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Abstract

In our age, digital data is becoming increasingly available. A vast array of data
mining algorithms have been developed to gain valuable information from this data.
These data mining algorithms detect previously unknown patterns such as clustering,
subspace clustering, projected clustering, outliers, cluster trajectories, association
rules, and frequent patterns. Some of these patterns can take a long time to identify
for most of the algorithms developed, and they, therefore, need a speed increase. We
see potential in developing algorithms suited for modern hardware. Modern hardware
promises a high computational throughput but achieves this at the cost of using
multiple computational cores. This effectively changes the computational model, and
we must develop algorithms that fit with these models to utilize the high computational
throughput. We see the greatest potential in the modern graphics processing units
(GPUs) with its thousands of cores.

The clustering algorithms, especially the subspace clustering algorithms, are
very compute-heavy. Therefore, in this thesis, we focus on transforming these to
fit the computational model of the GPU. We, furthermore, aim to improve the most
promising algorithms within the category. The first algorithm we propose is GPU-
INSCY, a GPU-parallelized version of the subspace clustering algorithm INSCY,
which is an adaptation of the well-known SUBCLU that tried to reduce the size of the
result set. GPU-INSCY includes a GPU-parallelized indexing structure for pruning
regions we can cluster within subsequently. Furthermore, we improve density-based
clustering on the GPU for subspace clustering, e.g., GPU-INSCY. We achieve this
using a strategy for pruning the neighborhood search and a more efficient way of
gathering the clusters. Next, we propose GPU-FAST-PROCLUS, a GPU-parallelized
adaptation of the axis-aligned projected clustering algorithm PROCLUS, with some
additional strategies that allow for the reuse of computations to gain even further
speedup. GPU-FAST-PROCLUS is now so fast that it can perform axis-aligned
projected clustering within a real-time interactive scenario. Therefore, we construct a
data visualization tool where we implement the entire visualization pipeline on the
GPU, called AVID. At last, we propose EGG-SynC, a GPU-parallelized variation
of the clustering algorithm SynC. SynC automatically drags the clusters apart and
only requires one user-defined parameter. Besides parallelizing SynC, we propose an
indexing structure, a summarization strategy, and a correct termination criterion. Our
proposed algorithms have expanded the range of data mining algorithms usable on
standard desktop hardware.
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Resumé

I vores tid, bliver digital data i stigende grad tilgængelig. En lang række data mining
algoritmer er blevet udviklet for at opnå værdifuld information fra dette data. Disse
data mining algoritmer leder efter tidligere ukendte mønstre, såsom clustering, sub-
space clustering, projected clustering, outliers, cluster trajectories, association rules
og frequent patterns. Nogle af disse mønstre tager desværre lang tid at identificere, for
de fleste af de udviklede algoritmer, og derfor er der et behov for hastighedsforøgelse.
Vi ser derfor potentiale i at udvikle algoritmer til moderne hardware. Moderne hard-
ware lover en høj beregningskraft, men på bekostning af, at regnekraften er fordelt på
flere beregningsenheder. Dette ændrer beregningsmodellen, og vi må derfor udvikle
algoritmer, der passer til disse modeller, for at udnytte den høje regnekraft. Vi ser det
største potentiale i det moderne grafikkort (GPU), med dens tusindvis af enheder.

Clustering algoritmerne, specielt subspace clustering, er meget beregningstunge. I
denne afhandling fokuserer vi derfor på at transformere disse til, at passe til GPU’ens
beregningsmodel. Derudover går vi efter at forbedre de mest lovende algoritmer
indenfor disse kategorier. Den første algoritme vi foreslår, er GPU-INSCY. Dette
er en GPU-paralleliseret variation af subspace clustering algoritmen INSCY, som er
en adaption af den kendte algoritme SUBCLU, som prøver at reducere størrelsen af
resultatet. GPU-INSCY inkluder en GPU-paralleliseret indekseringsstruktur til be-
grænsning af regioner, som vi derefter kan finde clusters indenfor. Derudover forbedrer
vi densitetbaseret clustering opdagelse på GPU’en, når det bruges i forbindelse med
opdagelsen af subspace clustering, fx i GPU-INSCY. Dette opnås via en strategi til
at begrænse naboskabssøgningen og via en mere effektiv måde at samle clusters på.
Derefter foreslår vi GPU-FAST-PROCLUS, som er en GPU-paralleliseret adapter-
ing af den axis-aligned projected clustering algoritme PROCLUS, som med ekstra
strategier, tillader genbrug af beregninger, som øger hastigheden yderligere. GPU-
FAST-PROCLUS’ hastighed er nu øget i en sådan grad, at den kan udføre axis-aligned
projected clustering opdagelse i et tidsrum, der muliggør realtidsinteraktion. Derfor
har vi også konstrueret et datavisualiseringsværktøj, kaldet AVID, hvori hele visualis-
eringsprocessen er implementeret på GPU’en. Til sidst foreslår vi EGG-SynC, en
GPU-paralleliseret variation af clustering algoritmen SynC. Sync trækker automatisk
clusters fra hinanden og kræver kun én parameter af brugeren. Udover paralleliserin-
gen af SynC, foreslår vi også en indekseringsstruktur, en opsummeringsstrategi, og
et korrekt termineringskriterium. Igennem disse algoritmer udvider vi sortimentet af
data mining algoritmer, der kan bruges på skrivebordscomputere.
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Chapter 1

Introduction

We live in a world that is increasingly becoming digital, implying that we gather
an ever-increasing amount of data. Understanding and gaining valuable insight
from such data becomes overwhelming as the amount grows. Therefore, researchers
have developed a vast range of data mining algorithms that can identify previously
unknown patterns in the data. Some of the most common tasks within data mining
are clustering, projected clustering, subspace clustering, outlier detection, trajectory
mining, association rule mining, and frequent pattern mining. Some of these patterns
take a long time to detect for algorithms; this is especially true for the clustering
tasks and even more for subspace clustering. Clustering is the task of grouping data
points based on some similarity. A user could, e.g., use clustering to identify customer
groupings. However, due to the curse of dimensionality [14], points seem increasingly
dissimilar as the dimensions of datasets increase. The curse of dimensionality implies
that a cluster may only exist within a subspace of the full-dimensional space. This
behavior naturally gives rise to two related tasks projected and subspace clustering.
In projected clustering, each cluster exists within a subspace projection of the full-
dimensional space, and in subspace clustering, clusters are identified in all possible
subspaces. Clustering, projected clustering, and subspace clustering can provide
significant new insight. However, these patterns can take a long time to identify.

Modern hardware can provide increasingly high computational power, but due
to physical limitations, we can only gain such improvements by utilizing several
computational cores. The many cores significantly change the computational model
algorithms must follow to utilize the full computational power of such modern hard-
ware. Most wildly used are the multi-core CPU and the graphics processing unit.
The CPU is often equipped with more capable cores, whereas the GPU consists of
thousands of more primitive and dependent cores. GPUs, therefore, provide the
highest computational throughput but is more restrictive. Despite the more restrictive
computational model, we see the greatest potential in the GPU.

This Ph.D. thesis aims to decrease the runtime of some of the most used or
interesting clustering approaches. To achieve this, we propose utilizing modern
hardware, specifically the GPU.

3



4 CHAPTER 1. INTRODUCTION

Research objective. Our research objective is to identify general principles for
transforming traditional data mining algorithms. We see potential in several aspects.
They are finding alternative processes to make an algorithm parallelizable under the
GPU’s model of computation, inventing new data structures suitable for the GPU, and
balancing the workflow and storage requirements. To that end, we propose several
GPU-parallelized algorithms, each requiring adaptations to processing orders, data
structures, and balancing memory usage and workflow.

We propose several algorithmic and heuristic strategies that improve the perfor-
mance of algorithms on the GPU and the CPU. In general, if utilized correctly, we
show that the GPU can lead to several orders of magnitude speedup compared to
CPU algorithms, both single-core and multi-core. More concretely, we study several
clustering algorithms.

First, we consider the subspace clustering algorithm INSCY [11] and aim to make
a GPU equivalent algorithm that we call GPU-INSCY [39]. INSCY makes use of
the data structure SCY-tree for pruning dense regions. The SCY-tree is not suited for
the GPU, so to transform the INSCY algorithm into a GPU equivalent, we propose a
data structure that supports the same task but fits the architecture of the GPU. To that
end, we developed a data structure called the GPU-SCY-tree. INSCY, furthermore,
proceeds in a recursive fashion ill-suited for the GPU. We restructure this process to
be able to perform more in parallel. INSCY used a clustering definition similar to
that of DBSCAN [29], and we, therefore, base the clustering on the state-of-the-art
GPU-parallelized variation of DBSCAN, G-DBSCAN [7]. However, we adapt it to fit
the INSCY definition and propose improvements that mainly utilize that we perform
DBSCAN in subspace clustering.

We also study the projected clustering algorithm PROCLUS [4] and propose a
GPU-parallelized equivalent called GPU-FAST-PROCLUS [41]. For GPU-FAST-
PROCLUS, we propose several algorithmic and heuristic improvements that provide
CPU and GPU speedups. We also propose space-saving variations of these strategies to
balance storage and runtime. However, the most noticeable speedups are those gained
from tailoring each subroutine to fit the GPU’s model of computation. GPU-FAST-
PROCLUS is now so fast that it allows for real-time interaction, even for millions
of points. We, therefore, propose a data visualization tool where we implement the
entire pipeline on the GPU, called AVID.

Finally, we also study the newly proposed concept of clustering by synchronization
and aim to transform the clustering algorithm SynC [18] into a GPU-equivalent. For
this, we provide a multi-core CPU and GPU parallelized baseline. Since standard
indexing structure such as the R-Tree does not fit well with the GPU, we propose
a new grid-based indexing structure alongside a novel summarization strategy that
summarizes all points in each grid cell as O(d) values. These values allow our novel
EGG-SynC algorithm [42] to compute the clustering by synchronization definition
without looking at all points in each iteration. Besides the runtime improvements,
the original SynC algorithm has an approximative termination criterion based on a
single value. However, this termination criterion comes without any approximation
guarantees, and we, therefore, propose a new termination criterion based on a state
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instead of a value and prove that when the algorithm is in this state, it is safe to
terminate. We also show how to gather the clustering correctly using our grid structure
when the algorithm has terminated.

1.1 Thesis outline

This thesis is structured as follows. Chapter 2 introduces the multi-core CPU and
CPU’s vector operations and goes into detail with the GPU. Chapter 3 provides the
most common clustering notations and definitions used throughout this thesis. This
chapter is mainly regarding distance and neighborhood functions. Chapter 4 pro-
vides an overview of related clustering algorithms, definitions, and our contributions.
This chapter includes the clustering definitions and algorithms; k-means, k-medoids,
DBSCAN, G-DBSCAN, DPC, SynC, and our EGG-SynC. Chapter 5 provides an
overview of related subspace clustering algorithms, definitions, and our contributions.
This chapter includes the subspace clustering algorithms SUBCLU, INSCY, and our
GPU-INSCY. Chapter 6 provides an overview of related axis-aligned projected clus-
tering algorithms, definitions, and our contributions. This chapter includes PROLCUS,
our GPU-FAST-PROCLUS, and our data-visualization tool AVID. Besides the format,
we have not made any changes to these papers. The papers are as follows:

• Chapter 8: GPU-INSCY: A GPU-Parallel Algorithm and Tree Structure for
Efficient Density-based Subspace Clustering.
Jakob Rødsgaard Jørgensen, Katrine Scheel, and Ira Assent. EDBT 2021.

• Chapter 9: GPU-FAST-PROCLUS: A Fast GPU-parallelized Approach to
Projected Clustering.
Jakob Rødsgaard Jørgensen, Katrine Scheel, Ira Assent, Ajeet Ram Pathak, and
Anne C. Elster. EDBT 2022.

• Chapter 10: AVID: GPU-enabled Visual Analytics with GPU-FAST-PROCLUS.
Jakob Rødsgaard Jørgensen, Ira Assent, and Hans-Jörg Schulz. EDBT 2022.

• Chapter 11: EGG-SynC: Exact GPU-parallelized Grid-based Clustering by
Synchronization.
Jakob Rødsgaard Jørgensen, and Ira Assent. EDBT 2023.

Please note that the paper provided in Chapter 10 is a demo paper showcasing a data
visualization tool for the paper in Chapter 9.

During my Ph.D. I have co-authored several papers that are not part of this
thesis. These papers are regarding; dimensionality reduction, reparameterization of a
neural network, and trajectory mining, all parallelized for the GPU. One published at
NeurIPS, one under review, and one still being written. The published paper is:

• What if neural networks had SVDs?
Alexander Mathiasen, Frederik Hvilshøj, Jakob Rødsgaard Jørgensen, Anshul
Nasery, and Davide Mottin. NeurIPS 2020.





Chapter 2

Modern parallel architectures

Throughout the early history of computing, software developers have counted on
single-core architectures to become exponentially faster over the years. However, the
exponential improvement of a single-core has been dwindling. Instead, hardware ven-
dors have relied on multi-core architectures to provide higher throughput. Especially
Graphics Processing Units (GPUs) and multi-core CPUs are widely adopted as con-
sumer hardware. Sadly, the higher throughput provided by the multi-core architectures
does not come without a cost. Researchers must develop new specialized parallelized
algorithms that compute the same result as the sequential counterparts to utilize both
multi-core CPUs and GPUs. To clarify, we use the term sequential when instructions
of a process are executed after each other and parallel when instructions are executed
concurrently. There are significant differences in how multi-core architectures work;
therefore, researchers must develop unique algorithms to utilize each. The main
difference between the CPU and the GPU is that the CPU has few highly independent
and fast cores, whereas the GPU has many simple and more dependent cores. Since
data mining algorithms often perform similar operations on many data points, we are
confident the GPU provides the best opportunity for high throughput.

2.1 The Graphics Processing Unit (GPU)

The GPU is, as the name suggests, developed to process graphics. However, GPUs
have become more and more flexible over the years, so performing general-purpose
computations has become possible. Nevertheless, the GPU architecture still varies a
lot from the modern CPU.

The modern CPU contains tens of cores on which threads can be executed indi-
vidually and concurrently with different instructions, known as Simultaneous Multi-
Threading (SMT). Furthermore, the CPU has vector operations that can be executed on
multiple data entries concurrently, known as Single Instruction, Multiple Data (SIMD).
In contrast, the modern GPU contains thousands of cores that can execute threads
concurrently, but groups of threads must execute the same instruction simultaneously,
known as Single Instruction, Multiple Threads (SIMT). The difference between these

7
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can seem minuscule but significantly impact how researchers design algorithms.
NVIDIA1 and the CUDA2 programming environment have slight differences

between how the cores and memory are physically organized and how the threads
executed on these cores are logically structured. We here simplify the abstractions
a bit. NVIDIA group cores into streaming multiprocessors (SMs), where groups of
cores in each SM have a common program counter, implying that they must perform
the same instruction at all times. The cores in an SM share access to fast shared
memory and can synchronize with each other without synchronizing the entire device.
All cores on the GPU share access to the slower global memory. CUDA group threads
into warps executed on cores in an SM and therefore have the same restrictions and
capabilities. CUDA, furthermore, group warps into blocks and execute warps in a
block within the same SM, but different warps are guaranteed not to share a program
counter. Therefore, the number of cores in an SM limits the number of threads in a
block. Furthermore, CUDA organizes the threads in each block in a 3-dimensional
grid. Similarly, the blocks are also organized in a 3-dimensional grid, referred to as
the grid. The process executed on multiple threads at once is called a kernel. During
a kernel call, the coordinates for each thread and block are available at execution
time and can be used to identify what memory a specific thread handles. Since only
smaller groups share a program counter, CUDA still allows running multiple streams
of threads executing different kernels. Streams, e.g., allow loading memory from the
main RAM to global memory on the GPU in one stream while a different stream
executes kernels.

As mentioned, the GPU have shared memory and global memory. Share memory
is much faster than global memory but is also more restricted in its small size of only
a few megabytes, and only threads in the same block can access the same area. Global
memory is much slower but can be accessed by all threads and are much larger with a
couple of gigabytes of memory. Like for the CPU, memory on the GPU is loaded in
blocks to make the loading faster. Also, similar to the CPU, race conditions can occur
if multiple threads read and write to the same memory address. To counter this, the
GPU provides atomic operations; however, they should be used with care since they
can be expensive to perform.

2.2 Our common approaches and strategies

Throughout our papers, we use several repeated approaches and strategies to adhere
to the computational model of the GPU. Instead of repeating ourselves, we provide an
overview here.

General. The first conceptualization to consider is which computations we
can perform or alter to perform in parallel. Remember, the GPU executes threads
concurrently; operations must, therefore, be independent of each other. If only
parts of the computations are independent, the GPU provides some synchronization

1https://www.nvidia.com/
2https://developer.nvidia.com/cuda-toolkit



2.2. OUR COMMON APPROACHES AND STRATEGIES 9

capabilities, but it should be used with care since it takes time to perform. Furthermore,
since the GPU execute threads in warps that must perform the same instructions at
all time, we must identify identical operations that we can perform in this fashion.
Such independent and identical operations can be hard to identify in many cases but
are necessary to isolate to utilize the GPU well. Even though context switching is
fast on the GPU, it still takes a bit of time; therefore, handling multiple elements per
thread makes for faster runtime. We only put weights on such optimizations in the
descriptions if they impact the algorithm.

Memory. It is essential to consider how we can utilize different types of memory,
how they work, and their limitations. As mentioned, shared memory is many times
faster than global memory. When we compute a global result, it is, therefore, an
excellent strategy to keep temporary results in shared memory or local variables and
then later combine the result in global memory. However, a limitation of shared
memory is that we can only allocate it during a kernel call, and only threads within the
same block can access it. This implies that if we want to keep a temporary result in
shared memory, it must be within the same kernel call, e.g., by combining kernels that
perform different computations. Furthermore, the threads that compute the temporary
result and those using it must be within the same block. On the other hand, combining
kernels may not always lead to speedups, i.e., it can lead to a less parallelizable
kernel. An additional benefit of using local temporary results is reducing the number
of atomic operations we would need to perform. The relatively small memory size
available in shared memory is also a limitation we must consider. Most often, the
size implies we have tens of values available for each thread, limiting what we can
save in shared memory, e.g., the neighborhood of a point would be too large to keep
in shared memory. Similarly, even though the global memory is many times larger,
it is still limited; therefore, when handling massive datasets, it can be necessary to
offload memory from the GPU to the main memory. Like the CPU architecture, the
GPU loads data as coalesced blocks from global memory issued by threads in a warp.
Therefore, having misaligned data access increases the running time significantly.

For-loop notation. In pseudo-code, we often formulate threads that are being
invoked concurrently as a for-loop. This abstraction is solely a means of notation; in
reality, we invoke multiple threads and distribute the computations associated with
elements in the for-loop. We handle this distribution through what is commonly
known as striding. Each thread contains a for-loop that starts at the thread ID and
increments with the number of threads invoked. This pattern ensures that all elements
are handled and makes it easy to access the memory coalesced.

List construction. A common operation we use is to construct a list. However,
how we can do this on the GPU might not be clear. On the GPU, we generally want
to do the same for many elements simultaneously, and we want to allocate memory
as few times as possible. Therefore, we keep many lists of elements in one allocated
array and keep track of each list’s start and end. We use the C++ notation, where the
end is the last index plus one. Notice that the end (minus one) of one list is the start
of the next; therefore, it is redundant to keep both. To construct the list in parallel
and avoid allocating on the fly, we first compute the size of each list, allocate the total
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amount of space, and populate each list. First, for each element in parallel, increment
the size of the list it belongs to atomically. Then, perform an inclusive scan to obtain
the ends of each list and allocate the total required space. At last, for each element
in parallel, increment the location it belongs to in the list atomically and place the
element at that location.



Chapter 3

General notations and definitions

This chapter presents standard notation used throughout the overview in Part I. In data
mining, the primary assumption is that we are given a dataset with some unknown
knowledge. We assume that a dataset data has d dimensions and n data points. The
full set of dimensions is denoted as D, and the subset of these dimensions is denoted
as S ⊆ D. We use some notation that has several meanings. However, we believe
that the meaning is clear from the context. We denote both the absolute value and
the size of a set as |a|. We use superscript to denote exponent and indicate a version
at a specific iteration, e.g., pt . For simplicity, we use the notation point p to refer
to the point-vector in the dataset data and the index of that point in the dataset. To
distinguish, we use := for assignment and === for equality. Furthermore, we note the
boolean value true as 1 and false as 0. We use this notation because we often perform
inclusive scans on the boolean values, where we interpret true as 1 and false as 0.
Throughout the overview in Part I, we note a function using brackets, e.g. f (a), list
or arrays using squared brackets, e.g. L[a], and matrices using subscript, e.g. Ma.
However, in practice, we represent matrices as arrays.

3.1 Distances

All algorithms in this thesis apply a notion of similarity, or opposite, distance, between
each pair of points p,q ∈ data. The most utilized distance measure is the Euclidean
distance, i.e., the L2-norm of the distances between two points p,q ∈ data.

Definition 3.1.1 (Euclidean distance). Given a dataset data and two points p,q∈ data.
The Euclidean distance is:

||p−q||2 :=
√

∑
j∈D
|p j−q j|2. (3.1)

Other methods use the Manhattan distance, which is similar but uses the L1-norm.

11
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Definition 3.1.2 (Manhattan distance). Given a dataset data and two points p,q ∈
data. The Manhattan distance is:

||p−q||1 := ∑
j∈D
|p j−q j|. (3.2)

The Manhattan segmental distance is also used and is the Manhattan distance
normalized by the number of dimensions in a given subspace.

Definition 3.1.3 (Manhattan segmental distance). Given a dataset data, two points
p,q ∈ data, and a subspace projection S⊆ D. The Manhattan segmental distance is:

1
|S| ||p−q||S1 :=

1
|S|∑j∈S

|p j−q j|. (3.3)

When any distance measure can be used, we simply denote it as ||p−q||.

3.2 Neighborhoods

Many data mining algorithms use the notion of the neighborhood of a point. A
neighborhood contains the closest points of a given point, either within a fixed radius
or with a fixed number of closest points. We start by defining the ε-neighborhood that
contains all points within a radius ε .

Definition 3.2.1 (ε-neighborhood). Given a dataset data and a neighborhood radius
ε , the ε-neighborhood of a point p ∈ data is:

Nε(p) := {q ∈ data | ||p−q|| ≤ ε}. (3.4)

.

Opposite, we define the k-nearest neighbors as the ε-neighborhood with a radius
that contains exactly k points.

Definition 3.2.2 (k-nearest neighbors). Given a dataset data and a number of nearest
neighbors k, the k-nearest neighbors of a point p ∈ data is:

kNN(p) := Nε(p) : |Nε(p)|=== k. (3.5)

We now have some of the most essential and common concepts defined, and we
will build upon this as we proceed with the thesis.



Chapter 4

Clustering

Clustering is the task of grouping points based on some similarity. However, this
is a relative loos definition, and the best concrete definition is often use-case de-
pendent, giving rise to several definitions of clustering. Some main categories are
centroid-based, density-based, connection-based, distribution-based, and fuzzy clus-
tering. However, this thesis only touches on the density-based and centroid-based
clustering methods. This chapter presents the work within clustering that we build
upon before introducing our contribution, clustering algorithm EGG-SynC [42], and
in later chapters, our contributions within subspace and projected clustering. Start-
ing with probably the most well-known clustering algorithms, k-means [51], and
k-medoids [44, 61], and then going onto the density-based clustering methods that
allow for arbitrarily shaped clusters. The first of these is the DBSCAN clustering
algorithm [29]; the first to introduce the notation of density-based clustering. Fur-
thermore, we describe what we deem the best GPU-parallelized version of DBSCAN,
called G-DBSCAN [7]. Next, we shortly present density peak clustering (DPC) [67],
a clustering method that removes the predefined density threshold and instead aids
the user in picking the cluster centers. We then present clustering by synchronization
(SynC) [18], a clustering concept and algorithm that automatically separates clusters
of various densities. This concept is motivated by a different idea than DBSCAN, but
we provide a formal definition that shows the similarities to DBSCAN and enables us
to fix inaccuracies of the SynC algorithm. Building upon SynC and our formal defini-
tion of the concept, we propose EGG-SynC, an exact variation that first terminates
when the clustering can be correctly gathered. To make EGG-SynC, we provide an
indexing structure and a strategy that summarizes regions in the dataset based on a
grid structure without loss in accuracy. We propose to parallelize EGG-SynC for the
GPU and design the grid structure with this in mind.

4.1 k-means and k-medoids

Probably the most well-known definition of clustering is the k-means [54]. It is
defined by partitioning the data points into k regions where the total distance for all

13
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points to the center of their cluster is as small as possible.

Definition 4.1.1 (k-means). Given a dataset data ∈ Rn×d and number of clusters k.
The clustering C is k partitions of the dataset data where the points in each cluster
has the shortest distance to the mean of that cluster:

C := argmin
C

∑
Ci∈C

∑
p∈Ci

||p−µi||, (4.1)

where µi, j := 1
|Ci| ∑p∈Ci p j is the mean of cluster Ci, and

⋃
Ci∈C Ci === data.

A similar definition is the k-medoids [44, 61], which makes it possible to cluster a
dataset that does not allow for computing the mean of a cluster, e.g., documents, but
instead uses the medoid of each cluster. The medoid is a representative point in the
cluster with the smallest distance to all other points in that cluster. This definition
makes it possible to cluster datasets even if they do not exist in a Euclidean space.

Definition 4.1.2 (k-medoids). Given a dataset data and the number of clusters k. The
clustering C is k non-empty partitions of the dataset data where the points in each
cluster have the shortest distance to the medoid of that cluster:

C := argmin
C

∑
Ci∈C

∑
p∈Ci

||p−mi||, (4.2)

where mi := argminq∈Ci ∑p∈Ci ||p−q|| is the medoid of cluster Ci and
⋃

Ci∈C Ci === data.

Both k-means and k-medoids can have nk partitions and non-convex cost functions,
making a global minimum expensive to find; therefore, most algorithms that identify
such clusters settle for a local minimum instead. The approximative method can
quickly find a result and, therefore, scale well to large datasets. However, these
clustering definitions produce a data partition as a Voronoi-diagram and, therefore,
prefer spherical clusters and do not automatically separate outliers. These definitions
minimize the intra-cluster distance but do not consider the inter-cluster distance. This
implies that they can separate points close to each other and place them in different
clusters. At last, they also require the user the select the number of clusters in advance.

4.2 DBSCAN

Instead of just minimizing the distance to the center of a cluster, a different approach
is to define density-connected areas as clusters, i.e., clusters are dense areas separated
by less dense areas. To achieve this, Ester et al. [29] first define the terms core-point,
directly density-reachable, density-reachable, and density-connected.

A point is considered a core-point if it has more than the minimum required points
minPts in its ε-neighborhood. These are the main building blocks of a cluster.

Definition 4.2.1 (Core-points). A point p ∈ Data is a core-point if:

|Nε(p)| ≥ minPts. (4.3)
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A point that can be reached by the ε-neighborhood of a core-point is called directly
density-reachable and should be part of the same cluster.

Definition 4.2.2 (Directly density-reachable). A point p ∈ Data is directly density-
reachable from point q if:

dirReach(p,q) := p ∈ Nε(q)∧|Nε(q)| ≥ minPts. (4.4)

Core-points that are directly density-reachable from other core-points create a
chain of points that should be in the same cluster. A point that can be reached from a
core-point through such a chain is said to be density-reachable.

Definition 4.2.3 (Density-reachable). A point p1 ∈ Data is density-reachable from a
point p j ∈ Data if:

denReach(p1, p j) := ∃p1, . . . , p j ∈ data : dirReach(pi, pi+1)∀i < j. (4.5)

Similarly, two points that are density-reachable from a common point are called
density-connected, even if none of them are core-points.

Definition 4.2.4 (Density-connected). A point p ∈ Data is density-connected to point
q ∈ Data if:

denConnect(p,q) := ∃o ∈ data : denReach(p,o)∧ (4.6)

denReach(q,o). (4.7)

According to the DBSCAN definition, clusters are sets of points in the dataset
that are density-connected and where each cluster contains all dense points reachable
from that cluster.

Definition 4.2.5 (DBSCAN). Given a dataset data, a ε neighborhood radius, and a
minimum number of points minPts. A clustering C is a set of cluster Ci ∈C when the
following conditions holds:

• ∀p,q ∈ data : p ∈Ci∧denReach(q, p)⇒ q ∈Ci

• ∀p,q ∈Ci : denConnect(p,q).

All points not in C is considered to be noise.

The DBSCAN clustering definitions can create arbitrary-shaped clusters separated
by less dense areas through the density-connected points. Furthermore, the number
of clusters is automatically determined but at the cost of using a density criterion
instead. The fixed ε neighborhood radius and the minimum number of points minPts
constitute a global threshold for how dense areas should be connected. However, it is
not always the case that such a global threshold exists in the data.
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Algorithm 1 G-DBSCAN(data,ε,minPts)
Our interpretation of the algorithm by Andrade et al. [7].

1: Precompute neighborhoods
2: while still exists, pick un-clustered point pl do
3: exp[l] := 1
4: for point pi ∈ data - in parallel do
5: while still expanding do
6: exp[i] :=

∨
p j∈NS

ε (pi)| |NS
ε (p j)|≥minPts exp[ j]

7: copy exp to host
8: assign cluster ID to C[i] where exp[i] === 1

4.3 G-DBSCAN

Several GPU-parallelizations of DBSCAN exist [7, 52, 53, 78], but experimental
comparisons of these are sparse. To the best of our judgment, G-DBSCAN [7] is the
variation that reports the best running times and, therefore, the variation we consider.
Andrade et al. [7] propose precomputing the neighborhoods as a single preprocessing
task and then use this to perform DBSCAN clustering. The lists of points in the
neighborhoods are constructed as we describe in Section 2.2. The G-DBSCAN
clustering proceeds as in Algorithm 1. While there are still un-clustered points, pick
an un-clustered point pl . G-DBSCAN then iteratively marks in the array exp which
points are expanding the cluster starting at point pl . Initially, mark point pl as part
of the cluster exp[l] := 1. Then in parallel across points pi, while the cluster is still
expanding, assign all points p j in the ε-neighborhood of pi to the cluster. When no
more new cluster members are found, the array exp is copied to the host, and all point
pi where exp[i] === 1 is assigned the same cluster ID.

Checking all points to see if they can expand the cluster instead of just checking
the neighborhoods of each point already assigned to the cluster is more work. However,
this is a common strategy when developing for the GPU and one that allows for more
parallelized work; this is a trade-off that is often worth taking. Even though this is the
case, we still see a potential for improvement that we discuss in Section 5.3.

4.4 Density peak clustering (DPC)

Rodriguez et al. [67] propose a clustering definition that removes the global density
threshold minPts but instead requires the user to select the cluster centers. However,
DPC aids the selection using a 2-dimensional visual representation of possible cluster
centers; by plotting the size of the ε-neighborhood of point p (local density) against
the minimum distance to a point q with a higher local density. The points with both
a high local density and a large distance to a point with a higher local density are
the candidates for cluster centers. Connecting each point to the closest point with a
higher local density naturally creates a tree with the point with the highest density as
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the root. Cutting off the subtrees starting at the points picked as the centers create a
set of trees. The points in each of these trees constitute the clusters. Like DBSCAN,
DPC allows for arbitrary-shaped clusters. Furthermore, DPC provides a density-based
clustering that does not require a density criterion. However, they have replaced the
density criterion with requiring the user to select the cluster centers manually.

4.5 Clustering by synchronization (SynC)

Instead of providing a fixed density threshold or needing the user to select where to
separate the clusters, it would be nice to have a density-based clustering method that
could drag the clusters apart automatically. clustering by synchronization (SynC)[18]
is a new concept based on attracting points to their ε-neighborhood until it reaches a
state where points have synchronized, i.e., do not move around any longer. Inspired
by the Kuramoto Model, Böhm et al. [18] define how the SynC algorithm updates the
points in each iteration:

Definition 4.5.1 (Update). Given a point p ∈ datat at iteration t, the point p is
updated for iteration t +1 as:

pt+1
i := pt

i +
1

|Nε(pt)| ∑
q∈Nε (pt)

sin(qt
i− pt

i). (4.8)

However, Böhm et al. do not provide a formal definition of clustering by synchro-
nization. Therefore, we provide this in Jørgensen et al. [42], see Section 4.6. Instead
of terminating when a clustering definition is satisfied, Böhm et al. [18] propose a
measure of orderedness called Cluster Order Parameter rc.

Definition 4.5.2 (Cluster Order Parameter). Given dataset data, the cluster order
parameter rc is defined as:

rc :=
1
n ∑

p∈data

1
|Nε(p)| ∑

q∈Nε (p)
e−||q−p||. (4.9)

The cluster order parameter rc increases towards 1 as points in the neighborhoods
move closer. If rc === 1, all points have synchronized, i.e., are at the same location as
the points in their neighborhoods. However, since the update function Definition 4.5.2
uses the non-linear sin-functions to update the location of a point, that point never
reaches the center of the neighborhood, implying that rc never reaches 1. Instead,
SynC terminates whenever rc ≥ λ where λ is an extra parameter the user must provide.
Even though it would seem like a high rc would imply that the points are close to
synchronizing, this is not guaranteed. In Section 4.6, we discuss this problem and
propose a way to solve it. Another drawback is that clustering by synchronization
takes a long time to compute, even with the premature termination criterion. Since
SynC moves points closer to each other, the clusters cover a smaller and smaller area
until the neighborhood of a point becomes the entire cluster. The large neighborhoods
imply that each iteration can take O(n2), even if the algorithm uses an efficient
indexing structure, like R-Tree used in the FSynC algorithm [22].
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4.6 Our contribution: EGG-SynC

SynC has a lot of desirable properties; however, it has a considerable drawback of
a long runtime due to the O(n2) time complexity for each iteration. Xinquan Chen
[22] investigates reducing the running time using a data structure called the R-Tree
[34]. However, this mainly leads to speedup in the first couple of iterations while
points are spread-out. Therefore, utilizing the R-Tree only leads to a relatively low
speedup in most cases. Consequently, we still see the need to speed up clustering by
synchronization but using a different approach.

In Jørgensen et al. [42], we propose EGG-SynC; the main goal is to reduce the
running time of clustering by synchronization using both algorithmic strategies and
by utilizing the GPU. We provide a formal clustering definition and use this to define
an accurate termination criterion in Section 4.6. We then provide a grid structure that
can be used to make range queries on the GPU, Section 4.6. Furthermore, we propose
a summarization strategy supported by the grid structure, Section 4.6. At last, we
provide a GPU-parallelized execution of the updates that use both our summarization
strategy and grid structure.

Formal definition and accurate termination criterion

As mentioned, Böhm et al. [18] do not provide a formal definition of clustering by
synchronization. Therefore, we start by formulating this in Jørgensen et al. [42]. The
formal definition becomes very similar to DBSCAN; however, it replaces the notion
of density-connected points with points moving closer over iterations (synchronizing).
For some iteration t and all future iterations t ′ ≥ t, for maximality, two points p,q ∈
data if p is in a cluster Ci and q is in the neighborhood of p, then q must be in the
same cluster and, for connectivity, two points p,q ∈Ci in the same cluster must also
be in each others neighborhood.

Definition 4.6.1 (Clustering by synchronization). Given a dataset data, a ε neighbor-
hood radius, and the iterative update of points Definition 4.5.1, a clustering C is a set
of clusters Ci ⊆ data where the following conditions are satisfied after iteration t:

• ∀t ′ ≥ t,∀p,q ∈ data : p ∈Ci∧q ∈ Nε(p)⇒ q ∈Ci

• ∀t ′ ≥ t,∀p,q ∈Ci : q ∈ Nε(p).

While it is true that when the cluster order parameter Definition 4.5.2 rc === 1
the clustering by synchronization definition is satisfied, it never actually reaches 1,
making the original SynC algorithm inaccurate. Definition 4.6.1 makes it possible
to devise a termination criterion that guarantees that EGG-SynC finds a clustering
that follows clustering by synchronization. In Jørgensen et al. [41], we propose the
following criterion for when the points have synchronized and prove that we can
safely terminate and gather the cluster defined by Definition 4.6.1.
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Definition 4.6.2 (Synchronization criterion). Given a dataset data and a neighbor-
hood radius ε , the synchronization criterion is defined as follows:

∀p ∈ data : ̸ ∃q ∈ data :(ε/2 < ||p−q|| ≤ ε)

∧ ̸ ∃q ∈ data :(ε < ||p−q|| ≤ ε +δ

∧ (dist(MBR(Nε/2(q)), p)≤ ε),

where MBR(S) is the minimum bounding rectangle of a set of points, dist(MBR, p)
is the distance from a minimum bounding rectangle to a point p, and δ := ε− ε×√

15/16+ ε/− sin(ε/2) is an extra distance from the neighborhood that, must be
checked to ensure that no point can move into the neighborhood in later iterations.

In Jørgensen et al. [41], we prove that when the synchronization criterion is
satisfied, no points can leave or enter any neighborhoods, and therefore the points that
end up synchronizing are the points that are in each other’s neighborhood.

The grid structure

We aim to create an indexing structure that is easy to access and construct in parallel
on the GPU. Furthermore, this indexing structure should support our summarized
statistics, Section 4.6, and new termination criterion, Section 4.6. With these goals in
mind, we propose to use a grid structure with a fixed cell width cw. Having a fixed cell
width implies that we can easily enumerate the cells and compute the ID of the cell a
point p is located within. Even though a grid structure is a simple concept, we can
still represent it in many ways. We propose a mixed representation using two ways of
representing a grid structure to balance the advantages and disadvantages. We aim
to break down the explanation of our mixed access grid structure, first explaining a
random access, then a sequential access, and finally a mixed grid structure.

The random access

To create a grid structure with random access, we propose representing all cells in an
enumerable order in an array. This would imply that we can compute the index of a
specific cell in the array and look up the result using random access. Accompanying
the grid structure, we have an array of the list of points in each grid cell. For each grid
cell, we have the location of where each list starts and end.

Construction. We construct this grid structure similar to the lists described in
Section 2.2. For each point in parallel, increment the count of points gridSizes in the
grid cell it resides within. Perform an inclusive scan of the count gridSizes to compute
the end of each list gridEnds. For each point in parallel, add it to the list of points
gridPoints of the grid cell it resides within.

Access time. To access a grid cell, we compute the index of the cell; then, we
can access each grid cell in O(1). To perform a range query, we need to access all
cells within the range, also the empty once, implying an O(vd) query time, where
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v := ⌈ε/cw⌉×2+1 is the maximal number of cells that the range cross on the diagonal.
Later we pick cw to be dependent on ε , implying that v becomes a constant.

Space usage. Since we represent all cells, also empty once, the space usage
becomes exponential in the number of dimensions O(wd + n), where w := ⌈1/cw⌉
is the number of cells along each dimension. This complexity is not a problem for
lower-dimensional datasets, but we run out of space for higher-dimensional datasets.

The sequential access

To use less space, we propose to represent only the non-empty cells. Since we do
not know in advance which cells are non-empty, we can not compute the index of
a cell given its ID and, therefore, not access the cell using random access. Instead,
we propose a sequential access representation, where we simply have a list of all
non-empty cells.

Construction. To create the grid structure, we first need to identify all non-empty
nodes. For each point pi in parallel, we write which cell it resides within gridId[i].
For each point pi in parallel, find the location j where the value matches the cell
number of the point and mark it as used gridIncl[ j] := 1. Compute an inclusive scan
on gridIncl to obtain the index of all non-empty cells gridIdx. For each non-empty
cell in parallel, move it to its new location. At last, we add the points to each cell’s
list of points gridPoints as in the random access grid structure.

Access time. Accessing a single cell implies that we must traverse all cells, which
we can have at most n of, and we, therefore, get a O(n×d) time complexity. However,
to perform a range query, we only need to traverse the cells once to find the ones
within the range; therefore, the complexity is the same.

Space usage. The space usage becomes O(n×d) since we have at most n cells.

The mixed access

Both the random and sequential access grid structures have their advantages and dis-
advantages. The random access representation is fast to access for lower dimensional
datasets but uses considerable space for higher dimensional datasets. On the other
hand, the sequential access representation uses less space but is slower to access.
We propose a representation that balances both by creating two levels of the grid
structure. One that split the dataset into grid cells along the first d′ dimensions using
the random access representation and one that further split the cells along the rest of
the dimensions using the sequential access representation. Note that instead of the
random access level containing a list of points, it contains a list of grid cells of the
sequential structure.

Space usage. To make the space usage of the first random access level the same
complexity as the dataset, we pick d′ such that wd′ ≤ n×d. Therefore, the space usage
becomes O(n×d). The sequential access level already uses O(n×d); therefore, the
total space usage becomes O(n×d).
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Access time. The query time for the mixed access structure is also bounded by
O(n). To query this representation, we first identify the random access grid cells
within the ε range; this takes O(vd′) === O(n). Next, we sequentially go through
all non-empty full-dimensional cells within the lower-dimensional ones to find the
overlapping; this also takes at most O(n). At last, we can have at most n points in the
result set, implying a O(n) time. We, therefore, have a total time complexity of O(n).

Compared to just having the dataset or an R-Tree, this grid structure does not
improve the time or space complexity. However, our heuristic is that, most likely,
the points will be distributed among a few cells, making it much faster in practice.
Furthermore, we propose a strategy for summarizing the points in a cell if the range
entirely includes that cell. As the iterations progress and the points become denser, it
is likely that most points can be summarized this way.

Grid structured summarized statistics

We have concluded that it is impossible to lower the complexity of SynC by using
an indexing structure because the neighborhood quickly becomes O(n) points. We,
therefore, look for ways to reduce the running time by not having to retrieve all the
points in the neighborhood. We suggest reusing partial results that is common among
multiple points. However, the challenge is that there are no obvious partial results to
reuse since the update is a non-linear function. Still, instead of retrieving all points
in a ε-neighborhood to compute the update and termination criterion, we propose to
compute summarized statistics that we can use to compute the update. To do this, we
must reformulate the update function into an equivalent that can use partial results.
The main idea is to use the relationship sin(y− x) === sin(y)cos(x)− cos(y)sin(x) to
reformulate it; for proof, see our paper. We propose the equivalent update function
in Definition 4.6.3 that uses the summed sin for each dimension j of each point p in
each grid cell g, gridSin[g] j := ∑p∈g sin(p j), and analogically for cos, gridCos[g] :=
∑p∈g cos(p j). We precompute these alongside the construction of the grid structure;
this only takes O(n×d) time.

Definition 4.6.3 (EGGUpdate). Given a point pt ∈ datat at iteration t and a grid
structure grid, the point p is updated for iteration t +1 as:

pt+1
i := pt

i +
1

|Nε(pt)|

(
cos
(

pt
i
)(

∑
g∈GF

gridSin[g]i + ∑
g∈GP

∑
q∈g∩Nε (p)

sin(qi)

)

−sin
(

pt
i
)(

∑
g∈GF

gridCos[g]i + ∑
g∈GP

∑
q∈g∩Nε (p)

cos(qi)

))
.

where GF is the set of grid cells fully intersecting the ε-neighborhood, and GP is the
set of grid cells that only partially intersect.
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GPU-parallelized execution of update

We now have the foundation to compute the update to the point using our grid structure
and summarization. We call this update function EGGSynC update. When performing
the update, we need to perform many range queries. These range queries can have a
varying result size and, therefore, a varying workload.

For the random access level, there can be a lot of empty nodes; if threads in a warp
handle empty nodes and non-empty nodes simultaneously, those handling the empty
would need to wait until the others have finished. To reduce this wasteful behavior,
we propose to decouple the random access and the traversal of the cells. We do this
by identifying all the non-empty random access cells and saving the indices in a list,
as in Section 2.2, and then use this list when performing the range query.

The size of each neighborhood can vary a lot between points, leading to an unbal-
anced workload. On the GPU, threads in a warp must perform the same operations at
all times; therefore, if the workload is unbalanced, the threads with fewer points can
make the other threads wait. Our summarization, of course, mitigate this by summariz-
ing the dense centers of the range query, but for the early iterations, it still makes sense
to consider this problem. To mitigate this problem further, we suggest letting threads
in the same warp handle points more likely to have the same neighborhood. Observe
that the points in the grid structure are ordered by the cell number (the location in
the data). Handling the points in this order implies that threads are likelier to handle
points in the same grid cell and, therefore, a similar neighborhood.

Summarized key contributions and insights

We propose a new GPU-parallelized algorithm for clustering by synchronization called
EGG-SynC. To achieve much-needed speedup, we propose a summarization strategy
that allows EGG-SynC to compute the update in each iteration faster without loss in
accuracy. Furthermore, we propose a grid structure that supports the summarization
strategy and range queries for the points that can not be summarized.

We identify an undesired behavior of the method SynC used to terminate that
results in an inaccurate clustering. Therefore, we propose a new termination criterion
and prove that when this is met, the correct clustering can be gathered. We compare
EGG-SynC against the original SynC, FSynC, and both a straightforward CPU and
GPU-parallelized version of SynC. EGG-SynC outperforms the CPU-based version
by several orders of magnitude in all experiments. However, the straightforward
GPU-parallelized SynC terminates faster in a few experiments. This is due to EGG-
SynC running until the correct clustering has been found where SynC terminates
preemptively.



Chapter 5

Subspace Clustering

As mentioned, the task of subspace clustering is to identify clusters in all subspaces of
the full-dimensional space. The concept of subspace clustering sounds very promis-
ing, but identifying clusterings in all possible subspaces naturally comes with the
drawbacks of a potentially huge result set and a runtime that can be exponential
in the number of dimensions. In this chapter, we present the background for our
contribution. First, we present the earliest exact density-based subspace clustering
algorithm SUBCLU. Then we introduce the extension of SUBCLU, called INSCY,
that aims to make the subspace clustering unbiased w.r.t. dimensionality and reduce
the result set. At last, we present our contributions, GPU-INSCY, a GPU-parallelized
variation of INSCY, including a GPU-parallelized indexing structure and an improved
adaptation of DBSCAN.

5.1 SUBCLU

Likely due to the high time complexity, early subspace clustering methods only aimed
to compute an approximative result like the grid-based subspace clustering algo-
rithms CLIQUE [6], ENCLUS [24], and MAFIA [33]. To obtain an exact subspace
clustering algorithm, Kailing et al. [43] propose SUBCLU. SUBCLU is a subspace
clustering algorithm that uses the DBSCAN clustering algorithm to find the cluster-
ing for all possible subspaces. Instead of just naively clustering all combinations
of subspaces, SUBCLU employs an Apriori-like strategy [5] to prune the points in
higher-dimensional subspaces using the result of lower-dimensional subspaces. The
idea is that, since the distance between points only increases for superspaces, the clus-
ters can only be separated and never become larger. This is known as the monotonicity
properties, Lemma 5.1.1, proven by Kailing et al. [43].

Lemma 5.1.1 (Monotonicity). Given neighborhood radius ε , number of points minPts,
points p,q ∈ data, a cluster Ci ⊆ data, then the following monotonicity properties
holds for all T ⊆ S:

1. |NS
ε (p)| ≥ minPts⇒ |NT

ε (p)| ≥ minPts

23
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2. dirReachS(p,q)⇒ dirReachT (p,q)

3. denReachS(p,q)⇒ denReachT (p,q)

4. denConnectS(p,q)⇒ denConnectT (p,q).

More concretely, SUBCLU starts by clustering all 1-dimensional subspaces of the
full-dimensional space. The s-dimensional clusters Cs and associated subspaces Ss

are maintained and used for pruning the search for clusters. While SUBCLU still finds
clusters in increasing sizes of subspaces s, SUBCLU generates candidate subspaces
of size s+1 to be clustered. The candidate subspaces cand ∈ candss+1 are generated
by combining each pair of S1 ∈ Ss,S2 ∈ Ss that has s−1 common dimensions. For
each candidate cand ∈ cands, SUBCLU then finds the subspace with the smallest
amount of points in its clustering and performs DBSCAN on each of the clusters
Ci in the candidate subspace. This way, the SUBCLU algorithm directly adapts the
DBSCAN algorithm into the subspace clustering domain and provides an efficient
pruning strategy.

5.2 INSCY

The main drawback of the SUBCLU algorithm is that it assumes a fixed density for
all subspaces, which implies that it prefers lower dimensional subspaces, produces
large result sets, and has a relatively high runtime. Through three incremental steps,
Assent et al. [9–11] propose the algorithms DUSC, EDSC, and INSCY to mitigate
these drawbacks. Here, we will describe the concept as one algorithm and refer to
it as INSCY. The first paper [9] proposes the clustering definition, the second [10]
proposes the overall algorithm and pruning techniques, and the last [11] proposes a
data structure that supports this pruning scheme.

The INSCY algorithm address the density threshold minPts, that is biased towards
lower dimensional subspaces, by defining what they call an unbiased-density Defini-
tion 5.2.1 to replace the definition of a core point in DBSCAN, Definition 4.2.1. The
density threshold is made unbiased by normalizing it with the expected density of a
subspace S:

expDen(S) := ES
[
|NS

ε (p)|
]
=== n× c(S)× ε |S|

vS
, (5.1)

where c(S) := π
|S|
2 /Γ

(
|S|
2 +1

)
, Γ(n+1) := n×Γ(n),Γ(1) := 1,Γ(1/2) :=

√
π , and

vS is the volume of subspace S.

Definition 5.2.1 (Unbiased-density). Given a point p ∈ data, a subspace S, a neigh-
borhood radius ε , and density factor threshold F, the point p is unbiased-dense in the
subspace S if:

unbiasedDenseS(p) := |NS
ε (p)| ≥max(minPts,F× expDen(S)). (5.2)
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In DBSCAN, a cluster can be of size minPts since it requires only one point to
be a core point. Assent et al. [9] propose requiring a minimum cluster size minC to
reduce the number of small clusters found. Of course, the user still has the option to
set minC := minPts, if the user wishes to find the small clusters. This is introduced in
the first variation [9] of the INSCY algorithm; in the last paper [11], this is used to
prune points by removing density-connected regions, called subspace regions, with
fewer than minC.

DBSCAN clustering, Definition 4.2.5, uses the terms density-reachable, Definition
4.2.3, and density-connected, Definition 4.2.4. This implies an inconsistency where a
border point can be connected to multiple clusters, but DBSCAN only assigns each
to one. To fix this, Assent et al. [9] replace both definitions with a term they call
S-connected, Definition 5.2.2, and require that all points should be unbiased-dense.

Definition 5.2.2 (S-connected). Given points p1, p j ∈ data in subspace S, the points
p1, p j is S-connected if:

S-connectedS(p1, p j) := ∃p1, . . . , p j : pi+1 ∈ NS
ε (pi)∀i < j. (5.3)

To reduce the size of the result set, Assent et al. [9] propose a notion of redundancy
by introducing a redundancy factor r.

Definition 5.2.3 (Redundancy). Given a cluster C in subspace S and redundancy
factor r, C is redundant if there exists a cluster C′ in subspace S′ where:

redundant(C,S) := ∃C′ ⊆C,S′ ⊃ S : |C′| ≥ r×|C|. (5.4)

To incorporate all of these concepts, Assent et al [9] propose a new clustering
definition based on DBSCAN, Definition 4.2.5.

Definition 5.2.4 (INSCY clustering). Given a dataset data, a redundancy factor r, a
density factor threshold F, a minimum cluster size minC, a minimum number of points
minPts, and a neighborhood radius ε , a subspace clustering C is a set of clusters Ci

in a subspace Si when the following conditions hold:

• ∀p,q ∈ data : p ∈Ci∧S-connectedSi(p,q)⇒ q ∈Ci

• ∀p,q ∈Ci : S-connectedSi(p,q)

• ∀p ∈Ci : unbiasedDenseSi(p)

• |Ci| ≥ minC

• ¬redundant(Ci,Si).
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Density pruning

The goal of the unbiased-density Definition 5.2.1 is to allow for a lower density
for higher-dimensional subspaces; this also implies that the monotonicity, Lemma
5.1.1, utilized by SUBCLU to prune the points in the superspaces, no longer applies.
Therefore Assent et al. [9] developed a new pruning strategy that prunes using the
density threshold of the full-dimensional space D; they refer to it as the weak-density,
Definition 5.2.5. For weak-density, monotonicity applies and can therefore be used
for pruning.

Definition 5.2.5 (Weak-density). Given a point p ∈ data, a subspace S, a minimum
number of points minPts, a neighborhood radius ε , and a density factor threshold F,
the point p is weak-dense in the subspace S if:

weakDenseS(p) := |NS
ε (p)| ≥max(minPts,F× expDen(D)). (5.5)

Using Definition 5.2.5 and Lemma 5.1.1, a weak-dense point can never become
unbiased-dense for any superspace, and INSCY can therefore safely remove it before
clustering any superspace.

Restricting and pruning subspace regions

Similarly, since the monotonicity does not hold for the unbiased-density, neither does
it for clusters; they can, therefore, not be used to pruning the search for clusters in
the superspaces. In the second paper, Assent et al. [10] instead propose bounding
dense regions in the subspaces. Assent et al. [10] construct these subspace regions
from a grid structure with an even cell width. A cluster is likely to span multiple
cells, and the cells should, therefore, be merged into large density-connected subspace
regions. INSCY checks a ε border at the edge of the cell. If there are no points
within this border, there can be no ε-neighborhood connecting a cluster that goes
across the two cells; hence it is safe to keep them as two separate subspace regions.
If the opposite is the case, Assent et al. call them S-connected, and they merge
the connected subspace regions one by one. Since the subspace regions are only
defined by the ε-neighborhood, the monotonicity properties hold; it implies that the
higher-dimensional subspace regions can be identified by restricting cells within the
lower-dimensional subspace regions. The processing order starts in the 1-dimensional
space and then recursively restricts the subspace regions to the (k+1)-dimensional
subspaces.

We provide an example in Figure 5.1. In the first iteration, we restrict each one-
dimensional cell; these are the first subspace regions. In Figure 5.1a, we see the grid
structure restricted along the horizontal axis; this creates four cells, each marked
with a color. INSCY merges them if there are points within the border between the
subspace regions. In Figure 5.1b, there are points within the two borders of the first
three subspace regions, and they are, therefore, merged into one. Next, the subspace
regions are restricted along a second dimension and merged if there are points on the
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Figure 5.1: Restrict and merge example.

borders. In Figure 5.1c, the blue 1-dimensional subspace region is split into three
regions, and the red is split into two. At last, in Figure 5.1d, the green and yellow
subspace regions have a point on the border between them, and INSCY merges them
into one. The same is true for the red and purple subspace regions.

After restricting and clustering in the superspaces of the current space, these
subspace regions can be pruned for redundancy. An entire subspace region R can be
prune if it contains less then the required cluster size minC or if there already exists a
cluster C′ in a superspace where |C′| ≥ r×|R|∧C′ ⊆ R.

The SCY-tree

In the third paper, Assent et al. [11] propose a tree-structure, called the SCY-tree,
that maintains the restricted subspace regions, or rather, everything that has not yet
been restricted. The idea is first to precompute a tree structure that splits the full-
dimensional dataset into cells one dimension at a time. This information then allows
for faster restriction of the subspace regions.

In the SCY-tree, a node has two attributes; the cell number and the number of
points in the cell, represented by the subtree. The root node of the SCY-tree has no
specific cell number, and the amount of points is the size of the dataset. The children
of a node represent the further division of a cell into cells along a new dimension.
This implies that all layers in the tree correspond to splitting the dataset into cells
with increasing dimensionality. They add an extra sibling with that cell number but
no count of points to keep track of S-connections. They furthermore add descendants
to the S-connection node for each of the remaining dimensions, marking which of
the cells the points creating the S-connection reside inside. This is to track where the
S-connection is located along other dimensions.

Figure 5.2 shows a small example of a SCY-tree for a small 3-dimensional dataset
before any restriction has occurred. The first layer is the root layer and consists of
one root node. This layer represents the dataset that has not been split along any
dimensions. The root node, therefore, contains no cell number, and the count of points
is the entire dataset. The children of this node represent the first splitting of the dataset
into cells along dimension 0. In the dataset, there are points in all cells along this
dimension, and we, therefore, have a node for each cell, with the cell number and
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Figure 5.2: Example of the SCY-tree from our paper [39].
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Figure 5.3: Example of restricting the SCY-tree to descriptor (1, 0) and then merge
with the neighboring region. From our paper [39].

the number of points in this cell. Furthermore, in cell 1, there exists an S-connection,
and we, therefore, add a sibling representing this. The next layer further represents
the splitting of each cell, represented by nodes on the previous layer, into cells along
dimension 1. For the first cell along dimension 0, when splitting along dimension
one, there is only one cell with a single point; therefore, the corresponding node gets
only one child with the cell number 2 and the amount of points 1. Similarly, when
cell number 1 along dimension 0 is further divided along dimension 1, the points are
located within two cells, and the corresponding nodes get two children. This continues
for all cells until they have been split along all dimensions.

Restricting the subspace region, represented by the SCY-tree, to a cell ce along a
new dimension dr is done by identifying all nodes matching this descriptor (ce,dr).
For each node matching this descriptor, the part to the root and the subtree is copied
to the new SCY-tree. If one of the matching nodes represents an S-connection, the
restricted SCY-tree must be merged with its neighbor cell. Note that it is only the first
node on an S-connection path that represents an S-connection. An example of such a
restricted SCY-tree for descriptor (1,0) is shown in Figure 5.3. Since this descriptor
matches an S-connection, the result must be merged with the neighboring cell.

Two SCY-trees are merged by combining the identical nodes into one and summing
the count of points. Two nodes are identical if they have the same cell number and an
identical path to the root node. For example, in Figure 5.3, the rightmost path in both
restricted SCY-tree has the exact same cell numbers on the path from the root, and the
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nodes on these paths are, therefore, merged into one.

Processing order

Each of the two pruning steps has an order to them. Pruning for weak-density implies
that if a point is not even weak-dense, then it will never be unbiased-dense in any
superspace, and it should, therefore, be pruned before proceeding with clustering in
superspaces. On the other hand, pruning for redundancy requires that we know the
size of the clusters in the superspaces; it should therefore be done after clustering
the superspaces. This gives rise to the processing order in Algorithm 2. Here the
idea is that INSCY restricts to a new subspace region, prunes for weak-density, call
recursively to cluster all superspaces, prunes for redundancy, and if INSCY does
not determine the subspace region as redundant, INSCY performs clustering on the
subspace region.

Algorithm 2 INSCY(scytree,d f ,data,d,r,F,minPts,ε,minC,C)
From our paper [39].

1: for dre := d f to d do
2: for cre := 0 to ncells do
3: SCY − tree′← restrict(scytree,dre,cre)
4: scytree′←mergeNeighbors(scytree,scytree′,dre,cre)
5: if prune_weak_density(scytree′,F,minPts,ε,minC) then
6: INSCY(scytree′,dre +1,data,d,r,F,minPts,ε,minC,C)
7: if prune_redundancy(scytree′,r,C) then
8: C←C ∪ clustering(scytree′,data,F,minPts,ε)

5.3 Our contribution: GPU-INSCY

The INSCY algorithm and subspace clustering definition have some excellent proper-
ties, and Assent et al. [11] have shown that it is faster than SUBCLU [43]. However,
the same experiments show that INSCY still takes an hour to cluster a small dataset
of 4,000 points. The high runtime naturally brings the aim of a faster algorithm that
can produce the INSCY clustering, and we, therefore, propose utilizing the GPU’s
computational power. However, the INSCY algorithm is not very suited for the
GPU due to the processing order of the algorithms, the manipulation of the SCY-
tree, and the clustering process. Therefore, our contribution is a GPU-parallelized
dimensionality-unbiased density-based subspace clustering algorithm called GPU-
INSCY. This includes a GPU-efficient clustering search and indexing structure.

The overview

The original processing order only allows for parallelization across one restriction and
one clustering at a time. For subspaces of subspace regions, both the restrictions and
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the clusterings are independent and ideal candidates for parallelizations. Therefore,
we propose changing the processing order of INSCY for the GPU-INSCY Algorithm
3. We introduce the functions used in this algorithm in the following sections. Since
the restriction of subspace regions are independent across dimensions and cells, we
propose to do this as the first step Line 1. Since the neighborhood of each point is used
both for clustering and pruning for weak-density, we precompute this in parallel across
all subspace regions Line 2. We then prune for weak-density Line 6, call recursively
for each subspace region Line 7, and prune for redundancy given the superspaces Line
8. When all subspace regions have been pruned, we identify clusters in each region in
parallel Line 10.

Algorithm 3 GPU-INSCY(scytree′, d f , data, d, r, F , minPts, ε , minC, R)
Algorithm from Jørgensen et al. [39].

1: L← GPU_restrict_and_merge(scytree,d f ,d)
2: precompute_neighborhoods(data, L, ε)
3: for dre← d f to d−d f do
4: C← 1d array of size |data| initialized to −1
5: for ∀scytree′ ∈ L[dre] do
6: if prune_recursion(scytree′, F , minPts, ε , minC) then
7: GPU-INSCY(scytree′,dre +1,data,d,r,F,minPts,ε,minC, R)
8: if prune_redundancy(scytree′, r, R) then
9: L′← L′∪{(scytree′,C)}

10: R← R∪GPU_clustering(L′,data,F,minPts,ε)

The GPU-SCY-tree

The original SCY-tree is a well-suited structure for the CPU; however, it is unsuitable
for the GPU both in the way it is represented and in the way INSCY operates on it.
The original SCY-tree is represented as multiple independent nodes allocated on the
fly. However, allocating memory is an expensive operation, and if a thread in a warp
spends a long time allocating, the other threads would need to wait until the thread has
finished. Furthermore, we must also consider the access pattern when proposing a new
representation. Restricting and merging the SCY-tree happens through sequential and
alternating operations, where each operation also sequentially traverses the trees one
node at a time. While this is a valid CPU strategy, this sequential approach does not fit
well with the GPU. The original approach clearly has two sequential dependent levels:
among descriptors and nodes. To make the restrict and merge operations suitable for
the GPU, we need to tackle both levels and for both merge and restrict.

We propose a new indexing structure based on the SCY-tree but suitable for the
GPU, called the GPU-SCY-tree. The decisions of how the GPU-SCY-tree is repre-
sented and operated on are very entangled since changing the representation affects
how it is manipulated, and changing how it is manipulated affects the optimal represen-
tation. However, to simplify the discussion, we will first describe the representation
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and then how the GPU-SCY-tree is manipulated. To make the restrict and merge oper-
ations suitable for the GPU, we will propose an entirely new operation that combines
multiple operations into one. To simplify the abstraction, we will first describe how
we compute restrict operations on the GPU in parallel across both descriptors and
nodes. We then justify combining multiple restrict and merge operations into one
parse and propose a method to do exactly that.

The GPU-SCY-tree representation

On the CPU, the SCY-tree is represented as nodes containing a parent pointer, children,
and two attributes. This object-oriented representation is not well suited for the GPU
since it requires many memory allocations and has a lousy memory alignment. Instead,
we suggest a different representation that will dramatically reduce the number of
allocations and allow for a more parallelized traversal of the tree doing restricting and
merging. Furthermore, our representation also considers how memory is loaded and
located in memory.

We propose to represent the tree structure as three arrays representing the nodes,
three arrays representing the layer, and two arrays representing the points, each with
an entry per node, layer, or point. The arrays representing the nodes are arrays with
the index of the parent node of each node pa, an array with the cell numbers ce, and
an array with the count of points in the subtree co. The arrays representing the layers
are an array with the dimensions the layers represent dims, an array with the end index
of the nodes on that layer la, and an array containing the dimensions that have been
restricted rdims. Lastly, the arrays representing the points are an array with the ID
of the points po and an array with the index of the leaf node it is located in pl. We
locate all nodes on the same layer next to each other to ensure memory alignment
when accessing the layers of the tree concurrently. The GPU-SCY-tree representation
implies that the layer of a node i is:

layerO f (i) := j|la[ j−1]≤ i < la[ j]. (5.6)

An GPU-SCY-tree representation of the SCY-tree example shown in Figure 5.2 is
provided in Figure 5.4. Here we see each layer color-coded as in the original SCY-tree.
Entry 0 of the arrays pa,ce,co gives us the root node, with a parent pointer pointing
to the node itself, the cell number of −1, and a count of points equal to 10. On the
next layer, all nodes point to the root node, the next again, all points to nodes in
the previous layer, and so on. The three layers correspond to all three dimensions,
which are represented in dims and at which entry the layer end is noted in the array
la. This example has not been restricted to any dimensions yet; therefore, the r_dims
are empty. At last, po shows the point IDs, and the corresponding entry in pl shows
which nodes the points are placed in.

The GPU-SCY-tree restricting

Restricting the SCY-tree is a simple task on the CPU; the nodes matching the descriptor
are identified, and the path above and their subtrees are copied to the restricted SCY-
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Figure 5.4: Representation of the GPU-SCY-tree, from our paper [39].

tree. However, this is a very sequential task, and it is unclear how to do this in parallel
on the GPU. We observe that two levels of sequential dependencies exist when
operating on the SCY-tree. For the descriptor-level dependency, restricting to each of
the descriptors is entirely independent when looking at only the restrict operations.
Therefore, we can compute them in parallel and, even better, within different thread
blocks, making it easier to utilize all cores. For the node-level, we observe that
determining which nodes are being included in the restricted SCY-tree occurs when
the node matching the descriptor has been identified, and the path above and the
subtree below are copied. This relationship implies that for the nodes on the layers
above, the restricted dimension is included if the children are included, and for the
layers below, if the parent is included. There is, therefore, a clear dependency between
nodes on different layers. However, it also implies that there are no dependencies
between nodes on the same layer, and they can be handled entirely in parallel. This
gives rise to four different kernels; for the layer just below the restricted dimension, we
check for each node if the parent node matches the descriptor; for the rest below, we
check if the parent node is included. Similarly, for the layer just above the restricted
dimension, we check if one of the children matches the descriptor, and for the rest
above, we check if one of the children is included:

incl[ j,c, i] :=



cells[pa[i]] === c if layerO f (i) === j−1
incl[ j,c, pa[i]] if layerO f (i)< j−1∨

ch|i===pa[ch] cells[ch] === c if layerO f (i) === j+1∨
ch|i===pa[ch] incl[ j,c,ch] if layerO f (i)> j+1

0 else

, (5.7)

where i is the node index, j is the dimension, and c is the cell number being restricted.
However, performing a check for each child a node contains can lead to an unbalanced
workload since the number of children can vary a lot from node to node. Instead, we
propose changing the point of view such that each node on the layer below checks if
the node matches the descriptor or is included and then marks the parent as included.

Alongside computing whether or not a node is included, we also accumulate the
count of points in the subtree. Using the incl array, we compute the new indices of
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the nodes idx using an inclusive scan. Using these indices, we can copy all included
nodes from the GPU-SCY-tree to the new restricted GPU-SCY-tree. Furthermore,
we also maintain which dimensions are restricted and which are not, at what index
each layer starts, which nodes are contained in the tree, and in which node they reside.
However, all this is relatively straightforward and not time-consuming to compute; for
further details, see the original paper [39].

The GPU-SCY-tree restricting and merging at the same time

Whenever we encounter an S-connection while restricting the SCY-tree, the restricted
region must be merged with the next neighboring region. As long as we identify
S-connections, this alternation between restricting and merging continues creating
a sequential process. This sequential and alternating process also implies many
temporary memory allocations and computations. Furthermore, when merging SCY-
trees, we need to merge nodes considered identical, which is when they have the same
cell number and all their ancestors are identical. On the CPU, we can easily keep
track of this by recursively visiting the two SCY-trees simultaneously, ensuring that
if we visit two nodes at the same time, then they are identical. However, keeping
track of the ancestors the same way on the GPU would imply only one active thread.
In contrast, letting each thread compare its own pair of nodes would imply that we
need to identify the ancestors to check if the nodes should be considered identical.
Comparing all O(n2) pairs would imply much redundant work. Instead, we have the
idea of sorting the nodes on each layer depending on the ancestors; this would quire
only O(n× lg(n)) comparisons, but still of all the ancestors of the nodes. Neither
solution provides substantial speedups. More concretely, the problem is that we need
to compare ancestors across restricted SCY-trees. We aim to mitigate all of these
problems simultaneously in this section.

Opposite to the restrict operations, the merge operations are dependent on each
other since INSCY merges the previous result with the neighboring SCY-tree and,
in this way, combines continuously restricted SCY-trees. To avoid this inherently
sequential process, we suggest combining multiple restrict and merge operations into
one operation. However, how to do this is not entirely clear. We first identify the
single information that forces INSCY to merge the regions, making it sequential: the
S-connections. To reduce the sequential work, we propose precomputing an array S
with all the S-connections:

S[ j,c] :=
∨

i∈[la[ j−1],la[ j])

c === cells[i], (5.8)

and then, using only this small array, compute which cells GPU-INSCY should merge
M; we call this the merge map:

M[ j,c] :=

{
M[ j,c−1] if c > 0∧S[ j,c−1]
c else

. (5.9)
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Therefore, the S and M arrays have an entry for each descriptor (pair of dimensions and
cell number). The entries of S mark if there exists an S-connection for the associated
descriptor, and M contains the cell number of the first restricted SCY-tree in the chain
of restricted SCY-trees GPU-INSCY should merge. To achieve the highest parallelism,
we do not check for each entry of S if there is an S-connection among the nodes.
Instead, we check for all nodes; if an S-connection exists, mark it in the corresponding
index.

Instead of only restricting the cells matching the descriptor, we propose restricting
all cells that will merge into one region simultaneously, using the merge map M:

incl[ j,c, i] :=



M[ j,ce[pa[i]]] === c if layerO f (i) === j+1
incl[ j,c, pa[i]] if layerO f (i)> j+1∨

ch|i===pa[ch] M[ j,ce[ch]] === c if layerO f (i) === j−1∨
ch|i===pa[ch] incl[ j,c,ch] if layerO f (i)< j−1

0 else

, (5.10)

where i is the node index, j is the restricted dimension, and c is the restricted cell
number.

Removing a layer may still course new nodes to become identical; therefore, we
still need to merge nodes. At the beginning of this section, we discussed several naive
solutions that would be suboptimal. Instead, we propose to merge nodes while we
restrict by maintaining only one representative node among the identical ones. New
identical nodes can only be introduced under the restricted layer, and we already
compute inclusion from that layer and downwards. If threads agree on which node
represents the parent, then two nodes are identical if the representative parent nodes
are the same and the current cell number are identical. However, we use a different
approach to avoid comparing all pairs of nodes. Instead, we keep an array of nodes
representing the new children n_ch of different cell numbers. When we have this
information, we can use this to identify the representative node:

rep( j,c, i) := n_ch[ j,c,n_pa[ j,c, i],ce[i],sCon(i)), (5.11)

where we use sCon to distinguish between S-connections and ordinary nodes. Since
we only want to include the representative node and not the other identical nodes, the
definition of when a node is included becomes:

incl[ j,c, i] :=



M[ j,ce[pa[i]]] === c if layerO f (i) === j+1
incl[ j,c, pa[i]] if layerO f (i)> j+1∨

ch|i===pa[ch] M[ j,ce[ch]] === c if layerO f (i) === j−1∧ rep( j,c, i) === i∨
ch|i===pa[ch] incl[ j,c,ch] if layerO f (i)< j−1∧ rep( j,c, i) === i

0 else

,

(5.12)

where i is the node index, j is the restricted dimension, and c is the restricted cell
number. Notice that only nodes below the restricted dimension may have duplicates.
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We refer to Equation 5.10 as the nodes that should be included or represented, and
Equation 5.12 as the nodes that are actually included and represent the other identical
nodes.

To compute the representative children, we observe that only one child of each
cell number can be included; however, it also does not matter which one. Therefore,
for each node in parallel, we compute if the node should be included, Equation
5.10, in the restricted SCY-tree, we write its index as the representative child. Since
multiple threads can write the node index as the representative, we have no guarantee
which index is there at the moment. However, it does not matter which one is the
representative, but all threads must agree on which, and we synchronize all threads to
ensure they see the same index.

Parents. After restricting the GPU-SCY-tree, some nodes may need to be assigned
a new parent. For the included nodes above the restricted dimension j, the new parent
is the same parent as before. For the included nodes just below the restricted dimension
j, the new parent is the previous grandparent. For the rest of the included nodes below
the restricted dimension j, the new parent is the representative node of the old parent:

n_pa[ j,c, i] :=


pa[i] if layerO f (i)< j
pa[pa[i]] if layerO f (i) === j+1
rep( j,c, pa[i]) else

, (5.13)

where i is the node index, j is the restricted dimension, and c is the restricted cell
number.

Counts. When copying the nodes that are included in the restricted SCY-tree,
a new count of points in each subtree must be computed. The count of points in a
subtree is the sum of points in the subtree of the children:

n_co[ j,c, i] :=


∑ch|i===n_pa[ch]∧¬sCon(ch) n_co[ j,c,ch] if layerO f (i)< j∧¬sCon(i)
co[i] if s_incl[ j,c, i]∧¬sCon(i)
−1 else

,

(5.14)

where i is the node index, j is the restricted dimension, and c is the restricted cell
number. This information is, therefore, propagated from the leaf layer op wards.

Copy to the new restricted SCY-tree. We create each final restricted and merged
GPU-SCY-tree starting at descriptor with dimension j and cell number c:

pa′[idxs[i]] := n_pa[ j,c, i] ∀i|incl[i] (5.15)

co′[idxs[i]] := n_co[ j,c, i] ∀i|incl[i] (5.16)

ce′[idxs[i]] := ce[i] ∀i|incl[i]. (5.17)

Moreover, we similarly maintain the restricted and not-restricted dimensions, the
layers end-index, the included points, and the nodes they are included within.
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Pruning

The pruning phases are neither time-consuming nor the most interesting algorithmi-
cally. However, to not create new bottlenecks, we GPU-parallelize these as well.

Pruning for weak-density and minimum cluster size. To prune for weak-
density, we compute in parallel for each point if it is weak-dense. We then, layer
by layer, propagate the count upwards in the GPU-SCY-tree by following the parent
pointers. This is parallelized across nodes on each layer following the same logic
as in Section 5.3. The root node at the end contains the total count of points in the
subspace region, and we can prune the entire subspace region if it contains less than
the minimum required cluster size minC.

Pruning for redundancy. To prune w.r.t redundancy, we identify the cluster
size, the cluster overlapping with the current subspace region, and the largest cluster
overlapping with the subspace region. GPU-INSCY does this in three different
kernels. If the number of points in the cluster exceeds the number of points in the
GPU-SCY-tree times the redundancy factor r, then clustering is not performed.

Clustering using an adaptation of G-DBSCAN

INSCY uses a clustering definition very similar to that of DBSCAN [29]. We,
therefore, propose to adapt a GPU-parallelized variation of DBSCAN analogically. In
Section 4.3, we concluded that G-DBSCAN is the fastest GPU-parallelized variation
of DBSCAN and, therefore, the one that we adapt to fit the clustering definition of
INSCY. G-DBSCAN has not been optimized w.r.t. it is being used as a subroutine in
subspace clustering. This implies that there could still exist several relationships that
can be leveraged to make G-DBSCAN faster. We investigate this and suggest several
improvements that make clustering much faster in our scenario.

G-DBSCAN continuously check for all points in parallel to see if they can expand
a specific cluster through the immediate neighborhood. While this strategy is valid
and leads to speedup, a lot of extra computations still go to waste. We observe that
this process happens for each cluster that is being expanded. Instead of just expanding
one cluster at a time, we propose expanding all clusters simultaneously, potentially
saving a factor equal to the number of clusters k. To do this, we propose Algorithm
4. The algorithm provided here is from our paper [39], but the paper do not provide
pseudo-code. The idea is to assign each point to a singleton cluster, then for each point,
and while there are still clusters being expanded, we go through the neighborhood
of each point and check if it can expand any cluster with a lower cluster ID. As an
additional benefit, we only transfer the entire clustering once instead of transferring an
array for each cluster. The running time of Algorithms 1 and 4 are both dominated by
the O(n2) time complexity of computing the neighborhoods. The improvements from
Algorithm 1 to Algorithm 4 are therefore only significant when the time-complexity
of the neighborhoods can be reduced.

We have further improvements that leverage that the clustering is being performed
as part of the INSCY subspace clustering. First, we can use previously computer
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Algorithm 4 G-DBSCAN*(data,ε,minPts)

1: Precompute neighborhoods
2: for all regions R - in parallel do
3: for point pi ∈ R - in parallel do
4: CR[i] := i
5: while still expanding do
6: CR[i] := minp j∈NS

ε (pi)| |NS
ε (p j)|≥minPtsCR[ j]

7: copy each CR to host

neighborhoods to prune new neighborhoods. Starting at the 1-dimensional subspace
regions, we compute the neighborhoods as G-DBSCAN. For subspace regions with
two or more dimensions, we have already computed the neighborhoods of a lower
subspace, and we can utilize the monotonicity of the neighborhoods in a subspace
to prune the points in the current subspace region. This provides a huge speedup
but can only be used when DBSCAN is used in a subspace clustering scenario. The
second and most obvious improvement is that we can parallelize across multiple
subspace regions. Keeping previous neighborhoods in memory uses extra space and
is, therefore, a trade-off between space and speed. To remedy this, we can either
off-load memory from the GPU to the main memory or compute across fewer regions
in parallel.

Summarized key contributions and insights

The most important, but also the most space-vise expensive, idea is to use the mono-
tonicity of neighborhoods to prune the computation of the neighborhoods in a su-
perspace using the neighborhoods in a subspace. This pruning strategy, of course,
only applies when DBSCAN is used in the subspace clustering and could be used
to speed up similar subspace clustering algorithms, e.g., to speed up variations of
SUBCLU that use G-DBSCAN to cluster. The neighborhood computations dominate
the runtime of G-DBSCAN and not the in-efficient gathering of clusters; our adaption
would not lead to significant speedups unless the neighborhoods can be efficiently
pruned.

The clustering clearly dominates the running time of INSCY; however, our adap-
tation of G-DBSCAN provides the clustering within a must shorter time. Therefore,
handling the SCY-tree becomes the new bottleneck and requires a lot more effort
to reduce. We first propose a GPU-friendly representation of the SCY-tree, called
the GPU-SCY-tree, that takes the memory alignment and the manipulation into ac-
count. Furthermore, restricting and merging the GPU-SCY-tree comes with multiple
challenges. During the merge operation, it is unclear how to merge identical nodes
best since we need to keep track of which nodes are identical or identify them on
the fly, likely increasing the workload. Alternating between restricting and merging
also creates a sequential process ill-suited for the GPU. Furthermore, this alternating
process creates many redundant allocations of temporary results and parses through
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the tree. We suggest a method that allows us to combine the alternating process of
restricting and merging into one operation and easily keep track of the nodes that need
to be merged.

Putting all of our contributions together creates the GPU-INSCY algorithm, which
provides an ever-increasing speedup of four orders of magnitude. This implies that
the GPU-INSCY can cluster a million points within 20 minutes, whereas it takes
more than 10 hours for INSCY to cluster just 8,000 points. In experiments, we also
provide a variation of GPU-INSCY that does not prune using the monotonicity of
the neighborhoods. This shows that the GPU-parallelizations, including our GPU-
SCY-tree and adapted clustering method, provide around a constant 500× to 1,000×
speedup, but that the pruning of neighborhoods provides up to an extra 30× speedup
which seems to continuously increase as the number of points grows, implying a total
of 15,000× speedup.



Chapter 6

Projected Clustering

The result set of subspace clustering algorithms can become exponentially large,
which is one of the problems that INSCY also tries to mitigate. However, we are
sometimes only interested in having one clustering assignment per point to make the
result as interpretable as possible. Projected clustering is similar to regular clustering
in that it assigns each point to one cluster; however, each cluster is projected within a
subspace of the full-dimensional space. In this chapter, we first provide the background
for our contribution; GPU-FAST-PROCLUS and AVID. This is primarily the axis-
aligned projected clustering algorithm, PROCLUS. We then discuss our contributions.
Our contributions, GPU-FAST-PROCLUS, makes PROCLUS fast enough for real-
time interaction using the GPU, and AVID demonstrates this as a data visualization
tool where the entire visualization pipeline is implemented on the GPU to make it
responsive enough.

6.1 PROCLUS

PROCLUS [4] is an axis-aligned projected clustering algorithm. An axis-aligned
projection is where either a dimension is fully included or excluded. This stands in
contrast to non-axis-aligned projection, where the projected dimensions are linear
combinations of the dimensions in the full-dimensional space. That PROCLUS
identifies axis-aligned subspace projections implies that the result is easier to interpret
for the user, but at the cost of being less flexible than non-axis-aligned projected
clustering algorithms [3, 15, 36, 68]. Even though PROCLUS is relatively old, to the
best of our knowledge, there does not exist a better performing axis-aligned projected
clustering algorithm.

In Jørgensen et al. [41], we reformulate the cost to make it more parallelizable.
However, this also reveals that the cost-function that PROCLUS aims to minimize
is similar to that of k-means but uses the Manhattan segmental distance given the
subspace projection Di of a cluster Ci instead of the Euclidean distance.

39
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Definition 6.1.1 (PROCLUS cost function). Given a dataset data, a clustering C,
and subspace projections D for the clusters, the cost of PROCLUS is as follows:

cost(data,C,D) :=
1
n ∑

Ci∈C
∑

p∈Ci

1
|Di|
||p−µi||Di

1 , (6.1)

where µi, j := 1
|Ci| ∑p∈Ci p j is the mean of cluster Ci.

However, the complexity of identifying the best clustering and subspace projec-
tions becomes even worse since we now also need to optimize the subspace projection.
PROCLUS approximate the cost function Definition 6.1.1 using a random search
approach. Given parameters, number of cluster k, average number of dimensions
per subspace l, scalars A and B, the patient itrPat, and minimum derivation minDev,
PROCLUS proceeds in three phases: initialization, iterative, and refinement.

In the initialization phase PROCLUS first select a random subset S of size A× k
of the dataset data. Then pick a potential set of medoids M as a subset of size B× k
from S by iteratively selecting the point mi ∈ S with the first distance to all points M
already selected. From the potential set of medoids M, PROCLUS picks a random
initial set of current medoids MCur ⊆M.

PROCLUS then proceeds to the iterative phase where the current set of medoids
MCur is iteratively improved. In each iteration, PROCLUS computes a sphere of
influence Li for each current medoid mi ∈MCur. From these spheres of influence,
PROCLUS estimates the best subspace projection Di with an average of l dimensions.
Within these subspaces, PROCLUS assigns each point to the closest current medoid.
The cost of this clustering is evaluated; if a better clustering is found, PROCLUS
keeps it for later use. At last, PROCLUS construct the next current medoids MCur by
replacing the medoids mi ∈ mBest where |Ci|< n/k×minDev; if no such exists the
medoid with the smallest cluster is replaced.

The sphere of influence Li is computed using computeL as:

Li := {p ∈ Data | ||p−mi||2 ≤ δi}, (6.2)

where δi := minm j ̸=mi ||mi−m j||2.
The subspace projections are estimated using FindDimensions and proceed in

multiple steps. First, computing the average distance Xi, j := 1
|Li| ∑p∈Li |p j−mi, j| to

the medoid mi with in each sphere of influence Li along each dimensions j. Then
compute the average distance Yi := 1

d ∑
d
j:=1 Xi, j for each medoids mi and the standard

deviation σi :=
√

1
d−1 ∑

d
j:=1 Xi, j. At last, compute a measure of spread Zi, j := Xi, j−Yi

σi
.

PROCLUS then picks the pairs of medoids mi and dimensions i with the lowest
Zi, j value to be the subspace projection Di; however, PROCLUS pick at least two
dimensions per medoid.

PROCLUS construct the clustering C using AssignPoints; assigning each point
p to the cluster mi within subspace projection Di:

Ci := {p ∈ data | ||p−mi||Di
2 ≤ min

mi∈m
||p−mi||Di

2 }. (6.3)
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PROCLUS then evaluates the cost Equation 6.1 of clustering C; if the current
clustering is better than the previously found, PROCLUS saves it as the best clustering
together with the associated medoids and subspaces. The iterative phase stops if no
better clustering has been found for itrPat iterations. Before continuing to the next
iteration, PROCLUS replaces bad medoids with random medoids from M. The bad
medoids are the medoid associated with the smallest cluster and medoids associated
with a smaller cluster than n/k×minDev.

The final clustering is at last computed in the refinement phase. The best clustering
CBest is used as the sphere of influence to compute the final subspace projections
using findDimensions. The points are re-assigned to clusters using these subspaces.
At last, the outliers are identified by defining spheres for each medoid in the associated
subspace with radius ∆i := min j ̸=i ||mi−m j||Di/Di; points that do not lay within any
spheres are considered outliers.

6.2 Our contribution: GPU-FAST-PROCLUS

Even though PROCLUS is becoming old, it still performs well in evaluations [58].
However, PROCLUS can still take several minutes to perform on just a few thousand
data points [4, 58]. Applying PROCLUS in an interactive scenario on hundreds of
thousands or even millions of points is impossible. We, therefore, propose GPU-FAST-
PROCLUS in Jørgensen et al. [41]. GPU-FAST-PROCLUS includes both algorithmic
and GPU-parallelization strategies that accelerate PROCLUS. Even though the focus
is on the most time-consuming functions, the entire PROCLUS algorithm has been
GPU-parallelized to reduce memory transfer.

Strategies

We propose four algorithmic strategies to speed up PROCLUS and provide space-
saving variations. We call the algorithm using the original strategies FAST-PROCLUS
and the algorithm using the space-saving variations FAST*-PROCLUS.

Strategy 1. In ComputeL, the distances between all points and the current medoids
are computed. Computing the distances takes O(n× k×d) but seems necessary since
the medoids change in each iteration. However, we observe that not all medoids are
replaced in each iteration but that some medoids will reappear, implying that many of
the distances are recomputed in later iterations. Therefore, as our first strategy, we
propose to keep these distances in case the medoids reappear.

Strategy 1*. This strategy requires O(n×B× k) space. Therefore, we propose a
space-saving variation of this strategy that only saves the distances from the previous
iteration, requiring only O(n× k) space. The space-saving variation likely will not
lose too much speedup since the only medoids that are not kept only reappear if they
are randomly chosen.

Strategy 2. In FindDimensions, the new best subspace projections are computed.
The most expensive part is to compute the average distances Xi, j to the medoid mi

to all points in the sphere of influence Li along each dimension j. Since the current
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medoids changes in each iteration, so do Li and Xi, j. While all Li are likely to change
in each iteration, they are not likely to change much. We propose to, instead of saving
the spheres of influence Li, only save the change in the sphere:

∆Li := {p ∈ Data | δ t ′
i < ||p−mi||2 ≤ δ

t
i ∨δ

t ′
i ≥ ||p−mi||2 > δ

t
i }, (6.4)

where t is the current iteration and t ′ is the previous iterations where the specific
medoid was used. We then maintain the sum of distances to the medoid mi:

Ht
MIdxi, j === ∑

p∈Li

|p j−mi, j|, (6.5)

where MIdxi is the index of medoid mi into M. When we have Ht
MIdxi, j we can

compute Xi, j := Ht
MIdxi, j/|Li|. We can update Ht

MIdxi, j to the current iteration t as:

Ht
MIdxi, j := Ht ′

MIdxi, j +λi× ∑
p∈∆Li

|p j−mi, j|, (6.6)

where λ is 1 if the change is an increase and −1 if it is a decrease.
Strategy 2*. Again this requires O(n×B× k) space; therefore, we again propose

a space-saving variation that builds on the same idea of only saving the information
for the k current methods MCur.

Strategy 3. Like any other projected clustering or subspace clustering algorithm,
PROCLUS must be provided parameters that define the outcome. For PROCLUS,
the most important parameters are the number of clusters k and the average number
of dimensions per subspace l. Projected and subspace clustering algorithms are
often used in an information retrieval process, where the user investigates different
parameter settings to find the best clustering. Each time the user runs PROCLUS,
everything is computed again. This implies that the temporary results from strategies
1 and 2 are not used. One reason the temporary results can not be reused is that
the potential medoids M are picked at random for each run. We, therefore, suggest
keeping the same potential medoids M across parameter settings, allowing us to reuse
the computations from previous runs. The only side effect is that the size of M is fixed
even though it is normally sub-sampled to be of size B× k. This restricts the choice
of B and the size A of the downsampling. However, this downsampling is already a
heuristic speedup, and our speedups allow the user to pick a larger B.

Strategy 4. For each parameter setting, we start from a random initialization of
the current medoids MCur, implying that we spend some time doing a random search
until we start finding good medoids. However, we suggest the heuristic that a good set
of current medoids for one parameter setting might also be a good initialization for a
different parameter setting. We simply let the following parameter setting continue on
the same set of current medoids. When the number of medoids increases or decreases,
we randomly remove or add medoids.

FAST-PROCLUS uses strategies 1, 2, 3, and 4, and FAST*-PROCLUS uses
strategies 1*, 2*, 3, and 4. The same is analogically the case for the GPU-variation,
GPU-FAST-PROCLUS, and GPU-FAST*-PROCLUS.
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GPU-Parallelization

So far, we have only discussed algorithmic improvements. However, there are also
several considerations to make regarding GPU parallelization. The entire algorithm is
parallelized for the GPU; however, a couple of functions are the most time-consuming
steps as they use O(n×d×k) in each iteration. These functions will be the focus here
and include ComputeL, FindDimensions, AssignPoints, and EvaluateCluster.

ComputeL. To make the computation for Equation 6.2 fit the architecture of the
GPU, we identify three tasks that each can be computed independently across points.
First, we compute all pair-wise distances in parallel among all points and medoids.
Next, in parallel across pair of medoids, we find the smallest distance δi. At last, in
parallel across each pair of points p and medoids mi, we assign each point to the sets
Li where the distance to the medoid mi is less than δi. The assignment is performed in
parallel by atomically incrementing a location, and the point is saved at that location.
This guarantees a unique location for each point. To accommodate strategies 1 and 1*,
in algorithms GPU-FAST-PROCLUS and GPU-FAST*-PROCLUS, the computation
of the distances is only computed if it has not been computed before. To accommodate
strategy 2 and 2*, in algorithms GPU-FAST-PROCLUS and GPU-FAST*-PROCLUS,
the old δ t ′

i from previous iterations is saved, and the conditions for which points are
saved is changed to:

δ
t ′
i < ||p−mi||2 ≤ δ

t
i ∨δ

t ′
i ≥ ||p−mi||2 > δ

t
i . (6.7)

Furthermore, we also record if it is an increase or decrease λi.
FindDimensions. Finding the dimensions are already nicely separated into several

small steps. Each of these steps contains mostly independent computations that we can
easily parallelize a cross and use atomic operations to sum across threads. However,
since so many threads are accessing the same memory address at the same time, we
keep a temporary result for each thread and then, in the end, combine the temporary
results using the atomic addition operation. Computing Y requires X , σ requires Y ,
and Z requires σ . We combine these three computations into one kernel to avoid
transferring memory to and back from global memory. To avoid expensive memory
transfer between global and shared memory, we propose to combine the computations
of Y , σ , and Z into one kernel. To accommodate strategies 2 and 2* in algorithms
GPU-FAST-PROCLUS and GPU-FAST*-PROCLUS, the matrix H is updated using
∆L instead of recomputing the entire X .

AssignPoints. The points are assigned to the closest medoids, within the subspace,
in parallel across both points and medoids. This is done by computing the distance
from each point to all current medoids within the same thread block, using the atomic
minimum operation. Then synchronizing each thread block to ensure that distances
have been computed when checking the minimum distance. At last, assign it to that
medoid if it is the one with the smallest distance.

EvaluateCluster. The original formulation of the cost function in PROCLUS
consists of several parts, Equation 6.1. Separately computing each part would imply
saving the temporary results to the slow global memory. We, therefore, propose to
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reformulate the cost function to a single sum across clusters, points, and dimensions,
to achieve higher parallelism:

k

∑
i

∑
p∈Ci

∑
j∈Di

|p j−µi, j|
|Di|×n

. (6.8)

However, the centroid µi, j is still a separate part. We notice that the centroid µi, j

is computed across clusters, points, and dimensions, like the cost. We, therefore,
propose to compute it in the same kernel to avoid even more reads and writes to global
memory. Furthermore, to not synchronize the whole GPU, but just each thread block,
we parallelize across clusters and dimensions in blocks and points across threads
within each block. This implies that we can compute µi, j, synchronize, and then
compute the cost within the same kernel call. When summing µi, j and the cost, we
keep a temporary result tmp for each thread to reduce the use of atomic operations.

Summarized key contributions and insights

In this section, we propose several heuristic strategies for improving the running time
of PROCLUS. Each of these provides additional speedup to both PROCLUS and our
GPU-parallelized variation. However, what provides the greatest speedup is the GPU-
parallelization of each function. Where the algorithmic strategies provide 1-order
magnitude speedup, the parallelizing of everything provides 3-orders of magnitude
speedup. Each function requires its own strategy to perform well and achieve this
speedup. However, especially reducing memory transfer provides great speedups but
often requires some good ideas to be successful.

6.3 Our contribution: AVID

We now have an algorithm that performs axis-aligned projected clustering on a
million data points within a 1/10 second. However, PROCLUS and other clustering
algorithms are rarely just used as a background process but instead as part of an
information retrieval task. Before, when performing PROCLUS on such large datasets,
the user would need to wait for minutes before actually seeing the result, whereas GPU-
FAST-PROCLUS now provides a result fast enough to allow real-time interaction
[74]. However, to the best of our knowledge, there does not exist a data visualization
framework for visualizing data already located on the GPU. Using standard data
visualization frameworks would imply that throughout the visualization pipeline [35]
we would perform the analysis on the GPU, transfer the result to the CPU where the
visual mapping is performed, and then back to the GPU to be rendered on the screen.
The CPU in this setup would clearly be a bottleneck that would make the interactive
experience tedious at best. To actually support a real-time data visualization tool for
GPU-FAST-PROCLUS, we propose to use the idea of "what happens on the GPU,
stays on the GPU", i.e., perform the entire visualization pipeline on the GPU without
the data ever leaving the GPU.
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Figure 6.1: Layout of the data visualization AVID. From Jørgensen et al. [40].

Implementation. The visualization is implemented using CUDA1 and OpenGL2,
together with the extensions GLUT3 and GLEW4. OpenGL, GLUT, and GLEW are
APIs for graphics rendering on the GPU. Furthermore, OpenGL allows for interpo-
lation between CUDA and OpenGL resources, which implies that CUDA kernels
can manipulate graphics. However, these are not frameworks for data visualization
but only handle the rendering. Through GPU-FAST-PROCLUS, we also have the
data analysis on the GPU. Therefore, the remaining is the filtering and mapping
that must be implemented on the GPU. Furthermore, all interactions have also been
implemented; however, these just instruct which filtering, selection, and mapping
should be performed on the GPU.

Visualization. For the visualization, we propose to have a multiple-coordinated
view with a scatter-plot-matrix as an overview, previews of changes in parameters, a
column chart with the distribution of points among clusters, and a detailed view, Figure
6.1. In the overview, the user can select a specific scatter plot to show in the detailed
view and the different previews. A scatter-plot matrix upper and lower triangle shows
the mirrored image of the same information. We have therefore replaced the scatter
plots, in the lower triangle, with heat maps to show the dense regions clearly. In the
detailed view, the user can filter to specific points by brushing an area, and in the
column chart, the user can filter to a specific cluster by clicking the corresponding
column. There are two previews, one for the parameter k and one for l. Each consists
of three scatter plots that show the selected scatter plot but at varying parameter
settings. The parameters shown in the previews can be adjusted by clicking either a

1https://developer.nvidia.com/cuda-downloads
2https://www.opengl.org/
3http://freeglut.sourceforge.net/
4http://glew.sourceforge.net/
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bottom to increase or decrease. The user can change the parameters used in the entire
visualization by clicking on one of the scatter plots in the previews.

Demonstration. We provide a demonstration of our tool both as a textual demon-
stration in the paper and a video presentation at: https://au-dis.github.io/
publications/AVID/. This demonstration shows how the user can quickly and
easily fine-tune the parameters until the best clustering has been found. Doing the
parameter fine-tuning, we show how a user can investigate a single cluster to see if
it, along some dimensions, should be split into multiple clusters, increase k, if the
subspace does not include a dimension where it is dense, increase l, or if the subspace
includes a dimension where the cluster is not dense, decrease l. In contrast, if a cluster
is not found or is split into multiple, the user can filter the dense area by brushing in
the detailed view. If this confirms that multiple clusters should indeed be just a single
cluster, decrease k, and if the cluster does not exist, increase k.

https://au-dis.github.io/publications/AVID/
https://au-dis.github.io/publications/AVID/


Chapter 7

Discussion and future work

Many supervised machine learning algorithms are based on linear algebra, which
in most cases have been efficiently parallelized on the GPU. Several plug-and-play
frameworks have been developed and integrated into the most used programming
languages for data analysis, like python. However, there is still a lack of data mining
(unsupervised machine learning) algorithms that are transformed to fit the compu-
tational model of the GPU. This is likely because many data mining algorithms are
not based on linear algebra and are, therefore, not as low-hanging fruit to adapt to
the GPU. The development of such algorithms enables fast analysis of big data on
modern consumer-end hardware, without the need for high-end servers, but of course,
also reduces the running time significantly on servers equipped with GPUs. In our
data visualization tool AVID, we demonstrate how fast the interaction becomes for
GPU-FAST-PROCLUS. A fast projected clustering could be beneficial in biological or
medical research, where it could be used to identify groups with common genes, e.g.,
to investigate gene-specific diseases. However, similar scenarios could be imagined
for most data mining tasks.

We, alongside others within the field of data mining, have started to develop
algorithms that fit the GPU; however, there is still much work to be done before even
the most used data mining algorithms have been adapted to fit the GPU. Some of the
most used clustering algorithms have been adapted to fit the GPU, like DBSCAN
[7, 17, 52, 53], k-means [16, 83], mean-shift [87], OPTICS [55], DPC [48], and now
SynC [42]. However, for subspace clustering and projected clustering, even fewer
have been developed. For subspace clustering, to the best of our knowledge, only
MAFIA [1] and now INSCY [39] are adapted to the GPU. Furthermore, for axis-
aligned projected clustering, we only know of our GPU adaptation of PROCLUS [41];
however, many non-axis-aligned projected clustering algorithms are based on linear
algebra and would therefore be a simple task to fit the GPU. Other data mining tasks
lay mainly untouched, e.g., within trajectory mining, only a GPU-based algorithm [32]
for the simple flock pattern exist, while researchers have yet to develop algorithms for
other more enticing patterns.

To enable the end-user to utilize our proposed algorithms easily, we provide both
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c++ implementation at Github (https://github.com/mrjakobdk/datamining)
and python packages (https://anaconda.org/mrjakobdk/datamining) that in-
teract well with the standard packages for data analysis like numpy1 and scikit-learn2.

Throughout this thesis, we have shown several transformations and trade-offs
relevant when developing GPU-parallelized equivalent algorithms of their sequential
counterparts. Within data mining and especially throughout our papers, one of
the most important concepts is the range query, i.e., the neighborhood search. In
many scenarios, precomputing range queries, such as the neighborhoods, can reduce
redundant work and, more importantly, ensure a less diverging execution on the GPU.
However, if the neighborhoods contain many points due to a large radius or a dense
dataset, this can lead to space issues. In some cases, this is not too bad of a trade-off,
like for G-DBSCAN, GPU-INSCY, and GPU-FAST-PROCLUS, where we can still
reach millions of points without running into problems. For GPU-INSCY, having the
neighborhoods precomputed provides the additional benefit of enabling the pruning
of the neighborhoods in the superspaces. In GPU-FAST-PROCLUS, we also perform
range queries to find each sphere of influence. However, this is only computed for
each medoid and, therefore, does not require significant space. In other cases, like for
EGG-SynC, this would be a limiting factor, and we need to find a less space-heavy
alternative instead. We propose to use a grid structure that both support the range
search and our summarization strategy.

We have explored some strategies for speeding up the computation of neighbor-
hoods that can be used in multiple algorithms, e.g., pruning neighborhoods using the
neighborhoods in a subspace could easily be employed in other subspace clustering
algorithms similar to INSCY, e.g, SUBCLU. However, other strategies like the sum-
marization of areas within a neighborhood in EGG-SynC or only updating previous
partial computations with the change in GPU-FAST-PROCLUS can most likely not be
directly applied for other algorithms. Even if a sufficient indexing structure supporting
range-queries is available, the result can vary greatly between threads, leading to
an unbalanced workload. In EGG-SynC, we explore a strategy for balancing the
workload of threads performing range queries. The idea is that points located close
to each other are more likely to have a similar neighborhood size, and threads in the
same warp should handle points located close to each other. In EGG-SynC, our grid
structure already contains a list of points ordered by the grid cells they are located
within, and we let the threads handle points in that order. This strategy can be used
with any indexing structure relying on an ordered set of points.

Most data mining algorithms utilize range queries; more often than not, it is one
of the most time-consuming tasks. Therefore, we see great potential in inventing more
general data structures and work balancing strategies for performing and traversing
range queries. Likely, two different strategies would need to be developed, one where
many points need to find their neighborhoods and one where only a few points need
to do it. If we need to find the neighborhood of many points, each thread could find

1https://numpy.org/
2https://scikit-learn.org/stable/

https://github.com/mrjakobdk/datamining
https://anaconda.org/mrjakobdk/datamining
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the entire neighborhood of a point. What we then would need to keep in mind is to
balance it such that it takes the same instructions for all threads in a warp to identify
the neighborhood and traverse it. On the other hand, if we only need to find the
neighborhood of a few points, it would be beneficial to spread out the identification
of a neighborhood among multiple threads. Even in the optimistic case where a
generalized indexing structure for range queries on the GPU has been found, it might
still take considerable effort to transform a sequential algorithm into a parallel one
that can use such an indexing structure.

To summarize, we have created three new algorithms for clustering, subspace
clustering, and projected clustering. However, there are still many categories of data
mining algorithms and still more algorithms for different clustering definitions that
could benefit from utilizing the GPU. This would greatly ease data analysis on the
desktop, both within information retrieval and automated processes.
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Chapter 8

GPU-INSCY: A GPU-Parallel
Algorithm and Tree Structure for
Efficient Density-based Subspace
Clustering

Abstract

Subspace clustering is the task of grouping objects based on mutual sim-
ilarity in subspaces of the full-dimensional space. The INSCY algorithm ex-
tends the well-known density-based clustering algorithm DBSCAN. It finds
dimensionality-unbiased non-redundant subspace clusters using a tree structure
to speed up the processing of subspaces. Still, finding density-based clusters in
all subspaces implies an exponential search space in the number of dimensions.
Thus, the running time of INSCY is still measured in hours on even small
datasets of 2000 points. For larger datasets, it becomes prohibitively expensive.

To benefit from INSCY for real-world sized datasets, we propose a novel
GPU-parallel approach that runs on standard graphics cards. To utilize the many
cores of the GPU, we need new algorithmic strategies that fit the computational
model of the GPU. While the GPU provides a large number of threads, traditional
algorithms incur diverging threads and poor memory alignment, both of which
lead to idle time and poor runtime performance. In INSCY, extracting subspace
regions from the SCY-tree structure and the density-based clustering of regions
itself are thus unfit for the GPU.

Our novel GPU-friendly algorithm GPU-INSCY computes the same sub-
space clustering as INSCY at dramatically reduced runtimes. To achieve this,
we devise a restructured SCY-tree index-structure and associated operations for
the GPU, as well as a GPU-parallel density-based subspace clustering.

We experimentally show that GPU-INSCY scales well with the size of the
dataset and the number of dimensions, and improves the running time of INSCY
by a factor of several thousand for large datasets of high dimensionality.
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8.1 Introduction

Clustering, i.e., grouping data points based on mutual similarity, is a widely used data
mining task, e.g., for grouping customers to allow for targeted marketing. However,
real-world data is often high-dimensional, and a higher number of dimensions means
that there are more possibilities for points to seem dissimilar. This is known as the
curse of dimensionality. Due to this effect, points tend to group within a subspace
of the full-dimensional space, leading to the task of subspace clustering [4, 6, 43],
where we search for clusters with all possible subspaces. To search for such clusters,
we often employ density-based clustering similar to DBSCAN [29]. Most subspace
clustering algorithms, e.g., SUBCLU [43], use a fixed density threshold independent
of the subspace’s dimensionality. When finding clusters, the density threshold needs to
match the expected density such that we can find all points within clusters, but without
including everything. However, the expected density is lower for higher-dimensional
subspaces than it is for lower-dimensional subspaces. For density-based subspace
clustering, this problem implies that density-measures that do not take the subspace’s
dimensionality into account are biased toward lower subspaces. To address this
problem, Assent et al. [9] formulated a dimensionality-unbiased density-measure and
utilized this in the algorithm INSCY [11]. INSCY, furthermore, removes redundancy
and provides an index-structure called SCY-tree used to partition and prune regions of
density-connected data points. A drawback that remains, is that the running time is
still measured in hours on even small datasets of a couple of thousands of points.

To reduce the runtime of dimensionality-unbiased density-based subspace cluster-
ing, we exploit modern graphics cards (GPUs), capable of general-purpose computa-
tions, fast context switches, and parallelizing over many cores, but with a restrictive
computational model and limited memory. The high computational throughput of
GPUs has been utilized to improve clustering runtimes [1, 7, 17]. However, to our
knowledge, there exists no GPU-parallelization of a dimensionality-unbiased index-
supported algorithm like INSCY, which is challenging to GPU-parallelize due to index
and depth-first subspace search being optimized for (sequential) CPU processing.

Contributions. In this work, we present a novel GPU-parallel algorithm, called
GPU-INSCY, which provides the same clusterings as INSCY at substantially reduced
runtimes. To achieve this, we restructure several major parts of INSCY, the index-
structure SCY-tree, the operations used to partition regions of data, and the clustering
of points. INSCY partitions regions represented by SCY-trees through a sequence
of operations. We show how to make these operations parallel and combine several
partitions into one process. Combining these allows us to avoid many redundant
iterations and temporary copies. The clustering step is also GPU-parallelized and
improved further by utilizing the density monotonicity for neighborhoods in increasing
subspaces.

This paper is organized as follows: Section 8.2 discusses related work, Section 8.3
gives the background of subspace clustering and INSCY, Section 8.4 describes our new
parallel algorithm GPU-INSCY, Section 8.5 presents the experimental comparison of
INSCY and GPU-INSCY, and Section 8.6 concludes our work.
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8.2 Related Work

Subspace clustering is the task of grouping points based on mutual similarity in any
possible subspace of the full-dimensional space, hence its worst case complexity is
exponential in the number of dimensions.

Algorithms for subspace clustering [4, 6, 9–11, 24, 33, 43, 69] are often catego-
rized into bottom-up or top-down approaches [47, 58, 64, 75]. Bottom-up approaches
start with clustering in 1-dimensional subspaces, iteratively combining k-dimensional
subspace clusters into (k+1)-dimensional subspace clusters. CLIQUE [6] and MAFIA
[33] are grid-based approaches that may miss subspace clusters spanning across grid
cells. Instead of clustering dense cells, SUBCLU [43] clusters dense points, as in
the density-based full space clustering algorithm DBSCAN[29]. An issue with SUB-
CLU and other density-based subspace clustering approaches is that they use a fixed
density-threshold for all subspaces. Therefore, they do not take dimensionality into
account and are biased towards lower-dimensional subspace clusters. INSCY is an
extension of SUBCLU that mitigates this problem by introducing a density measure
normalized by a subspace’s expected density.

Top-down approaches start by clustering the full-dimensional space and iteratively
refine the subset of dimensions associated with each subspace cluster [3, 4, 81]. These
approaches limit subspace clusters by assigning each point in the data to exactly one
subspace cluster. Due to the exponential search for subspaces, many of the algorithms
take an approximate approach to subspace clustering [4, 33, 56]. They do so using
a heuristic to pick the subspaces that are examined or only compute clusterings of
dense regions instead of single dense points. These approaches might miss clusters
that exact algorithms like INSCY capture.

Even though exact subspace clustering algorithms are time consuming, few al-
gorithms have been proposed to reduce the running time by exploiting the high
computational throughput of the GPU. Utilizing the many cores of the GPU is highly
challenging because of the distinct and limited computational model, as well as
limited memory. There have been proposed several GPU-parallelized full-space
clustering algorithms [7, 17, 30, 49, 52]. One of the earliest GPU versions of the full-
space clustering algorithm DBSCAN was CUDA-DClust* [17], which starts multiple
searches for clusters in parallel. If multiple searches start within the same cluster,
they are merged. Multiple other GPU-versions of DBSCAN have been developed
[7, 52, 53, 78]. Our assessment of self-reported results suggest that G-DBSCAN[7]
and CUDA-DClust*[17] are the best performing options. An experimental evaluation
[59] studies three of these GPU-versions and finds that G-DBSCAN is the fastest and
CUDA-DClust* uses less memory.

Only one GPU-parallelization of a well-known subspace clustering approach has
been proposed [1] for grid-based MAFIA. GPUMAFIA parallelizes one operation at
a time, mapping nested for-loops of minor computations directly to parallel threads.
Our restructuring of INSCY lets us GPU-parallelize GPU-INSCY even further such
that we can even parallelize operations performed at different points of the process.
We completely restructure the algorithm and its underlying SCY-tree structure to fit
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the computational model and the memory structure of the GPU.
To the best of our knowledge, we are the first to develop a GPU-parallelized ver-

sion of a density-based subspace clustering algorithm, in particular an algorithm that
supports dimensionality-unbiased density measures and exploits indexing structures
for efficient computation.

8.3 Background

The graphics processing unit

We give a short introduction to graphics processing units (GPUs) and their compu-
tational model. When using a GPU for general-purpose computation, the GPU is
co-processor, and the CPU is main processor. Throughout the paper, we use the term
parallel to denote parallel execution under the GPU’s computational model. The
main difference between a multi-core CPU and a GPU is that GPUs can perform fast
context switches and that several cores on the GPU uses the same program counter
and, therefore, must perform the same operations.

CUDA is NVIDIA’s framework for using their line of GPUs. It uses the concept
of a kernel, which is a function executed on multiple threads in parallel. Threads are
organized into blocks, and all threads within a single block are capable of synchro-
nizing, share fast accessible memory, and use atomic operations. However, there is a
physical limit to the number of threads a block can contain, and the communication
between threads comes at a time-cost. Each block is further separated into warps.
All threads within a warp share a program counter, implying that they must perform
the same instructions (SIMD) at all times. In the case of branch-diversion, threads in
different branches will remain idle until the other branch has finished.

When parallelizing operations on the GPU, we are not guaranteed any order of
executions. Therefore, our goal is to identify independent operations, i.e., operations
that do not use the partial result of each other and therefore can be run in any order
without changing the final result. All allocation of memory and calls to kernels are
done by the CPU and executed on the GPU. All communication with the GPU comes
with a time-cost due to the large latency of data transfer. Therefore, it is essential to
balance where data is processed and how long it takes to transfer.

INSCY

We describe INSCY briefly. For further details please see [11]. We use the following
terminology: let X ∈Rn×d be a d-dimensional dataset with n points, D= {0, . . . ,d−1}
an index set for the full dimensional space, S ⊆ D a subspace of D, and NS

ε (p) the
neighborhood with radius ε of a point p in subspace S.

According to INSCY [9], a subspace cluster is a maximal set of points of at least
minC, which are density-connected in a subspace according to some density measure,
and which is not redundant w.r.t. a higher dimensional subspace projection:
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Definition 8.3.1. INSCY Subspace Cluster
A set of points C ⊆ X in subspace S⊆ D is a subspace cluster if:

• objects in C are S-connected: ∀p,q ∈C : ∃o1, . . . ,om ∈C : p = o1∧q = om∧
∀i ∈ {2, . . . ,m} : oi ∈ NS

ε (oi−1)

• all points fulfill the density criterion: ∀p ∈C : dcS(p),

• C is maximal, i.e., contains all S-connected objects: ∀p,q∈X : p,q S-connected
⇒ p ∈C∧q ∈C,

• minimum cluster size: |C| ≥ minC,

• not redundant: ∄C′,S′ subspace cluster with C′ ⊆C∧S⊂ S′∧|C′| ≥ r×|C|

where r is the redundancy parameter, minC is the minimum size of a cluster, and
dcS(p) is any dimensionality-unbiased density criterion within subspace S.

In this paper, we use the dimensionality-unbiased rectangular density measure for
the density criterion dcS(p) := |NS

ε (p)| ≥ max(F ·α(S),µ), where F is the density

factor threshold, α(S) = ES
[
|NS

ε (p)|
]
= |X | c(S)×ε |S|

vS
is the expected density, c(S) =

π
|S|
2 /Γ

(
|S|
2 +1

)
with Γ(n+1) = n×Γ(n),Γ(1) = 1,Γ(1/2) =

√
π , vS is the volume

of subspace S, and µ is the minimum number of points required for not just being
pseudodense. Other density measures can also be used. For further details see [9].
Note that Def. 8.3.1 is similar to density-based clustering in DBSCAN [29], but with
an unbiased density notion wrt. subspaces.

SUBCLU [43] uses monotonicity of density-connectivity to prune points that
lie outside clusters in a lower-dimensional subspace projection. However, for IN-
SCY’s unbiased density measure that scales with the expected density of a subspace,
monotonicity is lost. Still, as [9] observes, pruning can be done by discarding points
that are not dense w.r.t. the lowest possible density threshold, i.e., for the full-space.
INSCY finds such points, called not weak-dense, which can safely be pruned before
searching for clusters within superspaces of the current space. A point is weak-dense
if |NS

ε (p)| ≥max(F×α(D),µ).

The INSCY algorithm

The idea of INSCY is to bound the search for subspace clusters by identifying regions
that fully contain potential clusters. INSCY describes such a region by the dimensions
it spans and the respective intervals in these dimensions, and call it a subspace region.
INSCY performs a depth-first search (DFS) of the subspace regions, i.e., enumerating
all possible subspace regions. INSCY does so by recursively extending with one
dimension at a time and partitioning the region into intervals along that dimension.
When INSCY returns from the recursion, it performs density-based clustering within
the current subspace region to obtain the clusters. This implies that INSCY cluster
points within all superspaces of the current space first.
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Figure 8.1: Expansion of 1-d regions into 2-d

Each dimension is partitioned into a fixed number of cells. As a cluster likely
spans multiple cells, INSCY register this by having a border between each cell at
the size of the neighborhood radius ε . When performing density-based clustering,
it follows that if there are no points within this border, the two cells’ points cannot
be density-connected. Otherwise, a cluster may span both cells. Such connected
cells are referred to as S-connected. S-connected cells must be merged into a density-
connected interval to ensure that no clusters are split. An interval spanning multiple
cells is identified by the first cell. A dimension might have multiple density-connected
intervals, and INSCY is called recursively on each interval in a depth-first manner.
The whole process of expanding with a new dimension and bounding to a density-
connected interval is referred to as restricting w.r.t. a new dimension and the cell
identifying the interval. The pair of dimension d and cell c is called a descriptor (d,c).
When expanding with a new dimension, we expand one region at a time. Figure 8.1
shows a 1-dimensional example, and the expansion into two dimensions. On the left,
the dimension is split into three cells, where two are S-connected and merged into one
interval marked by green. On the right, we see the expansion. The red region is split
into cells along the added dimension and connected with any S-connected cells, and
likewise for the green region.

To keep track of the possible dimensions and cells that can be restricted, INSCY
introduces an index-structure called SCY-tree. The idea of SCY-tree is to precompute
the number of points within cells along a dimension such that restricting becomes
easier. The SCY-tree, therefore, represents the dimensions and cells not yet restricted.
The SCY-tree is a tree-structure containing nodes that represent a partition of a space
along a specific dimension. All nodes regarding a specific dimension are located
at the same height in the SCY-tree, which we call a layer. The children of a node
represent splits into cells along a dimension, one child per cell. Each node contains
its cell number and the count of points within the cell it represents. A cell with an
S-connection is represented by adding a sibling with the same cell number, but with
the count of points set to -1. Such a node is called an S-connector node. INSCY
keeps track of S-connections by continuing the path of S-connector nodes down to
the leaf layer. The root node of the SCY-tree represents a restricted subspace region.
SCY-trees that represent regions that share a border are called neighboring SCY-trees.
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Figure 8.2: SCY-tree for examples in [11]; node values cell : count; dimensions and
points colored as in later figures

For further details, see [11].
Figure 8.2 (top) shows an example of an initial SCY-tree for the full-dimensional

space. In this example, the space is first partitioned along dimension 0, creating three
cells noted by the cell number and the count of points in that cell cell : count. Cell 1
has an S-connection, which is represented by a node without a count of points. Each
cell is then further partitioned along dimension 1, discarding cells that do not contain
any points.

INSCY proceeds as in Algorithm 5. For each descriptor, create a restricted
SCY-tree. If cells in the SCY-tree are S-connected, merge connected restricted SCY-
trees into one final restricted SCY-tree. INSCY prune the final restricted SCY-tree
for redundancy, call recursively, and cluster the points if there is a possibility for
non-redundant clusters.

Algorithm 5 INSCY(scytree, d f , X , d, r, F , µ , ε , minC, R)

1: for dre = d f to d do
2: for cre = 0 to ncells do
3: scytree′← restrict(scytree,dre,cre)
4: scytree′←mergeNeighbors(scytree,scytree′,dre,cre)
5: if prune_recursion(scytree′, F , µ , ε , minC) then
6: INSCY(scytree′,dre +1,X ,d,r,F,µ,ε,minC,R)
7: if prune_redundancy(scytree′, r, R) then
8: R← R ∪ clustering(scytree′, X , F , µ , ε)



60
CHAPTER 8. GPU-INSCY: A GPU-PARALLEL ALGORITHM AND TREE

STRUCTURE FOR EFFICIENT DENSITY-BASED SUBSPACE CLUSTERING

Restrict. INSCY restricts a SCY-tree by identifying nodes matching the current
descriptor, i.e., the nodes residing on the layer of the restricted dimension and with
the same cell number as the descriptor. For each matching node, copy the node’s
path to the root and subtrees below the node into a new restricted SCY-tree. Since
the SCY-tree keeps track of not yet restricted dimensions, the matching node itself is
not copied. The node’s children are now children of the node’s parent. The count of
points is also updated to reflect the number of points in the restricted region. Figure
8.2 (bottom) contains two restricted SCY-trees for descriptors (1,0) and (1,1) and the
merged result. For descriptor (1,0) only 2 nodes match, leading to a small SCY-tree.

Merge. INSCY merges neighboring restricted SCY-trees if there exists an S-
connection, i.e. when an S-connector path starts at dimension d and has cell number c
that matches the current descriptor (d,c). Merge is done by going through the two
restricted SCY-trees and copying the nodes in both. A node can be represented in
several SCY-trees. During the merge, nodes with the same cell number and the same
parent are merged. Figure 8.2 (bottom), shows that the descriptor (1,0) matches an
S-connector node, the node represented by only a 0 on dimension 1, and therefore
INSCY restricts the neighboring descriptor (1,1) and merges the two restricted SCY-
trees.

Pruning recursion. To reduce the search space, INSCY prunes the final restricted
SCY-tree before calling recursively, as follows: Remove non-weak dense points and
check if the region’s number of points still exceeds minC. INSCY only proceeds with
the recursion if this is the case, as further restrictions will only reduce the number of
points.

Pruning redundancy. When returning from the recursive call INSCY has found
clusters in all superspaces of the current subspace. The current region can therefore
be pruned by redundancy. INSCY prunes by redundancy by checking if the result
already contains a cluster covering a factor r of the points in the restricted region. If
the number of points in the region is large enough, INSCY computes the density-based
clustering on all points in the final restricted SCY-tree and adds all non-redundant
clusters to the result.

8.4 GPU-INSCY algorithm

INSCY is inherently computationally expensive, making it infeasible to run on large
real-world datasets. As mentioned in the introduction, GPUs provide computational
power that algorithms designed for a different computational model of single-core
CPUs, as INSCY, cannot utilize. We design an algorithm for the GPU that reduces
the running time of INSCY substantially, making it feasible to run on much larger
datasets. To summarize the notation found in this section we provide Table 8.1 for
ease of reading.

Recall that threads in a warp must execute the same instructions to fully utilize
the GPU’s computational power. INSCY does not group similar operations and would
perform poorly on the GPU.
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Table 8.1: Notation

nnodes number of nodes
npts number of points
ncells number of cells
ndims number of dimensions
nr_dims number of restricted dims
pa ∈ Nnnodes parent array
ce ∈ Nnnodes cell array
co ∈ Nnnodes count array
la ∈ Nndims layer-indexing array
dims ∈ Nndims dimension array
r_dims ∈ Nnr_dims restricted dims array
po ∈ Nnpts point-id array
pl ∈ Nnpts point-placement array
incl ∈ {000,111}ndims×ncells×nnodes node inclusion array
inclpts ∈ {000,111}ndims×ncells×npts point inclusion array
idx ∈ Nndims×ncells×nnodes node new-index array
idxpts ∈ Nndims×ncells×npts point new-index array
n_co ∈ Nndims×ncells×nnodes new-count array
is_S(i) is S-connection
s_incl( j, i,c) should be included
S ∈ {000,111}ndims×ncells S-connection array
M ∈ Nndims×ncells merge map
n_pa ∈ Nndims×ncells×nnodes new-parent array
n_ch ∈ Nndims×ncells×nnodes×ncells×2 new-children array
rep( j,c, i) representative node

The idea of each iteration in INSCY is to bound a subspace region by restricting
and merging, prune that region, and perform clustering in that region. This process is
repeated until all clusters in all subspace regions are found. This approach is efficient
for a sequential algorithm. However, when parallelizing for the GPU, we prefer
grouping identical and independent operations to make each kernel call utilize as
many cores as possible. Making INSCY run parallel on the GPU is not straightforward
since many partial computations depend on previous results. E.g., in the alternation
between restricting and merging SCY-trees, we need the previous merged SCY-tree
and the neighboring restricted SCY-tree before continuing to merge.

In this section, we present a new algorithm called GPU-INSCY, in which we tackle
the problem of identifying and reorganizing the operations that can be performed in
parallel to reduce running time. Contrary to INSCY, GPU-INSCY aims to perform
similar and independent operations simultaneously for multiple final restricted SCY-
trees to utilize multiple thread blocks. Remember that this allows us to use more cores,
but it is only possible if the threads in different blocks do not need to communicate.
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We first outline the general order of computations in GPU-INSCY, and we later
explain this reordering. These reorderings do not affect the result since the reordered
operations are independent of each other as discussed below for each change we
introduce. GPU-INSCY can be seen in Algorithm 6. First, compute the set L of all
final restricted SCY-trees. Precompute the neighborhoods for all points in all final
restricted SCY-trees. For each final restricted SCY-tree, prune the recursion, call
GPU-INSCY recursively, and prune for redundancy. All non-pruned final restricted
SCY-trees are added to L′. Finally, we cluster all points in each of the final restricted
SCY-trees in L′.

Restrict and merge. In GPU-INSCY, we isolate all restrict and merge operations
at the beginning of the algorithm, whereas INSCY performs them ad hoc. We isolate
the operations such that we can parallelize them in different thread blocks. The result
of each restrict and merge operation only depends on the information parsed to the
recursion. Computing all restricted SCY-trees at the beginning does, therefore, not
change the final result. Parallelizing within each thread block is not a simple task due
to both the alternation between restrict and merge and the fact that INSCY only visits
nodes in the SCY-trees one by one when restricting and merging. We discuss how to
parallelize restrict and merge in Section 8.4, after introducing a representation of the
SCY-tree index-structure for the GPU in Section 8.4.

Precomputing the neighborhoods. Computing the neighborhoods is an expen-
sive task, and it is used both for the clustering and when computing weak-density while
pruning a recursion. In Section 8.4, we describe how to precompute the neighborhoods
in parallel and how we take advantage of having direct access to the neighborhoods in
a subspace of the current space.

Pruning. In Section 8.4, we parallelize both pruning phases following the same
approach as for restrict and merge.

Clustering. In Section 8.4, we change the sequential way of expanding the
clusters [29] with one density-connected point at a time, to obtain a more efficient
clustering algorithm.

Algorithm 6 GPU-INSCY(scytree′, d f , X , d, r, F , µ , ε , minC, R)

1: L← GPU_restrict_and_merge(scytree,d f ,d)
2: precompute_neighborhoods(X , L, ε)
3: for dre← d f to d−d f do
4: C← 1d array of size |X | initialized to −1
5: for ∀scytree′ ∈ L[dre] do
6: if prune_recursion(scytree′, F , µ , ε , minC) then
7: GPU-INSCY(scytree′,dre +1,X ,d,r,F,µ,ε,minC, R)
8: if prune_redundancy(scytree′, r, R) then
9: L′← L′∪{(scytree′,C)}

10: R← R∪GPU_clustering(L′,X ,F,µ,ε)
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SCY-tree on the GPU

The SCY-tree representation and the associated operations are not very suited for the
GPU. Section 8.4 describes how to represent the SCY-tree in a GPU friendly fashion
and Section 8.4 describes how to perform the restrict and merge operations in parallel.

Representing the SCY-tree on the GPU

Handling memory on the GPU is more restrictive than on the CPU, and allocating
memory can only be done from the CPU. Furthermore, it is expensive to alternate
between calling kernels, transferring data, and allocating memory. Therefore, we
prefer to allocate memory and transfer data as few times as possible. GPU memory is
loaded one block at a time to reduce latency, implying that data used close together in
time should be placed close together in memory. If the data we use is not placed in
the same block, we get cache misses, i.e., not using the loaded data, which we would
like to reduce. For ease of reference, we call the GPU friendly representation of the
SCY-tree GPU-SCY-tree. A way to represent tree structures on the CPU is to create
an object for each node with pointers to its children, parent, and other values in the
tree. This structure is very flexible and allows adding nodes on the fly. However, this
does not fit well with the restrictions on the GPU.

Remember, all nodes for a particular dimension are placed on the same layer in
the SCY-tree. These layers are indexed by j starting with j = −1 for the root and
incrementing toward the leaf layer j = ndims−1, implying that lower indices are above
the higher indices in the SCY-tree. In Section 8.4, we describe how we handle all
nodes on the same layer simultaneously, and we would therefore like to place these
nodes close together in memory. The same is the case for points contained in the tree.

Instead of representing nodes as objects, we choose to represent the GPU-SCY-
tree as arrays, with an entry for each node. Each array represents the kind of pointer
or values that a node contains. In the arrays, we locate nodes on the same layer in the
SCY-tree next to each other and order the layers by their index j. In this way, data for
nodes on the same layer is placed close together in memory, making it more likely
to avoid cache-misses. We organize points using the same reasoning. To represent
the GPU-SCY-tree, we use a total of eight arrays with one entry per node, point, or
dimension. An example is given in Figure 8.3. Besides the arrays we also keep count
of the number of nodes nnodes, number of points npts, number of cells ncells, number
of dimensions in the SCY-tree ndims, and number of restricted dimensions nr_dims.

The nodes are represented using three arrays: the parent pointer pa ∈ Nnnodes , the
cell number ce ∈ Nnnodes , and the count of points co ∈ Nnnodes . Notice that we do not
keep pointers to children, see Section 8.4 for reasoning. To access each layer j we
have an array with the starting index of each layer la ∈ Nndims and an array with the
dimensions that the layers represent dims ∈ Nndims . We furthermore keep an array
of the restricted dimensions r_dims ∈ Nnr_dims , however, for the GPU-SCY-tree in
Figure 8.3 this is empty. To keep track of the points in the GPU-SCY-tree, we have
two arrays with an entry for each point. One keeps track of the points’ index in the
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Figure 8.3: GPU-SCY-tree for SCY-tree in Figure 8.2.

dataset po ∈ Nnpts , and the other keeps track of which leaf-node each point is placed
in pl ∈ Nnpts .

Restrict and merge on the GPU

When parallelizing for the GPU, we identify: (i) ways to reorder independent tasks
that can be performed in parallel, (ii) similar tasks that can be performed by a warp,
and (iii) ways to allocate memory as few times as possible. Restrict and merge for a
SCY-tree are sequential operations where we look at one node at a time, check if it
should be included, and copy all information to the temporary or final result. Running
this in parallel on the GPU requires a substantial restructuring due to two things: The
alternation between restrict and merge and a node’s inclusion being dependent on
the inclusion of either the parent or one of its children. As mentioned before, such a
dependency makes the process sequential, which is not suitable for the GPU.

In Section 8.4, we state that all final restricted SCY-trees can be computed first in
the recursion since the computation only requires the descriptors and the SCY-tree
parsed to the recursion. But to parallelize the restrict and merge operation, we need
several observations and restructuring that we now provide.

Allocating once. To allocate memory only once per restricted GPU-SCY-tree, we
first compute which nodes and points are included in the restricted SCY-trees. This
information is kept in two temporary binary arrays both initialized to 000. One for nodes
incl ∈ {000,111}ndims×ncells×nnodes with entries for each descriptor and node combination.
And one for points inclpts ∈ {000,111}ndims×ncells×npts with entries for each descriptor and
point combination. Here 000 and 111 represent false and true, respectively. In Figure 8.2,
we show the restriction for descriptor (1,0). In Figure 8.4 we show the same restriction
in GPU-SCY-tree representation, and the temporary arrays. Here the five included
nodes are marked with a 111 in incl. Knowing which nodes and points are included
allows us to compute the new indices of the nodes and points in the restricted SCY-
trees. We compute the indices fornodes and points using inclusive scan (cumulative
sum) of incl for each descriptor. The result is kept in idx ∈ Nndims×ncells×nnodes and
idxpts ∈ Nndims×ncells×npts . This is used to determine where each node is placed in the
resulting SCY-tree. E.g. in Figure 8.4, the last included node is placed at entry
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Figure 8.4: Restrict example before combining with merge.

4 = idx(18)−1. Furthermore, for each descriptor, we use the last index to allocate the
needed memory for the restricted SCY-trees. In Figure 8.4 we need to allocate space
for 5 = idx(|idx|−1) nodes. After allocating memory, we copy all included nodes
and points to the restricted SCY-trees. To copy, we need the new count of points in
the subtrees starting at each node n_co ∈ Nndims×ncells×nnodes which we compute along
side the inclusion of each node.

Restrict is independent. We observe that the restrict operation only requires
the SCY-tree parsed to the recursion and the descriptor it is restricting w.r.t.. Both
the descriptor and the SCY-tree are not changed during the recursion. Therefore, the
restrict operations of each recursion are completely independent of each other and
all other operations. Consequently, the final result does not depend on the order of
restriction, and we can parallelize the restrict operations over different thread blocks,
which allows us to utilize more cores.

Restrict - similar tasks and restructuring. INSCY restricts by identifying all
nodes matching a descriptor and then visiting upward and downward in the layers
of the SCY-tree from there. INSCY copies all nodes on the path to the root and the
subtree below the matching nodes to the new restricted SCY-tree. We take advantage
of the SCY-tree being a well-balanced tree with a layer for each dimension. Observe
that nodes on layers above the restricted dimension are included if any of its children
is included in the restricted SCY-tree. The nodes on layers below are included if
their parent is included. Because of the dependency w.r.t. inclusion between parents
and children, we have a dependency between layers where we need to compute
the inclusion of nodes up- and downwards in the GPU-SCY-tree starting from the
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restricted dimension. However, observe that computing the inclusion of each node
on a layer is independent of the other nodes on that layer. Using this observation, we
suggest computing the inclusion of nodes one layer at a time, making the computation
of node inclusion parallel over each node on a layer. Since we keep the ordering
between parents and children, we do not violate the dependency, and hence we
compute the same result as INSCY.

When computing the inclusion of nodes, we have four cases, where the com-
putation is different for each of them. One for nodes directly above the restricted
dimension, one for the nodes on the remaining layers above, one for nodes directly
below the restricted dimension, and one for the nodes on the remaining layers below.
We handle each of the cases in their own kernel, to avoid branch-divergence that
would lead to idle threads.

We compute the inclusion array incl in parallel with thread blocks for each
descriptor (dims( j),c) where j is the layer representing the restricted dimension and
c is the cell number. Within each block, we process sequentially over each layer j+ k
where − j ≤ k < ndims− j, starting from k = 0 and incrementing/decrementing from
there. For all nodes i on a given layer we parallelize using threads.

When we compute the inclusion array incl, we treat normal nodes and S-connector
nodes slightly differently. An S-connection is only used to enforce a merge along
the restricted dimension. Therefore, we discard the S-connector path starting at the
restricted dimension. Remember, we have an S-connection on the restricted dimension,
when an S-connector node i has a normal node as the parent:

is_S(i) := (co(i)< 0)∧ (co(pa(i))≥ 0). (8.1)

In Figure 8.3, node 10 represents an S-connection since it has a negative count and its
parent, node 4, has a positive count.

We can now use this when searching for nodes i matching the descriptor (dims( j),c).
A node i on layer j matches the descriptor (dims( j),c) if its cell number matches the
cell number of the descriptor ce(i) === c and it is not an S-connector node starting at
the restricted dimension ¬is_S(i):

s_incl( j, i,c) := (ce(i) === c)∧ (¬is_S(i)). (8.2)

In Figure 8.3, for descriptor (1, 0), node 6 should be treated as a match since it is in
dimension 1 and has cell number 0 and does not represent an S-connection. Node
10 also matches the descriptor, but it represents an S-connection, so it should not be
treated as a match.

We wish to compute inclusion for all nodes on the layers above the restricted
dimension. This requires us to look at each child of a given node. As the number of
children can vary from node to node, threads in the same warp would stay idle until
the other threads have visited all their children. We address this by parallelizing over
all children instead and letting the children mark if their parent is included. Observe
that now each thread only visits the current node and its parent, instead of a varying
number of children.
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Starting from layer j we compute inclusion for the nodes on layer j−1 just above
the restricted dimension dims( j). The parent pa(i) of a node i is marked as included
if the node i matches the descriptor s_incl( j, i,c):

∀0≤ j < ndims,0≤ c < ncells,

la( j)≤ i < la( j+1),s_incl( j, i,c) :

incl( j,c, pa(i)) := 111.

(8.3)

In Figure 8.4 node 2 is included since node 6 matches the descriptor.
Sequentially moving towards the root, we can now compute inclusion for nodes

on layer j− k where 2 ≤ k < j. The parent pa(i) is now included if the node i is
marked as included:

∀0≤ j < ndims,0≤ c < ncells,1≤ k < j−1,

la( j− k)≤ i < la( j− k+1), incl( j,c, i) :

incl( j,c, pa(i)) := 111.

(8.4)

In Figure 8.4 the root, node 0, is included since node 2 is included.
Similarly, we include nodes on the layer j+1 directly below the restricted dimen-

sion dims( j) if the parent matches the descriptor:

∀0≤ j < ndims,0≤ c < ncells, la( j+1)≤ i < la( j+2) :

incl( j,c, i) := s_incl( j, pa(i),c).
(8.5)

In Figure 8.4 node 14 is included as node 6 matches the descriptor.
Moving towards the leaves, we compute inclusion for nodes on layer j+ k where

2≤ k < ndims− j by checking if a node’s parent is marked as included:

∀0≤ j < ndims,0≤ c < ncells,2≤ k < ndims− j,

la( j+ k)≤ i < la( j+ k+1) :

incl( j,c, i) := incl( j,c, pa(i)).

(8.6)

After we have computed the inclusion of the nodes on the leaf layer, we can
compute which points are included. A point p is included if the leaf node where it is
located pl(p) is included:

∀0≤ j < ndims,0≤ c < ncells,0≤ p < npts :

inclpts( j,c, p) :=

{
incl( j,c, pl(p)) if j < ndims−1
ce(pl(p)) === c else

(8.7)

E.g. in Figure 8.4 point 1 is included since the leaf node 14 where the point is placed
is included. The computation is done in parallel over each descriptor as blocks and
each point p as threads. We handle the case of restricting the leaf layer by directly
checking if the placement node’s cell number matches the descriptor.
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Restrict and merge combined. INSCY alternates between restricting and merg-
ing as long as S-connections are found. The merge operation only merges restricted
SCY-trees that represent subspace regions within the same subspace. Therefore,
merges are independent between restricted dimensions in the same recursion. How-
ever, remember that the merge operation merges the newly restricted SCY-tree with
the previous merged SCY-tree. Instead of this sequential process, we devise a strategy
to perform merges and restrictions simultaneously. Implying that we avoid allocating
space for the temporary restricted and merged SCY-trees, and by that, save time.

Precomputing SCY-trees to merge. Observe that in INSCY, what makes the
merge process sequential, is that we do not know in advance which SCY-trees need to
be merged for a given descriptor. However, this only depends on the S-connections
along the restricted dimension. A merge is only necessary if there is an S-connection
between two cells on the restricted dimension. We suggest precomputing which
SCY-trees need to be merged for each descriptor in advance. First, check if there is
an S-connection for the given descriptor, then compute from which descriptor the
merging process should start. The first check for S-connections can be parallelized as
follows. We define S∈ {000,111}ndims×ncells , a table of whether there exists an S-connection
for a given descriptor. Each entry of S is initialized to 000 and updated in parallel over
each layer j as thread blocks and each node i as threads. The update entails writing 111
if the node i is the start of an S-connector path.

∀0≤ j < ndims, la( j)≤ i < la( j+1), is_S(i) :

S( j,cells(i)) := 111.
(8.8)

We use S to compute from which descriptor each merge sequence starts. This
information is saved in M ∈ Nndims×ncells , where each entry represents a descriptor. For
each entry, we compute which restricted SCY-trees should be merged, denoted by
the cell number c of the descriptor associated with the first SCY-tree in that merge
sequence. Remember that we start a new sequence of merges whenever there was
no S-connection from the previous cell S( j,c− 1). In other words, if there is an
S-connection between two cells, we continue the sequence with identifier M( j,c−1).
If not, we start a new sequence with the identifier c.

∀0≤ j < ndims,0≤ c < ncells :

M( j,c) :=

{
M( j,c−1) if (c > 0)∧S( j,c−1)
c else

(8.9)

Equation 8.9 is parallelized over layers j but remains sequential over cell numbers c
since we need to know the preceding entry M( j,c−1) to compute M( j,c).

The table with S-connections S and merge map M for the GPU-SCY-tree in Figure
8.3 are shown in Figure 8.5. S contains an S-connection in dimension 1, starting at
cell 0. Therefore, in M, a merge sequence starts at cell 0, continuing to cell 1.

Avoiding merge sequences. The merge map M allows us to avoid the merge
sequence and instead directly include nodes that would be in the final restricted SCY-
tree for a given descriptor. More concretely, when checking if a node i on the restricted
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Figure 8.5: Restrict after combining with merge.

dimensions d = dims( j) matches the descriptor, we instead look up the restricted
dimension and the current node’s cell number in the merge map M. We treat node i
as a match if M( j,ce(i)) matches the cell number c of the descriptor. This changes
Equation 8.2 into:

s_incl( j, i,c) := (M( j,ce(i)) === c)∧ (¬is_S(i)), (8.10)



70
CHAPTER 8. GPU-INSCY: A GPU-PARALLEL ALGORITHM AND TREE

STRUCTURE FOR EFFICIENT DENSITY-BASED SUBSPACE CLUSTERING

and Equation 8.7 into

∀0≤ j < ndims,0≤ c < ncells, p < npts :

inclpts( j,c, p) :=

{
incl( j,c, pl(p)) if j < ndims−1
M( j,c,ce(pl(p))) === c else

(8.11)

E.g. for descriptor (1, 0), we now also treat node 7 in Figure 8.3 and 8.5 as a match,
since cell 1 in dimension 1 has a merge sequence starting at cell number 0.

Since nodes on the restricted dimension are not included, nodes directly below
that dimension will become their grandparents’ children instead. This implies that
the grandparent can end up with multiple children with the same cell number. Nodes
with the same parent and cell number would have been merged in INSCY and must
also be merged in GPU-INSCY to ensure that INSCY and GPU-INSCY still compute
the same final restricted SCY-trees. However, INSCY merges these one by one and
GPU-INSCY merges them all simultaneously. In Figure 8.5, nodes 14 and 16 will
now both be children of node 2, and they have the same cell number, so they must be
merged.

Merging nodes can propagate the problem of children, with the same cell number,
down towards the leaves. We merge such nodes during our new restrict phase. We keep
track of nodes that need to be merged in the restricted SCY-trees by computing two
things: each node’s new parent n_pa ∈ Nndims×ncells×nnodes and the node’s new children
n_ch ∈ Nndims×ncells×nnodes×ncells×2. Examples of both arrays are shown in Figure 8.5.
All entries of n_pa and n_ch are initialized to −1. For each descriptor, n_pa holds
the new parents of all nodes. Likewise for n_ch, except that we make room for all
possible children by ncells× 2. A node can have two types of children: normal or
S-connector nodes. For both types, we can have a node for each cell. To look up the
type of a node we use:

S_idx(i) :=

{
000 if co(i)≥ 0
111 else

(8.12)

Merge representatives. When merging nodes in the SCY-tree, we pick one of the
nodes to be the representative, which is the node that will actually be included in the
final restricted SCY-tree. We will lookup the representative node rep( j,c, i) by

rep( j,c, i) := n_ch( j,c,n_pa( j,c, i),ce(i),S_idx(i)).

If a node should be represented in the final restricted SCY-tree we say that it is fused
into that SCY-tree. We call it fused if it is either merged or included in the SCY-tree.
If a node is merged into the SCY-tree, the count of points and children is added to the
representative node. In Figure 8.5, nodes 14 and 16 should be fused, but only node 16
is included as the representative.

We assign a new parent to all nodes that are fused into the final restricted SCY-tree.
This implies that iff n_pa has a value that is not −1, the associated node has been
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fused into the final restricted SCY-tree. Notice that we can use n_pa( j,c, i) ≥ 0 to
check if the parent has been fused instead of just checking if it has been included
incl( j,c, i).

When identifying the new parent of a node i, below the restricted dimension, we
look up which node the old parent has been merged into. This will be one of the
children of the new grandparent of node i, which is identified as the representative
node for the parent:

∀0≤ j < ndims,0≤ c < ncells,2≤ k < ndims− j,

la( j+ k)≤ i < la( j+ k+1),n_pa( j,c, pa(i))≥ 0 :

n_pa( j,c, i) := rep( j,c, pa(i)).

(8.13)

When computing the new parent for nodes just below the restricted dimension,
we need to skip the nodes on the restricted dimension, since the restricted layer is
removed from the result. However, for a node above the restricted dimension, there
are no changes. Therefore, no merge of nodes can occur, and we do not need to check
which child has been picked:

∀0≤ j < ndims,0≤ c < ncells,

la( j+1)≤ i < la( j+2),s_incl( j, pa(i),c) :

n_pa( j,c, i) := pa(pa(i)).

(8.14)

E.g., the parent of node 14 is node 6, and the parent of node 6 is node 2. Therefore,
the new parent of node 14 is node 2.

For all nodes above the restricted dimension, we do not change the child-parent
relationship, and they can be copied in parallel.

∀0≤ j < ndims,0≤ c < ncells,1≤ k < j,

la( j− k)≤ i < la( j− k+1), I( j,c, i) :

n_pa( j,c, i) := pa(i),

n_ch( j,c, pa(i),ce(i),S_idx(i)) := i.

(8.15)

Below the restricted dimension, we need to decide which of the merged nodes is
the representative. It is not important which of the nodes is picked, but all threads
involved in the merge must agree on just one node. We do this by letting each node i,
that is fused, write its id as the representative, i.e., the new child:

∀0≤ j < ndims,0≤ c < ncells,1≤ k < ndims− j,

la( j+ k)≤ i < la( j+ k+1),n_pa( j,c, i)≥ 0 :

rep( j,c, i) := i.

(8.16)

We synchronize such that all threads see the same node id, and only include that node
as the new child. E.g., in Figure 8.5 both node 14 and 16 would vote for themselves
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as the representative. In our example, node 16 was the last to write. Therefore, node
16 becomes the representative. This expands Equation 8.5 into:

∀0≤ j < ndims,0≤ c < ncells, la( j+1)≤ i < la( j+2) :

incl( j,c, i) := s_incl( j, pa(i),c)∧ (rep( j,c, i) === i),
(8.17)

and Equation 8.6 into:

∀0≤ j < ndims,0≤ c < ncells,2≤ k < ndims− j,

la( j+ k)≤ i < la( j+ k+1) :

incl( j,c, i) := (n_pa( j,c, i)≥ 0)∧ (rep( j,c, i) === i).

(8.18)

For a point, the placement can change since nodes are merged. Therefore, we
check if the node where the point is placed is fused into the final restricted SCY-tree.
This is the case if the node has been assigned a new parent. Equation 8.11 changes
into:

∀0≤ j < ndims,0≤ c < ncells, p < npts :

inclpts( j,c, p) :=

{
n_pa( j,c, pl(p))≥ 0 if j < ndims−1
M( j,c,ce(pl(p))) === c else

(8.19)

Accumulating count. Now that we know which nodes are fused into the SCY-tree,
we can accumulate the count of points in the subtree of each node i. For nodes on the
same layer, the entry in n_co might be incremented by different threads. Therefore, we
need to use atomic addition, implying that threads handling nodes on the same layer
must be in the same thread block. For the layer just above the restricted dimension,
we sum the old count of all children that are normal nodes and fused. If the parent is
included and an S-connector node, we set the count to −1:

∀0≤ j < ndims,0≤ c < ncells, la( j)≤ i < la( j+1),s_incl( j, i,c) :

n_co( j,c, pa(i)) :=

{
n_co( j,c, pa(i))+ co(i) if co(i)≥ 0
−1 if co(pa(i))< 0

(8.20)

For the nodes on the remaining layers above the restricted dimension, we iteratively
sum the new count of points of the children:

∀0≤ j < ndims,0≤ c < ncells,1≤ k < j−1,

la( j− k)≤ i < la( j− k+1), incl( j,c, i) :

n_co( j,c,n_pa( j,c, i)) :=

+

{
n_co( j,c, pa(i))+n_co( j,c, i) if co(i)≥ 0
−1 if co(pa(i))< 0

(8.21)
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For all layers below the restricted dimension, the new count is a sum of the old counts
of all fused nodes:

∀0≤ j < ndims,0≤ c < ncells,1≤ k < ndims− j,

la( j+ k)≤ i < la( j+ k+1),n_pa(i)≥ 0 :

n_co( j,c,rep( j,c, i)) :=

{
−1 if co(i)< 0
n_co( j,c,rep( j,c, i))+ co(i) else

(8.22)

Overview of restrict and merge operations. To summarize, the restricting and
merging for all descriptors is done by

• Initialization: Each entry of incl, inclpts, idx, idxpts, and n_co is initialized to 0.
Each entry of n_ch and n_pa is initialized to −1.

• Step 1: Compute for which descriptors the associated SCY-trees will be merged
using two kernels; one that checks for each descriptor if there is an S-connection,
using Equation 8.8, and one that uses this information to compute which SCY-
trees will be merged, using Equation 8.9.

• Step 2: Compute which nodes are included in the final restricted and merged
SCY-trees, and accumulate the count of points in the subtrees. We compute the
inclusion in the restriction using five kernels. First, directly above the restricted
dimension we use Equations 8.3, 8.15, and 8.20, second, for the remaining
layers above we use Equations 8.4, 8.15, and 8.21, third, directly below we
use Equations 8.17, 8.14, 8.16, and 8.22, fourth, for the remainder below we
use Equations 8.18, 8.13, 8.16, and 8.22, and at last, we compute inclusion of
points by checking if the leaf-node where the point is placed is included using
Equation 8.19.

• Step 3: We now know which nodes and points are included in the final restricted
SCY-trees. We do an inclusive scan and decrement each entry with 1 to compute
the new indices for nodes idx and points idxpts. This is also used to allocate the
arrays for all final restricted SCY-trees.

• Step 4: All needed information has been precomputed, and we now copy all
nodes, points, dimensions, and restricted dimensions to the final restricted
SCY-trees. Each copy is independent and can be done completely in parallel.

Density-based clustering on the GPU

In this section, we discuss how to find the subspace clusters for all points in each
SCY-tree. For each subspace region, the clustering process of INSCY is similar
to that of DBSCAN [29]. The main difference is that INSCY supports different
density measures and that clustering is done in a subspace projection. DBSCAN,
and other density-based clustering methods, find clusters by expanding chains of
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density-connected points. This is a sequential process that we would like to replace
with a parallelized process.

As discussed in related work, G-DBSCAN [7] is a competitive parallelization of
full-space DBSCAN with rectangle kernel for density assessment. To support INSCY
subspace clustering and further improve runtime performance, we introduce three
major algorithmic solutions: supporting a different unbiased, i.e., subspace-dependent
density-measure, reduced neighborhood searches, and expanding several clusters at
once.

Precomputing the neighborhoods. To compute the neighborhood without al-
locating worst-case sizes, G-DBSCAN first computes the neighborhoods’ size, then
allocates space, and at last populates the neighborhoods with the neighboring points.
For GPU-INSCY, the neighborhood of each point in all SCY-trees can be computed
independently of other points and can therefore be computed in parallel over different
thread blocks.

GPU-INSCY additionally takes advantage of already having computed the neigh-
borhoods in the lower-dimensional subspace projections of the current subspace.
Since adding a dimension to a subspace only increases the distance between points,
previous neighborhoods can be used to bound the search for neighbors effectively. We
demonstrate that this is an efficient strategy in the experiments, see Section 8.5.

Collecting the clusters. Using the precomputed neighborhoods, G-DBSCAN
proceeds as follows. While there are still unclustered points, pick a random point to
expand a cluster from. While that cluster is still being expanded, look at all points in
parallel. If a point has just been added to the cluster, add its neighbors that have not yet
been clustered to the current cluster. Since G-DBSCAN run in parallel for all points,
but only a few points actually expand a single cluster each iteration, many threads
are left idle. We suggest instead that a point adds itself to a cluster. Furthermore, we
expand all clusters simultaneously for each point p in parallel as threads and over
each descriptor in parallel as blocks. We precompute for each point if it is dense
and only perform the following for dense points. For each descriptor, let C ∈ Nnpts

be clustering labels for each point p in the SCY-tree associated with that descriptor.
Start by assigning all points to a singleton cluster, letting the cluster id be the point id,
C(p) := p. While any cluster is still being expanded, look at all points in parallel. If
the point p can reach a cluster with a lower cluster-id through its neighborhood, add
the current point to that cluster C(p) := minq∈Nε (p)∪{p}C(q). Between each iteration,
we synchronize such that all threads know if any cluster has been expanded. For
each iteration we check for all points if they can be expanded, thus we ensure that all
density connected clusters have been found.

Clustering of each subspace region (SCY-tree) is independent of each other since
the subspace regions are not S-connected, meaning that no density-connected clusters
can span multiple subspace regions. Therefore, since no communication is needed, we
can compute the clustering in parallel for each SCY-tree using different thread blocks.
However, since we want to perform all clusterings in parallel and each SCY-tree must
have been pruned first, we can only perform clusterings in parallel at the end.
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Pruning on the GPU

As previously mentioned, we parallelize both pruning phases. In the interest of space,
we keep the discussion brief as it follows the same approach as for restricting and
merging the GPU-SCY-trees.

When pruning the recursion, we compute in parallel for each point if it is weak-
dense. If it is not, mark it as not-included and propagate the count up in the SCY-tree
layer by layer. We also parallelize the propagation over all nodes on a layer. If the
count in the root is below minC, then we do not continue with the recursion for this
SCY-tree.

Pruning for redundancy is done as follows. For each superspace of the current
subspace, we execute three kernels: Find the size of each cluster, find all clusters
that overlap with points in the current SCY-tree, and find the smallest cluster that
overlaps with the points in the current SCY-tree. Update the largest smallest cluster
max_min_cluster that overlaps with the current SCY-tree. If the number of points in
the SCY-tree scaled by the parameter r is smaller than max_min_cluster, we do not
perform clustering for this SCY-tree because it can only contain redundant clusters.

Trading off speed for memory usage

Each recursive call of GPU-INSCY is parallelized over all descriptors simultaneously.
This requires that we keep all final restricted SCY-trees, neighborhoods, and clusters
in memory for all descriptors. However, memory on the GPU is limited, putting a
bound on how large inputs we can process in parallel. There is, therefore, a natural
trade-off between memory usage and how many descriptors we efficiently parallelize
over simultaneously. To support efficient processing of larger inputs, we devise a
version of GPU-INSCY called GPU-INSCY-memory that iterates over subsets of
descriptors that we then parallelize over. We study this trade-off experimentally in
Section 8.5.

8.5 Experiments

Experimental setup

We conduct experiments for comparison of GPU-INSCY with INSCY on synthetic
and on real-world data, and study impact of parameters on a workstation with Intel
Core i7-9750HF CPU 2.60GHz × 12 cores, 16 GB RAM, GeForce GTX 1660 TI
6 GB dedicated RAM. The large scale experiments in Section 5.4 are executed on
NVIDIA TITAN V 12 GB dedicated RAM, Intel Core E5-2687W 3.100GHz × 10
cores, 400 GB RAM.

We use a search-tree for efficient neighborhood search in INSCY, which provides a
large speedup and makes it a fairer comparison. We have experimentally validated that
GPU-INSCY and INSCY produce identical subspace clusterings. Plots and further
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details have been omitted due to the space limit. We provide our source code at:
https://github.com/jakobrj/GPU_INSCY.

Comparison with INSCY.

For subspace clustering, the dimensionality and size of the dataset are dominating fac-
tors regarding runtime. Especially dimensionality since, as the number of dimensions
increases, the number of possible subspaces increases exponentially.

To compare INSCY and GPU-INSCY and the impact of input data, we use the
data generator provided by [1] to generate synthetic datasets with dense clusters in
arbitrary subspaces that may overlap and have a small percentage of noise. As in [10],
we generate different datasets with four hidden subspace clusters. All runtimes are
averages of three runs on datasets with the same generator settings. All dataset have
been min/max-normalized. The default parameters for INSCY and GPU-INSCY in
these experiments are F = 1, R = 1,µ = 8, ε = 0.01, ncells = 4, and minC is set to 5%
of the data points.

To analyze components of our algorithm, we also test GPU-INSCY* and GPU-
INSCY-memory. GPU-INSCY* is a version of GPU-INSCY that does not bound the
neighborhood search, so that we can study the effect of bounding the neighborhood
search. GPU-INSCY-memory is described in Section 8.4. For our experiments we
group the descriptors by the dimensions such that each iteration of the recursions is
only parallel over the cells.

Comparison of INSCY and GPU-INSCY. In Figure 8.6a, the running time for
INSCY is decent for lower dimensions but increases rapidly for higher dimensions.
GPU-INSCY reduces the running time to a point where it is faster to find subspace
clusters for 25 dimensions using GPU-INSCY than finding subspace clusters for two
dimensions using INSCY. In fact, in Figure 8.6c, the speedup of GPU-INSCY relative
to INSCY keeps increasing. For 30 dimensions we achieve a factor of speedup of
more than 2000×. A similar effect is observed for increasing the number of points. In
Figure 8.6b, INSCYs runtime again increases faster than for GPU-INSCY. In Figure
8.6d, we see that the speedup becomes a factor of several thousand. This speedup is
much higher than expected for the relatively low number of 1536 cores on our GPU.

Comparison of versions of GPU-INSCY. As mentioned in Section 8.4, we
attribute this dramatic speedup to our bounding of the neighborhood searches. This
effect is also clear in Figure 8.6c and 8.6d, where we see that GPU-INSCY* achieves
a 500-1000× speedup, corresponding to a good use of the cores, and GPU-INSCY
achieves a substantially larger speedup of up to 14’000× obtained by our improved
neighborhood search. GPU-INSCY-memory allows us to run on larger datasets, with
only a slight reduction of factor 2 in speedup, which is a reasonable trade-off.

Real world datasets

We also demonstrate GPU-INSCY speedups for real-world datasets. We report
runtimes on the three datasets (glass, vowel, pendigits) [60] also studied in [10, 11].

https://github.com/jakobrj/GPU_INSCY
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Figure 8.6: Scalability in size and dimensionality

The glass dataset Xglass ∈ R214×9, vowel Xvowel ∈ R990×10, and pendigits Xpendigits ∈
R7494×16. Furthermore, we also evaluate on a more sizable higher dimensional real
world data set, part of the SkyServer dataset[76] that contains measurements of objects
in the sky, e.g., stars and galaxies. We select three different areas of size 0.5×0.5,
1×1, and 1×2, measured in spherical coordinates (RA/Dec): Xsky(0.5×0.5) ∈ R7253×17,
Xsky(1×1) ∈ R29627×17, and Xsky(1×2) ∈ R59285×17. Experiments are aborted if they run
for more than 24 hours, as INSCY does for larger setups. In Figure 8.7, we see that
we obtain high speedups on all datasets, but much higher for larger datasets up to
15′000× speedup.

Effect of parameters

In this section, we study the effect of parameters for the density criterion, ε,µ,F and
the model parameter ncells.

In particular, the parameters for the density criterion are expected to impact the
running time. Especially the neighborhood radius ε is interesting since GPU-INSCY
uses a strategy for reducing the neighborhood search that INSCY does not employ.
The bigger the part of the subspace region that the neighborhood radius covers, the
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Figure 8.7: Real world data; INSCY aborted after 24 hours

less we save by reducing the search area for the neighborhoods. Therefore, we expect
that GPU-INSCY will obtain the greatest speedup for smaller values of ε . In Figure
8.8a, we study the range of ε between 0 and 0.02, and see that this is the case, but that
the speedup remains large for the entire range.

The minimum number of points in the neighborhood µ and density threshold F
only affect the number of points that are dense and weak-dense. The fewer points that
are dense or weak-dense, the fewer points INSCY and GPU-INSCY need to process.
As this is the same fraction of points for both INSCY and GPU-INSCY, we, therefore,
expect to see a similar reduction in time for both algorithms. For µ , we study the
range between 2 and 16, as this parameter is intended as a cut-off for avoiding tiny
subspace clusters in very high-dimensional subspace projections (called pseudodense
in INSCY). The factor F that governs the extent to which expected density is exceeded
is evaluated in the range between 0.5 and 2.5. A value of 0.5 implies that we only
expect a point to be half as dense as the expected density, which is a very low criterion,
and 2.5 is more than twice the expected density, which is rather high. In Figure 8.8b
and 8.8c, we see that the speedup for the density parameters remains stable for both
criteria. As expected, we see that the running time decreases equally for both INSCY
and GPU-INSCY as µ increases.

The parameter number of cells ncells does not change the result, but only how
we partition the subspace into cells and regions. We can, therefore, pick whichever
number of cells INSCY or GPU-INSCY perform the best at. In Figure 8.8d, we study
a range between 2 and 10 cells. Here both INSCY and GPU-INSCY perform best at a
lower number of cells, especially GPU-INSCY.
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Figure 8.8: Runtimes for different parameter values

Scalability and different distributions

We evaluate scalability and different data distributions for GPU-INSCY alone. The
running time of INSCY quickly becomes too high, e.g., more than 10 hours for 8000
points and 15 dimensions, which makes experiments for large inputs infeasible. In
this section, we use GPU-INSCY-memory.

To test various distributions, we use the generator provided by [12], but modify
it to generate clusters in random subspaces and not just the first k dimensions. The
default settings used for the dataset generator are 64‘000 points with 4000 points for
each cluster, except 1%, which is uniformly distributed noise. The dataset values
range from −100 to 100, and the full space consists of 15 dimensions. Each cluster
is normally distributed with a standard deviation of 0.3 in a random 3-dimensional
subspace. All datasets have been min/max-normalized. The default parameters for
GPU-INSCY in these experiments are F = 0.1, R = 1, µ = 1, ε = 0.0003, ncells = 4,
and minC = 500 points.

Scalability. Figure 8.9a shows runtimes with increasing dataset size |X | up to
1‘024‘000. The figure shows that GPU-INSCY performs subspace clustering on
1‘024‘000 points in less that 20 minutes. We also run experiments for increasing
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dimensionality |D| up to 50, as shown in Figure 8.9b. GPU-INSCY can perform
subspace clustering in 50 dimensions (and on 64‘000 points) in less than 6 minutes.

Data distribution. We evaluate performance on data with different distributions
using the same setting as for scalability. In Figure 8.9c, we increase the number of
clusters, keeping cluster distribution (standard deviation) and total number of points
fixed. As we can see, large numbers of clusters further reduce the runtime of GPU-
INSCY, as it finds fewer points in each neighborhood when the number of points
per cluster decreases. In Figure 8.9d, we increase the spread of clusters (standard
deviation). Again, the runtime of GPU-INSCY further improves, as neighborhoods
are again less populated. Finally, we conduct an experiment with stable density. As
the number of clusters is doubled, we increase cluster density accordingly by halving
standard deviation. As Figure 8.9e confirms, similar density results in stable runtime
when scaling number of clusters.

To summarize, the trend is that a lower density implies fewer points in each
neighborhood and, therefore, a lower runtime. This means that GPU-INSCY scales
particularly well for large numbers of clusters and clusters that are spread.

Overall, GPU-INSCY outperforms INSCY by two-four orders of magnitude with
respect to runtimes for all tested settings. Even on our small GPU, we measure the
running time in seconds instead of hours for smaller datasets (< 10‘000 points and 15
dimensions) and minutes instead of days for larger datasets.

8.6 Conclusion

In this paper, we propose GPU-INSCY, a novel GPU-parallel algorithm for dimensionality-
unbiased density-based subspace clustering, following INSCY. GPU-INSCY outper-
forms INSCY by several orders of magnitude. To achieve this, we utilize GPU cores
by restructuring both the algorithmic processing and the data structure SCY-tree used
in INSCY to fit the GPU computational model. Furthermore, GPU-INSCY proposes
a further reduction of the time spent on neighborhood searches. Our experiments
show that GPU-INSCY scales well w.r.t. dimensionality and size of the dataset, and
compared to INSCY, the gap even continues to grow with the scale of data.
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Chapter 9

GPU-FAST-PROCLUS: A Fast
GPU-parallelized Approach to
Projected Clustering

Abstract

Projected and subspace clustering aim to find groups of similar objects
within a subspace of the full-dimensional space. Where subspace clustering
tries to identify clusters in all possible subspaces, projected clustering assigns
each point to a single cluster within one projected subspace, resulting in a much
smaller result set. PROCLUS is an adaptation of the k-medoids clustering
algorithm, CLARANS, to projected clustering. Even though PROCLUS is
the first projected clustering algorithm, it is still competitive in comparative
empirical studies.

PROCLUS is, however, still too slow for large-scale data or real-time
interaction when used in information retrieval processes. Therefore, we propose
novel algorithmic strategies to reduce computations and exploit the massive
parallelism offered by modern graphical processing units (GPUs). To take
advantage of their high degree of parallelism, standard sequential algorithms
need to be significantly restructured. We therefore also propose a novel GPU-
parallelized algorithm, GPU-FAST-PROCLUS, that takes advantage of the
computational power of modern GPUs.

We provide experimental studies that demonstrate the benefit of our pro-
posed strategies and GPU-parallelizations. In this experimental evaluation, we
obtain 3 orders of magnitude speedup compared to PROCLUS.

9.1 Introduction

Clustering, the task of grouping similar objects, is an often employed data mining task,
e.g., for finding groups of customers that exhibit similar traits. However, clustering
within the full-dimensional space becomes meaningless for higher-dimensional data
as distances become increasingly similar [14]. This implies that clusters might only

83
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exist within subspace projections of the full-dimensional space, e.g., for a group of
customers, a trait like height might not be important for the grouping. The discovery
of such clusters can be made by subspace clustering [6, 43], which finds clusters that
exist within all possible subspaces. Projected clustering [4], like subspace clustering,
aims to find clusters within a subspace of the full-dimensional space but only reports
disjoint clusters, each in one subspace projection. By that, projected clustering reduces
the size of the result set and makes it easier to understand for the user.

The first projected clustering algorithm is PROCLUS [4], an adaptation of the
K-medoids approach, CLARANS [61], to find clusters in projected subspaces. Today,
PROCLUS is still one of the fastest subspace or projected clustering algorithms while
remaining competitive in evaluations [58]. However, it still takes up to several minutes
to perform PROCLUS on small datasets of just a few thousand data points [4, 58].

Data mining is usually part of information retrieval and data science processes.
A successful process produces the information for a task quickly [19]. For real-
time interaction, this means executing data analysis within 100ms [74]. We propose
algorithmic strategies to make PROCLUS fast enough for real-time interaction on even
a million data points. This includes strategies to reduce computations and to utilize
modern multi-core hardware. Furthermore, we address the challenge of determining
the right set of parameters for a clustering algorithm, and leverage the fact that we
can reuse partial results between parameter settings to provide even higher speedups
when computing several PROCLUS clusterings with different parameter settings.

Modern GPUs with their thousands of cores provide high computational through-
put. However, this throughput comes with a vastly different computational model.
Since PROCLUS is developed for a single-core model, a novel algorithmic approach
must be taken for it to benefit from the computational power offered by GPUs.

Our contributions include:

• Algorithmic strategies to reduce the number of computations by reusing dis-
tances and partial results between iterations and parameter settings, as well as
by an alternative trade-off between speed and space.

• GPU-parallelized versions of PROCLUS and of our proposed algorithmic
strategies.

• An experimental evaluation of PROCLUS and our proposed strategies showing
3 orders of magnitude speedup across parameters and data distributions.

9.2 Background

We provide important notations in Table 9.1. |A| denotes the size of a set A, ||a||
is the absolute value of a scalar a, ||p||1 is the L1-norm of a point p, and ||p||2 is
the L2-norm. The norm in subspace projection Di is denoted using a superscript,
e.g., ||p−q||Di

1 . PROCLUS uses Manhattan distance ||p−q||1, Manhattan segmental
distance ||p−q||Di

1 /|Di|, and Euclidean distance ||p−q||2.
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We use subscript to index matrices, sets, lists, and points, e.g., Datap, j refers to
dimension j of data point p. Superscript is used to refer to a version of a matrix, a set,
or a list at a specific iteration, e.g., Ht is H in the current iteration t, Ht−1 is H in the
previous iteration.

We use← for assignment and === for equality. For simplicity, we use the index
of point p as the actual data point Datap, and vice versa. E.g. when computing a
distance between point p and medoid mi we write Distmi,p← ||p−mi||2 as shorthand
for Distmi,p← ||Datap−Datami ||2.

PROCLUS

We briefly describe PROCLUS, details are found in [4]. PROCLUS is an adaptation
of the k-medoids algorithm, CLARANS [61], to projected clustering. Given input
Data ∈ Rn×d a d-dimensional dataset with n points, the number of clusters k, the
average number of dimensions l, two scalars A,B, minimum deviation minDev, and
number of rounds without improvement itrPat, PROCLUS proceeds in three phases
initialization, iterative, and refinement. PROCLUS outputs k disjoint clusters in
different subspace projections.

Initialization phase. First, greedily pick potential medoids M from a subset Data′

of the dataset Data. The set of points Data′ is a random sample of size A× k from
Data. From Data′ PROCLUS greedily selects B× k points one by one, as the one
with the largest Euclidean distance to all other points in M, see Algorithm 7 line 2-3.

Iterative phase. PROCLUS iteratively optimizes the set of medoids MCur ⊂M
of size k. This is done through multiple sub-phases, see lines 5-14. First, compute
the set of points Li within a sphere centered at each medoid mi. Second, find the
optimal sets of dimensions for the sets of points L. Third, assign points to the closest
medoid within the selected subspace projection for each medoid. Fourth, evaluate the
clustering. If the cost of the clustering is smaller than the best found so far, keep the
current set of medoids MCur as the best set of medoids MBest and the corresponding
clustering as CBest. Compute a new MCur for the next iteration by replacing the bad
medoids in MBest. The bad medoids MBad are the medoids with a cluster size smaller
than |Data|/k×minDev or if no such exists, the medoid with the smallest cluster. The
iterative phase stops when no new MBest has been found for itrPat iterations.

Refinement phase. The last phase refines the clusters found so far. First, let
L←CBest instead of the spheres and use L to find the best set of dimensions for the
medoids. Within these dimensions, assign points to the closest medoid. At last, define
a sphere for each medoid mi with radius ∆i←min j ̸=i ||mi−m j||Di/Di in subspace Di.
A point is an outlier if it lies outside the sphere for all medoids.

ComputeL. Compute the set of points Li close to each medoid mi ∈MCur. For
each medoid mi, let δi← min j!=i ||m j−mi||2 be the distance to the nearest medoid
m j ∈ MCur and Li ← {p ∈ Data| ||p−mi||2 ≤ δi} be the set of points within the
sphere centered at mi with radius δi.

FindDimensions. Find the best subspace projections. Compute the average
distances Xi, j from all points in Li to mi along dimensions j. Next, compute the
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Table 9.1: Notation

Data ∈ Rn×d Dataset with n points and d dimensions
k Number of clusters
l Average number of dimensions
itrPat Max number of iterations w/o changes
minDev Threshold to identify bad medoids
A Constant to determine size of Data′

B Constant to determine size of M
itr Iteration counter
t, t ′ The current and previous usage
p Point in Data
Data′ ⊆ Data Random subset of full dataset
M ⊂ Data′ Greedily selected subset of Data′

MCur ⊂M Set of current medoids selected from M
MBest ⊂M Set of best medoids
MBad ⊂MCur Set of replaced medoids in MCur
mi ∈MCur i’th medoid
Dist Distance matrix
δi Distance to the closest medoid
Li ⊆ Data Set of points w/ radius δi of medoid mi

∆Li ⊆ Li Change in set Li between iterations
λi Indicates increase or decrease in ∆i

MIdxi The index of mi in M
DistFound Indicates the distances computed
Hi, j Sum of dist. of p ∈ Li to mi in dim. j
Xi, j Avg. dist. to medoid mi in dim. j
Yi Average distance to medoid mi

σi Standard deviation of Xi, j

Zi j Measure of spread for Ci in dim. j
Di ⊆ {1, . . . ,d} i’th subspace projection
Ci ⊆ Data i’th cluster
CBest Best clustering so far
µi Centroid of cluster Ci

wi Cost of a cluster i
cost Weighted cost of the full clustering
costBest Lowest cost found so far
∆i Dist. to closest medoid in subspace Di
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Algorithm 7 PROCLUS(Data,A,B,k, l, itrPat,minDev)

1: // Initialization Phase
2: Data′← random sample from Data of size A× k
3: M← Greedy(Data′,A,B,k)
4: // Iterative Phase
5: while itr < itrPat do
6: L← ComputeL(Data,MCur)
7: D← FindDimensions(Data,MCur,L,k, l)
8: C← AssignPoints(Data,MCur,D)
9: cost← EvaluateClusters(Data,C,D,k)

10: itr← itr+1
11: if cost < costBest then
12: itr← 0, costBest← cost, MBest←MCur
13: MBad← ComputeBadMedoids(MBest,minDev)
14: Compute MCur by replacing the bad medoids in MBest with random points

from M
15: // Refinement Phase
16: L←CBest
17: D← FindDimensions(Data,L,MBest,d,k, l)
18: C← AssignPoints(Data,MBest,D)
19: C← RemoveOutliers(Data,C,MBest,D)
20: return C,D,M

average distances
Yi←

(
∑

d
j=1 Xi, j

)
/d for each medoid mi across all dimensions j, the standard deviation

σi←
√(

∑
d
j=1 Xi, j

)
/(d−1) for each medoid mi across all dimensions j, and a relative

measure of spread Zi, j← (Xi, j−Yi)/σi for each pair of dimension j and medoid mi.
At last, for each medoid mi pick the two dimensions with the smallest Zi, j, and

after that pick the dimensions j corresponding to the lowest Zi, j and add them to the
subspace Di until a total of k× l dimensions has been picked.

AssignPoints. Assign each point p to cluster Ci with smallest Manhattan segmen-
tal distance to medoid mi within the subspace projection Di.

EvaluateCluster. The cost of the clustering is the average Manhattan segmental
distance from centroid µi← ∑p∈Ci p/|Ci| of cluster Ci within subspace Di:

wi←
∑ j∈Di Vi, j

|Di|
,Vi, j←

∑p∈Ci ||p j−µi, j||
|Ci|

, (9.1)

cost← ∑
k
i |Ci|×wi

|Data| . (9.2)

Note that PROCLUS uses localized random search for the best set of medoids
and subspaces within a random subset of the data. This implies that PROCLUS
is non-deterministic, so results can differ with the same parameters and dataset if



88
CHAPTER 9. GPU-FAST-PROCLUS: A FAST GPU-PARALLELIZED

APPROACH TO PROJECTED CLUSTERING

the random seeds differ. Any of these results are equally correct according to the
PROCLUS algorithm.

9.3 FAST-PROCLUS

We observe that PROCLUS performs many similar computations that we exploit
when we devise parallel algorithmic strategies. Some of these computations are
not just similar but repeated between iteration and function calls. We propose two
strategies: (1) thorough analysis of distance computations and storing partial results
for re-use, (2) parallel algorithms for the GPU. To make a clear distinction between
the speedup gained by reducing computations performed, and the speedup gained by
parallelization, we describe our FAST-PROCLUS for the algorithmic improvements,
and in Section 9.4, we parallelize both PROCLUS and FAST-PROCLUS.

The result of PROCLUS depends on user-selected parameters, so the user usually
does multiple runs to find the best parameter setting. We propose a strategy that reuses
temporary results between iterations and parameter settings to reduce computations.
This includes a heuristic to reduce conversion time by reusing the best set of medoids
found for the previous parameter setting.

The iterative phase of PROCLUS has several steps with a O(n× k×d) running
time. These steps are the most time-consuming and, therefore, the focus for improve-
ment.

Compute distances to potential medoids only once. When computing the set of
points Li within the radius δi, PROCLUS computes the distances from each medoid mi

to each point p. These computations have a O(n× k×d) run-time and are, therefore,
one of the more expensive in PROCLUS.

For the medoids used in earlier iterations, the distances have already been com-
puted and do not change between iterations since the distance measure is the Euclidean
distance in full-dimensional space. Furthermore, PROCLUS only picks the current
medoids MCur from a small set of B× k potential medoids M where B should be a
small number. This implies that the reuse of medoids is likely. We, therefore, propose
to save the distances across iterations. For this purpose, we introduce a distance matrix
Dist ∈ RBk×n with all pairs of distances between medoids and points. This requires
O(B× k× n) space and is, therefore, a trade-off between running time and space.
For the cases where space is a limiting factor, we later propose an adaptation of this
strategy that reduces the memory used by a factor B, at the cost of a small increase in
running time.

The distance matrix Dist allows us to only compute the distances the first time
a medoid is used, and therefore reduce the computations in ComputeL. To keep
track of which distances have been computed, we maintain an indicator vector
DistFound ∈ {true, f alse}Bk that indicates if the distances to a medoid have been
computed. Furthermore, we introduce an index MIdxi to indicate which of the poten-
tial medoids the i’th medoid mi ∈MCur corresponds to from the potential medoids
M and the distance matrix Dist. For each iteration t we check DistFound to see if
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the distances from each mi to all points p has been computed, if not we compute the
distances DistMIdxi,p← ||p−mi||2 for all p. Afterward, we set DistFoundMIdxi← true
to indicate that the distances have been computed.

Introduce sum of distances to medoids as temporary result. As part of selecting
subspaces, we compute the average distances Xi, j to each medoid mi from all points
p ∈ Li along dimension j. We observe that it is often the case that the set Li only
changes for a fraction of the points between iterations since the potential medoids are
selected to be far apart. We denote the change in Li by ∆Li.

Theorem 9.3.1 (Computing the change ∆Li in Li between iterations). For medoid mi

and the set of points Li in the sphere centered at mi with radius δi, let:

∆Li←{p ∈ Data| δ t ′
i < ||p−mi||2 ≤ δ

t
i ∨

δ
t ′
i ≥ ||p−mi||2 > δ

t
i }.

(9.3)

Then ∆Li is the change in set Li between the current iteration t and the previous usage
t ′.

Proof. We have two cases, either the radius δi has increased, implying that δ t
i > δ t ′

i ,
or it has decreased, implying that δ t

i < δ t ′
i . In the first case, we can split the set Lt

i at
the current iteration t into two disjoint sets, the old set Lt ′

i at iteration t ′ union with the
change ∆Li:

Lt
i === {p ∈ Data| ||p−mi||2 ≤ δ

t
i }

=== {p ∈ Data| ||p−mi||2 ≤ δ
t ′
i }∪

{p ∈ Data| δ t ′
i < ||p−mi||2 ≤ δ

t
i }

=== Lt ′
i ∪{p ∈ Data| δ t ′

i < ||p−mi||2 ≤ δ
t
i ∨

δ
t ′
i ≥ ||p−mi||2 > δ

t
i }

=== Lt ′
i ∪∆Li.

(9.4)

And analogously for the decrease in Li.

To avoid recomputing the entire Xi, j, we propose to maintain a matrix Ht ′ ∈ RBk×d

with the sum of distances to each medoid mi to all points in Lt ′
i along dimension j

from the previous usage t ′:

Ht ′
MIdxi, j === ∑

p∈Lt′
i

||p j−mi j||. (9.5)

Theorem 9.3.2 (Computing H iteratively). For medoid mi ∈MCur, set Lt
i in radius

δ t
i at iteration t and change ∆Li since the previous usage t ′ we can split the sum of

distances Ht
MIdxi, j into two parts:

Ht
MIdxi, j← Ht ′

MIdxi, j +λi× ∑
p∈∆Li

||p j−mi j||, (9.6)

where λi is 1 if the sphere increases in size and −1 if it decreases.
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Proof. We again have two cases. Either the change is an increase or decrease. For
increase, using Theorem 9.3.1 and since Lt ′

i and ∆Li are disjoint, we have:

Ht
MIdxi, j === ∑

p∈Lt
i

||p j−mi j||=== ∑
p∈Lt′

i ∪∆Li

||p j−mi j||

=== ∑
p∈Lt′

i

||p j−mi j||+ ∑
p∈∆Li

||p j−mi j||.
(9.7)

Analogously for decrease.

We use Theorem 9.3.2 to update H and then compute the average distance Xi, j←
Ht

MIdxi, j/|Li| across dimension j from all points in Li to mi.
Only updating H with the change in Li requires that during ComputeL we do

not calculate the set Li, but instead the change ∆Li in points as in Theorem 9.3.1.
Notice that ∆Li can be computed in the same way as Li, the only difference being
the condition that we keep points between the current δ t

i and the previous δ t ′
i radius

of the set Li. To maintain radius δ t ′
i we must keep the previous radius for any

of the B× k potential medoids. Furthermore, we maintain the size of the set Li,
|Lt

MIdxi
| ← |Lt ′

MIdxi
|+λi×|∆Li|, for all potential medoids.

We can now update H between iterations instead of recomputing the sum of
distances for each iteration. This implies that we can reuse computations and reduce
the running time.

Multiple parameter settings

A drawback for most subspace and projected clustering algorithms, including PRO-
CLUS, is that the result depends on the selected parameters. In practice, these
algorithms are typically run multiple times with different parameters. For PROCLUS,
the important parameters are the number of clusters k and the average number of
dimensions l.

When running for multiple different parameter settings, PROCLUS performs
many similar computations. We observe that if we have the same potential medoids
M for all parameter settings, both the distance matrix Dist and the sum of distances H
can be reused. To achieve this, we only once greedily pick potential medoids for the
largest k and use this set M for all parameter settings. Having a constant |M|= B× k
picked from a set of size |S| = A× k corresponds to an increase in A = |S|/k and
B = |M|/k as k decreases. In other words, the first selection of A, B, and k impacts the
values for A and B in subsequent parameter settings for different k. Please note that A,
B, k, and l are only used to determine the size of M and S and do not otherwise impact
greedy picking, so the likelihood of picking a specific M for any given execution is
unchanged. We thus trade-off selection of A and B for speed. We implement both this
faster version reusing the computations saved in Dist, H, M, and S, as well as one that
follows the original PROCLUS sampling strategy, and study the speedup gained in
the experiments, Section 9.5.
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As an additional speedup option, we introduce a heuristic that reusing medoids
found to be good in one setting as initialization in other settings, as this may lead to
faster convergence. Therefore, instead of initializing each parameter setting with the
current medoids MCur as a random subset of the potential medoids M, we initialize
the current medoids as a random subset of the previous best medoids MBest. In the
experiments, Section 9.5, we study the speedup this initialization provides.

Trade-off between running time and space

We propose an adaptation of FAST-PROCLUS, called FAST*-PROCLUS, that reduces
the space complexity at the cost of a slight increase in running time. Instead of
saving the distance matrix Dist and the sum of distances H to all potential medoids,
which require O(B× k×n) and O(B× k×d) space, respectively, we only keep these
temporary results from the previous iteration t−1. This requires only O(k×n) space
but implies that we can only reuse the computations in Dist and H from iteration
t−1 instead of any earlier iteration t ′. However, it is often the case that few of the
current medoids are replaced, and we can, therefore, still reuse most of the computed
distances.

Since we no longer need to keep track of which of the potential medoids are in
use, we do not use the index MIdx. Instead, we use i ∈MBad to identify for which
of the medoids we need to recompute the distance matrix Dist and reset the previous
δ

t−1
i , size of Li and the sum of distances H before we compute ∆Li.

9.4 GPU-PROCLUS

Modern GPUs provide high computational power through thousands of cores at the
cost of a restrictive parallel computational model. This stands in contrast to the
sequential model of the CPU that most algorithms follow. Therefore, when developing
algorithms for the GPU, several properties must be considered. We use the term
parallel to denote parallel execution under the GPU’s computational model.

Programming the GPU is more like using vector registers, where the same op-
eration is performed on each element on a given execution cycle. This is known as
the Single Instruction Multiple Data (SIMD) model. GPUs similarly use a Single
Instruction Multiple Thread (SIMT) model where hundreds or thousands of threads
are executed at the same time.

On NVIDIA GPUs, instructions are grouped into vector instructions known
as warps, where 32 threads are scheduled together and share a program counter.
This implies that all cores in a warp must perform the same instruction at all times.
Furthermore, cores are grouped into streaming multiprocessors (SMs). The warps
are scheduled on a given SM. Warps on the same SM can share fast access L1-cache
associated with that SM and can also synchronize.

In the CUDA programming environment, the CPU program spawns functions,
known as kernels, onto the GPU. The functions spawn on invocation of a given
number of threads to be executed concurrently. These threads may be organized into
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blocks. All threads within a thread block are executed within the same SM. Threads
in different blocks cannot synchronize automatically, so computations performed
in different blocks should be independent to avoid a global synchronization. By
independent we mean computations that do not use the partial result of each other.
Data accessed by threads in different blocks must be located in global memory, which
is slower than the shared memory.

When multiple threads write to the same memory address, race conditions can
occur, where changes by one of them may be lost. To avoid such behavior, the GPU
provides atomic versions of increment, addition, maximum, etc. However, these are
more expensive and should be avoided, if possible.

In this paper, our algorithms are structured such that they may perform for-loops
in parallel as threads. This entails that each step of the for-loop iterations is performed
concurrently by different threads. We use a similar notation for thread blocks. If
the for-loop has more iterations than threads per thread block, each thread handles
multiple iterations.

GPU-friendly parallelization

PROCLUS has a long running time for larger datasets and thus is too slow for
interactive settings. We, therefore, propose an algorithm capable of utilizing the
computational power of the GPU to reduce the running time. We present GPU-
parallelized versions of PROCLUS, FAST*-PROCLUS, and FAST-PROCLUS, called
GPU-PROCLUS, GPU-FAST*-PROCLUS and GPU-FAST-PROCLUS.

In our GPU-parallelization approaches, we ensure a correct PROCLUS result by
only parallelizing independent computations, or else by synchronizing to ensure that
all threads within a block are at the same state. Furthermore, to avoid race conditions
between threads that compute part of a common result, we use atomic operations.
As mentioned above, PROCLUS is non-deterministic due to local randomization, so
results between runs may differ both for the GPU versions and the CPU versions
of PROCLUS, but all our results are fully correct with respect to the PROCLUS
definition.

Each of the sub-functions Greedy, ComputeL, FindDimensions, AssignPoints, and
EvaluateCluster has a high time complexity and will therefore be the focus of this
section.

To avoid costly memory transfers between the CPU and the GPU, all other
computations are also performed on the GPU. Each sub-function is formulated as a
separate algorithm for readability. However, since it is time-consuming to allocate
and free memory on the GPUs, we allocate all required memory at the beginning of
GPU-PROCLUS and reuse the same allocated memory for all of the iterations.

Greedy. In PROCLUS [4], the greedy selection of potential medoids repeatedly
selects the point that is furthest away from all other potential medoids. Algorithm 8
shows our GPU-parallelized version of the greedy function. At line 1-4 we first pick
a random point M1 in Data′ as part of M and in parallel we compute the Euclidean
distance Distp ← ||Mi− p||2 to all points p in Data′. Each distance computation
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is completely independent of others and can therefore be computed using different
thread blocks. To reduce the number of accesses to global memory, we compute the
maximal distance maxDist within the same kernel call, line 5. However, to guarantee
that the correct maximum maxDist is computed, we must ensure that all blocks have
finished before using the global maximum maxDist. We, therefore, need to check
which points have the largest distance in a separate kernel call at line 6-9.

Algorithm 8 Greedy(Data′,A,B,k)

1: Pick M1 at random from Data′.
2: maxDist← 0 // shared variable
3: for p ∈ Data′ - in parallel as threads and blocks do
4: Distp← ||Mi− p||2
5: maxDist←max(maxDist,Distp) // atomic
6: for i← 2, . . . ,Bk do
7: for p ∈ Data′ - in parallel as threads and blocks do
8: if maxDist === Distp then
9: Mi← p

10: maxDist← 0
11: for p ∈ Data′ - in parallel as threads and blocks do
12: Distp←min(Distp, ||Mi− p||2)
13: maxDist←max(maxDist,Distp) // atomic
14: return M

At line 6 to 13, we repeat this procedure until B× k potential medoids has been
picked. The only change is that we keep the smallest distance to any already picked
potential medoids from point p.

ComputeL. Computing the set of points Li for each medoid mi is done on the
GPU as in Algorithm 9. First, pre-compute the distances Disti,p between each medoid
mi and each point p. Each distance computation is completely independent and can
be performed completely in parallel, see line 1-3. Next, in parallel over each pair
of medoids mi,m j, find the distance δi from mi to the closest medoid m j′ , see line
4-7. For each medoid mi, we compute the set of points Li in the sphere with radius δi

centered at mi. This is done by checking if the distance to each point p is within δi.
To save time, we allocate memory for the worst-case size of Li and add points to

the first available location in the allocated array. Adding each point p to the set Li is
done using atomicInc to increment the location of points without race conditions, see
line 8-12.

FindDimensions. Finding the dimensions for the projected subspaces follows the
formula for the original PROCLUS closely. Each entry of X ,Y,σ ,Z can be computed
completely independently and therefore by different thread blocks. To avoid saving Y
and σ to global memory we combine the computation of Y , σ , and Z into one kernel
call. This reduces the running time substantially, but since these kernel calls are small
the impact on the overall running time is minor.
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Algorithm 9 ComputeL(Data,MCur)

1: for mi ∈MCur - in parallel as blocks do
2: for p ∈ Data - in parallel as threads and blocks do
3: Distmi,p← ||mi− p||2
4: for mi ∈MCur - in parallel as blocks do
5: for m j ∈MCur - in parallel as threads do
6: if mi ̸= m j then
7: δi←min(δi,Distmi,m j) // atomic
8: for mi ∈MCur - in parallel as blocks do
9: for p ∈ Data - in parallel as threads and blocks do

10: if Distmi,p ≤ δi then
11: l← increment(|Li|) // atomic
12: Li,l ← p
13: return L

Algorithm 10 FindDimensions(Data,MCur,L,k, l)

1: for mi ∈MCur - in parallel, as blocks do
2: for j← 1, ...,d - in parallel, as blocks do
3: sum← 0 // local variable
4: for p ∈ Li - in parallel, as threads do
5: sum← sum+ ||p j−mi, j||
6: Xi, j← Xi, j + sum/|Li| // atomic
7: for mi ∈MCur - in parallel, as blocks do
8: for j← 1, ...,d - in parallel, as threads do
9: Yi← Yi +Xi, j/d // atomic

10: σi← σi +(Xi, j−Yi)
2 // atomic

11: synchronize threads
12: σi←

√
σi/(d−1)

13: synchronize threads
14: Zi, j← (Xi, j−Yi)/σi

15: Pick the dimensions j with the two smallest Zi, j values for each medoids mi.
16: Pick next k× l−2× k smallest Zi, j, append associated dimensions j to subspace

of corresponding medoids mi

17: return D
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When computing Xi, j, we sum across a large number of points. To avoid race con-
ditions each addition to the global memory location must be performed by atomicAdd.
Instead of performing the expensive atomic operations for each point, we let each
thread compute a part of the sum locally. Afterward, each thread adds the local sum
atomically to Xi, j in the global memory. To compute the average, the local sum is
divided by |Li|. At last, Z is used to pick the subspaces D.

AssignPoints. Assigning each point p to the closest medoid mi is done by first
computing the distance Distp,mi from each point p to each medoid mi, which again can
be done completely in parallel. Remember that the distance measure used to assign
points is the Manhattan segmental distance in subspace Di, and we can therefore not
reuse the previously computed distances. Next, for each point p in parallel, we check
which medoid is closest and assign the point p to the corresponding cluster Ci. Both
steps are joined into one kernel to reduce the number of global memory accesses,
see Algorithm 11. Remember that accessing shared memory is faster than accessing
global memory, therefore, it has a large effect on the running time. We use atomicMin
to find the smallest distance to a medoid and synchronize to ensure that all medoids
have been checked before selecting the closest. This implies that we must compute
the distances from each point to all medoids in the same thread block. Adding the
points to set Ci is done the same way as for Li.

Algorithm 11 AssignPoints(Data,MCur,D)

1: for p ∈ Data - in parallel, as threads and blocks do
2: for mi ∈MCur - in parallel, as threads do
3: minDistp← ∞ // shared variable
4: Distp,mi ← ||p−mi||Di

1 /|Di| // local variable
5: minDistp←min(minDistp,Distp,mi) // atomic
6: synchronize threads
7: if minDistp === Distp,mi then
8: l← increment(|Ci|) // atomic
9: Ci,l ← p

10: return C

EvaluateCluster. The evaluation of the clustering is the average Manhattan
segmental distance to the centroid, not to the medoid as in previous sub-functions.
Therefore the first step is to compute the centroid of each cluster.

The formulation of the cost-function in Eq. 9.2 is separated into multiple steps
that each could be parallelized in its own kernel call; computing the mean µi, j of
each cluster, the average distance to the mean along each dimension Vi, j, the average
distance among the dimensions for each cluster wi, and finally the summed weighted
cost for the entire clustering. However, this would require saving temporary results
of each step to global memory, which is expensive to access. To avoid this, we
reformulate the cost-function into a sum of values that can be computed in parallel
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and where only the final cost must be written to global memory:

cost =
∑

k
i |Ci|×

∑ j∈Di

∑p∈Ci
||p j−µi, j ||
|Ci |

|Di|
|Data| (9.8)

=
k

∑
i=1

∑
j∈Di

∑
p∈Ci

||p j−µi, j||
|Di|× |Data| . (9.9)

Eq. 9.9 allows both the mean µi, j and cost to be computed in parallel using a
thread block for each pair of medoids mi and dimensions j and then distribute the
points among different threads within these thread blocks. Since this is the case,
we can combine the computation of both into one kernel call, and synchronize all
threads in each block to ensure that the computation of µi, j has finished before using
it. By this, we can avoid writing µi, j to global memory but instead keep it as a shared
variable. Writing to shared memory is much faster then writing to global memory and
therefore provides a large reduction in running time.

To reduce the number of atomic operations in Algorithm 12, we use a local
temporary variable that each thread can save its partial result to and then only perform
one atomic operation per thread at the very end. This strategy is used both to compute
the centroid µi and cost.

Algorithm 12 EvaluateCluster(Data,C,D,k)

1: for i← 1, . . . ,k - in parallel as blocks do
2: for j ∈ Di - in parallel as blocks do
3: µi, j← 0 // shared variable
4: tmp← 0 // local variable
5: synchronize threads
6: for p ∈Ci - in parallel as threads do
7: tmp← tmp+ p j

8: µi, j← µi, j + tmp/|Ci| // atomic
9: tmp← 0

10: synchronize threads
11: for p ∈Ci - in parallel as threads do
12: tmp← tmp+ ||p j−µi, j||
13: cost← cost + tmp/(|Di|× |Data|) // atomic
14: return cost

Updated and iterations. We also update the best clustering, the best subspace,
the best medoids, the current medoids, and the iteration counter for each iteration.
However, this part is not time-consuming and details are therefore omitted.

RemoveOutliers. To remove ourliers, we compute the smallest distance between
two medoids mi,m j, for each medoid mi in parallel as block and each m j using threads
within that block and use atomics to find the smallest distance ∆i. Then in parallel
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across all points, we check if it lies within the ∆i radius of any medoid mi, else, it is
reported as an outlier.

GPU-FAST-PROCLUS

The proposed strategies for reducing computations need modifications to fit the GPU.
The lookup in the distance matrix Dist and H is as for FAST-PROCLUS. However,
when computing the distances, in ComputeL, we must ensure that all threads have
checked the flag DistFoundMIdxi before marking it as computed.

Since we would like to utilize as many cores as possible, we distribute the distance
computations among multiple thread blocks. Instead of using community groups
to synchronize across thread blocks, we set the flag afterward in a separate kernel
call. Both λi and |Lt

i| are computed as in FAST-PROCLUS, but only one thread per
medoid mi needs to compute this. Similarly for FindDimensions, when computing
the average distance Xi, j, we must ensure that H is updated by all threads before
computing Xi, j← Hi, j/|Li|. Therefore, Xi, j is computed in a separate kernel call. The
rest of GPU-FAST-PROCLUS proceeds as GPU-PROCLUS.

9.5 Experiments

We perform real-world experiments on a workstation with Intel Core i7-9750HF
2.6GHz 12-cores, 16 GB RAM, and a GeForce GTX 1660 TI 6 GB dedicated RAM.
For the larger synthetic datasets, we move experiments to a workstation with an Intel
Core i9 10940X 3.3GHz 14-Core, 258 GB RAM, and a GeForce RTX 3090 with
24 GB dedicated RAM. All algorithms have been implemented in C++ or CUDA.
For repeatability, the source code is provided at: https://au-dis.github.io/
publications/GPU-FAST-PROCLUS/.

Multi-core CPU-version. Some of the strategies proposed for GPU-parallelization
are directly applicable to the CPU as well. We have therefore implemented multi-core
CPU versions using OpenMP1 to study the speedup of parallelization on the CPU vs.
the GPU.

Algorithm parameters. The default parameters in all experiments are k = 10,
l = 5, A = 100, B = 10, minDev = 0.7, and itrPat = 5.

CUDA kernel configurations. For the CUDA kernel configurations, the block
size of 1024 threads is used. If fewer threads are required per block, only the re-
quired number of threads are started. To reduce unnecessary synchronizations in
AssignPoints, Algorithm 11, 128 threads are used per block.

Synthetic data. For control of data distribution and size, we use the synthetic
dataset generator provided by [12]. However, we modify the generator as [39] to
generate clusters in any arbitrary subspace. The default parameters for the generated
data are 64,000 points with 15 dimensions, each dimension has values in the range

1https://www.openmp.org/

https://au-dis.github.io/publications/GPU-FAST-PROCLUS/
https://au-dis.github.io/publications/GPU-FAST-PROCLUS/
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0 to 100. The points are distributed among 10 Gaussian distributed clusters in a
subspace of 5 dimensions and with a standard deviation of 5.0.

Real-world data. For experiments on real-world datasets we use the datasets
glass, vowel, pendigits [60] and part of the SkyServer dataset [76]. The glass dataset
is of size 214 with 9 features, vowel is of size 990 with 10 features, and pendigits is of
size 7,494 with 16 features. From the SkyServer dataset, we use an area of size 1×1
measured in the spherical coordinates, referenced as sky 1×1. This subset contains
30,390 points and we extract 17 features including the spherical coordinates. We also
extract a 2×2 area with 133,095 points and a 5×5 area with 934,073 points.

All reported running times are averages of 10 runs on different generated datasets.
The real-world and synthetic datasets are min-max normalized, such that all dimen-
sions have values between 0 and 1.

Scalability

PROCLUS uses randomized search, but besides this random behavior, GPU-PROCLUS
and all the algorithmic strategies produce the same clustering as PROCLUS. The
important measure in this work is, therefore, not the accuracy but solely the running
time. This section investigates how the size of the dataset and its dimensionality affect
the running time of our proposed algorithms. We first compare against PROCLUS,
where we run with just one parameter setting at a time. Later, in Section 9.5, we show
how GPU-FAST-PROCLUS can achieve even higher speedup when allowed to reuse
partial computations between parameter settings.

Figs. 9.2a-9.2b shows that the algorithmic strategies provide a factor of 1.2 to 1.4×
speedup for both PROCLUS and GPU-PROCLUS. However, the GPU-parallelization
of each strategy provides an additional 2,000× speedup. This speedup increases with
the input size and stays constant after a certain input size. This is due to the more
points, the easier it is to utilize all cores on the GPU. The speedup is so great that we
can now perform PROCLUS in less than 100ms, the limit for real-time interaction
[74], for even 1,000,000 data points. Similarly, the multi-core CPU-version provides
up to 6× speedup. The comparatively low utilization compared to the GPU could be
due to the many context switches.

Figs. 9.2c-9.2d shows that the factor of speedup is higher for a lower number of
dimensions, ranging from 896 to 1,265× speedup. This could be caused by not all
distance computations being parallelized across dimensions to avoid atomic operations
and synchronizations.

Space usage. For FAST* compared to FAST, we see approximately 1.05 to 1.1×
slowdown, see Fig. 9.1, but with the benefit of a reduction in space usage. Fig. 9.3f
investigate the reduction in space usage. Space usage of GPU-FAST*-PROCLUS is
approximately half of that of GPU-FAST-PROCLUS and the space usage of GPU-
PROCLUS and GPU-FAST*-PROCLUS is similar. Space usage of all algorithms
increases linearly in n, which is inline with our space complexity analysis.
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Figure 9.1: Speedup w.r.t. GPU-PROCLUS.

Effect of data distributions and parameters

The performance of clustering, subspace, and projected clustering algorithms is
affected by the data distribution. Therefore, we verify that GPU-PROCLUS performs
well across data distributions. In Fig. 9.2e we vary the number of clusters and in Fig.
9.2f we vary the data distribution using different standard deviations. Here, we see
that the running time of PROCLUS and GPU-PROCLUS is largely unaffected.

We show how different parameter settings affect the running time of PROCLUS
and our proposed algorithms. In Fig. 9.2g-9.2k, we increase each of the parameters
in PROCLUS one by one. We observe that the running time stays almost constant
for most parameters, except for k and B, where we see that running time for both
PROCLUS and GPU-PROCLUS increases with k or B. This is clearly because
distances for a larger set of current medoids or potential medoids are computed.
However, for all experiments, the factor of speedup remains relatively constant at
around 1100×.

Multiple parameter settings simultaneously

As mentioned in Section 9.3, the result of PROCLUS depends on the parameters,
so it is often run with multiple sets of parameters. GPU-FAST-PROCLUS uses this
to reduce the number of distance computations. In Fig. 9.3a-9.3e, we show the
average running time of testing 9 combinations of k and l. The reported running times
are averages per combination to make it easier to compare with running times for
just a single parameter setting. We see that GPU-FAST-PROCLUS provides up to
around 7000× speedup w.r.t PROCLUS. Furthermore, in Fig. 9.3e GPU-PROCLUS
and GPU-FAST-PROCLUS run on more than 8,000,000 points, and we see that the
average execution time never exceeds a second. At 8,000,000 points, space becomes
the limiting factor, exceeding the 4.2 GB of free memory on our relatively small GPU.

The strategy of reusing computations between parameter settings consists of three
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Figure 9.2: Average running times of runs with a single parameter settings.
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Figure 9.3: Average running times of runs with 9 parameter settings at a time.

parts: multi-param 1 reuses partial compuations, multi-param 2 reuses also greedy
picking and multi-param 3 reuses also the previous best set of medoids. Compared
to GPU-FAST-PROCLUS executed with one parameter setting at a time, the reuse of
partial computations provides approximately a factor 1.4× speedup, also reusing the
greedy picking provides approximately a factor 1.6× speedup, and also initializing
with the previous best set of medoids provides approximately a factor 2.3× speedup.

GPU-utilization

The utilization of the GPU is dependent on many factors like memory throughput and
and occupancy of the threads. Further more, it can very at lot between the dataset,
parameters, and from kernel to kernel. We provide the utilization, inform of The
memory throughput, theoretical occupancy, and achieved occupancy provided by
NVIDIA Nsight Compute2, for some of the most interesting kernels and extreme
cases. An example of what could decrease the occupancy is if a block of threads

2https://developer.nvidia.com/nsight-compute

https://developer.nvidia.com/nsight-compute
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uses more than the registries that are available. The most time-consuming kernel
is Algorithm 12. Given the parameter settings used in this section and a dataset
with 4,096,000 points and 10 dimensions, it has a theoretical occupancy of 100.00%,
achieved occupancy of 99.99%, and memory throughput of 86.54%. Reducing the
dataset size to 8,000 points reduces the utilization to a theoretical occupancy of
78.12%, achieved occupancy of 77.98%, and memory throughput of 50.06%, this is
because having 8,000 points and 10 clusters implies that we spawn around 800 threads
per block, which is not a good balance of the warps that can be executed per block.
This kernel together with most of our other algorithms has a high utilization since we,
in general, parallelize across a large number of points and try to keep the threads that
need to communicate within the same block and do not exhaust the resources. On the
other hand, a few kernels do not process all points, e.g., Algorithm 9 line 4-7 spans k
blocks and k threads per block. If k < 32, we do not have enough threads per block to
utilize a full warp and if k× k is less than the number of cores on the GPU, not all
cores are engaged. If the preceding and the succeeding kernels were not depending
on each other, streams could be used to run two kernels concurrently to engage more
cores. This kernel has a theoretical occupancy of 50.00%, achieved occupancy of
3.12%, and memory throughput of 1.64%. This is not a good utilization, but not a
time-consuming computation either, so these small kernels do not have a large effect
on the overall running time.

Performance on real world datasets

Running with 9 parameter settings, we show that GPU-FAST-PROCLUS retains the
high speedup on different real-world datasets. In Fig. 9.3g, we show the running time
on different real-world datasets, and the experiments confirm that we obtain similar
speedups for real-world datasets as we achieve for synthetic data. To be more specific,
GPU-FAST-PROCLUS achieves 5490× speedup compared to PROCLUS on the sky
5×5 dataset. As for the synthetic data, the speedup is greatest for large datasets.

9.6 Related work

Clustering is the task of grouping similar data points [82]. Distance-based methods
like k-means [51] or k-medoids [61] try to minimize intracluster distance. Density-
based methods like DBSCAN [29], DPC [67] and SynC [18] find clusters as high
density regions separated by sparse regions.

In high dimensional data, clusters might only exist in subspaces of the full-
dimensional space, giving rise to subspace and projected clustering [64]. Subspace
clustering discovers clusters in any possible subspace projection, allowing a data point
to participate in none or several clusters in different subspaces, whereas projected clus-
tering assigns each point to exactly one cluster in one subspace projection. Subspace
and projected clustering can be categorized as top-down or bottom-up algorithms.

Bottom-up approaches [6, 24, 33, 43] find clusters in k = 1 dimensional subspaces,
then iteratively combine clusters in k-dimensional subspaces to find clusters in (k+1)-
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dimensional subspaces. Top-down approaches [3, 4, 20, 26, 81] find clusters in the
full-dimensional space and iteratively update assigned subspace projections to these
clusters.

Subspace and projected clustering are time-consuming to compute due to the
number of subspaces increasing exponentially in the number of dimensions, giving rise
to works on efficient algorithms. Some algorithms reduce the running time by pruning
subspace regions that cannot contain clusters [11, 43], approximating potentially
dense areas by e.g. grid cells or histograms [6, 24, 33, 50], or by locally optimizing to
iteratively improve candidate clusters and associated dimensions [3, 4, 20, 26, 56, 81].

While much effort has gone into algorithmic improvements of subspace and pro-
jected clustering algorithms, the high computational power of the graphics processing
unit (GPU) remains largely unexplored. To the best of our knowledge, GPUMAFIA
[1], a GPU version of SUBSCALE[25], and GPU-INSCY [39] are the only GPU
algorithms proposed for subspace clustering. We review them in turn.

MAFIA is a bottom-up subspace clustering algorithm that combines histogram
approximations of overlapping dense subspace regions as it moves from lower di-
mensional to higher dimensional subspaces [33]. GPUMAFIA efficiently parallelizes
these core steps in different kernels. As PROCLUS uses a different clustering notion
that makes use of neither histograms nor dense regions, and that cannot proceed
in a bottom-up fashion on subspaces, the algorithmic parallelization strategies in
GPUMAFIA are not applicable to the GPU-parallelization of PROCLUS.

SUBSCALE [45] is also density-based, but finds dense units, similar to neighbor-
hoods in DBSCAN, per dimension. The dense units that overlap in dimensions can
be combined and subjected to DBSCAN to derive the actual clusters. In the GPU-
parallelized version of SUBSCALE[25], the identification of overlapping dense units
across dimensions and dense units is parallelized, and possible dense units are precom-
puted. Again, the clustering notion and algorithmic strategy differ from PROCLUS
such that it cannot serve as inspiration for a GPU-parallelization of PROCLUS.

Finally, INSCY [11] is also a density-based subspace clustering approach, but
proceeds in a depth-first manner over potential dense subspace regions using a special-
ized tree structure. GPU-INSCY proposes a GPU-friendly version of the tree structure
and devises algorithmic strategies for efficiently handling multiple dense regions in
parallel. The GPU-parallelization is tailored to INSCY and does not fit for PROCLUS
that does not operate on dense regions, and thus cannot benefit from a tree structured
for managing them.

As PROCLUS is an adaptation of k-medoids to projected clustering [61], it is
worth considering GPU-parallelized versions of full dimensional k-medoids clustering
[46, 65], or of the similar k-means [30, 38, 49]. However, as opposed to k-medoids,
which is based on distances between objects that reside in the same space, PROCLUS
iteratively adds and removes dimensions from intermediate projected clusters, which
results in changes of distance values and changes of projected subspaces. Thus, a GPU
version of k-medoids cannot serve as a subroutine of a GPU version of PROCLUS.
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9.7 Conclusions

We substantially improve the running time of PROCLUS for large-scale data to
the extent that real-time interaction with PROCLUS projected clustering becomes
possible. We achieve this in our GPU-FAST-PROCLUS, a GPU-parallelized ver-
sion of PROCLUS that also contributes several algorithmic improvements. Our im-
provements are two-fold; efficient algorithmic strategies for PROCLUS, here termed
FAST-PROCLUS, and an efficient parallelization on the GPU.

The algorithmic improvements target the most costly operations in PROCLUS,
restructuring computations such that we can save and reuse distance computations
and partial results. In addition, we introduce strategies that reuse partial computations
across multiple parameter settings to further speed up FAST-PROCLUS. We demon-
strate a trade-off between running time and space consumption, thereby allowing the
user to adapt resource consumption as needed.

Our parallelized GPU-PROCLUS and GPU-FAST-PROCLUS are restructured to
execute more operations in parallel, and to exploit the memory hierarchy of the GPU.

Our extensive experimental evaluation demonstrates 3 orders of magnitude speedup
for GPU-FAST-PROCLUS. This speedup is stable across data distributions and pa-
rameter settings. The GPU-parallelizations provide up to 2000× speedup while the
algorithmic strategies collectively provide around 2.5× extra speedup.
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Chapter 10

AVID: GPU-enabled Visual
Analytics with
GPU-FAST-PROCLUS

Abstract

GPU-FAST-PROCLUS is a GPU-parallelized algorithm for projected clus-
tering based on the k-medoids approach. It speeds up clustering to allow for
real-time interaction – even for datasets of millions of items. Interactivity allows
users to quickly determine sensible clustering parameters such as the number
of clusters k, provided a suitable visualization is available. Yet, as clustering
and visualization are usually decoupled, cluster results are funneled from the
GPU back to the CPU, only to be mapped onto appropriate graphics, which are
then rendered on the GPU again. This introduces a bottleneck that hinders fluid
interaction with clustering.

As a solution to this, we propose AVID (Analysis and Visualization In
Device). Following the principle “What happens on the GPU, stays on the
GPU”, AVID removes the round trip to the CPU and keeps clustering results on
the GPU to render them on the GPU directly. By doing so, users can interactively
tune projected clustering parameters and observe the effects without noticeable
delay. In our demo system, we showcase the efficiency of our data management
strategies for projected clustering as well as the efficacy of data visualization.

10.1 Introduction

Projected clustering aims to identify groups of similar objects in subspace projec-
tions of the full-dimensional space. Efficient algorithms for projected clustering are
crucial as the number of possible subspace projections is exponential in the number
of dimensions. Projected clustering algorithms must be provided with predefined
parameters, but the best parameters are rarely known in advance. The choice of
sensible parameters generally requires a human in the loop [28].
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To enable interactive, human-in-the-loop parametrization of clustering, the ef-
fects of a change in parameters must be observable at interactive framerates. This
usually means that results must be computed in around 100ms to reduce the tempo-
ral separation [79, p.140] between parameter change and visualization change,and
thus providing the necessary “fluidity” [27]. In Jørgensen et al. [41], we present
GPU-FAST-PROCLUS, a GPU-parallelized algorithm that computes projected clus-
ters under the definition of the well-known PROCLUS approach [4], which extends
k-medoids clustering to subspace projections. GPU-FAST-PROCLUS runs on a
million points in around 100ms, and therefore theoretically allows for real-time in-
teraction [74]. Yet, in order to visualize the results of GPU-FAST-PROCLUS to
allow their interactive exploration under different parameterizations and in different
projections – similar to the works by Tatu et al. [77] or Yuan et al. [85] – we would
need to visualize these millions of points. To do so, the data would be clustered on the
GPU (Graphics Processing Unit), then be transferred back to the CPU and mapped
onto graphics primitives using some graphics framework, only to be then rendered
again on the GPU.

To prevent the bottleneck of the CPU, we propose to compute both the cluster
analysis and the visualization as a combined pipeline directly on the GPU. While
GPU-based visualization is widely used [31, 66, 80], GPU-based Visual Analytics
combining computational analysis and visualization on the GPU is still very rare
with only a handful of systems having been published – e.g., [2, 57, 63]. To the
best of our knowledge, no such purely GPU-based solution exists for computing
and visualizing projected clusterings. Hence, we propose and demonstrate AVID
(Analysis and Visualisation In Device), a real-time interactive data visualization for
GPU-FAST-PROCLUS.

10.2 PROCLUS and GPU-FAST-PROCLUS

PROCLUS [4] is an axis-parallel projected clustering algorithm, inspired by the
k-medoids algorithm CLARANS [61]. Given a dataset and the parameters

• number of clusters k,

• average number of dimensions l, and

• scalars A and B.

PROCLUS returns a cluster assignment for each point in some axis-aligned subspace
projection for the respective cluster. To that end, PROCLUS proceeds in three phases:

1. Greedily picking potential medoids M ⊂ Data.

2. Iteratively improving the best set of current medoids m⊂M that yields the best
projected clustering

3. Further refining the best clustering.
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The final result are k projected clusters within on average l-dimensional subspace.
E.g., if we have k = 3 and l = 4, clusters could exist within subspaces of 2, 3, or 7
dimensions.

Our GPU-FAST-PROCLUS approach [41] provides efficient GPU-parallelization
of PROCLUS clustering and even supports reusing computations between parameter
settings, which is important in practice when determining the best set of parameters
for a dataset and analysis task at hand. In Jørgensen et al. [41], we also provide an
experimental evaluation on both real-world and synthetic datasets, and with varying
size, dimensionality, distribution, and parameter settings. In the following, we provide
a brief overview, with more details given in [41].

Speed-up is achieved by maintaining the distances Dist from all points to all
previously used medoids. Furthermore, the computation of scores Zi, j, which indicate
the suitability of medoid mi in dimension j, is reorganized. The most expensive part
of computing Zi, j is the sum of distances Hi, j from each medoid mi to all points that
are within that medoid’s sphere of influence Li along each dimension j. The sphere of
influence Li is all points within a δi radius of mi, where δi is the distance from mi to
the closest of the current medoids m j. Since Li is not likely to change much between
iterations, the previously computed Hi, j are stored, and updated only with the change
∆Li in sphere Li. To map between potential medoids M and the current medoids m, we
use the index MIdx. All proposed reuses of computations can also be reused across
parameter settings, provided that the selected sample of potential medoids M remains
fixed.

In total, GPU-FAST-PROCLUS achieves up to 5000× speed-up over PROCLUS
and can perform data analysis on a million points in around 100ms. Therefore,
GPU-FAST-PROCLUS is admissible for real-time interaction [74]. Existing visual-
ization frameworks, however, require data transfer to and from main memory and
CPU involvement, dramatically increasing runtime beyond what users will accept in
interactive settings.

10.3 Analysis and Visualization In Device

To leverage the speed of GPU-FAST-PROCLUS, we implement a “What happens
on the GPU, stays on the GPU” data visualization supporting efficient visualization
and interactive exploration of GPU-FAST-PROCLUS, called AVID (Analysis and
Visualization In Device). We first discuss the implementation and then the data
visualization.

Implementation

To the best of our knowledge, there does not exist a GPU-based data visualization
framework that allows visualizing data directly located on the GPU. This implies that
visualizing the result of GPU-FAST-PROCLUS must be funneled through the CPU
and back to the GPU to be displayed. We, therefore, see the need to implement a
visualization that does not use the standard data visualization frameworks to bypass
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Figure 10.1: Layout of the data visualization AVID.

the CPU. AVID is implemented using OpenGL1, GLEW2, GLUT3, and CUDA4.
OpenGL, GLEW, and GLUT are application programming interfaces (APIs) for
graphics rendering that can leverage the GPU to achieve acceleration. Furthermore,
OpenGL and CUDA support resource interpolation between the interfaces which
implies that the graphics displayed by OpenGL can be manipulated using CUDA
kernels or the CUDA API directly, which is used to implement GPU-FAST-PROCLUS.

Like any graphics framework, OpenGL, GLEW, and GLUT support drawing
dots, lines, polygons, and text. However, they do not directly support our needs for
interactive data visualization. To enable brushing and selection of elements in the
visualization, we have implemented layout components as a tree-structure and mouse
move and click listeners for each component. The content of each plot, e.g., points,
bars, and grid cells, is the part of the visualization that is related to the data and results,
and therefore the part that must be computed on the GPU. For each content, the visual
mapping to color, scale, and location is done in parallel for all data points using CUDA
kernels and rendered directly on the GPU. This implies that the data and results never
leave the GPU. For demonstration purposes, we also implement a second version
where visualization is done on the CPU, but the data analysis and rendering are still
performed on the GPU. The user can switch between implementations to experience
the difference in runtime. To reuse computations between parameter settings, we keep
Dist, DistFound, H, M, MIdx, δ t ′ , each |Lt ′

i |, and the previous results in GPU-memory
during the lifetime of the system.

1https://www.opengl.org/
2http://glew.sourceforge.net/
3http://freeglut.sourceforge.net/
4https://developer.nvidia.com/cuda-downloads
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Effective and efficient visualization

Using these as a foundation, we can construct an interactive data visualization for GPU-
FAST-PROCLUS. A common workflow, when exploring parameters for projected
clustering, is for the user to select an initial set of parameters, wait for the result,
plot the result in a scatter plot matrix, maybe zoom in to see a single scatter plot,
adjust the parameters and repeat the whole process. Optimally, the user could see all
possible results at once. However, having k× l d-dimensional scatter plot matrices,
either requires a huge display or makes the scatter plots so small that they become
indistinguishable. Instead of this tedious workflow, we propose a data visualization
that has an overview, a detailed view, and previews of different parameter settings side
by side. This allows the user to apply filters, selection in, and changing all views at
once.
Layout: The layout consists of several components and can be seen in Figure 10.1. In
the top left, we have an overview in form of a scatter plot matrix. The scatter plots in
the lower triangle of the matrix provide the same information as the upper triangle
and are therefore replaced with heat maps to allow the user to more clearly identify
dense areas. In the scatter plots, the points in each cluster are assigned a unique color
corresponding to that cluster, but only of the dimensions that the scatter plot represent
are both in the subspace that the cluster represent. We further assign a gray color to
all points, which are not part of a cluster within the subspace shown by a scatter plot.

Next, we have two menus for selecting parameters l and k, where l is the average
number of dimensions in the subspace of the k clusters. These are located below and
to the right of the overview, and we refer to them as l-menu and k-menu, respectively.
Both menus consist of three scatter plots, each showing a change in the associated
parameter and two buttons with an arrow. This allows the user to quickly see part of
the result for the surrounding parameter settings, before changing the parameters for
the whole view.

At the bottom right corner of the overview, we have a column chart displaying the
size of each cluster and the outliers in the current result.

To the right, we have a detailed view that shows a larger version of a scatter plot
selected in the scatter plot matrix. Below the detailed view, there is a set of tools: a
button for recomputing the results, a switch to change where the visualization is being
computed, and a display of the time it takes to compute each frame.
Selecting: In the scatter plot matrix, the user can select a scatter plot to show in the
detailed view and the menus. The selected scatter plot is highlighted with light blue in
the scatter plot matrix as well as the dimension id. In the menus, the user can click
the buttons to increment or decrement the parameters previewed in the three scatter
plots. When a scatter plot in the menu is clicked, the associated parameter is selected
and all views are updated. Again, the selected scatter plot is marked with blue.
Filtering and linking: The user can filter points within a specific area by brushing
the data points shown in the detailed view, or to a specific cluster by clicking on the
bars in the column chart. Both filters can be applied at the same time and both are
linked to all other scatter plots and heatmaps.



110
CHAPTER 10. AVID: GPU-ENABLED VISUAL ANALYTICS WITH

GPU-FAST-PROCLUS

Figure 10.2: AVID showing a cluster that should be split in two.

10.4 Demonstration Plan

For the demonstration of AVID, we use a synthetic dataset to show the different
mechanisms. However, the user can provide AVID with any dataset Data ∈ Rn×d as
a CSV-file. As examples, we provide real-world datasets with the source code. We
here describe the demonstration, but a short video and source code is provided at
https://au-dis.github.io/publications/AVID/.

We present the architecture and the frameworks used in AVID, as described
in Section 10.3. Furthermore, we present the layout and options for selecting and
filtering, as outlined in Section 10.3. To illustrate that AVID is fast enough for real-
time interaction, we demonstrate how to use these mechanics to find a good set of
parameters. An example could be the following (due to random initialization in
PROCLUS, there can be variations):

Initially, we start with k = 6 and l = 7 as seen in Figure 10.1. We pick a scatter
plot to show in the detailed view. We identify a cluster that maybe should have been
split into two. Using the column chart, we filter to show only that cluster. The filter
is applied in all plots and a look at the overview confirms that the cluster should
be split in two, see Figure 10.2. In the k-menu, we investigate the previews. When
changing the previews, a projected clustering is performed but happens so fast that it
is not noticeable. We find at k = 10 the cluster is split, pick this parameter value and
all views are updated accordingly. To update the previews for l = 6 and l = 8, two
clusterings are computed using GPU-FAST-PROCLUS, and updated seamlessly. To
investigate the old cluster, we filter using brushing in the detailed view, see Figure 10.3.
In the overview, we see that it has indeed been split into two clusters. However, the
clusters are also identified in subspaces that contains dimensions where the clusters
are not dense. We conclude that l is too high and we look at the preview scatter
plots in the l-menu. Again, changing the previews requires computing new projected

https://au-dis.github.io/publications/AVID/
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Figure 10.3: AVID showing brushing of two clusters.

Figure 10.4: AVID showing the final clustering.

clusterings, but happens seamlessly. We pick l = 6 and in the overview, we see that
the clusters only appear in the scatter plots where the clusters are dense, see Figure
10.4. Again, the last update requires two projected clusterings but occurs smoothly.

At last, we switch to computing the visualization on the CPU, to show the dif-
ference in interaction. Now the time to compute one frame increased from around a
hundred milliseconds to a second.
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10.5 Conclusions

We presented a demo of GPU-FAST-PROCLUS and a new data visualization that sup-
ports the exploration of parameters for the projected clustering algorithm PROCLUS.
The fast GPU-parallelized version of PROCLUS makes the interaction real-time. To
avoid funneling the results from the GPU through the bottleneck of the CPU and
main memory just to transfer the visualization back to the GPU to be displayed,
we implemented the pipeline for both clustering analysis and computing the data
visualization fully on the GPU. This means that what happens on the GPU stays on
the GPU. The proposed solution is a case study for GPU-FAST-PROCLUS, but could
easily be adapted to fit any GPU-parallelized (projected) clustering approach.
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Chapter 11

EGG-SynC: Exact
GPU-parallelized Grid-based
Clustering by Synchronization

Abstract

Clustering by synchronization (SynC) is a clustering method that is moti-
vated by the natural phenomena of synchronization and is based on the Kuramoto
model. The idea is to iteratively drag similar objects closer to each other until
they have synchronized. SynC has been adapted to solve several well-known data
mining tasks such as subspace clustering, hierarchical clustering, and streaming
clustering. This shows that the SynC model is very versatile. Sadly, SynC has
an O(T × n2× d) complexity, which makes it impractical for larger datasets.
E.g., Chen et al. [22] show runtimes of more than 10 hours for just n = 70,000
data points, but improve this to just above one hour by using R-Trees in their
method FSynC. Both are still impractical in real-life scenarios. Furthermore,
SynC uses a termination criterion that brings no guarantees that the points have
synchronized but instead just stops when most points are close to synchronizing.

In this paper, our contributions are manifold. We propose a new termination
criterion that guarantees that all points have synchronized. To achieve a much-
needed reduction in runtime, we propose a strategy to summarize partitions
of the data into a grid structure, a GPU-friendly grid structure to support this
and neighborhood queries, and a GPU-parallelized algorithm for clustering
by synchronization (EGG-SynC) that utilize these ideas. Furthermore, we
provide an extensive evaluation against state-of-the-art showing 2 to 3 orders of
magnitude speedup compared to SynC and FSynC.

11.1 Introduction

Clustering is the task of grouping similar objects to identify unknown structures in
the data, e.g., customer groupings, and is one of the most common data mining tasks.
Clustering by synchronization (SynC) [18] is a clustering definition that can capture

113
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arbitrarily shaped clusters, requiring only a neighborhood radius ε and a threshold
for the termination criterion. SynC is based on the Kuramoto model from physics
which captures the natural phenomena of synchronization. In their paper, they show
that SynC can capture clusters that visually stand out as actual clusters, which other
clustering methods like DBSCAN [29] or k-means [30] do not. Furthermore, SynC
[18] also provides a method to test increasing sizes of ε and only returns the clustering
with the best score. This effectively hides ε for the user but at a much higher runtime.
The SynC algorithm has shown to be versatile and has been used to solve several
related data mining tasks such as outlier detection [70], hierarchical clustering [71],
subspace clustering [72], and clustering streaming data [73].

The concept of clustering by synchronization is powerful, as seen in several papers
[70–73], and experiments [18, 21]. However, SynC is very slow to compute due to the
O(T ×n2×d) time complexity, where T is the number of iterations, n is the number
of points, and d is the dimensionality. This complexity arises since, for each iteration,
SynC computes the update using the ε-neighborhood by going through all points.
FSynC [22] tries to remedy this by using an R-Tree to speedup the neighborhood
query and achieves one order of magnitude speedup. However, the paper still reports
that it takes more than an hour to cluster just 70,000 points. Furthermore, SynC uses
a measure rc for synchronization; when rc reaches 1, all points have synchronized
with their neighborhoods. However, since the update never actually moves the points
to the neighborhood’s mean, rc does not necessarily reach 1. SynC instead terminates
whenever rc ≥ λ which implies that not necessarily all points have synchronized and
that SynC is effectively computing an approximation, with no bounds, of the definition
of clustering by synchronization.

To get the necessary speed and accuracy, we provide an exact and fast algorithm.
FSynC has investigated the use of data structures to speed up the computation, and
this provides up to around 10× speedup. To achieve further speedup, we see great
potential in using modern hardware’s high computational power, such as the graphic
processing unit (GPU). However, to utilize the many cores of the GPU, algorithms
and data structures must adhere to the computational model of the GPU, which is
vastly different from the CPU model.

Our contributions. We propose:

• A new termination criterion for SynC that guarantees that the correct clustering
is found,

• a strategy for partitioning the data into a grid of cells that can be summarized in
a way that lets us compute the update of each point much faster,

• a GPU-friendly grid structure that supports this summarization and balances
time and space efficiency,

• and an exact and fast GPU-parallelized algorithm for clustering by synchroniza-
tion that utilizes these ideas.



11.2. RELATED WORK 115

All our contributions are manifested in a new exact and fast GPU-parallelized Grid-
based algorithm for clustering by synchronization called EGG-SynC.

11.2 Related Work

In the literature, various approaches for data clustering are studied. SynC [18] is
a clustering method that captures clusters revealed by synchronization, makes no
assumption about data distribution, requires no human interaction, and allows the
detection of clusters of arbitrary shape, size, and density. Density-based approaches
like DBSCAN [29], and DENCLUE [37] also detect clusters of arbitrary shape and
size but require a threshold for the global density of a cluster and do not capture
clusters of varying density. DPC [67] and OPTICS [8] capture clusters of varying
density, but require user selection of density parameters.

Some work on GPU-parallelizing clustering algorithms is based on analysis of
neighborhoods, like G-DBSCAN [7], GPU accelerated OPTICS [55], and GPU-
INSCY [39]. They mainly achieve speedup by precomputing neighborhoods in
parallel in three stages; computing the size of each neighborhood, performing an
inclusive scan to identify where each neighborhood should start and end in memory,
and populating the neighborhoods. G-DBSCAN computes the neighborhood and
then utilizes a GPU-parallelized breadth-first search (BFS) to assign the clusters.
GPU-accelerated-OPTICS only computes the neighborhood on the GPU and the
rest on the CPU. GPU-INSCY uses the neighborhoods in a subspace to prune the
neighborhoods in its superspaces. An adaptation of G-DBSCAN processes multiple
subspaces concurrently and grows clusters simultaneously instead of running BFS
for each cluster. Precomputing neighborhoods comes at the cost of high space usage,
O(n×E[|Nε(p)|]). For SynC this would quickly become prohibitively large. Data
points move closer to each other, implying that the expected neighborhood size
becomes O(E[|Nε(p)|]) =O(n). Therefore the space usage and runtime would become
O(n2). Instead, we propose a space- and runtime-efficient method that both prunes
and summarizes data points for computing the clustering. Moreover, because SynC
changes the location of points, existing pruning strategies that rely on information
about previously computed neighborhoods do not apply to SynC. We, therefore,
propose a new strategy for pruning in this work.

The concept of clustering by synchronization is also used for outlier detection
[70], hierarchical clustering [71], subspace clustering [72], and stream clustering [73].
However, a drawback of SynC is the complexity of O(T ×n2×d), which has given
rise to works on improving its runtime. FSynC [22] is a version of SynC that uses
the indexing structure R-Tree to support an efficient finding of the neighborhoods.
This reduces the time it takes to find the neighborhoods from O(n×d) to O(log(n)×
d + |Nε(x)|×d). However, since SynC synchronizes the points of each cluster at a
common location, the neighborhoods quickly become the size of each cluster. Even
the best case, where the points are distributed equally among the k clusters, implies
a O(n/k×d) runtime for each iteration. In their experiments, they show one order
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of magnitude speedup. However, this still implies that it takes more than an hour to
run FSynC on just 70,000 data points. As the neighborhoods become denser in the
later iterations, FSynC becomes slower. We propose a strategy that leverages that the
center of each neighborhood becomes denser to summarize regions fully within the
neighborhood and avoid looking at the points in this region.

LSSPC [84] is a variation of SynC that can handle larger datasets. This is achieved
by reducing the dataset using a method called CDC, running SynC on the reduced
dataset, and assigning the remaining data points to clusters. CDC works by creating a
minimum enclosing ball in an expanded feature space and, while there are still points
outside the ball, expanding the ball to include the point farthest away from the center.
The support vectors are returned as the reduced dataset when all points are covered.
After running SynC, the remaining points are assigned to the cluster with the largest
overlap with the neighborhoods. The remaining points are assigned to isolated clusters
or outliers.

PSynC [21] is a CPU-parallelized SynC version that reduces the runtime by
partitioning the dataset into areas with a roughly equal number of points, performing
SynC on each partition in parallel, and merging the results to create the full clustering.
Since the neighborhood of a point may span multiple partitions, PSynC computes the
means of so-called K-neighborhood regions for each point as an approximation of
their location. This approximation, unfortunately, comes without a guarantee as to the
deviation from the correct result. PSynC also notes that the termination criterion is
not exact and uses a criterion that considers the number of clusters but still does not
provide an exact termination criterion. We propose the first exact SynC algorithm that
provides efficient GPU-parallel computation and scalability to large datasets without
the need for approximations.

Several clustering methods are based on k-nearest neighbors (kNN) [13, 62],
which fixes the size of the neighborhood to k, instead of varying the number of points
as in ε-neighborhoods. Some clustering definitions based on ε-neighborhood have
been adapted to kNN-neighborhood instead. This provides results faster, but only
approximately, e.g., the DPC approximation FastDPeak [23]. Another strategy is data
summarization via some suitable set of statistics. BIRCH clustering [86] approximates
sets of points as micro-cluster spheres, which are clustered to create the actual result.
BIRCH assigns points to micro-clusters in their processing order, and the resulting
approximation quality depends on this order. In this work, we focus on exact clustering
according to the SynC cluster model without any loss in accuracy.

11.3 Clustering by synchronization

Clustering by synchronization (SynC) [18] is inspired by the natural phenomena of
synchronization, e.g., a group of people with similar traits often come together and
form common opinions; as time evolves, they become more similar and reach a state
of local synchronization. The Kuramoto model from physics captures this interaction
pattern. The basic idea of SynC is to iteratively move points closer to the points



11.3. CLUSTERING BY SYNCHRONIZATION 117

Algorithm 13 SynC(D,ε,λ )

1: t = 0, rc = 0
2: while rc < λ do
3: for p ∈ D do
4: for i = 0, ...,d−1 do
5: pt+1

i = pt
i +

1
|Nε (pt)| ×∑q∈Nε (pt) sin(qt

i− pt
i)

6: rc =
1
|D| ∑p∈D

1
|Nε (pt)| ∑q∈Nε (pt) e−||q

t−pt ||

7: t = t +1
8: return synCluster(Dt)

in their ε-neighborhood Nε(p) := {q ∈ D| |p−q| ≤ ε}, see Algorithm 13. Given a
dataset D∈ Rn×d , an ε radius, threshold λ , and a γ radius, the location of points p∈D
is iteratively updated using a function based on the Kuramoto model:

pt+1
i = pt

i +
1

|Nε(pt)| × ∑
q∈Nε (pt)

sin(qt
i− pt

i), (11.1)

where i is the dimension and t is the current iteration. Since the sin function is used,
distances must be within 0 and π/2 for points to approach each other. Böhm et al.
[18], therefore, normalize the data between 0 and 1. Throughout this paper we use
drag and move as synonyms for points being updated using Equation 11.1.

Instead of running the algorithm until the points have fully synchronized, Böhm
et al. [18] compute what they call the Cluster Order Parameter:

rc =
1
|D| ∑

p∈D

1
|Nε(pt)| ∑

q∈Nε (pt)

e−||q
t−pt ||. (11.2)

Where rc approach 1 when the points have synchronized. However, rc = 1 is never
reached, since we use sin to update the location, instead SynC terminates whenever
rc ≥ λ . Böhm et al. [18] use λ = 0.999. When the points reach a state of local syn-
chronization, the algorithm terminates, and the sets of points synchronizing together
are returned as the clusters in the final clustering. SynC assigns the clusters by going
through all not yet clustered points; all points within the γ-neighborhood constitute
a cluster. However, the termination criterion does not guarantee that the points that
synchronize are within a γ-neighborhood and, therefore, does not guarantee a correct
result nor a bounded approximation quality.

SynC shows several desirable properties. It can capture arbitrarily shaped clusters
with no assumption about data distribution, size, density, or the number of clusters.
Furthermore, it naturally separates outliers from the cluster without specific measures,
requiring no human interaction. As with all clustering methods, SynC also has its
drawbacks. For SynC, we have identified the inaccuracy in termination and cluster
gathering and the long runtime. We, therefore, strive to fix the inaccuracies and reduce
the runtime.
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FSynC [22] tries to reduce the runtime using R-Trees, an indexing structure that
supports neighborhood queries, but their experiments show that it still takes more than
an hour to cluster just 70,000 points. We propose using modern hardware such as
the Graphics Processing Unit to achieve a faster runtime. We also provide a GPU-
friendly grid structure that can be used to correctly terminate when the points have
synchronized, gather the clusters, and perform neighborhood queries. Furthermore,
we propose a strategy to summarize the grid cells to achieve even higher speedup.

11.4 EGG-SynC

As mentioned in Section 11.1, SynC is a clustering concept with many advantages;
however, SynC’s biggest drawback is its slowness. As shown in Section 11.2, there
have been multiple works on making SynC faster. PSynC gains up to 160× speedup
by partitioning the data and running SynC on each partition of different CPU threads,
but at the cost of a less accurate result. On the other hand, FSynC does not lose
accuracy and gains around 10× speedup by using the R-Tree for indexing to speed up
the neighborhood query used in the update function. However, FSynC still reports
more than an hour of runtimes for just 70,000 data points. Even though FSynC
computes the same result as SynC, the λ -termination of SynC and FSynC does not
guarantee a correct result. We are neither content with an approximative solution nor a
runtime of hours for a relatively small dataset. To ensure a correct result, we propose
a new termination criterion, and to achieve further speedup, we propose to utilize
modern hardware such as the GPU; however, this requires developing an algorithm
for a vastly different computational model. We thus present a new exact GPU-parallel
grid-based algorithm for clustering by synchronization (EGG-SynC). Our proposed
algorithm includes a novel exact termination criterion and proof of correctness. We
also devise a GPU-friendly grid-based data structure to support neighborhood queries
efficiently. To further reduce the runtime of the costly update function, we propose a
strategy to summarize the points in the grid cells and use the precomputed values to
reduce the number of points the update function needs to go through. We show how
to compute the new update function in parallel across points. Furthermore, we use the
grid structure to check the synchronization criterion, Definition 11.4.2, and gather the
final clustering when the synchronization criterion is satisfied. At last, we collect the
individual parts and propose our algorithm EGG-SynC.

Exact termination criterion

SynC aims to assign points that synchronize at the same location to the same cluster.
Böhm et al. [18] define points synchronizing as a cluster. SynC uses a cluster
order parameter rc, Equation 11.2, as a measure of local synchronization. When rc

reaches 1, all points have synchronized. However, SynC uses the sin of the distance
between the points to drag them closer, Equation 11.1, and for 0 < x≤ 1, sin(x)< x
implying that points that are not at the same location will never reach the same
location, and rc never reach 1. Instead SynC terminate whenever rc exceeds λ where
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Figure 11.1: A cluster that should synchronize (be dragged together in later iterations),
but where λ -termination incorrectly terminates with 3 separate clusters instead.

they use a value of λ = 0.999. The λ threshold provides a termination criterion,
but the approximation quality of the clustering result depends on the choice of λ .
Unfortunately, no guarantees on the quality of the approximation are provided. λ -
termination, as we will call it for simplicity, may indeed produce incorrect results:
consider, e.g., a small cluster on the border of the ε radius of larger clusters which in
later iterations can "drag" the clusters together, see Figure 11.1. As we can see in the
figure, the issue is that the impact of the smaller cluster on the termination condition
in this iteration is small, but later iterations will make these clusters synchronize into
a single cluster nonetheless. Consider a dataset of 1,000,000 points, a λ = 0.999,
and ε = 0.025, then there may be thousands of points in the small cluster, but the λ -
termination criterion of rc still reaches values above λ , even though the clusters should
eventually be dragged into a single cluster. Furthermore, λ is an extra parameter that
the user must set. The fact that λ -termination [18] does not indicate how close the
points are to reaching their local synchronization point, is also noted by Chen et al.
[21] who propose to add the number of clusters to the termination criterion. Still,
their termination criterion suffers from the same fundamental problems. In this work,
we propose a different approach to overcome these issues. Instead of defining an
approximate measure of synchronization, we determine a state where the algorithm
can safely terminate and gather points that eventually synchronize, thereby providing
the first exact termination criterion. We begin with our formal definition of clustering
by synchronization.

Definition 11.4.1 (Clustering by Synchronization). Given dataset D, parameter ε ,
and iterative updates using Equation 11.1. A non-empty C ⊆ D is a cluster iff there
exists an iteration t such that the following conditions are satisfied for all future
iterations t ′:

1. ∀t ′ ≥ t,∀p,q ∈ D : p ∈C,qt ′ ∈ Nε(pt ′)⇒ q ∈C

2. ∀t ′ ≥ t,∀p,q ∈C : qt ′ ∈ Nε(pt ′)
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Given the Clustering by Synchronization, Definition 11.4.1, the state we want
to capture in the synchronization criterion, Definition 11.4.2, is, therefore, when the
neighborhoods do not change anymore, since this would imply that we know exactly
which points will synchronize together when the iterations go towards infinity. To
check this, we define two terms that should be satisfied for all points p. First term
verifies that all points q within the ε-neighborhood of p are within the half radius ε/2
as well, implying that all neighborhoods either fully overlap Nε(q1)∩Nε(q2) =Nε(q1)
or has no overlap at all Nε(q1)∩Nε(q2) = /0. The second term verifies that no points
can be dragged into the ε-neighborhood of p using the update function. Since a point,
q can only be dragged close to and not beyond all points within its neighborhood,
the minimum bounding rectangle (MBR), the smallest axis-aligned hyper-cube that
encloses a set of points, is a conservative approximation for where q can be moved.
To conclude that q can not move into the neighborhood of p, therefore, it suffices to
check that the ε/2-neighborhood’s MBR of q does not intersect the ε radius of p.

Definition 11.4.2 (Synchronization Criterion). The criterion for termination is:

∀p ∈ D : ̸ ∃q :(ε/2 < ||p−q|| ≤ ε)

∧ ̸ ∃q :(ε < ||p−q|| ≤ ε +δ

∧ (dist(MBR(Nε/2(q)), p)≤ ε),

where dist(MBR, p) =
√

∑
d
i minc∈MBR |pi− ci|2 is the smallest Euclidean distance

from any corner of the MBR to points p and δ = ε−ε×
√

15
16 +ε/2− sin(ε/2) is the

extra radius that must be checked, see Appendix 11.11 for proof.

We provide the following theorem and lemmas to prove that this criterion ensures
that the final clustering is correctly determined. We want to prove that the first term
implies that all points sharing a common neighborhood always move closer to each
other. First, Lemma 11.4.3 proves that if the first term is satisfied for all points, then
all intersecting neighborhoods are fully intersecting. Next, Lemma 11.4.4 proves that
all points with a common neighborhood move closer to each other.

Lemma 11.4.3 (Identical set of neighbors.). Given a point p ∈ D, if there does not
exist a point q ∈D where ε/2≤ ||p−q|| ≤ ε , then all points o ∈ Nε(p) must have the
same neighbors, i.e., Nε(p) = Nε(o). See Appendix 11.8 for proof.

Lemma 11.4.4 (Denser neighborhoods.). Given points p,q ∈ D at iteration t, if
Nε(p) = Nε(q) then ||pt+1−qt+1|| ≤ ||pt −qt ||, i.e., the distance between points is
smaller in subsequent iterations. See Appendix 11.9 for proof.

We now have the foundation to prove that no points leave the neighborhood. Even
though points are being updated closer to their neighborhood and, therefore, further
from other points, there is still a small chance that points in a neighborhood could
drag themself into another neighborhood and, by that, merge the two neighborhoods.
To prove that if the second term is satisfied this can not happen we provide Lemma
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11.4.6. Since the update Equation 11.1 can tilt slightly from a straight line, we need to
prove that this becomes smaller in later iterations, to support this we provide Lemma
11.4.5.

Lemma 11.4.5. Given x,y ∈ (0,1] and y > x, then:

sin(y− sin(y))
sin(x− sin(x))

>
sin(y)
sin(x)

. (11.3)

See Appendix 11.10 for proof.

Lemma 11.4.6. Given p,q∈D at iteration t if the synchronization criterion, Definition
11.4.2, is met and qt /∈ Nε(pt) then ̸ ∃t ′ > t : qt ′ ∈ Nε(pt ′), i.e., no new point q can
move into the neighborhood Nε(p) of any point p. See Appendix 11.11 for proof.

We provide Theorem 11.4.7 to collect all the parts and conclude that when the
synchronization criterion Definition 11.4.2 is met, we can correctly gather the final
clustering.

Theorem 11.4.7 (Gathering Clusters). Given p ∈ D at iteration t, if the synchroniza-
tion criterion, Definition 11.4.2, is met then Nε(pt) =C|p ∈C, i.e., Nε(p) is the set of
points that p synchronizes with and, therefore, the final cluster that p belongs to.

Proof. By Lemma 11.4.3, since all points only have neighbors within the ε/2 neigh-
borhood, all points must have the same points in their neighborhoods as their neighbors
do. By Lemma 11.4.4, all points with identical neighborhoods move closer; thus,
the neighborhoods never lose points. Lastly, by Lemma 11.4.6, no points move into
the neighborhood when the synchronization criterion, Definition 11.4.2, is met. This
implies that the neighborhoods do not change anymore. Therefore, when the syn-
chronization criterion is met, each point’s p neighborhood is the set of points that p
synchronizes with and, therefore, the final cluster that the point p belongs to according
to Definition 11.4.1.

With this proof, we establish the first exact termination criterion for clustering by
synchronization, determining a state where the algorithm can safely terminate and
gather the final clusters.

GPU-friendly grid structure

Clustering algorithms have been primarily developed with the implicit assumption
of a sequential single-threaded model of the CPU. Modern hardware architectures,
however, employ different computational models requiring different algorithmic
solutions. The modern CPU contains up to tens of cores where threads can execute
individual instructions concurrently as SMT (Simultaneous Multi-Threading). It
provides hardware units that can execute a single instruction on hundreds of data
entries simultaneously as SIMD (Single Instruction, Multiple Data).
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In this work, we propose to exploit the massive parallelism in modern GPUs
(Graphics Processing Units) for efficient SynC clustering. GPUs consist of thousands
of cores that provide high computational power at the cost of a more restricted
computational model, where warps, groups of 32 threads, execute with a shared
program counter. All threads in a warp execute the same operation as SIMT (Single
Instruction, Multiple Threads). In the CUDA programming environment, threads
are organized into blocks and further distributed among warps. The blocks are,
furthermore, organized in a grid. Physically, cores on the GPU are grouped in SMs
(Streaming Multiprocessors), which share fast access to L1-cache and can synchronize
during execution. Thread in a block is executed within the same SM and therefore
has the capabilities of the SM. Furthermore, all threads can access the slower main
memory of the GPU, known as global memory. Due to threads accessing memory
concurrently, several considerations must be taken into account. Threads that access
the same memory address can lead to race conditions, and atomic operations can be
used with care to avoid these; however, the atomic operation takes longer to perform.
Global memory access by the same warp can be combined into one transfer if the
memory accesses coalesce; this requires that the memory accesses are consecutive and
aligned with global memory. In this paper, parallel is used to denote parallel execution
on the GPU unless specified otherwise. Computed in parallel means distributing a
for-loop among thread blocks as well as threads within each block.

The main and most time-consuming operation of Equation 11.1 is to compute the
neighborhood of each point. Using just the dataset requires going through the entire
dataset each time the neighborhood is computed. Therefore, an indexing structure is
often used to speed up the neighborhood query. Tree structures, such as the R-Tree
used in FSynC, support fast neighborhood queries on the CPU; however, they are not
constructed with the GPU in mind. When constructing a tree, as nodes in the tree
reach their maximal capacity, they are split in two, and the tree’s structure is altered.
If we try to construct an R-Tree in parallel, points may be inserted by some threads
while the tree is being altered by others and therefore could end up in the wrong
node. Furthermore, when performing a neighborhood query, each thread may need to
go through multiple different parts leading to branch-divergence, which slows down
performance substantially. Instead, we propose to use a grid structure to speed up the
neighborhood query. This naturally reduces the runtime of the neighborhood queries,
but in addition, we devise a strategy to summarize the grid cells such that we do not
have to access all points during the update, following Equation 11.1. We also show
how to check the synchronization criterion using the grid structure and gather the final
clustering.

When designing the grid structure for the GPU, the main considerations are access-
time, query-time, construction-time, space-usage, and how to construct and access it
in parallel using warps. To make it easy to compute which grid cell a point is located
within, we decide to use a grid structure with a fixed cell width cw, implying that the
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Figure 11.2: Grid representations

ID of a cell containing a point p is

ID(p) =
d−1

∑
i=0

pi

⌈1/cw⌉i
mod ⌈1/cw⌉, (11.4)

where IDs are enumerated as seen in Figure 11.2a. Similarly, this approach also makes
it easy to determine the cells that possibly intersect the neighborhood radius ε .

In order to fully utilize the many GPU cores when constructing and accessing the
grid structure, we must devise a GPU-friendly implementation. Recall that all threads
within a warp must perform the same instruction at all times, or else branches diverge,
slowing processing down. We must also ensure that a thread does not change part
of the structure other concurrent treads are working on. Furthermore, we must also
consider data access and workload distribution to achieve the highest performance.
Likewise, dynamic memory allocation is relatively expensive to perform, and we aim
to reduce this as much as possible.

List construction

In order to handle the frequent creation of lists or sets of elements, we need to consider
memory allocation. In the sequential model, elements can be added to lists on the fly
and memory allocated for lists is expanded when needed. Since dynamic memory
allocation is expensive on the GPU and threads in a warp wait for each other, allocating
memory on the fly may quickly lead to a very high runtime. Instead, we adopt the
strategy of maintaining several lists per single memory allocation. First, compute the
size sizes of each list, then perform an inclusive scan of the sizes to find the end index
ends of each list, allocate the total space for the elements in all lists elements, and at
last populate each list. This requires only one memory allocation for all lists combined
and makes the memory coalesced, both of which are important for efficiency. If the
total size is fixed between iterations, the memory allocation can even be reused. The
start index of list number i is:

getStart(ends, i) =

{
0 if i = 0
ends[i−1] else

,
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and end index as getEnd(ends, i) = ends[i]. Here, we use standard C++ notation,
where the end is the index after the last entry.

Random access

The first implementation we propose represents all possible cells in the grid structure
enumerated as in Figure 11.2a, where the grid cell of a point is determined using
Equation 11.4. To access the points in each cell, we compute lists of points as in
Section 11.4, with the lists of points in gridPoints, their sizes in gridSizes, and the
end index of each list in gridEnds.

Access. Since the grid cell width is fixed, the index of each cell can be computed
in O(d) time and the cell can be located by random access. The total look-up time
is, therefore, O(d) to access the grid cells and O(d + |g|) to get all points in the grid
cell. Since we do not know the non-empty cells in advance, we must look at all cells
intersecting the neighborhood of a point. This makes the complexity of updating each
point p O(vd + |Nε(p)|), where v = ⌈ε/cw⌉× 2+ 1 is the possible number of grid
cells along each dimension that the ε radius can overlap with.

Construction. The random access grid structure is a set of lists of points con-
structed as described in Section 11.4. This grid structure is illustrated in Figure 11.2b.
We discuss how to add the summarized statistics for all cells in Section 11.4. Since
we have an index for all cells, also non-empty ones, the number of cells increases
exponentially with d, i.e., O(wd) space usage, where w is the number of cells along
each dimension. For lower-dimensional data, this representation is efficient because
the time complexity depends on the number of dimensions. However, for higher-
dimensional datasets, it leads to space issues; therefore, we propose an alternative
structure for higher-dimensional data in the following.

Sequential access

To reduce the space usage, we could represent the grid as a list of non-empty cells,
this way we would never use more than O(n× d) space. Since there is no direct
mapping between the array entries and the cells in this representation, we must keep
track of which cell each entry represents. We, therefore, maintain an array gridIDs
of the IDs of each non-empty cell, see also Figure 11.2c. In this paper, we view
it as a single value for simplicity’s sake, but in reality, these IDs can become quite
large since the number of cells increases exponentially in the dimensionality. It is,
therefore, represented using O(d) integers in the implementation. Furthermore, we
use two arrays for housekeeping to remove duplicates and tightly pack the non-empty
cells. An array gridIncl to mark which cells should be included and an array gridIdxs
containing the new index of the first occurrence of each non-empty cell.

Access. To find a specific cell, we scan the array gridIDs, implying a O(n×d)
access-time. However, to retrieve the neighborhood of a point p, we only need to
traverse the list once, and the complexity is O(n×d) as well.
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Construction. In the construction of this implementation, we additionally keep a
list of non-empty grid cells but otherwise again separate it into multiple steps. We
need to create all cells in parallel, but we do not know which cells are empty in
advance, and we do not want to create duplicates. First, we go through all points in
parallel and compute the cell ID cID, which is saved at the index corresponding to the
point’s ID gridIDs[p] = cID. The array gridIDs is now a list of all non-empty cells
but possibly with duplicates. Next, to remove duplicates and compute the location
of the points in each grid cell, we go through each point in parallel, compute the cell
ID cID it belongs to and find the first entry idx in gridIDs matching cID. At the
corresponding location idx in gridSizes, we increment the size and set gridIncl to
TRUE to mark that this cell ID is the first of multiple duplicates and, therefore, is the
one that should be included. All other duplicates can be ignored. Next, we perform
an inclusive scan on gridIncl to find the location idx′ for where each non-empty cell
needs to be placed to be tightly packed and save the result in gridIdxs. Similarly, we
perform an inclusive scan on gridSizes to find the end index of the cell’s list of points
and save it in gridEnds. We set gridSizes to zero and populate the cells’ list of points
as in Section 11.4. At last, we repack the grid structure such that all first occurrences
are tightly packed at the beginning. This is done for each point in parallel. If the cell
is marked as included gridIncl[p], we move the end index, the size, and the cell ID to
the new location idx′ = gridIdx[p]−1.

Theoretically, the sequential and random access grid structures have the same
worst-case access time since all points could be within the neighborhood, making the
query time O(n×d). However, for most datasets, we do not just have a single dense
area at the neighborhood’s size; therefore, the random access representation would be
the fastest. On the other hand, the space complexity of the random access structure
is exponential in d making it impractical for higher-dimensional datasets, where the
sequential access structure uses O(n×d).

Mixed access.

Both the random access and the sequential access representation have their drawbacks.
To get the best of both worlds, we propose a mix of these representations that balances
the access time and the space usage. It is a heuristic to distribute the long list of grid
cells into as many buckets with random access cells that we can maintain in O(n×d)
space.

To get a compact representation of the grid structure, we create a random access
grid structure for the first d′-dimensions only, where wd′ ≤ n× d. We refer to this
partial structure as the outer-grid oGrid. Then for each cell in the outer-grid, we keep
a list of all full-dimensional non-empty cells that fall within the outer-grid cell. We
refer to these full-dimensional cells as the inner-grid iGrid, which is implemented
as a sequential access grid structure. The outer-grid allows us to quickly locate a
subset of cells in the inner-grid that potentially intersect the neighborhood. We then
sequentially check each cell if it intersects the neighborhood.
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Similar to the random access, the outer-grid structure consists of an array oGridSizes
with the number of inner-grid cells, and an array oGridEnds with the end-locations,
see Figure 11.2d. However, instead of indexing into the end of a list of points, it
indexes into the inner-grid cells within each outer-grid cell, see Figure 11.2d. The
inner-grid is exactly the same as the sequential access, but the inner-grid cells are
grouped by the outer-grid cells.

The space use of the outer-grid is O(n×d) by choice of d′ and the inner-grid can
at most have n non-empty grid cells and, therefore, uses O(n×d) space. Therefore,
the total space usage is O(n×d). For higher-dimensional datasets, this is much better
than the O(wd) for the random access representation and as good as the sequential
access strategy, but we can still access portions of the cells by random access.

Access. To retrieve the neighborhood, we identify each of the outer-grid cells
intersecting the neighborhood of p this is O(vd′) = O(n×d). Then we traverse the list
of inner-grid cells in each outer-grid cell, we can again at most have n non-empty inner-
grid cells and, therefore, this also takes O(n×d) time. In total, we use worst-case
O(n×d) to query the neighborhood. However, in practical experiments, EGG-SynC
performs much faster, see Section 11.5.

Construction. The mixed access grid structure is constructed by first building
the random access grid structure for the first d′ dimensions, and then for each cell,
building a sequential access grid structure for the full dimensional space, as described
in Algorithm 14. All arrays are allocated at the beginning of Algorithm 16 and reused
in all iterations to avoid expensive memory allocations. Alongside the construction
description, we provide an example of how the arrays change in Figure 11.2d (small
captions with respective algorithm lines). To construct the outer grid, we aim to fill it
with the non-empty inner grid cells. However, it is challenging to avoid duplicates in
parallel processing. In Lines 1-3, we instead temporarily accept potential duplicates,
for each point adding the ID of the inner grid cell the point is located in, then removing
duplicates in Lines 4 where we mark the first occurrence of each inner cell ID to
be included. To save computations and memory accesses, we count the number of
points in each inner grid cell at the same time. At this stage, the first occurrence of
non-empty inner grid cells is spread out sparsely in the outer grid. To compute a
compact index iGridIdxs, Line 5 performs an inclusive scan on iGridIncl. In Lines
6,7, the inner grid cells are populated as in Sect. 11.4. Lines 8-10 repack the grid using
the computed indices iGridIdxs into new arrays to avoid breaking the old structure
while reading from it.

To conclude, we now have a data structure that uses O(n×d) space and where a
neighborhood can be found in worst-case O(n×d) time, but likely much faster. This is
the same as the R-Tree used in FSynC; however, our grid structure can be constructed
and accessed by multiple GPU threads in parallel and supports the summarization that
we discuss in Section 11.4.
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Algorithm 14 constructGrid(D,ε)

1: ∀ points p ∈ D in parallel: atomically increment the size of each outer grid cell
oGridSizes

2: inclusive scan of oGridSizes saved in oGridEnds
3: ∀p ∈ D in parallel: atomically add the inner cell ID iID containing p to the list of

inner grid cell in the outer grid cell containing p with ID oID
4: ∀p ∈ D in parallel: compute outer cell with ID oID and inner cell with ID iID

containing p, find the first occurrence of iID in the list of inner grid cell in oID,
and mark it as included; atomically increment the size of each inner grid cell

5: inclusive scan of iGridIncl saved in iGridIdxs
6: inclusive scan of iGridSizes saved in iGridEnds
7: ∀p ∈ D in parallel: atomically add p to the inner grid cell
8: ∀iIdx in parallel: relocate ends iGridEnds[iIdx] and ids iGridIds[iIdx] to new

location iIdx′ = iGridIdxs[iIdx]−1
9: ∀oID in parallel: compute new end of each outer grid cells list of inner grid cells

oGridEnds′[oID] = getStart(iGridIdxs,oGridEnds[oID])
10: swap(iGridIDs, iGridIDs′), swap(iGridEnds, iGridEnds′), swap(oGridEnds,

oGridEnds′)

Precomputing the surrounding cells

When computing the update to a point p, the thread handling this point must access
the surrounding grid cells to see if they contain any points that should be included in
the neighborhood. Many of these cells are empty, and for the random access strategy,
this implies that some threads, in a warp, access empty cells while other threads
access non-empty cells. In turn, this results in some threads waiting on other threads
finishing treating the non-empty cells before continuing to the next cell. To reduce the
number of idle threads, we precompute the non-empty surrounding cells of each cell
in advance. The ids of the non-empty cells are saved in an array preGridCells similar
to the points in our grid structure.

First, we compute all non-empty cells preGridNonEmpty in parallel by atomi-
cally incrementing the number of non-empty cells noO f NonEmpty and saving the
outer-grid cell ID oID at that location. Second, in parallel for each non-empty cell cID,
we go through the surrounding cells and count the non-empty cells preGridSizes[cID].
Third, to get the start and end indices preGridEnds of each list of surrounding outer-
grid cells in
preGridCells, we perform an inclusive scan on the counts of surrounding cells
preGridSizes to get the end index of each list. At last, we set the counts preGridSizes
to zero and, in parallel, for each non-empty cell cID, we go through the surrounding
cells. If it is non-empty, we increment the count preGridSizes[cID] to get the lo-
cation loc = atomicInc(preGridSizes[cID]), compute the starting location o f f set =
getStart(preGridEnds,cID) in preGridCells and save the surrounding non-empty
cells oID at that location loc plus the starting location o f f set. Having this precompu-
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tation implies that threads always work with non-empty cells; however, the number of
points contained in each cell can still differ. We address this issue in the following.

Execution order

Precomputing the surrounding non-empty grid cells implies that no threads have
a non-empty workload per cell we handle. However, we still have an unbalanced
workload since some cells can contain a lot of points and others only a few. To make
it more likely that threads in the same warp have a balanced workload, we aim to
have warps handle points that are located close to each other. To achieve this, we
leverage that the array of all points in the grid structure iGridPoints is sorted in order
of the grid cells. Instead of updating each point in the order given in the data set, we
access them in sorted order in the grid structure. This implies that it is much more
likely that all threads in a warp access the same surrounding grid cells and, therefore,
have a more balanced workload since the threads are likely to access the same points.
However, it is still possible that threads in a warp handle points in different grid cells.
It would be possible to make a warp only handle points within the same grid cells and
just let the remaining threads do nothing, but this would lead to even lower utilization
of the threads.

Efficient cluster algorithm on the grid

We now have the definitions needed for an exact clustering by synchronization and a
GPU-friendly grid structure to support our summarization strategy. This section pro-
poses our summarization strategy and an exact GPU-parallelized grid-based algorithm
for clustering by synchronization (EGG-SynC).

Summarized grid cells

Supporting neighborhood queries provide speedup, but the worst-case complexity
of SynC using any indexing structure is still quadratic in the number of data points.
In each iteration, to update each point p requires all points in the neighborhood
Nε(p), Equation 11.1. This is an expensive task since, as the points synchronize,
the neighborhoods become larger and larger until they contain an entire cluster. If
one cluster contains the majority of the points, updating each point in this cluster
would take O(n× d). Even if the k clusters are of equal size, the update still takes
O(n/k× d). This implies that the complexity of SynC is still O(T × n2× d). The
challenge is, therefore, the inherent problem of SynC, that the neighborhoods become
extremely dense and that SynC has to look at all points when computing Equation
11.1. We propose an entirely new approach that avoids these costly computations in
many cases. The core idea is to precompute summarized statistics that fulfill several
requirements. Since grid cells can be fully included within multiple neighborhoods,
the summarized statistics should be computed per grid cell and be reusable among
points when computing the update using Equation 11.1. To ensure an exact result, the
summarized statistics should not provide an approximation but sufficient information
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for correct updates. At last, it should be efficient to precompute the summarized
statistics.

It is known that sin(y− x) = sin(y)cos(x)− cos(y)sin(x). We use this to rewrite
the update of a point p:
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The sums ∑q∈Nε (p) sin(qt
i) and ∑q∈Nε (p) cos(qt

i) can then be separated into two parts,
one for the points in the grid cells GF fully within the neighborhood, and one for the
points in grid cells GP partially within the neighborhood:

∑
q∈Nε (p)

sin(qt
i) = ∑

g∈GF
gridSin[g]i + ∑

g∈GP
∑

q∈g∩Nε (p)
sin(qi), (11.6)

where gridSin[g] = ∑p∈g sin(g) and analogically for cos, which are the terms that
we can precompute and use in multiple updates. This implies that instead of going
through all the points in the grid cell, we can look up the precomputed sums and use
them, saving us a lot of time. This precomputation is computed in parallel across
points, by computing the grid cell ID and adding the sin(p) and cos(p) atomically to
gridSin[g] and gridCos[g]. This makes it extremely fast in practice compared to the
time it saves doing the update. The points are spread more or less equally across the
neighborhood in the early iterations, but as the iterations progress, the points come
closer and closer to the center. This implies that EGG-SynC becomes faster in the
later iterations, as we also confirm empirically in the experiments.

Efficient EGG-update

Updating the location of each point p requires that we compute the ε-neighborhood
of p and use it to compute the direction in which point p should move. As mentioned
in related work Section 11.2, other GPU-parallelized algorithms precompute the
neighborhood before use. However, as the neighborhoods of SynC increase in size
for each iteration, the space usage becomes prohibitively expensive, and we must
find alternative strategies. To balance the workload and reduce branch-divergence,
we precompute the non-empty cells in Section 11.4, group the points by location in
Section 11.4, and reduce point access using summarized statistics in Section 11.4.
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Algorithm 15 EGG-update(D,ε,grid, preGrid)

1: for p ∈ iGridPoints - in parallel do
2: compute center outer cell ID cOID of p
3: compute center inner cell index cIIdx of p
4: for ∀oID ∈ preGridCells[cOID] do
5: for ∀iIdx ∈ outer cell oID do
6: if inner cell at iIdx fully within ε radius of p then
7: sumi = sumi +cos(pi)× iGridSin[iIdx]i− sin(pi)× iGridCos[iIdx]i∀i
8: neighbors = neighbors+ iGridSizes[iIdx]
9: else if inner cell at iIdx intersect ε radius of p then

10: for q ∈ inner cell at iIdx do
11: sumi = sumi + sin(qt

i− pt
i)

12: neighbors = neighbors+1
13: pt+1

i = pt
i +

1
neighbors × sumi∀i

14: if neighbors ̸= iGridSizes[cIIdx] then
15: rc = 0

The update of each point, using these concepts, proceeds as in Algorithm 15. For
each point p in parallel, we compute the center outer-grid cell and the center inner
cell where p lies. For each surrounding outer cell, we go through each inner-grid cell.
If the inner-grid cell is fully within the ε radius of p, then we can use the summarized
statistics of the inner-grid cell. Else if the inner-grid cell only overlaps, we must go
through all points in that inner-grid cell.

Termination using the grid structure

To efficiently check the synchronization criterion, Definition 11.4.2, we propose
leveraging our grid structure. We split the criterion into two checks to reduce the
amount of work that must be performed in each iteration. First, we check the first
term of the criterion of whether neighborhoods either fully intersect or not at all. If the
first term is satisfied, we also check the second term: no new points can be dragged
into any neighborhood.

First term. We need to check if Nε/2(p) = Nε(p), naively this could be done
by going through all points q ∈ Nε(p) and checking if ε/2 ≥ |p− q| for any point
p. However, looking at all points in the neighborhood is to be avoided, as discussed
before. Instead, we aim to find a method that does not need to look at all points. The
core idea is to find a lower-bound of the size of Nε/2(p) that can easily be computed.
We propose to make the cell width cw ≤

√
(ε/2)2/d, such that the diagonal is less

than ε/2. The grid cell g containing p is then fully within Nε/2(p) and we can use |g|
as a lower-bound of |Nε/2(p)| to avoid computing the exact value by terminating if
|g|= |Nε(p)|. This still determines the termination criterion fully correctly since this
lets the algorithm run until all points within Nε/2(p) are also within g.
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Algorithm 16 EGG-SynC(D,ε)

1: t = 0, rc = 1
2: while rc ̸= 0 do
3: rc = 1
4: grid = constructGrid(Dt ,ε)
5: computeSinAndCosSums(grid,Dt ,ε)
6: preGrid = preComputeNonEmptyCells(Dt ,ε,grid)
7: EGG-update(D,ε,grid, preGrid)
8: t = t +1
9: if rc === 1 then

10: Check second term of Def. 11.4.2, if not satisfied, set rc = 0.
11: grid = constructGrid(Dt ,ε)
12: return gatherCluster(Dt ,ε,grid)

Second term. The second term is more expensive to check but only needs to
be checked when the first term is true. For all points p we must go through all
points in the surrounding grid cells to check if there exists any points q1 within
ε < ||p−q1|| < ε + δ . This is done in parallel across points p. Then for each pair
p,q1 in parallel, we go through all points q2 in the surrounding grid cells to check if
the minimum bounding rectangle containing q1,q2 intersects the ε neighborhood of p.

Cluster gathering

Since the λ -termination criterion does not guarantee that the points have synchronized,
some points may be left out when gathering the clusters. We, therefore, propose a new
method for gathering the clusters, gatherCluster, that guarantees that all points are
assigned to the correct cluster. Recall that we only terminate when all neighbors are
within the center grid cell of the neighborhood. Theorem 11.4.7 states that when we
terminate, the neighborhoods contain all the points that synchronize together. Thus,
the center grid cell of each neighborhood must contain the final cluster. Therefore, we
can return all non-empty grid cells as the clustering.

The full algorithm

The full overview of EGG-SynC is described in Algorithm 16. While the points have
not yet synchronized, we construct the grid, compute the summarized statistics, and
update the points. We check if all points in the neighborhood are within the center cell,
and if so, we check if the surrounding points can be dragged into the neighborhood.
At last, when the points have synchronized, we gather the clusters.
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11.5 Experiments

We perform the experimental evaluation on a workstation with Intel Core i9 10940X
3.3GHz 14-Core, 258 GB RAM, and a GeForce RTX 3090 with 24 GB dedicated
RAM. All algorithms have been implemented in C++ or CUDA, where all CUDA
experiments are run with a block size of 128. For repeatability, the source code is
provided at: https://au-dis.github.io/publications/EGG-SynC.

Methods. Our proposed algorithm is compared against the original algorithm for
clustering by synchronization, SynC [18], and the more recent speedup FSynC [22].
For a fair comparison, we have implemented both in C++ as well. In initial experi-
ments, our implementation of SynC provides approximately 4× speedup compared
to the Java implementation provided by the authors. We have implemented straight-
forward SynC versions that are GPU-parallel (GPU-SynC) and CPU-parallel using
multiprocessors (MP-SynC). Both parallelizations distribute updates of all points
among threads. All runtime measurements for GPU algorithms also include data
transfer time to GPU memory. Böhm et al. [18] employ a strategy for selecting the
best ε , as Chen et al. [22], we do not include this in our experiments to make each
runtime on different ε values transparent.

Hyperparameters. SynC takes parameters ε and λ ; default values in all exper-
iments are ε = 0.05, and λ = 0.999. EGG-SynC uses our new exact termination
criterion and does therefore not need the λ parameter to terminate. FSynC, on the
other hand, introduces an additional parameter, the maximum fanout B for the R-Tree;
initial experiments suggest B = 100 performs best.

Synthetic data. We use the synthetic dataset generator provided by Beer et al.
[12] to control data distribution and size, which produces Gaussian distributed clusters.
The default parameters for the generated data are 100,000 points with 2 dimensions,
each dimension has values in the range −100 to 100. The points are distributed
among 5 Gaussian distributed clusters existing in the full-dimensional space and with
a standard deviation of 5.0.

Real-world data. We study the same seven real-world datasets as Chen 2018 [22]
from the UCI repository [60]; data banknote authentication (Bank) with 1,372 points
and 4 dimensions, Yeast with 1,484 points and 8 dimensions, Wilt with 4,838 points
and 5 dimensions, CCPP with 9,568 points and 5 dimensions, Tamilnadu Electricity
Board Hourly Readings (EB) with 45,781 points and 2 dimensions, Skin_NonSkin
(Skin) with 245,057 points and 3 dimensions, 3D_spatial_network (Roads) with
434,874 points and 3 dimensions. In addition, we study higher-dimensional datasets,
namely, Eye State (EEG) with 10,000 points and 14 dimensions, Letter Recognition
(Letter) with 20,000 points and 16 dimensions, both also from the UCI repository. All
datasets are min/max-normalized between 0 and 1.

https://au-dis.github.io/publications/EGG-SynC
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Figure 11.3: Synthetic experiments

Performance comparison

Scalability

We first investigate the runtime when scaling the input size in the number of points
and dimensions. In Figure 11.3a, we see that EGG-SynC is about 2-3 orders of
magnitude faster than SynC, MP-SynC, and FSynC and almost a magnitude faster
than GPU-SynC. Moreover, the speedup provided by EGG-SynC over SynC and
GPU-SynC, see Figure 11.3b, keeps increasing as the number of points increases.
This can be attributed to our summarized statistics strategy since the more points
we have, the higher the probability that points fall within the same cells and can be
effectively summarized by our algorithm. In Figure 11.3c, we see that the runtime
increases with the dimensionality for all algorithms and that EGG-SynC has the largest
speedup for lower dimensions. We observe that all algorithms show a drop in runtime
for higher dimensional datasets. As the dimensionality increases, points are more
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likely to be spread out, which in turn likely leads to an increased number of smaller
clusters instead of a few large ones that require more synchronization, thus reducing
the number of iterations required. This is in line with the effects of the curse of
dimensionality [14]; when the number of dimensions increases, the points are further
apart and cover more cells, meaning that speedup starts to converge at around 350×
speedup. In all cases, EGG-SynC provides a substantial speedup, particularly for large
datasets.

Distribution

Besides the size of the input data, data distribution may also affect the runtime
of clustering algorithms. We, therefore, evaluate datasets with varying spread and
number of clusters. In Figure 11.3d, we see that EGG-SynC maintains several orders
of magnitude speedup compared to SynC and FSynC. Furthermore, as the number of
clusters increases, all three algorithms become faster. This behavior is most apparent
for FSynC and EGG-SynC and can be attributed to their use of an indexing structure
for the neighborhood queries. When increasing the standard deviation of the generated
clusters to study clusters with a larger spread in Figure 11.3e, we similarly see
several orders of magnitude speedup for EGG-SynC compared to SynC and FSynC.
Furthermore, the runtime is lowest for all three algorithms when the standard deviation
is low. This makes sense since a smaller cluster would imply fewer iterations until the
points reach the local synchronization.

Real-world data

We also evaluate the performance on benchmark data from the UCI repository (Fig-
ure 11.4), where we again see large speedups for the GPU-parallelized versions of
SynC. From the synthetic experiments, we expect EGG-SynC to be faster than GPU-
SynC for the larger dataset. This is true for Roads but not for Skin. This can be
explained by recalling the example in Figure 11.1, where a smaller part connects
bigger parts of a cluster. Such a case would have a high cluster order parameter and
make SynC, FSynC, and GPU-SynC stop too early, even though it could require many
more iterations to cluster correctly. This is exactly what happens for the Skin dataset in
this experiment (Figure 11.4): several clusters are approximated incorrectly but found
correctly by our method, at the cost of less speedup. More concretely, GPU-SynC
stops after 7 iterations, whereas EGG-SynC continues for the 343 iterations needed to
find a correct clustering in this case.

We demonstrate the impact of such cluster approximations for Skin by varying
neighborhood radius ε , resulting in different clustering results. As we can see in
Figure 11.5, for other values of ε , EGG-SynC is substantially faster than GPU-SynC
when there is no need to resolve slowly converging clusters.

The main take-away is thus that EGG-SynC is most often substantially faster than
GPU-SynC and especially SynC. In cases where it is not, this is due to more iterations
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for a correct result. If speed-up should be preferred to accuracy, a termination threshold
as in SynC or a maximum number of iterations could be used.

Hyperparameters

We study the sensitivity of the runtime of the algorithms w.r.t different settings of
hyperparameters. The only hyperparameter to set for the three algorithms SynC,
FSynC, GPU-SynC, and EGG-SynC alike is the neighborhood radius ε . Intuitively,
a lower ε implies fewer points in the neighborhood and, therefore, a lower runtime,
especially for the algorithms that utilize a data structure to find the neighborhood
without looking at all points. For EGG-SynC, a lower ε implies that it has to iterate
over fewer points, but it also implies that each cell becomes smaller and, therefore, in
the beginning, the data points are spread across more non-empty cells. In Figure 11.3f,
EGG-SynC still provides substantial speed-up for all values of ε compared to SynC
and FSynC. At very low values, the speedup for FSynC compared to SynC increases
slightly and the speedup of EGG-SynC decreases slightly. However, for all other
values, the speedup of EGG-SynC compared to SynC and FSynC remains several
orders of magnitude.
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size of dataset Method Allocating Build structure Update Extra check Clustering Free Memory
256000 GPU-SynC 0.003808 0.000000 1.123219 0.000000 0.228805 0.000000

EGG-SynC 0.000977 0.006878 0.316819 0.007083 0.000461 0.000000
512000 GPU-SynC 0.002676 0.000000 4.663134 0.000000 0.869475 0.000000

EGG-SynC 0.001469 0.022316 1.088505 0.000403 0.001016 0.000000
1024000 GPU-SynC 0.004343 0.000000 14.145755 0.000000 3.361058 0.000000

EGG-SynC 0.002172 0.026141 2.723254 0.000763 0.002334 0.000000

Table 11.1: Break down of stages.

Stage and iteration breakdown

To study how different stages of EGG-SynC contribute to the overall runtime, we
provide a breakdown of the runtime of each stage of GPU-SynC and EGG-SynC,
see Table 11.1. We see that as the data size increases, the construction time of the
grid structure becomes minuscule, and the update of points strongly dominates the
runtime. More importantly, we see that compared to GPU-SynC, both the update and
the gathering of clusters are reduced dramatically as an effect of using the efficiently
constructed grid structure. Thus, spending relatively little time on the construction
of the grid structure to speed up the update of points and the gathering of clusters is
clearly worth the effort.

In Figure 11.3g, we see that GPU-SynC’s iteration becomes slightly more expen-
sive as the iterations increase, and our EGG-SynC spends less time. This is because
our summarized statistics provide more benefits for dense data. Furthermore, thanks to
our effective statistics and data structure, our approach is much faster than GPU-SynC,
even though it terminates later when all points have been correctly clustered according
to clustering by synchronization, Definition 11.4.1.

Space usage

In Section 11.4, we state that the space usage is linear in the size of the dataset
O(n× d). We validate this in Figure 11.3h, where we see that, indeed, the space
increases linearly as the number of data points increases. As expected, EGG-SynC
uses a constant factor of more space on the grid structure, which GPU-SynC does not
use, but the memory consumption is reasonable and provides a clear runtime benefit.

11.6 Conclusion

In this paper, we propose a novel GPU-parallelized approach to clustering by syn-
chronization, named EGG-SynC. EGG-SynC introduces the first exact termination
criterion that guarantees that the synchronization process is finished when the al-
gorithm terminates. EGG-SynC presents a strategy for summarizing the data in a
GPU-friendly grid structure and proposes a highly efficient GPU-parallel algorithm
for exact clustering by synchronization.

The experimental evaluation on synthetic and real-world data shows substantial,
2 to 3 orders of magnitude, speedup over existing algorithms for varying data and
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11.8 Proof of Lemma 11.4.3

Proof. We prove by contradiction. Assuming that there exists a point a ∈ Nε(p)
where b ∈ Nε(a) but b ̸∈ Nε(p). First notice that ∀p ∈D,∄q ∈D : ε/2≤ ||p−q|| ≤ ε

implies that for all points p Nε(p) = Nε/2(p). Since a ∈ Nε/2(p)⇒ ||p−a|| ≤ ε/2
and b ∈ Nε/2(a)⇒ ||a−b|| ≤ ε/2 and using the triangle inequality, we get ||p−b|| ≤
||p− a||+ ||a− b|| ≤ ε . However then it cannot be true that b ̸∈ Nε(p) since it
would imply that ||p− b|| > ε . Therefore, all points in Nε(p) must have the same
neighbors.

11.9 Proof of Lemma 11.4.4

Proof. Given Equation 11.5, we have:

|pt+1
i −qt+1

i |=
∣∣∣∣pt

i +
1

|Nε(pt)|
(
cos(pt

i)s(p, i)− sin(pt
i)c(p, i)

)
−(qt

i +
1
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))∣∣∣∣
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−
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∑y∈Nε (p) sin(yt

i)
)
, c(p, i) =

(
∑y∈Nε (p) cos(yt

i)
)
. For the SynC algo-

rithm to work, Shao et al. [72] require that the data is normalized between [0,1].
This implies that ∑y∈Nε (p) sin(yt

i) and ∑y∈Nε (p) cos(yt
i) are both always positive. We

split the proof into two cases, for pt
i − qt

i ≥ 0 and pt
i − qt

i < 0. If pt
i − qt

i ≥ 0 then
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i)− cos(qt
i)≤ 0 and sin(pt
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11.10 Proof of Lemma 11.4.5

Proof. Since sin(y−sin(y))
sin(x−sin(x)) >

sin(y)
sin(x) implies sin(x)

sin(x−sin(x)) >
sin(y)

sin(y−sin(y)) , and for 0 < x≤ 1,
d
dx

(
sin(x)

sin(x−sin(x))

)
= csc(x− sin(x))(cos(x)+ sin(x)(cos(x)− 1)cot(x− sin(x))) < 0,
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Figure 11.6: Example of two points q1,q2 dragging each other into a third point’s p
neighborhood.

which implies that sin(x)
sin(x−sin(x)) is decreasing as x increases within the interval of

concern, and, furthermore, that sin(y−sin(y))
sin(x−sin(x)) >

sin(y)
sin(x) .

11.11 Proof of Lemma 11.4.6

Proof. By Lemma 11.4.3 all neighbors share a neighborhood when the synchroniza-
tion criterion is met, and by Lemma 11.4.4 all points in a shared neighborhood move
closer to each other, implying that they stay in the neighborhood. A neighborhood
can then only expand, if points drag each other into another neighborhood using
Equation 11.1. When all points are within ε/2 distance of their neighbors, this can
only happen when two or more points q1,q2, . . . are outside ε radius of a point p, but
within each other ε/2 neighborhoods, as illustrated in Figure 11.6. This implies that
there is a distance from the neighborhood where there can exist points q1,q2, . . . that
can potentially be dragged into the neighborhood. If the location of the points was
updated in a straight line, we could compute the extra distance δ1 as:

ε
2 =(ε−δ1)

2 +(ε/4)2

=⇒ (ε−δ1) =
√

ε2− (ε/4)2 = ε
√

15/16

=⇒ δ1 =ε− ε
√

15/16. (11.7)

However, since the update function, Equation 11.1, does not update the location
of points in a straight line, we need to check a slightly larger extra distance δ =
δ1 +δ2. Since, for each dimension, the points are updated with the average sin of the
difference to all other points in the neighborhood, and since sin is not a linear function,
the update deviates δ2 from a straight line. We overestimate the deviation δ2 by
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Figure 11.7: Deviation from straight line when updating points q1,q2 for two consec-
utive iterations.

considering the worst-case location and infinitely many points located at this location,
i.e., when the points are the furthest apart, the distance along one dimension is as
short as possible, and the other is as long as possible. When all points are within ε/2
distances of their neighbors, a point can at most be updated with sin(ε/2) along each
dimension. This implies that the deviation δ2 cannot exceed δ2 = ε/2− sin(ε/2), due
to Pythagorean theorem, illustrated in Figure 11.7. Furthermore, since the deviation
from a straight line changes between iterations, in a subsequent iteration, the deviation
could potentially intersect the ε neighborhood of point p if the slope tilts more
towards p. Figure 11.7 illustrates updating such points at locations q1,q2, in two
iterations. All information related to the first iteration is colored blue, and the second
is colored red. In the first iteration, the point locations differ by d1 = q2,1− q1,1

and d2 = q2,2−q1,2 and the points at location q1 are updated along the slope sin(d2)
sin(d1)

diverging slightly from the straight dashed line between the two locations. How far
the points are updated along this slope depends on the fraction of points α that are
located at q1 compared to q2. If there is only one point at each location, then α = 0.5
and the points will end up close to the middle as in the illustration; else, they will
end up close to the location with the most points. After the update, the points at
q1 move to q′1, j = q1, j +α sin(q2, j−q1, j)∀i ∈ [0,d−1] and the points at q2 move to
q2, j = q2, j +(1−α)sin(q1, j−q2, j)∀i ∈ [0,d−1]. Making the different between the
points at the two locations d′1 = (q1,1 +α sin(q2,1−q1,1))− (q2,1 +(1−α)sin(q1,1−
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q2,1)), d′2 = (q1,2+α sin(q2,2−q1,2))− (q2,2+(1−α)sin(q1,2−q2,2)) along the two
dimensions. The slope the update follow for the subsequent iteration is therefore
sin(d′2)
sin(d′1)

. Notice that the behavior is mirrored on the straight dashed line, and it does not
matter which side of the line point p is located. We prove this in the 2-dimensional
case, but it can similarly be expanded to higher-dimensions. Furthermore, how the
points are located in relation to each other can be mirrored such that 0 < d1 ≤ 1,
0 < d2 ≤ 1, d1 < d2, and the points p is below the dashed line; the other cases can be
proven analogously. To prove that the updates in the subsequent iterations do not bring
the points at q1,q2 close to p we must show that the slope increases in the subsequent
iterations sin(d2)

sin(d1)
<

sin(d′2)
sin(d′1)

. We first simplify d′j = (q2, j +α sin(q1, j− q2, j))− (q1, j +

(1−α)sin(q2, j−q1, j)) = d j−α sin(d j)− (1−α)sin(d j)) = d j− sin(d j), implying
that sin(d2)

sin(d1)
<

sin(d′2)
sin(d′1)

= sin(d2−sin(d2))
sin(d1−sin(d1))

. By Lemma 11.4.5, this is true, and the points
can, therefore, not move into the ε neighborhood in subsequent iterations either.
This makes the total extra distance δ = δ1 + δ2 = ε − ε

√
15/16+ ε/2− sin(ε/2).

Furthermore, if there exists a point q within this border, but the minimum bounding
rectangle of the points in its neighborhood does not intersect the ε neighborhood of
p, then there cannot exist two points in Nε(q) that could drag each other into the
neighborhood of p.
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