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Abstract

The growing number of Earth-observing satellites has led to an unprecedented avail-
ability of satellite images in the recent decade. The high spectral, spatial, and temporal
resolutions of this data have enabled many applications in precision agriculture, in-
cluding crop monitoring, variable nutrient application, disease and pest management,
as well as yield prediction. However, effectively making use of the vast amount of
remote sensing data requires automatic, accurate, and scalable methods. Recent deep
learning methods are promising because of their strong performance and ability to
learn directly from the raw data. However, the data-hungry nature of deep neural
networks requires large quantities of labeled training data in order to obtain accurate
results. This is particularly a challenge in remote sensing, as obtaining labels for
satellite images typically requires expert knowledge or in-situ data collection.

In this thesis, we describe several deep learning methods for remote sensing that
are particularly label-efficient. We first present a deep learning method that learns to
detect clouds in satellite images with only image-level labels as supervision, which
are significantly cheaper to obtain than the typical pixel-level labels. With reduced
label costs, deep learning methods become more practical for cloud detection, which
is a key preprocessing step for most use of satellite images in precision agriculture.
Secondly, we present a method to transfer deep crop type classification models
from a region where training labels are available to another where they are not. We
introduce a technique to estimate the temporal shift of crop growth between two
regions, enabling models to generate accurate pseudo-labels for an unlabeled region.
These pseudo-labels are then used as supervision to re-train models for classification
in new regions. Lastly, we propose an improved representation of time for crop
classification models. Our method is based on accumulated temperatures instead
calendar days to better capture the climatic variation affecting crop growth, which
enables models to generalize across large geographical areas. We demonstrate that our
solutions enable large-scale prediction of crop types in Europe, providing essential
information for, e.g., crop monitoring and yield prediction. While our focus is on
agricultural applications, our large-scale and label-efficient contributions also hold
promise for a variety of other remote sensing tasks ranging from environmental
monitoring and climate studies to general classification of satellite image time series.
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Resumé

Det voksende antal jordobservations-satellitter har ført til en hidtil uset tilgængelighed
af satellitbilleder i det seneste årti. De høje spektrale, spatiale, og temporale opløs-
ninger af disse data har muliggjort mange anvendelser indenfor præcisionslandbrug,
herunder afgrødeovervågning, gradueret tildeling af næringsstoffer, sygdoms- og
skadedyrshåndtering samt udbytteforudsigelse. Effektiv brug af den enorme mængde
af remote sensing data kræver dog automatiske, nøjagtige og skalerbare metoder. De
seneste deep learning-metoder er lovende på grund af deres stærke ydeevne og evne til
at lære direkte fra de rå data. Men den datahungrende natur af dybe neurale netværk
kræver dog store mængder annoterede træningsdata for at opnå nøjagtige resultater.
Dette er især en udfordring indenfor remote sensing, da det typisk kræver ekspertviden
eller in situ dataindsamling at få annotering til satellitbilleder.

I denne afhandling beskriver vi flere deep learning-metoder til remote sensing,
som er særligt annoteringseffektive. Vi præsenterer først en deep learning-metode, der
lærer at detektere skyer i satellitbilleder med kun annoteringer på billedniveau som
vejledning, hvilke er væsentligt billigere at anskaffe end de typiske annoteringer på
pixelniveau. Med reducerede annoteringsomkostninger bliver deep learning-metoder
mere praktiske til skydetektering, hvilket er et vigtigt forbehandlingstrin for de fleste
anvendelser af satellitbilleder inden for præcisionslandbrug. For det andet præsenterer
vi en metode til at overføre dybe afgrøde-klassificeringsmodeller fra en region, hvor
annoteringer er tilgængelige, til en anden, hvor de ikke er. Vi introducerer en teknik
til at estimere det temporale skift af afgrødevækst mellem to regioner, hvilket gør det
muligt for modeller at generere nøjagtige pseudo-annoteringer for en ikke-annoteret
region. Disse pseudo-annoteringer bruges derefter som vejledning til at træne mod-
eller til klassificering i nye regioner. Til sidst foreslår vi en forbedret repræsentation
af tid for afgrøde-klassificeringsmodeller. Vores metode er baseret på akkumulerede
temperaturer i stedet for kalenderdage for bedre at fange den klimatiske variation,
der påvirker afgrødevækst, hvilket gør det muligt for modeller at generalisere på
tværs af store geografiske områder. Vi demonstrerer, at vores løsninger muliggør
forudsigelse af afgrødetyper i stor skala i Europa, hvilket giver essentiel information
til afgrødeovervågning og forudsigelse af udbytte. Mens vores fokus er på land-
brugsapplikationer, er vores storskala og annoteringseffektive bidrag også lovende for
en række andre anvendelser inden for remote sensing, lige fra miljøovervågning og
klimaundersøgelser til generel klassificering af tidsserier af satellitbilleder.
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Part I

Overview
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Chapter 1

Introduction

In modern times, agriculture fulfills one of the most basic needs of humans: food.
The history of agriculture started some 100,000 years ago and has since enabled
the human population to grow many times larger than was possible by hunting and
gathering. New farming techniques have since helped agriculture keep up with the
pace of growing food demands, and have simultaneously left many humans free to do
other things than to sow fields and harvest crops, such as write computer software for
large tech companies or, alternatively, pursue PhDs in computer science.

However, the continuous population growth has put a significant strain on the
Earth’s limited natural resources. To meet future food demands, the farming process
must be optimized to maximize crop yield while minimizing the environmental and
economic impact [183]. The field of precision agriculture aims to do just that [9, 25].
Precision agriculture [158] can broadly be defined as the use of emerging technologies,
such as remote sensing, the internet of things, big data analysis, and machine learning,
to help farmers make informed decisions based on concrete data, rather than their
intuition. In particular, the use of satellite images for precision agriculture has rapidly
increased in recent years [155]. The open availability of satellite images with high
spectral, spatial, and temporal resolutions has enabled many applications for precision
agriculture, including crop monitoring [81], determining soil properties [42], variable-
rate fertilizer application [83], and yield prediction [190].

In this thesis, we explore the use of deep learning models to analyze satellite
images for precision agriculture. Deep learning is a type of machine learning method
that in the recent decade has achieved impressive results in for example computer
vision (CV) and natural language processing (NLP) tasks [11, 50, 86, 173]. In machine
learning, we study algorithms that can acquire their own knowledge about a given task
by extracting patterns from raw data, a capability that is known as learning [57]. This
is typically done by discovering a function that maps a representation of data to some
desired output. The performance of machine learning methods depends heavily on the
representation of the data they are given. For this reason, most traditional machine
learning methods rely on hand-designing the right set of features for a given task.

Deep learning methods differ from traditional machine learning methods in that
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4 CHAPTER 1. INTRODUCTION

they learn not only the mapping from representation to output but also the representa-
tion itself. Deep learning solves this by using complex models consisting of multiple
neural network layers to progressively extract higher-level features from the input.
Learning representations means that deep learning methods can operate directly on
raw data, removing the need for manual feature design which enables these methods
to easily adapt to new tasks. In addition, these learned representations often perform
better than hand-designed features [51].

However, a major drawback of deep learning is that large amounts of labeled
data must be available for training [162]. This is a central issue when applying these
methods to remote sensing data, where unlabeled data is plentiful but collecting high-
quality labels is much more challenging [124, 139, 177]. For example, the Sentinel-2
satellites generate about 1.6 terabytes of compressed raw image data every day [29].
But acquiring corresponding labels typically requires experts to manually interpret
the images or to physically travel to different areas of the Earth, and e.g. survey
cultivated crops, which is expensive and not always feasible. Even if extensive efforts
are made into gathering high-quality labels, the physical constraint of data collection
often results in labels that are localized to specific regions of the Earth. This creates
another issue in that training datasets are often not representative of the geographical
regions where the deep learning model must be deployed, which causes the model
to fail [100, 168]. Consequently, it is important to develop deep learning models for
remote sensing which have low labeling costs and which can effectively generalize to
new regions after training with few geographically localized labels.

In this thesis, we address these challenges with three machine learning approaches:

1. Weakly-supervised learning: How can we create models that can be trained
with cheap, low-quality labels but can output high-quality predictions?

2. Unsupervised domain adaptation: How can we adapt models trained with data
from regions with available labels using unlabeled data from new regions?

3. Domain generalization: How can models trained with localized labels general-
ize to new regions?

Concretely, we consider two tasks in precision agriculture where these issues are
particularly prevalent: cloud detection and crop type classification.

Cloud detection is an essential preprocessing step to detect and mask cloud
noise before the satellite images can be used for further analysis in e.g. precision
agriculture. While deep learning can detect clouds with greater accuracy than other
approaches [71], labels are again a significant bottleneck. Obtaining cloud labels
requires experts to manually label every pixel of high-resolution satellite images in a
large dataset covering different types of clouds and surfaces of the Earth. Moreover,
even if labels are obtained, they are specific to only one satellite sensor, meaning
this tedious and time-consuming task must be repeated for any future satellites. As a
result, weakly-supervised learning is particularly valuable for cloud detection: if we
can train accurate deep cloud detection models using cheap, low-quality labels that
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are easy to acquire, we can benefit from the accuracy of deep learning models without
the burden of expensive labels. This leads to our first research questions:

RQ1: How can we train deep cloud detection models with only weak supervision?

In Chapter 5, we present Fixed-Point GAN for Cloud Detection, a weakly-
supervised learning method for cloud detection where, instead of requiring labels for
every pixel, we only need a label of whether the satellite image contains clouds or not,
while still obtaining accurate results at the pixel-level. Our method thus drastically
reduces the effort required to obtain cloud labels, as it is much easier to tell if an
image is cloudy or not than the exact pixels.

The second task we consider is crop type classification, which is the problem
of identifying agricultural parcels and their cultivated crop types in satellite images.
Current deep crop classification models use satellite image time series (SITS) to
classify crop types based on their unique temporal growth patterns. In particular, crop
type maps over wide geographical areas have numerous applications of major financial
and environmental importance. For example, knowledge of the cultivated crop types of
parcels in Europe is necessary for fair allocation of subsidies to farmers, an endowment
of 50 billion euros per year in the European Union [21]. Crop type maps can also
help ensure that sustainable crop rotation practices are respected [175] and aid in
production forecasts [178]. While large amounts of crop type labels are available for
training, such as in some European countries with open data policies [147], the labels
are highly localized, which limits the effectiveness of current classifiers on a large
scale [80, 100, 168].

We approach this problem with unsupervised domain adaptation, where we adapt
a model trained with data from a source region to a different target region using
unlabeled target data. This gives rise to our second research question:

RQ2: How can we adapt a trained deep crop classification model to new regions by
utilizing unlabeled data?

In Chapter 6, we present TimeMatch, where a crop classifier trained with data
from a source region is adapted to a target region by estimating the temporal shift
between the two regions. This temporal shift is then used to assign pseudo-labels to
unlabeled data from the target region and re-train the model. We demonstrate that our
approach outperforms existing UDA methods when applied to SITS, which highlights
the importance of addressing temporal shifts in the data.

Another approach to large-scale crop classification is domain generalization. The
goal of domain generalization is to train a model using data from regions where labels
are available that generalize well to regions not seen during training. In comparison to
unsupervised domain adaptation, domain generalization does not require any training
for the unseen regions, which makes such an approach more practical for large-scale
crop classification. Thus, our third research question is:



6 CHAPTER 1. INTRODUCTION

RQ3: How can we train deep crop classification models that generalize to new
regions?

In Chapter 7, we present Thermal Positional Encoding, where we learn crop clas-
sification models using thermal time [105] to address the problem of temporal shifts
discovered in Chapter 6, and thereby improve the generalization. We demonstrate that
our approach greatly improves the generalization of crop classifiers on a Europe-wide
dataset, thereby enabling practical large-scale crop classification.

1.1 Thesis Outline

This thesis is structured into two parts: Part I provides an overview of the research
field and an introduction to the papers of this thesis, and Part II contains the full
papers.

Part I consists of Chapters 1 to 4. This chapter (Chapter 1) introduces the topic
and describes the research questions addressed in the papers. Chapter 2 provides
an introduction to satellite images and deep learning, discusses the properties of the
data, and provides an overview of the cloud detection pre-processing step. Chapter 3
provides an introduction to large-scale crop classification. We describe current deep
learning models, discuss how they address the challenges of the task, and end with
a discussion of open questions. Finally, Chapter 4 contains an introduction to the
contributions of the papers, including a summary of the results and an assessment of
the applied methodologies, and presents directions for future work.

Part II contains publications and manuscripts. Only editing related to formatting
has been made to the papers. I was the main contributor to all papers included. In
particular, we include the following:

• Chapter 5: Joachim Nyborg and Ira Assent (2021). Weakly-Supervised Cloud
Detection with Fixed-Point GANs. In Proceedings of the 2021 IEEE Inter-
national Conference on Big Data (BigData) Workshops (Machine Learning
for Big Data Analytics in Remote Sensing) [115]. https://arxiv.org/abs/
2111.11879.

• Chapter 6: Joachim Nyborg, Charlotte Pelletier, Sébastien Lefèvre, and Ira
Assent (2022). TimeMatch: Unsupervised Cross-Region Adaptation by Tem-
poral Shift Estimation. Revised manuscript submitted to the ISPRS Journal
of Photogrammetry and Remote Sensing [118]. https://arxiv.org/abs/
2111.02682.

• Chapter 7: Joachim Nyborg, Charlotte Pelletier, and Ira Assent (2022). Gen-
eralized Classification of Satellite Image Time Series with Thermal Posi-
tional Encoding. Submitted to the 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops (EarthVision) [117].
https://arxiv.org/abs/2203.09175.

https://arxiv.org/abs/2111.11879
https://arxiv.org/abs/2111.11879
https://arxiv.org/abs/2111.02682
https://arxiv.org/abs/2111.02682
https://arxiv.org/abs/2203.09175
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Other works not included in this thesis:

• Joachim Nyborg and Ira Assent (2019). Agricultural Land Cover Classification
with Deep Learning. Presented at Nordic Remote Sensing Conference (NoRSC
’19).

• Emy Alerskans, Joachim Nyborg, Morten Birk, and Eigil Kaas (2021). Pre-
diction of near-surface temperatures using a non-linear machine learning post-
processing model (2021). Presented at EGU General Assembly Conference.

• Emy Alerskans, Joachim Nyborg, Morten Birk, and Eigil Kaas (2021). A
Transformer Neural Network for Predicting Near-Surface Temperature. In
review for Meteorological Applications.





Chapter 2

Satellite Image Analysis for
Precision Agriculture

In this thesis, we consider the use of remote sensing data to address tasks in precision
agriculture. In particular, we focus on optical satellite images, that is, satellites that
measure the reflectance of light from the Earth’s surface, in contrast to e.g. radar
sensors. In this chapter, we present an introduction to the properties of this type
of data and why it is useful in precision agriculture. Then, we give an overview of
deep learning and the main challenges with applying existing deep learning models to
automate satellite image analysis. Finally, we discuss the application of deep learning
for cloud detection to pre-process satellite images.

Figure 2.1: Satellite images enable agricultural mapping across the entire Earth.
Credit: NASA.
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CHAPTER 2. SATELLITE IMAGE ANALYSIS FOR PRECISION

AGRICULTURE

2.1 Optical Satellite Image Data

The image quality of optical satellite images has greatly improved since the first image
was taken of the Earth in the late 1950s by the Explorer 6 satellite. The improvements
in image quality have enabled a broad range of applications, and thanks to the open
data policy of many satellite programs, such as Landsat [69] and Sentinel [29], the
data is now also available free of charge.

Satellites typically differ based on the spatial, spectral, and temporal resolutions
they offer. The spatial resolution is defined as the surface area a single pixel represents.
For example, the Landsat-8 and Sentinel-2 satellites, both of which we consider in
this thesis, have a relatively coarse spatial resolution of 30m and 10m, respectively,
compared to e.g. the 2m resolution offered by Planet [123]. In precision agriculture, a
high resolution is not always a requirement, as it also means more data to process. A
high spectral resolution, however, is key [155]. Compared to regular camera images
with three spectral bands (red, green, and blue), satellite images typically provide
information beyond the visible spectrum in e.g. the near- and short-wave infrared.
Near-infrared light is particularly important when studying vegetation. Our eyes see
plant leaves as green because the wavelengths in the green region of the spectrum
are reflected by plants, while red and blue are absorbed. What we do not see is
that near-infrared is reflected even more, and how much is reflected depends on how
“healthy” the plant is. If the plant is unhealthy, it instead reflects less near-infrared and
more red light, as sick plants typically turn into a brown color.

Because the red and near-infrared bands of satellite images relate to photosynthetic
activity, they are highly relevant to analyzing crops in precision agriculture. Thus, a
common feature to extract is a ratio between these two bands, also referred to as the
normalized difference vegetation index (NDVI) [167]:

NDVI =
NIR−Red
NIR+Red

(2.1)

where Red and NIR are the spectral bands of a satellite image for red and near-infrared,
respectively. In precision agriculture, NDVI has been widely used to e.g. control
variable-rate irrigation and fertilizer systems [155]. In addition to near-infrared, bands
in the short-wave infrared region are also highly relevant, as they are connected to the
water content in plants and the soil [149].

A high spectral resolution becomes particularly useful for agriculture when com-
bined with a high temporal resolution. The temporal resolution is how frequently a
new satellite image is acquired of the same area. For example, the Sentinel-2 program
consists of two satellites in the same orbit but phased 180 degrees from each other,
which enables a surface area to be revisited every 5 days, and sometimes more often
when the images overlap. Combining such satellite images of the same area over time
with satellite image time series (SITS) makes it possible to study the development of
crops over time. This enables the remote sensing study of crop phenology, which is
the various biological life cycles that characterize each crop type. Computing NDVI
from SITS is a way to reveal crop phenologies, as shown in Figure 2.2 for the crop
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Figure 2.2: Example temporal NDVI profiles of different crop types in Kansas, USA,
showing their unique phenology. Image is taken from [103].

types alfalfa, corn, sorghum, soybean, and winter wheat. The figure shows that each
crop type has a unique and well-defined profile, as a result of the timing differences
of green-up, peak greenness, and senescence. A clear temporal shift separates the
peak NDVI of summer crops (corn, sorghum, soybeans) and that of winter crops
(alfalfa and winter wheat) in the spring period when the summer crops are yet to be
planted. We can also see that winter wheat is the first to be harvested (the NDVI
drops), while alfalfa continues to experience “grow and cut” cycles. From this, it
is clear that for crop classification from satellite images, we need to understand the
unique spectral-temporal profiles of each crop type and the timing differences between
them. We discuss the crop classification task further in Chapter 3.

2.2 Automatic Satellite Image Analysis

While it is possible to manually interpret satellite images, such as by NDVI, efficiently
making use of the vast amount of satellite image data available requires automatic
data analysis methods. For this, traditional machine learning methods have been
widely applied. Common methods are based on random forests [47] and support
vector machines [48]. These methods typically require the extraction of hand-crafted
features. For tasks related to precision agriculture, these features include vegetation
indices (e.g. NDVI) [1, 33, 174, 195], phenological features [55, 77], or additional
meteorological data [33]. Although these methods use features that are understandable
and robust, the choice of features requires task- or region-specific expert knowledge
which limits scalability. In comparison, recent deep learning methods are scalable and
often more accurate due to their ability to learn task-specific features directly from
the raw satellite image data [125, 138, 142]. Given the scalability and state-of-the-art
performance of deep learning at the time of writing this thesis, we focus on these
methods for satellite image analysis.
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CHAPTER 2. SATELLITE IMAGE ANALYSIS FOR PRECISION

AGRICULTURE

Overview of Deep Learning

Recent deep learning methods for analyzing satellite images and time series thereof
build upon the impressive results of deep learning in computer vision (CV) and natural
language processing (NLP).

Following the highly influential AlexNet [86] with groundbreaking results on
the ImageNet dataset [26], “deep” neural networks, that is, networks with many
neural network layers, have revolutionized many computer vision tasks, including
image classification [59, 86, 164], object detection [45, 46, 131], and semantic seg-
mentation [97, 134]. Deep learning models with many layers are computationally
expensive, and training is typically made feasible by parallelizing computation using
graphics processing units (GPUs). In computer vision, convolutional neural networks
(CNNs) [89] are most commonly used, where learnable convolutional filters slide
along the height and width of the input image to extract spatial-spectral features in
a translation equivariant fashion. Recent advances in this field have been character-
ized by further increased model sizes, enabled by residual connections to stabilize
training with increased depth [59], or neural architecture search to find efficient
and large models [164]. Another line of work is Generative Adversarial Networks
(GANs) [50], which have shown an impressive ability to generate photo-realistic
images [78], transfer the style of one image to another [197], and increasing the
resolution of images [90]. A typical GAN consists of two networks: a generator and
a discriminator. The generator learns to generate fake images, while the discriminator
learns to distinguish between real and fake images. By training these two networks
adversarially, where the two networks contest with each other in a minimax game, the
generated images become highly realistic.

Deep learning has also achieved impressive results in many NLP tasks. Compared
to CV, the text data of NLP is not spatial but sequential, and this line of work thus
focuses on the use of neural network units that process sequences. In NLP, these
sequences typically consist of word embeddings [106], obtained by mapping each
unique word to a vector representation. Recurrent neural networks (RNNs), such as
long short-term memory (LSTM) [62] and gated recurrent units (GRU) [18], have
been widely used [18, 52, 163]. Given an input sequence, RNNs output a sequence of
hidden states hhh(t) as a function of the previous hidden state hhh(t−1) and the input for
position t. The drawback of RNNs, however, is that this sequential computation limits
parallelization and also creates difficulties in modeling long-range time dependencies.
The latter is addressed to some degree by bidirectional RNNs [52], but significant
benefits were later achieved by the attention mechanism [3], which enables models to
compute global dependencies between the inputs and outputs of RNNs. However, the
constraint of sequential computation remained. Recently, this problem is addressed
with the Transformer model [173], where the recurrent units are completely replaced
by a particular attention mechanism called self-attention, where outputs are computed
by relating each element in the input sequence itself with all other elements. Self-
attention is fully parallelizable, which leads to significantly lower training times
compared to RNNs. The efficiency of self-attention has enabled the training of huge
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Transformer models to obtain impressive language capabilities, such as the GPT-3
model [11]. Recently, the self-attention mechanism has also been applied to obtain
image classification results similar to state-of-the-art convolutional networks [28],
indicating that self-attention is not only beneficial for sequences but is a general
learning mechanism.

Differences to Remote Sensing Data

Next, we study how deep learning can be applied to remote sensing data. While
we also consider image data and sequences thereof, there are some key differences
between the typical data studied in CV and NLP and that in remote sensing which
limits the direct use of existing CV+NLP methods in precision agriculture.

For instance, the typical images of CV, such as natural images from ImageNet [26],
are hand-held, 3 band camera images (red, green, blue), and the typical objects in the
images are large and 3-dimensional. In comparison, Sentinel-2 images are 13 band
images, and the typical objects (e.g. agricultural fields) are small and 2-dimensional.
These differences mean that the best-performing models in CV may not necessarily
obtain high performance for remote sensing data. For example, it has been shown that
CNNs rely heavily on the texture of objects [44] for image classification, such as the
fur texture of cats and dogs. However, this cannot be leveraged for e.g. classification
of agricultural fields in Sentinel-2 images, as the 10m resolution is not high enough
to show any specific plant texture of crops [142]. Another example is that occlusion
in natural images happens between objects, whereas in satellite images, occlusion
typically only happens between clouds and the objects on the surface (e.g. agricultural
fields). We leverage this in Chapter 5, where the occlusion difference between clear
and cloudy images is used to detect clouds with weak supervision.

Another comparison we make here is between the text sequences of NLP and
satellite image time series. However, a crucial difference is the importance of temporal
positions. In NLP, the position of a word in a sequence is mostly arbitrary, as words
are not more likely to appear at the beginning than the end of the text (to some degree).
In contrast, the time position of satellite images is crucial information. For example,
the position of an image in SITS refers to a specific instance in time, such as the spring
or the summer, and this information is required to model the timing of crop phenology.
We leverage this observation in the work we present in Chapter 6, where we use the
timing learned by models in one region to adapt the model to another. Furthermore, in
Chapter 7, we change the temporal reference from the commonly used calendar time
to thermal time, which better accounts for the climatic differences between regions, to
improve the generalization of crop classifiers.

Dealing with Clouds

Making use of the large body of remote sensing data requires the images to be pre-
processed to an analysis-ready state, and one of the key steps in that process is cloud
detection. More than half of the Earth’s surface is covered by clouds every day on
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average [160], and without prior detection of clouds and their accompanying cloud
shadows, the availability of satellite images is greatly limited.

Traditionally, cloud detection has been tackled by threshold-based methods [54,
199], where handcrafted thresholds are set to satellite image pixels to separate cloudy
pixels from clear pixels. However, it is difficult to scale such an approach to the
large variation in cloud types and land surfaces, and much work is required to tackle
the many edge cases. For example, with threshold-based methods, it is difficult to
detect the semi-transparent cloud-type cirrus without the use of a specialized cirrus
band [199]. Another accuracy issue is often with surfaces of high reflectance values,
such as mountainous regions, where the use of the elevation maps is needed to
accurately detect clouds [127] A challenge is also that threshold-based methods are
designed for a specific satellite only, which makes these methods difficult to scale to
different satellites.

Recently, deep learning methods based on semantic segmentation have been
shown to outperform threshold-based methods [71, 94, 191]. Moreover, as these
methods are learnable from data, they can easily be scaled to different satellites as
long as a labeled dataset is available to re-train the model for the new image properties.
However, if such a dataset is not readily available, manually annotating ground truth
for clouds is a highly laborious task. Each pixel of a large and varying satellite image
dataset must be manually interpreted as clouds or not, which is time-consuming and
can be difficult when dealing with semi-transparent clouds.

In Chapter 5, we present a deep learning method for cloud detection which can
be trained with only image-level ground truth labels. That is, instead of labeling
every pixel of clouds, our method only requires information about whether the image
contains clouds or not, which is much easier to annotate. We demonstrate that our
method can predict pixel-level cloud labels with an accuracy similar to existing deep
learning methods trained with the expensive pixel-level ground truth, and outperforms
threshold-based methods designed for Landsat-8.

2.3 Conclusion

In this chapter, we introduce the satellite image data we consider in this thesis and
the properties needed for applications in precision agriculture. We describe methods
to automatically analyze satellite images. Deep learning methods are considered in
this thesis based on their impressive results for image analysis in computer vision and
temporal understanding in natural language processing. Additionally, we discuss the
main differences between the typical data considered in CV and NLP compared to
that in remote sensing which motivates specialized methods. Finally, we provide an
overview of cloud detection, a satellite image pre-processing step required for most
precision agriculture applications. In the next chapter, we discuss another task for
deep learning on satellite images, namely crop type classification.



Chapter 3

Large-Scale Crop Classification

In this chapter, we introduce the problem of crop classification, which is the task
of assigning crop type labels to satellite images. This is one of the core problems
in remote sensing that has a large variety of applications—in particular, crop clas-
sification over large geographical scales (national, continental, global) is extremely
valuable knowledge for many applications, including crop area estimation [10], yield
prediction [6, 35], and disaster risk assessment [156]. We present here the different
kinds of deep learning models proposed in the literature, and discuss the current state
of research, in particular if large-scale crop classification is addressed.

3.1 The Crop Classification Problem

Classifying crop types from a single satellite image is not always possible as the
appearance of different crops can be very similar at a single time step. Instead, SITS
have been the primary data source for crop type classification for decades [119, 132],
as temporal data reveals the unique phenology of different crop types (described in
Chapter 2).

Formally, we define crop classification as the problem of classifying a sequence of
satellite images xxxi = (xxx(1)i , . . . ,xxx(T )i ) of length T . The classification can be addressed
either parcel-wise or pixel-wise. We illustrate these two approaches in Figure 3.1.

In parcel-wise classification, only pixels from a homogeneous agricultural plot of
land, or a parcel, are input to the model. In this case, each input xxx(t) ∈ RT×H×W×C

contains the pixels within the parcel bounding box of height H and width W , which is
then mapped to a prediction y ∈ RK to K crop classes. With this approach, the model
only has to classify pixels within parcels and does not have to deal with other types
of non-agricultural land such as cities or water. However, this approach requires the
polygon shapes that outline parcels to be available. While these are typically available
for European countries [147], they may not be for many other regions of the world.

In pixel-wise classification, polygon shapes are not required. With deep learning,
semantic segmentation is usually performed instead of classifying one pixel at a
time [41, 138, 140], where a SITS patch xxx(t) ∈ RT×H×W×C is classified by predicting

15
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Figure 3.1: Crop classification of SITS with deep learning is either performed parcel-
wise, which requires knowledge of the parcel borders, or pixel-wise, which does not.
For the latter, we show here a semantic segmentation approach, where a satellite image
time series is mapped to a segmentation image containing pixel-wise predictions.

a segmentation map y ∈ RH×W×K containing predictions for every pixel. But as
these pixels can belong to any type of land, the model must be able to handle non-
agricultural pixels, such as cities, water, forest, etc. This makes it more difficult to
study the challenges that affect crop growth on a large scale. Therefore, we focus on
parcel-wise classification in our work presented in Chapter 6 and Chapter 7.

3.2 Challenges

As we describe in the next section, current deep learning methods are adept at classify-
ing crop types by recognizing their phenological patterns from SITS. However, there
are still some challenges that a deep learning model must address, in particular for
large-scale classification. We present here a (non-exhaustive) list of such challenges:

• Cloud occlusions. The spectral values of crop development can be randomly
occluded by clouds or changed because of cloud shadows.

• Class imbalance. Farmers do not cultivate an equal amount of each crop type,
causing a significant imbalance in the frequency of different classes.

• Irregular temporal sampling and length. Depending on the location, SITS
are observed a different number of times and intervals. This is a result of the
satellite’s orbit and filtering observations with high cloud coverage.

• Spectral variation. The spectral growth profile of the same crop type can
be deformed or scaled depending on the local topography, soil, and farmer
practices.

• Temporal shift variation. The growth season can be shifted earlier or later in
a year depending on the weather that year and the local climate.
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A good crop classification model should be invariant to these variations, and at the
same time retain sensitivity to the inter-class variation in phenology to separate the
classes. These challenges are even more important for large-scale classification since
these variations become even greater at e.g. continental-scale compared to local
regions.

Next, we describe recent deep learning architectures used for crop classification in
the context of these challenges. Prior work has shown the importance of modeling the
temporal dimension when classifying crop types [40], as this is how the phenological
characteristics are learned. Therefore, we categorize existing methods based on
the neural component used to model time—in particular, we consider recurrent,
convolutional, and self-attention methods.

3.3 Recurrent Methods

Similar to how RNNs have been widely used to model sequences in NLP and other
fields, they have also been the natural choice to model SITS for crop classifica-
tion [65, 108, 112, 137]. The work of Rußwurm and Körner [137] uses long short-
term memory (LSTM) networks [62] for pixel-wise crop classification using SITS
over a year concatenated with the day of acquisition. The latter provides the model
with positional information to help account for the challenge of irregular temporal
sampling. Similarly, LSTMs have also been used for semantic segmentation by the
use of convolutional LSTM networks (ConvLSTM) [138], where the fully-connected
layers of the LSTM are replaced with convolutions [152] to handle the spatial dimen-
sions. LSTMs are particularly well-suited to handling cloud occlusions, as shown
in [138]. By visualizing the internal cell activations of the LSTM, it was found that
certain gates are closed for cloudy pixels, indicating that the network implicitly learns
to ignore clouds. This property is highly valuable for deploying crop classification
models in real-world scenarios, as the preprocessing step of cloud detection can be
skipped. Moreover, instead of selectively choosing only cloud-free observations,
partially cloudy observations can be used, which increases the information available
to the model and potentially the accuracy. The work of Rustowicz et al. [140] later
improve the segmentation performance by combining the ConvLSTM with the U-Net
model [134], a popular segmentation model for computer vision.

While these recurrent methods generally achieve high crop classification accuracy,
the sequential nature of recurrent models limits their efficiency. This is especially
an issue for large-scale crop classification, where the data to process might span
continents. For example, a year of Sentinel-2 data for Europe amounts to about 25TB
of images [142], and processing data of this volume with non-parallelizable models is
a significant performance bottleneck.
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3.4 Temporal Convolutional Methods

An alternative to recurrent methods is temporal convolutional methods, where convo-
lutions are applied along the temporal dimension [125, 193]. Compared to recurrent
networks, convolutions along time can be computed in parallel, and are thus more
scaleable.

The use of temporal convolutions (TempCNN) is proposed by Pelletier et al. [125]
for pixel-wise classification. To account for irregular temporal sampling, the SITS are
interpolated to regular temporal intervals of 2 days. A notable finding of this work is
that the use of pooling layers common in computer vision, such as max pooling and
global average pooling, are not beneficial for SITS classification. In convolutional
networks for image classification, pooling layers are often used to extract features
that are invariant to scale and shifts, such that objects can be detected no matter their
location. But for SITS, this is not the case, as the temporal location of features is
crucial information that is lost with pooling. For example, winter and spring wheat,
which we want to distinguish, may have similar features but with a shift in time.
Our work presented in Chapter 6 and Chapter 7 exploits this property for domain
adaptation and generalization.

Another approach to temporal convolutions is 3D-convolutions [73, 140], where
convolutions handle the spatial and temporal dimensions simultaneously. Other work
finds that combinations of convolutions and recurrent layers can be beneficial [67].

While temporal convolutional methods have significantly lower processing times
than recurrent methods, it is more difficult for convolutions to ignore cloudy obser-
vations [136]. Whereas recurrent methods have internal gates that can control the
influence of particular time steps, convolutions will always extract features no matter
their relevance, making it more difficult to ignore the irrelevant clouds of SITS.

3.5 Self-Attention Methods

Today, self-attention is the core of state-of-the-art NLP models [11, 27], building upon
the Transformer model by Vaswani et al. [173]. First proposed for SITS in [136],
self-attention brings the best of both recurrent and convolutional networks—it enables
a model to select, or “attend” to, the most relevant time steps, thus being able to ignore
clouds while at the same time being fully parallelizable. Perhaps attention is all you
need. Based on these benefits, we build upon self-attention methods in our work in
Chapter 6 and Chapter 7, and provide here the details of the inner workings of these
models, how they are applied to SITS, and their current limitations in terms of the
challenges outlined in Section 3.2.

Scaled Dot-Product Attention. The type of self-attention used in the original
Transformer model [173], the scaled dot-product attention, works as follows. Given a
sequence input xxx ∈ RT×D where T is the length and D the feature dimension, three
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linear transformations of each sequence element in xxx are computed first:

QQQ = xxxWWW Q, KKK = xxxWWW K , VVV = xxxWWWV , (3.1)

where QQQ is referred to as the queries, KKK the keys, and VVV the values. The projections are
learnable parameters WWW Q ∈ RD×Dk ,WWW K ∈ RD×Dk ,WWWV ∈ RD×Dv . Next, an attention
matrix AAA ∈ RT×T is computed by:

AAA = softmax
(

QQQKKK⊤
)
, (3.2)

where the softmax is applied row-wise such that each row sums to one. Thus, the i-th
row of AAA contains the similarity (dot product) of the query QQQ(i) of time step i and all
keys KKK( j), j = 1, . . . ,T , re-scaled by the softmax function. In other words, each row
indicates how “relevant” all other time steps are to a particular time step. Finally, the
output of the self-attention is computed by an attention weighted sum of the values,

HHH = AAAVVV (3.3)

where the result HHH ∈ RT×Dv contains an output for each time step. As the primary
computations of self-attention are dot-products, it can be implemented using highly op-
timized matrix multiplication, resulting in significant speed-ups compared to recurrent
models. The main drawback of self-attention is its memory requirements: computing
AAA consumes O(T 2) memory, which is problematic for long input sequences.

Multi-Head Attention. Instead of only a single linear transformation of each input
element to compute the queries, keys, and values, the multi-head attention of the
Transformer model [173] applies h linear transformations with different parameters.
Then, Equation (3.3) is computed h times in parallel, and the final results are concate-
nated. This allows each head to specialize and attend to information from different
representations at different positions. In addition, this further increases parallelization
and thus the efficiency of self-attention.

Positional Encoding. Since all computations of self-attention are dot-products
between linear transformations of input elements, there is no notion of the order
of elements in the input sequence, meaning that a random sequence order would
give the same result as the original order. But for most sequences tasks, the order
matters—in NLP, for example, the sentence “the student finishes the PhD” does not
have the same meaning as “the PhD finishes the student”. To provide this information
to self-attention, positional encodings are used, which map positions to unique vectors
that can then be added to the elements of the input sequence. The most common
positional encoding is sinusoidal positional encoding [173]. For an input element xxx(t)

at the position t, it is computed by:

ppp(t) = [sin(ωit),cos(ωit)]
D/2
i=1 (3.4)

where ωi = (1/10000)2i/D are different sinusoidal wavelengths for each dimension.
Then, the input to self-attention is changed from xxx to xxx+ ppp such that each element
contains order information.



20 CHAPTER 3. LARGE-SCALE CROP CLASSIFICATION

Crop Classification with Self-Attention. The output of self-attention is a sequence
HHH ∈RT×Dv , which is required for many NLP tasks such as translation, where both the
input and output are a sequence. However, the classification of SITS requires only a
single output and not a sequence. It turns out that most naive approaches to achieving
this is not well-suited for SITS classification. For example, we might simply choose
one of the vectors in the output sequence, such as the last one. However, the last
output of self-attention is computed from the similarity between the query of the last
element of the sequence and the keys of all others. But the last image of SITS might
not produce a meaningful query—for example, it could be occluded by clouds, or
acquired after the crop is harvested. To avoid this, we might instead use all output
vectors for classification, which can be done by flattening the output matrix to a vector
ĤHH ∈ RT Dv and classifying this combined vector using a linear layer. However, this
approach requires the temporal length T to be fixed and can thus not handle variable
length SITS.

Instead, the approach of Rußwurm and Körner [136] is to choose the output vector
with maximum value. While this often chooses a more meaningful output, a drawback
of choosing a particular output vector in self-attention is that the computation of all
others becomes unnecessary. That is, we are spending O(T 2) compute and memory,
but only O(T ) is required for the chosen output vector. But the maximum strategy
cannot avoid this problem, as all outputs are computed to choose the maximum.

Temporal Attention Encoder. The Temporal Attention Encoder (TAE), proposed
by Sainte Fare Garnot et al. [142], addresses this by defining a single master query
q̂qq ∈ RDk computed as the temporal average of the queries q̂qq = 1

T ∑
T
t=1 QQQ(t). Then,

attention is computed between the master query and the keys KKK, resulting in a single
output vector instead of a sequence. Moreover, the attention computation is only O(T )
and thus avoids unnecessary compute and memory.

To help account for the irregular temporal sampling of SITS, the day of the year for
observation t is used instead of its index in the positional encoding of Equation (3.4).
This provides explicit information to the model about the temporal location of the
satellite images, which was found to improve classification within the same region
seen during training. We discuss this choice further in the context of large-scale
classification in Chapter 7.

Lightweight Temporal Attention Encoder. A lightweight version of the TAE
(LTAE) was later proposed by Sainte Fare Garnot and Landrieu [141], bringing further
computational benefits as well as accuracy improvements. Instead of computing the
master query from the temporal average QQQ, which first requires a linear transformation
of each input element, the master query is simply set as a learnable vector of parame-
ters q̂qq∈RDk . This reduces computation and parameters, as the linear transformation to
obtain QQQ is removed. Furthermore, the sequence-to-vector process is now performed
with a vector that is independent of the input SITS instead of a particular time step or
the average time step. This reduces variance in the output representation when the
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input SITS is noisy due to e.g. clouds, which is likely beneficial for classification. The
LTAE is currently the state-of-the-art temporal neural component for crop classifica-
tion and has improved results in both parcel-wise classification [141] and semantic
segmentation of crops [41].

Parcel-wise classification is performed in combination with the Pixel Set Encoder
(PSE) [142], i.e., with the PSE+LTAE model. As agricultural parcels are irregularly
sized, processing the spatial dimensions of such SITS with convolutions requires
interpolating all polygons to a fixed-sized bounding box, which is both time and
memory-consuming. Instead, the PSE encodes a random sample of pixels within the
parcel polygon, allowing it to efficiently handle irregularly sized parcels.

Semantic segmentation is performed in combination with U-Net [135], named the
U-TAE model [41], by applying the LTAE between the encoder and decoder of the
U-Net. The computed attention is subsequently applied across each skip-connection,
resulting in a highly efficient segmentation model in memory and compute time.

Given the state of the art performance, computational efficiency, and versatility
for different classification tasks, we focus on the LTAE model to address large-scale
crop classification.

3.6 Open Questions

In this section, we discuss which challenges outlined in Section 3.2 are addressed by
the LTAE, and which remain open questions.

Cloud occlusions. Similar to RNNs, the attention mechanism enables the LTAE
to ignore irrelevant time steps in its prediction, such as those occluded by clouds,
as observed in [136]. This brings great practical benefits for crop classification, as
satellite data can be used directly for crop classification, removing the need for a
computationally heavy pre-processing pipeline including cloud detection.

Class imbalance. Imbalanced datasets are generally an issue in supervised classifi-
cation with deep learning and not just crop classification. To generalize well, a large
amount of labeled training data is required, but in practice, some classes, such as crop
types, are often more frequent than others. In standard training regimes, such as the
one used to train LTAE, models tend to ignore infrequent classes and focus on the
dominant classes to achieve maximum accumulated performance across the training
dataset. In practical crop classification, however, rare classes are often as important as
frequent classes, if not more, so addressing class imbalance is essential.

The LTAE does not address this issue directly, but there exist standard strategies
to address the class imbalance. One approach is to reweigh the loss function, where
infrequent classes receive a higher weight. However, this tends to bias the model
towards the infrequent classes, causing more frequent errors in real-world scenarios
when the bias changes. Another option is to resample the training data, either by
downsampling frequent classes, or upsampling infrequent classes. Still, removing or
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repeating samples from a training dataset risks that information is lost or repeated
unnecessarily. A promising approach may be hierarchical classification [88, 169],
which naturally suits the hierarchical structure of crop classes. Here, a label hierarchy
is created where examples of rare classes (e.g. strawberries, tomatoes, carrots) are also
represented at a coarser level (e.g. fruits and vegetables). By training the model to
classify inputs at different levels, the model is guided to learn relevant features at the
coarse level, where more data is available, which is then re-used to boost classification
performance at the fine-grained level for rare classes.

Irregular temporal sampling and length. The design choices of the LTAE ensure
that there is no limitation on the temporal length T , allowing models to predict crop
types in SITS of any length. Moreover, incorporating acquisition dates through
positional encoding allows the model to account for irregular temporal gaps between
acquisitions.

Spectral variation. This is not explicitly handled by the LTAE. But given the ability
of deep learning models to solve many pattern recognition tasks, a possible approach
to address spectral variation might simply be to incorporate more data that captures a
larger degree of spectral signatures. If labels are not available for regions with specific
topographies or soil conditions that change crop growth, addressing this challenge
remains an open question.

Temporal shift variation. The timings of crop growth in different regions are not
the same but can be shifted earlier or later depending on the local weather conditions.
The inputs to the LTAE are always sampled from the same temporal endpoints, for
example from January 1 to December 31 of a year. The temporal shift variation
between different regions means that the phenological development of crops can be
arbitrarily shifted forward or backward in time, and this is not handled by the LTAE.

We might attempt to address this problem by training on data containing a larger
degree of temporal shift variation to learn shift-invariant models. However, the
temporal location of crop growth is also an indicator of its class. For example, in
Denmark, winter barley is sown in September the year before and harvested in early
August, while spring barley is sown in March and harvested in late August. This means
that the crop classification task itself is variant to shifts, which a shift-invariant model
cannot capture. Solutions to this particular challenge are part of the contributions in
this thesis, as we describe further in the next chapter.

3.7 Conclusion

In this chapter, we present the crop classification task and the different types of
temporal neural networks for learning the task from satellite image time series. We
present several concrete challenges for large-scale crop classification and discuss
these challenges in the context of state-of-the-art models based on the self-attention
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mechanism. We note that while some challenges are addressed, such as clouds and
temporal irregularity, there remain open questions. In particular, current models are
not robust to temporal shift variation, which is crucial for large-scale classification.





Chapter 4

Contributions and Future Work

In this chapter, we describe our contributions to address the research questions in
Chapter 1 regarding cloud detection and crop classification. Our research provides
insight into some of the open questions we identified in previous chapters.

This chapter is divided into three sections, one for each of the three included
papers. Each section provides a description of the proposed methodology in the
papers, a summary of the main results, and concludes with an outline of promising
future work.

4.1 Weakly-Supervised Cloud Detection with Fixed-Point
GANs

In Weakly-Supervised Cloud Detection with Fixed-Point GANs [115] (referred to as
FCD), presented in Chapter 5, we address the first research question: how can we
train deep cloud detection models with only weak supervision? Existing deep learning
models for cloud detection require pixel-level cloud labels for a large and diverse
dataset of satellite images, which are expensive and time-consuming to acquire. Even
though deep learning models can, in principle, learn cloud detection for any satellite
sensor, the requirement that pixel-level labels are available for each satellite greatly
limits the scalability of these methods.

In FCD, we address this by proposing a weakly-supervised approach. The typical
approach to training cloud detectors is to divide the satellite image into smaller patches
which can be input to deep learning models. For each typical input patch of size
256×256, existing methods thus require 256∗256 = 65.536 pixel-level cloud labels
to train, which are generally hand-labeled. In contrast, our approach requires only
one image-level cloud label, thus significantly reducing the amount of manual work
required for labeling. We achieve this by learning Fixed-Point GAN models for image
translation between clear (i.e., no clouds) and cloudy satellite image patches, using
the image-level labels to divide the dataset. At inference time, we translate an input
image to clear, thus removing clouds, and predict accurate pixel-level cloud labels
from the difference between the input image and the translated image.

25
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Background

The problem of learning cloud detection with weak supervision is a weakly-supervised
semantic segmentation problem. To obtain pixel-level predictions from image-level
labels, a common method in CV is to use class activation maps (CAMs) [64, 179, 182,
194], where rough segmentation predictions are obtained using feature maps from an
intermediate layer of a pre-trained convolutional image classifier. As CAMs typically
only highlight the most discriminative parts of objects (e.g., the snout of a dog or the
beak of an eagle), recent methods propose different methods to “grow” the prediction
in order to segment the complete object [2, 64]. This process assumes that objects are
non-transparent, which is generally true for e.g. ImageNet [26]. However, for cloud
detection in satellite images, this assumption of existing CAM-based methods will
inevitably lead to problems with detecting semi-transparent clouds. In addition, as
CAMs are obtained by up-sampling low-resolution feature maps, they are not able to
detect small objects, which is required for accurate clouds detection.

Contributions

Instead of CAMs, we consider an image translation approach with GANs [70, 197] to
address weakly-supervised cloud detection. In particular, we learn image translation
between clear and cloudy satellite images, thus requiring only image-level labels for
training. To predict pixel-level cloud labels at inference time, we translate inputs
images to clear ones and compute a binary cloud mask by setting a threshold to
the difference between the original and the translated image. The image difference
computed this way essentially corresponds to an alpha map, and thus designates the
amount of transparency between the clouds and the generated surface. This enables
our approach to more naturally handle transparent clouds compared to CAMs. In
addition, we operate on the original image resolution, which enables our approach to
detect small clouds.

However, the accuracy of the predicted cloud mask greatly depends on the GANs
ability to only affect pixels of clouds, and leave surface pixels unaffected. This is
not guaranteed with standard image translation methods, such as CycleGAN [197],
which essentially perform a “style transfer” between the two image domains, which
may introduce unexpected color shifts affecting the entire image. This shortcoming is
addressed in the Fixed-Point GAN by Rahman Siddiquee et al. [130] using an addi-
tional fixed-point translation loss, which regularizes the model to change a minimal
subset of pixels during translation. Therefore, we use the Fixed-Point GAN to learn
image translation between clear and cloudy images as described above and address
weakly-supervised cloud detection.

In our results, we demonstrate that FCD outperforms CAMs in cloud detection on
the Landsat-8 Biome [34] dataset. But we also observe that the GAN-generated cloud
masks contain noisy artifacts. To overcome this limitation, we propose FCD+, where
we leverage the label-noise robustness of deep learning models [133] to refine the
generated cloud masks. We do so by training a U-Net [134] for cloud detection using
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the images and FCD-generated cloud masks as pseudo-labels. We demonstrate that
FCD+ effectively removes the artifacts of FCD, further increasing accuracy. Finally,
we show that FCD+ can reach the performance of existing models, which are trained
with 100% of the available pixel-level labels, after fine-tuning FCD+ with just 1%
of the available pixel-level labels. Our proposed method thus enables label-efficient
training of deep cloud detection methods with little to no loss in accuracy.

Future Work

With FCD, we learn cloud detection with only weak supervision while achieving
near fully-supervised performance. One limitation of FCD is that we focus on cloud
detection but ignore cloud shadows. In principle, FCD should be able to handle cloud
shadows in addition to clouds, as both always appear together in the cloudy images,
which the GAN should be able to capture. However, we were unable to handle this
as a dataset with accurate cloud shadow labels is not available to evaluate such an
approach.

A possible direction to further reduce labeling costs is to investigate whether the
image-level labels to train FCD can be generated automatically. For example, an
approach could be to use existing threshold-based methods, such as FMask [199], to
assign image-level labels.

We later learned of the similar work by Zou et al. [201], which also trains a
GAN to translate between clear and cloudy images. The problem is formulated as a
foreground/background separation problem, which enables the GAN to directly predict
the difference map, whereas we compute the difference in a separate step. However,
their approach only handles translation from cloudy images to clear ones, which
limits practicality as clear images must also be handled in real-world scenarios. In
comparison, our FCD handles both directions. An interesting direction might therefore
be to incorporate the foreground/background separation into the cycle consistency
loss of FCD.

Lastly, a concern is described in the work of Chu et al. [20], showing that image
translation GANs learn to “hide” information about the original image in the generated
image. The model uses this information to ensure the original image can be recovered,
in order to satisfy the cycle consistency loss. This phenomenon suggests that the
quality of the FCD-generated cloud masks could be improved by preventing the
network from hiding information in the generated images. A possible approach might
be to add an extra latent vector, in which the model can store this encoded information
instead of using the generated images.

4.2 TimeMatch: Unsupervised Cross-Region Adaptation by
Temporal Shift Estimation

In TimeMatch: Unsupervised Cross-Region Adaptation by Temporal Shift Estima-
tion [118] (TimeMatch), presented in Chapter 6, we set out to address the second
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research question: how can we adapt crop classification models to new regions by
utilizing unlabeled data? We answer this question by providing a solution to one of
the open questions for large-scale crop classification described in Section 3.2, namely
the challenge of temporal shifts between regions in growth patterns.

Background

As mentioned in the previous chapter, there is a large body of work that propose
different neural architectures for crop classification. However, despite the importance
of crop classification on a large geographical scale, existing work only reports classifi-
cation results from the same regions in which the model is trained [136, 138, 140, 142].
As a result, it is not known how well these models work when applied to regions differ-
ent than those seen during training, without which we cannot provide any guarantees
on the large-scale performance of these models.

Phenology Alignment Network (PAN) by Wang et al. [180] are, to the best of our
knowledge, the first work which studies cross-region crop classification. On a dataset
with three different Chinese regions, it is empirically shown that the performance
of existing models drastically drops when trained in one region and evaluated in the
others. This failure is attributed to discrepancies in the phenological characteristics
of the same crop type in different regions, causing differences in the two data distri-
butions, which violates the assumption of supervised learning that training and test
data are identically distributed. To address the problem, an unsupervised domain
adaptation (UDA) approach is proposed. In this setting, labeled data from one region
(the source domain) and unlabeled data from another region (the target domain) is
available. The goal of UDA is to train a model using the labeled source data and
unlabeled target data which performs well on the target data. To this end, the authors
of [180] propose PAN, which employs an existing image-specific UDA method based
on learning domain-invariant features [8]. Here, the model is trained with a standard
supervised loss on labeled source data, plus an unsupervised loss which conditions
network features from source and target to be domain-invariant, that is, be distributed
similarly. By doing so, the features from the target region become similar to the
features from the source region, such that the classifier trained with source features
also works for target features. In PAN, the maximum mean discrepancy loss [170] is
used to learn domain-invariant features which encode both spectral and temporal infor-
mation. While PAN improves cross-region crop classification results, we demonstrate
in TimeMatch (Chapter 6) that simply extending image-specific domain adaptation
methods to SITS without explicitly considering the temporal aspect is not sufficient to
address cross-region crop classification.

Overview of Method and Results

In TimeMatch, we instead focus on directly aligning the temporal dimension for cross-
region UDA. One of our key observations is that crop phenology between two regions
is temporally shifted (as also discussed in Section 3.2). While this phenomenon has
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been known for a long time in agricultural studies [104, 105], TimeMatch is the first
to highlight its importance and address the problem of large-scale crop classification.
In particular, we observe that when a source-trained model is applied to target data, its
performance depends on the timestamps—the day of the year—which are provided
along with the SITS. If the timestamps are all shifted by a particular number of
days, the performance of the model significantly improves, even achieving higher
performance than the domain-invariant method of PAN. Moreover, we observe that
the “best” temporal shift is a function of the climate, as it consistently corresponds to
how much warmer or colder one region is compared to the other. For example, the
temporal shift of a model trained in a Danish region and applied to a French region
is about +30 days. This corresponds to the fact that the climate of the French region
is warmer than the Danish one, which causes crops to develop earlier in the French
region.

We exploit this observation in the methodology of TimeMatch, which consists
of two components: temporal shift estimation and TimeMatch learning. From our
observation that the performance of source-trained models improves by temporally
shifting the target data, our goal is to estimate the temporal shift without using target
labels and then apply the temporal shift to automatically assign pseudo-labels for the
target data. These pseudo-labels are then used in TimeMatch learning, a self-training
routine that re-trains the model for the target data.

Our TimeMatch learning algorithms work by first duplicating a source-trained
model into a teacher and a student. Using the estimated shift, the teacher generates
pseudo-labels for the target region to train the student. The knowledge learned by the
student is gradually updated back to the teacher during training via an exponential
moving average of its parameters, thus adapting both models to the target region and
improving the pseudo-labels. As the teacher adapts to the target region, the temporal
location of crop growth in the source region is gradually “forgotten” and replaced with
that of the target region. This means that temporally shifting the target data gradually
becomes unnecessary to generate pseudo-labels with the teacher. We account for this
by re-estimating the temporal shift of the teacher every epoch, which ensures that the
pseudo-labels remain accurate during TimeMatch learning.

We evaluate our approach on a dataset containing SITS from four different Eu-
ropean regions, with one in Austria, one in Denmark, and two in France. On five
different adaptation scenarios, TimeMatch consistently outperforms all competing
methods, improving results by 11% in average F1 score, thus setting a new state-
of-the-art for cross-region UDA. However, we also observe that there is still a gap
between the results of TimeMatch and the results achieved by a fully-supervised
model. While completely closing the gap is likely unrealistic without any labels,
reducing the gap is a direction for future work.

Future Work

Our work on TimeMatch highlights the importance of addressing the temporal discrep-
ancy for large-scale classification, and we believe there are many exciting approaches
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for future research in this regard.
One of the limitations of TimeMatch is that our temporal shift estimation is a

simple form of temporal alignment which assumes that all crop types are shifted by
the same value, which is unlikely to be the case in practice. A possible improvement
in this direction could be to consider stronger temporal alignments, such as at the
class or example level, or to align the data by time-warping techniques [7].

Another line of work is to account for the change in classes between two regions,
such as the techniques applied in open-set domain adaptation [121], to handle the
common real-world scenario case where the set of classes in the target domain differs
from that of the source domain—for example, sunflowers are a frequent crop type in
southern France, but are rarely planted in Denmark.

Another limitation with UDA is that it requires training the model on unlabeled
data for every new target region. In large-scale crop classification, this would mean
training the model a hundred to a thousand times over for every new region across
the world, which would lead to a significant performance issue for scalability. A
favorable alternative to UDA would therefore be domain generalization, which avoids
this extra training step altogether by improving the generalization of the model itself.
We consider such an approach in the next section.

4.3 Generalized Satellite Image Time Series Classification
with Thermal Positional Encoding

In Generalized Satellite Image Time Series Classification with Thermal Positional
Encoding [118] (TPE), presented in Chapter 7, we set out to address the last research
question: how can we train deep crop classification models that generalize to new
regions? Our work on TimeMatch gave us the understanding that accounting for
temporal shifts of the growing season is key for classification in different regions.
Therefore, in TPE, we build upon our findings in TimeMatch and improve generaliza-
tion by training models which are robust to temporal shifts but do not need to estimate
the shift itself.

Background

As described in Chapter 3, the current methods in crop classification are based
on self-attention, in particular, the current state-of-the-art models are LTAE [141],
which modify the self-attention mechanism for crop classification. Our work focuses
on improving robustness to temporal shifts in this component since it handles the
temporal dimension. As the self-attention computation is position-agnostic, positional
encodings are used to provide explicit timing information [173]. Commonly, the
timing information provided to crop classifiers is the number of days passed since the
first observation (the day of the year if the SITS starts on January 1), and the LTAE
also provides these values to the model via positional encoding. The benefit of this
type of temporal information, which refer to as calendar time, is that the network
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can tell the order of the input elements and their temporal location in the growing
season. This information can be an important clue in separating similar phenological
events of different crop types. For example, the spectral values corresponding to the
peak of growth for winter and spring barley might be similar, but the two events can
easily be classified based on the timing, as winter crops mature earlier than spring
crops. However, the problem with calendar time is that the timing which the model
learns in one region does not apply to another due to temporal shifts, which causes
the accuracy to drop. Our work on TimeMatch gives us the understanding that models
rely on the timing information for classification, as shifting the calendar time such that
crop growth in the target region aligns with that of the source region, the performance
of the model improves.

Contributions

In TPE, we consider multiple strategies to improve the robustness of models to
temporal shifts. A possible approach is to train shift-invariant models, which can
be achieved by e.g. removing positional encoding altogether or applying random
temporal shifts to training data. On the same dataset as TimeMatch, our results
show that these approaches in fact do improve the generalization of crop classifiers.
However, shift-invariant models naturally cannot capture the temporal shifts between
classes which we observe is important for classification with shift-variant models.

To address this issue, we propose to forego calendar time in place of different
timing information called thermal time [104, 105]. In the field of crop phenology,
thermal time is measured in units of growing degree days (GDD), which are computed
by accumulating daily mean temperatures over a baseline. Crops enter different
phenological stages at particular GDD [76], which makes thermal time directly related
to the timing of crop growth. As a result, temporal shifts between regions are reduced
with thermal time, improving the generalization of models, while simultaneously
allowing models to capture the class-wise phenological timings.

In addition to using thermal time in the positional encoding of self-attention
models, we also investigate methods for the positional encoding itself. Commonly, the
positional encoding used for crop classification stems from the original Transformer
model [173], where positions are encoded to a predefined sinusoidal vector, which is
then added to the input sequence of word embeddings. This approach is practical for
NLP tasks, as word embeddings are typically pre-trained and not trained together with
self-attention. In comparison, for crop classification, the input SITS embeddings are
learned jointly with self-attention. One of our TPE methods, TPE-Concat, leverages
this observation and simply concatenates thermal time with the input SITS to learn
the positional encoding and SITS embedding simultaneously. We show that this
improves computational efficiency while obtaining similar accuracy as the commonly
used sinusoidal positional encoding. Finally, our top-performing TPE method, TPE-
Recurrent, shows that a positional encoding of thermal time that captures both the
absolute values and the historical rate of crop growth can lead to further improved
generalization.
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We demonstrate our approach for large-scale crop classification in Europe and
show that our method enables Europe-wide classification without requiring the model
to be re-trained for each region as with UDA.

Future Work

Our work on TPE shows that using a time representation that captures the different
climatic variations of crop growth can improve the generalization of crop classifiers.
Our experimental results show that TPE enables accurate large-scale crop classification
in Europe, which is not possible with existing methods. However, it remains an open
question how we may achieve crop classification on a global scale.

In our work, the inputs contain satellite images from January 1 to December 31
of the same year, capturing both the early development of crops and their harvest in
the summer. However, this range assumes that the SITS are acquired in the Northern
Hemisphere, where the winter lasts from December to March and summer from June
to September. It would not apply to the Southern Hemisphere where the winter and
summer seasons are swapped. We may account for this by acquiring the SITS from
the middle of the year instead, i.e. from June 1 to May 31. Still, another assumption
of this range is that it contains only a single growing season. This would not apply
to e.g. some regions of Brazil, where the tropical climate allows the planting of one
crop during the summer followed by another during the winter. Therefore, we believe
a promising future direction could be to dynamically select the start and end dates
of the SITS prior to its classification. That is, the SITS should start on the earliest
sowing date and end on the latest harvest date of parcels in each region. An automatic
selection of these dates could be done from NDVI as in [77, 80]. By normalizing the
temporal “window” of SITS in different regions, such an approach would likely also
reduce the issue of temporal shifts. We expect that thermal time could still be used in
such a model to adjust to the variation of growth rates in this dynamic window, e.g. to
account for the faster growth rate in Brazil compared to Europe.

While we focus on generalization across space in our work, another possible
application of TPE is generalization across time. Similar to that the climatic variation
in different regions causes temporal shifts in crop phenology, the variation in the
weather for the same region in different years also changes the timing of crop growth,
which TPE could help models adapt to. Finally, crop growth is affected by many
factors and not just the temperature, and it would be interesting to see the effect
of other meteorological variables, such as precipitation, or to account for spectral
variation through information about the soil or topography.

4.4 Conclusion

This chapter concludes the first part of this thesis. In Chapter 1: Introduction, we
motivate the use of deep learning methods for agricultural tasks with remote sensing
data, based on their recent success on related data in many other fields such as
images in computer vision and sequences in natural language processing. But we
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also highlight that obtaining labeled training datasets is a significant challenge for
remote sensing, and therefore describe three research questions to address parts of the
challenge.

The first research question concerns the label requirements for cloud detection,
a problem particular to remote sensing data described in Chapter 2: Satellite Image
Analysis for Precision Agriculture. To answer this question, our first paper, presented
in Chapter 5: Weakly-Supervised Cloud Detection with Fixed-Point GANs, provides a
weakly-supervised cloud detection method. The second and third research questions
concern the label requirements for the crop classification task. We describe this task
in Chapter 3: Large-Scale Crop Classification, as well as the deep learning methods
that are currently used and their limitations. The second research question concerns
unsupervised domain adaptation of crop classifiers, and we provide a solution to this
problem in the second paper, presented in Chapter 6: TimeMatch: Unsupervised Cross-
Region Adaptation by Temporal Shift Estimation. Our method explicitly accounts for
the temporal shift between different regions to adapt crop classifiers. Finally, the third
research question concerns how the generalization of current crop classifiers can be
improved. We provide a solution to this in the third paper by incorporating thermal
time to positional encoding, as presented in Chapter 7: Generalized Satellite Image
Time Series Classification with Thermal Positional Encoding.

The next part of this thesis consists of the three papers. We thank the reader
for following along this far and hope that this first part provides a comprehensible
overview for the three papers that follow.
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Chapter 5

Weakly-Supervised Cloud
Detection with Fixed-Point GANs

JOACHIM NYBORG, AARHUS UNIVERSITY, DENMARK

IRA ASSENT, AARHUS UNIVERSITY, DENMARK

In Proceedings of the 2021 IEEE International Conference on Big Data for the 3rd
IEEE Workshop on Machine Learning for Big Data Analytics in Remote Sensing.

Abstract

The detection of clouds in satellite images is an essential preprocessing task
for big data in remote sensing. Convolutional neural networks (CNNs) have
greatly advanced the state-of-the-art in the detection of clouds in satellite images,
but existing CNN-based methods are costly as they require large amounts of
training images with expensive pixel-level cloud labels. To alleviate this cost,
we propose Fixed-Point GAN for Cloud Detection (FCD), a weakly-supervised
approach. Training with only image-level labels, we learn fixed-point translation
between clear and cloudy images, so only clouds are affected during translation.
Doing so enables our approach to predict pixel-level cloud labels by translating
satellite images to clear ones and setting a threshold to the difference between
the two images. Moreover, we propose FCD+, where we exploit the label-
noise robustness of CNNs to refine the prediction of FCD, leading to further
improvements. We demonstrate the effectiveness of our approach on the Landsat-
8 Biome cloud detection dataset, where we obtain performance close to existing
fully-supervised methods that train with expensive pixel-level labels. By fine-
tuning our FCD+ with just 1% of the available pixel-level labels, we match the
performance of fully-supervised methods. Our source code is publicly available
at https://github.com/jnyborg/fcd.

5.1 Introduction

Clouds are a major issue when analyzing big data in remote sensing, as clouds often
partially or entirely obscure a given area of interest. As a result, clouds have a
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Figure 5.1: Weakly-supervised cloud detection with FCD. With easily acquired image-
level labels of whether satellite images contain clouds or not, we train a generative
model for fixed-point translation between clear and cloudy images such that the
difference between the input and generated image reveals clouds at the pixel-level.

significant negative impact on a variety of applications that require a clear view of the
ground below, such as change detection [198] and cropland monitoring [39]. Thus,
detecting and masking clouds is an essential preprocessing step in most satellite image
pipelines.

One line of work for cloud detection considers rule-based methods, such as the
Fmask algorithm [199] and the MAJA [54] processor. These methods detect clouds
by applying thresholds to selected features based on the physical characteristics
of clouds. However, as these methods are specific to selected satellites and often
contain hand-crafted rules, their direct application to the growing constellation of
satellites is difficult. As a result, these methods are not yet available for the majority
of high-resolution commercial satellites.

Instead of rule-based methods, supervised learning of Convolutional Neural Net-
works (CNNs) bring the benefit of leveraging learned features, allowing these methods
to automatically adapt to any particular satellite sensor. As in other visual recog-
nition tasks, CNNs have also greatly advanced the state-of-the-art in cloud detec-
tion [72, 148, 187] as a result. However, due to the data-hungry nature of CNNs, this
approach requires a large number of labeled training images that capture the large
variance of clouds and ground surfaces, with each image labeled with ground truth
cloud masks typically hand-drawn by experts. Consequently, if no such dataset is
available for the satellite at hand, training CNNs for cloud detection is very expensive.

One way to alleviate this issue is by weakly-supervised learning, where weaker
but less expensive image-level labels are used to train models that are capable of pixel-
level predictions. A popular approach for weakly-supervised learning in both natural
images and remote sensing is based on computing class activation maps (CAMs),
whereby the feature maps learned by an image-level classifier are used to construct a
pixel-level prediction [12, 36, 114, 177].

In this paper, we propose an alternative approach for weakly-supervised cloud
detection based on the Fixed-Point GAN [130] (Generative Adversarial Network [50]).
Our proposed method, Fixed-Point GAN for Cloud Detection (FCD), learns image-
to-image translation between clear (no clouds) and cloudy image patches taken from
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complete satellite images, thus requiring only image-level labels for training. Due to
the fixed-point translation ability of FCD, our approach is able to translate an input
image into a clear image while affecting only pixels containing clouds. This enables a
pixel-level cloud mask to be predicted by setting a threshold to the difference between
the original and translated image, as shown in Figure 5.1.

To further improve weakly-supervised cloud detection performance, we propose
FCD+. Here, we first utilize FCD to generate pseudo cloud masks for training images
to train existing CNN models. This enables us to refine the cloud masks of FCD by
removing generative artifacts for improved performance. Furthermore, we show that
our FCD+ is a powerful weakly-supervised pretraining strategy for cloud detection,
as, by fine-tuning our model with just 1% of patches with pixel-level ground truth,
we match the performance of existing models that train with full supervision from all
available pixel-level ground truth. In summary, our contributions are the following:

• We propose FCD, a weakly-supervised cloud detection method based on Fixed-
Point GAN.

• We propose FCD+, a training strategy that refines the predictions of FCD and
allows for weakly-supervised pretraining of cloud detection CNNs.

• We demonstrate that FCD and FCD+ outperform existing CAM-based methods
in weakly-supervised cloud detection on the Landsat-8 Biome dataset [34].
By fine-tuning FCD+ with 1% of available pixel-level labels, we match the
performance of models that receive full supervision from all available labels.

5.2 Related Work

Cloud Removal with GANs.

Recent work has applied GANs to cloud removal [30, 53, 146, 154], which aims to re-
move clouds from satellite images and replace them with a realistic, generated region
of the underlying ground surface. In [30, 53, 146], cloud removal is learned based on
pix2pix [70], requiring pairs of cloudy and clear images for training, acquired either
by synthesis [30, 53] or by satellites with high revisit rates [146]. CloudGAN [154]
instead learns unpaired cloud removal with CycleGAN [197], simplifying data ac-
quisition. While we similarly learn a GAN to translate cloudy images to clear ones,
our approach differs from this line of work as we do not focus on generating realistic
images, but on cloud detection. This requires GANs capable of minimal translation,
changing only pixels of clouds, so clouds can be detected by the difference between
input and translated image. However, pix2pix [70] or CycleGAN [197] tend to make
unnecessary changes and introduce artifacts to translated images [130], thus limiting
their use for weakly-supervised cloud detection. Instead, we base our approach on
Fixed-Point GAN [130], which enables our model to perform minimal translations for
accurate cloud detection.
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Weakly-Supervised Semantic Segmentation.

Weakly-supervised semantic segmentation (WSSS) methods using image-level su-
pervision have been widely used for natural images [2, 64, 84, 179, 182]. These
approaches typically [179] use class activation maps (CAMs) [15, 150, 194], where
a CNN trained for image-level classification is utilized to roughly localize object
areas by drawing attention to discriminative parts of objects based on global aver-
age pooling [194] or gradient backpropagation [15, 150]. As CAMs have limited
resolution and only cover small parts of objects, most approaches refine CAMs to
discover complete object regions, by for instance seeded region growing [64], adver-
sarial erasing [182], or equivariant regularization [179]. These approaches improve
upon the standalone CAMs and are typically independent of the specific choice of
weakly-supervised localization method, which allows similar improvement to alterna-
tive methods that localize objects from image-level labels, such as the Fixed-Point
GAN [130] and our FCD. For this reason, we compare CAMs to our FCD in our
experiments.
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Figure 5.2: Overview of FCD. We learn fixed-point translation between clear and
cloudy image patches. During training, the discriminator D learns to distinguish
between real and fake images and to classify real images correctly. The generator
G is input an image and whether the image should be translated to the clear domain
(c = 0) or the cloudy domain (c = 1), and learns to either remove or add clouds
through a cycle-consistency loss and an adversarial loss. If c is the same domain as
the input image, G must perform an identity mapping through the identity loss, which
regularizes the generator to only affect the clouds. We then detect clouds in an input
image x by the difference between the original image and its clear translation with G.

In remote sensing, existing WSSS methods have mostly used CAM-based ap-
proaches for segmenting satellite images [12, 114] from image-level labels. Fu et
al. [36] propose WSF-Net, which computes CAMs from fused, multi-level features.
Wang et al. [177] propose U-CAM, which adapts CAMs for U-Nets [135]. In con-
trast to these CAM-based approaches, our approach is based on Fixed-Point GAN,
which our experimental results suggest is more accurate for weakly-supervised cloud
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detection.

5.3 Weakly-Supervised Cloud Detection Model

Overview

Our goal is to develop a method for weakly-supervised cloud detection. To achieve
this, we base our approach on the Fixed-Point GAN by Siddiquee et al. [130], a recent
method successful in GAN-based image-to-image translation for weakly-supervised
disease localization in medical images. GANs [50] have achieved remarkable results
in generating realistic images, and have also significantly improved image-to-image
translation [197], where the goal is to translate images from one domain of images
to another, such as translating aerial images to maps [70] or changing the season
of images from summer to winter [197]. Fixed-Point GAN learns image-to-image
translation with the goal of removing objects, if present, from an image, while
otherwise preserving the image content. For cloud detection, this objective translates
to removing clouds, such that when translating an image, either clear or cloudy,
into a clear image, clouds are revealed by subtracting the original image from the
generated image. A GAN capable of such a task must satisfy the following four
requirements [130]:

• Req. 1: The GAN must learn unpaired image-to-image translation, as in general,
it is difficult and time-consuming to obtain perfect pairs of clear and cloudy
satellite images due to the high temporal variability of the ground surface.

• Req. 2: The GAN must require no domain label for the input image, as, at
inference time, the GAN must be able to translate any image (both clear and
cloudy) into a clear image.

• Req. 3: The GAN must perform an identity transformation for same-domain
translation. When translating an image from clear to clear, the GAN should
simply leave the image intact, injecting neither artifacts nor new information
into the image.

• Req. 4: The GAN must perform a minimal image transformation for cross-
domain translation. When translating cloudy to clear, the GAN should only
affect the clouds, while leaving the ground intact.

As Fixed-Point GAN [130] introduces a GAN that satisfies all of these four require-
ments, so does FCD. However, for such a method to be practical for accurate cloud
detection, we require the following as well:

• Req. 5: The method must output consistent cloud masks without generative
side effects that would lead to decreased cloud detection performance.
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• Req. 6: It must be possible to fine-tune the method with limited amounts
of images labeled with pixel-level ground truth to achieve a cloud detection
performance that matches fully-supervised methods.

We observe that the generative objective of FCD leads to artifacts that lower its
cloud detection performance. Furthermore, as FCD optimizes an image translation
objective, it is not possible to incorporate pixel-level ground truth to increase perfor-
mance. We address the last two requirements with FCD+: By training a segmentation
model with FCD cloud masks as pseudo labels, we show experimentally the side
effects of FCD are addressed. Also, as FCD+ is trained for classification instead
of image translation, it can be fine-tuned with a few labeled images to match the
performance of existing fully-supervised methods.

Image-to-Image Translation with GANs

In this section, we describe the background literature surrounding Fixed-Point GAN.
A GAN model [50] typically consists of two neural networks: a generator G

and a discriminator D. The two networks are trained adversarially by optimizing the
adversarial loss, where the discriminator D(y) ∈ [0,1] learns to determine whether a
given input image y is real or fake, while the generator G(z)→ y learns to transform a
random input z into a fake image y indistinguishable from real images. As a result, G
is able to generate highly realistic images from a random input. To apply GANs for
image-to-image translation, we replace the random input z with an image x, so that
G learns a mapping between images. In pix2pix [70], image-to-image translation is
learned in a supervised manner by combining the adversarial loss with an L1 loss,
which requires paired data samples for training. This violates Req. 1, as for cloud
detection, pairs are generally not available, as discussed in Section 5.2.

To overcome the issue of requiring pairs, CycleGAN [197] instead combines
the adversarial loss with a cycle consistency loss, allowing for unpaired image-to-
image translation. Specifically, for each pair of domains (X ,Y ), two generators G,F
are trained for each direction of translation, G : X → Y and F : Y → X . The cycle
consistency loss encourages that these two generators are inverses, by constraining
that F(G(x)) ≈ x and G(F(y)) ≈ y, thus enforcing that when translating an image
x to an image y, we should be able to restore the original x from y, and vice versa.
The effect of the cycle consistency loss is that the resulting output of the generator
is constrained so that the translated image appears aligned with the input image, as
if paired, but without any requirements for paired training samples. However, as
CycleGAN requires two generators for each pair of image domains, it fails to satisfy
Req. 2, as selecting the right generator for correct translation requires a domain label
for the input image at inference time.

StarGAN [19] overcomes this limitation by learning a single generator for transla-
tion between all domain pairs. This is achieved by conditioning G on a target domain
label cy to indicate which domain G must translate to, so that G(x,cy)→ y. During
training, cy is randomly chosen so that G learns translation between all domain pairs.
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To control that the generated image correctly classifies to the domain cy, the discrimi-
nator is expanded with an auxiliary classifier Dcls to enforce the domain classification
loss. That is, the discriminator now produces two outputs: Dadv for the adversarial
loss, and Dcls for the domain classification loss.

Still, StarGAN does not satisfy Req. 3 and 4: StarGAN fails to handle identity
same-domain translations, and also tends to make unnecessary changes during cross-
domain translation, as shown by Siddiquee et al. [130]. To satisfy Req. 3, Fixed-Point
GAN introduces an additional conditional identity loss, where, in the case that G is
given an input image x and a domain label cx with the same domain as x, G learns to
do an identity translation by constraining that G(x,cx)≈ x. As such, when translating
clear images to clear, G must output the input x unchanged. To satisfy Req. 4, Fixed-
Point GAN revises the adversarial, domain classification, and cycle consistency loss to
explicitly learn same-domain translation, in that G must optimize these losses both for
cross-domain translation G(x,cy)→ y similar to StarGAN, but also for same-domain
translation G(x,cx)→ x. By doing so, the generator is regularized to find a minimal
transformation during cross-domain translation [130], thus satisfying Req. 4, so that
when G translates from cloudy to clear, only clouds are changed.

5.4 Fixed-Point GAN for Cloud Detection

In the following, we formally describe the loss functions of Fixed-Point GAN for
Cloud Detection (FCD). Figure 5.2 shows an overview of the FCD training scheme.

Adversarial Loss To ensure that the images generated for both cross- and same-
domain translation follow the distribution of training images, an adversarial loss is
enforced for each case:

Ladv =Ex[logDadv(x)]

+Ex,cx [log(1−Dadv(G(x,cx)))]

+Ex,cy [log(1−Dadv(G(x,cy)))],

(5.1)

where G generates two images, conditioned on an input image x and either its original
label cx for same-domain translation or a uniformly chosen target label cy for cross-
domain translation, while D must distinguish between real and fake images. G tries to
minimize this objective, and D tries to maximize it.

Domain Classification Loss In addition to generating images that follow the overall
distribution of training images, G must also use the given domain label cx or cy to
generate an image that is properly classified to that domain. This is achieved by
the domain classification loss defined via the auxiliary classifier Dcls, with a term
for optimizing both D and G. For D, we enforce that real images must be correctly
classified:

L r
cls = Ex,cx [− logDcls(cx|x)], (5.2)
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where Dcls(cx|x) represents the conditional probability of x belonging to its original
domain cx, as computed by D.

Similarly, for G, we enforce that generated images must be classified correctly as
well,

L f
cls =Ex,cy [− logDcls(cy|G(x,cy))]

+Ex,cx [− logDcls(cx|G(x,cx))],
(5.3)

where we have a case for both same- and cross-domain translation. Overall, the
domain classification loss ensures that G correctly conditions on the given domain
label, allowing us to explicitly choose whether G should translate to the cloudy or the
clear domain with a single generator.

Cycle Consistency Loss Minimizing the adversarial loss and the domain classifica-
tion loss ensures the generator outputs realistic images of the correct domain but does
not guarantee that the generated images have any relation to the input image. This is
addressed with the cycle-consistency loss:

Lcyc =Ex,cx,cy [||x−G(G(x,cy),cx)||1]
+Ex,cx [||x−G(G(x,cx),cx)||1],

(5.4)

where G takes an image translated to either the target domain G(x,cy) or input domain
G(x,cx), as well as the original domain label cx, and in both cases tries to reconstruct
the input image x. As G must be able to reconstruct the input image from the
generated image, G is constrained to preserve a relation to the input image, resulting
in translations that change only domain-related parts.

Conditional Identity Loss To avoid false positives, G should not attempt to remove
clouds from clear images, and instead output the input without any change. To this
end, we enforce that G acts as an identity function when performing same-domain
translations:

Lid = Ex,cx [||x−G(x,cx)||1], (5.5)

where, in the case that G is given an input image x and its original domain label cx, it
must return the input x without introducing any changes.

Full Objective In combination, the Fixed-Point GAN objective functions to train D
and G, respectively, are

LD =−Ladv +λclsL
r

cls, (5.6)

LG = Ladv +λclsL
f

cls +λcycLcyc +λidLid , (5.7)

where λcls,λcyc,λid are hyper-parameters for tuning the relative importance of the
domain classification, cycle consistency, and conditional identity loss.
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Detecting Clouds Optimizing the Fixed-Point GAN objective functions in FCD
results in a generator G capable of translation between clear and cloudy images. To
generate cloud masks with FCD, we translate input images to clear, and threshold the
difference between the translated and original image. Specifically, given an input patch
x of either clear or cloudy, we first compute y = G(x,0), resulting in y, a clear version
of x. This is followed by computing the absolute difference of x and y, followed by
the mean across channels. The result is a gray-scale image, which we refer to as the
difference map. Finally, we produce a binary cloud mask by setting a threshold to the
difference map, where pixels with high change are labeled as clouds, and otherwise as
clear.

FCD+: Refining Generative Side Effects

Although FCD enables the generation of pixel-level cloud labels from image-level
supervision, we observe that the generative goal causes two types of side effects that
lower its performance: Generative artifacts and patch-shaped “holes".

• Generative artifacts: we find that the cloud mask of FCD often contains noise,
typically around the edges of clouds. These artifacts likely arise from threshold-
ing the difference map for transparent clouds. As clouds typically become more
transparent closer to their edges, whereas their centers are bright white, a lower
brightness change is required by the generator to translate pixels of transparent
clouds to land surface compared to the center of clouds that are often bright
white. This can result in noisy artifacts when the difference value is close to the
threshold.

• Patch-shaped holes: when combining cloud masks for multiple patches, FCD
in some cases ignores clouds in one patch, even though neighboring patches
contain overlapping clouds, which results in patch-shaped holes in the final
cloud mask. This issue likely stems from the conditional identity loss of Eq. 5.5.
This loss implicitly enforces G to classify input patches as clear or cloudy, as G
must act as an identity function only for clear patches. If G wrongly classifies a
cloudy patch as clear, it likely outputs an empty cloud mask for the entire patch,
resulting in patch-shaped holes in the final image.

To refine these generative side effects, we propose FCD+, where we train a
standard fully-supervised cloud detection model with the noisy cloud masks of FCD as
pseudo-labels. By doing so, we utilize the label noise robustness of CNNs [109, 133]
to refine the FCD cloud masks, thereby addressing Req. 5. Additionally, as FCD+ is
trained for classification directly, it can be fine-tuned, thus satisfying Req. 6.

Following existing cloud detection architectures [72], we use a standard U-
Net [135] network architecture for FCD+, a fully-convolutional segmentation network
with skip connections between the encoder and decoder.
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5.5 Experimental Setup

We demonstrate the effectiveness of our method on the Landsat-8 Biome dataset [34],
where we apply our weakly-supervised FCD to generate pixel-level pseudo cloud
masks for training images and train our segmentation model FCD+ with the images
and their pseudo masks. We evaluate the quality of our FCD-generated pseudo masks
as well as the test set performance of FCD+ when trained with them. Our source code
is publicly available at https://github.com/jnyborg/fcd.

Dataset

The Landsat-8 Biome dataset [34] is a cloud detection dataset with 96 Landsat-8
scenes of 8 different biomes with various proportions of cloud cover. Each scene
is hand-labeled with pixel-level class labels for clear, thin cloud, cloud, and cloud
shadow. We combine "thin cloud" and "cloud" into one class for clouds, and combine
"clear" with "cloud shadow" as one class for clear. To ensure an even distribution of
biomes in our training, validation, and test sets, we randomly assign the 12 scenes in
each biome by a 6:2:4 ratio, totaling 48 images for training, 16 images for validation,
and 32 images for testing. Our test set contains 43% clear to 57% cloudy pixels. We
input Landsat-8 scenes to CNNs by dividing scenes into patches of size 128×128.
We input all 10 available 30m bands. We use the provided pixel-level labels to decide
image-level labels, and label a patch as cloudy if there is at least one cloudy pixel in
the corresponding ground truth, otherwise clear.

Comparisons

We compare FCD to the weakly-supervised methods CAM [194], GradCAM [150],
and GradCAM++ [15], as most existing methods in weakly-supervised semantic
segmentation are based on CAMs (see Section 5.2). CAM compute cloud masks
based on the global average pooling layer of a classifier trained for binary cloud
classification of images, whereas GradCAM and GradCAM++ compute the cloud
mask based on gradient backpropagation.

Implementation.

We implement FCD following the original implementation of Fixed-Point GAN [130],
and update G and D for 10-channel images. We use the default model hyper-
parameters, and train for 200,000 iterations with a batch size of 16, setting λcls = 1,
λcyc = 10, and λid = 10. We compute CAMs from ImageNet-pretrained ResNet-50
models [59] trained with Landsat-8 Biome image-level labels. For both FCD and
CAM models, we use the validation set to select the best model weights and choose
the best threshold value to create binary cloud masks. We note that generating pseudo
masks for patches with a clear label is unnecessary, as we know their cloud mask con-
tains only background. Hence, we evaluate only methods in their ability to generate
pseudo masks for cloudy patches.

https://github.com/jnyborg/fcd
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Table 5.1: Cloud mask generation performance (%) for Landsat-8 Biome with existing
CAM methods and our FCD.

Method F1-score Accuracy

CAM [194] 75.9±0.5 82.9±0.7
GradCAM [150] 70.5±1.5 78.6±0.5
GradCAM++ [15] 72.2±3.8 79.9±1.9

FCD (ours) 83.9±0.8 87.6±0.5

We implement our FCD+ based on the U-Net [135] using the library in [188].
FCD+ trains for 30 epochs with a batch size of 64 using Adam [82] with the default
settings. We save the model that gives the best F1-score on the validation set. We
use a learning rate of 1e-4, dropped by 10 if after 3 epochs the validation F1 does
not increase. In addition to optimizing a pixel-level cross-entropy loss, we use the
available image-level cloud labels to optimize a binary cross-entropy loss by attaching
a classifier to the encoder. When fine-tuning, we change our initial learning rate to
1e-5 and freeze the encoder weights.

5.6 Results

Weakly-Supervised Cloud Mask Generation

To verify the effectiveness of FCD, we evaluate its ability to generate pixel-level
pseudo masks from image-level labels for our Landsat-8 Biome train set, which we
then use in our final stage for training FCD+.

Quantitative Results Table 5.1 shows the overall cloud detection results for FCD
in comparison with CAM [194], GradCAM [150], and GradCAM++ [15]. We find
that our FCD greatly outperforms all CAM variants in generating pseudo cloud masks
from just image-level labels, increasing F1-score by 8.0% compared to the best CAM
variant. This strongly indicates a Fixed-Point GAN approach for weakly-supervised
cloud detection is more accurate than CAM-based ones.

Qualitative Results We illustrate examples of cloud masks generated by FCD in
Figure 5.4, showing views of various Landsat-8 scenes. FCD generates accurate cloud
masks with high similarity to the ground truth, but we observe issues of generative side-
effects. For the Shrubland and Wetlands examples, we observe generative artifacts
particularly for areas with semi-transparent clouds. Patch-shaped holes appear mostly
in areas where FCD likely confuses cloudy patches with clear, such as in the center of
clouds in SnowIce and Water biomes (where clouds can be confused with snow), as
well as areas in the Shrubland biome which contains mostly clear ground with a few
transparent clouds. Next, we show how we refine these errors with FCD+.
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Input FCD FCD+ Ground TruthFCD+1%

Figure 5.3: FCD, FCD+, and FCD+1% cloud masks for example patches. FCD+
predicts a smoother cloud mask, that removes generative artifacts of FCD. FCD+1%
predict a more precise cloud mask after fine-tuning with very few ground truth cloud
masks.
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Figure 5.4: Example cloud mask results of FCD and FCD+ on Landsat-8 images from
each biome.
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Table 5.2: Cloud detection results for Landsat-8 Biome. The supervision type indi-
cates: image-level labels I , all available pixel-level labels F , and 1% of available
pixel-level labels F 1%. Our proposed method achieves the highest performance with
the least expensive labels.

Method Supervision F1-score Accuracy

CFmask [34] - 87.2 87.7

Random initialization F 1% 89.4±0.5 89.5±0.5
Pretrained I +F 1% 91.5±0.4 91.6±0.4
Fully supervised [72] F 93.9±0.5 94.0±0.5

FCD+ (ours) I 91.5±0.6 91.7±0.6
FCD+1% (ours) I +F 1% 93.4±0.5 93.5±0.4

Results of FCD+

We train FCD+ with the pseudo masks generated by FCD for the training data and
evaluate its performance on the Landsat-8 Biome test set. We compare FCD+ with the
rule-based algorithm CFMask [34], whose cloud masks are currently distributed with
Landsat-8 images in the QA layer. Furthermore, we compare FCD+ with the same
U-Net model but trained in a fully-supervised manner with actual pixel-level labels,
which gives us an upper bound on the best performance achievable by the chosen
network architecture.

Finally, we evaluate the performance of FCD+ as a weakly-supervised pretrained
model in a semi-supervised setting, where 1% of data in our training set is labeled
with pixel-level labels. We refer to this model as FCD+1%. This result shows how
FCD+ applies to a real-world scenario, where one might allow an increased annotation
effort for improved cloud detection performance. We compare FCD+1% against two
baselines for the same underlying model: A model with randomly initialized weights
is trained with the 1%, and a model with pre-trained weights using the available
image-level labels to train for cloud classification and then fine-tuned with the 1%.

Quantitative Results Table 5.2 shows our results for the Landsat-8 Biome test
set. Compared to FCD, FCD+ greatly increases F1 scores, which shows its ability
to refine FCD-generated cloud masks. Moreover, our weakly-supervised FCD+,
requiring only image-level labels for training, outperforms the existing rule-based
method CFMask [34] by +4.2% in F1-score, only −2.4% below what is achievable
by existing fully-supervised methods that use 100% of available pixel-level labels for
supervision.

By fine-tuning FCD+ with 1% of available labels (FCD+1%), we reduce the gap
to only −0.5% of fully-supervised performance. In comparison to the existing two
pre-training strategies “random initialization" and “pre-trained", pre-training models
with FCD-generated cloud masks are highly beneficial as FCD+1% outperforms both.
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This shows that even though FCD-generated cloud masks contain artifacts, using them
to pre-train existing supervised models enables them to achieve higher cloud detection
performance than what is previously possible when only image-level labels and 1%
pixel-level labels are available.

Qualitative Results Figure 5.4 illustrates the cloud masks of FCD+ in comparison
to FCD for each type of biome. We find that the issues of FCD are resolved, removing
the generative artifacts in the Shrubland and Wetlands examples, as well as the patch-
shaped holes in the Shrubland, SnowIce, and Water examples. Figure 5.3 further
illustrates the improvements for input patches. Compared to the FCD cloud masks,
the outputs of FCD+ are less noisy and better resemble the ground truth. We also
show the result of fine-tuning with 1% of pixel-level labels: FCD+1% better separates
individual clouds, further improving the results.

5.7 Conclusion

In this work, we proposed FCD and FCD+ for weakly-supervised cloud detection.
Existing supervised CNN-based cloud detection methods require large amounts of
training images with pixel-level cloud labels, which brings significant labeling costs.
As a result, applying existing CNN-based methods to detect clouds in the growing
number of Earth observation satellites is highly expensive when pixel-level labels are
not available. To alleviate this issue, we propose FCD, a weakly-supervised cloud
detection method that requires only image-level labels, which are significantly cheaper
to acquire. FCD applies a Fixed-Point GAN to learn image-to-image translation
between clear and cloudy images while ensuring only clouds are affected during
translation. By translating images to clear, thus removing any clouds, we are able
to detect clouds at the pixel level from the difference between the original image
and the translated image. As FCD is a generative model, we additionally propose
FCD+ to refine the generated cloud masks of FCD, leading to further improvements
by removing generative side effects. On the large Landsat-8 Biome dataset with
satellite images from various biomes around the globe, we demonstrate our method
outperforms existing rule-based methods as well as weakly-supervised methods based
on class activation maps in cloud detection. Furthermore, FCD+ achieves near fully-
supervised performance after fine-tuning with only 1% of available pixel-level labels.
Our proposed method thus enables a drastic reduction in labeling efforts for training
CNN-based cloud detectors with minimal performance loss.
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Abstract

The recent developments of deep learning models that capture complex
temporal patterns of crop phenology have greatly advanced crop classification
from Satellite Image Time Series (SITS). However, when applied to target
regions spatially different from the training region, these models perform poorly
without any target labels due to the temporal shift of crop phenology between
regions. Although various unsupervised domain adaptation techniques have
been proposed in recent years, no method explicitly learns the temporal shift of
SITS and thus provides only limited benefits for crop classification. To address
this, we propose TimeMatch, which explicitly accounts for the temporal shift
for improved SITS-based domain adaptation. In TimeMatch, we first estimate
the temporal shift from the target to the source region using the predictions of
a source-trained model. Then, we re-train the model for the target region by
an iterative algorithm where the estimated shift is used to generate accurate
target pseudo-labels. Additionally, we introduce an open-access dataset for
cross-region adaptation from SITS in four different regions in Europe. On our
dataset, we demonstrate that TimeMatch outperforms all competing methods
by 11% in average F1-score across five different adaptation scenarios, setting a
new state-of-the-art in cross-region adaptation. Our source code and dataset are
available at https://github.com/jnyborg/timematch.
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Figure 6.1: Normalized difference vegetation index (NDVI) time series for crops
from two different Sentinel-2 tiles in Europe, indicating the growth of four crop types.
Crops develop similarly in different regions, but the patterns are temporally shifted,
e.g. if crops ripen at different times of the year.

6.1 Introduction

Today, the availability of satellite image time series (SITS) data is rapidly increasing.
For instance, the twin Sentinel-2 satellites provide imagery of the entire Earth every
two to five days [29]. A frequent acquisition of images is crucial for vegetation-related
remote sensing applications such as crop type classification [132, 174]. Multi-
temporal data enables capturing the phenological development of crops (i.e., the
progressions of crop growth), a key dimension to discriminate each crop type [119].
Recently, the increasing availability of SITS along with advances in deep learning
has led to crop classifiers with temporal neural architectures using convolutions [125,
193], recurrent units [65, 108, 112, 137], self-attention [136, 142], or combinations
thereof [67, 138].

These crop classification models achieve impressive performance by capturing
the temporal structure of the problem but rely on the existence of a large amount
of labeled training data. While unlabeled SITS are plenty, access to labels in the
region of interest (the target domain) is often either costly or otherwise unavailable.
A possible solution is to train a model in a region with labels available (the source
domain) and apply it to the unlabeled target region. However, when the two regions
are geographically different, the dissimilarity between the source and target data
distributions can cause a source-trained model to perform poorly when applied to the
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target region [85, 101, 168].
Addressing the distributional shift problem to adapt a source-trained model to

an unlabeled target domain is in machine learning known as unsupervised domain
adaptation (UDA) [79, 120, 168]. Here, we consider the cross-region UDA problem
for SITS [180], where we are provided with labeled data from a source region and
unlabeled data from a target region. In this setting, the source and target data distribu-
tions differ due to changes in local conditions, such as the soil, climate, and farmer
practices, which cause spectral and temporal shifts [168].

Addressing the temporal shift is of particular importance when adapting crop
classifiers to new regions, as we illustrate in Figure 6.1. While crops in different
regions have similar growth patterns, the timing of key growth stages, such as the
peak of greenness, is shifted along the temporal axis. As crops are classified primarily
by their unique growth patterns, the temporal shift may cause misclassifications when
a source-trained model is applied to a target region. For example, the shift in time
could cause the phenology of spring barley to appear similar to that of winter barley
in the target. Thus, accounting for the temporal shift is a key factor in cross-region
adaptation.

A possible approach could be to train models that are invariant to temporal shifts,
such as by applying random temporal shifts to the training data. However, as the
temporal shift could be the main feature that separates two crop types, shift-invariant
models have reduced classification ability compared to shift-variant models.

Another approach is to apply existing UDA methods. Typically, these methods
address domain adaptation by constraining the classifier to operate on domain-invariant
features [8]. This is achieved by training the classifier to perform well on the source
domain while minimizing a divergence measure between features extracted from
the source and the target domains [37, 170, 180]. While these methods have been
successfully applied in various applications [79, 184], they do not directly account
for the temporal shift in SITS and have thus been reported to provide limited benefits
in cross-region UDA [100]. More recently, self-training methods have emerged as
a promising alternative to domain-invariant methods [16, 110, 143, 153, 200]. Self-
training iteratively generates pseudo-labels [91] for the target domain and then uses
them to retrain the model with target data. To account for noisy pseudo-labels caused
by the domain shift, these methods typically incorporate a refinement step where the
noise is reduced in various ways, such as with generative models [110] or learned
confusion matrices [16]. Still, no method considers the particular case of SITS where
the pseudo-label noise is caused by a temporal shift.

In this paper, we propose TimeMatch, a self-training method for cross-region
UDA where we directly account for the temporal shift. TimeMatch consists of
two components: (i) the temporal shift estimation and (ii) the TimeMatch learning
algorithm.

Estimating the temporal shift directly from the target data is difficult, as the lack
of labels hinders e.g. the comparison of class-wise vegetation indices as in Figure 6.1.
To address this, we propose an unsupervised method where we estimate the temporal
shift from target to source with a source-trained model. First, we obtain the softmax
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predictions of the model when input target data with different temporal shifts. Then,
we choose the temporal shift with high prediction confidences across a diverse set of
classes. We show that this approach corresponds well to the actual climatic differences
between the two regions. Moreover, as correctly classified examples tend to have
higher prediction confidence [61], the estimated shift enables us to generate more
accurate pseudo-labels in the target domain for self-training.

In TimeMatch learning, we therefore use self-training to adapt a model to the
target domain. We propose an iterative algorithm where we alternate between temporal
shift estimation and re-training the model for the target domain by learning from both
labeled source data and pseudo-labeled target data. By doing so, the model learns
discriminative target features for accurate crop classification in the target region.

Lastly, we present the TimeMatch dataset, a challenging new open-access dataset
for training and evaluating cross-region models on SITS with over 300.000 annotated
parcels from four different regions in Europe. Evaluated on this dataset, our approach
outperforms all competing methods by 11% F1-score on average across five different
cross-region UDA experiments.

In summary, our contributions are as follows:

• We propose a method for estimating the temporal shift between a labeled source
region and an unlabeled target region to reduce their temporal discrepancy.

• We propose TimeMatch, a novel UDA method designed for the cross-region
problem of SITS, where crop classification models are adapted to an unla-
beled target region by self-training on temporally shifted data for improved
performance compared to existing methods. Our source code is available
at https://github.com/jnyborg/timematch.

• We release the TimeMatch dataset [116], a new dataset for training and evaluat-
ing cross-region UDA models on SITS from four different European regions.

This paper is organized as follows. Section 6.2 describes the existing literature
related to our work. Section 6.3 describes the proposed method for temporal shift
estimation and the TimeMatch learning algorithm. Section 6.4 presents our dataset and
the experimental setup, and Section 6.5 the experimental results. Lastly, Section 6.6
concludes this work.

6.2 Related Work

TimeMatch is related to the existing work in unsupervised domain adaptation of
learning domain-invariant features, time-series adaptation, cross-region adaptation,
and self-training.

Domain-Invariant Methods

The predominant approach in UDA is to train the classifier to rely only on domain-
invariant features [8, 184]. To this end, several works consider adversarial train-

https://github.com/jnyborg/timematch
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ing [37, 38, 98]. In domain adversarial neural networks (DANN) [37, 38], the feature
extractor is adversarially trained to produce domain-invariant features that are indis-
tinguishable by a domain discriminator. Conditional domain adversarial networks
(CDAN) [98] improves upon DANN by conditioning the domain discriminator on
classifier predictions in addition to features to enable the alignment of multimodal
data distributions.

Another approach is to align the feature distributions directly by minimizing
a divergence measure. Choices for divergence measure include maximum mean
discrepancy (MMD) [170], correlation alignment [161], or optimal transport [24, 31].
Recently, JUMBOT [31] achieves state-of-the-art UDA results by using mini-batch
unbalanced optimal transport to minimize the domain discrepancy of joint deep feature
and label distributions.

While domain-invariant methods achieve strong results on computer vision datasets,
they do not explicitly handle the temporal dimensions of SITS data and time series in
general.

Time-Series Unsupervised Domain Adaptation

Few methods tackle the challenge of time series UDA. Current methods for time
series are typically also based on learning domain-invariant features [4, 126, 185].
Recurrent domain adversarial neural network (R-DANN) and variational recurrent
adversarial deep domain adaptation (VRADA) explore long short-term memory and
variational recurrent neural networks as feature extractors, respectively, and learn
domain-invariant features using the DANN method [126]. Likewise, the convolutional
deep domain adaptation model for time series data (CoDATS) learns domain-invariant
features with a temporal convolutional network with the DANN method [185]. How-
ever, while these methods are effective at learning domain-invariant features for time
series, they are not designed to learn the temporal shift present in SITS.

Cross-Region Crop Classification

Lucas et al. [100] reports that existing UDA methods, including existing domain-
invariant methods [32, 49], perform poorly when applied to cross-region UDA of SITS
due to the temporal shift problem and the change in class distribution between the
two regions. Recently, Wang et al. [180] proposed the phenology alignment network
(PAN) as the first method for cross-region UDA of SITS. PAN learns domain-invariant
features with MMD [170] and a feature extractor consisting of gated recurrent units
and self-attention. Still, as PAN learns domain-invariant features, the temporal shift
problem is not directly addressed.

Self-Training Methods

Semi-supervised learning (SSL) is a similar task to domain adaptation, but where
the labeled and unlabeled data are sampled from the same data distribution [14].
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Many SSL methods are based on pseudo-labeling [91] (also called self-training [157]),
where the model’s own high-confidence predictions are used as labels for the unlabeled
samples. In Mean Teacher [165], the model assumes a dual role as teacher and student.
The student is updated by gradient descent with pseudo-labels generated by the teacher,
whereas the teacher is updated by an exponential moving average (EMA) of student
parameters to reduce pseudo-label noise. FixMatch [157] generates pseudo-labels for
weakly-augmented inputs, and uses confident pseudo-labels to self-train the model on
strongly-augmented inputs, regularizing the model to output consistent pseudo-labels
for random augmentations of the input.

Recently, self-training has emerged for UDA as an alternative to domain-invariant
methods [16, 110, 143, 153, 200]. By learning from both labeled source data and
pseudo-labeled target data, self-training methods implicitly encourage feature align-
ment for each class without restricting the model to operate on domain-invariant
features. However, since the domain shift often results in increased pseudo-label
noise compared to SSL, existing methods introduce various refinement methods to
reduce the noise, such as co-training [17], tri-training [143], conditional generative
models [110], or confidence regularization [200]. Recently, Adversarial-Learned Loss
for Domain Adaptation (ALDA) [16] proposes to refine the pseudo-labels with a
noise-correcting domain discriminator.

Similar to this line of work, our approach is based on self-training. By directly
accounting for the temporal shift, we can temporally align the target SITS with that of
the source, which enables the generation of more accurate pseudo-labels compared to
existing self-training methods that do not.

6.3 TimeMatch

In this section, we describe our proposed method TimeMatch for cross-region UDA.
We begin by formally defining the problem setting, followed by an overview of how
TimeMatch addresses it. We then give the details of the two TimeMatch components:
temporal shift estimation and TimeMatch learning.

Problem Setting

In crop classification, the input is a sequence of satellite images xxxi = (xxx(1)i , . . . ,xxx(Ti)
i ) of

length Ti to be classified into one of the K crop classes. In object-based classification,
which we focus on in this work, each xxxi ∈ RTi×Ni×C contains a sequence of Ni pixels
of C spectral bands within a homogeneous, agricultural plot of land which we refer to
as a parcel.

Each xxxi is accompanied by a sequence τττ i = (τ
(1)
i , . . . ,τ

(Ti)
i ) indicating the time τ

( j)
i

at which each observation xxx( j)
i is sampled. In practice, τ

( j)
i is typically represented by

the day-of-year [137, 142], and makes it possible to account for the irregular temporal
sampling of most satellites. The goal of the crop classification task is to learn a
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i

loss Lt

θ �→ θ
′ teacher θ′student θ

label ys

i

shift score

source domain Ds target domain Dt

D
t

D
s→t

D
t→s

day of year

teacher θ′

δt→s
, δs→t

EMA

τ
s + δs→t

τ
t + δ

t→s

loss Lall

TimeMatch Learning

re-estimate δt→s

Temporal Shift Estimation

shift

predictions

shift target data by δ ∈ {−∆,−∆+ 1, . . . ,∆}

+δ
t→s

365+∆−∆

c
ro
p
g
ro
w
th

target

Figure 6.2: Overview of TimeMatch. Both the student and teacher are pre-trained
on the source domain. Temporal Shift Estimation: We input shifted target data to
the teacher model and obtain its predictions for each shift. We then score each shift
by the confidence and diversity of the teacher predictions, and the shift with the best
score is output as the temporal shift estimate δ t→s and δ s→t =−δ t→s. TimeMatch
Learning: The teacher generates pseudo-labels for unlabeled target data shifted by
δ t→s. Then, the student is updated for (non-shifted) target data using the pseudo-labels,
and for source data shifted by δ s→t using the available source labels. As a result, the
student is adapted to the target domain with both generated target labels and actual
source labels. After the student parameters have been updated with gradient descent,
the teacher parameters are updated as an exponential moving average (EMA) of the
student parameters. As both models adapt to the temporal shift of the target domain,
the best shift for pseudo-labeling with the teacher changes and must be re-estimated.
The EMA ensures the teacher adapts slowly which enables δ t→s to be re-estimated
each epoch only for improved training efficiency and pseudo-label accuracy.

model which predicts class probabilities p(y|(xxxi,τττ i)) ∈ RK , typically learned with
supervision from labels y ∈ {1, . . . ,K}.

In this work, we consider the problem of cross-region UDA. We are given a source
domain D s = {(xxxs

i ,τττ
s
i ,y

s
i )}ns

i=1 of ns labeled SITS and a target domain D t = {xxxt
i,τττ

t
i}nt

i=1
of nt unlabeled SITS. We assume both the source and target domains consist of SITS
acquired over a single year (January 1 to December 31) and in geographically different
locations. The two domains can be associated with different data distributions, as
changes in local conditions, e.g. soil, weather, climate, or farmer practices, cause
domain discrepancies [168]. In this work, we focus on the domain discrepancies
caused by temporal shifts (Section 6.1). Although not explicitly addressed in this
work, there are other sources of discrepancies that might occur. For example, the local
topography or soil conditions could impact not only the temporal development of crop
growth, but also the spectral values, which could change the spectral signature of the
same crop type in different regions.
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Because of these data discrepancies, models which are trained with the labeled
source domain can fail when applied to the unlabeled target domain [101], thus
hindering the large-scale application of crop classifiers. To this end, our goal is
to adapt a model trained on D s to make accurate predictions on D t . We do so by
explicitly estimating the temporal shift between the two regions to generate accurate
pseudo-labels for D t . Then, we re-train the model with target data using the pseudo-
labels, thereby adapting the model to the spectral and temporal properties of the target
region. We note that the classes in the source may not be exactly the same as the
classes in the target. This complicates UDA, which typically assumes a closed-set
setting [121], where the set of classes in the source and target domains are equal. For
simplicity, we focus on a closed-set setting by adapting a classifier trained for the
main K−1 crop types in the source region, plus an “unknown" class containing all
remaining source data. This ensures that all target examples can be classified to either
one of the K−1 crop classes or “unknown".

Approach Overview

Here we give an overview of how TimeMatch addresses the cross-region UDA problem
before describing the full details. A visual presentation of TimeMatch is given in
Figure 6.2. TimeMatch consists of two components (i) temporal shift estimation and
(ii) TimeMatch learning.

We aim to estimate the temporal shift between the source and target regions to
reduce their domain discrepancy (see Figure 6.1). We represent the temporal shift by
a scalar δ t→s ∈ Z (as the number of days), here in the direction from target to source.
Note that the shift in the opposite direction is obtained by δ s→t =−δ t→s, so we only
have to estimate one shift. To shift the target domain by δ t→s, we write τττ t + δ t→s,
meaning δ t→s is added element-wise to each target day-of-year. With our proposed
method for temporal shift estimation (Section 6.3), we obtain estimates for δ t→s and
δ s→t .

In TimeMatch learning (Section 7), we use δ s→t to construct a target-shifted source
domain D s→t = {(xxxs

i ,τττ
s
i + δ s→t),ys

i}ns

i=1, which has reduced domain discrepancy to
the unlabeled target domain D t due to the temporal alignment. We therefore use
self-training to learn from the labeled D s→t and unlabeled D t . To do so, TimeMatch
learning unifies temporal shift estimation with the loss function of FixMatch [157]
and the exponential moving average (EMA) training of Mean Teacher [165], as we
explain next.

We first obtain source-trained parameters by training a crop classifier with D s.
We then duplicate the trained classifier into two models: the teacher and the student.
Our TimeMatch learning algorithm aims to adapt both the teacher and the student
to the new target region with self-training. The teacher generates pseudo-labels for
the target domain to train the student, and the knowledge learned by the student is
then updated back to the teacher, thus the pseudo-labels used to train the student
itself are improved. We generate pseudo-labels by using δ t→s to create an adapted
target domain D t→s = {xxxt

i,τττ
t
i + δ t→s}nt

i=1. As D t→s is temporally aligned with D s,
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the source-initialized teacher generates more accurate pseudo-labels for D t→s than
D t . The student is then trained with labeled D s→t and pseudo-labeled D t via the
FixMatch loss [157], thereby leveraging both the available source labels and the target
pseudo-labels to adapt the student to the target domain.

After updating the student, the teacher is updated via an EMA of the student
parameters. As the two models adjust to the temporal shift of the target domain, the
best shift δ t→s for pseudo-labeling with the teacher gradually moves to zero during
TimeMatch learning. To adjust to the changing shift and ensure the pseudo-labels are
consistently accurate, it is necessary to re-estimate the temporal shift of the teacher as
it learns. However, repeating temporal shift estimation is computationally expensive,
and drastically increases training time if done each training iteration. Therefore,
in Section 16, we discuss how EMA training alleviates this issue by enabling the
re-estimation to be done only once per epoch.

Next, we first describe our method for estimating the temporal shift before de-
scribing the loss function and learning algorithm of TimeMatch learning.

Temporal Shift Estimation

Estimating the temporal shift directly from the data is difficult, as labels are not
available in the target domain. Without labels, we cannot separate the target data into
each crop type, which prevents the computation of e.g. vegetation indices to compare
the source and target phenology of each crop type directly.

Instead, we propose to estimate the temporal shift by calculating statistics on
the predictions of a source-trained model when input temporally shifted target data.
By doing so, we estimate the shift that aligns the target data with the source crop
phenology learned by a model, leveraging the classification ability of the trained
model to estimate the shift from unlabeled data. Another benefit of this approach
is that it enables re-estimation of the best temporal shift for pseudo-labeling as the
learned phenology of the model changes from source to target in TimeMatch learning.

One possible value to measure is the confidence of the model predictions. In-
tuitively, when a source-trained model is applied to correctly shifted target data, it
should output more confident predictions than for incorrectly shifted target data. As
correctly classified examples tend to have more confident predictions than wrongly
classified or out-of-distribution examples [61], we argue that a confident temporal
shift indicates a better alignment of the target domain with the source which results in
accurate pseudo-labels and reduced domain discrepancy.

The confidence of a model for a particular shift δ t→s can be measured by the
expected entropy:

E(xxxt ,τττ t)∼D t
[
H
(

pθ

(
y|(xxxt ,τττ t +δ

t→s)
))]

, (6.1)

where H denotes the entropy, here computed over the predictions of the model θ when
input temporally shifted target data sampled from D t .

To estimate a temporal shift with entropy, Equation 6.1 should be computed for
each possible shift δ t→s ∈ {−∆,−∆+1, . . . ,∆}, and the estimated shift is then the
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one with lowest entropy. Here, ∆ defines the maximum possible shift (in days) to
estimate between the source and target regions.

However, due to the class imbalance of SITS, relying on expected entropy alone
could result in choosing a shift where the model outputs confident predictions for
only the most frequent classes while ignoring the less frequent classes. This would
hinder the adaptation of the model for the less frequent target classes. To address this
problem, the diversity of the predicted marginal distribution should also be considered
in the estimation. The marginal is given by:

pθ (y) = E(xxxt ,τττ t)∼D t
[
pθ

(
y|
(
xxxt ,τττ t +δ

t→s))] , (6.2)

that is, the expected predictions of the model (parameterized by θ ) when input shifted
target data.

Ideally, the marginal distribution should match the class distribution of the target
domain, as this indicates a shift where the model predicts a diverse set of classes
according to their actual frequency. But since target labels are unavailable, so is the
target class distribution. Instead, inspired by metrics for evaluating image generative
models, we consider two options to address this: the Inception score [145] (IS), and
the activation maximization score [196] (AM). Both metrics consider the entropy
and marginal of a pre-trained model, but IS scores the marginal distribution by its
similarity to a uniform distribution, whereas AM uses the actual class distribution.

As these metrics were originally proposed to evaluate the quality of generated
images, we describe next how we repurpose them for temporal shift estimation.
Finally, we describe an algorithm where IS is used to initialize the temporal shift for
estimating the target class distribution with pseudo-labels and enable a better temporal
shift estimate with AM.

Inception Score

IS is computed for a temporal shift δ by:

IS(δ t→s,θ)

= E(xxxt ,τττ t)

[
DKL

(
pθ

(
y|(xxxt ,τττ t +δ

t→s)
) ∥∥ pθ (y)

)]
(6.3)

= H(pθ (y))−E(xxxt ,τττ t)

[
H
(

pθ

(
y|(xxxt ,τττ t +δ

t→s)
))]

(6.4)

where DKL(· ∥ ·) is the KL-divergence between two distributions, here the conditional
distribution pθ

(
y|(xxxt ,τττ t +δ )

)
and marginal distribution pθ (y) predicted with model

parameters θ . Higher values of IS indicate a better δ , as when the conditional and
marginal distributions are different, this corresponds to a temporal shift where the
former has low entropy (i.e., the model is confident), and the latter has high entropy
(i.e., the model predicts a diverse set of classes). Hence, the temporal shift δ t→s is
estimated by:

δ
t→s
IS (θ s) = argmax

δ t→s∈{−∆,...,∆}
IS(δ t→s,θ s), (6.5)

where the estimated temporal shift maximizes IS for a source-trained model parame-
terized by θ s when applied to target data.
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Algorithm 1: ESTIMATETEMPORALSHIFT

1 Input: Source-trained parameters θ s, target domain D t , target class
distribution estimate Ĉt

2 if Ĉt = 000 then
3 Estimate temporal shift δ t→s← δ t→s

IS (θ s) (Eq. 6.5)
4 Compute pseudo labels for each (xxxt

i,τττ
t
i) ∈D t :

ŷt
i ← argmaxy (pθ s(y|xxxt

i,τττ
t
i +δ t→s))

5 Estimate class distribution Ĉt
y← 1

nt ∑
nt

i=1 111ŷt
i=y for y ∈ {1, . . . ,K}

6 Estimate temporal shift δ t→s← δ t→s
AM (θ s,Ĉt) (Eq. 6.7)

7 Output: Temporal shift δ t→s

AM Score

A shortcoming of IS is that the highest score is achieved when pθ (y) is uniform [5],
which corresponds to an even distribution of classes in the target domain. For SITS,
where the class distribution is often highly imbalanced, this may cause IS to estimate
a suboptimal shift. AM [196] addresses this issue by taking the actual target class
distribution Ct into account:

AM(δ t→s,θ ,Ct) = E(xxxt ,τττ t)

[
H
(

pθ

(
y|(xxxt ,τττ t +δ

t→s)
))]

+DKL(Ct ∥ pθ (y)).
(6.6)

AM consists of two terms: the first term is an entropy term on the conditional distribu-
tion, and the second is the KL-divergence between the underlying class distribution Ct

and the marginal distribution. Lower values of AM indicate a better δ , as the model is
confident in its predictions, and the actual class distribution of the data matches the
predicted distribution of classes. The temporal shift δ t→s is estimated by:

δ
t→s
AM (θ s,Ct) = argmin

δ t→s∈{−∆,...,∆}
AM(δ t→s,θ s,Ct). (6.7)

where the estimated temporal shift minimizes AM.

Algorithm for Estimating Temporal Shift

While AM is more accurate at estimating the temporal shift, it requires knowledge of
the target class distribution Ct , which is not available. To address this, we propose to
approximate the target class distribution for AM by pseudo-labels obtained with IS.
We show our approach in Algorithm 1. First, we use IS (Equation 6.5) to estimate
an initial shift δ t→s (line 3). This initial estimate allows us to shift the target domain
so that more accurate pseudo-labels can be generated with a source-trained model.
We then use the pseudo-labels to estimate the target class distribution Ĉt (lines 4-5).
Finally, we re-estimate the temporal shift more accurately with AM and Ĉt (line 6).
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TimeMatch Learning

Algorithm 2: TIMEMATCH

1 Input: Labeled source domain D s, unlabeled target domain D t ,
source-trained parameters θ s, total epochs n and iterations m, pseudo label
threshold ε , trade-off value λ , EMA decay rate α , learning rate η

2 Initialize student parameters θ ← θ s and teacher parameters θ ′← θ s

3 Initialize estimated target class distribution Ĉt = 000
4 for epoch = 1 to n do
5 Estimate temporal shift with teacher: δ t→s←

ESTIMATETEMPORALSHIFT(θ ′, D t , Ĉt)
6 if epoch = 1 then
7 Initialize δ s→t ←−δ t→s

8 for iteration = 1 to m do
9 Sample mini-batches of size B from source S = {(xxxs

i ,τττ
s
i ,y

s
i )}B

i=1 and
target T = {(xxxt

i,τττ
t
i)}B

i=1
10 With S shifted by δ s→t , compute source loss L s→t (Eq. 6.9)
11 For each example in T shifted by δ t→s, generate teacher prediction

qqqt
i and pseudo labels ŷt

i (Eq. 6.10 and 6.11)
12 With T and confident pseudo labels ŷt

i with max(qqqt
i)> ε , compute

target loss L t (Eq. 6.12)
13 Update student by gradient: θ ← θ − γ∇θ (L

s→t +λL t)
14 Update teacher by EMA: θ ′← (1−α)θ +αθ ′

15 Re-estimate class distribution: Ĉt
y← 1

mB ∑i 111ŷt
i=y for y ∈ {1, . . . ,K} (using

all pseudo labels from epoch)
16 Output: Student parameters θ

With our method for estimating the temporal shift, we can reduce the domain
discrepancy between the source and target domains. The TimeMatch learning algo-
rithm uses the temporal shift to train the student model for the target domain from
teacher-generated pseudo-labels via the FixMatch loss [157] and EMA training [165].
We present the complete TimeMatch algorithm in Algorithm 2, and describe the
details of each step in the following.

Pre-training on the Source Domain

As we rely on the teacher to generate pseudo-labels to train the student, it is important
to obtain a good initialization for both models. Additionally, temporal shift estimation
requires a source-trained model. Thus, we first use the labeled source domain to
obtain source-trained model parameters θ s. Given a batch of labeled source data from
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D s, we optimize the following loss function:

L s =
1
B

B

∑
i=1

L
(

pθ s
(
y|(xxxs

i ,τττ
s
i )
)
,ys

i
)
, (6.8)

where L(·, ·) is a classification loss (e.g. cross-entropy or focal loss [95]) and B the
batch size. After pre-training, we initialize the parameters of the student θ and teacher
θ ′ from θ s (line 2).

TimeMatch Loss

The TimeMatch loss consists of two terms: a supervised loss L s→t applied to the
adapted source domain D s→t and an unsupervised loss L t applied to the unlabeled
target domain D t . Our loss is based on the FixMatch loss [157]. To regularize
the model to predict consistent pseudo-labels on randomly augmented versions of
the same inputs, FixMatch applies two types of augmentation functions: weakly-
augmented a(·) and strongly-augmented A(·), corresponding to simple and extensive
augmentations of the input. We describe the form of augmentations we use for a(·)
and A(·) in Section 6.4.

Let δ s→t and δ t→s be temporal shifts estimated given by Algorithm 1 using the
teacher (line 5-7). To compute the supervised loss on the source domain, we use δ s→t

to align the source domain with the target domain and optimize:

L s→t =
1
B

B

∑
i=1

L
(

pθ

(
y|A(xxxs

i ,τττ
s
i +δ

s→t)
)
,ys

i
)
, (6.9)

using source labels ys
i to update the student θ on strongly augmented source data

shifted by δ s→t . This loss makes it possible for the student to learn the target phenology
from shifted source data (line 10).

To generate pseudo-labels for the target domain, we obtain the predicted class
distribution from the teacher when input source-shifted target data:

qqqt
i = pθ ′

(
y|a
(
xxxt

i,τττ
t
i +δ

t→s)), (6.10)

where the teacher θ ′ is input a weakly-augmented target sample, shifted by δ t→s.
Then, we use

ŷt
i = argmax(qqqt

i) (6.11)

as pseudo-label (line 11). The student θ is then updated on strongly-augmented target
data for confident pseudo-labels (line 10):

L t =
1
B

B

∑
i=1

111max(qqqt
i)>εL

(
pθ

(
y|A
(
xxxt

i,τττ
t
i
))
, ŷt

i
)
, (6.12)

where 111 is the indicator function, and ε is the confidence threshold for using a pseudo-
label. With this loss, the student is trained with target data using pseudo-labels. The
total loss minimized by the student in TimeMatch is:

L all = L s→t +λL t , (6.13)
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where λ is a scalar hyperparameter to control the trade-off between the supervised
and the unsupervised loss (line 13).

EMA training and re-estimating temporal shift

By optimizing L all , the student and teacher are trained only for the target phenology,
as L s→t shifts the time of the source to the target, while L t keeps the target in its
original time. This loss enables a source-trained model to adapt to the crop phenology
of the target domain.

However, by doing so, the source domain is gradually “forgotten", and as a
result, it becomes unnecessary to apply the temporal shift δ t→s for pseudo-labeling
the target domain with the teacher. This causes δ t→s to gradually move to zero
during TimeMatch learning. Thus, if δ t→s is fixed to the same shift, the target
samples will be wrongly shifted, which results in incorrect pseudo-labels. To address
this, we re-estimate the temporal shift for the teacher during TimeMatch learning.
As Algorithm 1 chooses the shift based on the confidence and diversity of model
predictions, re-estimating the temporal shift with the teacher ensures the generated
pseudo-labels remain accurate during training.

However, if the teacher is a direct copy of the student, the model will rapidly adapt
to the target domain, which requires the temporal shift to be re-estimated every few
iterations. But doing so drastically increases training time, as Equation 6.7 requires
forwarding a large sample of target data for each possible temporal shift. We address
this by introducing EMA training, where the teacher is slowly updated via an EMA of
the student parameters (line 14):

θ
′← (1−α)θ +αθ

′, (6.14)

where α is a decay rate. By choosing α close to 1, we reduce the rate at which the
teacher adapts to the target domain, enabling the re-estimation of δ t→s to be done only
once each epoch (line 5). Moreover, by averaging model weights via EMA, we also
obtain less noisy pseudo-labels [165].

By re-estimating the temporal shift, the teacher and the shift can both evolve jointly
during training, resulting in better pseudo-labels for improved cross-region adaptation.
Note that δ s→t is not re-estimated (line 7). The first shift estimate represents the shift
of the data, whereas the re-estimated shift represents the shift of the teacher. By fixing
δ s→t to the initial estimate, the source domain is kept aligned with the target domains
during training, which enables semi-supervised learning.

6.4 Dataset and Materials

This section presents the TimeMatch dataset [116] and the materials for our ex-
periments. We first introduce the crop classification model we use, followed by a
description of the dataset and its pre-processing. Then, we describe the competitors
and our implementation. Our source code is publicly available, and contains the
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Figure 6.3: Overview of the PSE+LTAE model [141, 142]. Given SITS of an agri-
cultural parcel, the PSE module process each time step independently by embedding
a random sample of pixels. The results are then concatenated into a sequence of
embeddings eeei. The observation dates τττ i, which we add temporal shifts to, are input to
the model by adding their positional encoding to eeei. The result is temporally processed
by LTAE to a single embedding oooi which is then passed to the classifier.

implementation of TimeMatch and the competitors, a link to download our dataset,
and the full experimental results: https://github.com/jnyborg/timematch.

Network Architecture

As model, we use the existing object-based crop classifier PSE+LTAE introduced
by Sainte Fare Garnot et al. [141, 142]. The network consists of two modules: the
pixel-set encoder (PSE) and the lightweight temporal attention encoder (LTAE). See
Figure 6.3 for an overview.

The PSE module handles the spatial and spectral context of SITS. Given SITS
of an agricultural parcel, PSE samples a random pixel-set of size S among the Ni

available pixels within the parcel. The PSE is efficient compared to e.g. convolutions,
which are time and memory-consuming when applied to irregularly sized parcels.
As spatial information is lost by doing so, the PSE supports an optional extra input
with various geometrical properties of the given parcel, such as its area. We do not
input this extra feature to avoid biasing the model towards the shapes of parcels in the
source region, which typically change depending on the local farmer practices. Thus,
we only input the sequence xxxi ∈ RTi×Ni×C, which is then embedded by the PSE for
each time step independently.

The LTAE module [141] handles the temporal context by applying self-attention [173]
with modifications to output a single embedding. It improves the accuracy and compu-
tational efficiency compared to the original TAE [142] by a channel grouping strategy
and a learnable master query. The additional input τττ i is input to LTAE by encoding the
days with sinusoidal positional encoding [173] and adding the result to the output of
PSE. As the positional encoding does not support negative inputs, we input negative
temporal shifts by offsetting each τττ i by the maximum temporal shift ∆. Given the
sequence of PSE-embeddings and the encoded τττ i, LTAE outputs a single embedding

https://github.com/jnyborg/timematch
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oooi, which is then classified by a multi-layer perceptron to produce class probabilities
p(y|(xxxi,τττ i)) ∈ RK .

The TimeMatch Dataset

The TimeMatch dataset [116] contains SITS from Sentinel-2 Level-1C products in
top-of-atmosphere reflectance. Four Sentinel-2 tiles are chosen in various climates:
33UVP (Austria), 32VNH (Denmark), 30TXT (mid-west France), and 31TCJ (south-
ern France), abbreviated as AT1, DK1, FR1, and FR2, respectively. A map of the
tiles is shown in Figure 6.4. We use all available observations with cloud coverage
≤ 80% and coverage ≥ 50% between January 2017 and December 2017. Figure 6.5
shows the resulting acquisition dates for the four tiles. We leave out the atmospheric
bands (1, 9, and 10), keeping C = 10 spectral bands. The 20m bands are bilinearly
interpolated to 10m.

For ground truth data, we retrieve geo-referenced parcel shapes and their crop type
labels from the openly available Land Parcel Identification System (LPIS) records
in Denmark1, France2, and Austria3. We select 15 major crop classes in Europe and
label any remaining parcels as unknown. Figure 6.6 shows the selected classes and
their frequency in each tile.

We pre-process the parcels by applying 20m erosion and removing all parcels
with an area of less than 1 hectare. This reduces label noise by removing pixels
near the border of parcels, which are often less representative of the given crop
class compared to the pixels in the middle, and also by removing small or thin
polygons, which are typically miscellaneous classes such as field borders. The SITS
are pre-processed for object-based classification by cropping the pixels within each
parcel to input sequences xxxi ∈ RTi×Ni×10. Each input is then randomly assigned to the
train/validation/test sets of each Sentinel-2 tile by a 70%/10%/20% ratio. Note that this
process assumes knowledge of parcel shapes in the target region. If this is not available,
TimeMatch may instead be applied for pixel-based classification by inputting single
pixels (S = 1) to PSE+LTAE. We choose five different cross-region tasks (written as
“source→target"): DK1→FR1, DK1→FR2, DK1→AT1, FR1→DK1, and FR1→FR2.
When a Sentinel-2 tile is chosen as source, all labels of the train and validation sets are
available for training. When a tile is the target region, no labels are available, except
for the final evaluation on the test set. In contrast, many existing UDA methods
assume that a labeled validation set is available for the target domain, and use it during
training e.g. to select the best model [16, 38, 98, 170]. However, this assumption is
unrealistic, as if labels were available in real-world scenarios, they would be better
used for training the model. Instead, we report all cross-region UDA test results with
the model output at the end of training. Still, hyperparameters must be chosen with a
labeled validation set. Thus, we tune hyperparameters with the target validation set

1https://kortdata.fvm.dk/download (“Marker")
2http://professionnels.ign.fr/rpg (“RPG")
3https://www.data.gv.at (“INVEKOS Schläge")
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32VNH (DK1)

30TXT (FR1)

31TCJ (FR2)

33UVP (AT1)

Estimated δ
t→s

DK1→FR1 32

DK1→FR2 42

DK1→AT1 16

FR1→DK1 -35

FR1→FR2 4

Figure 6.4: Locations of the four European Sentinel-2 tiles in the TimeMatch dataset.
In the upper left corner, we show the temporal shifts δ t→s estimated by Algorithm 1
with a source-trained model.

for only one task, DK1→FR1, and apply the found hyperparameters to all remaining
tasks (as done in [31]).

The class distributions between regions differ significantly, and there may not
be enough examples of a crop type in the source region for a model to learn their
classification. Thus, when pre-training models on source data, we only use a subset of
the available crop types with at least 200 examples in the source region (as indicated
by the dashed line in Figure 6.6). The remaining classes are set as “unknown". When
evaluating on the target data, we report results on the same selection of source classes
no matter their frequency in the target.
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Figure 6.5: Acquisition dates for each Sentinel-2 tile in our dataset. The inputs are
irregularly sampled with variable temporal length.
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Figure 6.6: Class frequencies (log scale) for each Sentinel-2 tile in the TimeMatch
dataset. The dashed line indicates the threshold for the source region when selecting a
class as part of the K classes.

Comparisons

Baselines We consider the following baseline methods:

• Source-Trained is PSE+LTAE trained on the source domain and applied to
the target domain without domain adaptation. This result represents the lower
bound cross-region performance of the model.

• Target-Trained is PSE+LTAE trained with labeled target data using the same
classes as the source-trained. We note that by training with the source classes,
which is required for comparison, infrequent classes may not be learned properly
which increases the variance of the results. This result can be seen as the upper
bound cross-region performance if labels were available in the target region.

Competing UDA Methods We compare TimeMatch to five existing UDA methods.
We reproduce these methods for SITS by replacing the original feature extractor with
PSE+LTAE. For domain-invariant methods, we align the LTAE feature vector input
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to the final classifier (i.e., oooi in Figure 6.3), similar to the original approach in these
methods.

We compare to the following methods:

• FixMatch [157] is TimeMatch without the temporal shift estimation. As this
method is semi-supervised learning, it shows whether UDA or SSL is more
beneficial for cross-region adaptation.

• MMD [170] learns domain-invariant features by minimizing the maximum
mean discrepancy metric.

• DANN [37] uses a domain classifier to learn domain-invariant features with
adversarial training.

• CDAN+E [98] improves upon DANN by conditioning the domain classifier on
the classification output and minimizing an entropy loss on target data.

• ALDA [16] is a self-training method where pseudo-labels are refined by a noise-
correcting domain discriminator. This method is in essence the most similar to
TimeMatch.

• JUMBOT [31] learns domain-invariant features by a discrepancy measure based
on optimal transport.

We note that time-series domain adaptation methods R-DANN, VRADA [126] and
CoDATS [185] also employ DANN to align the features extracted by temporal network
architectures. Thus, the only difference between VRADA, CoDATS, and the DANN
approach mentioned here is the backbone architecture, which in our case is the
temporal model PSE+LTAE.

PAN [180], a UDA method for SITS, learns domain-invariant features by minimiz-
ing the MMD loss for a temporal crop classification network. Unfortunately, we were
unable to gain access to the source code of PAN for comparison. As an alternative,
we include the MMD comparison, which is similar to PAN, except the crop classifier
is changed to PSE+LTAE.

ShiftAug To verify the benefits of estimating the temporal shift compared to training
models that are invariant to temporal shifts, we implement a simple data augmentation
technique to train shift-invariant models that we name ShiftAug. During training,
ShiftAug uniformly samples δ ∼U (−∆,∆) for each training example and shifts the
example by (xxxi,τττ i +δ ). By extending the training data to contain all valid temporal
shifts with uniform probability, ShiftAug enables training models with invariance
towards shifts. Note that ShiftAug is incompatible with the temporal shift estimation
presented in Algorithm 1, which requires a shift-variant model.

We implement all competing methods with and without ShiftAug. This reveals
the degree at which existing methods can implicitly learn shift-invariance.
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Implementation Details

All experiments are implemented in PyTorch [122] and trains on a single NVIDIA
1080 Ti GPU. Our implementation is based on the source code of PSE+LTAE [141].

Source-training To initialize models on the labeled source domain, we follow the
original training approach of PSE+LTAE [142]. We train for 100 epochs with the
Adam [82] optimizer with an initial learning rate of 0.001 and we decay the learning
rate using a cosine annealing schedule [99]. We use weight decay of 0.0001, batch
size 128, and focal loss γ = 1. Inputs are normalized to [0,1] by dividing by the max
16-bit pixel value 216−1. The best source-trained model is selected using the source
validation set. We augment the inputs by randomly sub-sampling 30 time steps. The
pixel-set size of PSE is set to S = 64 during training. The same setup is used for the
target-trained model. For the final evaluation, we do not sample time steps or pixels,
and instead input all available time steps (T = Ti) and pixels (S = Si) for each example
to the model. This ensures deterministic test results, and we also observe slightly
improved results by doing so.

ShiftAug When training with ShiftAug, all training data (both source and target)
are randomly shifted during training as described in Section 6.4. ShiftAug is disabled
during evaluation.

Method ShiftAug DK1→FR1 DK1→FR2 DK1→AT1 FR1→DK1 FR1→FR2 Avg.

Source-trained ✗ 28.3±1.9 29.0±5.2 43.4±4.0 24.9±2.0 70.3±1.9 39.2±3.0
✓ 40.9±0.8 37.4±2.3 48.9±2.8 47.3±1.9 70.5±1.1 49.0±1.8

FixMatch [157] ✗ 24.2±4.0 28.2±6.9 37.4±5.6 26.2±1.8 70.4±0.9 37.3±3.8
✓ 48.2±1.3 44.2±3.2 57.4±2.2 51.3±1.6 67.7±0.2 53.7±1.7

MMD [170] ✗ 36.6±0.7 35.5±0.6 49.7±2.0 32.5±2.0 61.6±2.6 43.2±1.6
✓ 42.2±0.4 39.5±0.8 48.9±2.4 42.8±2.3 59.0±2.7 46.5±1.7

DANN [37] ✗ 38.7±0.7 37.3±0.6 52.0±1.4 34.0±1.8 71.0±0.2 46.6±0.9
✓ 45.3±2.2 44.1±1.4 52.4±1.4 42.9±2.5 68.7±0.5 50.7±1.6

CDAN+E [98] ✗ 39.3±0.6 37.9±0.3 51.5±2.9 36.5±1.3 71.7±0.6 47.4±1.1
✓ 46.5±2.3 45.2±1.3 55.0±1.3 46.9±0.5 70.7±1.3 52.9±1.3

ALDA [16] ✗ 36.9±0.2 33.1±1.9 47.2±3.9 35.0±1.0 55.3±3.1 41.5±2.0
✓ 42.8±2.1 36.2±0.6 51.5±2.2 40.7±1.3 53.8±3.9 45.0±2.0

JUMBOT [31] ✗ 36.8±0.2 33.6±1.3 50.5±0.6 35.6±3.0 63.7±3.0 44.0±1.6
✓ 42.7±0.1 38.3±1.2 49.7±4.2 41.5±0.5 62.2±1.2 46.9±1.4

TimeMatch ✗ 57.4±1.5 47.0±0.9 61.7±4.9 52.1±1.4 73.0±0.5 58.2±1.8

Target-trained ✗ 74.6±0.6 72.4±1.4 86.9±2.7 90.6±4.3 85.7±0.7 82.0±1.9

Table 6.1: Macro F1-score (%) results on our dataset for unsupervised cross-
region adaptation. We consider five adaptation tasks across four Sentinel-2 tiles:
DK1=32VNH (Denmark), FR1=30TXT (mid-west France), FR2=31TCJ (southern
France), and AT1=33UVP (Austria).
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TimeMatch We use the same training setup as the source-trained model but instead
train for 20 epochs with a lower initial learning rate of 0.0001. We define an epoch
as 500 iterations to fix the frequency in which the temporal shift is re-estimated. We
use maximum temporal shift ∆ = 60 days, as we did not observe shifts greater than
2 months for our dataset in Europe. We set the trade-off hyperparameter λ = 2.0
in Equation 6.13, EMA keep-rate α = 0.9999, and pseudo-label threshold τ = 0.9.
A sensitivity analysis of these hyperparameters is provided in Section 6.5. For the
FixMatch [157] augmentations, we use the identity function for the weak a(·) in
Equation 6.10 and randomly sub-sample time steps for the strong A(·) in Equations 6.9
and 6.12. These are used for simplicity, and we leave the use of more advanced
augmentations for SITS to future work. At each iteration, we sample two mini-batches
of size 128, one from the source and one from the target, in order to calculate the
TimeMatch objective in Equation 6.13. We use a class-balanced mini-batch sampler
for the source domain to ensure each source mini-batch contains roughly the same
number of samples for each class. This reduces the class imbalance problem for the
source domain for improved performance. Additionally, we apply domain-specific
batch normalization [13, 93, 144] by forwarding the source and target mini-batches
separately instead of concatenated. This ensures the batch normalization [68] statistics
are calculated separately for each domain, for improved adaptation.

Competing Methods We re-implement the competitors MMD, DANN and CDAN+E
following the domain adaptation library in [75], and use the original source codes for
ALDA [16] and JUMBOT [31]. FixMatch [157] follows our re-implementation for
TimeMatch with an EMA teacher and the student as the final model. All methods are
initialized from a source-trained model. ShiftAug versions are initialized from the
corresponding ShiftAug source-trained model, and we continue to use ShiftAug dur-
ing training. As in TimeMatch, we train for 20 epochs and tune the hyper-parameters
of these methods on the task DK1→FR1. The full details can be found in our source
code.

6.5 Experimental Results

Main Results

Table 6.1 shows the performance obtained with our approach and the re-implemented
baselines and competitors. We report the mean and standard deviation of macro F1
scores, calculated from the results of three runs with different dataset splits.

We observe that source-trained models transfer very poorly to new target regions,
with an average F1-score of 39% on target data. In comparison, target-trained models
on the same classes achieve 82% on average. We observe that training shift-invariant
models with ShiftAug improves domain generalization, leading to an increased aver-
age score of 49%. This greatly motivates addressing the temporal shift in UDA.

Existing UDA methods, however, only slightly increase the performance of source-
trained models, with the best result obtained by CDAN+E [98] with 47%. By incorpo-
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rating our ShiftAug, we observe a performance boost across all evaluated methods,
indicating that existing methods are unable to implicitly handle the temporal shift.

Our approach TimeMatch, where we explicitly estimate the temporal shift, out-
performs all competing methods by 11% on average and 5% for their ShiftAug
variants. This shows that accounting for the temporal shift is a key component for
the cross-region adaptation problem of SITS. Moreover, the shift-variant approach of
TimeMatch outperforms the shift-invariance strategy. We hypothesize that training
for shift-invariance may complicate crop classification, as the classification of certain
crop types is shift-variant. For example, spring barley and winter barley develop
similarly over time but shifted, as also discussed in Section 6.1.

Comparing TimeMatch to the results of the target-trained model, we observe that
our approach—without any target labels—recovers a significant part of the highest
achievable performance if target labels were available, but we also find that there
is room for improvement. From our results, we see that methods which explicitly
account for the temporal shift, such as TimeMatch and the ShiftAug variants of
competing methods, generally outperform methods which do not. We therefore
believe that further improvements can be gained by considering stronger forms of
temporal alignment than shifts, such as class-wise alignments or time warping. We
leave this interesting direction to future work.
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Figure 6.7: (a) Overall accuracy, entropy, IS, and AM scores of a source-trained model
when applied to the target domain with different shifts. The dashed line indicate the
most accurate shift. (b) The re-estimated temporal shifts of the teacher model during
TimeMatch learning with different EMA decay rates.

Lastly, we highlight the results of the semi-supervised learning method Fix-
Match [157]. This method is similar to TimeMatch, but without temporal shift
estimation. We observe that without ShiftAug, FixMatch obtains results worse than
the source-trained model. This indicates semi-supervised learning cannot address the
cross-region task alone. With ShiftAug, however, the results are greatly improved
on average. Interestingly, the performance is worse without ShiftAug for all tasks
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except FR1→FR2. Here, the source and target regions are the most geographically
close, and as result, the temporal shift is also closer to zero (see the top-left table
in Figure 6.4). This indicates that ShiftAug (controlled by ∆) is a trade-off between
better long-range classification results and worse short-range results. In contrast,
by estimating the temporal shift directly, TimeMatch does not have this issue and
outperforms shift-invariance at both short and long distances.

Analysis of Temporal Shift Estimation

In Figure 6.7a, we show the change in the overall accuracy of a source-trained model
when applied to target data with different temporal shifts for DK1→FR1. We also
show the change in entropy, IS, and AM scores of the model. We observe a significant
increase in accuracy by temporally shifting the target data. Calculating the statistics
of entropy, IS, and AM from the predictions of the model works well as an unlabeled
proxy to accuracy. We aim to estimate the shift with the highest accuracy (dashed
blue line) for the highest quality pseudo-labels. For the shown example, the minimum
of both entropy and AM correspond to the best shift. However, we find AM to be the
most consistent across different adaptation tasks.

In Figure 6.7b, we show the rate at which the estimated temporal shift for the
teacher goes to zero in TimeMatch learning when training with different EMA decay
rates. When the shift changes, the previous estimate becomes sub-optimal for gen-
erating accurate pseudo-labels. We address this by re-estimating the temporal shift
during training. We observe that low decay rates (e.g. 0.99) require the shift to be
re-estimated after a few iterations, which is inefficient. In comparison, a decay rate of
0.9999 allows us to only re-estimate the shift only once every epoch.

Ablation DK1→FR1

No EMA (α = 0.0) 49.9±3.7
No source temporal shift (δ s→t = 0) 51.9±1.9
No balanced batch sampler for source 53.3±3.6
IS instead of AM 56.3±2.6
Entropy instead of AM 56.9±1.8
No domain-specific batch norm. 56.9±4.1

TimeMatch 57.4±1.5

Table 6.2: Ablation study of TimeMatch components, sorted by increasing F1-score
(%).

The table in the upper left corner of Figure 6.4 shows the initial temporal shifts
estimated by our method. We find the estimated shifts are connected to the climatic
differences between regions. For example, the temporal shift (δ t→s) from the warmer
FR1 (mid-west France) to the colder DK1 (Denmark) is estimated as 32 days. Due to
the warmer climate, crops in FR1 mature earlier than in DK1, and a positive shift is
required to align the former with the latter. In the other direction, the opposite is true,
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and indeed, we estimate a negative temporal shift of −35 days. Note that these are off
by 3 days due to estimation variance. Here, the two source-trained models used to
estimate the temporal shift in each direction are trained with two completely separate
source region, yet their estimated shifts are still roughly inverses. This indicates that
the temporal shift learned by these models is connected to the phenological properties
of their respective source regions.

Figure 6.8: Visualization with t-SNE [172] of target features for the DK1→FR1
task. TimeMatch shows improved clustering of target features compared to existing
approaches.

(a) Source-Only (b) TimeMatch (c) Ground Truth

Figure 6.9: Parcel predictions for an example target area (6 km2) from the DK1→FR1
task, comparing (a) Source-Only, (b) TimeMatch, and (c) the corresponding ground
truth. The figure shows the combination of multiple individual parcel predictions in
the target region. The colors map to the classes in Figure 6.8.

Ablation Study

To better understand how TimeMatch is able to obtain state-of-the-art results, we
perform an ablation study on the different components for the task DK1→FR1. We
report the results in Table 6.2. We first study the impact of the EMA training. Instead
of EMA, we set the teacher as a direct copy of the student (No EMA). We observe
that training without EMA introduces a significant drop in F1-score. This shows that
EMA is important to ensure high pseudo-label accuracy. Setting δ s→t = 0 disables
the temporal shift of the source domain, and the student is trained with datasets
with different temporal shifts. We observe a significant decrease in F1-score as a
result. Disabling the balanced mini-batch sampler for the source domain also leads
to a degradation of the performance. If the model is trained with class imbalanced
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source data, the teacher will make biased pseudo-labels for the samples from the
target domain [58]. This hinders the TimeMatch learning process, as pseudo-labels
for infrequent classes in the source domain are less likely to be generated for the
target. By applying a balanced mini-batch sampler for the source, we address this
problem by ensuring each source batch contains roughly the same number of samples
for each category. Estimating the temporal shift with IS or entropy instead of AM
results in a slight performance drop. Domain-specific batch normalization is simple to
implement, as it just requires forwarding source and target batches separately instead
of concatenated. Disabling this component results in a small average performance
loss with notably higher variance.

Sensitivity Analysis

Here we study the sensitivity of the TimeMatch hyperparameters. The results are
shown in Figure 6.10. Higher values of α lead to better results, with a decay rate of
0.9999 being the best. However, increasing it to 1.0, so the teacher is not updated,
results in a drop in F1-score, as the teacher cannot benefit from the knowledge learned
by the student. The confidence threshold ε controls the trade-off between the quality
and quantity of pseudo-labels. A threshold of 0.9 gives the best F1-score and further
increasing the threshold to 0.95 drops performance as a result of too few pseudo-labels,
which particularly decreases performance for the less frequent classes. Finally, the
trade-off parameter λ controls the importance of the source domain loss L s→t with
respect to the target domain loss L t . We observe that this hyperparameter is less
important than the other two, but setting λ = 2.0 gives the best results.

Visual Analysis

Finally, we visualize the ability of TimeMatch in learning discriminative features
for the target domain. In Figure 6.8, we visualize t-SNE [172] embeddings of target
domain features from source-trained, CDAN+E (the best competitor on average),
TimeMatch, and target-trained models on the task DK1→FR1. The colors of the
points represent their class (black is the unknown class). With TimeMatch, the target
features are better clustered into their respective classes compared CDAN+E, which
does not result in much better feature separation than the source-trained model. The
target-trained plot shows the best possible learned features when training with all
available target labels. Even with labels, the classes are not perfectly separated, e.g.
for unknown/meadow or winter triticale/winter wheat.

Figure 6.9 shows example parcel predictions in a small area for the source-trained
and TimeMatch models compared to the ground truth. The colors represent the same
classes as before. We observe a large class confusion for the source-trained model, in
particular between winter barley (blue) and winter wheat (dark pink), which are also
not separated well in Figure 6.8. Without using any target labels, TimeMatch resolves
this issue, resulting in clusters that better resemble the ground truth.
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Figure 6.10: Sensitivity analysis of TimeMatch for the EMA decay rate, pseudo-label
confidence threshold, and the trade-off in Eq. 6.13. The error bars show standard
deviation.

6.6 Conclusion

This paper presented TimeMatch, a novel cross-region adaptation method for SITS.
Unlike previous methods that solely match the feature distributions across domains,
TimeMatch explicitly captures the underlying temporal discrepancy of the data by
estimating the temporal shift between two regions. Through TimeMatch learning, we
adapt a crop classifier trained in a labeled source region to an unlabeled target region.
This is achieved by a learning algorithm that combines temporal shift estimation with
self-training, where target pseudo-labels are generated using the estimated tempo-
ral shift from target to source. Lastly, we presented the TimeMatch dataset, a new
large-scale cross-region UDA dataset with SITS from four different regions in Europe.
Evaluated on this dataset, TimeMatch outperforms all existing approaches by 11%
F1-score on average across five different adaptation tasks, setting a new state of the
art in unsupervised cross-region adaptation. While this demonstrates that TimeMatch
reaches strong results, there is still a gap with the performance obtained by fully super-
vised approaches. To overcome this limitation, we hypothesize that stronger temporal
alignments, e.g. class-wise alignments or time warping, could further improve the
performance. Another possibility is to perform domain adaptation across both time
and space, which in addition to the temporal aspect also brings new considerations,
such as the change in parcel shapes over time and crop rotations. We hope our pro-
posed method and released dataset will encourage the remote sensing community to
consider the challenging cross-region adaptation problem and its temporal aspect.
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Abstract

Large-scale crop type classification is a task at the core of remote sensing
efforts with applications of both economic and ecological importance. Cur-
rent state-of-the-art deep learning methods are based on self-attention and use
satellite image time series (SITS) to discriminate crop types based on their
unique growth patterns. However, existing methods generalize poorly to regions
not seen during training mainly due to not being robust to temporal shifts of
the growing season caused by variations in climate. To this end, we propose
Thermal Positional Encoding (TPE) for attention-based crop classifiers. Unlike
previous positional encoding based on calendar time (e.g. day-of-year), TPE
is based on thermal time, which is obtained by accumulating daily average
temperatures over the growing season. Since crop growth is directly related
to thermal time, but not calendar time, TPE addresses the temporal shifts be-
tween different regions to improve generalization. We propose multiple TPE
strategies, including learnable methods, to further improve results compared
to the common fixed positional encodings. We demonstrate our approach on
a crop classification task across four different European regions, where we
obtain state-of-the-art generalization results. Our source code is available at
https://github.com/jnyborg/tpe.
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Figure 7.1: Winter wheat NDVI in different European regions with calendar time and
thermal time. With thermal time, temporal shifts of crop growth in different regions
are greatly reduced.

7.1 Introduction

The increase in openly accessible satellite image time series (SITS) has led to the
development of deep learning models using remote sensing data that has significantly
improved the state of the art in SITS classification tasks. Among these, crop type
classification has numerous applications of economic and ecological importance, such
as environmental monitoring, food security, and crop price prediction. Time series
data is particularly valuable for crop classification, as it enables models to capture crop
phenology, i.e. the progression of growth over time which characterizes different crop
types. Specialized deep learning models for the task thus focus on the temporal aspect
of the problem, proposing models based on neural network components that process
time, such as temporal convolutions [125, 193], recurrent layers [65, 108, 112, 137],
or most recently self-attention [136, 141, 142].

Since the growth patterns of crops are similar in different regions of the world [56],
it is reasonable to expect that models trained in one region can generalize to another.
However, recent works have found that existing models generalize poorly to other
regions than those seen during training [101, 118]. Part of the challenge in general-
ization is the variability in climate which causes different timing of crop growth [35].
For example, in cooler regions, crops reach their growth stages later than in warmer
regions, which models must account for to generalize [118].

To model the progression of time, the predominant approach in existing models
is to use calendar time to include temporal context, either during pre-processing
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to interpolate the data into regular temporal sampling [67, 125, 136, 180] or as
an explicit additional input [102, 138]. Notably, state-of-the-art methods based on
self-attention input calendar time via positional encoding [41, 142]. Since self-
attention is position agnostic [173], this provides explicit positional information
about the temporal location of images within the growing season. This helps crop
classification as the particular timing for the phenological events of a crop type can
be an important clue in its classification, e.g. to distinguish spring wheat from winter
wheat. However, the phenological calendar timing of one region is not generally
shared with other regions due to temporal shifts, which causes existing models to
generalize poorly [80, 118].

To overcome this challenge, we propose Thermal Positional Encoding (TPE) to
improve the generalization of crop classifiers. Our core idea is to use a representation
that captures the climatic variation affecting growth rates without relying on calendar
time. To this end, we propose positional encoding based on thermal time [104, 105]
for self-attention models. Thermal time is typically measured for crops by units
of Growing Degree Days (GDD) [56, 104, 107, 189], computed by accumulating
daily average temperatures above a baseline. As crop growth is directly related to
the accumulation of heat over the growing season [35, 76], an earlier crop growth
corresponds to an earlier increase in GDD and vice versa. This is illustrated in
Figure 7.1 using normalized difference vegetation index (NDVI) to display winter
wheat phenology in three different regions. Thermal time improves generalization of
models by making SITS from different regions invariant to temporal shifts. At the
same time, it provides a temporal location of images which allows thermal time to
directly replace calendar time in crop classifiers.

To encode positional information, existing works generally use sinusoidal encod-
ing [173]. However, as this approach is predefined and not learned, it lacks flexibility
and may not capture crop-specific positional information. In this paper, we propose
multiple TPE methods to encode thermal time in a data-driven way. By learning an
encoding function instead of, e.g. an embedding vector for each position [27, 128], our
approach is inductive. This allows us to handle when the thermal time of test regions
differs from that of training, which is common in practice. We evaluate our approach
on a crop classification task across four different European regions on the TimeMatch
dataset [116], containing Sentinel-2 SITS expanded with daily temperature data, and
demonstrate that we obtain state-of-the-art generalization results in new regions. Our
main contributions are:

• We propose the use of thermal time in crop classification to increase robustness
to temporal shifts and improve generalization.

• We propose TPE methods, which are based on thermal time and can easily be
implemented in recent attention-based crop classifiers.

• We demonstrate that TPE greatly improves generalization across four different
European regions.
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7.2 Related Work

Satellite Image Time Series Classification. Multiple traditional machine learning
approaches, such as random forests or support vector machines, have been applied to
crop classification [66, 174, 176, 181]. These approaches require input features to be
extracted by hand. For instance, a widely used feature is NDVI, combining the red
and near-infrared spectral bands, which relates to the photosynthesis of crops [167].
Other works also include phenological features [74, 171] or meteorological informa-
tion [192]. Although these handcrafted features are robust and interpretable, deep
learning approaches are mostly employed as they enable the automatic extraction of
richer features from raw SITS. Deep convolutional networks have been widely applied
to process the spatial dimensions of the data [87, 138], while the temporal dimension
has been processed by recurrent units [112, 137], 1D convolutions [125, 193], or
combinations thereof [67, 138]. Recently, self-attention [173] has led to significant
improvements in pixel [136] and parcel classification [141, 142], as well as semantic
and panoptic segmentation [41]. Since self-attention is position-agnostic, existing
works use sinusoidal positional encoding [173] of calendar time to capture the po-
sition of images in the growing season. We propose positional encoding based on
thermal time [104, 105] to improve the generalization of the promising self-attention
mechanism.

Domain Generalization for SITS. Several prior works have reported that existing
crop classification models fail to generalize across space and time due to not being
robust to temporal shifts of the growing season [80, 100, 118, 180]. This problem
has mainly been tackled by unsupervised domain adaptation (UDA), where models
are trained with labeled data from a source region and unlabeled data from a target
region [168]. Phenology Alignment Network [180] addresses this problem by learning
domain-invariant features obtained with a maximum mean discrepancy loss [170] for
the unlabeled target data. TimeMatch [118] obtains further improvements by directly
estimating the temporal shift of the target region, and utilizing the shift estimation to
train with pseudo-labels for the unlabeled target region. Our setting differs from UDA,
as we do not aim to adapt models to particular regions by training with unlabeled data,
but to improve the generalization of a crop classifier model trained with labeled data
from multiple areas to any new region.

Most similar to our work, Kerner et al. [80] improve the generalization of crop
classifiers by inputting satellite data at specific time steps which correspond to par-
ticular growth stages (greenup, peak, and senescence), computed from the NDVI
sequence for each input. By dynamically selecting these time steps, this approach can
account for temporal shifts of the growing season, but information is lost since the
complete time series is not involved in the prediction. In comparison, we aim to train
self-attention models which attend to the most relevant time steps in the complete
time series automatically by incorporating thermal time.
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Positional Encodings. A vast literature exists in positional encoding for the self-
attention mechanism. Absolute positional encoding is most widely used. In the
original Transformers [173], vectors are encoded from the absolute position in the
sequence by sinusoidal functions, but this approach is less flexible as the vectors are
fixed and not learned. To overcome this issue, a common approach is to learn an
embedding vector for each position [27, 128] similar to word embeddings, but this
approach requires all possible positions to be seen during training to ensure all the
embeddings are updated by gradient descent. This is ill-suited for irregularly sampled
SITS, which does not guarantee that all possible (calendar or thermal) positions are
available for training. Instead, approaches that learn a function that maps positions to
vectors [92, 96, 113] do not have this requirement and can thus generalize to unseen
positions at test time. We therefore build upon these in this paper.

Another line of work is relative positional encoding [23, 63, 151], which encodes
the positional difference between each pair in the input sequence instead of the
absolute position of individual elements. While relative positions can be more relevant
than absolute in other tasks, in SITS classification, the absolute position is crucial
information. For example, a satellite image taken during the winter will not contain
the same information about crop growth compared to an image from the spring, which
cannot be captured by only the relative positions, e.g. the difference in days between
the two images. Thus, we focus on absolute positional encoding in this work.

7.3 Self-Attention for Crop Classification

In crop classification, we are given a satellite image time series xxx = [xxx(1), . . . ,xxx(T )],
where T is the length of the time series. The goal of the classification task is to
associate xxx with one of K classes. In our setting, each xxx(t) ∈ RT×N×C consists of
a sequence of N pixels of C spectral bands within a parcel, i.e., a homogeneous
agricultural plot of land. This approach requires parcel shapes to be available in the
region for classification, which is widely available in the European Union (EU) [147]
or can alternatively be acquired by a segmentation step [41, 159].

Our goal is to improve the generalization of existing crop classifiers by accounting
for temporal shifts of the growing season. Owing to its state-of-the-art performance,
we build upon the PSE+LTAE model [141]. The network consists of the Pixel-Set
Encoder (PSE) and the Lightweight Temporal Attention Encoder (LTAE). Given a
randomly sampled pixel-set of size S among the N available pixels of an input xxx, the
PSE handles the spatial and spectral context of SITS by processing each time step
individually to a sequence of embedding vectors eee = [eee(1), . . . ,eee(T )] ∈ RT×D, where
D is the embedding dimension. PSE does not process the temporal dimension. We
thus focus on handling temporal shifts in the LTAE module. Given eee, LTAE extracts
temporal features using a simplified version of the multi-headed self-attention, as we
describe next.
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Self-Attention. In the original Transformer model [173], self-attention is computed
with a query-key-value triplet (qqq(t),kkk(t),vvv(t)) for each element in the input sequence
using three fully-connected layers. The output is a sequence where each element is
a sum of all values vvv(t) weighted by their attention score. The attention scores for
a time step t are computed as the similarity (dot product) between all keys and the
query qqq(t), re-scaled by a softmax layer. The computation of the query-key-value
triplets can be performed in parallel, which enables the Transformer model to take
full advantage of GPUs for a significant speed increase compared to the sequential
computation of recurrent neural networks (RNN). In multi-headed self-attention, the
triplets are computed multiple times in parallel with different parameters, or “heads”,
which further increase efficiency and also the representational capacity as each head
can specialize in different parts of the sequence.

Sinusoidal Positional Encoding. As the self-attention mechanism is position-
agnostic [173], various positional encodings (PE) have been introduced to capture
positional information. This is typically done by mapping scalar positions to a vector,
either by learning or by heuristics, and adding each embedding vector with their posi-
tional encoding eee(t)+ ppp(t) before applying self-attention. The original Transformer
model [173] uses a fixed sinusoidal encoding with predefined wavelengths, defined
as:

ppp(t) = [sin(ωit),cos(ωit)]
D/2
i=1 (7.1)

where ωi = (1/τ)2i/D and τ = 10000.

Lightweight Temporal Attention Encoder. While the original self-attention maps
the input embeddings eee to an output sequence of embeddings, the goal of SITS
classification is to map the entire time series into a single embedding. To address
this, the LTAE module [141] modifies the self-attention mechanisim by replacing
the queries qqq(t) with a single learnable “master” query q̂qq, resulting in a single output
embedding instead of a sequence. The computation is also made more lightweight
by employing a channel grouping strategy [186], where each attention head operates
on its own subset of input channels. The LTAE module uses the sinusoidal PE
(Equation 7.1 with τ = 1000) but encodes the day of the year day(t) instead of the
position index t. This enables the model to account for the inconsistent temporal
sampling of SITS, but also introduces problems with handling temporal shift [118].

7.4 Method

In this work, we observe that the positional encoding used by the LTAE module has
two issues. First, since it encodes calendar time, it introduces the temporal shift
problem as displayed in Figure 7.1. While calendar time is useful to identify the
crop types in a particular region, it hinders generalization to new regions [80]. For
example, while spring and winter crops can be similar in appearance, they are easily
separated by the timing of their growth stages as spring crops are planted later in a
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Figure 7.2: Schematic illustration of our Thermal Positional Encoding (TPE) methods
with the PSE+LTAE model [141].

growing season than winter crops. However, because of temporal shifts, the same
time positions of spring crops could represent winter crops in another region. Without
any way of accounting for temporal shifts, calendar time positional encodings are
unlikely to generalize. Second, since the positional encoding is fixed and not learned,
it prevents the model from taking advantage of end-to-end training the encoding
function to further improve generalization [92, 96, 128].

A possible remedy to the first issue is to augment the training data with random
temporal shifts, such as ShiftAug, a SITS augmentation technique proposed in [118],
so that the model does not learn to associate a specific position with the phenological
events seen in the training data. While this solution increases the invariance of
the model to temporal shifts, the temporal shift is in some cases an important clue
to distinguish crop types—such as the spring and winter crops. Instead, we want
models that are shift-invariant between different regions, but shift-variant within the
same region. That is, we want models which can use class-wise temporal shifts for
classification but are unaffected by temporal shifts of the growing season.

To address the second issue, a common alternative to the fixed sinusoidal encod-
ings is to treat each position as a discrete token that can be uniquely represented
as a learnable vector [27, 43, 128]. While this approach enables the model to learn
the positional encoding from data, it fails to generalize to positions not encountered
during training. This is an issue for high-resolution SITS, as we typically do not
have an observation for every possible position. For example, the Sentinel-2 satellites
acquire images every five days. Moreover, images with high cloud coverage are often
filtered, further reducing the positions available. In comparison, sinusoidal positional
encoding is more practical for SITS, as an encoding vector is well-defined for every
position independent of the training data.

Thermal Positional Encodings

We argue that successful positional encoding for SITS should meet the following
requirements:
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(1) Making SITS from different regions shift-invariant to address the temporal shift
problem.

(2) Making SITS from the same region shift-variant by providing absolute infor-
mation of where an observation is located in the growing season.

(3) Must be inductive to be able to handle positions not seen during training.

(4) Being data-specific and thus learnable.

While the LTAE sinusoidal positional encoding based on calendar time meets the
second and third requirements, it is not invariant to temporal shifts between different
regions or trainable which violates the first and fourth requirements. To address
this, we replace calendar time with thermal time to meet both the first and second
requirements and propose four TPE strategies, including learnable methods to meet
the third and fourth requirements.

Thermal time. When studying crop phenology, thermal time is a good proxy for
the rate of crop growth [35, 104, 166]. Thermal time is typically measured in units
of growing degree days (GDD). The GDD measured at a time t is computed by
accumulating daily average temperatures above a baseline:

GDD(t) =
t

∑
i=1

max

(
T (i)

min +T (i)
max

2
−Tbase,0

)
(7.2)

where T (i)
min,T

(i)
max is the minimum and maximum temperatures for day i, accumulated

for all the previous days i = 1,2, . . . , t. Temperature values are often clipped to a range
[Tbase,Tcap] chosen depending on the crop type. Since we do not know the crop type of
the input beforehand, we choose standard values Tbase = 0 and Tcap = 30 [104, 107]
for all crops, since growth typically stagnates below 0°C and does not grow any faster
above 30°C. We accumulate from the starting day of the input SITS, in our case January
1. Since GDD is computed by a cumulative sum, it is a monotonically increasing
function and thus preserves the order of the input time series. This enables GDD to
directly replace day of year for the time positions in the self-attention computation.
By replacing calendar time with thermal time, we can reduce the temporal shift of
SITS between different regions while retaining the shift between classes within the
same region and thereby satisfy the first and second requirements.

TPE Methods. We propose the following TPE methods to input thermal time to
PSE+LTAE [141].

• TPE-Sinusoidal: We replace calendar time with thermal time in the sinusoidal
PE, but the encoding is not learned.

• TPE-Concat: We learn SITS and positional input embeddings jointly by con-
catenating thermal time to an intermediate feature of the PSE module.
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• TPE-Fourier: We learn the sinusoidal PE function by the method proposed
in [92].

• TPE-Recurrent: We learn a positional encoding function that captures the
development in GDD by a recurrent neural network (RNN).

An overview of the TPE methods is shown in Figure 7.2.

TPE-Sinusoidal

To use GDD with the sinusoidal PE, we follow Equation 7.1 but replace t with GDD(t).
The benefit of using the sinusoidal positional encoding for GDD is that an encoding
vector is well-defined for every possible GDD value. This ensures that even if we
train with only a subset of possible accumulated temperatures, a positional encoding
exists for unseen positions at test time. However, as the sinusoidal PE is fixed and not
learned, it prevents the model from capturing data-specific positional information for
the crop classification task.

TPE-Concat

While the original Transformer network [173] takes pre-trained word embeddings as
inputs, in our case, the embeddings are learned by the PSE module, which is learned
simultaneously to the LTAE module. Thus, we propose an alternative to positional
encoding where the encoding for the SITS and positions are learned jointly by the
PSE. In particular, for each time step t, we concatenate GDD(t) to the intermediate
PSE embedding êee(t) before the final PSE output layer MLP2:

eee(t) = MLP2([êee(t) || GDD(t)]), (7.3)

where [· || ·] indicates concatenation. The PSE output layer MLP2 [142] is a multi-
layer perceptron (MLP) consisting of a linear layer, batch normalization [68], and
ReLU [111] activation function. We note that this approach is similar to the method
of inputting extra parcel geometric features in the original PSE. By concatenating
positions to the embedding function, TPE-Concat removes the need for complex
positional encoding functions, which may be more beneficial for SITS.

TPE-Fourier

Li et al. [92] propose a learnable PE based on Fourier features [129], which can also
be viewed as a generalization of the sinusoidal PE. For a position t ∈ R, the Fourier
PE is computed by:

rrr(t) =
1√
D
[cos(WWW rt) || sin(WWW rt)], (7.4)

where WWW r ∈ RD/2 is a trainable vector. To give the representation additional capacity,
the encoding is passed through an MLP:

ppp(t) = MLP(rrr(t))WWW p (7.5)
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where MLP consists of a linear layer with GeLU [60] activation function, and WWW p are
parameters for projecting the representation to the dimension of the input embeddings.
The TPE-Fourier reveals whether it is more beneficial to learn the sinusoidal PE
compared to the fixed TPE-Sinusoidal.

TPE-Recurrent

Compared to natural language processing (NLP), where positions typically increase
linearly with the sequence length, GDD increases non-linearly over the growing season
(see Figure 7.4), as a result of the higher daily temperatures during the summer than
the winter. It may therefore be beneficial not to only encode independent GDD values,
but also incorporate previous values to account for different rates of crop growth over
the year. To handle this, we propose to use an RNN to learn the positional encoding.
RNNs have been successfully used for positional encoding in NLP tasks [96, 113].
We follow the RNN approach of Liu et al. [96]. In particular, we use a GRU [18],
which computes its output hhh(t) ∈ RHout for each time step t given an input zzz(t) ∈ RHin

and the previous hidden state hhh(t−1) by:

hhh(t) = GRU(zzz(t),hhh(t−1)). (7.6)

Then, we obtain a positional encoding with target dimension D by a linear projection:

ppp(t) =WWW⊤p hhh(t)+bbbp, (7.7)

where WWW p ∈RHout×D and bbbp ∈RD. Instead of scalar values GDD(t), we use vectorized
positions as the inputs zzz(t), which are obtained by obtained by the sinusoidal positional
encoding of GDD(t) (Equation 7.1) as done in [96]. TPE-Recurrent learns a positional
encoding that captures the temporal development in GDD, but is more computationally
expensive due to the sequential computation of an RNN.

7.5 Experiments

Setup

Dataset. We evaluate our approach on the TimeMatch dataset [116] with Sentinel-2
L1C SITS from four different tiles: 33UVP (Austria), 32VNH (Denmark), 30TXT
(mid-west France), and 31TCJ (southern France). We refer to these regions by AT1,
DK1, FR1, and FR2, respectively. We display the locations of these tiles in Figure 7.3.
The dataset contains all available observations of these tiles between January 1,
2017, and December 31, 2017, with cloud cover ≤ 80% and coverage ≥ 50%. The
atmospheric bands (1, 9, and 10) are left out, keeping the remaining 10 spectral bands.
The 20m bands are bilinearly interpolated to 10m.

The dataset is prepared for parcel classification by cutting the pixels of each parcel
from the SITS using geo-referenced parcel shapes available from the Land Parcel
Identification System (LPIS) in each country. The total amount of parcels is 280K



7.5. EXPERIMENTS 87

AT1 DK1 FR1 FR2 Avg.
Method F1 OA F1 OA F1 OA F1 OA F1 OA

PSE+LTAE [141] 68.3 90.5 55.4 62.6 74.6 90.9 73.5 87.5 68.0 82.9
+ w/o PE 84.1 94.4 66.3 76.2 79.3 91.9 74.0 86.4 75.9 87.2
+ w/ ShiftAug [118] 84.2 94.1 71.6 78.5 83.9 93.3 79.8 89.4 79.9 88.8

+ TPE-Sinusoidal 85.6 94.7 78.7 84.8 83.0 92.6 81.1 90.4 82.1 90.6
+ TPE-Concat 85.7 94.7 78.6 83.1 85.1 93.3 81.4 89.6 82.7 90.2
+ TPE-Fourier 84.7 94.4 79.0 86.0 77.3 91.5 80.0 89.4 80.3 90.3
+ TPE-Recurrent 86.5 95.0 80.3 85.4 86.0 93.8 80.5 89.8 83.3 91.0

Upper-bound 94.6 97.5 92.0 94.0 93.1 96.4 87.4 93.9 91.8 95.4

Table 7.1: Leave-one-region-out spatial generalization results in macro F1 score (F1)
and overall accuracy (OA) (both in %). Each column shows the classification results
in a new region after training on the others.

DK1

FR1

FR2

AT1

Figure 7.3: The geographical locations in Europe of the four Sentinel-2 tiles in the
dataset [116]. Figure adapted from [118].

with 15 crop classes. The frequency of these classes varies greatly between tiles, for
example, sunflowers are only frequent in the two France tiles. To ensure all tiles
have enough samples of each class to learn their classification, we select the 9 crop
types with at least 200 samples in all tiles: corn, horsebeans, meadow, spring barley,
winter barley, winter rapeseed, winter triticale, winter wheat, and unknown. Here, the
unknown class contains all parcels with crop type not of the other 8 classes. Each
tile has its own train/validation/test sets, created by assigning all parcels in a tile at
random to these sets by a 70%/10%/20% ratio.
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Figure 7.4: The development of GDD on average in the different Sentinel-2 tiles from
January 1 to December 31, 2017.

We expand the TimeMatch dataset with weather information from the Europe-
wide E-OBS dataset [22]. We use the daily minimum and maximum temperature from
the 0.1° regular grid of 2017 to compute GDD for each parcel, geo-referenced by the
parcel centroid. Figure 7.4 displays the average GDD computed for the four regions,
showing the southern France tile FR2 is the warmest and the Danish tile DK1 the
coldest.

Implementation details. We follow the original implementation of PSE+LTAE [141].
All models are trained for 100 epochs with a batch size of 128 on a single GTX 1080Ti
GPU with Adam optimizer [82]. The learning rate is initialized to 1e−3 and decayed
each epoch by cosine annealing [99]. We use weight decay of 1e−4. The 16-bit
input pixels are normalized to [0,1] by dividing by 216−1. Our code is available at
https://github.com/jnyborg/tpe.

Experimental setup. To evaluate whether our proposed thermal positional encoding
improves generalization to new regions, we adopt a leave-one-region-out setup where
we hold one Sentinel-2 tile out for testing and train on the remaining. In contrast to
the domain adaptation setup of TimeMatch [118], where data is only available from
one tile for training, our setup contains multiple different regions for training. In
practice, we typically have many tiles available for training [147], so this setup allows
us to evaluate against the naive approach of improving generalization by adding more
training data.

Model variants. In comparison to TPE, we consider the following model variants:

• PSE+LTAE [141]. This is the baseline model which encodes calendar time (day
of the year) with the sinusoidal positional encoding [173].

https://github.com/jnyborg/tpe
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• w/o PE. This is PSE+LTAE where self-attention is computed without any
positional information.

• w/ ShiftAug [118]. PSE+LTAE trained with calendar time augmented with
random temporal shifts.

• Upper-bound. We train the best performing TPE method (TPE-Recurrent) with
all four available regions to obtain the results of a fully-supervised upper bound.

Parcel Classification Results

Figure 7.5: LTAE features of different methods embedded with t-SNE [172] for DK1
after training with the remaining regions.

In Table 7.1, we detail the performance obtained for the leave-one-region-out
spatial generalization experiments. We report the class-averaged F1 score (F1) and
the overall accuracy (OA). Compared to calendar time models (top), all our TPE
models (bottom) have much better generalization results with the use of thermal time.
TPE-Recurrent shows the best performance by being learnable and capturing the
temporal development in GDD, increasing F1 on average by +15.3% over the default
PSE+LTAE [141] model and +3.4% over the ShiftAug [118] augmented model.
Our TPE greatly improves generalization, but there is still a gap to the upper-bound
performance. TPE addresses the temporal shifts between regions but does not account
for changes in the spectral signature of crops, which can be caused by differences
in e.g. the topography, soil, or varieties of the cultivated crop type. We leave this
direction to future work.

Analysis of results. We observe that the default PSE+LTAE with calendar time
generalizes worst, obtaining an F1 score of 68.0% on average. Interestingly, simply
removing the positional encoding outperforms the baseline significantly, leading to
an average performance increase of +7.9%. Since this model variant is given no
information about the order of images in the SITS, it is also invariant to temporal shifts,
which explains the performance increase. However, without positional information,
the model should not be able to model the class-wise timing differences, which should
degrade performance. But the performance increase indicates the model is able to
do so. We argue that this is because the model is able to extract some positional
information from the SITS. For example, satellite images taken during the winter
differ from those during the summer, enabling the model to extract some degree of
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Method Training time (s/epoch)

TPE-Sinusoidal 16.1
TPE-Concat 15.5
TPE-Fourier 16.4
TPE-Recurrent 17.2

Table 7.2: The training time of TPE in seconds per training epoch.

temporal order. However, in the case that two images at different times appear similar,
the extracted positions can be ambiguous, which is avoided by providing explicit
positional information. This is also indicated by the result of ShiftAug [118], where
calendar time is augmented with random temporal shifts, which further increases
the F1 results by +11.9% on average over the baseline, outperforming no positional
encoding by +4.0%. This indicates that direct positional information is indeed
important to the crop classification task to avoid ambiguous order information from
images only.

In comparison, our TPE models outperform all calendar time models. This high-
lights the benefits of using thermal time for reducing the temporal shift between
different regions without introducing any augmentations, while also providing explicit
positional information for modelling the class-wise timing differences. The TPE-
Sinusoidal model is the default PSE+LTAE model but where calendar time positions
are replaced with thermal time. This simple change significantly improves the F1 gen-
eralization results by +14.1% on average. Learning a sinusoidal PE with TPE-Fourier,
however, is not beneficial, resulting in a decrease in F1 compared to TPE-Sinusoidal
by −1.8%. TPE-Concat learns embedding and positional representations jointly in
the PSE module, and obtains comparable results to TPE-Sinusoidal, with higher F1
(+0.6%) but lower OA (−0.4%). But as TPE-Sinusoidal introduces extra computation
because of the sinusoidal encoding function, TPE-Concat is computationally more
efficient as shown in Table 7.2. This indicates that the approach of adding posi-
tional encodings to input embeddings common in natural language processing may
be unnecessary for SITS classification. TPE-Recurrent learns a positional encoding
that captures the development in GDD, leading to an increase in F1 of +1.2% over
TPE-Sinusoidal. TPE-Recurrent thus shows the best performance but also introduces
sequential computation which increases computation requirements as shown in Ta-
ble 7.2. We suggest the choice of TPE method is a trade-off between performance
and efficiency. Practitioners can easily implement TPE-Concat by concatenating
thermal time in PSE [141], and enjoy improved generalization and efficiency. If more
computation can be afforded, TPE-Recurrent offers the best results.
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Visual Analysis

To better understand how TPE obtains improvements, we visualize in Figure 7.5
t-SNE [172] embeddings of features output by the LTAE. For TPE methods, we
observe denser and better separated clusters, indicating better class separation by
accounting for temporal shifts. For the baseline PSE+LTAE model [141], we observe
some classes are well clustered despite the temporal shift, such as corn and winter
rapeseed, indicating these classes are less impacted by temporal shifts. Others are
mixed, such as spring barley/horsebeans and winter wheat/winter triticale. We observe
that temoving the PE results in less dense clusters. Particularly, the clusters for
spring barley and winter barley overlaps. This could indicate difficulties in resolving
class-wise temporal shifts, since these are better separated with ShiftAug [118].

7.6 Conclusion

In this work, we propose Thermal Positional Encodings (TPE) to address the temporal
shift issue of SITS classifiers and improve generalization. While existing work uses
calendar time, our TPE uses thermal time, which enables models to account for the
varying rates of crop growth in different climates and thereby address the temporal
shift issue. We propose different methods to positional encode thermal time, including
fixed and learned approaches. On a parcel classification dataset with SITS from
four different European regions, we demonstrate that TPE significantly improves
generalization compared to existing methods.
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