I wrote all technical details apart from the “Lower Bounds and
Equivalence” section.
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1.1 Range Searching

In Danish the field of computer science is called “Datalogi” which if directly translated
means “Datalogy”, i.e., the field of study that revolves around data. The question
of what data is, is a broad question, but one of the typical representations of data is
through records in a database. A record in a database is a tuple in which specific
information is stored in each entry. Storing data is more useful when we can answer
some specific questions (a.k.a “queries”) about the stored data. In the following we
will introduce the arguable simplest form of query on such a database, i.e., range
searching.

Motivating Example

To motivate range searching, we study the following example. Consider a database
of records that includes every American football player in Denmark. Assume that
a record in this database includes numerical entries such as height, weight, age and
years of playing, while there might also be some non-numerical entries such as the
player’s team. Now imagine that our database allows a user to issue the following
queries. An orthogonal range is an axis-aligned rectangle of the form ∏

d
i=1[ai,bi].

Translated into our example database, we could construct the query of all players
having a height of more than 2 meters, weighing between 100 kg and 160 kg, being
less than 30 years old and having played less than 5 years, in the following way
q = [200,∞)× [100,160]× [0,30]× [0,5]. This is also known as orthogonal range
reporting. Now given such a query, the database must output all tuples which satisfies
the query q. The non numerical values can be used to filter your data records, e.g., by
favourite team, i.e., “Aarhus Tigers” or they can be thought of as giving the data points
a category. This would give us a colored point set in which we can answer queries
like how many teams have players satisfying our query q (a colored counting query),
which teams have such players (a colored reporting query) or whether there exists
a team with such a player (an existence query). The question of how many players
each team has which satisfy the query range is referred to as “type-2” colored range
counting.

In general, range searching queries have the following structure: Given a set S
of n points in Rd , let R be a family of subsets of Rd , referred to as ranges. The
ranges can be any geometric object within Rd but typical ranges studied are rectangles,
halfspaces, simplices or balls. The goal is to preprocess S into a data structure such
that given a query range γ ∈ R, the points in S∩ γ can be reported efficiently. The
problem can be trivially solved using linear space and linear query time, by simply
storing the points and given a query γ , checking for each point whether it lies within
γ (since our ranges have constant complexity). This approach is insufficient when
there are numerous queries being asked after one another. Therefore, we are interested
in finding a way to preprocess S and build a data structure such that queries can be
answered faster than in linear time.

The preprocessing time used to build the data structure is denoted by P(n), the
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size of the data structure is denoted by S(n) and finally the worst case time complexity
of a query is denoted by Q(n). Within this context, the space consumption and query
time is often more important than the preprocessing time (as long as the preprocessing
time is somewhat reasonable). For reporting queries, the query time will depend on
how many elements are output, since the data structure must output each element. We
use k to denote the output size.

There are a few different models of computation in which we study algorithms.
The random access model (RAM) counts the number of basic arithmetic operations
(addition, multiplication, comparisons etc.) performed by the data structure, while the
access of the data is free. The real random access model is an extension of the RAM
model, where the algorithm can utilize real registers as well. The pointer machine
model is a broad model with many different variations but it always disallows random
access and hence memory can only be accessed through pointers.

Under many scenarios, the data structure needs to store all the points and thus
Ω(n) is the trivial lower bound. Additionally, in the pointer machine model as well
as real RAM, almost all natural problems have an Ω(logn) query lower bound. In
particular, binary search in either model requires Ω(logn) time. In the pointer machine
model, this is because Ω(logn) pointer navigations are needed in the worst-case to
access an element where as in the real RAM model Ω(logn) comparisons are required
to do the binary search (see various algebraic decision tree lower bounds for this [28]).
Therefore the aim for a specific range searching question is whether there exists a
linear space data structure with logarithmic query time.

Orthogonal Range Searching

In orthogonal range searching the query ranges are axis-parallel rectangles. One of the
most fundamental data structure techniques to solve orthogonal range searching are
range trees, which were introduced by Bentley [30]. If we look at the technique for
the 2D problem, we have a set S of n points in R2. We build a binary search tree T in
which every leaf contains a point and the point set is sorted according to x-coordinate,
i.e., the i’th left most leaf contains the i’th smallest x-coordinate. For each internal
node v, we store a canonical subset Sv ⊆ S of points contained in the subtree rooted
at v. Let av be the point with the smallest x-coordinate in Sv and let bv be the point
with the largest x-coordinate in Sv. At the interior node v, we store av, bv and Sv

sorted on their y-coordinate (this sorted array can be thought of as a range tree of
dimension 1). Each level of the range tree stores a linear number of points, hence the
size of the data structure becomes O(n log(n)) and it can be constructed in O(n log(n))
time. Given a query range [x1,x2]× [y1,y2], we can answer the reporting question by
traversing T from the root. For a given node v we check if [av,bv] ⊆ [x1,x2] and if
[av,bv] is fully contained in [x1,x2] we report all points pi ∈ Sv where the y-coordinate
of pi lies in [y1,y2], which can be done through a binary search of the sorted array. If
[av,bv] has no overlap with [x1,x2] output nothing. If [av,bv] intersects [x1,x2] but is
not fully contained, we recurse on the children of v. Finally if v is a leaf, we report
the point contained in v. The query takes O(log2(n)+ k), but can be improved to
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O(log(n)+ k) by applying another well-known technique called fractional cascading.
A d-dimensional range tree can be extended to a d + 1 dimensional range tree by
storing a d-dimensional range tree in each internal node as Sv, often referred to as a
multilevel data structure. This gives a log(n) penalty in space and query time. Since
the invention of range trees, several improvements have been made.

Colored Counting

Regular range searching encapsulates numerical data, but real world data sets may
contain other data types as well. Another common data type in real world data
sets is nominal data which is data that has no natural order. Colored or categorical
range searching deals with such nominal data types. Each point is associated with a
color/category which is stored in some data structure. For a query range, there are
several interesting questions which can be answered, such as reporting the colors
within the query range, counting the colors within the query range or to count the
number of points of every color within the query range (known as “type 2”). In this
section focus is on counting the different colors within the query range, as this is the
question on which we build upon in chapter 4.

1D colored range counting can be solved with linear space and logarithmic query
time. This is due to a reduction by Gupta et al. [55], which transforms the problem
into an unweighted 2D orthogonal range counting problem which can be solved within
the said bounds [40]. The reduction is quite simple and elegant:

Given a 1D colored range counting point set do the following. For a color ci look
at all the points of that color p1, p2, p3, . . . pm, such that pi < pi+1, for 1≤ i≤ m−1.
Then they are mapped into the 2D point set (p1,−∞),(p2, p1), . . .(pm, pm−1). A query
interval [a,b] is mapped into the three sided range [a,b]× (−∞,a]. Now we claim
that atleast one point pi is contained in [a,b] iff exactly one point is contained in the
three sided range [a,b]× (−∞,a]. Let pi be the smallest point contained in [a,b], then
a ≤ pi ≤ b and pi−1 < a. Then the point (pi, pi−1) is within [a,b]× (−∞,a]. Any
point within the query interval, which is not the smallest, will get a y coordinate which
is greater than a, hence it will be above the three sided range. If no pi is within [a,b]
then every pi is either smaller than a or bigger than b and hence the transformed points
will all lie to the left or right of the three sided range. If we do this transformation for
all colors ci we get the desired transformation. An illustration of the transformation
can be found in [62].

Later Larsen and Walderveen [69] showed that 2D unweighted range counting
can be transformed into 1D colored range counting and thereby showing equivalence
between the two problems. The reduction is yet another simple transformation:

The first key observation is that any orthogonal counting range in 2D is equivalent
to four dominance counting points in 2D. Let the top right corner be ptr, the top left
corner ptl , the bottom left corner pbl and the bottom right corner pbr. Now if we
query all four points in a dominance counting data structure, we see that the number
of points inside the original query range becomes #ptr−#ptl−#pbr +#pbl where #
denotes the output size (an illustration can be seen in fig. 1.1). So it is sufficient to
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ptr

pbr

ptl

pbl

Figure 1.1: A visualisation of the four dominance points. The red lines are the points
we want to count, the blue is counted by ptr so we subtract it with ptl and pbr. This
means we subtract the green lines two times, hence we add pbl as well.

reduce 2D dominance counting to 1D colored counting. Furthermore, we assume that
the points in the 2D point set only have positive integer coordinates, this can be done
by a reduction to rank space.

For every 2D point pi = (xi,yi) create the points −xi and yi. We create two data
structures D1 and D2. In D1, we give the two new points the same unique color and in
D2 we give them two distinct colors. This gives us two data structures of 2n points, in
D1 the number of colors is n and in D2 the number of colors is 2n. Now for a query
point q = (xq,yq) we query D1 and D2 with the range [−xq,yq] and we claim that the
difference between the outputs of D1 and D2 is the number of dominated points in the
original 2D problem. If a point pi = (xi,yi) is dominated by q, then the two points
−xi and yi will be within the range [−xq,yq] and hence the difference of the two data
structures will be 2−1 = 1. If pi is only dominated in one of the coordinates, then
both data structures counts one and hence their difference will be zero. Now lastly, if
pi is not dominated in any of the two coordinates by the query point then both data
structures will count zero. This completes the transformation.

These two reductions show that 1D colored counting is equivalent to 2D range
counting. When the dimension increases, the problem becomes harder and the linear
space and logarithmic query time becomes very likely impossible. Kaplan et al. [62]
showed that answering m queries on a set of n points requires Ω(nω/2−o(1)) time,
where ω is the boolean matrix multiplication exponent. Assuming the boolean matrix
multiplication conjecture, this shows that P(n) +mQ(n) ≥ n3/2−o(1) for any data
structure which tries to solve the 2D colored range counting problem.

An extension of the colored range counting problem, in which the colors have
some internal structure, will be discussed in chapter 4.
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1.2 Lower Bounds

My first encounter with algorithms and the design of algorithms happened many years
before I attended university. As a child, many summers were spent at my grandparents’
house and one of our favourite activities were to play cards with my granddad. In this
particular game of cards each person were dealt a hand of seven cards. In order to
be ready for the game, it made sense to do some kind of ordering of the cards and
therefore I came up with an ordering among the playing cards. The hearts were to the
left, followed by the diamonds, followed by the spades and lastly the clubs (this is the
ordering that made sense to an eight year old kid). Among the categories the ace was
the smallest followed by 2 through 10 and lastly the jack was smaller than the queen
which was smaller than the king. As a kid, little thought was given into how to sort
these seven cards. Maybe it was due to the fact that I possessed little to no knowledge
of algorithm design or maybe due to the fact that with seven cards pretty much any
sorting algorithm would seem rather efficient. Anyway, the sorting algorithm I used
was to first scour through the cards to find the smallest card and put it to the far left
and repeat the process until every card was in its correct place.

The above sorting algorithm is not optimal. Seeing as we use n+ (n− 1) +
· · ·+ 1 = n(n+1)

2 = O(n2) comparisons and hence the algorithm runs in quadratic
time. Sorting can be solved using O(n logn) time by merge sort or in expectation by
randomized quick sort. Now the natural question is whether this can be improved? It
turns out that this is not possible due to the following lower bound.

A combinatorial lower bound can be given for the sorting problem. Since any
sorting algorithm based on comparisons can be formulated as a decision tree we just
need to determine the height of a decision tree in which each permutation appears as a
reachable leaf. The number of permutations is n! and since the number of leaves in a
tree of height h is at most 2h we get that

n!≤ 2h↔ log(n!)≤ h.

Which gives a lower bound for sorting our cards of Ω(n log(n)). In nature, this is
a combinatorial lower bound and these are the lower bounds which are the most
predominant when looking at problems in the RAM. In order to achieve other lower
bounds for algorithmic problems we have two paths to look at. The first approach is
to change the model of computation into models such as the pointer machine model or
the cell probe model. Another approach is from complexity theory in which we can do
conditional lower bounds. Both approaches have pros and cons and these differences
will be discussed later in this section.

Conditional Lower Bounds

The area of conditional lower bounds (fine grained complexity) is quite a new field
and it has received significant attention during the last decade. The idea stems from
classic complexity theory that every computer science student knows such as the
infamous P vs NP question. When proving a problem p to be NP-hard, one can prove
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it by doing a reduction from an already known NP-hard problem p′. Now if one can
compute a reduction mapping from p′ to p in polynomial time, we know that p is
NP-hard as well. A key ingredient here is that the computation of the reduction is
polynomial, such that the instance is not “solved” in the reduction itself. The idea
with fine grained complexity is to utilize such reductions from some pre conjectured
hard problems into problems that we want to argue are hard to solve. Now we need
to place an even larger constraint upon the reduction, since a polynomial reduction
might be too powerful and thereby one could solve the instance in the reduction.

There are a few famous base conjectures in fine grained complexity and one of
the most famous conjectures actually stems from classic complexity theory. The
strong exponential time hypothesis is a conjecture built around the well known k-SAT
problem. In the k-SAT problem, the input is a boolean formula given in conjunctive
normal form (CNF), in which each clause has exactly k literals, decide whether or not
the formula is satisfiable. A CNF formula is a formula consisting of the conjunction
of several clauses, where each clause consists of a number of literal disjunctions. This
leads to the strong exponential time hypothesis.

Hypothesis 1.1 (SETH). For every ε > 0 there exists a k such that k-SAT requires at
least 2(1−ε)n time to be solved.

k-SAT is known to be NP-hard for k≥ 3 and assuming P 6= NP no sub exponential
time algorithm exists for k-SAT and hence the SETH is in some way an even stronger
hypothesis than P 6= NP.

One of the most used base conjectures for fined grained complexity is the orthogo-
nal vectors (OV) hypothesis. It follows from SETH[90] and the problem of orthogonal
vectors and the hypothesis is defined in the following way:

Problem 1.1. Given two sets A and B of n binary vectors of polylog dimension,
determine if there exists a ∈ A and b ∈ B such that a and b are orthogonal.

Hypothesis 1.2 (OV). The Orthogonal Vectors problem requires n2−o(1) time to be
solved.

In order to use the OV-hypothesis, we need to construct a reduction in less than
quadratic time from the orthogonal vectors problem to our desired problem. Say
we have a problem p and we want to show that it takes at least quadratic time to
solve p. If we can compute a reduction r which takes the orthogonal vectors problem
and formulate it in terms of p, such that a solution to p results in two vectors being
orthogonal in the OV problem, we know that p must use at least quadratic time to be
solved otherwise the OV-hypothesis is false. The reason is that if p could be solved
in less than quadratic time, any OV instance could be reduced to p and then solved.
Therefore it is also key that the reduction itself takes sub quadratic time and usually
the reduction time is linear. Fine grained complexity has been widely used to prove
many interesting lower bounds in the last decade in which progress had been stalled
for a while. An interesting example of such is that assuming SETH, it has been shown
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that quadratic running time is essentially optimal for similarity measures such as Edit
distance [24], Longest Common Subsequence [48] and Fréchet distance [32]. A list of
results, all though not comprehensive, can be seen here [1–9, 19, 20, 25, 65, 66, 87].
All of the listed results have been published within the last decade making it quite a
young field.

Restricting the Model of Computation

Another approach to proving lower bounds for algorithmic problems is to restrict the
model of computation. The main challenge of changing the model of computation
is that it might not capture the algorithmic setting that we are used to, i.e., RAM.
Nevertheless, restricting the model of computation does not have to be a purely
theoretical question since, as we will see, other models can also describe how many
common data structures operate.

One model of computation which has proven efficient in proving lower bounds on
reporting problems is the Pointer Machine Model [85]. In this model of computation
the underlying data structure navigates the memory solely through pointers, as the
name suggests. Since the memory is accessed through pointers, this model gives
bounds for any tree based data structure. Consider some abstract reporting problem
where the input is a set U and each query q reports a subset qU of U. The data
structure is a directed graph G , where every node has a constant out degree (sometimes
referred to as having out degree two). Every node in the graph can store one element
from the input set U . Furthermore, there is a special root node r(G ). Any additional
information can be stored and accessed for free by the data structure and furthermore
the data structure is computationally unlimited. Given a query q the algorithm must
start at the root node r(G ) and explore a connected subgraph G ′ ⊆ G , such that each
element of the query qU is contained in at least one node of the subgraph G ′. The
worst case size of the subgraph explored is the running time of the algorithm and the
total size of G is the space consumption of the data structure.

One immediate difference from the conditional lower bounds is that the bounds
becomes a space-query trade-off and hence the bounds in the pointer machine model
says something about the space consumption of the data structure. One reason that
this model is useful for proving lower bounds is that we have multiple frameworks for
proving such space-query trade-offs.

The first framework was given by Bernard Chazelle [42, 44]. Consider a reporting
problem on a set of n elements, then for any data structure which achieves S(n) space
and Q(n) query time, if there exists a set of queries Q, such that each q ∈Q outputs
Ω(Q(n)) elements and for any α queries they have a small intersection, i.e., for any α

queries they have few output elements in common. If these two conditions are met
we get a space-query trade-off. A similar framework were given by Afshani [10], in
which the data structure operates on a geometric stabbing problem. In this framework
we aim to tile the unit cube such that any point is covered atleast Q(n) times and
for any α different shapes used to tile the unit cube they have a small intersection
volume. Again we gain a space-query trade-off. Interestingly both frameworks follow
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Figure 1.2: A data structure in the pointer machine model. The yellow node is the
root, the red pointers connects the subgraph G ′ explored at query time and the red
numbers are the query output.

the same recipe, they make sure that each query has a large output set and also make
sure that if we take a number of queries, they will have a small overlap. Furthermore,
we see that ensuring that each query has a large output and ensuring small overlap
are two conditions which pull in two different directions. If each query outputs a
large number of elements, one would expect that α queries have a lot of elements in
common. Therefore, when using these frameworks the goal is to balance these two
conditions.

The pointer machine model has proven especially effective in encapsulating the
complexity of certain geometric problems. For orthogonal range reporting optimal
lower bounds have been provided up until 3D [15], which gives a query time of
O(log(n)+k) using optimal space n(log(n)/ log log(n))2. The model, however, is not
limited to geometric settings as a lower bound for dynamic fractional cascading was
presented [11] proving a worst case query time of Ω(log(n)

√
log log(n)).

Another powerful model of computation is the cell probe model. Instead of
following pointers, as in the pointer machine model, the data structure is limited
to store everything in cells of size log(n), where n is the input size of the problem.
Now, the cost of an operation is the number of cells it reads or writes (probes). Any
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computation of which cell to probe is free. This is clearly a way too powerful model
of computation for real world data structures and hence if we can prove lower bounds
in this model, we know they hold in the more restrictive word-RAM.

The cell probe model has proven very effective in proving lower bounds for
certain data structure problems which are in fact tight, see [51, 67, 75–77, 88]. A
number of techniques exists for proving lower bounds on data structures. For static
data structures, a technique by Larsen [68] can prove lower bounds of the form
Q(n)=Ω(log(m)/ log(α)) where α = S(n)/n and m is the number of distinct possible
queries. Note that this is the largest possible lower bound one can hope to prove
using this technique. In other words, if for a problem we have a large number of
queries (i.e., m is large), it is not guaranteed that it is possible to prove a large
lower bound. Hence, the method cannot show lower bounds higher than Q(n) =
Ω(log(m)) with linear space. For data structures where updates are allowed, i.e., a
dynamic data structure, techniques exists [67, 88] that gives lower bounds of Q(n) =
Ω(log(m) log(n)/ log2(uw)) where u is the update time, w is the cell size and n is the
input size and the number of updates performed on the dynamic data structure. Hence,
the techniques gives us roughly a log factor more in the dynamic setting.

Recently Chakraborty, Kamma and Larsen [34] showed a tight cell probe lower
bound for a variant of boolean matrix vector multiplication in which the data structure
uses very little space. They proved that for succinct boolean matrix-vector multiplica-
tion any data structure storing r bits on the side, with n < r < n2 must have query time
Q(n) satisfying Q(n) · r = Ω̃(n3) and for r < n any data structure must have query
time Ω̃(n2). This gives some justification to the fact that the cell probe model still
produces relevant lower bounds for central problems.

A Discussion of Lower Bound Models

As mentioned above, unconditional and conditional lower bounds have certain pros and
cons. The unconditional lower bounds, where we change the model of computation, is
the older of the two techniques dating back to the birth of computer science. The big
advantage of using unconditional lower bounds is that they are unconditional, whereas
the conditional lower bounds become obsolete if the base conjectures are refuted. On
the other hand, conditional lower bounds can prove arbitrary high lower bounds as
long as the base conjectures used are hard. This is in contrast to the unconditional
lower bounds which have natural barriers. From the polynomial time hierarchy, we
know that there exists problems for any power p in which the true complexity is
Θ(np), the problem might just be to find base conjectures on which we can build the
conditional lower bounds. Unconditional lower bounds also seem more suitable for
proving space lower bounds although some work has been done in coming up with
space conjectures for certain data structure problems [53]. Another interesting aspect
of the pointer machine model is that it gives a concrete hard input instance as opposed
to conditional lower bounds that are obtained through reductions. Nevertheless, fine
grained complexity has settled many long standing problems.





Chapter 2

Jumbled Indexing

How does one compare if two strings S1 and S2 are similar? This is a fundamental
question in both theoretical computer science and in real life applications. When
thinking of a similarity measure between two strings, we can look at both the characters
in the strings and their relative positioning. One of the most famous similarity
measures between two strings is the Hamming distance [82] if we assume that S1 and
S2 are of equal length. In the Hamming distance measure, the distance between S1
and S2 is the number of characters needed to be replaced in S1 in order for the string
to become equal to S2, i.e., the number of positions in which the two strings have
different characters (two example strings are shown in figure 2.1). This is widely
used and accepted as the standard for string similarity, but as we will see there are
applications in which the relative positioning of the characters in the two strings is
less important and instead the frequency of each letter is the crucial similarity between
the two strings.

As seen in figure 2.1 two strings can have a large hamming distance while still
being fairly similar to the human eye. If we discard the notion of relative position
and instead only focus on the frequencies at which characters appear in the strings
we arrive at the notion of jumble matching. Given two strings S1 and S2 of length n
over some alphabet Σ = {σ1, . . .σλ}, we say that S1 and S2 jumble match if they have
the same Parikh vector [74]. A Parikh vector ψ is a frequency vector ( f1, f2, . . . fλ )
where fi describes the number of occurrences of σi ∈ Σ in the string. Now S1 and
S2 are equivalent if and only if ψ(S1) and ψ(S2) are equivalent, i.e., in other words
S2 can be obtained from S1 simply by permuting S1. This similarity measure is the
foundation for the problem of jumbled indexing.

0 1 0 1S1 =

S2 =

0 1

1 0 1 0 1 0
Figure 2.1: The two strings have hamming distance 6, since they differ at every index.
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Jumbled indexing is a data structure problem and the input is a string S of length
n over some alphabet Σ = {σ1, . . .σλ}, which we want to store in some data structure
such that we can answer queries. A query consists of a Parikh vector ψ = { f1 . . . fλ}.
Note that the sum of the frequencies in ψ can be less than n. Generally speaking, a
string indexing problem can have a number of variants, an existence variant where the
goal is to simply answer whether there exists a substring in S which matches a query,
a reporting variant where we want to output every matching position and furthermore
a counting variant where the goal is to count how many matching positions there is.
In this thesis the main focus is on the reporting variant and since every substring is
uniquely defined from their starting position and their length (which is given by the
sum of the frequencies in the query) it is sufficient to output all starting indices of
matching substrings in the reporting variant.

2.1 Applications

The creation of Parikh vectors originates from the study of context-free languages
by Rohit Parikh in the sixties [74]. Although they give rise to an interesting problem
for theoretical computer scientists, the application of Parikh vectors extends into
other fields as well. Various applications within molecular biology can be found in
particular in the interpretation of mass spectrometry data. Mass spectrometry data is
the output of an experiment which consists of molecular masses of sample molecules,
where the molecular structure can in specific cases be determined with regards to
a few candidates [31]. Examples of such structures could be the amino acids in a
protein or the nucleotides of DNA. Since the goal is to find occurrences of these few
candidates and since the relative positioning among the amino acids or the nucleotides
does not matter [29], we can use the existential version of jumbled indexing. We
simply create the Parikh vectors of all the candidates and run them as input queries on
our database of mass spectrometry strings. An efficient algorithm for the reporting
variant of the problem could even tell the positions in the string where these candidate
amino acids or nucleotides reside.

Another interesting application of jumbled indexing is yet again from bioinfor-
matics. Within the field of comparative genomics, the goal is to cluster different DNA
sequences using different metrics in order to get an overview of the similarities and
dissimilarities between species. Groups of genes in some “close” proximity needs to
be identified in order to cluster the data [73]. One of such metrics is to look at the
frequencies of the nucleotides and hence by using jumbled pattern matching one can
cluster the data.

Few fields have seen as explosive an increase to the amount of data being collected
as the field of gene sequencing. Although the work in our paper is of purely theoretical
nature, this increase in data calls for efficient algorithms for jumbled indexing. Further
references can be found here [33].
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2.2 Current Bounds

The natural starting point is to find an upper bound for the problem, i.e., find an
algorithm which solves it. Obviously, the problem is quite trivial for a unary alphabet,
since for a string of length n and a frequency f1 = k we simply report all starting
positions i in S such that n− i≥ k, hence we get n−k+1 reported substrings. However
the complexity of the problem increases as we move to a binary alphabet.

Even after significant attention in the community, progress on this problem from
the upper bound point of view, has been limited. There exist two different algorithms.
The first algorithm stores no additional information, but uses a lot of time to process
each query and the second algorithm stores a lot of additional information, but can
answer queries efficiently.

The first approach is the sliding window algorithm. In this approach no additional
information is stored and therefore the only information available at query time is the
string itself. The main idea is to see that given a Parikh vector in the binary setting,
one can think of the query as a balance between zeroes and ones. We define the
balance of a binary Parikh Vector as f2− f1, hence the difference between the number
of ones and zeroes. Say we are given ψ = {3,5}, this gives a balance of +2 in the
window of size 3+5 = 8. Hence we need to find continuous substrings which has a
balance of +2. This gives us our algorithm, starting from the beginning of the string,
keep track of the balance in the window of size equal to f1 + f2 while sliding from
left to right. Whenever we move one position to the right, we update the balance
accordingly. If the character removed to the left of the window is equal to the new
character added in the end of the window, the balance stays the same. If the added
character is a one and the deleted character is a zero we add 2 to the balance and if
the added character is a zero and the deleted character is a one we subtract 2 from the
balance. An example is given in Figure fig. 2.2 where the first window have three
zeroes and five ones, hence the correct balance of +2. When moving the window one
position to the right we take away a one and add a zero, hence the balance becomes 0
and therefore we do not have a match with our query. Overall this approach gives us
an algorithm which uses O(1) space and takes O(n) for each query.

1 1 1 10 0 0 00 1 1 0S =

Figure 2.2: The sliding window algorithm with query ψ = {3,5}. Green corresponds
to matching windows and red corresponds to non matching windows.

While the sliding window algorithm does not use any additional space it suffers
from its linear query time. The other extreme is to store every possible O(n2) substring
of S and given a query ψ we look up the answers in optimal time. Interestingly making
progress on these simple solutions seems difficult.
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Both approaches can easily be extended to larger alphabets. With the sliding
window approach the query time becomes O(n log(λ )), since we can update the
window frequency through binary search over the alphabet size. The second solution
where we store all of the substrings does not depend on the alphabet and hence can be
used for larger alphabets as well. These are the upper bounds known for the reporting
variant of the problem.

Bounds for the Existential Variant

For the binary existential variant an adaptation, of the sliding window algorithm can
be used to get an optimal algorithm. The trick here is to do a preprocessing step,
where for each window size keep track of the minimum balance and the maximum
balance. If we store these values, then when given a query, we check if the query
balance is between the minimum and maximum value for that query window size. If
the query balance lies between the minimum and maximum, we say that the string
contains a continuous substring which matches the query ψ otherwise it does not have
a continuous substring which matches the query. The reason this works is that for any
window size, when we use the sliding window approach, the balances encountered
will be continuous values with offset 2. Hence, if a balance lies between the minimum
and maximum encountered in the string, we know that the sliding window must
have encountered that balance when moving from either the minimum balance to the
maximum balance or the other way around. This yiels an algorithm with O(n) space
and O(1) query time.

On the other hand Kociumaka et al. [64] presented an algorithm for the existential
variant for a constant sized alphabet which solves the problem in O(mε) and uses
O(n2−ε) space, where m is the sum of the frequencies in the queried Parikh vector.
Together with our result in chapter 5 this proves that the existential variant is easier
than the reporting variant something which was not known before our work.

Interestingly the existential variant for the binary case has received a lot of at-
tention, where the preprocessing time has been improved in a long line of work.
The construction was first presented in [46] by Cicalese et al. where they presented
the version discussed above, with linear space, constant query time, but quadratic
preprocessing time. In a series of results [33, 70, 71] the preprocessing time was
improved by polylog factors. The latest breakthrough remains the result of Chan and
Lewenstein [37] where they showed a “bounded universe” version of the (min,+)-
convolution can be solved in Õ(n1.859) time and that reduces the preprocessing time of
the binary existential jumbled indexing problem by polynomial factors as opposed to
previous polylogarithmic improvements. The improvement even extends to constant
sized alphabets, although for alphabets of size three and above the query time is no
longer constant but requires O(n1−α) for some constant α .

The only lower bound present before our work was a conditional lower bound
by Amir et al. [23] which proved Chan and Lewensteins construction is essentially
optimal. Amir et al. showed that if the size of the alphabet is a constant λ ≥ 3,
there is a constant αλ dependent on λ such that it is not possible to get O(n2−αλ )
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preprocessing time and O(n1−αλ ) query time. As opposed to our result, their lower
bound does not apply for the binary case, does not say anything about the space and
furthermore is conditional. As seen above, space might be a crucial component since
the binary alphabet has a solution with linear space while the preprocessing time is
large.

Our Space-Time Trade-off

Our work led to the space-time trade-off lower bound presented in chapter 5. We
presented a trade-off between the query time and space usage for the reporting variant
of jumbled indexing in the pointer machine model. If a data structure can report all
of the k matches to a jumbled indexing query in O(n0.5−o(1)+ k) query time, then
it must use Ω(n2−o(1)) space. This essentially states that if a data structure uses less
than quadratic space it will use atleast squareroot query time or on the other hand if a
data structure handles queries faster than squareroot it must use quadratic space.

Our result is unconditional in the pointer machine model, it gives a bound on the
space of the data structure and lastly it applies to the binary alphabet, all of which
prior results were unable to encapsulate. Since our result applies to the binary alphabet
it follows that reporting all matches to a Parikh vector is significantly harder than
checking if a single match exists. At the time this surprised us, since we believed
that in order for jumbled indexing to be difficult the alphabet should have size at least
three.

The disadvantage of our result is that it demands that the data structure operates
in the restrictive pointer machine model. As opposed to the usual random access
model (RAM), anytime the data structure needs to access an element it needs to
go through a series of pointers as opposed to the constant time access of elements
in the RAM. On the other hand the pointer machine model assumes nothing about
the computational power of the data structure, hence the bound works for any data
structure using pointers, regardless of the underlying computational cost, and it can
also capture tree-based solution to jumbled indexing.

Conditional lower bounds are proven through a reduction of a conjectured hard
problem. Therefore no hard input instance for the algorithm is provided. Uncondi-
tional lower bounds on the other hand provide a hard input instance, which helps
deepen the understanding of the problem from the upper bound point of view as well.
Furthermore, as briefly mentioned above, conditional lower bounds give a bound on
the preprocessing time and query time, while the unconditional lower bound gives a
trade-off between space and query time. Therefore both conditional and unconditional
lower bounds can be used to describe the complexity of theoretical questions.

Next Steps

Jumbled indexing, both in the existential and reporting variant, have seen little to no
improvement since our results. In the classic models of computation the boundary
of our knowledge is still our results and prior results. For the existential variant,
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the bounds are almost tight, with some room for improvement in determining the
exact constants for α in the preprocessing time and query time. Another interesting
area of research could be to find a trade-off between the query time and space usage
for the existential variant, since as described above, there exists a solution with
large preprocessing time but only linear space, which solves the existential variant
in constant time for the binary alphabet. Hence, such a bound would help prove
optimality for the binary case.

For the reporting variant the immediate approaches of either the sliding window
algorithm and the store everything algorithm, remains the state of the art from the
upper bound point of view. The best known lower bound is still our square root to
quadratic trade-off, but this still leaves some room for improvement. Therefore a
space-time trade-off of linear to quadratic would settle the problem.

Even though progress has slowed down on jumbled indexing in the traditional
models of computation, interesting work is still being conducted in newer models of
computation. An interesting approach is to look at the problem in the quantum setting.
With the potential rise of quantum computers, theoretical computer scientist have
started working in models which would accommodate this different way of doing
computations. A recent result [61] looked at the reporting variant in the quantum
model of computation. They present an algorithm running in O(

√
n) time with

constant preprocessing time. Note that this does not break the existing bounds, since
the model of computation is completely different from the random access model or
the pointer machine model in which the lower bounds are built.

2.3 Lower Bound Construction

The goal of this section is to convey the main ideas and thoughts behind our lower
bound construction. For further technical details, we refer to the paper in chapter 5.

The main construction of our unconditional lower bound consists of creating a
hard input instance. This means creating an input instance which any algorithm would
struggle to solve efficiently. In this section the intuition behind the lower bound
construction for a ternary alphabet Σ = {0,1,#} will be conveyed, as it presents the
main ideas. The extension to the binary version will be discussed shortly at the end of
this section.

The Input String

We need to build an input string S of size Θ(n) for the reporting version of the jumbled
indexing problem. The construction consists of three parts, a left part, a middle part
and a right part. The left part consists of balanced binary blocks separated by the
third character. For some parameter s, the left part of the string have blocks consisting
of zeroes and ones repeated s times. This gives us a number of blocks looking like
#(01)s and we repeat it n/s times. This gives us n/s binary balanced blocks and each
block starts with # and is followed by s two bit chunks of 01. Now since these blocks
are completely balanced we want to create a random pattern in the right part of the
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string and force the query patterns to match only substrings starting in the left part of
the string and ending in the right part of the string.

The middle part of the string starts after the n/s binary balanced blocks and
consists of two #. This ensures that we can force the queries to span over the middle
part of the string.

The right part of the string is going to consist of blocks of random bits. We create
n/s blocks again, each of length 2s+1, e.g., x1x2 . . .x2s+1, where x2s+1 = #. For every
odd index i, we pick xi to be uniformly random from {0,1}. For every even index we
duplicate the previous value, i.e., xi = xi−1. Another way of describing the process of
picking these random blocks is to pick a binary string of size s uniformly at random
d1, . . .ds and then duplicate each of the random bits resulting in the string d1d1, . . .dsds

and then append # at the end of the block (the construction can be seen in figure 2.3).
This gives us a string of size Θ(n) and the goal is to create a number of hard queries
for this particular input string.

#010101 . . . 01

001111 . . . 00#
##

Figure 2.3: The top string is a balanced left block, the middle is the separating part
and the bottom is an example of a random right block. Note that we have n/s left and
right blocks.

The Difficult Questions

Now in order to define our hard queries we need to define the notion of a valid
substring. A substring xi, . . .x j is valid if xi = #, x j = # and there exists indices k and
k+1 such that xk = # and xk+1 = # where i < k and k+1 < j. In plain English this
means that every valid substring must start with a left block, span the middle and then
end with a right block. Hence, it follows that the number of valid substrings in our
input string becomes (n

s )
2, since we have n/s left blocks in which the substring can

start and we have n/s right blocks in which the valid substring can end.
We prove in the paper that the probability that a substring has balance larger than

roughly
√

n is 2n−c. For c = 4 we get a probability of 2 1
n4 and since we have (n

s )
2

valid substrings, using the union bound we have that with high probability in every
valid substring the difference between ones and zeroes is less than

√
n. Since this

happens with high probability we assume that the valid substrings chosen abide to
this balance constraint.

Now the goal is to create a query set in which each query matches a lot of
valid substrings. Each query is defined by a 3-dimensional Parikh vector ψi =
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(ψi(0)ψi(1),ψi(#)). Since the query needs to output all of the matching indices
we want the output from each query to be large. We want a valid query to start with
#, include the middle ## and end with a #. This attribute can be assured with the
following definition:

Definition 2.1. A Parikh vector ψ = (ψ(0),ψ(1),ψ(#)) is valid if

(i) ψ(0)+ψ(1) is a multiple of 2s.

(ii) ψ(#) = ψ(0)+ψ(1)
2s +2.

(iii) |ψ(0)−ψ(1)| ≤
√

n/δ .

The first condition ensures that we match a whole number of left/right blocks, the
second condition ensures that we start and end with # and furthermore spans the two
middle characters. Lastly, the bound on the balance makes sure that valid queries only
match valid substrings.

To utilize the framework, we need to ensure that every query matches a lot of
substrings and that the overlap between the outputs of the different queries is not to
large. We will ensure the first condition in the following way.

To ensure that every query matches a lot of valid substrings we define the notion of
a good and a bad Parikh vector. A Parikh vector is bad if it matches less than

√
nδ

4s valid
substrings in our input string, otherwise it is good. The number of valid substrings
is (n

s )
2 and each valid substring matches a Parikh vector with high probability. The

total number of Parikh vectors is n
s

√
n

δ
and a bad Parikh vector match at most

√
nδ

4s

and hence we get that all the bad Parikh vectors match at most
√

nδ

4s ·
n
s

√
n

δ
= 1

4(
n
s )

2

valid substrings. Hence, at most one fourths of the valid substrings is matched by a
bad Parikh vector. This also means that three fourth of the valid substrings matches a
good Parikh vector. We therefore chose the set of good Parikh vectors as our query
set. This ensures that they all match roughly

√
n valid substrings.

The next step is to ensure that the overlap between the different queries is not
large. The intuition here is that even if all the queries output

√
n positions, if they

all output the same positions, the data structure could solve the problem easily by
simply storing the same output regardless of the query. Therefore, we want to ensure
that if we take a number of queries (α queries) that their overlap is not too big. This
will ensure that any data structure working on this instance will have to store several
different things since the queries are spread out and in that way we either force a large
space consumption or the data structure has to use a lot of time to retrieve the data on
query time. The framework behind this intuition is the framework of Chazelle[42, 44].
So if every α queries have little overlap with each other, together with the fact that
each query outputs roughly

√
n positions, we get the trade-off we set out to get.
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Ensuring Small Overlap between Queries

The proof consists of looking at two cases. The case where we have few elementary
intervals and the case where we have many elementary intervals, so what is an
elementary interval? Given our query set Q take out any α queries from Q, i.e.,
q1, ...,qα and look at all the positions B = {p1, ..., pβ} in our input string in which
these α queries match. Look at the lengths of the queries A = {|q1|, ..., |qα |}, then we
define D = A+B and define it as being in increasing order. An elementary interval is
defined as the interval represented by two consecutive integers in D, i.e., [di,di+1−1].
We define the number of elementary intervals as M.

The goal now is to show that given α queries from our query set, it is very unlikely
that they have β output points in common. When the number of elementary intervals
is large we obtain the bound through a union bound argument. However, when the
number of elementary intervals is small, our union bound breaks down and hence we
have to turn to additive combinatorics. By showing that if we have few elementary
intervals we must have an arithmetic progression and afterwards proving that such
an arithmetic progression is very unlikely, we obtain a contradiction and hence the α

queries cannot match at the same β positions.

Figure 2.4: An illustration of the elementary intervals in the right part of the string.
The different colors represents the different queries and at the bottom the elementary
intervals formed from D is shown.

In the case of many elementary intervals we note that each elementary interval
has size atleast 2s, since that is the size of a right block. In order for these elementary
intervals to align, each elementary interval must have a fixed value. The probability
for each elementary interval to have this fixed value is O(1/

√
s) and since they are

all disjoint the probability for a random string to have all of the fixed balances in all
the elementary intervals is no more than O((1/

√
s)M). If we apply a union bound we

have β values for the matching positions, α different values for the size of the queries
and finally we have α possible values for the balances b1, . . . ,bα . bi is defined as the
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balance in the interval p1 + |q1| to p1 + |qi| for i ∈ {2, . . . ,α} (which is sufficient to
calculate the balances of all the elementary intervals, see lemma 5.4 for a proof). This
gives us:

O

(
n2α+β ·

(
1√
s

)M
)

= Θ

(
n−β

)
,

when we choose s and M accordingly. This settles the case for many elementary
intervals among our α queries.

For the case of few elementary intervals the above argument breaks down, as M is
not big enough to kill the n2α+β term. Hence, we need to turn our attention elsewhere.
If there are few elementary intervals we can say that there must exist a k arithmetic
progression formed by the elementary intervals. This means that the size of the k
consecutive elementary intervals must be some fixed value d. The probability of these
k elementary intervals having these fixed balances is O((1/

√
s)k). The total number

of arithmetic progressions that can be formed is O(n2), since we have O(n) choices
for the starting point and O(n) choices for the common difference in the arithmetic
progression. Therefore we have that the expected number of arithmetic progressions
becomes:

E[#k-term arithmetic progressions]≤ (
1√
s
)kn2 < n−2.

So on one hand we know that an arithmetic progression have to exist, while the
expected number of arithmetic progressions is less than n−2. Hence, with high
probability there is no arithmetic progression, which is a contradiction. This settles
the case with few elementary intervals, since the α queries wont match at β common
positions.

This concludes the lower bound construction. Every query in our query set has
a large output and for any α queries they have little overlap in which positions they
need to output. This is exactly the conditions needed for Chazelles framework and
we get our lower bound by plugging in the values for α and β . The query output was
roughly Ω(

√
n) and we get a bound for the space from Chazelle:

S(n) = Ω

(
∑q∈Q |q|
α2O(β )

)
= Ω

(
n2−o(1)

)
.

2.4 The Binary Construction

The obvious challenge, when moving from three characters to two characters, is that
we cannot split our blocks like we did above. If we just remove the third character
# and consider a window (crossing the middle) which we slide with two characters
at a time to the right. For each slide to the right, the window would lose a 01 on the
left while gaining a 00 or a 11 on the right, both with equal probability. Essentially
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this mimics a random walk: the balance goes up by one or goes down by one with
equal probability. Hence, if we match at a position i, we will match again when the
random walk from i returns to the same balance. This is also known as the structure
of the zeroes of a simple random walk, meaning ∑

j
i=1 Xi = 0 where Xi is +1 or −1

with equal probability. The “clustered” zeroes of a random walk means that if a string
matches at position i, it is likely to match positions close to i as well. Consequently,
this can break the second requirement of our lower bound framework because if two
queries match the string at position i, it implies that they will also have a lot more
common matching positions close to i. In the ternary alphabet case, we handled this
problem by making sure that the matches are at least 2s apart and this meant that
if two queries matched at a position i, at position i+2s they were very unlikely to
match again since we have moved 2s steps in our random walk. Since we do not have
the extra character here, we need to come up with a different approach. Instead we
introduce the notion of a random walk in windy conditions. The left part of the string
is going to consist of 0s1s chunks and now when you slide the window to the right
the balance can stay the same or increase/decrease depending on where the “wind” is
coming from. If the left part of the window is in a zero block the wind pushes the sum
up, such that the sum can only increase or stay the same. On the other hand if we are
in a one block, the wind pushes the sum down and hence the sum can only decrease or
stay the same. The “windy random walk” essentially ensures that if a query matches
at position i, it can get very few lucky matches close to it, but then the next match will
have to be 2s steps away, taking us back to the case of the ternary alphabet.

Furthermore, we need the queries to span the middle and since we do not have
the special character we replace ## by 110n. When we define the notion of a valid
substring and query we just add that the Parikh vector needs these extra 10n ones.
Lastly the right part of the string becomes a random binary string of length 2n. The
construction can be seen in figure 2.5.

Even though some technical lemmas have to be proven in order for the binary
case to be complete the main ideas and intuition still stem from the ternary case. For a
thorough walk-through of our construction we refer to the paper.

0s1s0s1s . . . 0s1s

110n

01011 . . . 101011
Figure 2.5: Our binary input string. The left string consists of n/s chunks of 0s1s, the
middle part consists of 10n ones and lastly the right part consists of a random binary
string of length 2n.





Chapter 3

Rectangle Stabbing and
Orthogonal Range Reporting

Computational geometry revolves around seeking solutions to geometric problems.
Rectangle stabbing, orthogonal range reporting and dominance reporting are among
the most fundamental problems in computational geometry. They are the subject of
this section.

3.1 Rectangle Stabbing, Orthogonal Range- and
Dominance Reporting

Rectangle stabbing is defined in the following way: given a set of input axis-aligned
rectangles store them in a data structure such that given a query point, the data structure
can report which rectangles contain the query point. The name of rectangle stabbing
originates from thinking of the ranges as sticky notes and the query point as a pin
being stabbed into them. In 1D the problem can be solved in a number of different
ways including the use of segment trees or interval trees. This yields an optimal linear
space complexity and a O(log(n)+ k) query time (where k is the output size). In
2D Chazelle [39] matched the bounds of the one dimensional problem achieving an
optimal data structure using linear space and O(log(n)+ k). By applying range trees
for higher dimensions, the 2D solution can be extended by paying an extra log factor
in both space and query time for each dimension added, i.e., obtaining a query time of
O(logd−1(n)+ k) and a space consumption of O(n logd−2(n)) for d ≥ 3.

Orthogonal range reporting is in some sense the dual of the rectangle stabbing
problem: Given a set of input points store them in a data structure such that given an
axis-orthogonal query range the data structure can report which points are contained
in the query range. So the role of points and ranges are swapped when compared to
the rectangle stabbing problem. Orthogonal range reporting is a fundamental problem
not only in computational geometry but across computer science in general. It is a
fundamental question in database queries, each point is a database record and the
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query is a select query upon the database. A more general overview of the problem is
given in section 1.1.

Dominance reporting is defined as given a set of input points, store them in a
data structure such that given a query point q = (q1,q2, . . .qd), we can output all
input points xi = (xi,1,xi,2, . . .xi,d) where xi, j < q j for 1 ≤ j ≤ d. The name domi-
nance reporting stems from the fact that we report all points which are dominated
by the query point, i.e., the query point is greater in every dimension. In 1D the
problem is essentially a binary search followed by outputting every element be-
low the target, i.e., a O(log(n) + k) query time and linear space solution. In 2D
Chazelle and Edelsbrunner[43] presented a linear space data structure achieving
O(log2(n)+k) query time, while the best known solution was presented by Alstrup et
al.[22], achieving a query time of O(k+1) while maintaining linear space (which of
course also holds for 1D). In 3D Chan[35] presented a solution obtaining linear space
and O(log log(n)+ k) query time. Recently Nekrich [72] presented a linear space
solution for 4D, which gives a query time of O(log1+ε(n)+ k logε(n)). Furthermore
Nekrich presented an extension achieving dominance queries in d dimension using
O(n logd−4+ε(n)) space and achieving O(log log(n)(log(n)/ log log(n))d−3 + k).

Figure 3.1: Rectangle stab-
bing

Figure 3.2: Orthogonal
range reporting

Figure 3.3: Dominance re-
porting

When in constant dimensions rectangle stabbing, orthogonal range reporting and
dominance reporting have different complexities. While as we will see below, the
three problems becomes equivalent when the dimension is non-constant, i.e., the
problems can be reduced to one another with only a constant blow up in dimension.
All of the extensions into general d dimension discussed above suffers from the so
called “curse of dimensionality” and hence these approaches are unsuitable for the
case where the dimension is non-constant, e.g., when the dimension is c log(n) for
some constant c. The best solution for non constant dimension was presented by
Chan [36] where they devised a data structure for c log(n) dimension which achieves
Q(n) = O(n1−1/c log(c)) expected query time and S(n) = n1+δ for any δ > 0.

Equivalence in High Dimension

When the dimension is non constant, we can reduce the three problems to one another.
The first step is to show that rectangle stabbing and orthogonal range reporting in d
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0 yi zi

yi0

0-zi
Figure 3.4: The different cases of lemma 3.1.

dimension can be reduced to dominance reporting in 2d dimension. The key ingredient
is to see that the relation between a point being contained in an orthogonal range can
be reduced to a dominance problem.

Lemma 3.1. Given an orthogonal range R = [y1,z1]× [y2,z2]× ·· · × [yd ,zd ] and
a point p = (x1,x2, . . . ,xd) the task of determining whether p ∈ R is equivalent to
determining if the 2D point q = (x1,−x1,x2,−x2, . . .xd ,−xd) dominates the 2D point
w = (y1,−z1,y2,−z2 . . .yd ,−zd).

Proof. Lets focus on one interval [yi,zi] and one coordinate xi. Clearly if the relation
holds for any interval, it holds for the entire orthogonal range. Now we are left with
three cases, the case where xi < yi, the case where xi ∈ [yi,zi] and the case where
zi < xi. When xi < yi we get that the first coordinate in the transformation resolves in
q not dominating w since xi < yi. When xi ∈ [yi,zi], we get that xi > yi and that xi < zi

which in turn means that −xi > −zi and hence q dominates w in both coordinates.
When xi > zi we get that −xi <−zi and hence q does not dominate z (a visualisation
can be seen in fig. 3.4). In either case, we get the correct relation and this concludes
our proof.

By applying lemma 3.1, we get a reduction from rectangle stabbing and orthogonal
range reporting in d dimension into dominance reporting in 2d dimension. Now we
only need to prove that dominance reporting can be reduced to rectangle stabbing
and orthogonal range reporting. Clearly this is possible, dominance reporting can
be thought of as a special case of orthogonal range reporting in which the query
point (x1,x2, . . .xd) becomes a d-sided orthogonal range where [x1,−∞]× [x2,−∞]×
. . . [xd ,−∞]. On the other hand, every input point (x1, ...,xi) can be thought of as
an input range to rectangle stabbing in which it becomes [x1,∞]× [x2,∞]× ·· · ×
[xd ,∞]. It is quite obvious that these d-sided variants of orthogonal range reporting
and rectangle stabbing are easier than the regular problems and hence we see that
dominance reporting can be reduced to rectangle stabbing and orthogonal range
reporting. Hence, we have equivalence between these three problems when a factor 2
increase in dimension is tolerable.
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Figure 3.5: Alice and Bob communicating over an insecure line.

3.2 Faulty Communication

On our way to proving a lower bound for rectangle stabbing, orthogonal range
reporting and dominance reporting, we encountered a connection to error correcting
codes.

Error Correcting Codes

Formally we have two parties Alice and Bob. Alice wants to send a binary message
m to Bob, but it goes through a faulty communication line and hence Bob receives
m′ which is a version of m where a number of bits have been flipped. There are two
versions used to retrieve information about m. Error detection codes can detect if
any bits have been flipped, i.e., it can detect whether m = m′. Error correcting codes
can be used to retrieve m, given m′. Of course, there are limits to how powerful such
an error correcting code can be and hence an error correcting code can retrieve the
original message m if and only if the number of bits flipped is under some threshold.
The origin of error correcting codes dates back to Richard Hamming who studied
the phenomenon in the late 40’es [86]. Hamming invented the Hamming code which
is a family of linear error correcting codes which interestingly can be used for both
error detection and error correcting. These Hamming codes were presented in A
Mathematical Theory of Communication [82] by Claude Shannon.

In our quest to achieve a lower bound in c log(n) dimension for rectangle stabbing,
orthogonal range reporting and dominance reporting we obtained the following result
related to error correcting codes:

Theorem 3.1. Given r, d and h, such that r < d
4 , it holds that for any N ≤ (d

r )
rx/(2e),

there exists a set S of N interesting strings such that for any h strings s1, ...,sh ∈ S the
string s1∨·· ·∨sh has more than M 1’s, where M can be chosen to be min{dyr1−y

e , 1
2 rhz},

for parameters x, y, and z such that x+ y+ z = 1 and x,y,z > 0.

Where we define an interesting string to be a binary string of length d and
containing exactly r 1’s. This immediately gives rise to a set of error correction codes.
Alice and Bob agrees on a set of messages S from the above set. For Alice to send a
message she chooses m∈ S, now as long as ∀si,s j|i 6= j we have that d(si,s j)≥ 2δ +1
(the distance function being the Hamming distance), Bob can recover any m as long
as the number of bits corrupted during transmission is at most δ .

Now if si and s j have exactly r ones, then the fact that d(si,s j) ≥ 2δ + 1 is
equivalent to their or having at least r + 2δ + 1 ones, i.e., |si ∨ s j|1 ≥ r + 2δ + 1.
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Hence theorem 3.1 gives a set of error correcting codes if we set h = 2, where the
pairwise hamming distance is atleast M− r. For h > 2 we are not aware of any
application or interpretation in the context of error detection/correction.

As mentioned earlier, this connection arose as we were trying to design a lower
bound for the rectangle stabbing, orthogonal range reporting and dominance reporting
when the dimension is c log(n). The drawback of theorem 3.1 is that our construction
is existential, hence there is no description of how to create these error correcting
codes. Therefore, this result only states that such error correcting codes exists.

3.3 Lower Bound Construction

The underlying machinery of our lower bound is a framework by Afshani[10] and
it has some similarities to the framework by Chazelle used in the jumbled indexing
paper. The goal is to create t different shapes in c log(n) dimension. For each of
these shapes, we tile the unit cube, thereby creating a cover of the unit cube. Any
rectangle stabbing query inside the unit cube will result in at least t outputs, hence
the output will be large. On one hand we need to ensure that if we take any h shapes,
that their overlap is small, i.e., that the intersection of these shapes has a low volume.
On the other hand if we take a number of random points inside the unit cube, the data
structure needs to output many different shapes for each query point. This means that
the data structure cannot “cheat” by storing the needed information closely together.
This results in a trade-off between the space and query time.

The correlation to the error correcting codes stems from the fact that we can think
of each shape as a binary string, where a one at position i corresponds to cutting the
i’th dimension in half. On the other hand a zero corresponds to the i’th dimension
spanning the entire unit distance. Now if any h shapes have a low intersection it
corresponds to their binary strings having many 1’s in their OR. Meaning that we can
create binary strings such that for any h strings s1,s2, . . .sh it holds that s1∨s2∨·· ·∨sh
contains more than M 1’s. If we create our shapes in correspondence to these binary
strings, the intersection of any of the h shapes will be at most 2−M.

Proof by Contradiction

The proof is a non constructive proof, hence as mentioned earlier the construction of
these error correcting codes is not given. The idea is to do a contradiction argument in
which we get two different ways of counting the different ways of picking N strings of
length d with r ones. One is the exact count of picking these N strings and the other
is an over count which builds from the negated statement. Hence, by assuming the
negated statement we get that the exact count is larger than the over count and thereby
get a contradiction. The negated statement of theorem 3.1 becomes:

Statement 3.1. Given r, d and h, then for all sets of N interesting strings there exists
a subset s1,s2, . . .sh such that s1∨ s2∨·· ·∨ sh contains less than M 1’s.
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The exact count is to consider all strings of length d with r ones and then counting
all the ways of picking a set of N strings from these interesting strings. This gives

the count
((d

r)
N

)
. When assuming the negated statement, we get that every set S of N

interesting strings has a subset of h strings such that s1∨·· ·∨ sh has less than M ones.
The idea of the over count is to first choose these h strings s1, . . .sh and then pick the
remaining strings of S. To choose s1, . . .sh we pick the string s0 = s1∨·· ·∨sh. We pick
M positions that contain 1’s in order to get s0, which gives

( d
M

)
. Now to pick s1, . . .sh

we take the number of ways to pick h interesting strings among these M positions:((M
r )
h

)
. Now we are left with picking the rest of S giving us

( (d
r)

N−h

)
. Combining these

three expressions gives our over count and by choosing the parameters accordingly
we make sure that ((d

r

)
N

)
>

(
d
M

)((M
r

)
h

)( (d
r

)
N−h

)
.

This results in a contradiction and thus the negated statement is refuted. With
parameter fitting we get the query-space trade-off:

Theorem 3.2. Consider a pointer machine data structure that solves the rectangle
stabbing problem in c log(n) dimensions for some parameter c ≥ 4 and achieves
query time Q(n) = o(n). Let γ be such that Q(n) = n1−γ . If γ ≥ 2

2+logc , then the data

structure must use Ω
(
n1−γn

√
cγ/e−o(

√
cγ)
)
) space.

This states that if we want sub-linear query time any data structure for the rectangle
stabbing, orthogonal range reporting or for the dominance reporting problem must
use a large amount of space. There is still a gap between our lower bound and the
upper bound by Chan, since our γ needs to be roughly 1/ log(c) in order for the
construction to go through, while the upper bound of Chan achieves a query time with
γ = 1/(c log(c)). An interesting line of future work would be to work on bridging
this gap.



Chapter 4

Hierarchical Data

As mentioned in section 1.1, data can be non-orderly in the sense that each point in the
point set is, on top of their numerical values, associated with a category often referred
to as their color. In previous works, the assumption has been that the categories
themselves are independent, meaning that there is no relation between the different
categories. This may not encapsulate real world examples since categories can have
some inherent structure. If we look at the example from section 1.1, one could think
of the categories as forming a hierarchical structure. Say the root node is the category
American football, which has children which indicates the different countries in the
world in which American football is played and every team playing in a country is
a child of that country (this is what we denote as a category tree). Now a natural
question could be how many teams in Denmark have a player which is taller than 2
meters and heavier than 130 kg. A way to formalise this is through what we denote as
sub-category range counting (SCRC). In sub-category range counting, we are given
a point set of n points in Rd where each point is associated with a category from
an underlying category tree. Given a query range in Rd and a query node from the
category tree we want to count the number of points lying in the query range and have
a category in the sub tree rooted at the query node. For our example this would give
us a query range of [0,200]× [130,∞) and a query node of “Denmark”.

Another natural question to ask upon a category tree is how many categories are
“connected” to the points in the query range. A different way of phrasing this is to
look at how many different ancestors the points within the query range has in the

United States Denmark

American Football

Green Bay Packers New York Giants Aarhus Tigers Copenhagen Towers

Figure 4.1: A category tree where we query the subtree rooted at “Denmark”.
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category tree. Given a point set in Rd and a category tree the goal is for a given query
range to count the number of nodes in the category tree which can reach a node which
is a category of a point within the query. This type of question we call hierarchical
category counting (HCC).

For both SCRC and HCC they are atleast as hard as regular colored range counting.
For HCC we present a simple proof by taking the difference of two output sizes from
two different instances of HCC. For SCRC we can simply put all of our regular
colors in the leaf nodes and use the root as the query node. In either case the regular
colored range counting can be solved by our extended variants and since colored range
counting is hard for 2D and above, we focus on SCRC and HCC in 1D.

Another interesting extension of colors where internal structure is added was
studied by He and Kazi [58]. Here they count the number of colors/categories on the
path between two query nodes in the underlying category tree.

4.1 Category Tree

We will start off by looking at both SCRC and HCC in 1D when the underlying
category structure is a tree. For both problems we show interesting connections and
equivalences to already well studied problems.

Sub-Category Range Counting

For the SCRC problem, we close a loop and show equivalence for the following five
problems:

1. SCRC when the underlying category structure is a single path on a one-
dimensional input set P.

2. 3-sided distinct y-coordinate counting for a point set P in R2.

3. 3-sided color counting for a point set P in R2.

4. Dominance color counting for a point set P in R3.

5. Dominance counting for a point set P in R3.

We observe that SCRC on a single path is equivalent to 3-sided distinct coordinate
counting for a 2D point set. Given a single path and a 1D point set, we transform
every point xi of color c j into the 2D point (xi,h(c j)), where h(c j) is the distance
from the node c j to the leaf on the single path. Now for a query range [xq,yq] and
a query node cq we transform it into the 3-sided range [xq,yq]× (−∞,h(cq)]. In the
opposite direction, we transform every distinct y-coordinate into a color on the single
path sorted in accordance to height and store each point with its x-coordinate and the
corresponding y-color. For a 3-sided range [xq,yq]× (−∞,zq] we query the 1D point
set with the range [xq,yq] and query node as according to the y-coordinate bzqc (where
bzqc is the closest y-color which is smaller than or equal to zq).
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3-sided distinct y-coordinate counting can be reduced to 3-sided color counting by
creating a color for every distinct y-coordinate and assign each point its appropriate
color.

3-sided color counting can be reduced to dominance color counting in 3D. The
reduction goes by mapping every 2D input point (xi,yi) to the 3D point (−xi,yi,xi) and
the 3-sided query range [xq,yq]× (−∞,zq] into the 3D dominance range (−∞,−xq]×
(−∞,zq]× (−∞,yq]. Now it is not hard to verify that if a point is inside the 3-sided
query range it is also dominated by the 3D dominance range. The colors of the points
remain the same.

Dominance color counting in 3D was reduced to dominance counting in 3D by
Saladi [81].

We close the loop by showing that Dominance counting for a point set in R3 can
be reduced to 3-sided distinct y-coordinate counting in R2. The reduction is heavily
influenced by the reduction by Walderveen and Larsen [69] from 2D range counting
to 1D colored range counting as discussed in section 1.1.

Given a point set for dominance counting in R3, we transform the point set into
rank space, meaning that every coordinate is integer and that the input coordinates
are distinct. For an input point pi = (xi,yi,zi) we create four points: p1

i = (−xi,zi),
p2

i = (yi,zi), p3
i = (−xi,zi) and p4

i = (yi,zi +0,5). We create two coordinate distinct
counting structures and put p1

i and p2
i in the first structure and p3

i and p4
i in the

second structure. Given a query point p = (x,y,z), we create the 3-sided range
rp = [x,y]× [−∞,z+0,5]. The claim is that the number of dominated points of p in
the input is equivalent to the difference of the outputs of the two structures queried
with rp.

If p dominates pi then x ≥ xi, y ≥ yi and z ≥ zi, which means that −x ≤ xi and
zi +0.5≤ z+0,5, hence all four points are contained in rp. The first data structure
will count 1, since the two points share their second coordinate and the second data
structure will count 2 since the two points have distinct second coordinates. If p does
not dominate pi at least one of (−xi,zi) or (yi,zi) and (yi + zi +0,5) will not be in the
range, which means that the difference of the two data structures output will always
be zero. This concludes the reduction.

From [59] dominance counting can be solved using O(n logn/ log logn) space and
O(logn/ log logn) query time. By splitting the tree into its heavy path decomposition
we get a bunch of 1D single paths which we can solve through the reduction to
dominance counting. Hence, we get a solution to SCRC in 1D on a category tree
using O(log2 n/ log logn) space and O(logn/ log logn) query time.

Hierarchical Colored Counting

As just shown for SCRC, we show some interesting connections to already established
problems for HCC in 1D when the underlying category graph is a generalized caterpil-
lar tree. We define a generalized caterpillar tree as a binary tree where all the degree
three vertices lie on the same path. If the underlying category graph is a generalized
caterpillar tree, we show that unweighted HCC in 1D is equivalent to weighted 2D
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range counting and 1D colored range sum-max, i.e., summing the maximum weight
across all colors within the query range1. The details of the proofs can be found
in chapter 7.

For HCC on a 1D point set where the underlying category graph is a tree, we
can use this result to gain a data structure. We split the tree into O(logn) layers of
generalized caterpillar graphs by applying the heavy path decomposition and hence we
can solve each of these layers simultaneous with a weighted orthogonal range counting
data structure on O(n logn) points. This can be solved with O(n log2(n)/ log logn)
space and O(logn/ log logn) query time.

4.2 Category Directed Acyclic Graph

We now shift our attention to both SCRC and HCC in R but where the underlying
category graph is a directed acyclic graph (DAG). Obviously, this makes the problem
more challenging, but how much harder is this version as compared to the tree
version? These questions becomes quite a lot harder, since we can reduce the infamous
orthogonal vectors problem to both problems.

Reduction from Orthogonal Vectors

We will now reduce the orthogonal vectors problem to sub-category range counting.
From the orthogonal vectors hypothesis, presented in section 1.2, this will give us a
quadratic lower bound.

We need to build a category graph and an input point set to represent the orthogonal
vectors problem. To build the category graph we need to build three layers of nodes.
The first layer is going to consist of n nodes2, one for every vector in A. The second
layer is going to have a node for each dimension d and the third and final layer is
going to consist of n nodes, one for every vector in B. For every node ni in layer
one, we create an edge to the j’th node in layer two if the i’th vector in A has a 1 in
coordinate j. For every node in layer two, we create an edge to all nodes in the third
layer for which the corresponding vector in B has a 1. The input point set is going to
be n points where each is assigned a unique category from the third layer.

The claim is now that a vector a ∈ A and a vector b ∈ B are orthogonal if there is
no path from the node corresponding to a in the first layer to the node corresponding
to b in the third layer. Being orthogonal means that they do not share a 1 at any
coordinate and therefore it follows immediately from our construction that they are
orthogonal iff there is no such path between the first and third layer.

Now to check if there exists any orthogonal pair, we query n times with an interval
spanning over all input points, but with a new node from the first layer in every
iteration as our query node. Now if any query outputs less than n, we know that there

1If no point with color ci exists, it adds nothing to the sum.
2In the paper version, we choose η = n/ logc(n) instead of n such that the total graph size is O(n).

To simplify the proof we use n throughout here.



4.2. CATEGORY DIRECTED ACYCLIC GRAPH 37

a1 a2 a3 a4

b1 b2 b3 b4

b1 b2 b3 b4

Figure 4.2: An example for HCC in 1D with four vectors in R3. Every query up until
b4 had an output of 4+ |bi|1 +1, but when querying b4 the output is 3+ |b4|1 +1 <
4+ |b4|1 +1, hence b4 is orthogonal to a2.

are two orthogonal vectors. This gives us a conditional lower bound for SCRC in 1D
with a DAG as a category graph of P(n)+nQ(n)≥ n2−o(1).

The reduction needs a slight modification in order for it to work for HCC. We
create the same graph and input set, but instead of querying all input points we query
every input point individually. Now for a point pi with category bi, if the query output
becomes less than n+ |bi|1 +1 (where |bi|1 counts the number of ones in vector bi)
we know that atleast one vector in the first layer was not counted in the output and
hence must be orthogonal to bi. This again gives us a conditional lower bound of
P(n)+nQ(n)≥ n2−o(1). An example with four vectors in both A and B in R3 is given
in fig. 4.2.

Upper Bounds

At the first glance, and with this conditional lower bound in mind, it seems hopeless to
find a solution with Õ(n) space and polylog query time, or maybe not. The conditional
lower bound states that such a solution needs Ω(n2) preprocessing time. Although we
do not achieve Õ(n) space, we presented a solution with Õ(n3/2) space for HCC in 1D
on a DAG by compressing the initial data structure from the preprocessing phase. All
in all, we present a data structure for the HCC problem in 1D with an underlying DAG
category graph, which uses Õ(n2) preprocessing time, Õ(n3/2) space and O(logn)
query time. Thereby obtaining a polynomial gap between the preprocessing time and
space usage of the data structure.

For SCRC there is a trivial upper bound of O(n2) space and O(logn) query time.
For each node vi in the category graph, store a one dimensional colored range counting
structure for all nodes with colors reachable from vi. To answer a query (I,vq) we
query the regular colored range counting structure on the structure for vq with interval
I. As opposed to the HCC, where we could optimize the trivial solution, we were not
able to improve upon this trivial upper bound.
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Abstract

In this paper we study lower bounds for a variant of jumbled-indexing
problem: given an input string S on an alphabet Σ = {σ1, . . . ,σλ}, store it in
a data structure such that given frequencies f1, · · · , fλ , one can find all the
substrings S′ of S where the frequency of the character σi is fi, for 1 ≤ i ≤ λ .
This is a very interesting and challenging text indexing problem and it has
received significant attention lately, both in the string-indexing community as
well as in the theory community. It is known that when λ = 2, one can use a
linear-size data structure to decide whether there exists a substring that matches
the query in constant time [46]. It is also known [23] that for constant λ ≥ 3, then
there exists a constant αλ such that it is not possible to achieve both O(n2−αλ )
preprocessing time and O(n1−αλ ) query time.

We study a variant of the problem where the goal is to report all the sub-
strings of S that match a given jumbled-indexing query. Assuming the data
structure operates in the pointer machine model, we prove unconditional space
lower bounds that also apply to binary alphabets: we show that if the data
structure has the query time of O(n0.5−o(1)+ k), where k is the output size of
the query, then it must consume Ω(n2−o(1)) space. The o(1) term in our lower
bound is at most 1

log(10) n
, where log(·) notation denotes the iterative log function

(i.e., log(10) n = log loglogloglog logloglogloglogn).
This result has a number of interesting consequences. First, it shows that

reporting all the matches is significantly harder than deciding whether a match
exists, at least for the binary alphabet. This was surprising for us since we be-
lieved that in order for jumbled-indexing to be difficult, the alphabet size must be
at least 3. Second, from a technical point of view, we make connections between
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this problem and the area of additive combinatorics as well as random walks.
Previously, Chan and Lewenstein [37] had shown the connections between this
problem and the area of additive combinatorics from an upper bound point of
view, however, we use fundamental theorems from additive combinatorics but
these tools are quite different from the theorems used in [37]. In our opinion,
the fact that additive combinatorics appears in our lower bound approach as well
as in the upper bound approach of Chan and Lewenstein [37] is noteworthy and
demands further investigation.

We believe our results open up a few new venues for research. For example,
we believe it is interesting to study whether it is possible to build a data structure
that uses O(n) space s.t., it can report all the matches to a jumble-indexing query
in O(n2/3 + k) time; this is even interesting for a binary alphabet.

5.1 Introduction

In this paper, we study lower bounds for a challenging string indexing problem known
as Jumbled indexing or histogram indexing. Here, unlike the usual types of pattern
matching, we are concerned with the frequency of the letters in the match. To be
specific, let S1 and S2 be two strings over an alphabet Σ = {σ1, . . . ,σλ}. We say S1
and S2 jumble-match if they are commutatively equivalent, i.e., if one string can be
obtained from the other one by permuting its characters. Here, we will only use the
word match to denote the notion of a jumble-match. A common way to describe a
match is to use the notion of Parikh vectors. The Parikh vector ψ = ( f1, · · · , fλ ) of
a string S is the frequency of the alphabet characters in a given string, i.e., fi is the
number of occurrences of the character σi in S and thus two strings match if and only
if they have the same Parikh vector.

Parikh vectors were named after Rohit Parikh, and they were initially studied
due to their connection to context-free languages [74]. The concept of match, a.k.a
histograms matching, has a wide range of applications such as computational biology
and bioinformatics [27, 29]. See also [33] for more references and also the discussion
of jumble matching in mass spectrometry.

Previous Results

From a theoretical point of view, the notion leads to a number of natural problems,
such as, jumbled pattern matching where the input is a string S of length n and a Parikh
vector ψ = ( f1, · · · , fλ ) and the goal is to know whether S matches ψ . This can be
solved easily with a sliding window algorithm in O(n logλ ) time: initiate a conceptual
“window” f1+ · · ·+ fλ characters wide at the beginning of the string and just compute
the frequency of each character in the window. Sliding the window, one character to
the right changes the frequencies of at most two characters in the window and they can
be updated in O(logλ ) time. The result is a straightforward and efficient algorithm
for jumbled pattern matching. Typically pattern matching problems require non-trivial
ideas for an efficient solution (e.g., see the classical pattern matching algorithm of
Knuth et al. [63]) so this is a rather unusual case.
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However, we can also consider jumble-matching as a data structure problem:
preprocess an input string S in a data structure for matching queries. This leads to
the problem of jumbled indexing that unlike the jumbled pattern matching problem
ends up being much more challenging and difficult to answer. Jumbled indexing has
received quite a bit of attention lately as it leads to various intriguing problems. We
can even identify additional variants of this problem: in the most popular variant,
one that we call the the existential variant, we simply want to know if S contains a
substring that matches ψ , in the reporting variant we want to report all the positions in
S where a match occurs or the counting variant where we want to output the number
of matches. All these problems can be solved trivially by the sliding window method
which requires no preprocessing time and it has the query time of O(n logλ ). At the
other extreme, we can also solve all the three variants by merely storing all the O(n2)
substrings of S and given a query ψ , we can simply look up the answers in optimal
time. In general, it seems difficult to make progress on this problem beyond these
trivial solutions.

Nonetheless, it turns out that the existential variant can be solved efficiently for
a binary alphabet (i.e., λ = 2) using a clever idea: the sliding window algorithm
only needs to keep track of one frequency (e.g., number of 0s) so just record the
minimum and the maximum number of 0s for every window size to get a linear-sized
data structure. Then, given a query, look up to see if its number of 0s is between the
minimum and the maximum number of 0s ever seen in a window of that size, for an
O(1) query time.

Furthermore Kociumaka et al. [64] provided an algorithm for the existential variant
for a constant sized alphabet, having space O(n2−ε) and query time O(mε), where
m is the pattern length (note that m could be O(n)). With their result and the lower
bound presented in this paper the reporting variant seems harder than the existential
variant.

This, however, only solves the existential variant of the jumbled indexing, and
not the reporting or counting variants. Interestingly, even the simple idea for the
binary case has a lot of nuances. This idea was first used in [46] to give a data
structure of linear size, but the preprocessing time was quadratic. In a series of results,
the processing time was improved by polylog factors [33, 70, 71] and the jumbled
indexing problem was connected to other fundamental problems such as (min,+)-
convolution and (min,+)-matrix multiplication. These connections also made it
possible to improve the preprocessing time by more than polylog factors by applying
Ryan Williams breakthrough idea [89] but the latest breakthrough came by Chan
and Lewenstein [37] where they showed “bounded universe” version of (min,+)-
convolution can be solved in Õ(n1.859) time and subsequently, this also reduces the
preprocessing time of the jumbled indexing problem by polynomial factors rather than
polylogarithmic. The improvement, in fact, applies to alphabets of constant size rather
than just binary, although for non-binary alphabets the query is no longer constant or
logarithmic but is bounded by O(n1−α) for some constant α . Interestingly, the results
used ideas from additive combinatorics.

On the lower bound side, Amir et al. [23] proved conditional lower bounds that
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showed this trade-off is essentially best possible: they showed that if the size of the
alphabet is a constant λ ≥ 3, there is a constant αλ such that it is not possible to get
both O(n2−αλ ) preprocessing time and O(n1−αλ ) query time. Not only is their lower
bound conditional, and it does not apply to binary alphabets, it also says nothing about
the space requirement of the data structures. This is actually very important as the
case of the binary alphabet shows that it could be possible to solve the problem with
linear space while the preprocessing time could be large.

Our Results

In this paper, we consider the reporting variant of the problem. We prove that in the
pointer machine model, if a data structure can report all the k matches to a jumbled
indexing query in O(n0.5−o(1)+ k) time, then it needs to use O(n2−o(1)) space. This
lower bound is unconditional (unlike the previous ones), it also lower bounds the
space of the data structures (again, unlike the previous ones), and perhaps most
importantly, it applies to binary alphabets. This latter point shows that reporting all
the matches is significantly harder than deciding whether a match exists, at least for
the binary alphabet. This was surprising for us since we believed that in order for
jumbled-indexing to be difficult, the alphabet size must be at least 3.

The drawback of our lower bound is that the data structure is required to operate
in the pointer machine model. Our lower bound model is somewhat more restrictive
than the RAM model since it requires the data structure to operate through pointers
instead of having constant time access to the elements stored but on the other hand
computation and information is free in our lower bound model. One upside is that our
lower bounds are unconditional. Another upside is that our approach provides a hard
input instance. Conditional lower bounds on the other hand are proved through reduc-
tions and therefore no hard instance is presented. This means that pointer machine
lower bounds and the conditional lower bounds can be viewed as complementary
as they tell us different things, each increasing our understanding of the problems
involved differently.

An interesting technical aspect of our lower bound is that some fundamental
theorems from additive combinatorics also appear in our proof. This is somewhat
similar to [37], but the tools that we use are quite different from those that appeared
in [37], likely because we are dealing with a lower bound question. Nonetheless, the
fact that additive combinatorics appears in our lower bound approach as well as in the
upper bound approach of Chan and Lewenstein [37] is noteworthy and perhaps not a
coincidence.

We believe our results open up a few new venues for research. For example, we
believe it is interesting to study whether it is possible to build a data structure that uses
O(n) space s.t., it can report all the matches to a jumble indexing query in O(n2/3 +k)
time; this is even interesting for a binary alphabet.
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5.2 Technical Preliminaries

Here, we review some of the technical tools and preliminaries that we need for our
lower bound. We will need to use some of the existing lower bound framework in the
pointer machine model in addition to some (heavy) tools from additive combinatorics
as well as ideas from random walks.

Framework and Model of Computation

The Pointer Machine Model ([85]) models data structures that solely use pointers to
access memory locations (e.g., any tree-based data structure). The focus of this paper
is on a variant that is often used when proving lower bounds. Consider an abstract
“reporting” problem where the input is a set U and each query q reports a (implicitly
defined) subset, qU , of U . The data structure is represented as a directed graph
G with a root node r(G), where each vertex corresponds to one memory cell with
out degree two. Each vertex can store one element from the universe U and edges
between vertices represent pointers between memory cells. All additional information
can be stored and accessed for free by the data structure. The only restriction is that
given a query q, the data structure must start at the root node r(G) and explore a
connected sub graph G′ ⊆ G and such that each element of qU is stored in at least
one vertex of G′. The size of G′ gives a lower bound on the query time and the size of
the graph G gives a lower bound on the space required to solve the reporting problem.
The first lower bound framework in the pointer machine model was given by Bernard
Chazelle [42, 44]. This is the framework we will apply to the reporting variant of
jumbled indexing.

Theorem 5.1. Consider a reporting problem on a set S of n input elements and assume
a data structure of size S(n) achieves the query time of Q(n)+ γk for the problem
where k is the output size and γ is a fixed parameter (typically a constant). If there
exists a set Q ⊂ 2S, where each set q ∈Q have a corresponding query who outputs
the elements in q, such that the following hold.

(cond. |) For every q ∈Q, |q|= Ω(Q(n)).

(cond. ||) For any α queries q1, ...,qα ∈Q, we have |q1∩ ...∩qα | ≤ β .

Then S(n) = Ω(
∑q∈Q |q|

α2O(β+γ) ).

Note that from the way we define Q ⊂ 2S and with a slight abuse of notation, we
consider each element of Q as a query and we denote Q as the set of difficult queries.

Modelling jumbled-indexing. S = x1, · · · ,xn is our input string on an alphabet Σ of
size λ . We make the convention that the data structure only need to find a pointer that
points to the first character of each match (e.g., just xi instead of the entire substring
xi · · ·x j). This is well-defined since for a fixed query ψ at most one substring can
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match ψ from each starting position. Also, since all information other than pointers
are free in our model, we can assume the memory graph G only stores pointers to
characters of S. So, if a query ψ matches positions i1, · · · , ik, then the data structure
should find k memory cells that store pointers to characters xi1 , · · · ,xik .

Additive Combinatorics

Let A and B be subsets of an additive group G , e.g., the set of positive integers Z≥0.
The sumset of A and B, denoted by A+B is defined as the set {a+b|a ∈ A,b ∈ B}.
Furthermore, a set C ⊂ G is a k-term arithmetical progression if C = {c+ id : 0≤ i≤
k−1} for some values c,d ∈ G . The value d is known as the common difference of
the arithmetic progression.

One of the fundamental results in additive combinatorics is an explicit bound on
the maximal number of integers, rk(n), that can be selected from the interval [1,n]
without including a k-term arithmetical progression. This concept has a very old and
rich history. In 1936, Erdős and Turán conjectured that we must have rk(n) = o(n),
meaning, any sufficiently “dense” subset of [1,n] must contain a k-term arithmetic
progression. This was proven by Szemerédi [84] in a celebrated and influential result
in 1975. Szemerédi’s bound of rk(n) = o(n) suffices for our lower bound, however,
his proof does not show an explicit bound for the value of wk(n) = n

rk(n)
. So instead,

we will use Gowers’ breakthrough result that does in fact express an explicit bound,
as this would give us a more quantifiable lower bound. Gower’s groundbreaking
result [54] introduced a number of novel concepts in additive combinatorics and also
gave an explicit bound for the ratio between n and rk(n), and it was one of the primary
reasons he was awarded the prestigious fields medal.

Theorem 5.2. For every positive integers k there is a constant c = c(k) > 0 such
that every subset of {1,2, ...,N} of size at least N(log logN)−c contains an arithmetic
progression of length k. Moreover, c can be taken to be 2−2k+9

.

Szemerédi’s proof, combined with results of Balog and Szemerédi [26] (or
Freiman [52]) would show that if A+B is small, then A contains an arithmetic pro-
gression. Here, we will use a slightly different presentation of this fact by Rusza [80].

Theorem 5.3. Let A and B be subsets of an additive group G such that |A|= |B|= m.
If we have

|A+B|< 1√
2

wk(m)1/4m

then A contains a k-term arithmetic progression.

5.3 The Lower Bound

This section is devoted to proving our lower bound result for ternary alphabets. In
section 5.4 we will generalize upon this proof to extend the lower bound to the binary
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case. We chose to do this since an argument that uses three characters conveys a lot of
the major ideas, and it is much cleaner. Nonetheless, dealing with a binary alphabet
has a lot of unique challenges and thus it requires a number of non-trivial ideas and we
will not encounter any of them here. At any rate, our focus is to prove the following
theorem.

Theorem 5.4. For any data structure working in the pointer machine model, which
tries to solve the reporting jumbled indexing problem, where λ ≥ 3 and achieves
query time Q(n)+ k = O(n0.5−o(1))+ k, where k is the output size, must use S(n) =
Ω(n2−o(1)) space.

We will use the lower bound framework introduced in Subsection 5.2. For this
end, we will need to first construct an input string.

Our Construction

Notations and conventions. Our input string S will be constructed randomly. Our
construction depends on a (constant) number of events that each holds with high
probability, and here the high probability is taken to mean with probability at least
1−O(1/n). As we have a constant number of such events, it follows that all of them
hold with high probability. To unclutter the proof, we will implicitly assume that all
such events hold, instead of conditioning each statement on all of these events.

The input string. We start off by constructing S. The size of our string is Θ(n) and
we use an alphabet of size three, that is, Σ = {0,1,#}. Our construction splits the
string in two parts, this is done by putting two characters ## in the middle of the string.
In the first half of the string we repeat n

s times the pattern #(01)s, for a parameter
s to be determined later; in other words, in the first half, we have n

s “chunks” and
each chunk starts with #, then continues with s 01 two bit chunks. The second half is
slightly more complicated. In the second half we also have n

s chunks but these chunks
are created differently: each chunk is a string of length 2s+1, e.g., x1x2 · · ·x2s+1 and
the last character of the chunk is set to #, i.e., x2s+1 = #. Furthermore, for each odd
index i, we pick xi randomly and uniformly in {0,1}. For each even index i, we set
xi = xi−1 (see Figure 5.1 for an example). Another way of describing this process is
to say that we can start with a uniformly and randomly selected 01 string of size s,
e.g., d1, . . . ,ds, then duplicate each character to obtain the string d1d1d2d2, . . . ,dsds

and then append the character # to the end. Clearly, the size of S is Θ(n).

S =

Repeating pattern of #(01)s︷ ︸︸ ︷
#(01)s#(01)s#(01)s . . .#(01)s ##

Random pattern of 00 and 11 in chunks of size 2s︷ ︸︸ ︷
00111100 . . .00# . . .#11001100 . . .11#

Figure 5.1: The input string S
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Defining the Queries

In this subsection we will focus on cond. | from 5.1, hence we want to show that there
exists a query set Q where each query has output size at least Ω(

√
n/s
√

logn), where
s is a parameter to be determined later. We first discuss how to pick our query set.

Define the concept of a valid substring to be a substring xi, ...,x j where xi = #,
x j = # and there exists xk = #, xk+1 = # where i < k and k+ 1 < j. Another way
of phrasing this is to say that a valid substring starts and ends on the character #
and includes the middle two ##. It follows that the number of valid substrings in S
according to this definition is (n

s )
2, since we have n/s valid starting positions and for

each starting position we have n/s ending positions. For a fixed valid substring we
can prove the following Lemma (see the appendix for the full proof). The balance of
a substring is defined as (the absolute value of) the difference between the number of
1s and 0s in the substring.

Lemma 5.1. For a fixed valid substring, the probability that the substring has balance
larger than

√
n/δ is less than 2n−c, for δ = 1√

c logn .

The probability in the above Lemma is bounded by 2 1
n4 if we set c = 4. Since

the number of valid substrings is (n
s )

2, using union bound we have that with high
probability (i.e., probability at least 1−1/n), for every valid substring with x0 0s and
x1 1s we have |x0− x1| ≤

√
n/δ . In the rest of the proof, we assume that this event

holds for any valid substring.
We now build our set of “difficult” queries Q. Each query qi ∈Q is defined by a

3-dimensional Parikh vector ψi = (ψi(0),ψi(1),ψi(#)). qi is (the set of) all the starting
positions of the substrings that match ψi, meaning, in each substring the frequency
of the character v ∈ {0,1,#} is ψi(v). The data structure is required to output all
elements of qi (see Subsection 5.2), given the query ψi. In our construction, ψi will
be chosen such that any matching substring must include the middle ## characters
and it should start and end with #. This is done in the following way.

Definition 5.1. We say a Parikh vector ψ = (ψ(0),ψ(1),ψ(#)) is valid if

(i) ψ(0)+ψ(1) is a multiple of 2s,

(ii) ψ(#) = ψ(0)+ψ(1)
2s +2 and

(iii) |ψ(0)−ψ(1)| ≤
√

n/δ .

Our set of difficult queries will be a subset of all the valid Parikh vectors (more
details to follow).

Lemma 5.2. Any substring of x that matches a valid Parikh vector ψ , starts and ends
with # and it contains the middle character ##. Also, any valid substring matches
some valid Parikh vector w.h.p.
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Proof. Observe that between every two consecutive # characters, except the two in
the middle, there are 2s 0s and 1s. As a result, any substring xi j of x that contains k
instances of #, must also contain at least (k−2)2s many 0s and 1s. The equality only
holds if xi j starts with # and ends with # and also includes the two # characters in the
middle. The last claim in the Lemma follows from the definition of a valid Parikh
vector and Lemma 5.1.

To settle cond. | in Chazelles framework 5.1, we introduce the following definition.

Definition 5.2. We say a valid Parikh vector ψ is bad if it matches less than
√

nδ

4s valid
substrings of S, and good otherwise. Similarly, a valid substring that does not match
a good Parikh vector is called bad.

Remember that the number of valid substrings is
(n

s

)2 and each valid substring
matches a valid Parikh vector w.h.p. However, a bad Parikh vector can only match√

nδ

4s substrings and since the number of valid Parikh vectors is at most n
s

√
n

δ
, the total

number of substrings that can match bad Parikh vectors is
√

nδ

4s ·
n
s

√
n

δ
= 1

4

(n
s

)2. So at
most one fourth of the valid substrings can match a bad Parikh vector. This implies at
least three fourths of the valid substrings match a good Parikh vector. We define our
query set Q as the set of all good Parikh vectors. This means that for all q ∈Q the
output size |q| is at least

√
nδ

4s =
√

n
8s
√

log(n)
, by definition of a good Parikh vector. This

settles cond. | in Chazelles framework 5.1.

The probability of having a balanced string. Let T = t1t2 · · · tm be a random string
of 01, i.e., each ti is uniformly set to 0 or 1. We prove that for any fixed value 0≤ i≤ n
the probability of having exactly i 0s in T is at most Θ(1/

√
m). To prove this it

suffices to consider the case when i = m/2. In the following, we will assume that m is
an even number. The proof of the following is in the appendix.

Lemma 5.3. The probability of having i 0s in a random binary string of length m is
at most Θ(1/

√
m).

Proving the Lower Bound

In subsection 5.3 we showed that each query in our set of queries Q has an output
size of Ω(

√
n

s
√

log(n)
) which settled the first condition in Chazelles framework 5.1. Here,

we focus on the second condition which states that for any α queries in Q, the size
of their intersection must be less than β , i.e., for any q1, ..,qα ∈Q we must have
|q1 ∩ ...∩ qα | < β . In this subsection, we will prove that if α and β are chosen
properly, then with high probability there will be no α query that match β positions.

To do that, we assume the contrary: assume α queries match at the same β

positions p1, p2, ..., pβ . Ultimately, we will choose α = β but to keep the proof
clear, we will for now treat them as different parameters. A query q j matches S from
position pi until position pi+ |q j|−1 as well as from position pi+1 until pi+1+ |q j|−1.
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From our construction of our input string we have that the interval from pi to pi+1 is
balanced for all i ∈ {1,2, ...,β −1}, and this implies that the interval from pi + |q j| to
pi+1 + |q j|−1 is also balanced. Lets order the queries such that1 |q1|< |q2|< ... <
|qβ |. This means that p1 + |q1| is the leftmost endpoint which is to the right of the
middle of the string.

p1 p2 pβ ## p1 + |q1|
q1

p2 + |q1| pβ + |q1|

q2
p1 + |q2| p2 + |q2| pβ + |q2|

qα p1 + |qα| pβ + |qα|p2 + |qα|

Figure 5.2: Overview of α queries matching at β positions.

To prove our desired high probability bound, we need a notion of elementary
intervals.

Definition 5.3. Let A = {|q1|, · · · , |qα |} and B =
{

p1, · · · , pβ

}
and consider the set

D = A+B. Let D = {d1, · · · ,dM} be the elements of D in sorted order. An elementary
interval is the interval represented by two consecutive integers in D, specifically, it is
defined as [di,di+1−1] for 1≤ i≤M.

Let bi be the balance in the interval from p1 + |q1| to p1 + |qi| for i ∈ {2, ..,α}.
We can make the following crucial observation (for the full proof, see the appendix).

Lemma 5.4. Given p1, ..., pβ , |q1|, |q2|, ..., |qα | and b2,b3, ...,bα it is possible to
exactly calculate the balance of all the elementary intervals.

Observe that the elementary intervals are completely disjoint and they all lie in the
second half of the string S which is essentially a random string. Intuitively, this means
that the balance of each elementary interval is essentially a random value (not uniform
however). Our idea here is that knowing the values p1, ..., pβ , |q1|, |q2|, ..., |qα | and
b2,b3, ...,bα should not help us deduce all of these random balance values. To do
that, we consider two cases: if M is large, then we can show that this essentially
follows from a relatively simple argument and by applying the union bound. However,
M could be small enough to break our first union bound. In this case, we turn to
additive combinatorics and observe that this case implies that the set B must contain
an arithmetic progression. Next, we argue that it is very unlikely for any valid Parikh
vector to match S at positions that form an arithmetic progression. By combining
these two case, we manage to show that it is very unlikely for α queries to match at β

positions, for some proper choice of parameters.
1Note that the inequalities are strict as otherwise two queries would be identical.
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Many Elementary Intervals

We will start off by looking at the case where the number of elementary intervals is
large, i.e., M ≥ 4

ε
(α +β ), where ε is a variable to be determined later.

Theorem 5.5. If M ≥ 4
ε
(α +β ), the probability of α queries matching the same β

positions is Θ(n−β ).

Proof. Consider a fixed set of values of p1, ..., pβ , |q1|, ..., |qα | and b1, ...,bα . Since
p1, · · · , pβ and |q1|, · · · , |qα | are fixed values, the position of each elementary interval
is also fixed. From Lemma 5.4, we also know that the balance in each elementary
interval is also fixed. One main observation here is that each elementary interval
has size at least 2s since queries must match at positions that start with # and these
positions are at least 2s characters apart. Now, look at the probability of our input
string having exactly this set of fixed balance values at this fixed set of intervals:
We have M elementary intervals of size at least 2s, they all have a fixed balance
but we know from Lemma 5.3 that the probability of having this balance is at most
O(1/

√
s) (notice that if an interval is bigger than 2s, this probability will only become

smaller). The intervals are disjoint, and thus the probability of having a fixed balance
is independent, hence the probability for a random string to have all of the balances in
the M elementary intervals is no more than O((1/

√
s)M). We now use union bound

and consider all possible combinations of values p1, ..., pβ , |q1|, ..., |qα | and b1, ...,bα :
we observe that for each one we have at most n choices and thus in total there are
n2α+β combinations of numbers that corresponds to these values. This means, the
overall probability is bounded by

O

(
n2α+β ·

(
1√
s

)M
)
≤ O

(
n2α+β ·n−

ε

2(
4
ε
(α+β ))

)
= Θ

(
n−β

)
.

Where s = nε , M ≥ 4
ε
(α +β ) and ε is a parameter to be determined later.

Few Elementary Intervals

We will now focus on the case when the number of elementary intervals is small. This
means that we assume M ≤ 4

ε
(α +β ). The idea here is to use tools from additive

combinatorics and argue that there must exist an arithmetic progression between the
set of starting positions. Then, we show that for a proper choice of parameters, this is
unlikely. Together with the result from section 5.3, this resolves the second condition
from Chazelles framework 5.1.

Remember that we have A = {|q1|, · · · , |qα |} and B =
{

p1, · · · , pβ

}
and M =

|A+B|. We set α = β = m = log logn and furthermore we fix ε = 1/ log(10)(n) where
the log(`) n function is the iterated log function. Observe that with this choice of
parameters, our construction is now fully described and we have no other parameters
left to play with. Remember that we are dealing with the case M ≤ 4

ε
(α +β ) which

is equivalent to the condition |A+B| ≤ 4
ε
(|A|+ |B|). We claim that B contains a
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pa1 pa2 pak ## pa1 + |q1| pa2 + |q1| pak + |q1|pa3

d d d

Figure 5.3: Figure of k-arithmetic progression with common difference d among
points.

k-arithmetic progression, where k = log(6)(m). To prove this claim, we first verify

that for large enough n, we have wk(m) = (log logm)
1

22k+9 ≥ log(7)(m):

wk(m) = (log logm)
1

22k+9 ≥ log(7)(m)⇐ 1
22k+9 log(3)(m)≥ log(8)(m)⇐

log(4)(m)−2k+9 ≥ log(9)(m)⇐ log(4)(m)− log(9)(m)≥ 2k+9⇐ log(6)(m) = k.

From 5.3 we know that B contains an arithmetic progression when |A+B| ≤
1√
2
wk(m)1/4(m). So, to show that B contains a k-term arithmetic progression, it

suffices to verify that |A+B| = M ≤ 8
ε
m ≤ 1√

2
wk(m)1/4(m). Observe that 8

ε
m =

8log(10)(n)m = 8log(8)(m)m. So we want to show that

8 log(8)(m)≤ 1√
2

wk(m)
1
4 .

However, since we already proved that wk(m) = (log logm)
1

22k+9 ≥ log(7)(m), it suf-
fices to show that

c(log(8)(m))4 ≤ log(7)(m), (5.1)

where c is some constant. However, this inequality clearly holds for large enough n.
So far we have proven that if M ≤ 4

ε
(α + β ), then B contains a k-arithmetic

progression, where k = log(6)(m). In the following, we want to prove that the expected
number of such arithmetic progressions in B is less than 1/O(n2), and this implies
that there is no k-arithmetic progression w.h.p. If there is no k-arithmetic progression,
then we can conclude that when M ≤ 4

ε
(α +β ), there are no α queries matching at

the same β positions.
We know that B contains a k-arithmetic progression. Let Ba = {pa

1, pa
2, ..., pa

k} ⊆ B
be the set of positions in this k-arithmetic progression. For a fixed query q and fixed
set B we have that the common difference in the arithmetic progression is d, this is
depicted in figure 5.3.

The probability of seeing a fixed k-term arithmetic progression is at most ( 1√
s)

k,
since this requires the existence of k disjoint and balanced intervals of the form
[pi + |q|, pi+1 + |q|]. Clearly, this probability is at most ( 1√

s)
k by Lemma 5.3. The

crucial observation here is that the total number of k-term arithmetic progression is
very small: we have less than n values for the common difference d and less than n
different starting positions, hence the number of ways to construct these k consecutive
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balanced strings in a string of total length n is at most n2. By linearity of expectation,
the expected number of k-term arithmetic progressions becomes

E[#k-term arithmetic progressions]≤ (
1√
s
)kn2.

Now we want to prove that this expected number is less than n−2, i.e. that w.h.p
there are no k-term arithmetic progressions. We know that k = log(6) m = log(8) n and
s = nε . Thus,

(
1√
s
)kn2 = n−

εk
2 +2 = n

− log(8)(n)

2log(10)(n)+2
< n−2

where the last inequality follows from the fact that − log(8)(n)
2log(10)(n) <−4 for all sufficiently

large n. This concludes the case where we have few elementary intervals.

Putting it all together

We now have all the ingredients to stitch our lower bound together. The first condition
of Chazelles framework 5.1 was settled in subsection 5.3, where we showed that
any query q ∈ Q has an output size of at least Ω(

√
n/s
√

log(n)) = Ω(n0.5−o(1)).
Furthermore, the total size of our good vectors is Ω

(
(n/s)2

)
. In subsection 5.3 and

5.3 we settled the second condition, hence we showed that for any α queries q1, ...,qα

the size of their intersection is less than β , i.e. |q1∩ ...∩qα | ≤ β , w.h.p.. This leads
us to the following bound on the space

S(n) = Ω

(
∑q∈Q |q|
α2O(β )

)
= Ω

(
(n/s)2

log logn2O(log logn)

)
= Ω

(
n2−o(1)

)
.

where s = nε and ε = 1
log(10)(n)

. This concludes our proof of Theorem 5.4.

5.4 The Binary Alphabet

In this section, we generalize our lower bound from the previous section to a binary
alphabet. We believe this is an important contribution specially when juxtaposed
against the case of existential queries where for a binary alphabet we could obtain
linear-sized data structures with O(logn) query times (or even constant query times,
depending on the model). In other words, this lower bound suggests that reporting
queries are strictly more difficult than existential queries, at least for binary alphabets.
Therefore this section is devoted to proving our main result in the binary setting.

Theorem 5.6. For any data structure working in the pointer machine model, which
tries to solve the reporting jumbled indexing problem, where λ ≥ 2 and achieves query
time Q(n)+k =O(n

1
2−o(1))+k, where k is the output size, must use S(n) =Ω(n2−o(1))

space.
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The big picture of our lower bound is pretty much the same. However, the case of
a binary alphabet requires dealing with some additional challenges, including some
noteworthy challenges that come from the area of random walks. It is easier to talk
about those challenges once we have presented our construction.

The construction of our string. Our input string S will be constructed randomly
and it depends on a (constant) number of events that each holds with high probability
and here the high probability is taken to mean with probability at least 1−O(1/n). As
we have a constant number of such events, it follows that all of them hold with high
probability. To unclutter the proof, we will implicitly assume that all such events hold,
instead of conditioning each statement on all these high probability events holding.
In the first part of the string, we have n

s chunks of size 2s where each chunk contains
s 0s followed by s 1s. Then, in the middle of the string we place 10n 1s. Finally, in
the last part of the string we place a completely random 01 string of length 2n (see
Figure 5.4). The total length of the string is 14n.

S =

Repeating pattern of 0s1s︷ ︸︸ ︷
0s1s0s1s0s1s . . .0s1s

10n︷ ︸︸ ︷
111 . . .1

random 01 string of length 2n︷ ︸︸ ︷
110100101011 . . .10

Figure 5.4: Example of an input string S

The challenges. Obviously, the source of our challenges is that we do not have an
extra # character to use in our construction and this requires some non-trivial changes.
Imagine if we did the obvious thing and we just removed all the extra # characters
from the previous construction. Now, if we consider a window (one that crosses the
middle of the string) and slide it two characters to the right, it loses a 01 sequence
on the left but it gains 00 or 11 on the right, both with equal probability. As a result,
the number of 0s in the window behaves exactly like a random walk: it goes up or
down by one with 0.5 probability. This means, if we match at a position i, then the
next matching positions are when the random walk returns to this balance. This is
equivalent to the structure of the zeros of a simple random walk, i.e., the values j
for which ∑

j
i=1 Xi = 0 where each Xi is +1 or -1 with probability 0.5. This has been

studied at least since 1940s and it has some very strange and unintuitive properties. For
instance, its number of zeros does not have a symmetric distribution and thus it does
not follow the “law of large numbers” [45, 49]. It also has a lot of “clustered” zeros
and this would break a lot of our reasoning. In the previous proof, we circumvented
the “clustered” zeroes problem by using the extra character and making sure that
two matches happen at least distance 2s apart. Here, we do not have this luxury so
instead we use the sequence 0s1s in the first half of the string. This gives us a “simple
random walk with variable wind” problem! Here, as we slide the window over the 0s

part, we may lose or stay at the same number of 0s with probability 0.5 but while we
slide the window over the 1s part, we may gain or stay at the same number of 0s with
probability 0.5. So informally speaking, this is kind of “a simple random walk in a
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windy climate” where the wind pushes us to the left for s steps and then to the right
for the next s steps and so on. Informally, the consequence of this change is that once
we pass the origin, we cannot get back to the origin until the “wind” changes direction
but it happens every s steps and thus there will be large gaps of of size s between a lot
of the matches. It turns out, this is sufficient for a lower bound.

Because of the aforementioned challenges, the description of our set of queries is
more complicated and it requires a number of additional concepts. We will do this in
the following subsection.

Constructing the Set of Queries

We define the concept of a valid substring: a substring xi, · · · ,x j is valid if i≤ 2n and
j ≥ 12n, i.e., it starts at the first part of S, includes the middle part of S in its entirety,
and then ends in the last part of S. Clearly, the number of valid substrings is exactly
(2n)2 = 4n2. Similar to Lemma 5.1, we can prove the following lemma using a simple
application of Chernoff bound.

Lemma 5.5. Consider a fixed valid substring, and let x0 and x1 be the number of 0s
and 1s in the window, respectively. Assuming s≤

√
n, we have

Pr[|x1−10n− x0|> s+
√

cn logn≥ 2
√

cn logn] = O(n−c).

Proof. A valid window has 10n 1s at its center and up to s 0s or 1s from the first part
of the string. But the last part of the string is completely random and thus the lemma
follows by Lemma 5.1.

The probability in the above lemma is bounded by 1
n4 if we set c = 4. Furthermore,

as the number of valid substrings is 4n2, it follows that with high probability (to be
specific, with probability at least 1−1/n), for every valid substring with x0 0s and
x1 1s, we will have |x1−10n− x0| ≤ 4

√
n logn. As discussed at the beginning, in the

rest of this proof we assume that this event holds.

Definition 5.4. We say a Parikh vector ψ = (ψ(0),ψ(1)) is valid if

(i) ψ(1)≥ 10n

(ii) and |ψ(1)−10n−ψ(0)| ≤ 4
√

n logn.

Definition 5.5. We say a valid Parikh vector ψ = (ψ(0),ψ(1)) is bad if it matches
less than δ

√
n

logn valid substrings of S, and good otherwise, for an appropriate

parameter δ to be chosen later. Similarly, a valid substring that does not match a
good Parikh vector is called bad.
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Lemma 5.6. There exists a fixed constant δ , such that the number of bad substrings
is at most n2.

For a full proof, we refer to the appendix. As a result, w.h.p, the majority of valid
substrings will be good and thus they will be matching a good Parikh vector. Consider
a valid Parikh vector ψ and assume a substring starting at position i matches ψ . If the
substring is not a valid substring, then we call the match invalid.

Lemma 5.7. W.h.p, the number of invalid matches of any fixed valid Parikh vector ψ

is at most s+2logn.

Proof. Assume there are w substrings that match ψ that start at positions i1, · · · , iw
and end at positions j1, · · · , jw. Since ψ is valid, we have ψ(1)≥ 10n. For a match
from position i` to j` to be invalid, we must either have i` > 2n or j` < 12n. Reorder
the matches such that i1 < · · ·< ix are the matches that belong to the former case. It
follows that 2n < i` < 10n for every 1≤ `≤ x which implies all the characters from
position i1 to ix are 1s. This means that the only way these matches can happen is
for all characters between j1 and jx to be also 1s. Subsequently, this implies that all
the values i1, · · · , ix are consecutive and subsequently all the values j1, · · · , jx are also
consecutive. However, the values j1, · · · , jx are in the last part of the string which is a
completely random 01 string. The probability of having x consecutive values of 1 at a
fixed given position is 2−x. If x ≥ 2logn, then the probability of observing some x
consecutive 1s at some point is at most 2n ·2−2logn < 1− 1

n , by union bound. Thus,
x≤ 2logn with high probability.

Now consider the other case and once again, reorder the matches such that i1 <
· · ·< iy and j1 < · · ·< jy denote the invalid matches of latter case. So j` < 12n for
1 ≤ ` ≤ y. In this case, we also have j` > 2n which implies all the characters from
positions j1 to jy are 1s which implies all the characters from positions i1 to iy are
also 1s. However, these positions are in the first part of the string where the maximum
number of consecutive 1s is at most s.

As discussed earlier, we will assume that the above event holds, meaning, for
each valid Parikh vector we have at most s+ 2logn invalid matches. Ultimately,
s will be bounded by no(1) which would imply the number of invalid matches is
negligible compared to the number of matches of a good Parikh vector (which matches
Ω(
√

n/ logn) positions).

Definition 5.6. Consider a valid match of a valid Parikh vector ψ at position i. If
the character at position i is a 0 (reps. a 1) then we call the match a 0-match (resp.
1-match). Furthermore, a 0-match (resp. 1-match) at position i is an immediate match
if ψ also 0-matches (resp. 1-matches) position i−1.

Lemma 5.8. Consider a fixed valid Parikh vector ψ . Let I be the random variable
that counts the number of immediate matches of ψ and let M be the random variable
that counts the number of valid matches of ψ , where the randomness is over the
choices of our string S. Then, we have E(I )≤ E(M )

2 .
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Proof. For a value j > 12n, let M j denote a 01 random variable which is 1 if a
valid match to ψ ends at position j and Y j be a 01 random variable which is 1 if
an immediate match to ψ ends at position j. Clearly, we have M = ∑

14n
j=12n M j and

I = ∑
14n
j=12n Y j. Observe that if a match to ψ ends at position j, then it should begin

at position j−|ψ|+ 1. Consider our input string S = x1, · · · ,x14n. Remember that
only the last 2n characters of S actually vary and the first 12n characters of S are fixed.
Furthermore, for each xi, 12n+1≤ i≤ 14n, xi is 0 with probability 1

2 and 1 with the
same probability. Define the random variable X j, 12n+1≤ j ≤ 14n, where X j is 1 if
x j = x j−|ψ| and 0 otherwise. Observe that in the definition of X j, the right hand side is
not a random variable but the left hand size is (this is because by assumption, j lies in
the last part of S whereas j−|ψ| must lie in the first part of S). Thus, Yj+1 = M jX j+1,
which in plain English means that for position j+1 to be the end of an immediate
match, first, we must have a match ending at position j, and the character x j+1 must
be equal to the character x j−|ψ|+1. The crucial observation here is that M j and X j+1
are independent random variables since M j only depends on the string x1, · · · ,x j and
x j+1 is sampled independently. Thus,

E(I ) = E(
14n

∑
j=12n

Y j) =
14n

∑
j=12n

E(Y j) =
14n

∑
j=12n

E(M j−1X j) =
14n

∑
j=12n

E(M j−1)E(X j)≤

14n

∑
j=12n

E(M j−1)

2
≤ E(M )

2
.

Remember that definitions of I and M depend on the Parikh vector ψ (we
have chosen to omit this dependency from our notation to reduce the clutter). If
I ≤ 3

4M , then we call ψ suitable. By Lemma 5.8 and using Markov inequality,
we get Pr[I ≥ 3

4M ] ≤ 2
3 which means a valid good Parikh vector is suitable with

probability at least 1
3 .

Definition 5.7. The set of queries Q is the set of all the valid, good, and suitable
Parikh vectors.

Lemma 5.9. We have E(∑q∈Q |q|)≥ n2.

Proof. Each query q ∈Q is good and thus by definition it matches δ

√
n

logn positions.

We have 4n2 valid substring and by Lemma 5.5 and definition of valid Parikh vectors,
each valid substring matches some valid Parikh vector but By Lemma 5.6, at most n2

of them match the bad Parikh vectors, meaning, the number of substrings that match
good, and valid Parikh vectors is at least 3n2. By Lemma 5.8, a valid and good Parikh
vector will be suitable with probability at least 1

3 and thus it will be included in our
query set. Thus, by linearity of expectation we get that E(∑q∈Q |q|)≥ n2.

We now focus on the second condition of the lower bound framework. Here, we
need to show that with high probability, we cannot have α queries ψ1, · · · ,ψα that all
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match the same β positions p1, · · · , pβ , for appropriate choice of α and β . Here, we
need additional ideas to generalize our lower bound to the binary alphabet. Basically,
we would like to ignore the immediate matches as they could potentially break the
second requirement of our framework.

Consider a fixed suitable Parikh vector ψ and assume it matches k positions in
S. Among the k matches, at most s+2logn of them could be to invalid substrings by
Lemma 5.7. Since ψ is suitable, it follows that the number of immediate matches of
ψ is at most 2k/3. Thus, at least k/3 of the matches are non-immediate and thus at
least k/3− s−2logn of them will be both non-immediate and valid. Furthermore, at
least half of these will be b-matches for some b ∈ {0,1}. But since ψ is good, we
have that k ≥ δ

√
n

logn . Assuming s = no(1), it follows that k/6− s/2− logn > k/10

and thus there are at least k/10 valid, non-immediate b-matches. We call these the
interesting matches of ψ and we focus only on these output. Thus, if a suitable Parikh
vector ψ has k matches, then it has at least k/10 interesting matches. Now consider
the data structure: it has Q(n)+ γk time to report all the k matches of the query. If we
focus on reporting only the interesting matches, the data structure has still the same
amount of time but we have Q(n)+ γk ≤ Q(n)+10γk′ which implies we can solely
focus on the interesting matches by increasing the constant γ by a constant factor. For
a query qi ∈ Q, let q′i be the subset of qi consisting of all the interesting matches.

Lemma 5.10. Consider a suitable Parikh vector ψ and assume ψ matches S at
positions i1 and i2 where both of these are interesting matches. Then we have |i1− i2| ≥
s.

Proof. W.l.o.g, assume i1 < i2 and assume both of them are 0-matches. By our
assumptions, ψ matches the substring from position i1 to j1 = i1 + |ψ| − 1. Thus,
xi1 = 0. After the match at i1, there will be t ≥ 0 additional immediate matches,
i.e., as far as xi1 = xi1+2 = · · ·= xi1+t−1 = 0 and x j1+1 = x j1+2 = · · ·= x j1+t = 0 (see
Figure 5.5). However, we will either have xi1+t = 1 or x j1+t+1 = 1. In either case,
there won’t be another 0-match until we slide the window over the current chunk of
0s, and over the next chunk of s 1s, meaning, we will have i2− i1 ≥ s.

10n 1s at the middle. . .00000 . . . 11 . . . 1000 . . . . . .1110001011101010110101 . . .

i1 j1

i1 + t j1 + t

Figure 5.5: The gap between two interesting matches is at least s.

In the previous proof, we set α and β equal and set both of them to m = log logn.
We also defined a notion of elementary intervals and considered two cases. Here, not
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only do we have to make different choices for α and β , but we also need to consider
an additional case.

To satisfy the second condition of our lower bound framework, we need to consider
α queries q′1, · · · ,q′α that match β positions p1, · · · , pβ . As before, assume we have
|q′1| < · · · < |q′α | and p1 < · · · < pβ . We define the sets A = {|q′1|, · · · , |q′α |} and
B =

{
p1, · · · , pβ

}
, and the resulting set D = A+B defines our set of elementary

intervals. Similarly, define bi to be the balance of the string (i.e., the difference
between 0s and 1s) in the substring starting from index p1+ |q′1| till the index p1+ |q′i|.
We call bi the the initial balance. We have a very similar lemma to Lemma 5.4, full
proof is in the appendix.

Lemma 5.11. Given p1, ..., pβ , |q′1|, |q′2|, ..., |q′α | and b2,b3, ...,bα it is possible to
exactly calculate the balance in all elementary intervals from pi + |qk| to p j + |ql|.

Here, we set α = s5m, β = m and m = log logn. Consider the elements of
A modulo s. Observe that it is possible to pick a subset A′ ⊂ A such that all the
elements of A′ are congruent modulo s5 and |A′|= |A|/s5 = m. Define D′ = A′+B.
Next, we define the sets As =

{
da

s e|a ∈ A′
}

and Bs =
{
db

s e|b ∈ B
}

. Observe that for
every a1,a2 ∈ A′ we have |a1− a2| ≥ s5 and also for every two b1,b2 ∈ B we have
|b1− b2| ≥ s, by Lemma 5.10 and thus |As| = |A′| and |Bs| = |B|. Define the set
Ds = As +Bs. The set Ds defines the set of truncated elementary intervals.

Lots of Truncated Elementary Intervals

In this case, we assume |Ds| ≥ 24
ε

m where ε is such that s = nε . We calculate the
probability that two fixed sets A′ and B describe aforementioned set of queries and
matching positions with this condition. Let I =

{
b2, · · · ,b|A′|

}
be the set of initial

balances that correspond to the queries represented by A′. As A′,B, and I are fixed, by
Lemma 5.11, we know the balance of every elementary interval. Let D3 be a subset of
Ds such that for every two elements d1,d2 ∈ D3 we have |d1−d2| ≥ 3. We can pick
D3 to contain at least |Ds|/3 ≥ 8

ε
|A′| elements. Consider two consecutive integers

`1, `2 ∈ D3, `1 < `2. By definition of D3 we know that `1 +3≤ `2 and by definition
of D, we know there exists values a1,a2 ∈ A′, b1,b2 ∈ B such that `1 = da1

s e+ d
b1
s e

and `2 = da2
s e+ d

b2
s e. Observe that these equalities imply that

a1+b1≤ s
(
da1

s
e+ db1

s
e
)
= s`1 and s`2−2s= s

(
da2

s
e+ db2

s
e−2

)
≤ a2+b2

and thus a2 +b2 ≥ a1 +b1 + s. In other words, every two consecutive integers in the
set D3, imply the existence of an interval (not necessarily elemental) of length at least
s. However, the balance of this interval is fixed. As the interval has length at least s,
this probability of finding this fixed balance in S is at most 1√

s by Lemma 5.3. Thus,
the probability that the sets A′, B and I describe |A′| queries that match at |B| positions
is at most (

1√
s

)|D3|
.
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As before, we do a union bound and the number of choices for sets A′, B and I is at
most n|A

′|+|B|+|I| ≤ n3m. Thus, the probability that the set A′, B and I describe a set of
queries and matching positions is at most

n3m
(

1√
s

)|D3|
≤ n3m

(
1√
s

) 8
ε

m

= n3m−4m < n−2

where the last inequality assume that m > 2 which holds for large enough n.

Few Truncated Elementary Intervals

In this case, we have |Ds| < 24
ε
|A′|. We can verify that choosing k = log(6) n and

ε = 1
log(10) n

will make sure that 24
ε
≤ 1√

2
wk(m)1/4; this is the same calculation that we

have done in Page 53 and it will result in Equation 5.1 in Page 53 but with a different
constant for c. We can now use Theorem 5.3 on the sets A′ and B: we can gleam that
Bs contain arithmetic progressions of length k. Let db be the common difference of the
k-term progression in Bs. Relabel the values in Bs such that b1 < · · ·< bk represents
the values of the k-term arithmetic progression in Bs. We consider two additional
cases.

Large db

This case corresponds to when db ≥ s3. Now fix the values b1, · · · ,bk. Recall that pi is
the value in B such that bi = d pi

s e but note that fixing bi does not determine the value
of pi.

Now, consider one query q′1 ∈ A′ and let ψ be the corresponding Parikh vector.
We now fix ψ as well. Recall that q′1 is the set of interesting matches of ψ . By the
definition of an interesting match, all interesting matches are either 0-matches or
1-matches. W.l.o.g., assume q′1 consists of only 0-matches. Thus, the (fixed) value
of bi = d pi

s e (uniquely) identifies a block 0s that contains a match! Now define the
following indices: `i = sbi and `′i = sbi + s−1 and ri = `i + |ψ| and r′i = `′i + |ψ|. By
what we have argued, `i ≤ pi ≤ `′i and that all the characters in our string S between
indices `i and `′i are 0. If a match to the query ψ starts at some position pi, `i ≤ pi ≤ `′i,
then the match ends at the position pi + |ψ|−1, between indices ri and r′i. However,
observe that the balance of the substring between positions pi and pi+1 is between −s
and s. This in turn implies that the balance of the substring between positions pi + |ψ|
and pi+1 + |ψ|− 1 is also bounded by the same amount. However, these positions
are s indices away from ri and ri+1 respectively. This implies that the balance of the
substring between indices ri and ri+1 is between −3s and 3s and the probability of
this event is at most

6s√
ri+1− ri

. (5.2)

Crucially, note that the fixed sequence b1, · · · ,bk and the value of |ψ| uniquely deter-
mines the indices r1, · · · ,rk and that by our assumptions, bi+1 ≥ bi + s3 which in turn
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implies ri+1 ≥ ri + s4 and thus Equation 5.2 is upper bounded by

6s
s2 =

6
s
.

Thus, for fixed values of b1, · · · ,bk and |ψ|, the probability that we get a match at
positions p1, · · · , pk is at most

(6
s

)k
. We can now do the union bound again. We

have at most n choices for b1 and at most n choices for the common difference and n
choices for |ψ|. Thus, the probability that α queries match at β positions in this case
is bounded by

n3
(

6
s

)k

= n36log(6) nn
− log(6) n

log(10) n < n−2

for large enough n.

Small db

This is the last case and here we have db < s3. It turns out this is the easy case.
Consider the arithmetic progression b1, · · · ,bk and let p1, · · · , pk be the corresponding
matching positions.

Thus, observe that bk ≤ b1 +dbk≤ b1 +ks3 < b1 +
s4

2 . The last inequality follows
since s = nε and k = log(10) n. As a result, it follows that pk ≤ p1 +

s5

2 . Let B′ =
{p1, · · · , pk}. Now consider the elements of A′: these are the elements that are
congruent modulo s5. Thus, the smallest difference between any two values in A′ is at
least s5 which is larger than the largest distance between values in B′. This implies
that |A′+B′| = |A′||B′| = mk. Furthermore, it follows that the difference between
the consecutive elements of A′+B′ is at least s since the elements of B′ are at least
distance s apart. We can now go back to our argument for when we had a lot of
elementary intervals. And in fact our argument here is very much similar to the one
presented in Subsection 5.3. We have at most n|A

′|+|B′| ≤ n2m choices for picking the
sets A′ and B′. Together with at most m−1 initial balance values, we have at most
n3m different choices for fixing the elementary intervals. Each elementary interval
now has size at least s and thus the probability of finding a fixed balance at these fixed
elementary intervals is at most ( 1√

s)
|A′||B′| = ( 1√

s)
mk. Thus, by union bound, the total

probability is bounded by n3m( 1√
s)

mk < n−2 for large enough n.
This settles the second condition in 5.1 for the binary alphabet and thereby

concludes our proof of Theorem 5.6 which settles our lower bound for the binary case.
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5.6 Appendix

Lemma 5.1. For a fixed valid substring, the probability that the substring has balance
larger than

√
n/δ is less than 2n−c, for δ = 1√

c logn .

Proof. Let xi be the random variable taking value 0 or 1 if the i’th character to the
right of the middle is a 0 or a 1 respectively. Define X = ∑xi, now in order for
the valid substring to be imbalanced by more than

√
n/ε , it must be the case that

X ≥
√

n/ε + n′/2 or X ≤
√

n/ε + n′/2. If we look at the first of these cases (and
notice that they are symmetric) we get the probability

Pr[X ≥
√

n
ε

+
n′

2
]≤ Pr[X ≥

√
n′

ε
+

n′

2
]

where the inequality comes from the fact that n′ ≤ n so the right event will always
happen if the left event happened. We can now apply the Chernoff bound

Pr[X ≥
√

n′

ε
+

n′

2
] = Pr[X ≥ (1+

2ε√
n′
)
n′

2
]

≤ e
−

2
ε
√

n2
n′
2

2+ 2
ε
√

n .

If we clean the expression for constants we get

e
−

2
ε
√

n2
n′
2

2+ 2
ε
√

n ≤ e−
n′

ε2n

≤ e−
1

ε2

since n′ ≤ n. If we insert ε = 1√
c logn we get

e−
1

ε2 = e−c logn = n−c.

For the second case we notice that the argument is symmetric and therefore the total
probability of the underlying substring being more imbalanced than

√
n/ε becomes

2n−c.

Lemma 5.3. The probability of having i 0s in a random binary string of length m is
at most Θ(1/

√
m).

Proof. We start of by looking at the case when i = m/2, i.e., the probability of having
a balanced string in a random binary string of length m. Since m is even we substitute
m = 2k in order to make the calculations more readable. In a 2k character long binary
string there are 4k different ways of constructing the binary string. Out of these

(2k
k

)
gives us a balanced string, since we need the same amount of zeroes and ones in the
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string, in order for it to be balanced. Therefore the probability of getting a balanced
string in our random m = 2k binary string becomes

(
2k
k

)
1
4k = (

(2k)!
k!k!

)
1
4k ,

by applying Stirling’s approximation we get

(
(2k)!
k!k!

)
1
4k = Θ(

√
4πk(2k)2ke−2k 1

(
√

2πkkke−k)2

1
4k )

= Θ(
√

4πk4kk2ke−2k 1
2πkk2ke−2k

1
4k )

= Θ(

√
4πk

2πk
)

= Θ(
1√
πk

).

Which shows that the probability of getting a balanced string in a random string of
2k = m binary characters is Θ(1/

√
n). This proves the statement, since the binomial

probability distribution is centred around its mean, hence no other value of i has a
greater probability than the mean, i.e., when i = m/2.

Lemma 5.4. Given p1, ..., pβ , |q1|, |q2|, ..., |qα | and b2,b3, ...,bα it is possible to
exactly calculate the balance of all the elementary intervals.

Proof. We will prove the Lemma using induction in the endpoints.

Our base case is trivial since we are given b2, ...,bα and from the fact that the
interval from p1 + |q1| to p2 + |q1| is balanced.

This leads to the following induction hypothesis. For every elementary interval
pi + |qk| to p j + |ql| we look at, we know the balances of all elementary intervals to
the left of pi + |qk|.

Given an interval from pi + |qk| to p j + |ql| we want to calculate the balance of
the string. The balance in the interval from p j−1 + |ql| to p j + |ql| is 0. Furthermore
we can exactly calculate the balance b in the interval from p j−1 + |ql| to pi + |qk|,
since we have a chain of elementary intervals (all intervals in between p j−1 + |ql|
and pi + |qk|) per our induction hypothesis, in which b becomes equal to all of these
added up (see figure 5.6 for illustration). The balance from pi + |qk| to p j + |ql| then
becomes −b.
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pj−1 + |qk| pj + |qk|{
0

pi + |qk| pi+1 + |qk|{
b

{
−b

Figure 5.6: Illustration of Lemma 5.4.

Lemma 5.6. There exists a fixed constant δ , such that the number of bad substrings
is at most n2.

Proof. First we count the total number of valid Parikh vectors ψ . To do that, we
simply need to count the number of choices for ψ(1) and ψ(0). We have 3n choices
for ψ(1) since it is a number between 10n and 13n. After choosing ψ(1) we have at
most 8

√
n logn choices for ψ(0). Thus, the total number of valid Parikh vectors is at

most 13∗8n
√

n logn.
A bad Parikh vector by definition can only match δ

√
n

logn valid substrings, w.h.p.

Thus, in total, the number of bad substrings is bounded by

δ

√
n

logn
·13∗8n

√
n logn < n2

for an appropriate choice of δ .

Lemma 5.11. Given p1, ..., pβ , |q′1|, |q′2|, ..., |q′α | and b2,b3, ...,bα it is possible to
exactly calculate the balance in all elementary intervals from pi + |qk| to p j + |ql|.

Proof. The proof is very similar and we only need one extra observation: that the
left half of the string is fixed and thus the balance in the interval [pi, pi+1] is a fixed
function of pi and pi+1. Remember that in Lemma 5.4, the balance of the string
between pi and pi+1 was exactly zero whereas here it is not. Nonetheless, this does
not change the main argument as we can show that we can compute balance in all the
elementary interval as functions of p1, ..., pβ , |q1|, |q2|, ..., |qα | and b2,b3, ...,bα .
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Rectangle Stabbing and Orthogonal Range Reporting
Lower Bounds in Moderate Dimensions

Peyman Afshani * Rasmus Killmann †
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Abstract

We study the orthogonal range reporting and rectangle stabbing problems
in moderate dimensions, i.e., when the dimension is c log(n) for some constant
c. In orthogonal range reporting, the input is a set of n points in d dimensions,
and the goal is to store these n points in a data structure such that given a query
rectangle, we can report all the input points contained in the rectangle. The
rectangle stabbing problem is the “dual” problem where the input is a set of
rectangles, and the query is a point.

Our main result is the following: assume using S(n) space, we can solve
either problem in d = c logn dimensions, c≥ 4, using Q(n)+O(t) time in the
pointer machine model of computation where t is the output size. Then, we show
that if the query time is small, that is, Q(n) = n1−γ , for γ ≥ 2

2+logc , then the

space must be Ω

(
n1−γ n

√
cγ/e−o(

√
cγ)
)

. Interestingly, we obtain this lower bound
using a non-constructive method, and we show the existence of some codes that
generalize a specific aspect of error correction codes. Our result overcomes the
shortcomings of the previous lower bounds in the pointer machine model for
non-constant dimension [12, 14, 16, 42], as the previous results could not be
extended for d = Ω(

√
logn).

The only known lower bounds for rectangle stabbing, when the dimension
is non-constant, are based on conditional lower bounds upon the best-known
results on CNF-SAT [90]. Therefore, our lower bound is the first non-trivial
unconditional lower bound for orthogonal range reporting and rectangle stabbing
with non-constant dimension.

*Aarhus University. Supported by DFF (Det Frie Forskningsråd) of Danish Council for Independent
Research under grant ID DFF−7014−00404.

†Aarhus University. Supported by DFF (Det Frie Forskningsråd) of Danish Council for Independent
Research under grant ID DFF−7014−00404.
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6.1 Introduction

The focus of this paper is to study two fundamental problems within the area of
range searching. The first problem is orthogonal range reporting which is the
problem of storing a set of n points in Rd in a data structure, such that given a query
hyperrectangle1 in d-dimensions the t points contained in the hyperrectangle can be
reported efficiently. The second problem of rectangle stabbing is the “dual” in the
sense that the input set and the query is swapped.

Both problems are fundamental and have attracted significant attention [17, 18].
Using standard reductions, it is possible to reduce orthogonal range searching in d
dimensions to rectangle stabbing in 2d dimensions and vice versa2. While in low
dimensions, the constant factor increase in dimension is very impactful, the focus of
this paper is when the dimension is large, d = c logn, for a parameter c, and thus, the
two problems essentially become equivalent.

We look into proving unconditional space and query lower bounds for both
problems, although in the somewhat restricted pointer machine model [85]. Along the
way, we find an interesting connection to error correction codes, which is a particular
set of strings/codes which can be utilized to communicate over an insecure line of
communication.

Previous results

There are plenty of known results for both problems when the dimension is low, while
when the dimension grows beyond a constant, the problems are less characterized.

Rectangle stabbing In the one-dimensional case, rectangle stabbing, also called
interval stabbing, can be solved using a diverse range of methods [47]. The opti-
mal solutions use linear space and have a query time of O(logn+ t). In the two-
dimensional case, Chazelle [39] presented an optimal data structure using linear space
and O(logn+ t) query time. Almost optimal results have also been obtained for d = 3,
after a long series of papers [16, 38, 78, 79]. Using range trees, the two-dimensional
and three-dimensional results can be generalized to higher dimensions by paying a
log(n) factor in both space and query time for each dimension added. In the pointer
machine model, it is also known that using O(n logO(1) n) space, the query time must
be Ω(logn(logn/ log logn)d−2 + t) [16].

Orthogonal range reporting For d = 1, a simple binary search tree answers range
queries in O(logn+ t) time, while using linear space. For d = 2, the problem can
be solved with the same query time but using O(n logn/ log logn) space [39], which
is optimal in the pointer machine model [42]. Much later, the optimal result was
obtained for three dimensions in the pointer machine model [14]. Similar to the

1By hyperrectangle, we mean the Cartesian product of d intervals.
2Both problems can be reduced to dominance reporting in 2d dimensions.
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rectangle stabbing problem, the results can be generalized to a higher dimension by
paying a logn factor in both space and query time for each dimension added. In the
pointer machine model, it is also known that answering queries in O(logO(1) n+ t)
time requires Ω(n(logn/ log logn)d−1) space [42].

These approaches are unsuitable for the case where d = c log(n), since the depen-
dency on the dimension penalizes this construction too much, often referred to in the
community as the “curse of dimensionality”. The best known upper bound, devised
by Chan [36], when the dimension is c log(n), is a data structure which achieves
Q(n) = O(n1−1/c log(c)) expected query time and space S(n) = n1+δ for any δ > 0.

Previous lower bounds Currently, the available lower bounds are conditional lower
bounds, using the best known results on CNF-SAT [90], which gives preprocess-
ing/query time lower bounds. Furthermore, obtaining unconditional lower bounds in
unrestricted computational models, like the RAM, is completely hopeless. Fortunately,
suppose we restrict the memory model of the data structure to operate in the pointer
machine model. In that case, one can obtain reasonable lower bounds that are tight for
a wide range of problems. In fact, for the orthogonal range reporting problem and the
rectangle stabbing problem, there are a number of lower bounds available [14, 16, 42].
However, the dependency of these lower bounds on the dimension is not very good,
and in fact, it is not explicitly mentioned by the lower bounds. There is one very
related instance where we are aware of the explicit dependency on the dimension.
Afshani and Driemel [12] study multilevel structures, motivated by answering Fréchet
queries. However, by a careful look at the details of the lower bounds, one can see
that the hidden constant is at least dΩ(d), meaning the lower bounds become useless
as d approaches logn/ log logn. They study the Cartesian product of t 2D “simplex
stabbing” problems, and they show that for any data structure with S(n) space and
Q(n) query time we must have

S(n) = Ω((
n

Q(n)
)2)

(
log(n/Q(n))

log logn

)t−1

2O(2t)
and

S(n) = Ω

(
n

Q(n)

)2

Θ

(
log(n/Q(n))

t3+o(1) log logn

)t−1−o(t)

.

It has been shown that this problem can be modelled using the Cartesian product of
t two-dimensional problems and furthermore it contains a subproblem involving an
instance of the t-dimensional orthogonal range reporting problem. However, as it
can be seen in the lower bounds, the dependency on t is such that the lower bounds
become trivial as soon as t gets close to (logn)1/3.

Our Results

Our main result states that any data structure operating in the pointer machine model,
which solves the rectangle stabbing problem (or the orthogonal range reporting prob-
lem), when the dimension is c log(n) for c≥ 4 and uses query time Q(n) = n1−γ for
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a parameter γ ≥ 2
2+logc , must use space: Ω

(
n1−γn

√
cγ/e−o(

√
cγ)
)
. As far as we know,

this is the first non-conditional lower bound for the two problems when the dimension
is non-constant.

We obtain our results using an interesting extension of error correction codes. We
show that given a set of binary strings S of size O((d

r )
rx), where r is the number of

1’s in the strings and d is the length of each string, then for any h of these strings
s1, . . . ,sh ∈ S the string s1∨·· ·∨ sh has more than M 1’s, where “the error parameter”
M can be chosen to be min{dyr1−y

e , 1
2 rhz}, where x,y,z > 0 are parameters which

satisfy x+ y+ z = 1. In particular this gives a set of strings in which for any h strings
they are fairly different. Notice that for h = 2 this is precisely the property sought
after when constructing error correction codes.

Our technical contribution We believe our main technical contribution is a simple
non-constructive idea for showing the existence of “difficult input instances”. Previ-
ously, two main techniques were used to build “difficult input instances” for range
searching lower bounds. The first one is a deterministic and constructive approach
that builds an explicit set of points, and it was first employed by Chazelle [42] for
the 2D orthogonal range reporting problem. Since then, it has been generalized to
higher dimensions [13, 16]. Unfortunately, this approach suffers exponentially by the
dimension, and thus it cannot be applied in dimensions above logn/ log logn. The
second approach is a randomized approach that uses the classical “alteration” tech-
nique (basically a ’sample and refine’ strategy) [21]. This was also used in Chazelle’s
original paper [42] and since then, it has been the dominant strategy. Unfortunately,
applying this technique in a way that does not degrade exponentially on the dimension
is challenging. It leads to lengthy calculations, making it difficult to know the optimal
choices of the parameters involved. Here instead, we introduce a new and more
straightforward non-constructive approach. We show that if the structures we are
looking for do not exist, we can upper bound a certain count, and then we reach a
contradiction by showing that the upper bound is smaller than the count, meaning the
desired structure should exist.

6.2 Technical Preliminaries

In this section, we present some of the technicalities and preliminaries needed to prove
our lower bound. We will explain the underlying model of computation, the pointer
machine model, and an existing lower bound framework in this model. Finally, we
will introduce the notion of error correction codes.

Model of Computation and Framework

The Pointer Machine Model [85] is an underlying model of computation which
models data structures that only navigate through pointers to access the underlying
memory locations, e.g., any tree-based data structure. The model has proven to be
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efficient in proving lower bounds for data structure problems. Consider an abstract
“reporting” problem where the input is a set U and each query q reports a (implicitly
defined) subset qU , of U . The underlying data structure is a directed graph G , where
each node has out-degree two and represents exactly one memory cell; furthermore,
there is a special root node r(G ). Each node can store exactly one element from
the universe U and edges between nodes represent pointers between memory cells.
Any additional information can be stored and accessed for free by the data structure,
and the data structure has unlimited computational resources. Given a query q, the
data structure must start at the root node r(G ) and explore a connected subgraph
G ′ ⊆ G , such that each element of the query qU is contained in at least one node of
the subgraph G ′. The size of the subgraph G ′ gives a lower bound on the query time
and the size of the entire graph G gives a lower bound on the space required to solve
the reporting problem.

One of the first lower bound frameworks in the pointer machine model was given
by Bernard Chazelle [42, 44]. In this paper we will use a slightly different framework
developed by Afshani [10], which states the following.

Theorem 6.1. Assume we have a data structure for a geometric stabbing problem
that uses at most S(n) space and answers queries in Q(n)+O(k) time in which n is
the input size, and k is the output size. Assume for this problem we can construct an
input set, inside the unit cube in Rd , of n ranges such that

1. Every point of the unit cube is contained in t ranges in which t ≥ Q(n).

2. The volume of the intersection of every α ranges is at most v, for α < t.

Then, S(n) = Ω(tv−1/2O(α)) = Ω(Q(n)v−1/2O(α)).

We will also utilize error correction codes from the field of information theory to
satisfy the second condition of the framework. In fact, it turns out that what we need
is an extension of error correction codes with additional properties.

Error Detection and Correction Codes

Error-correcting codes are an old technique studied within the field of information
theory and were originally studied by Richard Hamming in 1947 [86]. Hamming
developed the famous Hamming code, which first appeared in Claude Shannon’s A
Mathematical Theory of Communication[82]. The Hamming code is a family of linear
error-correcting codes that can be used for both error detection and error correction.
The underlying problem of error detection and error correction are the following.

Alice and Bob want to transmit a string s from a fixed set of S binary strings.
They communicate across an insecure line, and hence a number of bits may be flipped.
In error detection Alice sends a string s ∈ S, and Bob must determine whether the
received string s′ is equal to the original string s sent by Alice. In error correction,
Alice sends a string s ∈ S, but now Bob must recover the original string s from the
received string s′. Note that any error correction scheme can also be used as an error
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detection scheme, but not the other way around. In section 6.3 we look into error
correction and give, in our opinion, a natural and interesting extension of the problem.

Bounding the Binomial Coefficient

Our lower bound is proven by using a counting argument. At times we need to bound
the binomial coefficient to arrive at our desired result. The following simple Lemma
is known, but for completeness, we present a proof in the appendix.

Lemma 6.1. For positive integers n and k where 1≤ k ≤ n, it holds that(n
k

)k
≤
(

n
k

)
≤
(en

k

)k
.

6.3 The Lower Bound Construction

In this section, we present the details of our lower bound construction. We start this
section with a discussion of error correction codes, and a subproblem related to them.
We start by defining what an interesting string is, which is both used in the error
correction Section 6.3 and when concluding the lower bound in Section 6.3.

Definition 6.1. A binary string is interesting if it has length d and has exactly r 1’s,
for some fixed parameters r and d.

The parameters r and d will be fixed in our final lower bound.

Theorem 6.2. Given r, d and h, such that r < d
4 , it holds that for any N ≤ (d

r )
rx/(2e),

there exists a set S of N interesting strings such that for any h strings s1, ...,sh ∈ S the
string s1∨·· ·∨sh has more than M 1’s, where M can be chosen to be min{dyr1−y

e , 1
2 rhz},

for parameters x, y, and z such that x+ y+ z = 1 and x,y,z > 0.

The ∨ is the logical OR operation. The error parameter M can be thought of as
a measure of how distinct the h strings can be, and therefore it translates into how
many flipped bits the construction can withstand and still recover. We will discuss
this below.

The above Theorem helps us prove our lower bound on rectangle stabbing when
the dimension is c log(n). This paper’s main result is formulated in the following
Theorem and will be proven at the end of this section.

Theorem 6.3. Consider a pointer machine data structure that solves the rectangle
stabbing problem in c log(n) dimensions, for some parameter c ≥ 4 and achieves
query time Q(n) = o(n). Let γ be such that Q(n) = n1−γ . If γ ≥ 2

2+logc , then the data

structure must use Ω
(
n1−γn

√
cγ/e−o(

√
cγ)
)
) space.

And as we mentioned earlier since we are in non-constant dimension this result
also gives us a lower bound for orthogonal range reporting.
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Corollary 6.1. Consider a pointer machine data structure that solves the orthogo-
nal range reporting problem in c log(n) dimensions, for some parameter c≥ 8 and
achieves query time Q(n) = o(n). Let γ be such that Q(n) = n1−γ . If γ ≥ 2

1+logc , then

the data structure must use Ω

(
n1−γn

√
c
2 γ/e−o(

√
cγ)
)

.

Codes with Large Spread

In this section, we consider a subproblem that we believe is an interesting generaliza-
tion of error-correcting codes. Error-correcting codes deal with two parties, Alice and
Bob, who have to communicate over an insecure line, meaning that a number of bits
may be flipped in any message that they send to each other. Here, we only consider
binary messages. To reduce the impact of errors, they agree to only communicate
messages from a fixed set S. If Alice sends a message s ∈ S we want Bob to be able
to retrieve the correct s from the string s′ he received. This is typically expressed as
every two messages s1,s2 ∈ S having Hamming distance at least 2δ + 1, for some
parameter δ . Now, if at most δ bits change in the message that Alice sends to Bob,
Bob can correctly identify Alice’s message in S. Observe that if both s1 and s2 have r
1s, then the fact that their Hamming distance is at least 2δ +1 is equivalent to the fact
that s1∨ s2 has at least r+2δ +1 1s. Thus, in Theorem 6.2, if we set h = 2, we get a
set of error correcting codes, i.e., a set of codes whose pairwise Hamming distance is
at least M− r.

The initial and immediate approach to prove Theorem 6.2 would be to do random
sampling: consider all the strings with r 1s and pick a random sample of them with
probability p; then delete the strings that result in some h strings to have few 1s
in their logical OR, then optimize for the value of p that gives the most strings.
Unfortunately, this natural approach seems difficult to analyse, due to very complex
binomial coefficients involved. Instead, we come up with an alternative approach that
we believe is simple but non-constructive.

Our non-constructive proof is a counting argument which fortunately turns out to
be easy to analyse. It involves two different ways of counting the different number of
ways to construct the set S. To gain a second way of counting the ways to construct S
we need to assume the negated Statement of Theorem 6.2, if we obtain a contradiction
by assuming this negated Statement, then the Theorem is proven. We start the proof
by writing down the negated Statement.

Statement 6.1. Given r, d and h, then for all sets of N interesting strings there exists
a subset s1,s2, . . . ,sh such that s1∨ s2∨·· ·∨ sh contains less than M 1’s.

The idea is to reach a contradiction by a counting argument. The total number

of ways to pick N interesting strings is
((d

r)
N

)
. From Statement 6.1 we can bound this

count in a different way. Assuming Statement 6.1 every set S of N interesting strings
has a subset of h strings s1, ...,sh such that s1∨·· ·∨ sh has less than M 1’s. We now
describe choosing S in a different way. To do that, first we choose the strings s1, ...,sh
and then the remaining strings of S. To choose s1, ...,sh, first we choose the string
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00 · · · 00
M︷ ︸︸ ︷

100111 · · · 11 00 · · · 00

00 · · · 00
M︷ ︸︸ ︷

110010 · · · 10 00 · · · 00

00 · · · 00
M︷ ︸︸ ︷

010111 · · · 00 00 · · · 00

String 1

String 2

String h

Figure 6.1: h strings which have their r 1’s concentrated around the same M positions.

s0 = s1∨ ...∨ sh. Then we choose s1, ...,sh as a “subset” of s0. To choose s0, we need
to pick M positions that contain 1s. The number of ways to pick these M positions
is
( d

M

)
. The number of ways to pick h interesting strings among these M positions is((M

r )
h

)
. The ways to pick the remainder of the N interesting strings after having picked

these h strings becomes
( (d

r)
N−h

)
. If we combine all of this, we get an expression that

overcounts the number of ways to pick N interesting strings, which means that we
would expect this count to be bigger than the exact count. Therefore we would expect
the following inequality to hold((d

r

)
N

)
<

(
d
M

)((M
r

)
h

)( (d
r

)
N−h

)
.

Thus, if this inequality does not hold, then it follows that Statement 6.1 is incorrect
which in turn prove Theorem 2.

Arriving at a Contradiction

This section is dedicated to finalizing our proof of Theorem 6.2. The way we do this,
as mentioned above, is to arrive at a contradiction of Statement 6.1. To do that, we will
try to arrive at the opposite inequality, i.e., we will try to satisfy the opposite inequality.
The first step is to utilize the following Lemma to restructure our expression; we refer
to the appendix for the proof.

Lemma 6.2. (A
B)

( A
B−C)
≥ ( A

2B)
C, if B > 2 and A > 2B.

We can apply Lemma 6.2 to our expression by setting A =
(d

r

)
, B = N and C = h.

This gives a new expression we need to satisfy in order to arrive at our contradiction,((d
r

)
2N

)h

>

(
d
M

)((M
r

)
h

)
.
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Now we need to apply Lemma 6.1. The idea is to create a new Statement, where
we increase the right side and/or decrease the left side. If we can satisfy this new
inequality, our original inequality will also be satisfied. We apply both the lower
bound on the left side since we want to decrease this expression and the upper bound
on the right side since we want to increase that expression.((d

r

)r

2N

)h

>

(
de
M

)M
(

e
( eM

r

)r

h

)h

⇐

(
d
r

)r

>

(
de
M

)M
h

e
(

eM
r

)r

2N.

Where the implication follows from dividing by h in the exponent and removing the
h in the denominator on the right side. We are going to proceed by splitting this
expression into three pieces. By ensuring that these three inequalities are satisfied

1.
(d

r

)rx ≥ 2eN

2.
(d

r

)ry
>
( eM

r

)r

3.
(d

r

)rz
>
(de

M

)M
h

and as long as x+ y+ z = 1 and x,y,z > 0, we arrive at the desired contradiction.
The first inequality directly gives us the upper bound on the size of N namely that(d

r

)rx
/(2e)≥ N. For the second inequality, we get an upper bound on the value of M(

d
r

)ry

>

(
eM
r

)r

⇔
(

d
r

)y

>

(
eM
r

)
⇔

dyr1−y

e
> M.

The third inequality gives us a bound on M and a relation between r and d:(
d
r

)rz

>

(
de
M

)M/h

⇔ rhz log
(

d
r

)
> M log

(
de
M

)
Note that we have M ≥ r and thus, we can increase the RHS by replacing M with

r,

rhz log
(

d
r

)
> M log

(
de
M

)
⇐

rhz log
(

d
r

)
> M log

(
de
r

)
⇐

rhz log
(

d
r

)
> M

(
log
(

d
r

)
+2
)
⇐ 1

2
rhz > M.

Therefore, since we have two bounds on M we can choose M to be the minimum of
(dyr1−y

e , 1
2 rhz) as long as

(d
r

)rx
/(2e) > N, r < d

4 , x+ y+ z = 1 and x,y,z > 0. When
the parameters satisfy these conditions we arrive at a contradiction of Statement 6.1,
which then proves Theorem 6.2.



6.3. THE LOWER BOUND CONSTRUCTION 77

Utilizing the Framework

This section is dedicated to proving a lower bound on rectangle stabbing when the
dimension is c log(n) for some constant c≥ 4. The idea is to utilize the framework by
Afshani, Theorem 6.1 and use Theorem 6.2 from the previous section to satisfy the
second condition of Afshani’s framework.

Assume we have a data structure that uses S(n) space and has a query time of
Q(n)+O(k). To use the framework, we need to build a set of ranges. Each range will
be an axis-aligned rectangle in d dimensions. Note that while the framework requires
t ≥ Q(n), it is also sufficient to have t ≥ Q(n)/(2e). To see this, let c0 be the constant
hidden in the O-notation in the query time, meaning, we assume the query time is at
most Q(n)+ c0k. Observe that as long as for the output size k we have k ≥ Q(n)/2e,
then Q(n)+ c0k ≤ Q(n)/2e+(5+ c0)k. And thus, this only changes the constant
factors involved in the lower bound. Thus, in the rest of the proof, we assume that
we create t ≥ Q(n)/(2e) different shapes, and we will use each shape to cover the
unit cube in d = c log(n) dimensions. For each shape, we tile the unit cube with n

Q(n)
copies. If we do that, this ensures that we have n rectangles in total. We build our
shapes in the following way: for each shape, we have r side lengths of length 1/2 and
d− r side lengths of unit length. This implies that each rectangle of any shape has
volume Q(n)

n = 1
2r .

Observation 6.1. Our shapes satisfies the first condition of Theorem 6.1.

Every point of the unit cube has been covered by at least Q(n)/(2e) different
shapes, and thus the answer to any query point will have a size of at least Q(n)/(2e)
and as described above, this is sufficient to satisfy the first condition.

Now we are only left with making sure that these shapes can satisfy the second
condition of the framework, namely that the volume of the intersection of every α

shapes is at most v.
We say that a rectangle R is represented by a binary string s of length d if the

following holds: for every i, 1 ≤ i ≤ d, if s contains a 1 at position i, then R has
side-length 1

2 along dimension i but otherwise, R has side-length 1.

Observation 6.2. Every rectangle represented by an interesting string has volume 1
2r .

The next Observation reveals why we had to study this particular type of error
correction codes in section 6.3.

Observation 6.3. Let T be a set of interesting strings given by Theorem 6.2, for some
parameters r,h which is to be decided later. Let R1, · · · ,Rh be h rectangles represented
by h distinct strings s1, · · · ,sh ∈ T , then the volume of the intersection of R1, · · · ,Rh is
at most 2−M.

Proof. Simply observe that R1 ∩ ·· · ∩Rh will have a side-length of at most 1/2 at
dimension i if any of the strings has a 1 at position i. The Lemma follows from
Theorem 2 i.e., that the logical OR of the strings has at least M 1s.
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By the above observation, it thus follows that the goal is to pick Q(n) interesting
strings, such that for any α strings in the set we have that s1∨ ...∨ sα have more than
β 1’s. This will ensure that the corresponding shapes, for any α shapes, the volume
of their intersection will be less than v = 1

2β
. We utilize Theorem 6.2, since we have

strings of length d with exactly r 1’s, h becomes α and M becomes our β .
We know that d = c log(n). Let γ be such that Q(n) = n1−γ . Observe that since

Q(n)/n = (1/2)r, we get that r = γ log(n). Now we are only left with making sure
that these parameters fit Theorem 6.2. To do that, we must ensure that N = Q(n)/(2e)
satisfy:

Q(n)
2e
≤
(

d
r

)rx

/(2e) ⇔

n1−γ ≤
(

c
γ

)rx

⇔

log(n)(1− γ)≤ γ log(n)x log
(

c
γ

)
⇔

(1− γ)
1
x
≤ γ log

(
c
γ

)
⇔

(1− γ)
1
x
≤ γ log(c)− γ log(γ)⇐

(1− γ)
1
x
≤ γ log(c).

Where the last step follows since γ ≤ 1 and thus −γ log(γ) is non-negative, and
therefore, we can make the RHS smaller by removing the −γ log(γ) term. Then we
just end up with (1− γ)1

x ≤ γ log(c) and so we get that γ ≥ 1
x/(

1
x + log(c)). We also

need that c≥ 1; otherwise, γ will not be between 0 and 1. Note that γ ≥ 1
x/(

1
x + log(c))

implies that Q(n)≤ n1− 1/x
1/x+log(c) .

Now we are left with finding the possible value of M = β . Recall that by Theorem
6.2, we have:

β ≤min{dyr1−y

e
,
1
2

rhz}= min{(c log(n))y(γ log(n))1−y

e
,
1
2

γ log(n)αz}.

We pick α to balance the two terms in the min function. This yields α = 2
ez

cy

γy and
β = 1

2 zαr. We are now ready to plug these values into our lower bound framework. By
assumptions, Q(n) = o(n) but observe that Q(n) = n1−γ = n

2γ logn which means n1−γ =

o(n) and thus r = γ logn = ω(1). As a result, we can afford to pick z =
√

1
r = o(1) to

make sure that β = Θ(αzr) = ω(α). We pick x = y = 1
2 which implies β =

logn
√

cγ

e .
Thus, if Q(n) = n1−γ where γ ≥ 2

2+logc , we obtain the space lower bound

S(n) = Ω

(
Q(n)2β

2O(α)

)
= Ω

(
n1−γ2β−o(β )

)
= Ω

(
n1−γn

√
cγ/e−o(

√
cγ)
)
.



6.4. CONCLUSIONS 79

As a result, when c grows, the space bound becomes polynomially larger than n. In
particular, for c = 4, when Q(n) = O(n1− 2

2+log4 ) = O(
√

n), a simple calculation yields
that the claimed space lower bound is Ω(n1+δ ) for some constant δ . This concludes
our lower bound construction and proves Theorem 6.3.

6.4 Conclusions

This paper considered the orthogonal range reporting problem and the rectangle
stabbing problem in moderate dimensions. Both are classical problems in the field
of data structures and computational geometry. We presented the first unconditional
lower bound (in the pointer machine model) that works when the dimension is beyond
logarithmic. We believe our work leads to two interesting problems. First, can we
improve the query lower bound? There are still some room for improvement since the
best known algorithm has query time Q(n) = n1− 1

c and space S(n) = n1+ε for some
ε < 1. Improving either the upper bound or the lower bound for these problems are
both very interesting open problems.

Second, can we obtain similar improvements in other problems where we have
instances of high-dimensional orthogonal range reporting? Two important problems
are multi-level data structures, e.g., range trees and range searching with respect to
the Fréchet distance [12].

6.5 Appendix

Lemma 6.1. For positive integers n and k where 1≤ k ≤ n, it holds that(n
k

)k
≤
(

n
k

)
≤
(en

k

)k
.

Proof. We start by proving the lower bound. We first observe that for k = 1, the bound
trivially holds (n

k

)k
= n =

(
n
k

)
.

Hence look at the case where k > 1 and let 0 < i < k ≤ n.

k ≤ n⇔ i
n
≤ i

k
⇔ 1− i

k
≤ 1− i

n
⇔ k− i

k
≤ n− i

n
⇔ n− i

k− i
,

and from this we obtain(n
k

)k
=

n
k
· · · · · n

k
≤ n

k
· · · · · n− k+1

1
=

(
n
k

)
,
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which gives us the desired lower bound. For the upper bound we see that(
n
k

)
=

n!
(n− k)!k!

=
n · (n−1) · · · · · (n− k+1)

k!
≤ nk

k!
.

Since

ek =
∞

∑
j=0

k j

j!

we can look at the term where j = k and get

ek ≥ kk

k!
⇔ 1

k!
≤
(e

k

)k
⇔ nk

k!
≤
(en

k

)k
,

which gives us the upper bound.

Lemma 6.2. (A
B)

( A
B−C)
≥ ( A

2B)
C, if B > 2 and A > 2B.

Proof. The proofs goes through, using some simple calculations and bounds,(A
B

)( A
B−C

) = A!
B!(A−B)!

A!
(B−C)!(A−B+C)!

=
(B−C)!(A−B+C)!

B!(A−B)!

=
(A−B+1) . . .(A−B+C)

(B−C+1) . . .B
.

and we are going to make this expression smaller by taking the smallest term in the
numerator and raising it to the number of terms in the numerator, i.e. C and we take
the biggest term in the denominator and do the same, raise it to the power C we get

(A−B+1) . . .(A−B+C)

(B−C+1) . . .B
>

(A−B+1)C

BC

>

(
A
B
−1
)C

and lastly since we assumed that A > 2B we conclude the proof(
A
B
−1
)C

>

(
A
2B

)C
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Abstract

In colored range counting (CRC), the input is a set of points where each
point is assigned a “color” (or a “category”) and the goal is to store them in a
data strucuture such that the number of distinct categories inside a given query
range can be counted efficiently. CRC has strong motivations as it allows data
structure to deal with categorical data.

However, colors (i.e., the categories) in the CRC problem do not have any
internal structure, whereas this is not the case for many datasets in practice
where hierarchical categories exists or where a single input belongs to multiple
categories. Motivated by these, we consider variants of the problem where such
structures can be represented. We define two variants of the problem called
hierarchical range counting (HCC) and sub-category colored range counting
(SCRC) and consider hierarchical structures that can either be a DAG or a tree.
We show that the two problems on some special trees are in fact equivalent
to other well-known problems in the literature. Based on these, we also give
efficient data structures when the underlying hierarchy can be represented as a
tree. We show a conditional lower bound for the general case when the existing
hierarchy can be any DAG, through reductions from the orthogonal vectors
problem.

7.1 Introduction

Range searching is a broad area of computational geometry where the goal is to store
a given set P of input points in a data structure such that one can efficiently report
(range reporting) or count (range counting) the points inside a geometric query region
R. Sometimes, each point pi ∈ P is associated with a weight wi ∈ R and the goal
could be to find the sum of the weights in R, or the maximum weight in P∩R (range
max problem). This is a very broad area of research and there are many well-studied
variants. See a recent excellent survey by Agarwal for more information [17].

*Aarhus University. peyman@cs.au.dk.
†Aarhus University. killmann@cs.au.dk.
‡Aarhus University. larsen@cs.au.dk.
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Colored (or categorical) range searching is an important variant where each input
point is associated with a category which conceptually is represented as a color; the
goal of the query is then to report or count the number of distinct colors inside the
query range. Colored range searching has strong motivations since colors allow us to
represent nominal attributes such as brand, manufacturer and so on and in practice a
data set often contains a mix of nominal and ordinal attributes.

Colored range searching was introduced in 1993 by Janardan and Lopez [60] and
it has received considerable attention since then. However, classical colored range
searching only models a “flat” categorical structure where categories have no inherent
structure. We consider variants of colored range counting to model such structures.
We show that looking at colored range searching from this angle creates a number of
interesting questions with non-trivial connections to other already existing problems.

Problem Definitions and Motivations

We begin by formally defining colored range counting.

Problem 7.1 (colored range counting). Given an input set P of n points in Rd , a set
C of colors (i.e., categories) and a function C : P→C, store them in a data structure
such that given a query range R ⊂ Rd , it can count the number of distinct colors in
R, i.e., the value |CR | where CR = {C(p) | p ∈ P∩R}.

In the weighted version, input also includes a weight function W : C→ R and
the output of the query is the weighted sum of the distinct colors in R, i.e., the value
∑c∈CR

W (c).

Colored range searching assumes that the colors are completely unstructured
and that each point receives exactly one color. However, these assumptions can be
inadequate as hierarchical categories are quite common. For example, biological
classification of living organisms are done through a tree where inclusion in a category
implies inclusion in all the ancestor categories. In fact, similar phenomena happen
with respect to most notions of classification (e.g., classification of industries). In
other scenarios, a point may have multiple categories (e.g., a car can have a “brand”,
a “color”, “fuel type” and so on). While it is possible to view the set of categories
assigned to a point as one single category, doing so ignores a lot of structure. For
example, “a blue diesel car” is both a “blue car” and also a “diesel car” but by
considering “blue diesel” as a single category, this information is lost. We believe it is
worthwhile to study the notion of structures within categories from a theoretical point
of view. We are not in fact the first in trying to do so and we will shortly discuss some
of the previous attempts.

A natural way to represent hierarchical categories is to assume that vertices of
a DAG G represent the set of categories where an edge~e = (u,v) from (a category)
u to (a category) v means that u is a sub-category of v. We call G a category DAG
(or a category tree if it is a tree). For a vertex v ∈ G , we define G≤(v) as the subset
of vertices of G that can reach v (i.e., “sub-categories” of v), G≥(v) as the subset of
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vertices of G that v can reach (i.e., “super-categories” of v). Similarly, for a subset
H ⊂V (G) we define G≥(H) = ∪v∈H G≥(v), and G≤(H) = ∪v∈H G≤(v).

Category trees allows us to represent hierarchical categories. Category DAGs
allow us to capture cases where points can have multiple categories. Consider the car
example again. We can define a category DAG G where a vertex u ∈ G represents
the compound category {diesel,blue} with edges to vertices d and b that represent
“diesel” and “blue” categories respectively. Thus, the set G≤(d) represents all the
“diesel” cars and it includes the category u, the “blue diesel” category, and similarly,
the set G≤(b) represents all the “blue” cars which also includes the category u, the
“blue diesel” category. Likewise, G≥(u) includes both b and d since a “blue diesel”
car is both a “blue car” and a “diesel car”.

We revisit colored range searching problems, using concepts of category DAGs or
trees.

Problem 7.2 (sub-category range counting (SCRC)). Consider an input point set
P⊂ Rd of n points, a DAG G with O(n) edges, and a function C : P→ G . The goal
is to store the input in a data structure, such that given a query that consists of a
query range R ⊂ Rd and a query vertex vq ∈ G it can output |CR ∩ G≤(v)| where
CR = |{C(p) | p ∈ P∩R}|.

Problem 7.3 (hierarchical color counting (HCC)). Consider an input point set P⊂Rd

of n points, a DAG G with O(n) edges, and a function C : P→ G . The goal is to store
the input in a data structure, such that given a query range R ⊂ Rd one can output
|GR | where GR is the set of colors in R, i.e., GR =

⋃
p∈R∩P G≥(C(p)).

In the weighted version of the problem, each vertex v (i.e., category) of G is asso-
ciated with a weight w(v) and given the query R, the goal is to compute ∑v∈GR

w(v)
instead.

Related problems. Very recently, there have been other attempts to consider
the structure of “colors” within the computational geometry community, e.g., He and
Kazi [58] consider a problem very similar to SCRC on a tree G ; the only difference is
that instead of |CR ∩ G≤(v)|, the query outputs |CR ∩π(v,w)| where π(v,w) is a path
between two query vertices v,w ∈ G . There are also other variants available. See [58]
for further references.

Previous and Other Related Results

The study of colored range counting and its variants began in 1993 [60] and since then
it has received considerable attention. See the survey on colored range searching and
its variants [56]. The problem has at least three main variants: color range counting
(CRC), color range reporting, and “type 2” color range counting (for every distinct
color, count how many times it appears). Here, we only review colored range counting
results.

In 1D, one can solve the CRC problem using O(n) space and O(logn) query
time by an elegant and simple transformation [55] which turns the problem into the
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unweighted 2D orthogonal range counting problem which can be solved within said
bounds [40]. Interestingly, it is also possible to show an equivalence between the
two problems [69]. The problem, however, is difficult for 2D and beyond. Kaplan et
al. [62] showed that answering m queries on a set of n points requires Ω(nω/2−o(1))
time where ω is the boolean matrix multiplication exponent. Under some assumptions
(e.g., the boolean matrix multiplication conjectures), this shows that P(n)+mQ(n)≥
n3/2−o(1) where P(·) and Q(·) are the preprocessing time and the query time of any
data structure that solves the 2D CRC problem.

Note that the equivalence between 1D CRC and 2D range counting also applies
to the weighted case of both problems, however, the status of the weighted 2D
range counting is still unresolved. It can be solved with O(n logn/ log logn) space and
O(logn/ log logn) query time [59] but it is not known if both space and query time can
be improved simultaneously (it is possible to improve one at the expense of the other).
The only available lower bound is a query time lower bound of Ω(logn/ log logn) [75].

Some other interesting problems related to our results are defined below.

Definition 7.1. The following problems are defined for an input that consists of a
set P⊂ Rd of n points. The goal is to build a data structure to answer the following
queries.

• (orthogonal range counting) Given a query axis-aligned rectangle R, count the
number of points in R. In the weighted version, the points have weights and
the goal is to compute the sum of the weights in the query.

• (dominance range counting) This is a special case of orthogonal range counting
where the query rectangle has the form (−∞,q1]×·· ·(−∞,qd ] which is also
known as a dominance range. Orthogonal range counting and dominance
range counting are known to be equivalent if subtraction of weights are allowed
(e.g., integer weights).

• (3-sided color counting). The input is in the plane (d = 2) and each point is
assigned a color from a set C and the query is a 3-sided range in the form of
R = [q`,qr]× (−∞,qt ] and the goal is to count the number of colors in R. In
the weighted version, the colors have weights and the goal is to compute the
sum of the weights of the colors.

• (3-sided distinct coordinate counting) This is a special case of 3-sided color
counting where an input point (xi,yi) has color yi; in other words, given the
query R = [q`,qr]× (−∞,qt ], we would like to count the number of distinct
Y -coordinates inside it.

• (range max) Given a weight function W : P→ R as part of the input, at the
query time we would like to find the maximum weight inside a given query range
R.
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• (sum-max color counting) This a combination of range max and color counting
queries. Assume the points in P have been assigned colors from a set C and
assume we have a weight function W : P→ R on the points. Given a query
range R, we would like to compute the output ∑c∈C Xc(R) where Xc(R) is the
maximum weight of a point with color c inside R; if no point of color c exists
in R, then Xc(R) = 0.

A sum-max color counting query includes a number of the above problems as
its special case: If all points have the same weight, then it reduces to a color
counting query. If all points have the same color, then it reduces to a range max
query. If all points have distinct colors, then it reduces to a weighted range
counting query.

Our Results

Clearly, sub-category range counting (SCRC) is at least as hard as CRC. We also
observe that hierarchical color counting (HCC) is also at least as hard. Thus, getting
efficient results for d ≥ 2 seems hopeless. Consequently, we focus on the 1D problem
but for two different important DAG’s: when G is a tree and also when G is an
arbitrary (sparse) DAG. Our main results are the following.

For the SCRC problem, first, we observe that the following problems are equiva-
lent:

1. SCRC when G is a single path on a one-dimensional input P.

2. 3-sided distinct coordinate counting (for a planar point set P).

3. 3-sided color counting (for a planar point set P).

4. 3D dominance color counting (for a 3D point set P).

5. 3D dominance counting (for a 3D point set P).

We start by observing that (1) and (2) are equivalent. It is also clear that (2) reduces
to (3); the reduction from (3) to (4) is standard by mapping a 2D input point (xi,yi)
to the 3D point (−xi,yi,xi) and the 3-sided query range R = [q`,qr]× (−∞,qt ] to
the 3D dominance range (−∞,−q`]× (−∞,qt ]× (−∞,qx]. The reduction from (4) to
(5) was shown by Saladi [81]. We complete the loop by observing that (5) in turn
reduces to (2). Note that the weighted versions of the problems are also equivalent
by following the same reductions. Next, we show that SCRC can be solved using
O(n log2 n/ log logn) space and with query time of O(logn/ log logn) on any category
tree G ; our query time is optimal which follows from the above reductions and using
known results [75].

For the HCC problem on trees, we show that (weighted) HCC in 1D can be solved
using a 2D (weighted) range counting data structure on O(n logn) points. For example,
this yields a solution with O(n log2 n/ log logn) space and with O(logn/ log logn)
query time. Interestingly, we show that the following problems are in fact equivalent:
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• Unweighted HCC in 1D when G is a (generalized) caterpillar graph.

• Weighted 2D range counting with Θ(logn) bit long integer weights.

• 1D Colored range sum-max.

These reductions are quite non-trivial and they show a surprising equivalence between
an unweighted problem (HCC) and the weighted 2D range counting. This allows us
to directly apply known lower bounds or barriers for 2D range counting. First, there is
an Ω(logn/ log logn) lower bound [75] for 2D range counting with near-linear space
(O(n logO(1) n) space) and by the above reductions, the same bound also applies to
unweighted HCC in 1D.

When G can be any arbitrary sparse DAG, the problems become more complicated.
By a reduction from the orthogonal vectors problem, we show that we must either have
Ω(n2−o(1)) preprocessing time or the query time must be almost linear Ω(n1−o(1)) and
this holds for both SCRC and HCC. Surprisingly, for the HCC problem, we can build
a data structure that has O(logn) query time using Õ(n3/2) space, even though the
data structure requires Õ(n2) preprocessing time. This is one of the rare instances
where there is a polynomial gap between the space complexity and the preprocessing
time of a data structure.

7.2 Technical Preliminaries

A fundamental technique to decompose trees into paths with certain properties is
called the heavy path decomposition. The technique was originally used as part of
the amortized analysis of the link/cut trees introduced by Sleator and Tarjan [83] and
later used in the data structure construction for lowest common ancestor by Harel and
Tarjan [57]. The decomposition is simple and gives us the following properties.

Theorem 7.1. Given a tree T of size O(n), we can partition the (vertices of the) tree
into a set of paths π1,π2, . . .πh such that on any root to leaf path in T, the number of
different paths encountered is O(log(n)).

We study the HCC and SCRC problem in one dimension. First, we consider when
G is a tree in Section 7.3 and then we consider the general case where G can be any
(sparse) DAG in Section 7.4. The general case is more difficult to solve and we will
show that through a reduction (a “conditional lower bound”). Our reduction relies on
the Orthogonal Vectors conjecture which is implied by the Strong Exponential Time
Hypothesis (SETH) [90].

Hypothesis 7.1 (Orthogonal vectors conjecture). Given two sets A and B each con-
taining n boolean vectors of dimension d = logO(1)(n), deciding whether there exists
two orthogonal vectors ai ∈ A and b j ∈ B cannot be done faster than n2−o(1) time.
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Assuming this conjecture, many near optimal time lower bounds have been
proven within P, including Edit Distance, Longest Common Subsequence and Fréchet
distance [24, 32, 48].

Finally, we say that a binary tree T is a generalized caterpillar tree if all the degree
three vertices lie on the same path (a caterpillar tree is typically defined as the legs
having size 1).

7.3 Hierarchical Color Counting on Trees

In the appendix (Section 7.6), we observe that HCC is at least as hard as CRC, using
a simple reduction. As a result, we focus on the 1D case. We start off by presenting a
data structure to solve 1D HCC on a tree G and then show that unweighted HCC on
generalized caterpillars is actually equivalent to weighted 2D dominance counting (up
to constant factors). This allows us to conclude that HCC on generalized caterpillar
graphs cannot be solved with o(n logn/ log logn) space and o(logn/ log logn) query
time, unless the state-of-the-art on weighted 2D dominance counting can be improved.

A Data Structure

We will now focus on the 1D HCC problem on trees, as described in Problem 7.3.
Our main result is the following.

Theorem 7.2. The HCC problem (both weighted or unweighted) in R can be solved
using S(n) = O(n log2(n)/ log logn) space and Q(n) = O(log(n)/ log logn) query
time.

We prove the above theorem in two steps, using the following lemma.

Lemma 7.1. (i) The HCC problem in R can be reduced to O(logn) sub-problems of
the sum-max problem on n points each. (ii) A sum-max problem on n points can be
reduced to a (weighted) 2D orthogonal range counting problem on n points.

Proof. Our approach starts by looking at the underlying tree structure in G . We split
G into its heavy path decomposition. To prove part (i) of the lemma, we actually
need to look at the specific details of the heavy-path decomposition which can be
described as follows. Start from the root of G and follow a path to a leaf of G where
at every node u of G , we always descend to a child of u that has the largest subtree;
this easily yields the property that after removal of π , G will be decomposed into a
number of forests where each forest is at most half the size of G . Then the heavy-path
decomposition is built recursively, by recursing on every resulting forest. It is easily
seen that the depth of the recursion is O(logn).

Let �i be the set of paths obtained at the i’th-level of the recursion. An important
observation here is that the paths in �i are “independent” meaning, no vertex u of a
path π ∈ �i is a descendent or ancestor of a vertex v of a different path π ′ ∈ �i. As a
result, we claim it is sufficient to solve the HCC problem on the paths �i, for every



7.3. HIERARCHICAL COLOR COUNTING ON TREES 89

i = 1, · · · ,O(logn), and then sum up the O(logn) results; the set of paths in �i defines
the i-th sub-problem and thus it remains to show how it can be reduced to a sum-max
problem.

We now build an instance of the sum-max problem on �i: we use the same input
set P but with different colors and also the points will receive weights, as follows. For
every path in �i, we define a new color class, i.e., for the set C in the definition of
the sum-max problem we have |C| = |�i|. Let c be the (original) color of a point p
in the HCC problem (i.e., in graph G ). Consider the position of the color c in G and
the path πc that connects it to the root of G . Let π j ∈ �i be the path that intersects
πc (if there’s no such path, p is not stored in the i-th subproblem) on a vertex v. The
weight of p will be a prefix sum of the weights in π j: we start from the root of π j and
add the weights all the way to v. Note that an unweighted HCC can be thought of
as a weighted instance of HCC with weights one. By the definition of the sum-max
problem, the answer to a sum-max query will yield the number of vertices (or the total
weights of the vertices) of the paths in �i that need to be counted in the HCC problem.
This concludes the proof of part (i) of the lemma.

To prove part (ii), we transform each point into an orthogonal range in 2D, inspired
by the previous solutions to 1D color counting. Consider an instance of a sum-max
problem where the x-coordinate of a point p is px, its color is c(p) and its weight is
w(p). For a point p(i), denote the first point of the same color and greater weight to
its left (resp. right) with p(`) (resp. p(r)). Observe p(i) is only counted by a sum-max
query I if we have both p(i)x ∈ I and I ⊂ (p(`), p(r)). Based on this observation, we
associate to p(i) the two dimensional region (p(`)x , p(i)x ]× [p(i)x , p(r)x ) (If p(`) or p(r) does
not exist, make the region unbounded in the corresponding direction). We do this
transformation for all points in our input. For a query range I = [I1, I2] we map it
to the point q = (I1, I2); by our observation, q precisely stabs the rectangles which
correspond to the heaviest points of every color that lies inside I.

Thus, we have reduced the problem to the following: our input is a set of axis-
aligned rectangles where each rectangle is assigned a weight and given a query point
q = (q.x,q.y), the goal is to sum up the weights of the rectangles that contain q, a.k.a,
an instance of the rectangle stabbing problem. By a simple known reduction, this
problem reduces to 2D orthogonal range counting: simply turn an input rectangle
[x1,y1]× [x2,y2] where x1 < x2,y1 < y2 and with weight w into four points: points
(x1,y1) and (x2,y2) with weight w and points (x1,y2) and (x2,y1) with weight −w.
Computing the answer to the dominance query with point (q.x,q.y) will count w only
when q is inside the rectangle as otherwise the weights w and −w will cancel each
other out.

Theorem 7.2 follows easily from Lemma 7.1 since we only need O(logn) sum-max
data structures on O(n) points; each reduces to weighted orthogonal range counting
and the final observation is that we can combine all of the O(logn) data structures in
one 2D orthogonal range counting data structure on O(n logn) points. Using known
results, this can be solved with O(n log2(n)/ log logn) space and O(log(n)/ log logn)
query time [41] although other trade-offs are also possible. For example, by plugging
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in other known results for weighted 2D range counting, we can also obtain O(n logn)
space and O(log2+ε n) query time, for any constant ε > 0.

Lower Bounds and Equivalence

Here we will look at equivalent problems to the HCC problem in 1D. Aside from
showing that this problem has interesting and non-trivial connections to other prob-
lems, the results in this section imply an Ω(logn/ log logn) query lower bound for
our problem which shows that the query time of our data structure from the previous
section is optimal.

Theorem 7.3. The following problems defined on an input set P of size n are equiv-
alent, up to a constant factor blow up in space and query time and potentially an
additive term in the query time for answering predecessor queries.

• [P1]: Unweighted HCC on a generalized caterpillar of size O(n).

• [P2]: The sum-max problem with O(logn) bit long integer weights.

• [P3]: 2D orthogonal range counting with O(logn) bits long integer weights.

Proof. The argument in the previous section shows that P1 reduces to P2 since in a
generalized caterpillar, there are only two levels in the heavy-path decomposition so
there is no blow up of a logn factor in the space complexity. P2 in 1D reduces to P3
using standard techniques, using the same transformation from 1D color counting to
2D range counting [55]. The non-trivial direction is to reduce P3 to P1. We do this in
a step-by-step fashion.

Claim 7.3.1. P3 can be reduced to the orthogonal range counting problem on ε logn
bit-long integer weights, for any constant ε > 0.

Proof. Let X = 2ε logn. Given a weighted point set P for P3, store the weights modulo
X in a structure for ε logn bit weights. Now, we can strip away the ε logn least
significant bits of the original weights and repeat this process 1/ε times to prove the
claim.

Claim 7.3.2. For any constant s, P3 can be reduced to O(n1−2−s
) sub-problems of P3

on instances of size O(n2−s
) where a query in the original problem can be reduced to

O(1) queries on some of the sub-problems.

Proof. We adapt the grid method by Alstrup et al. [22]. Observe that as weights are
integers, summing up the weights inside a query rectangle can be done using additions
and subtractions of four dominance queries of the form (−∞,x1]× (−∞,x2].

Build a
√

n×
√

n grid such that each row and column contains
√

n input points.
Then, use a

√
n×
√

n table T to store partial sums, as follows: the cell (i, j) of T
stores the sum of all the weights in grid cells (i′, j′) with i′ ≤ i and j′ ≤ j. After
storing T , we recurse on the set of points stored in each row as well as each column
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and stop the recursion at depth s. At every sub-problem at depth s of the recursion,
we have O(n2−s

) points left and they become the claimed sub-problems in the lemma.
To bound the number of sub-problems, observe that if a sub-problem at depth i has

m points, then it creates 2
√

m problems (one for every row and column) involving
√

m
points each in depth i+1. By unrolling the recursion, we can see that at depth s of the
recursion, we will have 2sn1−2−s

= O(n1−2−s
) sub-problems since s is a constant, as

claimed.
Now consider a query q = (−∞,qx]× (−∞,qy]. Observe that by using two prede-

cessor queries, we can find the grid cells g that contains the query point. Assume g
corresponds to the cell (i, j) in the table T and consider the cell (i−1, j−1). We have
stored the sum of all the weights in the cells (i′, j′) with i′ < i and j′ < j. This value
gives us the total sum of the weights in the grid cells that are completely contained
in q. Next, q is decomposed into two disjoint queries, one in a row containing the
(qx,qy) point and another one in the column containing the same point. These queries
can then be answered recursively until we reach the s-th level of the recursion. Thus,
in total we will need to answer 2s = O(1) queries.

Claim 7.3.3. After performing the reductions in Claims 7.3.1 and 7.3.2, P3 can be
reduced to an instance of P2 where there are at most nε colors and where the maximum
weight is at most nε , for any constant ε > 0.

Proof. Pick s in Claim 7.3.2 such that each sub-problem has at most 0.5nε points.
Consider one such sub-problem involving m points. We do a reduction inspired by
Larsen and Walderveen [69]. Consider an input point p = (xi,yi) with weight w(p). p
will be mapped to two points (−xi) and (yi). They are first stored in a sum-max data
structure with weight w(p) and color i. They are also stored in a second sum-max
data structure with weights w(p) but with different colors of 2i and 2i+1.

Now, given a query range q = (−∞,qx]× (−∞,qy], we query both sum-max data
structures with interval [−qx,qy] and then subtract their results. If the point p is inside
q, the first data structure counts w(p) once but the second data structure counts them
twice and thus their subtraction includes w(p) only once. If p is not inside q, none of
the data structures counts w(p).

Finally, note that the total number of colors is at most 2m≤ nε .

Claim 7.3.4. An instance of P2 where there are at most nε colors and where the
maximum weight is at most nε , for any constant 0.5 > ε > 0, can be reduced to P1 on
a generalized caterpillar of size O(n).

Proof. We build a caterpillar graph G with a central path of length nε . Then, we
attach a path of length nε to every vertex on the central path; call these attached paths,
legs. The total size of the caterpillar graph is at most n2ε ≤ n.

Consider an input point p, with color i and weight w≤ nε . In our HCC problem,
we assign it a color that corresponds to the w-th vertex of the i-th leg. Now, observe
that given a query I = [I1, I2] to the sum-max problem, asking the same query on G
will produce the answer to the sum-max problem: all the vertices on a leg have the
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same color which is different from the color of all the other legs. Furthermore, at every
leg we simply need to find its lowest vertex that is contained in the query range which
is equivalent to finding the point of maximum weight in the same color class.

Observe that the proof follows directly using the above claims. Note that at each
step, we might blow up the query time and the space by a constant factor. Also,
Claim 7.3.2 requires a constant number of predecessor queries. Depending on the
assumptions on the coordinates of the points this can take a varying amount of time
but it is dominated by the actual cost of answering the range counting queries in any
reasonable model of computation.

As a consequence of the above equivalence, we can get a number of conditional
lower bounds for HCC queries on trees.

Corollary 7.1. The barrier of S(n)Q(n) = Ω(n(logn/ log logn)2) for weighted 2D
range counting data structure also applies to unweighted HCC queries, even for
graphs as simple as generalized caterpillar graphs. The query lower bound of
Ω(logn/ log logn) also applies to the HCC problem. Here S(n) and Q(n) refer to the
space and query complexities.

Finally we remark that if the graph G is a path, then the HCC problem simply
reduces to the range max queries which do have more efficient solutions (e.g., with
O(n) space and O(1) query time [50] plus O(1) predecessor queries). And thus,
caterpillar graphs are among the simplest graphs on which the above reduction is
possible.

7.4 General Hierarchical Color Counting Queries

Now we shift our attention to the problem where the underlying graph G is a directed
acyclic graph (DAG). This variant is clearly more complicated than the tree variant.
However, we observe a very curious behavior, namely, the preprocessing bound is
much higher than the space complexity. We show a conditional lower bound on the
preprocessing time using a reduction from the orthogonal vectors problem.

A Reduction from Orthogonal Vectors

We will reduce the Orthogonal Vectors problem to the 1D HCC problem.

Theorem 7.4. Assuming the Orthogonal Vectors conjecture, any solution to the 1D
hierarchical color counting problem on a DAG using P(n) preprocessing time and
Q(n) query time, must obey P(n)+nQ(n)≥ n2−o(1).

Note that in the HCC problem, a query time of O(|G |) is trivial by simple graph
traversal methods. As a result, the above reduction shows that any non-trivial solution
(besides no(1) factor improvements) must have a large preprocessing time.
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Proof. Let η = n
logc(n) for a large enough constant c. We build an instance of HCC

with η points, and a DAG G with O(η) vertices but with O(n) edges. We reduce the
orthogonal vectors problem on η vectors of dimension logc n to this instance of HCC,
notice that n2−o(1) = η2−o(1).

Given two sets A and B of η boolean vectors in {0,1}d , we will construct the
following DAG G . G will have three layers. For each vector in A create a vertex (i.e.,
a category) in what we denote the first layer. Now for each of the d coordinates of the
vectors create a vertex in the second layer. Lastly create a vertex in the third layer for
each vector in B.

Create the following edges: For a vertex corresponding to vector ai in the first
layer create an outgoing edge to all coordinate vertices in the second layer in which ai

has a one at that corresponding coordinate. Then, for a coordinate vertex in the second
layer create an outgoing edge to all vectors in the third layer where the corresponding
vector in B has a one at that coordinate. This clearly takes O(ηd) = O(n) to construct
and the construction is illustrated in Figure 7.1.

a1 a2 a3 a4 aη−1aη

1 2 3 d

b1 b2 b3 b4 bη−1 bη

Figure 7.1: The underlying hierarchy DAG in the Orthogonal Vectors reduction

To figure out whether there exists a vector a ∈ A and a vector b ∈ B such that a
and b are orthogonal, we do the following. Create a point in R for each of the vertices
in the third layer; their locations do not matter as long as they are distinct. We use n
queries by simply querying each point individually and thus each query interval has
just one point inside it!

Claim 7.4.1. Consider a HCC query that contains the point pi that corresponds to a
vector bi ∈ B. There is no vector in A that is orthogonal to bi, if and only if the output
size is |bi|1 +1+η where |bi|1 is the number of ones in vector bi.

Proof. First, let us consider the case when there is no vector in A that is orthogonal to
bi. Consider an arbitrary vector a j ∈ A. Since a j is not orthogonal to bi, there exists
a coordinate k where both bi and a j have a 1 at that coordinate. This implies that a j

is connected to bi via the k-th vertex in the middle. As a result, all vectors in A are
ancestors of bi and since bi is connected to |bi|1 vertices in the middle, the output of
the HCC query will be as claimed.

The converse also follows by a similar argument. If a vector a j ∈ A does not share
a 1 coordinate with bi, then this corresponds to one of the vertices in the top layer not
being counted by the query, hence the output is less than |bi|1 +1+η .

Since one can easily store the values |bi|1 in O(η) space, we can solve the
Orthogonal Vectors problem using η queries on a solution for the HCC on the
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aforementioned DAG. The DAG has size O(ηd) = O(n) and thus we obtain the lower
bound P(n)+nQ(n)≥ η2−o(1) = n2−o(1).

A Data Structure for General DAGs for HCC

Despite the lower bound in the previous section, it is possible to give a non-trivial
data structure for HCC queries on a general DAG, however, our goal is to to reduce
the space complexity rather than the preprocessing time. Surprisingly, this is possible
and in fact we can achieve a substantial improvement in space complexity.

Theorem 7.5. It is possible to solve the HCC problem on O(n) points in 1D on a
DAG G of size n using Õ(n2) preprocessing time, Õ(n3/2) space and O(log(n)) query
time.

Proof. We start by remarking that we cannot hope to reduce the preprocessing time,
as shown by our conditional lower bound, however and rather surprisingly, we show
that the space can be reduced to Õ(n3/2).

Assume the input coordianates have been reduced to rank space (i.e., between
1 and n). Let Iq = (i, j) be the query interval. Observe that we can afford to store
the answer explicitly when |Iq| ≤

√
n (i.e., “short” queries) since the number of such

queries is O(n3/2). This allows us to answer such queries in constant time. The subtle
challenge, however, is to do it within Õ(n2) preprocessing time as the obvious solution
could take much longer.

We start by computing the transitive closure G c of G , which takes Õ(n2) time.
For a point pi denote by ci its color in G and let di be the number of parents of pi in
the transitive closure G c. We create di copies of the point pi at the same position as pi

and assign each a unique parent of pi as color. The end result will be a set of O(n2)
points such that every point has a unique color and such that computing the number
of colors in an interval I = [I1, I2] will yield the answer to the hierarchical query with
the same interval. This essentially gives a “flat” representation of the hierarchical
color structure, and consequently, using the existing solutions for CRC queries, we
can compute the answer to all the short queries in Õ(n3/2) time and store the results
in a table. Thus, short queries can be answered in constant time, using Õ(n3/2) space
and Õ(n2) preprocessing time.

It remains to show how to deal with the long queries. Note that we can repeat the
above process for all the queries to obtain a “flat representation” but doing so will
yield a Õ(n2) space complexity. The key idea here is that we can “compress” the flat
representation down to O(n3/2) space, as follows. Keep in mind that the compressed
representation only needs to deal with queries Iq such that |Iq| ≥

√
n. Partition the set

of original n points into 2
√

n subsets of
√

n/2 consecutive points. For every subset
Pi and every color class c (in the flat representation), delete all the points of color c
in Pi except for the points in the smallest and the largest position. This will leave at
most two points of color c in all subsets and thus there will be at most O(

√
n) points

of color c in all subsets. Over n colors this yields O(n3/2) points. We store them in a
data structure for CRC queries and this will take Õ(n3/2) space.
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The claim is that the compressed representation answers queries correctly. Con-
sider a query interval Iq of size at least

√
n and assume to the contrary that there

used to be a point p of color c inside Iq in a subset Pi but p got deleted during the
compression step. However, we have kept the rightmost point, p1, and the leftmost
point, p2, of color c inside Pi. Now, observe that since Pi contains at most

√
n/2

points, either its rightmost point or its leftmost point (or both) must be inside Iq. As a
result, either p1 or p2 must be inside Iq, a contradiction. The preprocessing time here
is also trivially Õ(n2).

7.5 Sub-Category Range Counting and Equivalence

Here, we will focus on SCRC queries.

Equivalences

We show that when the catalog tree G is a path, then the SCRC problem in 1D is
equivalent to a number of well-studied problems, as follows.

Theorem 7.6. The following problems are equivalent: (i) SCRC when G is a single
path on a one-dimensional input P, (ii) 3-sided distinct coordinate counting (for
a planar point set P), (iii) 3-sided color counting (for a planar point set P), (iv)
3D dominance color counting (for a 3D point set P), and finally (v) 3D dominance
counting (for a 3D point set P).

To prove this, first in the appendix (Section 7.6), we show the following lemma.

Lemma 7.2. When G is a path, the SCRC problem on a one-dimensional input P is
equivalent to the 3-sided distinct coordinate counting problem.

The above lemma shows that (i) and (ii) are equivalent. Next, we observe that
(ii), (iii), and (iv) all reduces to (v): (iii) is a generalization of (ii), the reduction
from (iii) to (iv) is standard by mapping a 2D input point (xi,yi) to the 3D point
(−xi,yi,xi) and the 3-sided query range R = [q`,qr]× (−∞,qt ] to the 3D dominance
range (−∞,−q`]× (−∞,qt ]× (−∞,qx]. The reduction from (iv) to (v) was shown by
Saladi [81]. Thus, the only remaining piece of the puzzle is to show a reduction from
(v) to (ii). We do this next.

Theorem 7.7. 3D dominance counting can be solved by 3-sided distinct coordinate
counting.

Proof. Consider an instance of 3D dominance counting. First, we reduce the instance
to rank space which means we can assume that query coordinates are integers and
the input coordinates are distinct integers between 1 and n. For an input point
pi = (xi,yi,zi), we create four points p1

i = (−xi,zi), p2
i = (yi,zi), p3

i = (−xi,zi) and
p4

i = (yi,zi + 0.5). Next, we create two 2D 3-sided distinct Y -coordinate counting
structures. In the first structure we put p1

i and p2
i , and in the second structure we put
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p3
i and p4

i . Given a query point p = (x,y,z), we transform it into the 3-sided range
rp = [x,y]× (∞,z+0.5].

We claim the number of dominated points of p is the difference between the
outputs of the two data structures on rp. If p dominates pi then xi ≤ x, yi ≤ y and
zi ≤ z, hence −x≤ xi and zi +0.5≤ z+0.5. This means that all four point are inside
rp. The first data structure counts 1, since the two points share the second coordinate
and the second data structure counts 2 since they have distinct second coordinates.

The key observation is that if p does not dominate pi at least one of (−xi,zi) or
(yi,zi) and (yi,zi+0.5) will not be in the range, which consequently implies hence the
difference of the outputs will be zero (regarding pi). The reduction is clearly linear in
the size of the input set.

The above equivalence, allows us to build a data structure for SCRC queries when
G is a tree.

Corollary 7.2. SCRC problem in 1D on category tree can be solved using
O(n log2 n/ log logn) space and with the optimal query time of O(logn/ log logn).

Proof. We split the tree into its heavy path decomposition. Once again, we need to
look deeper into the details of the heavy-path decomposition. Start from the root of G
and follow a path π to a leaf of G where at every node u of G , we always descend
to a child of u that has the largest subtree. For every node v ∈ π , consider the subset
Pv ⊂ P that have a color from the set G≤(v). Build another instance of SCRC problem
where the category graph is set to π , and a point p ∈ Pv is assigned color v. In this
instance of SCRC, the category graph is a path and by Theorem 7.6 it is equivalence
to 3D dominance counting and thus it can be solved with O(n logn/ log logn) space
and with O(logn/ log logn) query time [59]. Observe that if for the query pair (I,vq),
consisting of an interval I and a node vq ∈ G , we have vq ∈ π , then the query can
readily be answered. Otherwise, vq must not be on the central path π . To handle such
queries, we simply recurse on every tree that remains after removing π .

By the heavy path decomposition, the depth of the recursion is O(logn). Fur-
thermore, the paths obtained at the depth i of the heavy path decomposition are
independent and thus in total they contain O(n) points. Over all the O(logn) levels,
it blows up the space by a factor of O(logn). Note that to answer a query (I,vq), we
need to find the level i of the heavy path decomposition and a path πi that contains vq.
However, this can simply be answered by placing a pointer from vq to the appropri-
ate data structure. Then, after finding πi, the query can be answered using a single
dominance range counting query in O(logn/ log logn) time.

The query time of the above data structure is also optimal which follows from
combining our reductions with previously known lower bounds [75].
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A Conditional Lower Bound for SCRC

For SCRC where the underlying category graph is a DAG there is a trivial upper
bound of O(n2) space and O(logn) query time: for each node vi in the DAG store a
1D CRC structure on G≤(vi). To answer a query (I,vq), we simply query the CRC
structure on vq with the interval I. The conditional lowerbound on HCC can easily be
extended to SCRC. See Section 7.6 in the appendix for details.

Corollary 7.3. Assuming the Orthogonal Vectors conjecture, any solution to the 1D
sub-category range counting problem on a DAG using P(n) preprocessing time and
Q(n) query time, must obey P(n)+nQ(n)≥ n2−o(1).

7.6 Appendix

HCC is at Least as Hard as Color Counting

Consider an instance of regular colored counting given by a point set P in Rd where
each point is assigned a color from a set C. We build two hierarchical color counting
data structures. In the first data structure, all colors in C are represented by leaf nodes
in a balanced binary tree T1; for simplicity we assume |C| is a power of two; otherwise,
we add dummy colors to C. In the second data structure, for every pair of sibling
leaves c and c′, we “collapse them” into their parent cp, to obtain a second balanced
binary tree T2, meaning, any point that had color c or c′ will receive cp as its color.
The resulting colored point set will be stored in the second hierarchical color counting
data structure.

Given a query range R for the regular colored counting problem, we query both
data structures with R and report their difference. We claim it will be the correct
answer to the regular colored counting query.

To see this, we can consider two sibling leaf colors c and c′ and their parent cp

in T1. Case one is when none of them is in the query range R. In this case, neither
data structure will count anything and thus their difference will also not count either
color. The second case is when exactly one of them, say c is in the query. In this case,
the first data structure counts the leaf c and the path connecting cp to the root of T1
where as the second counts only the latter and thus the difference counts c exactly
once. Lastly if both leaves are in the query, the first data structure counts two more
leafs when compared to the second data structure (the two leaf nodes in the query)
and we again get the correct output. The three cases are summarized in Figure 7.2.

Reducing the SCRC Problem to the 3-sided Distinct Coordinate
Counting Problem

Here, we would like to show that when G is a path, the SCRC Problem reduces to the
3-sided distinct coordinate counting problem.

To do that, first consider a 1D input point set for the SCRC problem. Map the
input point xi with color ci ∈ G , to the point (xi,h(ci)), where h(ci) is the number of
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Case 1 Case 2 Case 3

Data structure 1

Data structure 2

Figure 7.2: Each case, where the red dots corresponds to points counted

nodes below ci on the path G . Store the resulting point set in a data structure for the
distinct coordinate counting queries. Then, given a query interval [a,b] and query
node cq, we create the 3-sided query range R = [a,b]× (−∞,h(cq)]. Observe that if a
point (xi,h(cq)) lies inside R, it implies that ci is below cq and that xi ∈ [a,b]. Thus,
the number of distinct Y -coordinates inside R is precisely the answer to the SCRC
problem.

To show the converse reduction, consider a 2D point set P for the 3-sided distinct
coordinate counting. We create a node v(y) for each distinct Y -coodinate y in the
input set, meaning, G is a path that has as many vertices as the number of distinct
Y -coordinates in P.

For each point pi = (xi,yi), we create a 1D point with x-coordinate xi and color
v(yi). Consider a query range R = [a,b]× (−∞,c] and let y be the predecessor of c
among the Y -coordinates of P. We create the 1D range [a,b] and query the node v(y).
It is straightforward to verify that the answer to the SCRC is exactly the number of
distinct Y -coordinates inside R.

Reducing the OV Problem to SCRC on a DAG

Corollary 7.3. Assuming the Orthogonal Vectors conjecture, any solution to the 1D
sub-category range counting problem on a DAG using P(n) preprocessing time and
Q(n) query time, must obey P(n)+nQ(n)≥ n2−o(1).

Proof. We pick the same underlying graph as in theorem 7.4 and the point set P of
η points pi such that the color of pi is equivalent to node bi. We query the SCRC η

times, each time using a different ai as our query node and an interval which spans
all points of P. If for a query node ai the output is less than η we know that ai is
orthogonal to some b j, since they do not share a coordinate where they both have a
one.
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