
Spectral Graph Correspondences

Judith Franziska Hermanns

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark





Spectral Graph Correspondences

A Dissertation

Presented to the Faculty of Natural Sciences

of Aarhus University

in Partial Fulfillment of the Requirements

for the PhD Degree

by

Judith Franziska Hermanns

August 2, 2022





Abstract

Graph correspondence problems occur whenever we aim at establishing correspon-

dences between nodes or parts of two or more graphs. In this thesis, we focus on

two correspondence problems: graph alignment and subgraph localization. In graph

alignment, nodes of a graph G are aligned to their counterparts in G′. In subgraph lo-

calization, the problem is to localize a query graph Q in a larger graph G. Due to their

closeness to graph isomorphism problems, both tasks are deemed computationally

challenging. In this thesis we consider these problems on undirected, unattributed

graphs. Given that in these cases only the structure of the graph is available, we

investigate how these problems can be tackled by spectral graph theory. Spectral

graph theory deals with the question which properties of the graph can be inferred

from the spectrum of the graph. The spectrum of the graph are the eigenvalues of

the graph laplacian. The laplacian is a graph descriptor comprising all structural

information of a graph.

In a first contribution, we develop the spectral graph alignment method GRASP

by framing the problem of aligning nodes as a problem of mapping node-specific

functions across graphs. We establish the notion of unrestricted graph alignment

as graph alignment which only uses the graph structure as an input. We evaluate

our approach against other unrestricted graph alignment methods and find that it

outperforms other scalable methods. In a second contribution, we structure the

previously unstructured field of unrestricted graph alignment algorithms by developing

an evaluation framework together with benchmark datasets and we evaluate algorithms

previously not compared against each other on real and synthetic data. In a third

contribution, we tackle the problem of subgraph localization by aligning the spectra

of the query graph Q and the larger graph G. As subgraph localization with only

structural information on large graphs has not been convincingly tackled yet, we

evaluate our method against a state-of-the-art graph alignment algorithm and show

that the former is superior in localization quality.
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Resumé

Graf korrespondanceproblemer forekommer, når vi sigter mod at etablere overensstem-

melse mellem knuder eller dele af to eller flere grafer. I denne afhandling fokuserer

vi på to korrespondanceproblemer: afstemning af grafer og lokalisering af delgrafer.

I det første problem afstemmes knuder i en graf G til deres modstykker i graf G′,

og i det andet problem lokaliseres en forespurgt delgraf Q i in større graf G. Begge

opgaver anses for at være beregningsmæssigt udfordrende grundet deres lighed med

graf-isomorfi-problemer. I denne afhandling undersøger vi disse to problemer på ikke-

rettede og uden-attributter grafer. Da det i disse tilfælde kun er grafernes struktur, som

er tilgængelig, undersøger vi, hvordan disse problemer kan løses ved hjælp af spektral

grafteori. Spektral grafteori beskæftiger sig med hvilke egenskaber ved grafen, der

kan udledes af grafens spektrum. Grafens spektrum er egenværdierne for grafen

Laplacian. Laplacian er en grafbeskrivelse, der omfatter al strukturel information ved

en graf.

I vores første bidrag udvikler vi den spektrale graf metode GRASP til afstemning

af grafer ved at formulere problemet med at lokalisere knuder som et problem med

at kortlægge knude-specifikke funktioner på tværs af grafer. Vi fastsætter begrebet

ubegrænset graf afstemning til kun at benytte grafstrukturen som input. Vi evaluerer

vores fremgangsmåde i forhold til andre ubegrænsede graf afstemnings metoder og

klarer os godt inden for skalerbare metoder. I vores andet bidrag strukturerer vi det

hidtil ustrukturerede felt af ubegrænsede graf afstemnings algoritmer ved at udvikle

en evalueringsramme, et benchmark-datasæt, samt ved at evaluere algoritmer, der

ikke tidligere er blevet sammenlignet med hinanden på både reelle og syntetiske data.

I vores tredje bidrag tager vi fat på problemet med lokalisering af delgrafer ved at

tilpasse spektrene for forespørgselsgrafen Q og den større graf G. Da lokalisering

af delgrafer med kun strukturelle oplysninger fra store grafer endnu ikke er blevet

behandlet på overbevisende vis, evaluerer vi i forhold til en af feltets førende graf

afstemnings algoritme. Vi overgår dens lokaliserings evne.
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Chapter 1

Introduction

When multiple objects are set in relation to each other the resulting structure can

often be modeled as a graph. A graph consists of a set of nodes and a set of edges

connecting these nodes. Graph structures exist in all areas of science, technology,

nature, art and social life. Scientists and artists form collaboration networks [93, 131],

humans form social relationships and friendship networks [139], atoms connect as

chemical compounds [119] and in smart homes, devices form a network [120].

Due to their flexibility and expressiveness, graphs can model these and many

more networks. These graphs can contain valuable information, often hidden in

the connectivity structure of a graph. The broad area of Graph Mining or Graph
Analysis [3] focuses on the problem of extracting this knowledge from graphs.

Over the years, many methods concerning graph analysis have been developed,

dealing with different tasks for knowledge extraction from graphs based on their

characteristic structural properties [25]. In community detection [38, 149] and graph

clustering [101, 125], a graph is partitioned into several subgraphs. While also node

attributes are considered here, the connectivity structure plays an important role,

as nodes that form communities i.e., are connected amongst each other in patterns

that separate them from the rest of the graph are natural candidates for a cluster or a

community. Another relevant field is the retrieval or detection of interesting subgraphs,

for example clique detection [124] or frequent subgraph mining [56]. Again we have

to consider the graph structure: Is a subgraph a clique? Is a specific structure frequent?

The machine learning task of data classification also appears in graph analysis as node

classification [115] or graph classification [154]. Naturally, the community structure

of a graph has to be considered in these cases, as only considering node attributes

would make it unnecessary to model data as a graph. In a collection of graphs instead

3
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it is important to understand whether two graphs are similar and, if possible, recover

correspondences among nodes. This is of paramount importance in the analysis of

proteins [67], the analysis of social networks [83] and in re-identification tasks in

computer vision [153].

In recent years, spectral graph theory[23] has found its way into the field of graph

analysis. Spectral graph theory investigates how knowledge about a graph can be

gained from analyzing the spectrum of the Laplacian of a graph. The Laplacian of a

graph is a graph descriptor, which is calculated from the adjacency matrix of a graph

and its degree matrix. The powerful property of the spectrum of this Laplacian is the

fact that structural properties can be read from it, for example the number of connected

components [23] or the overall community structure of a graph [135]. This property

makes it an ideal tool for graph analysis as a compact and expressive descriptor of the

graph structure. There are approaches which already apply spectral graph theory to

problems for example in graph similarity applications [135], graph clustering [125],

and graph neural networks [29].

In this PhD thesis, we connect spectral graph theory and graph analysis further.

The focus will be graph correspondences. Graph correspondence problems occur

whenever we want to establish correspondences between nodes of two or more graphs

or parts of two or more graphs. This can be a standalone problem, for example if we

want to align the users of one social network to the corresponding users of a second

social network [155]. Solving for graph correspondences can also be a preprocessing

step. In cases where we aim at applying a graph analysis task to several related

graphs, pre-aligning these graphs might make some recomputations unnecessary [128],

because a known alignment results makes it possible to simply transfer results across

graphs. However, while being an important task in graph analysis, establishing

correspondences between graphs is also a challenging computational problem, as

the most general problem falls into graph isomorphism or, in the case of graphs of

different size, subgraph isomorphism [25].

1.1 Challenges in solving graph correspondence problems

Graph correspondence problems are closely related to the fundamental problem of

graph isomorphism. Two graphs G and G′ are isomorphic if there exists a bijective

mapping between the nodes of G and G′ such that edges are preserved, i.e. two nodes

are neighbors in G if and only if their counterparts in G′ are also neighbors [89]. Check-

ing for graph isomorphism is in NP, while subgraph isomorphism is NP-hard [65].
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This a challenge when trying to solve instances of this problem in graph analysis,

where scalable solutions for large graphs and graph databases are required.

A further complication occurs with the fact that in graph analysis we frequently

come across correspondence problems for non-isomorphic graphs. The graphs for

which we want to establish correspondences might have an overall similar community

structure, but differ in local structures. For example, two social networks might have

the same users, but slightly different connections between them. However, we still

want to establish correspondence between the users. In this case, how can we find

these correspondences? In some cases, node attributes are available, e.g. usernames,

but they can be noisy or wrong, so in this PhD thesis we will instead consider the base

problem without attributes.

All in all, the central question of this PhD thesis is: How can we establish

correspondences between graphs, solely based on their structure? In the next section,

we outline our contributions in working on this question.

1.2 Contributions

We restrict this PhD thesis to two specific instances of graph correspondence problems:

graph alignment and subgraph localization. In graph alignment, we assign each node

of one graph to at least one node of a second graph [50]. In subgraph localization, we

aim at assigning a smaller graph to a corresponding subgraph in a bigger graph.

As established in the previous section, we work with the purest version of the

problem, i.e., the one in which we do not assume any additional information besides

nodes and edges. This is an ideal application case for the previously discussed spectral

graph theory, which deals exactly with the question of how to gain knowledge about a

graph from its structure, distilled in its spectrum.

This thesis comprises three manuscripts, the contributions of which we will now

discuss.

Spectral Graph Alignment. Graph alignment is a well-researched field, as graph

alignment tasks appear in a broad variety of fields, from the alignment of social

networks [155] to the alignment of biological networks [81] and to computer vision

applications [55]. However, this diversity in application areas leads to the fact that

many algorithms are extremely specialized and require domain-specific knowledge,

like protein structures in protein-protein-interaction networks [62]. Others expect a

set of ground truth alignments, as often seen in social network alignment [60]. We

call graph alignment algorithms which do not require such additional information
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unrestricted. There are some of those [48, 72, 126], but their alignment quality is

not convincing and none of them has connected graph alignment and spectral graph

theory with a focus on the community structure of the graphs.

In our first project we deal with this unrestricted alignment case. We develop

an approach which uses spectral graph theory in order to establish a mapping which

enables the transfer of arbitrary functions across graphs [51]. We then use this mapping

in order to map node-specific functions across graphs for the purpose of obtaining

a final alignment. The latter step returns node embeddings for both graphs, which

can be aligned to each other via simple linear assignment algorithms. Furthermore,

we set our approach into context with other state-of-the-art embedding-based graph

alignment algorithms, identifying a modular alignment framework which all of these

algorithms follow. We develop further boosting techniques, which can be used to

improve our own method GRASP, but can also be applied in any other modular graph

alignment method.

Evaluation of Algorithms for Unrestricted Graph Alignment. In the course of

our work on GRASP, we noticed the lack of a consistent evaluation methodology and

benchmark datasets for unrestricted graph alignment. Furthermore, as the existing

unrestricted graph alignment algorithms emerged from different fields, they were never

all evaluated against each other. Thus we evaluate nine state-of-the-art unrestricted

graph alignment methods [19, 48, 66, 72, 95, 126, 145, 146] thoroughly on both real

and synthetic graphs, providing insight into advantages and disadvantages of each

algorithm and providing a benchmark for future work in this area [127].

Spectral Subgraph Localization. In a third work, we tackle the problem of subgraph

localization. Subgraph localization is a task that plays a role as a subtask in many

graph correspondence problems, for example in subgraph queries [59], subgraph

discovery [74] and subgraph isomorphism problems [34]. However, it is rarely tackled

as a task on its own. Existing work can only deal with very small subgraphs [34], so

there is a potential to contribute a scalable subgraph localization approach. Again we

approach this problem from a spectral point of view. Here our approach is to align the

spectra of graph and subgraph and in this way, obtain a localization of the subgraph in

the larger graph [52].

The work conducted in this thesis has lead to five manuscripts. Two short papers

are published at WAIM-APWeb 2021 [50] and CIKM 2021 [76]. We combined and

extended them to a paper about GRASP, which is under review at TKDD [51]. Our

work on evaluating graph alignment algorithms is accepted for publication at EDBT

2023 [127] and our work on subgraph alignment is under review for ICDE 2023 [52].
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1.3 Outline

This thesis is organized as follows. In Chapter 2, we introduce the preliminaries

necessary for understanding the subsequent chapters. Chapter 3 reviews existing

work on graph correspondences and spectral methods. In Chapter 4, we present our

work on spectral graph alignment and modular graph alignment algorithms, Chapter 5

is devoted to our work on structuring the unrestricted graph alignment landscape.

In Chapter 6, we present our work on spectral subgraph localization. The thesis

concludes with a summary of our findings and an outlook to future work in Chapter 7.





Chapter 2

Fundamentals

In this chapter, we present the preliminaries necessary for understanding our contribu-

tions.

2.1 Eigenvectors and Eigenvalues

A central element of this PhD thesis are eigenvectors and eigenvalues. In this section,

we describe the mathematical foundations behind them which are necessary for the

understanding of the remainder of this PhD thesis. The concepts presented here can

be found in standard works on introduction to linear algebra, e.g. in [142].

An eigenvector v ∈ Rn of a square matrix A ∈ Rn×n is a vector which changes

only in length but not in direction when transformed by A. The factor λ ∈R by which

this eigenvector is scaled is the eigenvalue associated with the eigenvector v.

The following eigenvalue equation describes the interaction of eigenvector and

eigenvalue:

Av = λv (2.1)

The matrices of which we use eigenvalues and eigenvectors throughout this thesis

have a special form: they are symmetric and positive semidefinite.

Definition 1 (Symmetric matrix). A matrix A ∈ Rn×n is symmetric if Ai j = A ji for

i, j ∈ {1, . . . ,n}.

Definition 2 (Positive semidefinite matrix). A matrix A∈Rn×n is positive-semidefinite

iff XA⊤ ≥ 0 ∀ X ∈ Rn.

9
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The n eigenvalues of a positive semidefinite matrix are real and positive. The

corresponding eigenvectors of a positive semidefinite matrix form an orthogonal basis.

To understand this, we first define orthogonality between two vectors:

Definition 3. Two vectors x,y ∈ Rn are orthogonal if for the dot product x · y =

∑
n
i=0 xiyi it holds that x ·y = 0.

A matrix is orthogonal if all of its columns are orthogonal to each other. An

orthogonal basis of the vector space Rn is a set of vectors that can be linearly combined

to any vector in Rn. Formally, this is defined as follows:

Definition 4 (Orthogonal basis). An orthogonal basis of Rn is a set of vectors

{v1, . . . ,vn} with vi ∈ Rn such that for all x ∈ Rn there exist a1, . . . ,an ∈ R such

that x = ∑aivi.

Eigendecomposition. Let us go back to eigenvalues and eigenvectors. Every real

symmetric matrix A ∈ Rn×n can be decomposed into a matrix Φ ∈ Rn×n, which

contains the eigenvectors of A as columns, and a matrix Λ ∈ Rn×n, a diagonal matrix,

which contains the corresponding eigenvalues λ1, . . . ,λn of A on its diagonal. A can

then be written as:

A = ΦΛΦ
T (2.2)

This is called an eigendecomposition of A. As the matrices that are eligible for

eigendecomposition in this thesis are real and positive semidefinite, it holds that

λ1, . . . ,λn ∈ R≥0. The eigenvectors in Φ form an orthogonal basis.

We now have discussed how eigenvalues and eigenvectors are defined and know

some properties important for this PhD thesis. In the next section, we introduce a

second main element of this thesis: graphs.

2.2 Graphs

In this section, we define graphs and introduce basic notations as well as concepts that

will become important in the rest of this thesis. The concepts presented here can be

found in [4, 25].
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2.2.1 Basic Definitions

An undirected graph G = (V,E) is defined as a tuple of nodes V and edges E with

E ⊆V ×V . We call n = |V | the size of the graph. Important concepts in graphs are

neighbors and neighborhoods.

Definition 5 (Neighborhood). In a graph G = (V,E), a node vi is a neighbor or

adjacent to v j if there is an edge (vi,v j) ∈ E. The neighborhood N(vi) of a node vi is

the set of all neighboring nodes of vi, thus N(vi) = {v j|(vi,v j) ∈ E}.

The number of neighbors of a node vi is called the degree of vi.

Definition 6 (Degree). The degree d(vi) of a node vi,vi ∈ E in a graph G = (V,E) is

defined as |N(vi)|.

A graph can be represented in matrix form by its adjacency matrix A∈Rn×n. This

is a binary matrix constructed as follows:

Ai j =

1 if (vi,v j) ∈ E

0 else
(2.3)

From this matrix, we can calculate a degree matrix D ∈ Rn×, which is a diagonal

matrix containing on its diagonal the degrees of the nodes of G.

Dii = ∑
j

Ai j (2.4)

After introducing these basic graph concepts, we now discuss PageRank [104], a

method to determine the importance of a node in a graph.

PageRank (PR)

PageRank [104] was developed to make it possible for a search engine to evaluate the

importance of web pages. The principle behind this method is very simple: web pages

are considered important if other important web pages link to them. The scenario can

be represented as a (directed) graph, where nodes are web pages and edges are links

between web pages. The rank r(vi) of a node vi is then computed as:

r(vi) = ∑
(vi,v j)∈E

r(v j)

d(vi)
(2.5)

PageRank is based on the idea of a random surfer who randomly clicks from

page to page. Since the web page graph is directed, a random surfer may get stuck
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in nodes with degree 1. For this reason, a damping factor α is introduced to model

the probability of a random surfer either going to another linked page or jumping to a

random page. The formula for the rank r(vi) changes as follows:

r(vi) = (1−α) ∑
(vi,v j)∈E

r(v j)

d(vi)
+α

1
n

(2.6)

This can be solved iteratively by initializing r0(vi) as r0(vi) =
1
n and then updating

r(vi) as

rt+1(vi) = (1−α) ∑
(vi,v j)∈E

rt(v j)

d(vi)
+α

1
n

(2.7)

until convergence.

Personalized PageRank (PPR). PageRank can be personalized by weighting nodes

differently instead of a random jump, i.e., a probability of 1
n for all nodes.

After this overview of the graph concepts needed in the rest of this dissertation,

we now combine our knowledge of eigenvalues and eigenvectors from Section 2.1

and our knowledge of graphs from this section.

2.3 Graph Laplacian

In this section, we discuss the graph Laplacian as well as a related operator on shapes.

Adjacency matrix and degree matrix contain all information about the structure

of a graph. There are different ways to combine them now in the Laplacian. In this

thesis, we use the normalized and the combinatorial Laplacian. We can perform an

eigendecomposition on both Laplacians such that L = ΦΛΦT . Λ is a diagonal matrix

containing the eigenvalues of the graph Laplacian on its diagonal. These eigenvalues

λ1, . . . ,λn are called spectrum of the graph. Φ contains the eigenvectors of L such

that Φ = [φ1, . . . ,φn].

We now present the two Laplacians we work with in this thesis as introduced

in [23].

Combinatorial Laplacian. This is the most simple case of a Laplacian, computed

as L = D−A. We use this Laplacian in our work on subgraph localization [52]

presented in Chapter 6. In this work, an optimization problem is solved which involves

editing the edges of the considered graph. Editing an edge changes fewer elements in

the combinatorial Laplacian than in the normalized Laplacian, which is favorable for

the optimization problem tackled in 6.
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Normalized Laplacian. This Laplacian is caluclated as L = I−D−
1
2 AD−

1
2 . For the

spectrum of this Laplacian λ1, . . . ,λn, it holds that 0≤ λi ≤ 2 for 1≤ i≤ n. For our

work on graph alignment [51] presented in Chapter 4, we use this Laplacian.

Several structural properties of a graph are encoded in the spectrum of a graph,

which makes the spectrum an expressive and at the same time compact descriptor.

Various statements about the community structure of a graph can be obtained from

observing the spectrum. For example, the number of eigenvalues equal to zero

corresponds to the number of connected components in a graph [23]. The spectrum

and the associated eigenvectors can also be used to infer possible partitions in spectral

clustering [101].

2.3.1 The Connection between Shapes and Graphs

Inspiration behind the graph correspondence methods developed in this thesis are

spectral methods applied to related problems on geometric shapes. Spectral methods

have been applied to shape matching [71, 82, 103] and recently also to partial shape

localization [112]. In this section, we explore the relation and differences between

shapes and graphs and between spectral methods on shapes and graphs.

Laplace-Beltrami operator. Graphs and shapes are closely related. In fact, for the

algorithmic processing of shapes, they are often discretized in graph form by sampling

n points and connecting them as a triangular mesh. These graphs differ from the

graphs we consider in this thesis by their spatial component: the positions of nodes

relative to each other matter. The graph Laplacian also has an equivalent for shapes,

the Laplace-Beltrami operator [103]. Similar to graphs, an eigendecomposition of the

Laplace-Beltrami operator is possible, which decomposes the operator into eigenvalues

and eigenfunctions. The relationship between the Laplace-Beltrami operator and the

Laplacian of a graph is investigated in [152]. This work proves that the eigenvectors

of a point cloud graph converge to the eigenfunctions of the Laplace-Beltrami operator

of the Riemannian manifold related to that point cloud graph.

For a shape discretized as a graph, also the Laplace-Beltrami operator can be

discretized into matrix form. A common discretization scheme for the Laplace-

Beltrami operator is the cotangent scheme [90]. Opposite to the Laplacian on graphs,

it takes angles between edges and areas of triangles into account. The discretized

Laplace-Beltrami operator is calculated as

L = DW−1. (2.8)
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Here, D denotes a diagonal matrix with dii denoting the area of all triangles that

share the node vi. Matrix W is calculated according to Equation 2.9.

wi j =


cot(αi j)+cot(βi j)

2 if i ̸= j

∑k ̸=i wik if i = j
(2.9)

The angles α and β denote angles in the two triangles an edge between vi and v j

participates in. These angles are measured between the two edges of the two triangles

which are not ei j.

By including angles and areas in the computation of this discretized Laplace-

Beltrami operator, it gets a spatial component. This goes beyond the structural

information we obtain from the graphs we work with in this thesis. When transferring

spectral methods developed for shapes to graphs, this has to be considered.

After having discussed the fundamentals of the Laplacian, in the next section, we

turn to the fundamentals of the first graph correspondence task in this thesis: graph

alignment.

2.4 Graph Alignment

In this section, we discuss different possibilities to approach the graph aligninment

task, depending on the specific problem instance as well as the information that is

available about the graph. We start by discussing four ways of assigning nodes to

each other.

1. One-to-one alignment: Here, exactly one node from G is assigned to one

node in G′. Our method GRASP [51] is applying one-to-one alignment. This

approach has the advantage that an unambiguous assignment is made.

2. One-to-many alignment: In this case, we assign one node from G to one or

more nodes from G′. This is for example the case when performing a top-k

query for a node to obtain the k most likely matches, e.g. performed by [48].

This results in a soft alignment.

3. Many-to-one alignment: A node from G′ can have multiple nodes from G

assigned to it. This can happen, for example, if we assign nodes from G to

nodes from G′ via nearest-neighbor-search, since in this case, multiple nodes

can have the same nearest neighbor.
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4. Many-to-many alignment: Nodes from G as well as nodes from G′ can be

assigned to multiple nodes.

These four cases classify graph alignment based on the alignments of individual

nodes. If we consider the graph as a whole, there are two possibilities for both graphs:

Either we have to find a corresponding match for all nodes or we can ignore single

nodes. GRASP [51] aligns every node of the first graph to exactly one node of the

second graph. This results in a bijective alignment. Of course, in this case, both

graphs must have the same size. This is the most unambiguous alignment. All other

possibilities can either be forced, if the graphs are of different sizes, or offer the

possibility to treat single nodes as outliers or noise and to ignore them during the

alignment process.

If graphs are of different sizes, we call it partial graph alignment. If two graphs

of the same sizes are to be aligned, we call it full graph alignment.

We now discuss the different information that can be used in a graph alignment

algorithm. We present a classification scheme for graph alignment algorithms which

we developed in [51] and start with the base form of the problem, the unrestricted

graph alignment.

2.4.1 Unrestricted Graph Alignment

In unrestricted graph alignment, only the binary, symmetric adjacency matrix of the

graph is available. All alignments can only be calculated based on the graph structure.

2.4.2 Restricted Graph Alignment

In restricted graph alignment, there exists information beyond the structure of the

graph. We distinguish between supervised methods, where ground truth alignment

knowledge is assumed, and assisted methods, where further information is available

in the graph itself.

Supervised methods. Here there is a set of seed nodes [60] available, which represent

ground truth alignments that are already known before the alignment process, e.g.

users of different networks, who have linked the user profile of the second network in

the user profile of the first network. Based on these seed nodes, supervised methods

infer the alignment.

Assisted Methods. Assisted methods do not require ground truth, but other knowledge

contained in the graph, such as attributes. These offer additional guidance for the
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alignment process if e.g. the protein structure is an attribute of a node in a PPI network

and thus similarity between nodes can be determined without the structure of the

graph. But of course, these attributes can always be noisy or even missing, such that

one would have to resort to unrestricted methods again.

After this short introduction to graph alignment, we now turn to the second

correspondence problem of this thesis: Subgraph localization

2.5 Subgraph Localization

Subgraph localization is a generalization of the graph alignment problem. Instead of a

node in graph G being aligned to a node in graph G′, we align a graph Q to a subgraph

of G. Thus we are given a graph G = (V,E) and a query graph Q = (VQ,EQ) with

|VQ|< |V |. We aim at localizing Q in G. To achieve this, we first define subgraphs [4].

Definition 7 (Subgraph). Given is a graph G = (V,E). A subgraph Gs of G is a graph

Gs = (Vs,Es) such that Vs ⊆V and for all edges e = (vi,v j) with e ∈ Es it holds: e ∈ E

and vi,v j ∈Vs.

Thus, a subgraph Gs is a graph containing part of the nodes of G, and containing

only edges that are connecting these nodes also in the original graph. A subgraph Gs

that contains all edges that also exist between the corresponding nodes in G is called

induced subgraph [4].

Definition 8 (Induced Subgraph). Given is a graph G = (V,E). An induced subgraph

Gs of G is a graph Gs = (Vs,Es) such that Vs ⊆V and for all nodes vi,v j ∈Vs it holds:

if (vi,v j) ∈ E, then (vi,v j) ∈ ES.

In our work, we want to localize an induced subgraph, i.e., there exists an induced

subgraph Gs of G such that Gs and Q are isomorphic.

Definition 9 (Subgraph Localization). Given a graph G and a query graph Q, we call

an induced subgraph Gs of G a localized subgraph to Q, if Q and Gs are isomorphic.

Of course, this definition can be relaxed, similar to how we went beyond iso-

morphism in graph alignment. But for our work, we work with this isomorphism

idea.

Now, how do we express a localization we have found? A straightforward way

is an indicator function, which for each node in G indicates whether it is part of the

localized subgraph, as formulated in Equation 2.10
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δ (v) =

1 if v ∈VQ

0 otherwise
(2.10)

With this section about subgraph localization, we conclude this chapter and move

on to a discussion of related work in the next chapter.





Chapter 3

Related Work

In this chapter, we review related work on graph alignment and subgraph localization.

Sections 3.1 and 3.2.1 are extracted from [51], Section 3.3 is extracted from [52]. We

applied minor corrections and adapted formatting and notation. After the publication

of the articles there has been further development in terms of accuracy [49, 107].We

have noted a quite active growth of semi-supervised or supervised methods [108,

148, 156] and self-supervision exploiting for instance GNNs or embeddings [122]. In

addition, we have identified another recent line of work that focuses on improving

given alignments rather than computing them from scratch [30, 49, 58]. These lines

of work, although interesting are considered posterior to our publications and left as

references for future work.

3.1 Graph Alignment

We distinguish graph alignment methods introduced in related work in two main

categories: (i) restricted alignment methods, which require ground-truth mapping or

other additional information; and (ii) unrestricted alignment methods, which require

neither supervision nor additional information. Table 3.1 overviews the mean features

of related works.

3.1.1 Restricted Alignment

Restricted methods incorporate non-structural information. We further subdivide

restricted methods into supervised or assisted ones.

Supervised methods exploit pre-aligned pairs of seed nodes to construct a first align-

ment. Percolation graph matching (PGM) [60, 150] propagates ground-truth align-

19
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Method Unrestr. Spectral Plain Flexible Precomp. Multisc. Modular Scalable Func.

BigAlign [70] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘
FINAL [155] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘
IsoRank [126] ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘

GRAMPA [36] ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✘
LaplMatch [64] ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘
LREA [95] ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘
REGAL [48] ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✘
CONE [19] ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✘
S-GWL [145] ✔ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘

GRASP ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 3.1: Related work in terms of present (✔) and absent (✘) properties: supervised methods
require aligned nodes as input; spectral methods use the spectra of alignment matrices; IsoRank
does not work on plain graph structures as it requires auxiliary node similarity input; FINAL
requires node or edge attribute information to perform reasonably well [48]; flexible methods
accommodate different alignment algorithms (e.g. bipartite matching, nearest neighbors).
Among unrestricted methods (rows 2–7), LREA does not benefit from offline precomputation.
GRASP naturally captures multiscale properties thanks to its spectral basis, while S-GWL
coarsens the graph to progressively match structures at different scales. REGAL, CONE and
GRASP are modular, hence allow boosting various parts of the algorithm. FINAL, LREA,
REGAL, and GRASP can scale, running on graphs of more than 10 000 nodes in less than 1
hour. GRASP treats the problem as an alignment among functions, embracing a variety of
node functions, including embeddings.

ments across the network. Representation learning approaches, such as IONE [83],

PALE [87], and DeepLink [157], learn a low-dimensional embedding of the graph

nodes and map the node embeddings of one graph to another. A similar method aligns

multiple networks at once [22]. Other recent embedding-based alignment methods,

such as cM2NE [144], SSPDG [159] and NEXTALIGN [156] require pre-aligned

seed nodes. BRIGHT [148] uses embeddings and neighborhood consistency, by

which an alignment should preserve the neighborhoods of aligned nodes. Active

network alignment [86] and, recently, ATTENT [158] apply active learning to elicit

expert guidance on alignments. DANA [30], an adversarial-based learning method,

also requires ground-truth alignments in the training phase. Overall, such supervised

methods rely on prior knowledge, which may not be available.

Assisted methods utilize auxiliary information or structural constraints. BigAlign [70]

focuses on bipartite graphs; however, most graphs are not bipartite. FINAL [155]

aligns nodes based on similarity of topology and attributes. IsoRank [126] aligns

multiple protein-protein interaction networks aiming to maximize quality across all

input networks; it constructs an eigenvalue problem for every pair of input networks

and extracts a global alignment across the input set by a k-partite matching; it relies

on structural properties (PageRank), but also on a similarity measure between nodes
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which in a biology-specific case builds on the similarity of the proteins. It is improved

by a greedy approach in [67] and in IsoRankN [81], which performs spectral clustering

on the induced graph of pairwise alignment scores, claiming error-tolerance and com-

putationally efficiency. Both FINAL and IsoRank also present an unrestricted variant,

the former variant being a scaled version of the latter. Yet, as they are deliberately

designed for, and perform well in, the case where additional information is available,

we classify both methods as restricted. GSANA [151] lets pairwise distances to seed

nodes guide the matching. Another variant matches weigthed matrices using their

spectra [136]; that is inapplicable to the unweighted case. Karakasis et al. [58] pro-

pose a refinement method for precomputed alignments, which qualifies as an assisted

method rather than a stand-alone alignment algorithm. WAlign [42] aligns attributed

graphs using Graph Convolutional Networks and a Wasserstein discriminator. Overall,

such restricted methods cannot handle cases where the only given information is graph

structure.

3.1.2 Unrestricted Alignment

Unrestricted methods require neither prior knowledge of ground-truth pairs nor other

information on the input graph. We categorize them as follows.

Integer-programming methods. Klau [62] presents a Lagrangian relaxation for

the integer programming problem posed by network alignment; though the resulting

algorithm is polynomial, it is still impracticable for large networks.

Embedding-based methods. REGAL [48] constructs node embeddings based on

the connectivity structure and node attributes, and uses the similarity between these

features for node alignment; we classify REGAL as an unrestricted method since it can

work without attributes. CONE [19] realigns node representations, without prejudice

to the representation used. GWL [146] jointly optimizes for node embeddings and

alignment by minimizing the Gromov-Wasserstein distance among the embedding

distances. Contrariwise to CONE and REGAL, it computes the embeddings and the

final alignment at the same time. S-GWL [145], a scalable version of GWL, achieves

scalability by aligning progressively smaller graph partitions.

Matrix decomposition methods. EigenAlign [37] formulates the problem as a

Quadratic Assignment Problem that considers both matches and mismatches and

solves it by spectral decomposition of matrices. Building thereupon, Low-Rank

EigenAlign (LREA) [95] solves a maximum weight bipartite matching problem on

a low-rank version of a node-similarity matrix, hence requires memory linear in the
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size of the graphs. However, EigenAlign variants use the first eigenvector of a joint

adjacency matrix between the two graphs to be aligned, rather than the eigenvectors

of graph Laplacians, which provides richer information.

Belief propagation methods. Alternatively, NetAlign [8] solves a specific sparse

variant of the graph alignment problem by a message-passing algorithm.

3.2 Shape Matching

Our work is inspired by shape matching methods that employ spectral properties [71,

82, 103]. Functional maps [103] generalize the matching of points to the matching of

corresponding functions among shapes, by revealing a common decomposition of such

functions using the eigenvectors of the Laplace-Beltrami operator; the graph equivalent

of that operator is a graph’s Laplacian matrix. Extensions of this methods match

non-isometric shapes by aligning their Laplace-Beltrami operators’ eigenbases [71],

and match a part of a shape to another full shape in the spectral domain [82] without

requiring spatially modeling the part of a shape.

3.2.1 Spectral Methods

Graph spectra [23] facilitate problem-solving in graph analysis, image partitioning,

graph search, and machine learning [125]. NetLSD [135] uses Laplacian spectral

signatures to detect graph similarity, but not to align graphs, in a multi-scale fashion.

LaplMatch [64] derives a permutation matrix for shape matching from Laplacian

eigenvectors, without considering multiscale properties. While calculating a graph’s

spectrum is computationally challenging, recent work proposes an approximation via

spectral moments estimated through random walks [24].

3.3 Subgraph Localization

We review related work on five problems related to subgraph localization, namely

subgraph isomorphism, subgraph discovery, subgraph querying, subgraph matching,

and subgraph localization.

3.3.1 Subgraph Isomorphism

The subgraph isomorphism problem is to decide whether a source graph contains a

target subgraph and return that exact subgraph in the source. In graph analytics, this
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problem is mainly solved for very small target subgraphs (≤ 10 nodes) and aims at

exact matches. Several methods speed up this process by exploiting query specifics,

such as patterns in multiple subgraph queries [34]. By contrast, our method aims at

bigger target subgraphs.

3.3.2 Subgraph Discovery

In subgraph discovery, a target subgraph is not given as input, yet the problem is to

identify interesting components of a source graph according to some criteria, as, e.g.,

those that appear frequently [74, 75], achieve a density threshold [77, 110], or form

cliques [13].

3.3.3 Subgraph Querying

In subgraph querying, the goal is to identify all source graphs among a collection

that contain a query target subgraph, without necessarily indicating the position of

that subgraph within the returned graphs [59, 129, 130]. A closely related topic is

subgraph retrieval, where the goal is to retrieve the most relevant graphs from a graph

database, with relevance being measured by some score. In [117] node embeddings are

learned in order to produce a subgraph matching for the computation of the relevance

score. In [80], nodes are matched in order to produce a graph similarity score without

producing node embeddings as an intermediate step. In both cases, the queries are

significantly smaller than ours.

3.3.4 Subgraph Matching

The goal of Subgraph matching is to match the nodes of a smaller graph to those of a

subgraph in a bigger graph via minimizing some error criteria, possibly in the presence

of available attribute information. Many methods for graph matching effectively solve

a subgraph isomorphism problem, even though they are not specifically designed for

this purpose [155]. Recent work [80, 84] employs deep neural models to learn node

embeddings that are subsequently used for matching.

3.3.5 Subgraph Localization

The problem of subgraph localization calls to detect the best fit of a target subgraph

within a bigger source graph, without aiming for full isomorphism. This problem has

been scarcely studied. A recent application in computer vision [147] uses subgraph
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localization to detect temporal actions, where a graph models actions and the temporal

relations between them. However, this model uses edges for temporal aspects and

inter-scene relations, and hence does not generalize to arbitrary graphs. An existing

spectral solution [17] is limited to special families of graphs, such as cliques.
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Chapter 4

Spectral Graph Alignment

The work presented in this paper was prepared in collaboration with Konstantinos

Skitsas, Anton Tsitsulin, Marina Munkhoeva, Alexander Frederiksen Kyster, Simon

Daugaard Nielsen, Alex Bronstein, Davide Mottin and Panagiotis Karras. It combines

and extends two papers published at APWeb-WAIM 2021 [50] and CIKM 2021 [76].

It is currently under review for TKDD [51]. We applied minor corrections and adapted

formatting and notation and removed the section on related work, as it is already

presented in Chapter 3.

4.1 Abstract

What is the best way to match the nodes of two graphs? This graph alignment problem

generalizes graph isomorphism and arises in applications from social network analysis

to bioinformatics. Some solutions assume that auxiliary information on known

matches or node or edge attributes is available, or utilize arbitrary graph features.

Such methods fare poorly in the pure form of the problem, in which only graph

structures are given. Other proposals translate the problem to one of aligning node

embeddings, yet, by doing so, provide only a single-scale view of the graph.

In this paper, we transfer the shape-analysis concept of functional maps from the

continuous to the discrete case, and treat the graph alignment problem as a special case

of the problem of finding a mapping between functions on graphs. We present GRASP,

a method that first establishes a correspondence between functions derived from

Laplacian matrix eigenvectors, which capture multiscale structural characteristics,

and then exploits this correspondence to align nodes. We enhance the basic form

of GRASP by altering two of its components, namely the embedding method and

27
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the assignment procedure it employs, leveraging its modular, hence adaptable design.

Our experimental study, featuring noise levels higher than anything used in previous

studies, shows that the enhanced form of GRASP outperforms scalable state-of-the-

art methods for graph alignment across noise levels and graph types, and performs

competitively with respect to the best non-scalable ones. We include in our study

another modular graph alignment algorithm, CONE, which is also adaptable thanks to

its modular nature, and show it can manage graphs with skewed power-law degree

distributions.

4.2 Introduction

Graphs model relationships between entities in several domains, e.g., social networks,

protein interaction networks, email communication or chemical molecules. The

structure of such graphs captures information on, e.g., people’s connections, molecule

functions, and protein interactions.

At the same time, the expressive nature of graphs also implies complexity, which

renders some fundamental problems hard. For instance, the graph isomorphism

problem, which is to determine whether two graphs share the same structure is

neither known to be polynomially solvable nor NP-complete, and has been used to

define the GI complexity class [65]. Problems that generalize graph isomorphism

occur frequently in the field of graph analytics. One of those is the NP-complete

subgraph isomorphism problem; another is graph alignment, which aims to find the

best (exact or inexact) matching among the nodes of a pair of graphs; a solution to

this problem is sine qua non in tasks such as identifying users in different social

networks [60], matching objects in images by establishing feature correspondences

and comprehending protein response in the body [62].

In case additional background information is available, such as node and edge

attributes in the graphs to be aligned or valid seed matches, then the problem is

solvable via supervised methods [22, 83]. However, in case only graph structures are

given, then the problem of aligning two graphs by matching structures, is at least as

hard as graph isomorphism even in its approximate version [1].

Existing approaches to graph alignment are oriented toward using a few heuristic

graph features, such as landmarks, in order to detect a good alignment [48], exploiting

additional information such as node attributes [155] or bipartite networks [70], or

optimizing objectives based only on local connections among nodes [37, 81, 95]. On

the other hand, the spectra of Laplacian matrices have been successfully employed to
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(a) Karate club; Red edges removed. (b) Alignment by GRASP (left) and REGAL
(right).

Figure 4.1: With a few removed edges, REGAL [48], an alignment method based on local
features, fails to correctly align the distorted Karate club graph to the original; GRASP
identifies most of nodes (correctly aligned nodes in green).

devise a similarity measure among graphs [135]. Laplacian spectra capture important

multiscale properties, such as local-scale ego-nets and global-scale communities.

Previous approaches rooted in spectral characteristics decompose large matrices ex-

pressing all alignments among edges in two graphs [37, 81, 95] and formulate the

solution as finding the leading eigenvector of such matrices. These approaches disre-

gard most eigenvectors and consider only local edge variations. To our knowledge, the

spectral properties of Laplacian matrices have not yet been utilized to any significant

extent for an end-to-end graph alignment method.

In this paper, we propose GRASP, short for GRaph Alignment through SPectral

Signatures, a principled method to detect a good alignment among graphs based on

their spectral characteristics, i.e., eigenvalues and eigenvectors of their Laplacian

matrices [23]. We transfer the methodology of matching among shapes based on

corresponding functions [103] to the domain of graphs: we first extract a mapping of

node-evaluated functions, based on, for example, the graph’s heat kernel or PageRank

measures, and then apply this mapping to the matching on nodes. Figure 4.1 shows

an example alignment of the Karate club with a deteriorated version obtained by

removing some edges; GRASP correctly aligns most of the nodes, while REGAL [48]

based on local descriptors fails to do so.

In addition, we interpret GRASP as a representative of a family of modular

graph alignment algorithms; GRASP is modular by nature, i.e., made of adjustable

components. In contrast, other graph alignment methods are monolithic, i.e., they are

made of components such as matrix factorization [81, 95] or integer programming [62]

that were hard to adapt, are designed for a specific graph type, e.g., biological [5]

or bipartite networks [70], and fare poorly on other types [48]. Embedding-based

methods [148, 159] strongly rely on an appropriate embedding model tailored for

each graph type. On the other hand, the modular nature also encapsulates two other

graph alignment methods, REGAL [48] and CONE [19], that leverage advances in

node embeddings [109, 113]; it is outlined as follows:
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1. EMBED. Compute an embedding for each node.

2. ALIGN. Align the embedding spaces of both graphs so that similar nodes are close

to each other in the common space.

3. ASSIGN. Match the transformed embeddings by some linear assignment algorithm.

We propose enhancements in each part of this modular framework in GRASP

and CONE, interchanging, enhancing, and adding to framework components. In a

targeted experimental study, we evaluate GRASP with a set of different components

and show that these enhancements improve upon the effectiveness in recovering

real-graph alignments with high accuracy and nearly no impact on efficiency. This

work completes, consolidates, and extends two precedent short publications, [50]

and [76]; it expands and completes the experimental study in [50] by applying to

GRASP the enhancements introduced in [76] and including a wider array of data sets

and an exhaustive set of competing methods. In particular, we contribute the following

material in addition to previously published work:

1. We extensively discuss the modular graph alignment framework and possible

enhancements to GRASP (Section 4.5).

2. We include the recently proposed graph alignment methods S-GWL [145] and

CONE [19] in our experimental comparison (Section 6.5).

3. We examine and provide additional experimental insights on the effects of

parameter choice in GRASP, including the parameter k, i.e., the number of

eigenvectors used for computations and q, i.e., the number of corresponding

functions used (Section 4.6.1).

4. We conduct new experiments on real-world data, namely two temporal proxim-

ity networks and different variants of a PPI-network (Table 4.1, Section 4.6.4).

5. We provide additional experiments examining scalability in the number of

nodes in a graph (Section 4.6.6).
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4.3 Background and Problem

Graph Alignment. Consider two undirected graphs, G1 = (V1,E1) and G2 = (V2,E2),

where V∗ are node sets, E∗ ⊆ V∗×V∗ are edges, and1 |V1| = |V2| = n. A graph’s

adjacency matrix A ∈ {0,1}n×n is a binary matrix where Ai j = 1 if there is an edge

between nodes i and j and Ai j = 0 otherwise.

Definition 10. Given two graphs G1 = (V1,E1) and G2 = (V2,E2), a graph alignment

R : V1→V2 is an injective function that maps nodes of G1 to nodes of G2.

The graph alignment problem is to find such a function, which, expressed as a

permutation matrix P, minimizes the difference ∥PA1P⊤−A2∥2. In case of isomorphic

graphs, there exists a P such that PA1P⊤ = A2, i.e., aligns the two graphs exactly.

We are interested in the general, unrestricted problem case, in which there are no

additional constraints on node attributes or matches known in advance. The problem

is hard and not known to be in NP.

We may express graph alignment in terms of a ground truth function τ : V1→V2

that returns the correct alignment between the nodes V1 in G1 and the nodes V2 in

G2. In the case of isomorphic graphs, this ground truth function τ is a bijection

that admits an inverse mapping τ−1 : V2 → V1. The composition of the indicator

function δi : V1 → {0,1} with τ−1, δi ◦ τ−1 : V2 → {0,1} expresses the complete

isomorphism among the two graphs, returning 1 if node u ∈V2 maps to node i ∈V1,

0 otherwise. By generalization, the composition gi = fi ◦ τ−1 maps functions in G2

to functions in G1 for any family of real-valued functions f1, ..., fq, fi : V1→ R and

g1, ...,gq,gi : V2 → R that associate a real value to each node in G1 and G2. This

transformation among functions is called a functional representation of the mapping τ .

In effect, finding an alignment among the nodes of two graphs corresponds to finding

an alignment among functions on those nodes. We use such functional alignments

as a shortcut to node alignments. To get there, we extend the concept of a functional

map [103] from the continuous to the discrete case.

Functional maps. The operator TF : (V1×R)→(V2×R) maps functions f on the

nodes in G1 to functions g on the nodes in G2, i.e. TF ( f )= f◦τ−1=g. This operator is

linear in the function space, i.e., TF (c1 f1+c2 f2) = (c1 f1+c2 f2)◦τ−1 = c1 f1 ◦τ−1+

c2 f2 ◦ τ−1 = c1TF ( f1)+ c2TF ( f2). In addition, let φ 1, ...,φ n and ψ1, ...,ψn denote

orthogonal bases for the space of functions on G1’s nodes, V1×R, and that on G2’s

1Solutions to the problem of aligning graphs with unequal numbers of nodes can rest on solutions to
this basic problem form; we may append zero-entries to the eigenvectors of the smaller graph to obtain
the eigenvector size of the larger graph.
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nodes, V2×R, respectively. Since those functions produce n-dimensional vectors, we

can represent them as linear combinations of their basis vectors, f = ∑
n
i=1 aiφ i and

g = ∑
n
j=1 b jψ j. Then, by the linearity of TF ,

TF ( f )=TF

(
n

∑
i=1

aiφ i

)
=

n

∑
i=1

aiTF (φ i)=
n

∑
i=1

ai

n

∑
j=1

ci jψ j=
n

∑
j=1

b jψ j

where TF (φ i) = ∑
n
j=1 ci jψ j. It follows that each coefficient b j is the dot-product

∑
n
i=1 aici j between the coefficients (a1, ....,an) of functions in G1 and the coefficients

(c1 j, ....,cn j) of the operator TF . In conclusion, in order to align real-valued functions

on the nodes of two graphs, we need to find a mapping matrix C∈Rn×n of coefficients

among those functions; such a mapping matrix C maps functions from G1 to G2, even

when the ground-truth mapping τ is unknown. In a nutshell, GRASP obtains such

a mapping matrix C for a well-chosen function and applies that C to mapping the

indicator function δ from G1 to G2, thereby constructing a node alignment. The main

question we need to answer is what orthogonal basis and functions we should use to

construct our mapping matrix C. The next section answers this question and builds on

that answer to devise a solution.

4.4 Solution

Here, we choose an orthonormal basis and a function, which are, in our judgement,

appropriate for node alignment purposes, and define the complete pipeline of our

solution. First, in Section 4.4.1 we choose a basis for the functions. In Section 4.4.2,

we choose functions that capture important graph properties. Then, in Section 4.4.3,

we define a mapping matrix to map functions across graphs. In Section 4.4.4, we

compute node-to-node alignments from such a map, and Section 4.4.5 describes a

method to refine the mapping matrix.

4.4.1 Choice of basis: Normalized Laplacian

As a basis for representing functions as linear combinations of base functions, we

use the eigenvectors of the graph’s normalized Laplacian, i.e., the matrix L =

I−D−
1
2 AD−

1
2 , where D a diagonal degree matrix of node degrees Dii = ∑

n
j=1 Ai j and

A is the graph adjacency matrix; its eigendecomposition is L = ΦΛΦ
⊤, where Λ is a

diagonal matrix of eigenvalues, {λ1, . . . ,λn} ordered by non-decreasing value, i.e., the

graph’s spectrum, which encodes information about communities, degree distribution,

and diameter, and Φ is a matrix of corresponding eigenvectors, ΦL = [φ 1φ 2 . . .φ n].
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The eigenvectors form an orthogonal basis, which we use a standard basis. We use φ

(ψ) to indicate the eigenvectors of the Laplacian of graph G1 (G2).

We consider this basis to be suitable, since the eigenvectors of the normalized

Laplacian converge to the eigenfunctions of the Laplace-Berltrami operator [9], which

measures the smoothness of continuous surfaces.

4.4.2 Choice of function: Heat Kernel

The choice of functions fi : V1→ R, gi : V2→ R, is critical for our method. A poor

choice would be detrimental. A good choice should have the following properties:

Expressiveness. The function should express the graph’s structure. For instance, a

constant function returning the same value for all nodes would not yield a meaningful

alignment.

Permutation-invariance. The function should not depend on the node index i; the

indicator function lacks this property.

Multiscale robustness. The function should robustly capture both local and global

structures (e.g., edges and communities), insensitively to small perturbations.

A function fulfilling these requirements is the time-parameterized heat kernel [135]:

Ht = Φe−tΛΦ
⊤ = ∑

n
j=1 e−tλ j φ jφ

⊤
j (4.1)

where Ht[i j] measures the flow of heat from node i to node j at time t, as it diffuses

from each node’s neighborhood to the whole graph. We build our model functions

over a sequence of time steps t using the diagonal of the heat kernel, which measures

the heat flowing back to each node at time t.

The heat kernel expresses multiscale graph structure in a permutation-invariant

manner and is robust to small changes. In the beginning of the diffusion, Equation (4.1)

emphasises large λ , which correspond to local edge and ego-net properties. As time

progresses, smaller eigenvalues get emphasized, reflecting global graph properties,

such as communities.

We build our corresponding functions fi, gi, from the heat kernel at different

time steps t, as linear combinations of the graph’s Laplacian orthogonal eigenvectors.

Let F ∈Rn×q, F = [f1, . . . , fq] be the matrix containing the diagonals of the heat kernel

of G1, HG1
t , over q time2 steps, fi = ∑

n
j=1 e−tiλ j φ j⊙φ j, where ⊙ denotes the element-

wise vector product. Likewise, the matrix G ∈ Rn×q,G = [g1, . . . ,gq] contains the

2In our experiments we select q = 100 values evenly spaced on the linear scale in the range [0.1,
50].
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diagonals of HG2
t , the heat kernel of G2. While the q columns of F and G contain

the same time-dependent heat-kernel-diagonal functions on the nodes of two graphs,

their n rows (i.e., nodes) are not aligned. We need to obtain such a node alignment.

4.4.3 Mapping matrix

We approximate each function fi using only the first k eigenvectors, as done, by

analogy, on shapes analysis [9], and thereby calculate the corresponding function

matrices F and G. F and G can be thought as coefficient matrices used to produce

linear combinations, F⊤Φ and G⊤Ψ, of the Laplacian eigenvectors of G1 and G2,

respectively. With a slight abuse of notation, we denote with Φ and Ψ the first k

eigenvectors, hence F⊤Φ and G⊤Ψ are in Rq×k. In the projection of the functions

on the first k eigenvectors, we would like the corresponding functions to be equal

up to a coefficient matrix C∈Rk×k. In the case of isomorphic graphs, it holds that

F⊤Φ = G⊤ΨC 
diag(g⊤1 Ψ)

...

diag(g⊤q Ψ)




c11
...

ckk

=


Φ
⊤f1
...

Φ
⊤fq

 (4.2)

Matrix C is diagonal in the case of isomorphic graphs and deviates from a diagonal

form as graphs diverge from isomorphism; for simplicity, we assume a diagonal C,

and obtain the diagonal entries that minimize the L2-norm difference ∥ · ∥2
2 between

the left and rights side of Eq. (4.2) using the ordinary least squares method, as in [71].

In Section 4.4.5 we delve into the case of non-isomorphic graphs.

4.4.4 Node-to-node correspondence

We consider the delta function δi(·) as corresponding function; these functions yield

an n×n identity matrix. We express such a function as a vector of coefficients, since

the vector of δi is the ith row of the heat kernel at t = 0:

δi = HG1
i,t=0 = ∑

n
j=1 φi jφ j

The computation for delta functions on G2 follows equivalently using Ψ in place

of Φ. We may match the coefficient vectors of these corresponding indicator functions,

as, ideally, for two matching nodes vi ∈V1 and v′j ∈V2, the coefficients of δi and δ j

for Φ and Ψ should be identical. In particular, the coefficients expressing δi as a linear

combination of the first k eigenvectors are φ i1, . . . ,φ ik. We set Φ
⊤ and CΨ

⊤ in Rk×n
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Figure 4.2: We remove red edges from the green graph to obtain the blue graph. Eigenvalues
interlace (a); eigenvectors φ1,φ2,φ3 for green and ψ1,ψ2,ψ3 for blue highlight common
structures.

as coefficient matrices of the delta functions, aligned by C. Rows correspond to the

first k Laplacian eigenvectors, while columns stand for graph nodes, rather than for

time steps of heat diffusion. We need to match coefficient vectors, i.e., columns of

Φ
⊤ and CΨ

⊤, to each other. This problem amounts to a linear assignment problem;

we apply an off-the-shelf algorithm therefore, such as nearest neighbor search or

Jonker-Volgenant (JV) [57], to obtain a one-to-one matching between the columns

of Φ
⊤ and CΨ

⊤and hence an alignment of nodes. GRASP is flexible in that we may

choose any matching method.

4.4.5 Base Alignment

We have hitherto assumed that the graphs to be aligned are isomorphic, hence their

eigenvectors correspond to each other with possible sign changes and an orthogonal

diagonal mapping matrix C exists. Still, if the graphs are not isomorphic, then their

eigenvectors diverge and the diagonal matrix C, which we enforce, cannot capture

their relationship well. Figure 4.2 highlights this issue: at a high level the eigenvectors

underline common structures, but they differ at the node level. In this case, we need

to align the two eigenvector bases before we consider aligning corresponding vectors

and, eventually, nodes. We express this base alignment [71] in terms of an alignment

matrix M.

Diagonalization. We align the eigenvectors Ψ by a rotation matrix M so as transform

Ψ into Φ: Ψ̂ = ΨM. Since L Ψ = ΨΛ, finding Ψ is equivalent to the solution of the

quadratic minimization problem minΨ off(Ψ⊤L2Ψ) s.t. Ψ
⊤

Ψ = I which penalizes



36 CHAPTER 4. SPECTRAL GRAPH ALIGNMENT

the sum of elements off(·) outside of the diagonal, in order to preserve orthogonality

of the basis.

Since the eigenvectors are orthonormal, Ψ
⊤

Ψ = I and for G2’s graph Laplacian

eigenvectors Λ2, Ψ
⊤L2Ψ = Ψ

⊤
ΨΛ2 = Λ2, and M⊤Ψ

⊤L2ΨM = M⊤Λ2M. Putting

the above together, our diagonalizing term is:

min
M

off(M⊤Λ2M) s.t. M⊤M = I

As we are minimizing over orthogonal matrices we can equivalently express the

objective above as a minimization over orthogonal matrices of size n×n, S(n,n):

min
M∈S(n,n)

off(M⊤Λ2M)

Coupling. In addition, the correspondence τ : G1→ G2 so that φ i ≈ τ ◦ψ translates

to

min
Φ
∥F⊤Φ−G⊤ΨM∥2

F

where F and G contain each graphs’s corresponding functions. We combine the mini-

mization terms for diagonalization and coupling, to get the following minimization

problem, with regularization factor µ3:

min
M∈S(n,n)

off(M⊤Λ2M)+µ∥F⊤Φ−G⊤ΨM∥2
F (4.3)

Given that the eigenvectors of isomorphic graphs match with sign changes, we

initialize M as a diagonal matrix with Mii = 1 if ∥F⊤φ i−G⊤ψ i∥ ≤ ∥F⊤φ i +G⊤ψ i∥,
Mii =−1 otherwise. Eq. (4.3) leads to a manifold optimization problem, which we

solve by trust-region methods [2].

Scalability. We avoid computing all eigenvectors n×n, exploiting the fact that we

only need the first k eigenvectors for calculating C (see Section 4.4.3). So we only

align the first k eigenvectors of Ψ to the first k eigenvectors of Φ, i.e Φ̄ = Ψ̂ = Ψ̄M
with Φ̄ = [φ 1, . . . ,φ k] and Ψ̄ = [ψ1, . . . ,ψk]. Let Λ̄2 = diag(λ1, . . . ,λk), the problem

in Eq. (4.3) becomes

min
M∈S(k,k)

off(M⊤Λ̄2M)+µ∥F⊤Φ̄−G⊤Ψ̄M∥2
F (4.4)

3µ = 0.132 in our experiments
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After obtaining M, we use the eigenvectors in Φ̄ and the aligned eigenvectors

Ψ̂ = Ψ̄M in the next step for the final alignment of nodes.

Our approach effectively trades off graph alignment with a proxy problem of

manifold optimization, which we solve with reasonable accuracy and scalability.

Algorithm 1 GRASP
Require: Graphs G1 = (V1,E1), G2 = (V2,E2)
Params: Eigenvectors k, corresponding functions q, time steps t = [t1, . . . , tq]
// Step 1: Eigendecomposition of Laplacian

1: L1← I−D−
1
2

1 A1D−
1
2

1 , L2← I−D−
1
2

2 A2D−
1
2

2
2: Φ,Λ1← eig(L1)
3: Ψ,Λ2← eig(L2)
// Step 2: Compute corresponding functions

4: for all ti in t do
5: Fi← ∑

n
j=1 e−tiλ j φ j⊙φ j

6: Gi← ∑
n
j=1 e−tiλ j ψ j⊙ψ j

7: F← [f1, . . . , fq]
8: G← [g1, . . . ,gq]
// Step 3: Base alignment

9: Φ̄ = [φ 1, . . . ,φ k]
10: Ψ̄ = [ψ1, . . . ,ψk]
11: M←minM∈S(k,k) off(M⊤Λ̄2M)+µ∥F⊤Φ̄−GΨ̄M∥2

F

12: Ψ̂ = Ψ̄M
// Step 4: Calculate mapping matrix

13:

min
[c11,...,ckk]⊤

∥∥∥∥∥∥∥
diag(g⊤1 Ψ̂)

...
diag(g⊤q Ψ̂)


c11

...
ckk

−
Φ̄
⊤f1
...

Φ̄
⊤fq


∥∥∥∥∥∥∥

2

2

14: C← diag([c11, . . . ,ckk]
⊤)

// Step 5: Matching by linear assignment

15: N←Matching of columns of Φ̄
⊤ to those of CΨ̂

⊤

16: return N
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4.4.6 Our algorithm: GRASP

Putting it all together, GRASP consists of five steps, as Algorithm 1 shows in pseu-

docode.

Steps 1: Compute eigenvectors. In the first step, calculate the Laplacians L1,L2

of the two graphs G1 and G2. Then compute the eigenvectors Φ,Ψ and eigenvalues

Λ1,Λ2 by the eigendecomposition L1 = ΦΛ1Φ
⊤ and L2 = ΨΛ2Ψ

⊤.

Step 2: Compute corresponding functions. In the second step, calculate the matrices

of corresponding functions F = [f1, . . . , fq] and G = [g1, . . . ,gq] as diagonals of the

heat kernel at time steps [t1, . . . , tq] with fi = ∑
n
j=1 e−tiλ j φ j⊙φ j and gi equivalently

using Ψ.

Step 3: Base alignment. After the corresponding functions are calculated, obtain the

base alignment matrix M by minimizing Eq. 4.3. Then align the first k columns of Ψ,

denoted by Ψ̄ to the corresponding first k columns Φ̄ of Φ as Ψ̂ = Ψ̄M.

Step 4: Calculate mapping matrix. Under the assumption that C is a diagonal matrix,

calculate its diagonal elements c11, . . . ,ckk by solving the least squares problem:

min
[c11,...,ckk]⊤

∥∥∥∥∥∥∥∥


diag(g⊤1 Ψ̂)
...

diag(g⊤q Ψ̂)




c11
...

ckk

−


Φ̄
⊤f1
...

Φ̄
⊤fq


∥∥∥∥∥∥∥∥

2

2

(4.5)

We then set C = diag(c11, . . . ,ckk).

Step 5: Node alignment. To get the final node alignment, we apply a linear as-

signment algorithm on the rows of Φ̄ and C⊤Ψ̂, which hold the indicator function

coefficients.

Complexity analysis The computation of the first k Laplacian eigenvectors takes

O(k max{|E1|, |E2|}) by fast methods for diagonally dominant matrices [68]. Base

alignment needs O(k3) to solve the orthogonality constraint through trust-region

methods. The least-squares method runs in O(qk). The matching step by JV runs

in O(n3). Overall, the O(n3) time factor is dominant.

Connection to Differential Geometry Our work rests on the theory on Rieman-

nian manifolds [41] and builds on the analogy between a graph’s Laplacian and the

continuous Laplace-Beltrami operator [135].
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4.5 Boosting GRASP

Having introduced GRASP, we observe that most state-of-the-art methods for graph

alignment leverage advances in graph representation learning [47], so that, rather than

directly aligning nodes, these algorithms compute node representations using graph

embeddings and align those representations instead. Building on this observation,

we outline a modular framework that characterizes such methods, and suggest an

alternative materialization of the building blocks of GRASP within this framework.

A naïve approach would embed the two graphs in a common space and align

nodes based on their proximity. Yet, an embedding of one graph is not necessarily

comparable to that of another graph, as the two embedding spaces may be rotated,

shifted, or stretched with respect to each other. To obtain comparable embeddings, we

have to align the two embedding spaces.

Section 4.5.1 introduces the framework of modular graph alignment algorithms

to which GRASP belongs. Then, we propose extensions to GRASP by virtue of its

modular structure.

4.5.1 Modular Graph Alignment

GRASP belongs to a family of graph alignment algorithms that expose a modular

structure [76]. Besides GRASP, the recently proposed CONE [19] and its predecessor

REGAL [48] are also modular algorithms. Such algorithms tackle the alignment

problem in the following three steps.

Step 1: EMBED computes vector representations of nodes. A good representation

encodes the connectivity structure or neighborhood [109]. For GRASP, we choose

the spectral embeddings as described in Section 4.4.4. CONE uses NetMF [111]

embedding and optimizes for node neighborhood consistency. REGAL proposes

embeddings that take into account the node degrees of the node’s neighborhood.

Step 2: ALIGN alters the node each graph’s embeddings, so that corresponding

nodes have comparable embeddings. If the embeddings are computed on each graph

individually, only the relations of nodes within the graph are taken into account. This

step accounts for changes in the embeddings of one graph that potentially alter the node

matching across graphs. Modular methods realign the embedding spaces. GRASP,

achieves embedding alignment through the base alignment process in Section 4.4.5.

CONE aligns the embeddings by iteratively solving for node correspondence and

embedding space correspondence. REGAL maintains relative distances to a set of
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anchor nodes so as to reduce the impact of comparisons based on the absolute position

of the embeddings.

Step 3: ASSIGN matches node representations so as to minimize a cost function;

this step corresponds to a linear assignment between the nodes in one graph to those

nodes in the other graph. CONE and REGAL employ a nearest neighbor matching

scheme, while GRASP implements a variant of the Hungarian algorithm [57].

Monolithic Alignment Algorithms In this context it is worth pointing out that two

state-of-the-art graph alignment algorithms, S-GWL [145], and LREA [95] do not fit

in the modular framework, as they tackle the problem in steps and return alignments

in a monolithic fashion. In particular:

S-GWL. S-GWL jointly computes embeddings and alignments, expressed through

a single objective. Therefore, it does not allow for substituting one embedding or

assignment algorithm for another.

LREA. LREA first computes embeddings of an edge-matching matrix and then

matches nodes among graphs. The alignment step and the assignment steps are

intertwined by means of a low-rank approximation, and are therefore inseparable.

In the following, we take advantage of GRASP’s modularity to devise improve-

ments on it that change the operations in its modular components.

4.5.2 PageRank (PR)

We develop an embedding based on PageRank [104]. PR is real-valued vector that

represents the importance of each node, defined as r j = ∑(i, j)∈E α
ri
di
+ (1−α)p,

where α∈ [0,1] is the damping factor and pi= 1/n for each i. We generate correspond-

ing functions sampling PR at different α values. In addition, we use Personalized

PageRank (PPR), which defines a non-uniform restart probability vector p. By setting

the restart probability to 1 on node i and 0 elsewhere, the PageRank score measures

the relevance of other nodes to node i. We use PPR in our corresponding function to

measure proximity with respect to other nodes or groups of nodes, thus enriching the

embeddings. First, we partition the nodes into q groups of size t by their PageRank

values; the first group contains the t nodes with the highest PageRank, the second

group contains the t nodes with the second-highest PageRank, and so on. Then, we

calculate PPR values for each group, with the personalization vector evenly distributed

among the nodes in the group, and set a node’s corresponding functions as its PPR

values for each of the q groups. Algorithm 2 describes this process.
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Algorithm 2 PPR-based Corresponding Function
1: Compute PageRank for graph G.
2: Sort PageRank values in descending order.
3: Split nodes into q groups according to PageRank values.
4: For each group, compute PPR with a p personalized per group.
5: Set the corresp. func. of vi as its vector of group-PPR values.

4.5.3 Iterative Closest Point

The Iterative Closest Point (ICP) method [12] aligns two point clouds, i.e., sets of

n-dimensional data points. ICP conventionally minimizes the difference between the

sets of points by fixing one of the clouds as the target X and iteratively transforming

the source cloud P. The algorithm starts with an initial alignment Y between the

points of each cloud and proceeds transforming the source points with a mapping

matrix that minimizes the least-squared difference between P and the alignment Y.

This matrix is obtained by solving the orthogonal Procrustes problem (OPP) [123].

These steps are repeated until the process converges when the change in mean-squared

error (MSE) after applying each step is below a chosen threshold ε . Time complexity

is dominated by the closest point algorithm, which is O(n logn) using a k-d tree [12].

Algorithm 3 illustrates the method.

Algorithm 3 Iterative Closest Point
1: repeat
2: k = k+1.
3: Compute k-th alignment matrix Yk =ClosestPoint(Pk,X).
4: Find mapping matrix Ck = OPP(Pk,Yk).
5: Rotate Pk via Ck to obtain Pk+1 = CkPk.
6: until MSE(Pk,Yk)−MSE(Pk+1,Yk+1)< ε

We apply ICP in GRASP to refine the initial node alignment (mapping) matrix C0

that we obtain as in Section 4.4.3.

Algorithm 4 Voting

1: Pick a number of different k’s. Compute alignments for all the k’s.
2: For each node collect all matches (number of different k’s where this match is

chosen).
3: For each node add the most popular matches to the final alignment.
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Figure 4.3: An example of the voting heuristic in action; GRASP runs four times, adding one
eigenvector in each iteration, from φ1 to φ4. We omit eigenvectors ψ1, . . . ,ψ4 for the sake of
readability. Each set of eigenvectors returns a matching from nodes a,b,c,d to a′,b′,c′,d′;
on node a the match a–a′ is selected by 3 out of 4 eigenvector sets and chosen as the output
match.

4.5.4 Voting Heuristic

We observe that the parameter k in GRASP that determines the number of eigenvectors

used to approximate each vertex function (Section 4.4.3) has a significant impact

on accuracy when GRASP is equipped with PageRank, even though it does not

affect results significantly in the heat kernel case. Starting out from this observation,

we devise a voting heuristic that exploits this variance. We compute alignments

for different values of k, while using ICP to further align the embeddings in each

iteration, and then treat each match a node obtain in any alignment as a vote. Based

on those votes, we assign matched pairs in an one-to-one manner, by a heuristic called

SortGreedy [32] that sorts matches by their order of frequency among all values of k

and processes them in that order to assign each node to its most frequent still-available

match. Figure 4.3 shows a running example of the voting heuristic. Algorithm 4

shows the procedure.

This voting procedure can be time consuming, as it requires solving the problem

once for each chosen value of k. Still, we only need to compute the eigendecom-

position of the Laplacian once. We further save time by only computing the base

alignment once for the largest value of k and considering submatrices of the base

alignment matrix, each time using only the rows and columns up to the current value

of k. This simplification brings a significant speedup with a negligible accuracy

penalty. However, this speedup is more prominent when using the heat kernel rather

than PageRank as corresponding function, as the base alignment minimization runs

for significantly more iterations with the heat kernel.
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4.6 Experiments

In this section, we present our thorough experimental study. Table 4.1 gathers the

characteristics of the 11 real-world network data sets we use; for three of those (Voles,

MultiMagna and HighSchool), we have real-world network variants and ground-

truth alignments. On others, unless stated otherwise, we randomly permute the node

order in the original graph and inject noise in both graphs by deleting edges with

probability (noise level) p ranging from 0.05 to 0.25. Such noise injection has been

used before [48, 70]; we render it more challenging by deleting edges in both graphs.

For each noise level, we create 5 graphs and report average accuracy in terms of

matching ground truth nodes, as in [48, 70]; note that none of the noisy graphs in a

pair is a subset of the other. We run experiments on an Intel Core i9 10940X 3.3GHz

28-Core CPU with 256GB RAM.

Dataset |V | |E| Type GT Bipartite

Arenas Email [73] 1 133 5 451 communication ✘ ✘

Facebook-ego [78] 4 039 88 234 social ✘ ✘

CA-AstroPh [78] 17 903 197 031 collaboration ✘ ✘

Hamsterer [73] 2 000 16 097 social ✘ ✘

PPI [12] 3 852 38 705 biological ✘ ✘

Voles [28] 712 2391 proximity ✔ ✘

MultiMagna [138] 1004 8323 biological ✔ ✘

HighSchool [39] 327 5818 proximity ✔ ✘

plantpolrobertson [114] 1 884 15 255 biological ✘ ✔

chowiki [73] 195 352 co-authorship ✘ ✔

tpiwiktionary [73] 861 2 079 co-authorship ✘ ✔

Table 4.1: Datasets used in our evaluation, |V | number of nodes, |E| number of vertices, GT
ground truth.

Baselines. We compare against the following established state-of-the art baselines for

unrestriced graph alignment.

• REGAL [48]: An embedding-based method that utilizes local structural features.

In its original formulation, REGAL allows for one-to-many matchings. For the

sake of fairness, we let REGAL provide one-to-one matchings using the JV linear

assignment algorithm, as GRASP does; we confirmed that, doing so, it fares better

than using nearest neighbors.

• Low Rank EigenAlign (LREA) [95]: A spectral method that yields one-to-one

matchings via the minimization of edge mismatches.
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• CONE [19]: A modular method that aligns node embeddings of the input graphs.

CONE accepts any input embedding and returns node alignments by the nearest

neighbor algorithms; for the sake of fairness, we use JV to match the nodes.

• S-GWL [145]: A monolithic alignment method that jointly computes embeddings

and alignments using optimal transport. S-GWL is a scalable variant of GWL [146].

• GRAMPA [36]: A monolithic alignment method that calculates an alignment based

on a similarity matrix of embeddings derived from eigenvectors of the adjacency

matrix.

Metric. We evaluate effectiveness based on the accuracy measure: given a set of

ground truth alignments Agt and a set of correctly retrieved alignments Acor ⊆ Agt ,

accuracy is:

acc =
|Acor|
|Agt |

Implementation. We provide an implementation in Python of GRASP, B-GRASP

and the interchangeable components for the modular design of GRASP at https:

//github.com/AU-DIS/GRASP.

4.6.1 Parameter tuning.

First we study the impact of the parameters k and q on the quality GRASP achieves,

and the core modular algorithmic choices.

Varying the number of eigenvectors k. The number of eigenvectors affects the

quality of the alignment as different eigenvectors capture structures at different scales.

The two charts on the left in Figure 4.4 show the accuracy of GRASP on Arenas

and Facebook, as a function of the number of eigenvectors at 5% (top line), 10%

(middle line), 15% (bottom line) noise level with a fixed number of corresponding

functions q = 100. We observe that, in both cases, accuracy starts gently decreasing

after some value of k. This behaviour is expected, as eigenvectors corresponding to

larger eigenvalues represent medium-scale to small-scale structures and hence exhibit

large noise. Interestingly, the first few eigenvectors can be computed efficiently with

power iteration. For the sake of efficiency, we settle for a default value of k = 20

in subsequent experiments. Varying the number of corresponding functions.

The number of corresponding functions q determines the granularity at which we

sample the heat kernel (in the default form of GRASP, as in Algorithm 1) linearly

https://github.com/AU-DIS/GRASP
https://github.com/AU-DIS/GRASP
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Figure 4.4: Accuracy on the Facebook and Arenas graphs for different numbers of correspond-
ing functions q and different numbers of eigenvectors k for noise levels 5%, 10% and 15%.

over the time interval [0.1, 50]. The more corresponding functions we use, the more

precise representation of the graph we get, at a cost of computation time. The two

rightmost charts in Figure 4.4 show how the number of corresponding functions q

affects accuracy with a fixed number of eigenvectors k = 20. With both datasets,

quality increases slightly with q at different noise levels. In subsequent experiments,

we set q = 100.

4.6.2 Selecting components

Here, we further exploit the modularity of GRASP (Section 4.5.1), aiming to select

best-performing modular components. For the sake of a fair comparison, we also

examine whether CONE [19] may benefit from a different choice of embedding other

than the default NetMF [111].
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Figure 4.5: Accuracy of CONE-Align with different embeddings on the Arenas and Facebook
datasets.
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Figure 4.6: Accuracy of GRASP (ICP, voting and JV) with PPR, PR, HK and NetMF
embeddings.

Boosting EMBED. We first investigate the effect of the choice of node embedding. We

try out Heat Kernel (HK), PageRank (PR), Personalized PageRank (PPR), and NetMF.

The default embedding in GRASP is the diagonal of the heat kernel Ht = Φe−tΛΦ
⊤ =

∑
n
j=1 for varying t. Figure 4.5 shows the accuracy for CONE on Arenas and Facebook.

We observe that NetMF performs best, with an occasional advantage of HK on

Facebook. Figure 4.6 juxtaposes different node embeddings for GRASP equipped

with ICP, the voting heuristic, and JV. PPR dominates over the other embeddings, while

NetMF displays alternating performance on Arenas and Facebook. Henceforward, we

use GRASP-PPR as the variant of choice. We note that, as in GRASP embeddings are

corresponding functions, thus they affect both EMBED and ALIGN.
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Figure 4.7: Accuracy of GRASP-PPR with ICP and BA.

Boosting ALIGN. Next, we investigate the impact of the enhancements in Section 4.5

on GRASP-PPR. Figure 4.7 shows results with and without Iterative Closest Point

(ICP) and Base Alignment (BA). We observe that the combination of both ICP and

BA yields the best performance.
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Figure 4.8: Accuracy of GRASP-PPR with ICP using the SortGreedy voting procedure with
different intervals of k

Figure 4.8 showcases the performance of voting with different amounts of k, using

SortGreedy (SG) [32] both for node assignment while collecting votes and for the

final assignment based on collected votes; other, more computationally demanding

choices brought negligible improvements.
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Figure 4.9: Accuracy with different assignment algorithms.

Boosting ASSIGN. We also examine the effect of the linear assignment algorithm

in more detail. We try out nearest-neighbor (NN), SortGreedy (SG) [32] and Jonker-

Volgenant (JV) on the Hamsterer and PPI data. Figure 4.9 shows the results; perfor-

mance is similar across datasets. SG fares similar to JV, while yielding better runtime.

We observe that GRASP-PPR is sensitive on high noise levels, independent of the

assignment algorithm, but outperforms CONE on lower noise levels.

Cross-examination. Lastly, to further corroborate our findings, we reexamine the

combination of two particular modular choices made in the above, namely: (i) the

choice of algorithm for node-to-node assignment (Section 4.4.4) and (ii) the usage of

base alignment (Section 4.4.5). Figure 4.10 shows that both the JV linear assignment
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Figure 4.10: Accuracy of nearest neighbor and JV matching algorithms.

algorithm and base alignment bring a substantial advantage over their unrefined

counterparts consistently across datasets.

In conclusion, based on our inspection of possible enhancements to GRASP, we

propose a boosted variant GRASP, which we dub B-GRASP , which uses PPR

embeddings, ICP, the JV assignment algorithm, base alignment, and voting in the

interval [2,39]. In subsequent experiments we evaluate B-GRASP extensively.
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Figure 4.11: Accuracy comparison under synthetic noise.

4.6.3 Comparison under synthetic noise

We compare GRASP and B-GRASP to three scalable methods, namely REGAL [48],

GRAMPA [36] and LREA [95], as well as two methods we have found to be non-

scalable, namely CONE [19] and S-GWL [145], on real-world data with synthetically

generated noise. Figure 4.11 shows that GRASP and B-GRASP outperform REGAL,

GRAMPA and LREA by a large margin, achieving 76% accuracy in Arenas and 59%
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in Facebook with 5% noise, and fare at least as well as REGAL on the CA-AstroPH

graph. B-GRASP outperforms GRASP on Arenas and Facebook, but falls behind

S-GWL and CONE on these graphs. On CA-AstroPh, B-GRASP, CONE and S-GWL

exceed 1 hour of runtime and are not listed in the results for this reason. Overall, we

find GRASP to be the top-performing algorithm among the scalable methods in this

experimental, i.e., among GRASP, REGAL, and LREA.
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Figure 4.12: Accuracy compared to REGAL on three real datasets.

4.6.4 Comparison under real noise

Now we move on to matching among variants of real-world networks. MultiMagna is

a collection of graphs consisting of a base yeast network and five variations thereof.

We match these five variations to the original. HighSchool and Voles are two evolving

proximity networks. We match their latest version to versions at time steps with 80%,

85%, 90%, and 99% of all edges. Figure 4.12 presents our results. We observe that

B-GRASP achieves a significant improvement over GRASP as well as LREA and

GRAMPA and the boosted version of REGAL with JV, and fares competitively with

respect to CONE and S-GWL. We conclude that the advantage of GRASP as the

best-performing scalable method, which we observed with synthetic noise, transfers

to real-world alignment problems.
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Figure 4.13: Accuracy comparison on bipartite graphs.

4.6.5 Bipartite Graphs

We now experiment with the three bipartite graphs; Figure 4.13 presents our results.

We observe that GRASP performs well among scalable methods and B-GRASP

obtains a significant performance boost over GRASP, while GRAMPA also does well.

These results demonstrate the capacity of GRASP and B-GRASP to accommodate

this challenging type of graph.

4.6.6 Scalability

Efficiency vs. number of nodes. In the previous sections, we divided methods into

scalable ones (LREA, GRAMPA and REGAL) and non-scalable ones (CONE and S-

GWL). Here, we provide experimental evidence for this characterization; we evaluate

the running time of all compared methods on a set of random graphs consisting of 210,

212, 214 and 216 nodes with an average degree of 10, generated using the configuration

model [96] with a degree distribution following a standard normal distribution. Figure

4.14 shows our results on both logarithmic and linear time axis, reporting results

for all experiments that terminated within one hour. We observe that GRASP is

positioned among the scalable methods, delivering results on graphs with 214 nodes in

less than 500 seconds. On the other hand, CONE and S-GWL are rendered impractical

on large networks.

Ablation study. We now turn our attention to the efficiency of the best-of-breed

methods, namely B-GRASP (i.e., GRASP with PPR, BA, ICP and voting) and CONE

with NetMF embeddings. Figure 4.15 shows the runtime partitioned across the three
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Figure 4.14: Runtime vs. number of nodes on four random graphs of increasing size.

steps. For B-GRASP , we report precomputation including EMBED and ALIGN, and

the time for voting. For CONE, we report EMBED, ALIGN and ASSIGN, separately.

While CONE is more efficient than B-GRASP on small graphs, its ALIGN turns out

to be slower than BA and ICP; therefore, B-GRASP outperforms CONE on large

graphs, especially when the number of edges is large, as in the Facebook data set.
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Figure 4.15: Time for B-GRASP and CONE with NetMF on four datasets.

Lastly, we compare the time efficiency of the three most scalable methods, namely

GRASP, LREA, and REGAL, in terms of overall time, as well as time excluding the

precomputation of information that can be reused.



52 CHAPTER 4. SPECTRAL GRAPH ALIGNMENT

Precomputation. Steps 1–3 of GRASP (Section 4.4.6) can be performed offline;

REGAL also allows for precomputation of representations. Figure 4.16 shows the

time to compute alignments after precomputation. Remarkably, GRASP outperforms

both REGAL and LREA in the largest CA-AstroPh data. Figure 4.17 shows the time

including online precomputation; REGAL does not exhibit any substantial advantage

even in the smaller Arenas and Facebook graphs, while GRASP attains, as we have

seen, more accurate results with a negligible increase in time. We obtained similar

results on real-world network matching tasks.
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Figure 4.17: Alignment time including precomputation time.

4.6.7 Impact of degree distribution

The graphs we have used in experiments hitherto approximately follow a power law

distribution. We estimate the power law exponents using the method in [97]. Table 4.2

lists the results.

Graph Power Law Exponent (γ)
Arenas 1.56
Facebook 1.32
Hamsterster, PPI 1.45
Voles 1.64
MultiMagna 1.46
HighSchool 1.36

Table 4.2: Estimated power law exponents.
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As a direction for further study, we examine the impact of the power-law exponent

on alignment accuracy. We generate three synthetic power-law graphs with approxi-

mate power-law coefficient γ 1.71, 2.34 and 3.35. Figure 4.18 shows the performance

of GRASP with PPR and JV vs. CONE with JV as a function of noise. GRASP

outperforms CONE and achieves nearly 100% accuracy on graphs with low power-law

exponent, which is consistent with its good performance in the previous experiments.

However, the performance of GRASP drops on graphs with highly skewed distribution

as the noise level grows, while CONE with JV manages those cases. This finding

illustrates that further work is needed to achieve high alignment accuracy on highly

skewed power-law graphs.
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Figure 4.18: Accuracy of GRASP-PPR and CONE with JV assignment on generated power
law graphs.

4.7 Conclusion

We proposed GRASP, a novel modular graph alignment method that matches graphs

utilizing the eigenvectors of their Laplacian matrices. We establish a functional

correspondence among the pre-aligned eigenvectors of the two graphs, extending the

shape-analysis concept of functional maps and then extract a linear assignment among

matrix columns. The functional correspondences we employ capture multi-scale graph

properties, and lead to competitive alignment quality over the state-of-the-art scalable

methods for graph alignment across noise levels and real-world graph types, while

the noise levels we test are higher than anything used in previous studies. To our

knowledge, this is the first work to apply a functional alignment primitive to graph

alignment.
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We expounded upon GRASP’s modular design, which allows us to exchange

components and develop improved versions thereof. Such an improved version, B-

GRASP , delivers alignments that perform competitively compared to far less scalable

state-of-the-art methods. We noted that some previous work could also benefit from

their modularity, and provide the same advantage to those for the sake of a fair

comparison. Eventually, compared to the only scalable algorithms on graphs with

more than 214 nodes, GRASP delivers the best quality of alignments.

In the future, we plan to extend our method to partial correspondences among

graphs, and towards flexible definitions of subgraph isomorphism, including the case

of matching graphs with unequal numbers of nodes.



Chapter 5

Evaluation of Unrestricted Graph
Alignment Algorithms

The work presented in this paper was prepared in collaboration with Konstantinos

Skitsas, Karol Orlowski, Davide Mottin and Panagiotis Karras. It has been accepted

for publication at EDBT 2023 [127]. We applied minor corrections and adapted

formatting and notations.

5.1 Abstract

The graph alignment problem calls for finding a matching between the nodes of one

graph and those of another graph, in a way that they correspond to each other by

some fitness measure. Over the last years, several graph alignment algorithms have

been proposed and evaluated on diverse datasets and quality measures. Typically, a

newly proposed algorithm is compared to previously proposed ones on some specific

datasets, types of noise, and quality measures where the new proposal achieves supe-

riority over the previous ones. However, no systematic comparison of the proposed

algorithms has been attempted on the same benchmarks. This paper fills this gap by

conducting an extensive, thorough, and commensurable evaluation of state-of-the-art

graph alignment algorithms. Our results highlight the value of overlooked solutions

and an unprecedented effect of graph density on performance, hence call for further

work.

55
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5.2 Introduction

Graphs provide a general means to model relationships between entities in diverse

areas of society, science and industry [118], where entities are represented as nodes and

relationships between entities as edges. Whereas the graph of a social network might

picture which users follow each other [27], a protein-protein interaction (PPI) network

represents the interaction of proteins associated with a biological species [106, 137].

Despite this diversity of application domains, several graph analytics tasks are

universally relevant. Such a task is graph alignment, a generalized version of the

graph isomorphism problem that aims to find, for each node in a graph GA(VA,EA), a

structurally corresponding node in another graph GB(VB,EB), i.e., a function f : VA→
VB. This problem is aimed at in many applications, e.g., aligning entities of social

networks, biological structures, or the intersections of a road network at different time

stamps, as well as a foundation for further analysis of two aligned graphs.

This diversity of application domains also implies a challenge in applying a graph

alignment algorithm to a problem: while the problem is fundamentally the same across

application domains and graph data, the particular semantics of a good alignment

differ across domains. For example, whereas in the case of social networks we may

be interested in re-identifying the same user in two or more different networks, in the

case of protein interaction (PPI) networks of different species, we may be interested

to understand which proteins perform similar roles in diverse species. Given these

multifarious application requirements, we draw a principle distinction between what

we call restricted and unrestricted graph alignment.

Restricted alignment requires domain-specific input information, such as a set

of pre-aligned users in a social [60] or biological network [102], knowledge of

protein sequences in PPI networks [8, 81, 102, 126], special types of graphs [69], or

node attributes [155]. Several domain-specific restricted graph alignment algorithms

have been developed, which, in principle, could be applied across domains. For

example, the requirement for a set of pre-aligned nodes could also be fulfilled in a

PPI network if there is prior knowledge available for a set of the proteins. However,

in practice this is rarely done. The literature on graph alignment is extensive, but

surprisingly disconnected as algorithms from different fields and for slightly different

problem definitions are not compared to each other. There is no universal evaluation

methodology for graph alignment algorithms. Metrics, the graphs evaluated on and

experimental design differ from domain to domain.
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Unrestricted alignment, on the other hand, finds correspondences among nodes

in two graphs using nodes and edges, but no additional information (e.g., annotations

or labels).

Existing experimental evaluations of graph alignment algorithms usually focus

on restricted methods for a specific domain, such as biology [26] or neuroscience [91];

these solutions require additional domain information, such as protein affinity or brain

functions. A recent comparative study [134] reviews seven graph alignment techniques

and features experiments mixing restricted and unrestricted graph alignment, hence

cannot be conclusive.

In this experimental study, we go beyond [134] and bridge the gap in previous

literature, conducting the first, to our knowledge, exhaustive, extensive, and in-depth

comparative evaluation of unrestricted graph alignment algorithms under three noise

types, three assignment algorithms, and diverse datasets; these algorithms were not

part of the study in [134], apply on undirected, unattributed graphs, and do not require

any prior alignment information, hence can be generalized across domains. We assess

techniques, measures, noise generators, and parameters to compare the best versions

of each algorithm. Thus, our study complements [134]. In detail, our contributions

are the following:

• We perform the first, complete, experimental evaluation of nine undirected,

unattributed graph alignment algorithms.

• We carefully tune the algorithms hyperparameters based on network size and

using the same assignment algorithm.

• We evaluate the algorithms on real and synthetic graphs, with different levels

and types of noise.

• We include memory and time scalability experiments on the algorithms.

• We devise an experimental framework for graph alignment with reproducible

experiments and available data and code.
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5.3 Preliminaries

Graph Alignment. Given two undirected graphs GA = (VA,EA) and GB = (VB,EB), a

graph alignment is a function f : VA→VB that assigns to each node on GA a node of

GB. GA is often referred to as source graph and GB as target graph.

Adjacency matrix. A is the adjacency matrix of GA with Ai j = 1 if (i, j) ∈ EA and 0

otherwise. Similarly, B is GB’s adjacency matrix.

Neighborhood. The neighborhood N(i) of node i ∈V is the set of node j such that

(i, j) ∈ E for graph G = (V,E).

Graph Laplacian. The normalized Laplacian of a graph G = (V,E) is a linear

operator, L = I−D−
1
2 AD−

1
2 , where A is the adjacency matrix of G and D is the

degree matrix with Dii = ∑
n
j=1 Ai j. The eigendecomposition of this matrix is L =

ΦΛΦ⊤, where Λ is a diagonal matrix of eigenvalues; its diagonal, {λ1, . . . ,λn} is the

spectrum of L and ΦL = [φ1φ2 . . .φn] is a matrix of eigenvectors.

5.4 Alignment Algorithms

We focus on algorithms for unrestricted graph alignment, which find a correspondence

among the nodes of two graphs without using information other than nodes and edges.

While all graph alignment algorithms aim to find corresponding nodes in different

networks, they may start out from a different objective formulation. Typically, the

problem is stated as one of finding a correspondence that maximizes a similarity

measure or minimizes the cost of transforming the second graph to the first. We

outline three prerequisites of a graph alignment algorithms.

Input Data. The most basic input data are the adjacency matrices of two graphs

to be aligned. Some algorithms may require additional information as input, such

as a similarity matrix or known prior alignments. In the biology domain, such

pre-processed input is needed as nodes typically have roles and semantics beyond

structural properties.

Similarity Notion. A graph alignment algorithm needs to translate the information

in the input graphs to some representation from which a similarity score can be

computed. This may be done by computation a graph embedding method [85] or

some graph function such as a heat kernel [11]. The computation may be done for

each graph separately, or concurrently on two graphs. In all cases, the representations

are combined and yield a similarity matrix.
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Assignment. The last operation is to extract the alignments based on the provided

similarity matrix by solving a Linear Assignment Problem (LAP) on a bipartite graph

among nodes of the two graphs on the two sides, weighted according to similar-

ity scores. Previous work considers four assignment algorithms: nearest neighbor

(NN) [18, 48, 145, 146] that returns the unmatched node with the highest similarity,

SortGreedy (SG) [66, 126] that progressively matches similarity-sorted pairs of nodes,

the Maximum Weighted Matching (MWM) [8, 62, 95] and the Jonker-Volkenant

(JW) [50] that directly solve the linear assignment problem.

Table 5.1 collects the characteristics of the algorithms we consider; IsoRank and

GRAAL require preprocessing and target biological networks; assignment algorithms

are as proposed in the respective papers; CONE optimizes for the MNC measure

(Section 5.6.2); time complexity is expressed in the number of nodes n; the presented

hyperparameters are obtained via grid search on real graphs.

Algorithm Year Prepr. Bio Assign Opt Time Parameters

IsoRank [126] 2008 Yes Yes SG Any O(n4) α = 0.9
GRAAL [72] 2010 Yes No SG Any O(n3) α = 0.8
NSD [66] 2011 Both No SG Any O(n2) α = 0.8
LREA [95] 2018 No No MWM Any O(n logn) iterations=40
REGAL [48] 2018 No No NN Any O(n logn) k=2, p=10logn
GWL [146] 2019 No No NN Any O(n3) epoch=1
S-GWL [145] 2019 No No NN Any O(n2 logn) β∈{0.025,0.1}
CONE [18] 2020 No No NN MNC O(n2) dim=512
GRASP [50] 2021 No No JV Any O(n3) q=100,k=20

Table 5.1: Algorithms considered in the experiments.

5.4.1 IsoRank

IsoRank [126] is the first network alignment algorithm applied on biological networks;

it assumes similarity scores are provided by the Blast algorithm [61]. IsoRank uses

neighborhood similarity to extract structural graph information, inspired from the

way PageRank [16] uses neighborhood topology (links) to rank nodes. A node from

target graph GB is considered a possible match to a node from source graph GA if

their neighbors are also possible matches to each other. The score of a node pair

recursively depends on the score of their neighbors. Equation 5.1 shows how the

similarity for node pairs is calculated, where R is an iteratively updated matrix of

pairwise node similarities between nodes in GA and those in GB, while matrix M
captures the topological similarity of the two graphs based on their edges having

weight w. Ri j for i ∈VA, j ∈VB is:
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Ri j = ∑
u∈N(i)

∑
v∈N( j)

w(i,u)w( j,v)

∑
r∈N(u)

w(r,u) ∑
q∈N(v)

w(q,v)
Ruv (5.1)

The problem expressed by Equation 5.1 is an eigenvalue problem solved by the power

method that finds the leading eigenvector.

Further, IsoRank incorporates Blast similarity scores in a matrix E by linear

combination R = αMR+(1−α)E with parameter 0≤ α ≤ 1. A value of α close

to 1 gives more weight to topological similarity, while a value close to 0 emphasizes

Blast similarity. Global alignments are determined by solving a linear assignment

problem via a SortGreedy [32] heuristic. An extension of IsoRank, IsoRankN [81],

solves the global multiple network alignment problem, i.e., aligns multiple networks

instead of just two.

5.4.2 GRAph ALigner (GRAAL)

GRAAL [72] is a greedy alignment method that matches nodes using a similarity

score based on a dictionary of 73 graphlets with 4 or less nodes. A graphlet is a

frequent graph pattern, such as a triangle with three nodes and three edges. In a

pre-processing step, GRAAL constructs a vector signature for each node, in which

each value indicates the number of times a graphlet appears in the node’s neighbor-

hood. This steps takes O(n5) time. GRAAL aligns a node u in GA with v in GB by

computing a cost Cuv as a linear combination, with parameter α ∈ [0,1], of the vector

similarity S(u,v) among signatures and the degrees of u and v:

Cuv = 2−

(1−α) · |N(u)|+ |N(v)|
max
i∈VA
|N(i)|+max

i∈VB
|N(i)|

+α ·S(u,v)

 (5.2)

Having created matrix C, GRAAL selects a pair of nodes with the minimum cost

as seeds and aligns the nodes induced by the seeds’ neighbors up to a certain distance.

The alignment proceeds to other seeds by a SortGreedy [32] method until all nodes

are aligned.

5.4.3 Network Similarity Decomposition (NSD)

NSD [66] improves upon both the efficiency and topological similarity capture of

IsoRank using the HITS [63] link analysis algorithm. It works well without prepro-

cessing information, yet it can work with preprocessing information by receiving the

same Blast similarity matrix as Isorank and getting its singular values by SVD.
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The algorithm extends Isorank [15] by approximating the matrix R in Equation 5.1

using power iteration, resulting in Equation 5.3, where α is the importance of pre-

processing information, h is the vectorized preprocessing matrix and C̃=Ã⊗B̃ is

the Kronecker product between the source’s degree-normalized adjacency matrix

Ã = D−1A and the target’s Ã = D−1B.

X(n) = (1−α)
n−1

∑
k=0

α
kC̃kh+α

nC̃nh (5.3)

Thereafter, by noticing that Ã⊗B̃h = B̃2HÃ2 where H is the matrix-form of

h, NSD decomposes the C matrix as a linear combination of orthonormal vectors

w(k)
i = B̃kwi and similarly to get the z vector, z(k)i = Ãkzi, to obtain ranks of X(n),

while integrating preprocessing information expressed by singular values of the Blast

similarity matrix in the z vexctor:

X(n)
i = (1−α)

n−1

∑
k=0

α
kw(k)

i z(k)
⊤

i +α
nw(n)

i z(n)
⊤

i (5.4)

Eventually, it combines ranks to form a dense similarity matrix:

X(n) =
s

∑
i=1

X(n)
i (5.5)

To extract final alignments, the authors of NSD propose two solutions. One is to

enforce a sparse matrix using sparse versions of the outer products w and z; another is

to use SortGreedy [32].

5.4.4 Low-Rank EigenAlign (LREA)

LREA [95] is an alignment method that builds on the EigenAlign [37] algorithm.

Whereas the default EigenAlign has very high computational cost, LREA applies

a low-rank matrix approximation that dramatically decreases runtime. LREA align

graphs of 10000 nodes in the time EigenAlign needs to align graphs of 1000 nodes,

while achieving similar results in terms of the loss function. LREA aims to solve the

following quadratic assignment problem:

maximize
y

y⊤My

subject to yi ∈ {0,1}
∑u y[u,v]≤ 1 for all v ∈V2

∑v y[u,v]≤ 1 for all u ∈V1

(5.6)
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Matrix M gathers an alignment score based using three elements: overlaps, non-

informative, and conflicts (acting as a regularization), and uses the dominant eigen-

vectors to find the maximum of the objective function. M is rewritten as a linear

combination of Kronecker products among the adjacency matrices A and B of the two

graphs and all-one matrices of the same size E.

Thus, the quadratic assignment problem in Equation 5.6 is relaxed to the following,

using X , the leading eigenvector of M:

maximize
X

X•
(

c1AXB⊤+ c2AXE⊤+ c2EXB⊤+ c3EXE⊤
)

subject to ∥X∥F = 1,X ∈ R|VA|×|VB|
(5.7)

This problem is translated to a two-factor low-rank decomposition. Starting from

rank 1, a power iteration process calculates the similarity matrix of rank k. To obtain

the alignment, LREA separates positive and negative values into two matrices and

pairs them based on their sorted positions for each rank, with each rank produces a

matching score, eventually reaching the optimal solution to the relaxed problem. The

authors also propose a variant that uses a sparse matrix Y with all possible matchings

from the ranks.

5.4.5 REGAL

REGAL [48] aligns graphs fast with high accuracy scores, working in three steps,

namely embedding calculation, cross-embedding calculation, and node alignment,

without using any pre-processed information. The first step gathers structural and

connectivity information about the nodes, taking into account the degree of the

neighborhood nodes:

du =
K

∑
k=1

δ
k−1dk

u (5.8)

Equation 5.8 iterates over k-hop neighbors of node u and stores neighborhood

degrees in the vector du; δ is a discount factor that gives less importance to nodes away

from u. The authors propose iterating up to a 2-neighborhood (K = 2). Besides, degree

information is stored in logarithmically scaled buckets. Attribute information is stored

in f -dimensional vectors, from which the distance between two nodes’ attributes can

be estimated; in our study, we focus on aligning graph structures, agnostic to attributes.

REGAL evaluates potential node matchings using a cross-network node similarity:
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sim(u,v) = exp
[
−γs · ∥du−dv∥2

2− γa ·dist(fu, fv)
]

(5.9)

Here, γs and γα are scalar parameters that weigh the structural and attribute

information, respectively. We set γα to 0. This cross-network similarity is used to

calculate a similarity matrix S used in the next part, cross-embedding calculation, using

the Nyström method for low-rank matrix approximation. The procedure chooses p

random landmark nodes from both graphs (p is set to 10log2 n) and approximates S

as S∼ = CW†C⊤, where C is an n× p node-to-landmark similarity matrix and W† is

a pseudo-inverse landmark-to-landmark similarity matrix. By applying SVD on W
to obtain the decomposition UΣV T , cross-embeddings are derived as Y ′ = CUΣ

1
2

without fully calcluating the similarity matrix S.

Lastly, REGAL performs node alignment by efficiently querying embeddings,

while translating Euclidean distance to the similarity:

simemb(Ỹ1[u], Ỹ2[v]) = e−∥Y1[u]−Y2[v]∥2
2 (5.10)

The target graph embeddings are stored in a k-d tree for fast nearest-neighbor

querying using source graph embeddings. By default, REGAL returns the highest-

scoring matching for each source node, hence may return the same target node more

than once. In our study, we configure it to return one-to-one matchings for the sake of

comparability to other methods.

5.4.6 Gromov-Wasserstein Learning (GWL)

GWL [146] follows a different approach; instead of first calculating embeddings and

then learning alignments from those embeddings, it jointly calculates embeddings

XA,XB and alignments using the dissimilarity notion of Gromov-Wasserstein discrep-

ancy to transport masses from one node to a node in the other graph. The problem

is solved collaterally in iterations, using embeddings X to estimate distances while

learning the optimal transport T, and using the learned transport to regularize the

learning of embeddings in the next iteration.

min
XA,XB

min
T∈Π(µA,µB)

⟨L(CA (XA) ,CB (XB) ,T) ,T⟩︸ ︷︷ ︸
Gromov-Wasserstein discrepancy

+α ⟨K (XA,XB) ,T⟩︸ ︷︷ ︸
Wasserstein discrepancy

+ βR(XA,XB)︸ ︷︷ ︸
prior information

(5.11)
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In Equation (5.11), L is an element-wise loss function, C is a pairwise node

distance computed on edge weights, and K is a distance matrix on the embeddings.

The first part of the equation captures the relational dissimilarity between the two

graphs and the second expresses the dissimilarity between nodes of the two graphs.

This non-convex problem is solved iteratively by breaking it into two minimization

problems. The first is to minimize optimal transport (OT), solved iteratively with

the proximal point method. The second problem is to update the embeddings using

gradient descent.

As mentioned, the two problems are solved collaterally in alternations: first find

the OT, then update the embedding X using the OT. GWL can thereby align multiple

networks.

S-GWL [145] addresses the scalability drawback of GWL by adopting a partitioning

method on the input graphs. While the S-GWL objective is the same as GWL, S-GWL

recursively decomposes the graphs into K small graphs and calculates a common

intermediate graph with K-nodes called a barycenter graph. The algorithm matches

the nodes in the barycenter graph with the subgraphs of the graph using GWL and

repeats the partitioning process over the subgraphs in a divide-and-conquer fashion,

thus achieving a logarithmic speedup over GWL. S-GWL further reduces the times

employing a proximal gradient scheme [143] that decomposes the original GWL

non-convex objective into smaller convex problems, achieving an additional speedup

on sparse graphs.

5.4.7 CONE

CONE [18] finds alignments by focusing on matched neighborhood consistency

(MNC), defined in Section 5.6.2 as the Jaccard similarity among node neighbohoods.

It calculates node embeddings YA, YB for each graph separately using an off-the-shelf

method, and aligns embedding sub-spaces by combining two optimization problems,

Procrustes and Wasserstein, to create the following problem:

min
Q∈Od

min
P∈Pn

∥YAQ−PYB∥2
2 (5.12)

P is a row permutation found by solving a Wasserstein problem and Q is a column

permutation found by solving a Procrustes problem. The overall problem is initilized

by a Frank-Wolf algorithm for 10 iterations. CONE minimizes Wasserstein distance

by the Sinkhorn algorithm and updates the Procrustes orthogonal matrix by SVD. This

procedure is repeated around 50 times to return the embeddings. The last step is to
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align nodes to their nearest neighbor by Euclidean distance, by default using a k-d

tree as REGAL does.

5.4.8 GRASP

GRASP [50] solves the alignment problem using the spectral properties of the graphs

grounded on the eigenvectors of their normalized Laplacian matrices, in a manner rem-

iniscent of NetLSD [135]. The normalized Laplacian, L = I−D−
1
2 AD−

1
2 , converges

to the eigenfunctions of Laplace-Berltrami operator [10]. The Heat Kernel, computed

based on Laplacian eigenvectors, provides meaningful information about the structure

of the graph in a permutation-invariant manner robust to small perturbations:

Ht = Φe−tΛ
Φ
⊤ =

n

∑
j=1

e−tλ j φ jφ
⊤
j (5.13)

GRASP performs eigendecomposition and calculates heat kernels of the two

graphs for different values of t, forms matrices F and G from the diagonals of

those heat kernels; it produces linear combinations of the two graphs’ Laplacian

eigenvectors, contained in matrices Φ and Ψ, using F and G, and aligns the eigenvector

matrices Φ and Ψ via a diagonal base alignment matrix M that minimizes the

objective:

min
M∈S (n,n)

off
(
M⊤

Λ2M
)
+µ

∥∥∥F⊤Φ−G⊤ΨM
∥∥∥2

F
(5.14)

This objective strives for the diagonality of M by penalizing off-diagonal elements

via the first (diagonalization) term. Next, it approximates a diagonal matrix C that

maps those linear combinations of Laplacian eigenvectors from the one graph to the

other, using the top-k aligned eigenvectors, Φ̄ and Ψ̂ = Ψ̄M .

The matching problem is solved as a Linear Assignment Problem (LAP); the

authors chose the JV [57] algorithm for this purpose.

5.5 Excluded Algorithms

In our preparatory assessment, we initially considered a larger collection of algorithms.

However, we soon realized that some algorithms cannot adapt to the unrestricted

scenario, or cannot run in reasonable time on graphs with more than 100 nodes.

There is an extensive body of work on graph alignment algorithms for biological

networks, which includes GHOST [105], MAGNA [121], and NETAL [100]. We
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exclude these methods as they require O(n4) or higher time complexity that hinders

their application outside biology, or additional information, such as protein-protein

sequence similarity. We exclude two popular alignment algorithms, Klau [62] due to

its O(n5) time complexity and NetAlign [8] as we observed inadequate quality even

after we applied the enhancements granted to the rest of algorithms, including the

IsoRank similarity notion described in Section 5.7.1 and the JV assignment algorithm

described in Section 5.7.2. Likewise, we exclude methods in which additional infor-

mation is part of the algorithm definition, such as FINAL [155], BigAlign [69], and

the extensive literature on supervised algorithms that require pre-aligned nodes.

5.6 Experimental Setup

All algorithms other than GRAAL are implemented in Python 3.8.5. We use the au-

thors’ original Python codes, whether available, and re-implement algorithms without

an available implementation; in the case of GRAAL, we use the authors’ executable.

Our code1 uses the Sacred framework [45] to easily test and tune algorithms.

We use a 28-core Intel Core CPU i9-10940X machine at 3.30 GHz with 256Gb

RAM on Linux 5.4.0-74.

5.6.1 Datasets

We evaluate the algorithms with both real and synthetic graphs where the edges have

been perturbed with a fixed amount of noise and nodes have been permuted. Moreover,

to further investigate the the behaviour of the algorithms under different conditions,

we employ three types of noise. For each graph, we generate 10 noisy graphs, perform

the alignment on each noisy graph, and report the average result. We also test the

methods on graphs with ground-truth alignment.

Noise types

In line with previous work [18, 48, 50, 95, 146], we perturb the adjacency matrix

of the graph by removing or adding edges. In the literature, several strategies have

been proposed, such as removing edges with uniform probability [18, 48], adding and

removing edges with uniform probability [72, 88, 92, 95, 155], removing and adding

nodes [72], generating noise based on the distance between nodes [66] or sampling

from the Poisson distribution [146]. Typically, the authors test their methods using

1https://github.com/constantinosskitsas/Framework_GraphAlignment

https://github.com/constantinosskitsas/Framework_GraphAlignment
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only one strategy. We instead adopt three noise strategies to evaluate the algorithms

under different regimes:

• One-Way: Remove edges from the target (G2) graph.

• Multi-modal: Remove and add the same number of edges from the target G2 graph.

• Two-Ways: Remove edges from both G1 and G2.

Synthetic Graphs [8, 95]

We generate graphs using popular four graph models to evaluate the algorithms under

various characteristics of real graphs.

• Erdös-Rényi (ER) [35]: random graphs where edges form with a fixed probability.

We generate graphs with probability p = 0.009

• Barabasi-Albert (BA) [7]: scale-free graphs under the preferential attachment

model. We generate graphs with initial node degree m = 5.

• Watts-Strogats (WS) [141]: graphs with small-world properties and high clustering

coefficient. We generate graphs with number of neighbors per node k = 10 and

rewiring probability p = 0.5.

• Newmann-Watts (NW) [99]: similar to WS but edges are not removed. We

generate graphs with number of neighbors per node k = 7 and rewiring probability

p = 0.5

• Powerlaw cluster (PL) [54]: a Holme-Kim model similar to BA with a tunable

probability of forming triangles. We generate graph with number of random edges

m = 5 and probability of forming a triangle p = 0.5.

Real Graphs

We also use real-world data. Table 5.2 shows their characteristics. Social and com-

munication graphs are typically power-law, infrastructure networks are grids with

power-law distributions; collaboration networks have many triangles; biological and

proximity networks are dense.

The last three data sets in Table 5.2 are evolving graphs that naturally provide

ground-truth alignment. These graphs represent the most challenging scenario, since

the real noise distribution is unknown. Only few previous works [50, 95] besides

methods designed for biological networks [8, 62, 126] evaluate their performance on

ground-truth alignment preferring synthetically generated noise.
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Dataset n m ℓ Type

Arenas [73] 1 133 5 451 0 communication
Facebook [78] 4 039 88 234 0 social
CA-AstroPh [78] 17 903 197 031 0 collaboration
inf-euroroad [6, 116] 1 174 1 417 200 infrastructure
inf-power [116, 141] 4 941 6 594 0 infrastructure
fb-Haverford76 [116, 132] 1 446 59 589 0 social
fb-Hamilton46 [116, 132] 2 314 96 394 2 social
fb-Bowdoin47 [116, 133] 2 252 84 387 2 social
fb-Swarthmore42 [116, 133] 1 659 61 050 2 social
soc-hamsterster [116] 2 426 16 630 400 social
bio-celegans [33, 116] 453 2 025 0 biological
ca-GrQc [79, 116] 4 158 14 422 0 collaboration
ca-netscience [98, 116] 379 914 0 collaboration
MultiMagna [138] 1 004 8 323 0 biological
HighSchool [39] 327 5 818 0 proximity
Voles [28] 712 2 391 0 proximity

Table 5.2: Information about the real graphs, number of nodes n, number of edges m, number
of nodes left out of the largest connected component ℓ, and network type.

5.6.2 Quality measures

The evaluation of an alignment method requires a measure for alignment quality.

Matched Neighborhood Consistency (MNC) [18, 95]

is the Jaccard similarity of the mapped neighborhood Ñ f
GB
(i) = { j ∈VB : ∃k ∈ NGA(i)

s.t. f (k) = j} of a node i ∈VA and a node j ∈VB.

MNC(i, j) =

∣∣∣Ñ f
GB
(i)∩NGB( j)

∣∣∣∣∣∣Ñ f
GB
(i)∪NGB( j)

∣∣∣ (5.15)

The final score is the average MNC among all nodes.

Accuracy or Node Correctness (NC)

The most popular measure is Accuracy, that calculates the number of correctly aligned

nodes given the true alignment. The accuracy score is the count of corrected align-

ments normalized by the total number of such alignments. Accuracy assumes that a

node in the source graph corresponds to a single node in the target graphs. As such,

accuracy disregards multiple alignments or partial alignments.
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EC, ICS, S3

An alternative way to assess the quality of an alignment is to count the number of

edges that are correctly aligned. Edge correctness (EC) is the percentage of edges in

the source graph GA = (VA,EA) correctly aligned in the target graph GB = (VB,EB).

Given an alignment f , and the set of correctly aligned edges f (EA) = {( f (i), f ( j)) ∈
EB : (i, j) ∈ EA} EC is defined as

EC( f ) =
| f (EA)|
|EA|

EC does not penalize sparse regions in the source graphs, matched to dense region

in the target graph. The Induced Conserved Structure (ICS) [105] normalizes over

the graph in GB induced by the source graph’s nodes f (VA) = { f (v) ∈ VB : v ∈ VA}
correctly aligned

ICS( f ) =
| f (EA)|

|E (GB [ f (VA)])|

Similarly to EC, ICS does not penalize dense regions in the source graph matched to

sparse regions in the target graph.

The symmetric substructure score (S3) [121] corrects the deficiencies of EC and

ICS with a normalization over both the source and the target graphs

S3( f ) =
| f (EA)|

|EA|+ |E (GB [ f (VA)])|− | f (EA)|
(5.16)

Graph models Time (<3h) Mem. (<256Gb)

Algorithm ER BA/PL WS/NW n>214 ∆>103 n>214 ∆>103

IsoRank – – – ✘ ✔ ✘ ✔
GRAAL – – – ✘ ✔ ✘ ✔
NSD – – – ✔ ✔ ✔ ✔
LREA – – – ✔ ✔ ✔ ✔
REGAL – – – ✔ ✘ ✔ ✘
GWL – 3 – ✘ ✘ ✘ ✘
S-GWL 3 3 3 ✘ ✘ ✘ ✘
CONE 3 – 3 ✘ ✘ ✘ ✘
GRASP – – – ✘ ✔ ✘ ✔

Table 5.3: Summary results vs. graph model (first and second best method marked with 3),
graph size and density.
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5.7 Results

Here we present the results of our experimental study. Table 5.3 provides a concise

view of our results with different graph models, indicating time and space efficiency

in terms of working with graphs of more than 214 nodes and average degree ∆ higher

than 103 in less than 3 hours and within 256Gb.

5.7.1 Similarity Notion

To address the needs of IsoRank, we devised our own weight schema that takes

into account node degrees. In particular, the node similarity between nodes u,v

is sim(u,v) = 1− |deg(u)−deg(v)|
max{deg(u),deg(v)} , where deg(u) = |N(u)| is the degree of node u.

Prior works have used binary weights that had a negative effect the performance of

IsoRank. We tried this enhancement on NetAlign, to no avail.

5.7.2 Assignment Algorithms

We first investigate the performance of assignment algorithms used in the final align-

ment step. As discussed, some techniques use a heuristic that greedily selects the

most attractive one-to-one match; we call this method SortGreedy (SG) [32]; GRAAL

performs SG integrally, rendering the adaptation to other methods hard; others use

assignment to Nearest Neighbor, that allows for many-to-one matches; lastly, many

techniques execute an optimal algorithm for the minimum cost one-to-one linear

assignment problem (LAP), i.e., the Hungarian algorithm and its variations for sparse

matrices (MWM) [8, 43, 95] or the JV algorithm [50]. These LAP algorithms have

higher runtime than heuristics, yet may produce results of better quality. To create a

level playing field, we should use a common method for all algorithms in the rest of

our study.

We evaluate algorithms with all assignment methods and select the ones that yield

highest accuracy on a real dataset, Arenas, and a random graph with power-law degree

distribution; we generate noise by permuting the source graph and removing edges

with uniform probability {0, 0.01, 0.02, . . . , 0.05} while keeping the graph connected.

Figure 5.1 shows the results. We try out all assignment methods, yet do not report

solutions that produce worse results than the method the authors proposed or need

many hours to finish. As MWM produces results similar to those of JV, we show

it only with LREA as the author-proposed method. GWL, REGAL, CONE and

S-GWL extract alignments by Nearest-Neighbor (NN). CONE and REGAL do so

using a kd-tree to return the top-k most similar matches. While all four methods may
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Figure 5.1: Different assignment methods; solid lines: Arenas real data; dashed lines: Power-
Law (PL) synthetic data.

produce good results, they return many-to-one assignments. As a matter of principle,

we consider one-to-one matchings, hence restrict these four methods to such outputs.

They all benefit by applying SG or JV instead of NN. While for CONE, REGAL and

S-GWL the improvements due to SG or JV is only between 1% and 4%, for GWL on

Arenas SG and JV improve the results from 60% to close to 100%.

GRASP and LREA use variants of the Hungarian algorithm in their proposed

form. LREA creates a sparse matching matrix called union of matchings and runs the

MWM algorithm [8] thereon, a variation of Hungarian that works well with sparse

matrices. GRASP implements JV. Our test on GRASP confirms that JV achieves

better quality than SG albeit in higher runtime. For LREA, we evaluate MWM against

SG and JV. As JV and MWM yield comparable quality results, we opt for JV’s

multi-threaded implementation.

NSD and IsoRank are proposed with SG as alignment method, yet benefit signifi-

cantly from using JV instead.

In conclusion, JV is our assignment method of choice as it improves alignment

accuracy with all algorithms. Linear assignment gracefully leads to one-to-one align-

ments that maximize the sum of the similarities across nodes. Henceforward, as all

algorithms use JV, we report runtime excluding the assignment step. Still, as the
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density of the similarity matrix affects JV’s runtime, more lightweight methods, SG

and even NN, are recommendable on large graphs. The ability to produce quality

assignment with SG or NN is instrumental for scalability purposes. In addition, for

algorithms like CONE, REGAL and S-GWL, where JV only brings slight improve-

ments on the cost of a large increase in running time, JV might not be worth the small

improvement even for smaller graphs.

5.7.3 Evaluation of Synthetic Random Graphs

We evaluate the algorithms on five random graph models, to comprehend whether

characteristics of the graphs, such as degree distribution or topology, affect the

algorithms and how. We choose the models presented in Section 5.7.3: Erdös-

Rényi (ER) (Figure 5.2), Barabasi-Albert (BA) (Figure 5.3), Watts-Strogats (WS)

(Figure 5.4), Newmann-Watts (NW) (Figure 5.5) and Power Law (PL) (Figure 5.6).

For all models, we fix the graph size n = 1133 and the degree distribution. In the case

of powerlaw graph generators (BA and PL) the degree distribution simulates the one

of Facebook, Arenas and Ca-AstroPh. In the case of Gaussian degree distribution

as generated by BA, WS, and NW, we mimic the degree distribution of graphs with

real alignments, such as HighSchool. To reduce variance across noise levels we

generate 10 noisy graphs and report the average.

CONE performs well on all graph models, returning nearly perfect alignments

in nearly all models. CONE faces some difficulty with NW graphs, exhibiting some

sensitivity to strongly small-world graphs as NW. CONE deficiencies are mostly

prominent in PL graphs. This is also confirmed on the Facebook dataset that exhibits

a skewed degree distribution (Figure 5.7). Another interesting insight is the CONE’s

susceptivity to different types of noise; on multi-modal and two-way noise CONE’s

quality drops faster than the more common one-way. CONE, that introduced the MNC

score, effectively attains better results with the MNC score than with accuracy and S3.

GWL exhibits good performance only on powerlaw graphs, such as BA (Fig-

ure 5.3) and PL (Figure 5.6). On other graph types GWL fails to find the correct

alignment, scoring close to 0 in all measures even with low noise levels. This be-

haviour indicates that the exact transport objective that GWL optimizes might not be

able to discriminate nodes with similar degree distribution. This is also confirmed on

BA and PL, in which the S3 and MNC scores, both based on neighbor matches, are

lower than accuracy. On the other hand, GWL is more robust to different noise types

than CONE.
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Figure 5.2: Accuracy, S3, and MNC for Erdős-Rényi (ER) random graphs; noise up to 5% and
different noise types.

IsoRank is among the most competitive algorithms, as opposed to previous

comparisons. This is due to an appropriate choice of the weights in Equation (5.9) that

capture the degree distribution of the neighbors of each node. Yet, IsoRank is sensitive

to the type and level of noise; for multi-modal and two-way noise accuracy drops

by 10− 30%. We surmise that multi-modal and two-way noise alter the neighbor

structure significantly, weakening IsoRank’s random walk approach. Nevertheless,

IsoRank shows consistent results across graph models. These results render IsoRank

a competitive approach compared to more recent methods.
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Figure 5.3: Accuracy, S3, and MNC for Barabasi-Albert (BA) synthetic graphs; noise up to
5% and different noise types.

NSD improves upon IsoRank by not requiring prior information to return align-

ments. The incorporation of prior information boosts quality, but is detrimental to the

running time. As expected, NSD exhibits comparable performance to IsoRank, yet its

quality drops faster than IsoRank’s. NSD inherits IsoRank’s sensitivity to noise. Thus,

NSD is only preferable to IsoRank when time is critical.

LREA, as expected from the objective, consistently finds the correct alignment

on graphs with no noise (i.e., isomorphic). Yet, the performance drops close to 0

on graphs with only 1% noise. This behaviour is consistent across all graph models
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Figure 5.4: Accuracy, S3, and MNC for Watts-Strogats (WS) synthetic graphs; noise up to 5%
and different noise types.

and potentially reveal the local nature of LREA objective that considers mismatch of

single edges rather than structures. This intuition is corroborated by a 40% quality

in PL graphs in which node connectivity is more easily determined by the skewed

degree distribution.

GRASP, by its spectral nature, performs better on PL graphs with community

structure and skewed degree distributions, although it also performs generally well in

all graph models and noise types. GRASP exhibits superior performance to REGAL

on small-world WS and NWS graphs. Similar to LREA, GRASP almost consistently

returns the best alignment on graphs with no noise.
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Figure 5.5: Accuracy, S3, and MNC for Newman-Watts (NW) synthetic graphs; noise up to
5% and different noise types.

REGAL performs best on powerlaw PL and BA graphs, less so on WS and NWS

graphs. REGAL is robust to noise types, although it delivers inferior results than

IsoRank by 10%–20%. REGAL is consistent across measures, indicating that the

method does not optimize to any of the measures explicitly. All in all, REGAL is a

stable algorithm with average performance in most degree distributions.

S-GWL exhibits performance comparable or superior to CONE. Although approx-

imating GWL, S-GWL is competitive in most datasets. This phenomenon in which

an approximation outperforms the exact method is not surprising, as approximate

methods often remove noise from the data. S-GWL is stable across graph models
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Figure 5.6: Accuracy, S3, and MNC for Powerlaw (PL) synthetic graphs; noise up to 5% and
different noise types.

and noise types. S-GWL is less affected than GWL by the degree distribution and is

therefore preferable. GRAAL has a mediocre position, while it is more robust than

others of similar caliber as noise grows.

Concluding, CONE shows consistently good performance, due to the use of

embeddings that capture local and global structures. However, no algorithm is overall

the best; CONE is deficient with power-law graphs, while GWL excels only in those.

S-GWL does consistently well, yet does not stand out. REGAL, GRASP, GWL, and

GRAAL are robust to noise type. IsoRank, with appropriate choice of weights, is a

formidable competitor. Although CONE and GWL outperforms competitors, they

also present scalability drawbacks, as we see in Section 5.7.6.
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5.7.4 Evaluation on Graphs with Synthetic Noise

In this section, we evaluate all algorithms on real world graphs with synthetic noise

of One-Way, Multi-Modal, and Two-ways type. We report runtime results within 1

hour.

Low Noise

Figure 5.7 presents results for noise levels in the domain {0,0.01,0.02, . . . ,0.05} on

three real world graphs: Arenas, Facebook and CA-AstroPh.

GWL performs nearly optimal on Arenas with a slight drop in the accuracy

scores with increasing noise levels. For Facebook and CA-AstroPh, GWL exceeds the

runtime limit of 1 hour, as its runtime increases significantly for dense or big graph.

Thus we do not report accuracy results for these graphs.

CONE also performs nearly optimal on Arenas and is robust to noise. On CA-

AstroPh, CONE attains 80% accuracy for One-Way and Two-Way noise; yet, CONE

is less effective with Multi-modal noise. We note a similar behaviour on Facebook,

where CONE gives ground to S-GWL due to the powerlaw degree distribution.

REGAL follows the same pattern as in Section 5.6.1: uninfluenced by the type

of noise, but losing accuracy at higher noise levels. On all three datasets, REGAL

achieves comparable accuracy.

GRASP falters on graphs with several connected components, which may arise

if the random edge removals disconnect the graph. For instance, on Arenas and CA-

AstroPh, sparsity induces disconnected components with noise above 3%. Besides,

the Multi-Modal and Two-Way noise affects GRASP’s performance due to increased

chances to disconnect the graph. On the other hand, GRASP performs well in

dense graphs such as Facebook, on which the noise does not generate disconnected

components.

LREA performs better on real graphs with synthetic noise than on the synthetic

graphs reported in Section 5.6.1, but still not well. Yet it is not too affected by noise

type, hence it outperforms GRASP and NSD with Multi-Modal noise on Facebook.

IsoRank is the best algorithm on Facebook and the second-best in the other graphs

with One-Way noise. We reiterate that, as prior information, we provide a “naive”

similarity score based on degrees. The algorithm is influenced by the type and level

of noise, especially Multi-Modal; this is expected, as the more noise is included, the

less relevant prior information becomes.
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Figure 5.7: Accuracy on real graphs; noise up to 5%.

NSD performs poorly with Multi-Modal noise; however, with One-Way and Two-

Way noise, it is usually the third-best performer, achieving results comparable to

GRASP or REGAL.

S-GWL is one of the best algorithms on Arenas and Facebook. Yet, although it

is more scalable than GWL, its complexity is cubic in dense networks, hence it is

unsuitable for large graphs. On the other hand, on Arenas S-GWL has performance

comparable to CONE.

GRAAL stands again in mediocre positions among the best and worst performers,
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in those data where it runs within 3 hours; it stands out in terms of its robustness to

growing noise, yet never matches the performance of GWL, CONE, and S-GWL.

High Noise

In this experiment we use graphs from the network-repository website [116] shown

in Table 5.2. We run experiments with One-Way noise in the domain value

{0,0.05,0.1, . . . ,0.25} and report average accuracy of 5 runs. Results are in Fig-

ure 5.8.

CONE is least influenced by the noise level, performing well even with 25%

noise. On social networks, it achieves close to optimal accuracy at the highest noise

level, except for Hamilton46, where accuracy drops swiftly after 15% noise. For all

other graphs, there is slight drop of the accuracy score with increasing noise levels.

Infrastructure graphs are most challenging for CONE.

GWL is challenged on infrastructure networks, where its accuracy drops. On

other graphs, CONE and GWL exhibit comparable behavior and achieve the highest

accuracy, except for the collaboration network CA-GrQc, where GWL performs

significantly worse.

REGAL struggles at noise levels larger than 5%. The only datasets where REGAL

achieves more than 30% accuracy for noise 10% are Ca-Netscience and Bio-celegans,

our two smallest networks.

GRASP is affected by the number of connected components, which, in turn, is

influenced by the noise, since deleting edges may disconnect parts of the graph. If

a graph consists of more than one connected component, the accuracy score for this

graph stays below 15% regardless of noise level. If the noise does not render the

graph disconnected, GRASP delivers competitive results, as observed in the previous

section. If both source and target graphs are disconnected, but the largest connected

component of the graphs is close to the full graph, GRASP can align the networks

well. This is the case for Hamilton46, Bowdoin47 and Swarthmore42. Euroroad and

hamsterer comprise several connected components in their original form, even without

adding noise. In this case, GRASP fails to align the graphs even without noise.

IsoRank succeeds in aligning all the networks and is constantly the third best;

its accuracy scores are similar on all the datasets and seem to not be affected by

distribution, size, clustering, or density characteristics. It also performs best on

infrastructure graphs, where algorithms falter. However, the accuracy of IsoRank

drops significantly with increasing noise level. This is due to the fact that with more
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Figure 5.8:Accuracy on real graphs; one-way noise up to 25%.

noise, degree change significantly across graphs and our prior information model

becomes less meaningful.

NSD shows a pattern similar to IsoRank, but achieves accuracy between 10%

and 20% less than IsoRank for low noise levels. Accuracy drops with noise, but the
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effect is less pronounced. With noise between 20% and 25%, IsoRank and NSD have

similar scores.

S-GWL consistently achieves accuracy close to the best, even with 25% noise.

Its main drawback is sensitivity to hyperparameters. We manually set β = 0.025 on

sparse data sets (e.g., inf-power, ca-netscience) and β = 0.1 on dense dasets (e.g.,

fb-datasets).

GRAAL performs similarly to NSD in those cases where it runs within the

time limit of 3 hours; its previously observed robustness to growing noise levels is

attenuated at these high noise levels.

Figure 5.9 visualizes the results on the NetScience data, as a representative case,

juxtaposing accuracy to runtime. CONE and S-GWL stand out on resolving the

time-accuracy tradeoff. We obtained similar results with other noise types at high

noise levels. We include GRAAL for illustration, albeit not implemented in Python.
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Figure 5.9: Time vs. accuracy on NetScience; marks show results with One-way noise
in [0.25,0.2,0.15,0.1,0.05,0].

5.7.5 Evaluation on Graphs with Real Noise

We now evaluate all algorithms on three real-world networks with respect to accuracy,

MNC, and S3. HighSchool and Voles are temporal proximity networks; we match

the last version of the graph to versions with 80%, 85%, 90%, and 99% of edges.

MultiMagna is a base yeast network with five variants, with edges indicating a possible

protein-protein interaction. We match the original to each variant. Figure 5.10 shows

our results. GWL and CONE do well in all three measures. GWL perfectly aligns
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Figure 5.10: Accuracy, MNC and S3 results for the real graphs HighSchool, Voles and
MultiMagna.

Highschool, whereas CONE achieves only 55% accuracy on this network with 80%

of edges. Roles are reversed with Voles, where CONE achieves around 80% accuracy

on the graph with 80% of edges, while GWL achieves only 32%. On MultiMagna,

both algorithms perform similarly; CONE obtains 10% better results on the first graph

variants. Accuracy drops consistently across variants to 40% for the last variants.

Overall, CONE and GWL perform the best. The next best algorithms are IsoRank and

GRAAL, albeit they fare poorly on the HighSchool data. IsoRank’s good performance

on MultiMagna is expected, as it is designed for protein-protein interaction networks.

The remaining algorithms perform well only when the networks to be matched do not

differ much, i.e., aligning graphs with 99% of edges on HighSchool and Voles and the
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first MultiMagna variants; GRASP has a slight advantage, followed by NSD, REGAL

and LREA. In terms of MNC and S3, GRASP approaches IsoRank.

5.7.6 Scalability

Lastly, we study runtime and memory usage vs. network size and average degree

on configuration model [96] graphs with normal degree distribution; we exclude the

runtime for linear assignment and average results over 5 runs. All algorithms use all 28

cores and a memory of 256Gb, with a maximum runtime allowance of 1 hour. We

exclude GRAAL due to its quintic (O(n5)) pre-processing time. Figures 5.11 and 5.13

show results when tuning the number of nodes from 210 to 216 with average degree 10,

while Figures 5.12 and 5.14 show results for average degree in [10,102,103,104] with

size 214.
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Figure 5.11: Time vs. # nodes; configuration model graphs.
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Figure 5.12: Time vs. avg degree, uniform distr.; 214 nodes.

By algorithmic complexity, we expect LREA, NSD, and REGAL to be fastest and

IsoRank and GWL slowest. The results in Figures 5.11–5.12 confirm our expectation.

IsoRank has lower runtime than expected as we let it return a similarity matrix
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Figure 5.13: Memory vs. # nodes; configuration model.
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Figure 5.14: Memory vs. avg degree, uniform distr.; 214 nodes.

after 100 iterations even if it has not converged. REGAL could not run within the

available memory for the highest number of nodes. We let algorithms use sparse

array representations as in their implementations. Thus, with CONE using a sparse

representation, even when the number of edges grows, its memory usage does not.

5.7.7 Varying Density

Our preceding analysis reveals that S-GWL and CONE perform best on small and

medium graphs, while REGAL does well on large graphs. In this section, we in-

vestigate whether such conclusions hold under varying graph density characteristics.

While the graph models we employ do not explicitly allow for controlling density,

in NWS graphs, the rewiring probability p implicitly affects the edge density of the

sampled graphs for a fixed number of nodes n; besides, the k parameter, i.e., the

number of nearest neighbors for each node, implicitly controls the minimum and

expected degree.

Figure 5.15 presents the impact of density with NWS graphs of n = 2000 nodes.

While CONE and S-GWL outperform other algorithms, they face a difficulty when

handling sparse graphs with p = 0.2. A flatter degree distribution with k = 100

accentuates this problem. Besides, GRASP’s performance is unstable due to its

sensitivity to the disjoint components appearing in the NWS model, reconfirming
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Figure 5.15: Accuracy for 1% One-way noise on Newman–Watts–Strogatz synthetic graphs
with 2000 nodes.
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Figure 5.16: Accuracy for 1% One-way noise on Newman–Watts–Strogatz synthetic graphs
of increasing size.

our observation that, due to its spectral basis, GRASP does not handle disconnected

graphs well. We also vary the minimum k while fixing the rewiring probability

to p = 0.5; we see that GWL and, to a lesser extend, S-GWL, cannot align graphs with

either too low (0–100) or too high (> 600) average degree. Contrariwise, IsoRank

performs comparatively well on low-degree graphs, reconfirming our observations

with the Multimagna graph in Figure 5.10. CONE falters with average degree k =

200; this effect seems to arise from a uniform degree distribution rendering nodes

indistinguishable to the embedding that forms CONE’s backbone.

Figure 5.16 shows the effect of size on quality. We first examine a constant

average degree k = 10 and p = 0.5 and increasing graph size, hence decreasing

density. Remarkably, as the graph becomes progressively sparser, alignment quality

drops, except with IsoRank. We conclude that, by virtue of its weighted M matrix,

IsoRank can easily align small-degree nodes. We also experiment with density fixed

to 10%, setting k = n/10 and increasing n. The right side of Figure 5.16 shows our

results. GRASP and CONE manage graphs with variable degree, while S-GWL and

GWL, as in Figure 5.15, fail to align networks of either too low or too high average
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degree.

5.8 Conclusion

We evaluated a gamut of graph alignment algorithms in terms of efficiency and quality.

Our study comprised algorithms never compared before, exhaustive parameter tuning,

and datasets with real and generated ground-truth alignments; for the latter, we corrupt

graph structure with noise of diverse types and at different levels. Our experiments

suggest that S-GWL is an algorithm of choice on most counts; yet, if scalability is a

concern, REGAL offers a viable alternative. Graph density and degree distribution

affect performance. As these are inherent graph properties, we conclude that future

graph alignment algorithms should consider these parameters in pre-processing. Our

study therefore calls for further efforts for development in graph alignment.





Chapter 6

Spectral Subgraph Localization

The work presented in this paper was prepared in collaboration with Amit Boyarski,

Alex Bronstein, Davide Mottin and Panagiotis Karras. It is currently under review for

ICDE 2023 [52]. We applied minor corrections and adapted formatting and notation

and removed the section on related work, as it is already presented in Chapter 3.

6.1 Abstract

Several graph mining problems are based on some variant of the subgraph isomor-

phism problem: Given two graphs, G and Q, does G contain a subgraph isomorphic

to Q? As this problem is NP-hard, many methods avoid addressing it explicitly. In

this paper, we propose a method that solves the problem by localizing, i.e., finding

the position of, Q in G, by means of an alignment among graph spectra. Finding

a node correspondence from Q to G thereafter is relegated to a separate task, as an

instance of the graph alignment problem. We demonstrate that our spectral approach

outperforms a baseline based on the state-of-the-art method for graph alignment in

terms of accuracy on real graphs and scales to hundreds of nodes as no other method

does.

6.2 Introduction

Graph analysis tasks frequently require localizing a smaller target graph Q within

a larger source graph G, i.e., finding a subgraph of G that is best aligned with Q.

This type of problem may appear as subgraph discovery [13, 74], where we need

to find any target graph in G, in subgraph querying [59, 129], where we find out

89
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Figure 6.1: An instance of subgraph localization (left) and its solution (right); given graphs Q
and G, we compute an indicator function δ (v) that reveals the location of Q in G.

whether a target subgraph match exists within a collection of source graphs, or graph

matching [155], where we have to align corresponding nodes across two graphs,

potentially of different sizes. Such subgraph localization is of interest in practical

applications such as localizing a smaller electronic circuit within a large circuit [40],

detecting sub-molecules in bigger molecules [94], and localizing parts of shapes in

computational geometry [112]. For instance, the task of subcircuit detection [40]

involves sampling multiple subgraphs and comparing the spectra of their adjacency

matrices to that of the query subgraph. Despite the prevalence of the problem, current

research has avoided tackling it directly, due to its NP-hardness.

In this paper, we propose a novel spectral solution to the problem of subgraph

localization, built around the notion of identifying the spectrum λ Q of a graph Q

within that of another graph G. Figure 6.1 visualizes an instance of the subgraph

localization problem by our formulation; we aim to find a function δ that indicates

which nodes in G correspond to Q. Our solution effectively recovers both the nodes

belonging to the part and the edges that connect the part to the rest of the graph. This

problem is an instance of inverse eigenvalues problems [21], the class of problems

which aim to reconstruct a matrix from its spectrum.

Our experimental study demonstrates that our approach tackles the subgraph

localization problem more effectively than state-of-the-art neural competitors and

showcases its applicability to the real world problem of subgraph alignment.

In summary, our contributions are as follows:

• We propose a spectral formulation for the subgraph localization problem.

• We show that our solution achieves the optimum value under mild conditions.

• We experimentally validate the effectiveness of our solution on real and synthetic

graphs.
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6.3 Subgraph localization

All aforementioned problems have in common the search for one graph within another.

We study the most generic form of this problem, which corresponds to the problem

named Subgraph localization in our previous discussion. That is, we aim to identify a

subset of the nodes of a graph G corresponding to an input graph Q; we do not aim at

an exact 1-to-1 correspondence among all graph elements, but to simply detect a set

of best matches.

Problem 1. The subgraph localization problem for a graph G = ⟨V,E⟩, where V is

a set of n nodes and E ⊆ V ×V is a set of edges, and a query graph Q = ⟨VQ,EQ⟩
with nQ = |VQ|, nQ < n, calls to find a set of nodes VS ⊂V such that |VS|= |VQ| and

there exists a bijective function f : VS→VQ between the nodes in VS and those in VQ

such that for each (i, j) ∈ EQ there exists ( f (i), f ( j)) ∈ EQ and vice versa.

In many applications, solving subgraph localization, we do not need to explicitly

materialize the correspondence function f . Such a one-to-one correspondence is not

explicitly sought for. Thus, we can eschew recovering an exact f and instead aim at

finding an indicator function δ : V →{0,1} such that:

δ (v) =

1 if v ∈VQ

0 otherwise
(6.1)

At a first glance, finding such an indicator function seems easier than recovering a

bijective function f . However, even in this identity-function formulation, the problem

corresponds to the decision version of the subgraph isomorphism problem, which

asks whether a graph G contains a subgraph isomorphic to another graph Q. Thus, the

problem is still NP-complete. Even so, we further relax our requirements, allowing

the function δ to be a binary version of a continuous function v : V → R on values

below a threshold τ:

δ (v) =

1 if v(v)< τ

0 otherwise
(6.2)

This relaxed problem calls to find a real function, or, equivalently, a real vector v∈
Rn, with n = |V |, for a known permutation of nodes in the graph. To overcome the

requirement for a known node permutation, we consider a permutation-invariant

spectral alignment approach reminiscent of the Hamiltonian operator used in shape
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analysis [20, 112]. Before delving into the approach, we introduce the necessary

notation.

Background. The adjacency matrix of graph G with n nodes is a n×n matrix A ∈
{0,1}n×n where Ai j = 1 if (i, j) ∈ E, 0 otherwise. The degree matrix D is an n×n

diagonal matrix where each entry dii = ∑ j ̸=i Ai j holds the degree of node i.

The graph Laplacian matrix is defined as

L = D−A. (6.3)

The Laplacian matrix of undirected graphs is a positive semi-definite symmetric matrix,

hence its eigenvalues λ1, . . . ,λn, are real and non-negative. The spectrum λ (M) of a

matrix M is the ordered sequence λ1 ≤ ...≤ λn of its eigenvalues. Correspondingly, a

graph’s spectrum is the spectrum of its Laplacian matrix.

6.4 Spectral Subgraph localization

We examine how the presence of a subgraph within a graph affects the graph’s

spectrum. Spectral theory establishes that the spectrum of a subgraph interlaces with

the spectrum of the graph. However, the problem is also non-trivially affected by

nodes beside the subgraph. Still, if we could compensate for the effect of nodes other

than the subgraph’s nodes, the two spectra would be indistinguishable. Following this

reasoning, we devise a novel objective for subgraph localization. To that end, we first

propose an original connection between subgraph localization and inverse eigenvalue

problems with structural constraints [21].

Inverse Eigenvalue Problem. The general additive inverse eigenvalue problem

(AIEP) is defined as follows:

Problem 2 (AIEP, Problem 3.6 in [21]). Given an n×n matrix A, a special class of

matrices N , and a set of scalars {λQi}k
i=1, find X ∈N such that {λ (A+X)i}k

i=1 =

{λQi}k
i=1.

A vast literature on this problem (see [21] and references therein) explores ques-

tions regarding the existence of solutions and numerical approximation algorithms for

various special classes of matrices N . A common variant of Chapter 2 expresses the

problem as a least squares problem between the spectra:

min
X∈N

∥λ (A+X)−λ Q∥2. (6.4)
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In what follows, we establish a connection between the subgraph localization problem

(Problem 1) and the additive inverse eigenvalue problem (Problem 2). Under the

above formulation, we aim to find a v that, added to the diagonal of the Laplacian

of G, renders its first nQ eigenvalues equal to those of the query graph. In addition to

finding v, we aim to remove from G the edges that connect the identified part to the

remaining nodes. To the best of our knowledge, this is the first time such a connection

has been established, and the first time an AIEP with structural Laplacian constraints

is considered.

To devise our solution for subgraph localization, we commence with an intuitive

scenario. We assume that G has a number of clearly separated communities, one of

which corresponds to the query graph Q. A community is defined by a cut, as nodes

within the same community are more well connected than nodes across communities.

Without loss of generality, assume the graph comprises two distinct communities. In

this case, G’s Laplacian is a block matrix with two diagonal blocks L11 ∈ RnQ×nQ

and L22 ∈ R(n−nQ)×(n−nQ) and only a few entries in the blocks L12 ∈ RnQ×(n−nQ) and

L21 ∈ R(n−nQ)×nQ representing edges across the two communities. The spectra λ (L )

of G and λ (LQ) of Q differ on the nodes in L22 and the edges in L12 and L22.

We aim to find a Hamiltonian transformation that cancels out this difference.

According to [112, Lemma 1], if we add to the diagonal of L a vector v having

non-zero values, v(v)> τ , limited to nodes in L22, i.e., outside VQ, then eigenvectors

corresponding to eigenvalues λi < τ of the resulting spectrum λ (L +diag(v)) will

have non-zero values limited to the positions corresponding to nodes in VQ, in effect

rendering λ (L + diag(v)) similar to λ (LQ). Still, the non-zero entries between

communities in L12,L21 affect the spectrum. To cancel that effect, we introduce a

Laplacian editing matrix that removes the contribution of such edges to the Laplacian

of the graph G:

E =

[
−diag(L121) L12

L21 −diag(L211)

]

In effect, the corrected Laplacian L −E is equivalent to the Laplacian of a graph

with two connected components, one of which isomorphic to the query graph Q. Thus,

the solution v renders the |VQ| smallest eigenvalues of the corrected Laplacian indistin-

guishable from the spectrum of Q, λ Q, i.e., λ (L −E+diag(v)) = λ Q, where, with a

slight abuse of notation, λ (L −E+diag(v)) refers to the |VQ| smallest eigenvalues

of L −E+diag(v).
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Since both v and E are unknown, we optimize the objective:

min
v,E
∥λ (L −E+diag(v))−λ Q∥2

2

s.t. E = E⊤,E1 = 0, off(L −E)≤ 0,

∥v∥= c.

(6.5)

This objective is not convex, yet it only depends on the spectrum, for which

there exists efficient approximations [24]; it leads to a solution even if the initial

value of v is a noisy version of the ground truth. As constraints, we postulate that E
should be: (i) symmetric, E=E⊤; (ii) row- (and, by symmetry, also column-) centered,

E1 = 0, with every row summing to 0; and (iii) yielding only non-positive off-diagonal

entries off(L −E) ≤ 0. In addition, we enforce that v be a point on the surface of

a sphere of radius c, via the constraint ∥v∥= c. Chapter 6.4.1 provides a sufficient

condition on c for the optimality of Equation (6.5), considering the noiseless case

where G exactly contains the subgraph Q.

Proposition 6.4.1. When c>
√

n−nQ max(λ Q), the global optimum of Equation (6.5)

is obtained at

v =

0 if vi ∈VQ

c√
n−nQ

otherwise
(6.6)

with

ṽ =
v−min(v)

max(v)−min(v)
, (6.7)

Si j = |ṽi− ṽ j|Ai j, (6.8)

E = diag(S1)−S. (6.9)

Proof. Let E be constructed from Equations (6.6)–(6.9). L −E is the Laplacian of a

graph composed of two disjoint components, one of which is exactly the component

indicated by Equation (6.6), i.e., the query subgraph Q. Then there is a permutation Π

such that ΠL Π
⊤ is a block diagonal matrix with the Laplacian of each component

on the diagonal. Without loss of generality, we assume that the Hamiltonian operator

attains this block diagonal form:

L −E+diag(v) =
[

LQ

LQ̄ + c√
n−nQ

1

]
. (6.10)

When c satisfies the stated condition, the spectrum of the bottom-right block contains

only eigenvalues larger than max(λ Q). It follows that the first nQ eigenvalues of L −
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E+diag(v) are exactly those of LQ, rendering the objective of Equation (6.5) equal

to zero.

In effect, by Proposition 6.4.1, we can recover the optimal solution if v is appro-

priately normalized and c is no less than a certain value. We exploit this result in

Section 6.4.2 to design our algorithm by numerical optimization. We first introduce a

regularization term.

Regularization. The objective in Equation 6.5 does not prevent v from taking arbitrary

values. However, since L −E has two connected components, v plays a role similar

to that of Fiedler’s vector in the minimization of the normalized cut [125]. This

observation leads us to the spectral regularization v⊤(L −E)v that exhorts v to take

values in the null-space of L −E. In other words, the spectral regularizer drives v to

be a stepwise function. We combine the spectral regularization with our objective as

follows:

min
v,E
∥λ (L −E+diag(v))−λ Q∥2

2︸ ︷︷ ︸
Data term

+µ v⊤ (L −E)v︸ ︷︷ ︸
Spectral regularizer

s.t. E = E⊤,E1 = 0, off(L−E)≤ 0,

∥v∥= c

(6.11)

where µ ≥ 0 is a regularization coefficient.

Corollary. Chapter 6.4.1 applies also in the presence of the spectral regularization

term in Equation (6.11).

Proof. Let E be constructed from Equations (6.6)–(6.9). L −E is the Laplacian of

a graph composed of two disjoint components, one of which is exactly indicated by

Equation (6.6), i.e., the query subgraph Q. Then v in Equation (6.6) belongs to the

null-space of L −E, rendering the regularization term 0, hence Equation (6.6) also

provides the global minimum of Equation (6.11).

6.4.1 Localizing disconnected subgraphs

A special case of subgraph localization is that of a graph with a number of connected

components, one of which corresponds to the query graph Q. In this case the editing

matrix E = 0, leading to the simpler objective:

min
v
∥λ (L +diag(v))−λ Q∥2

2 +µv⊤L v

s.t. ∥v∥= c.
(6.12)
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Interestingly, Equation 6.12 also covers the case in which E = Egt , i.e., the

ground-truth editing Laplacian matrix.

6.4.2 Numerical optimization

We exploit Chapter 6.4.1 to craft a numerical procedure that minimizes the objective

in Equation (6.5), collaterally optimizing for E and v. In the first iteration q = 0, we

initialize Eq = 0. In iteration q+1 we minimize f (v,Eq) = λ (L −Eq +diag(v))−
λ Q∥2

2 +µv⊤ (L −Eq)v for v given Eq:

vq+1 = arg min
v:∥v∥=c

f (v,Eq), (6.13)

via projected gradient descent, until convergence; an iteration k + 1 of projected

gradient descent performs the step:

xk+1 = xk+1−α∇v f (v,Eq)

vk+1 = c
xk

∥xk∥,
(6.14)

where α > 0 regulates the learning rate. The gradient ∇v for Equation (6.14) requires

a differentiable eigendecomposition, which is achievable by extant methods [140].

We subsequently update E according to:

ṽ =
vq−min(vq)

max(vq)−min(vq)
, (6.15)

Si j = |ṽi− ṽ j|Ai j, (6.16)

Eq+1 = diag(S1)−S. (6.17)

We obtain a threshold τ of the indicator function δ (v) in Equation (6.2) for the nodes

comprising the subgraph by splitting the elements of v into two clusters minimizing

sum-of-squares error from the mean (i.e., optimizing the k-means objective in one

dimension) and compute the matrix E from this thresholded v by Equations (6.15)–

(6.17).

The SSL algorithm. We eventually present our Spectral Subgraph Localization

(SSL) algorithm 5 for Problem 1. SSL takes as input the adjacency matrix A of

the full graph G and the spectrum of a query subgraph, and returns the vector v and

the threshold τ of the indicator function δ ; it additionally requires some hyperpa-

rameters, such as the number of outer iterations maxiterout, the number of inner

iterations maxiterin, the learning rate α , and the regularization coefficient µ . We em-

pirically found that the number of iterations and the learning rate do not significantly
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Algorithm 5 SSL
Require: A adjacency matrix of the full graph; λ Q spectrum of the query subgraph.
Params: µ regularization coefficient; atol loss tolerance; α gradient step size;

maxiterin maximum number of inner iterations; maxiterout maximum number
of outer iterations

Ensure: Vector v, threshold τ

1: L ← D−A
2: loss← ∞

3: c← 2
√

n−nq max(λ Q)
4: v0← c

|V |1
5: E0← 0
6: while q≤ maxiterout and loss≥ atol do
// Compute vq+1 by iterating (6.14) maxiterin

7: vq+1← argminv:∥v∥=c f (v,Eq)
// Update Eq+1 via (6.15))-(6.17)

8: Eq+1← E_from_v(vq+1)
// Update the threshold τ

9: τ ← k_means_1d(vq+1)
10: loss← f (vτ ,Eτ)
11: q← q+1
12: return vq,τ

Parameter Value/range Description

maxiterin 500–1000 number of inner iterations
maxiterout 3–5 number of outer iterations
atol 10−5 loss tolerance
α 0.02 gradient step size

Table 6.1: SSL hyperparameters and default values.

affect results across datasets if chosen within some range; we report those ranges and

recommended values in Table 6.1. On the other hand, the regularization coefficient µ

in Equation (6.11) requires tuning for each dataset. We thus first normalize the value

of µ by c2 to remove the dependency on v’s magnitude and then perform grid search

on a range of values for µ to select an appropriate value.

The optimization process alternates the projected gradient optimization in Equa-

tion (6.14) and the update of E using Equations (6.15)–(6.17) until it converges or

reaches the maximum number of iterations maxiterout.

Figure 6.2 illustrates the solution’s progressive convergence through iterations,

while Figure 6.3 shows an example result.



98 CHAPTER 6. SPECTRAL SUBGRAPH LOCALIZATION

0 2 4 6 8 10
0

2

4

i

E
ig

en
va

lu
e

λ
i

Iteration 1

0 2 4 6 8 10
0

2

4

i

Iteration 6

0 2 4 6 8 10
0

2

4

i

Iteration 18

Figure 6.2: Alignment of the spectrum λ Q of Q and the part of the spectrum λ (L −E+
diag(v)) of G corresponding to Q at 1, 6, and 18 iterations. As two spectra progressively
converge, especially in smaller eigenvalues, Q is correctly localized in G.

6.4.3 Complexity Analysis

We express the worst-time complexity of the algorithm in terms of the number of

nodes n in the graph G. The eigendecomposition in Equation (6.14) takes O(n3)

per iteration; the computation in Equation (6.17) takes O(n2) for the matrix-vector

multiplication; 1-D k-means in Line 9 takes O(n) with the best algorithm [46]. In

Figure 6.3: Example SSL result: blue nodes show the ground-truth subgraph Q; red nodes
are the remaining nodes of G; shaded nodes are classified wrongly; solid lines show edges
correctly altered (green) or unaltered (black) by E; dotted lines show edges incorrectly
unaltered (green) or altered (black).
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effect, the total time is O(maxiterout · (maxiterin ∗n3 +n2 +n)), where the O(n3)

term dominates. However, as L −E+diag(v) is a graph’s Laplacian, its spectrum

can be efficiently approximated through sampling [24].

6.5 Experiments

Here we empirically evaluate our method, SSL, on a number of datasets and against

several hypotheses. Our evaluation aims to answer the following questions:

(Q1) Do the regularization term and the constraint ∥v∥= c in Equation (6.11) help

the localization?

(Q2) How does the number of edges between the part corresponding to Q and its

complement affect the quality of the localization?

(Q3) How does SSL fare against state-of-the-art methods for graph alignment?

(Q4) What kind of cases are challenging for SSL?

6.5.1 Experiment Design

We implemented SSL in Python 3.6 and ran experiments on an 8-core Intel Core i7-

8565U machine with 16GB RAM. Unless otherwise stated, we choose maxiterout =

2, maxiterin = 500 and µ = 1000.

Datasets. We evaluate SSL on the two real-world graphs presented in Table 6.2.

Additionally, we generate graphs following the stochastic block model (SBM) [53].

SBM graphs allow for generating graphs with community structure and control the

number of inter- and intra-community edges.

Dataset |V | |E| Network type

Football [44] 115 613 contact
HighSchool [39] 327 5 818 proximity

Table 6.2: Graphs used in our evaluation: number of nodes |V |, number of vertices |E|, and
graph type.

Choosing Q. Given a number k, we generate a query workload of size VQ = k from a

real-world graph G to evaluate our subgraph localization method as follows.

1. Randomly select a node u, add it to VQ and place all its neighbors into a set N.

2. Randomly select a node u′ from N, add it to VQ, place all its neighbors which

are not in VQ into N.
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3. Repeat the previous step until |VQ|= k.

4. Set Q as the subgraph induced by VQ in G.

For graphs generated by the stochastic block model, we set Q as the smallest

community.

Quality measure. We assess results by Balanced Accuracy (BA); given the query

graph VQ and the subgraph VS returned by a localization algorithm, balanced accu-

racy BA(v) is defined as the arithmetic mean of sensitivity (or recall) and specificity:

BA(v) =
|VQ ∩VS|/|VQ|+ |¬VQ ∩¬VS|/|¬VQ|

2
(6.18)

6.5.2 Ablation Study

We commence our study by examining how the terms in SSL’s objective function

(Equation 6.11) affect the result. Recall that the objective function consists of: (1)

the data term, that drives the alignment between the spectrum of the part and that

of the query, (2) a spectral regularization term that exhorts v to be in the null

space of L −E and (3) the sphere constraint that enforces a constant norm on the

potential v. To study the contribution of each term on the results, we compare SSL

against two variants thereof:

1. A method only optimizing the data term ∥λ (L −E+diag(v))−λ Q∥2
2.

2. A method optimizing a linear combination of the data term ∥λ (L −E +

diag(v))−λ Q∥2
2 and the spectral regularization v⊤ (L −E)v, without a sphere

constraint.

We experiment on graphs with |V | = 200 nodes sampled form the stochastic

block model, letting the size of the query subgraph increase from 20% of the graph

to 45%. Figure 6.4 reports on the results of this ablation study in terms of average

balanced accuracy over 5 sampled graphs for each subgraph size. Unsurprisingly, the

optimization of the data term yields the worst results, although the method performs

well on small subgraphs. Still, the addition of the spectral regularizer and sphere

constraint enhances the results up to 20% accuracy. For small subgraphs the sphere

constraint brings only marginal gains compared to the spectral regularization. On the

other hand, on large query subgraphs, the sphere constraint boosts the accuracy by an

additional 8%.
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Figure 6.4: Balanced Accuracy for variants of the objective function in Equation 6.11 with: (1)
data term only; (2) data term and spectral regularizer; and (3) data term, spectral regularizer.
and sphere constraint (SSL objective).

To further corroborate these results, Figure 6.5 shows an example of how the terms

impact the potential v, on a 40-node graph sampled from the SBM with two commu-

nities with 20 nodes each; the query graph is one of the two communities. Ideally, we

would like to obtain a v clearly separating values between the part corresponding to

the query graph and the rest. In that case, we say that v forms a step function. The

optimization of the data term (left chart) alone leads to no clear separation between the

two parts. Introducing the spectral regularization (middle chart) yields a result closer

to a step function, though some nodes are incorrectly assigned to the part. Finally,

the full objective in Equation 6.11 produces to a clearly separated potential vector v.

Visualizing the mapping of this potential to the graph G, we clearly recognize the

part GS as the light-colored nodes.

6.5.3 Competing methods

Here we assess our method against previous work. However, to the best of our knowl-

edge, no extant unsupervised method is capable to answer localization queries in

graphs with more than 15 nodes [117]. Therefore, we compare SSL to the nearest

feasible competitor, namely the state-of-the-art method for unsupervised graph align-

ment, CONE [19]. To set up CONE so that it detects subgraphs, we inject in the query

nodes with degree 0, so that the size of the query Q corresponds to that of the graph G,
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Figure 6.5: Plots of v elements sorted in ascending order, and v mapped to G for different
designs of the objective function: (1) only with data term; (2) with data term and spectral
regularizer; and (3) with data term, spectral regularizer, and sphere constraint; nodes in |VS|
correspond to the 20 smallest entries in v, lighter shades indicating smaller values; applying
only the data term, the method fails to localize GS; applying regularization renders the
separation clearer; the addition of the sphere constraint induces a perfectly clear separation.

i.e., |VQ = V |. We extract the ensuing localization vector as the matches of query

nodes in G.

In the same experiment we also investigate the effect of the number of edges

connecting the query graph to the rest of the parent graph. This experimental regime

be seen as a supervision for the edge correction matrix E, since deleting a connecting

edge implies setting the corresponding default entry in E to ground truth. We extract

query subgraphs of 20%, 30% and 40% of the size of the full parent graph. In each

case, we start with a parent graph where the part GS is fully detached from the rest

and iteratively add edges until we reach the original parent graph.

Figure 6.6 presents our results on the Football (top) and HighSchool (bottom) data.

Remarkably, SSL effectively localizes the subgraph in both datasets, outperforming

CONE by up to 50% balanced accuracy. Given 50% of the original edges, SSL

yields balanced accuracy of 0.8. Notably, with highschool dataset, the problem is

more challenging; SSL effectively localizes a query graph as large as 20% of the full

graph, yet fares closer to CONE as the size of the query graph grows. This outcome

potentially arises from the graph’s topology and the presence of dangling nodes (i.e.,
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Figure 6.6: Results on localizing query graphs of 20%, 30%, 40% of the football (upper row)
and highschool (lower row) graphs vs. fraction of connecting edges between the query graph
and rest of the parent graph; we start with a disconnected query graph and add connecting
edges, until the original parent graph is reconstructed.

nodes with degree 1). We investigate this matter in the following.

6.5.4 Challenging Cases

In this section, we investigate some examples of challenging cases for SSL, illustrated

in Figures 6.7 and 6.8. In the results of Figure 6.7, we observe that the spectrum of

the query graph and that of the detected subgraph are well aligned. However, the

localized subgraph deviates substantially from the ground truth. Similarly, in the

results of Figure 6.8, while SSL does not perfectly align the two spectra, it yields a

correlated spectrum. Nevertheless, SSL detects a subgraph comprising nodes that are

only connected by one edge. In both cases, the challenge arises from the sensitivity of

the spectrum at weakly connected parts of the graph. Changing the Laplacian in such

parts by adding v has a larger impact on the spectrum than changing the Laplacian in

a well-connected neighborhood. These types of graphs force the optimization process
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Figure 6.7: Alignment of the spectrum λ Q of Q and the corresponding part of the spectrum
λ (L −E+diag(v)) of G after convergence, ground truth VS (blue) and V\VS (white), and
corresponding localization by SSL; while the spectra are perfectly aligned, the detected
subgraph is not the ground truth. The depicted graph is a protein-protein interaction network
from the D&D dataset [31].

0 10 20 30
0
2
4
6
8

10

i

E
ig

en
va

lu
e

λ
i

Alignment of spectra

Ground truth Localization

Figure 6.8: Alignment of the spectrum λ Q of Q and the corresponding part of the spectrum
λ (L −E+diag(v)) of G after convergence, ground truth VS (blue) and V\VS (white), and
corresponding localization by SSL; while the spectra are well aligned, the detected subgraph
is not the ground truth; the detected subgraph coincides with nodes that have degree 0 or 1.
The depicted graph is arenas [73].

into a local optimum, as the optimizer has a large incentive to separate these weakly

connected parts of the graph.

6.6 Conclusion

We studied the challenging data engineering problem of subgraph localization, which

calls to find a set of nodes in a larger graph that best corresponds to a given query

subgraph. We devised a novel spectral solution that identifies the query match by
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adding a penalty to the Laplacian matrix so as to obtain a spectrum similar to that

of the query graph. This novel approach requires solving a non-convex, non-smooth

problem for which we devised a numerical method. Our results demonstrate that our

spectral method localizes query subgraphs more effectively than a baseline based on

the state-of-the-art method for graph alignment. To our knowledge, this is the first

endeavor in effective subgraph localization that can handle graphs of any size in the

order of magnitude of hundreds of nodes.





Chapter 7

Conclusion

In this section, we summarize the outcomes of this dissertation and discuss potential

avenues for future work.

7.1 Outcome

This dissertation deals with methods for graph correspondences for unattributed

graphs. We introduced three contributions: An algorithm for graph alignment [51] in

Chapter 4, an evaluation of unrestricted graph alignment algorithms [127] in Chapter 5

and an algorithm for subgraph localization [52] in Chapter 6.

Spectral Graph Alignment. In Chapter 4, we investigated the applicability of spectral

graph theory to the task of full graph alignment. We developed a powerful functional

maps based approach [51], which establishes a correspondence between eigenvectors

of both graphs. At the same time, we identified a modular framework which many

state-of-the-art graph alignment algorithms follow. We introduced different add-

ons for our method, which can be also applied to other modular graph alignment

algorithms. Our developed methods GRASP and B-GRASP are scalable methods

which yield a higher alignment quality than other scalable graph alignment algorithms.

Evaluation of unrestricted graph alignment algorithms. In the previous work

on graph alignment, we noticed a lack of comparative evaluation methodologies for

unrestricted graph alignment. Unrestricted graph alignment methods emerge from

a lot of different fields, and they have never been all evaluated against each other.

In the work presented in Chapter 5, we performed the first thorough evaluation of

unrestricted algorithms against each other in a unified evaluation framework and on a

clear benchmark with both real and synthetic data [127].

107
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Spectral subgraph localization. In the last project, presented in Chapter 6, we

developed SSL, a spectral approach for subgraph localization [52]. In order to

establish a correspondence between a query graph Q and a graph G, we aligned the

spectra of these two graphs. Our approach is the first graph localization approach able

scale to graphs of hundreds of nodes. It outperforms the baseline which is based on a

graph alignment approach.

These contributions structure the field of graph alignment and demonstrate the

conceptual usefulness of spectral graph theory for graph correspondence tasks where

only the graph is available. The work conducted opens a set of interesting possibilities

for future work, which we discuss in the next section.

7.2 Future Work

Several interesting directions for future work emerge from the work carried out during

the course of this dissertation.

Additional information. Throughout this thesis we worked with unattributed graphs.

Our work was guided by the question: How can we solve graph correspondence

problems only given its structure? This made us independent of noisy or missing

node attributes and the requirement for supervision by ground truth data. But un-

doubtedly, additional information can and has helped in solving graph correspondence

problems [60, 155]. While currently our methods GRASP [51] and SSL [52] do not

require it, they can be adapted.

We will present ideas to extend GRASP and SSL to using node attributes and

supervision. A central element of GRASP is the computation of the functional map.

The computation of a high-quality functional map requires a thoughtful choice of

corresponding functions. In GRASP, we use the diagonal of the heat kernel at different

time steps as corresponding functions rooted in the assumption that graphs will be

structurally similar. If we are given continuous node attributes and can assume

that they are similar across graphs, we can directly transfer node attributes into a

corresponding function. The same holds true for known ground truth alignments, so

called seed nodes. As for a pair of seed nodes, if we are sure that they correspond

across graphs, we can construct corresponding functions from them. Ground truth

nodes can also guide the localization process of SSL. In this case, ground truth

knowledge would mean that we do know whether a node in G belongs to the localized

part or not. This can directly be introduced as a fixed element in the optimization
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process for the potential vector v, which at the positions of ground truth nodes can be

initialized with the intended value.

Scalability. The major bottleneck in applying spectral methods to graph mining is

the eigendecomposition of the Laplacian, which is computationally expensive. Thus

spectral methods do hardly scale to graphs with millions or billions of nodes. However,

as a lot of real world graphs are of these scales, and as spectral methods have been

proven to successfully work on smaller graphs, scaling these methods up is an obvious

next step.

We have identified four starting points for this.

1. Decreasing the number of eigenvalues and eigenvectors. In SSL and GRASP

only a fixed number of eigenvalues and/or eigenvectors are required. We thus

can go to methods that estimate only the first k eigenvalues and eigenvectors.

Power iteration methods [14] provide a promising starting point here.

2. Approximating the spectrum. In SSL only the spectrum is required. A promising

approach for approximating the spectrum of a graph was presented in [24],

which could be applied for SSL.

3. Tracking changes in the Laplacian. In SSL, the Laplacian is edited in every

iteration, which requires an expensive recomputation of the spectrum. Tracking

the amount of change possible in one iteration and by that, bounding the change

that can happen to the spectrum in that step is an appealing idea. Bounding

possible changes in Laplacians has been investigated in the area of GNNs [160].

4. Replacing the Laplacian. In both GRASP and SSL, eigenvectors and eigen-

values of the Laplacian can be interpreted as graph descriptors and could

be replaced with other, less computationally expensive descriptors based on

GNNs [34]. In GRASP, they occur in the heat kernel, a graph descriptor from

which corresponding functions are computed and in the final node embeddings.

In SSL, we could move to aligning other graph descriptors than the spectrum.

Other graph correspondence problems. In this thesis, we have handled full graph

alignment and subgraph localization. However, tackling related problems with similar

approaches is a natural next step. GRASP currently requires graphs of the same

size. It could be extended to partial matching. Different scenarios are possible here:

a smaller graph has to be aligned to a larger graph or two graphs share an overlap
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which has to be identified and aligned. This problems show a component of subgraph

localization, so a combination with SSL seems possible.

Also subgraph localization can be extended. We have worked with cases where

we aim at detecting an isomorphic subgraph. However, in real world applications we

also have to consider changes in structure, as we might aim at not exact subgraph

isomorphism, but more at detecting a structurally similar community. Also tackling

more complex subgraph localization problems is conceivable, for example detect-

ing multiple subgraphs at once, or detecting multiple potential occurrences of one

subgraph as a ranking problem.

To conclude, this dissertation has made fundational contributions to the field

of graph correspondences, advancing the state-of-the-art in graph alignment and

subgraph localization. We have shown that spectral methods can be applied to solve

complicated real-world problems in an elegant, mathematically sound way. Last but

not least, several exciting possibilities for future work emerge from this dissertation.
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