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Abstract

This thesis is based on three publications [1, 2, 3].
The first publication [1] concerns a type of machine learning called “boosting.” Informally, boosting

algorithms construct an accurate “boosted” classifier by combining several less accurate classifiers.
Experimentally, the generalization error of boosted classifiers improves during training, even when
training after achieving zero training error. Margin theory [8] attributes this desirable generalization
phenomenon to large “margins.” This led to a line of research with a common goal [10, 12, 24, 43, 44]:
maximize the smallest margin of a boosted classifier using as few “less accurate classifiers” as possible.
This line of research culminated with AdaBoostV [44], which was later conjectured to yield an optimal
trade-off between the number of “less accurate classifiers” and the smallest margin [40]. Our main
contribution is an algorithm, SparsiBoost, which provides a better trade-off and thus refutes the conjecture.
Finally, we present a lower bound which implies that SparsiBoost is optimal.

The second publication [2] concerns generalization error upper bounds from margin theory [8].
Despite numerous margin-based generalization upper bounds [8, 12, 21, 50], nothing is known about
the tightness of these bounds. To this end, we present the first margin-based generalization lower bound.
Our lower bound matches Breiman’s generalization upper bound [12], which depends on the smallest
margin, ruling out any further improvements. Furthermore, our lower bound almost matches the k’th
margin bound [21], the strongest known margin-based generalization upper bound, which depends on all
margins, ruling out any improvements larger than a multiplicative log factor.

The third publication [3] concerns neural networks. Training neural networks sometimes entail
computing time-consuming operations on their weight matrices, e.g., matrix determinants [31]. Operations
like matrix determinants are often faster to compute given the Singular Value Decomposition (SVD).
Previous work implicitly maintains the SVD of the weight matrices in a Neural Network without explicitly
computing the SVD [52]. In theory, their technique allows faster determinant computation, however, in
practice, we find no speed up. We present an algorithm, FastH, which is faster in practice (around 5 times
faster than [52]). FastH has the same time complexity as [52], however, for a d×d weight matrix and a
batch size b, FastH reduces the number of sequential stages from O(d) to O(d/b+b). During the writing
of this thesis, we improved FastH to use O(d/b+ log(b)) sequential stages.
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Abstract (Danish)

Denne afhandling er baseret på tre publikationer [1, 2, 3].
Den første publikation [1] omhandler en type maskinlæring kaldet “boosting.” Beskrevet uformelt,

konstruerer boosting algoritmer en nøjagtig “boostet” klassifikator ved at kombinere flere mindre nø-
jagtige klassifikatorer. Eksperimentelt har man fundet at generaliserings fejlen af boostet klassifikatorer
falder med træning, også selvom klassifikatoren har nul træningsfejl. Margen teori [8] tilskriver dette
ønskværdige generaliserings fænomen til store “margener.” Dette ledte til adskillige forskningsartikler
med et fælles mål [10, 12, 24, 43, 44]: maksimer den mindste margen af en boostet klassifikator ved brug
af så få “mindre nøjagtige klassifikatorer” som muligt. Tidligere forskning kulminerede med algoritmen
AdaBoostV [44], hvilken [40] formodede garanterer en optimal afvejning mellem antallet af “mindre
nøjagtige klassifikatorer” og den mindste margen. Vores hovedbidrag er en ny algoritme, SparsiBoost,
der giver en bedre afvejning og derfor afviser [40]’s formodning. Endeligt præsenterer vi en nedre grænse
der medfører at SparsiBoost garanterer en optimal afvejning.

Den anden publikation [2] omhandler grænser for generaliserings fejl fra margen teori [8]. På trods
af talrige øvre grænser for generaliserings fejl der baserer sig på margener [8, 12, 21, 50], er intet kendt
for tilsvarende nedre grænser. Vi præsenterer den første nedre grænse for generaliserings fejl baseret
på margener. Breiman’s [12] øvre grænse for generaliserings fejl afhænger af den mindste margin, for
hvilken vores nedre grænse udelukker enhver forbedring. Den k’te margen [21] øvre grænse er den
stærkest kendte øvre grænse og afhænger af alle margener, for hvilken vores nedre grænse udelukker
enhver forbedring større end en multiplikativ log faktor.

Den tredje publikation [3] omhandler neurale netværk. Træning af neurale netværk indebærer nogle
gange tidskrævende operation på deres vægt matricer, e.g., matrix determinanter [31]. Operationer som
matrix determinanter kan ofte udregnes hurtigere givet matricens Singulær Værdi Dekomposition (SVD).
Tidligere forskning [52] vedligeholder SVD’en af vægt matricer i neurale netværk implicit, uden nogen
eksplicit SVD udregninger. I teorien tillader deres teknik hurtigere determinant beregninger, men i praksis
fandt vi ingen forbedring. Vi præsenterer en algoritme, FastH, der er hurtigere i praksis (omkring 5
gange hurtigere end [52]). FastH har samme tidskompleksitet som [52], men, for en d×d matrix og en
batch størrelse b, reducerer FastH antallet af sekventielle skridt fra O(d) til O(d/b+b). Imens denne
afhandling blev skrevet, forbedrede vi FastH til at bruge O(d/b+ log(b)) sekventielle skridt.
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Preface

This thesis is based on three publications [1, 2, 3] and one manuscript [4]. The work is grouped into two
chapters by topic.

• Chapter 2: Boosting

– [1] Optimal Minimal Margin Maximization with Boosting. ICML 2019.
– [2] Margin-Based Generalization Lower Bounds for Boosted Classifiers. NeurIPS 2019.

• Chapter 3: Neural Networks

– [3] What if Neural Networks had SVDs? NeurIPS 2020. Spotlight presentation, 200 out of 9500.
– [4] One Reflection Suffice (Manuscript).

Purpose. In Denmark, the purpose of a PhD thesis is defined by law [47] with further regulations from
my faculty at Aarhus University [5]. In short, a PhD thesis “presents the results of the PhD project and
documents the PhD student’s ability to communicate theoretical and experimental skills” [5]. To this end,
the student may write a PhD thesis as a monograph or include papers and manuscripts. I chose to include
papers and manuscripts which make up Chapter 4. When including articles and manuscripts, the student
must write introductions. These introductions make up Chapters 2 and 3.

vi



Contents

Abstract ii

Acknowledgments v

Preface vi

Contents vii

1 Introduction 1

2 Boosting 4
2.1 From Prior Boosting Algorithms [19, 44] to Our Results [1] . . . . . . . . . . . . . . . . 5
2.2 Our Algorithm: SparsiBoost [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Our Lower Bound: SparsiBoost is Optimal . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 From Prior Generalization Bounds [8, 12, 21] to Our Bound [2] . . . . . . . . . . . . . 10
2.5 Our Generalization Lower Bound: Breiman’s Bound is Optimal . . . . . . . . . . . . . 13

3 Neural Networks 14
3.1 Neural Networks and the Singular Value Decomposition . . . . . . . . . . . . . . . . . 15

3.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 From Prior Work [52] to Our Results [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Our Algorithm: FastH [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Later Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 From O(d/t + t) to O(d/t + log(t)) Sequential Stages . . . . . . . . . . . . . . 19
3.4.2 O(1) Sequential Stages are Sufficient for Expressivity [4] . . . . . . . . . . . . 20

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Articles 23
4.1 [1] Optimal Minimal Margin Maximization with Boosting . . . . . . . . . . . . . . . . 23
4.2 [2] Margin-Based Generalization Lower Bounds for Boosted Classifiers . . . . . . . . . 52
4.3 [3] What if Neural Networks had SVDs? . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 [4] One Reflection Suffice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 97

vii



Chapter 1

Introduction

This thesis concerns algorithmic improvements to machine learning. Below we (1) introduce machine
learning, (2) explain what algorithmic improvements are, and (3) explain why algorithmic improvements
are desirable in machine learning.

Consider the images in Figure 1.1. Your brain will classify one image as a cat and the other as a dog.
Can we make computers classify such images? Computers represent images as tables with many numbers.
For a computer to classify an image, we need to write a program that takes a “number table” as input and
outputs whether the “number table” represents a cat or a dog. No human has successfully written such a
“classifier program” for images. One may think of machine learning as a data-driven approach for writing
such classifier programs. Instead of writing the classifier program ourselves, we write a machine learning
program that constructs the classifier program for us by utilizing a lot of “training” images.





(1)M
achine

L
earning

An algorithm is a procedure to solve a mathematical problem. For example, 172 ·812 is a mathematical
problem. The procedure you learned to solve multiplication problems in primary school is an algorithm.
Computer scientists want algorithms that scale well. That is, algorithms for which “the amount of work”
needed to solve larger and larger problem instances increases as little as possible. The amount of work it
takes to multiply two n digit numbers with the primary school multiplication algorithm is “roughly” n2.
Can we do better than n2? Karatsuba [28] proved that we can do better. In particular, he introduced
an algorithm for which the amount of work increases by roughly n1.59. Notably, Karatsuba’s algorithm
computes exactly the same as the primary school multiplication algorithm. If both algorithms are given
the problem 3 ·5, then both algorithms finds the solution 15. Yet, for very large numbers, Karatsuba’s
algorithm requires less work. This is an algorithmic improvement.





(2)A
lgorithm

ic
Im

provem
ent

Machine learning has improved drastically during the past decade. For example, on a popular image
classification benchmark, the accuracy of the best machine learning classifier improved from 50 to 91
percent [14]. In many cases, such improvements come at the cost of larger machine learning systems,
which require much more expensive computers. It is not unheard of that research groups spend millions
of dollars training a single machine learning system [13]. From this perspective, it is desirable to have
algorithms that perform as little work as possible. The following two pages clarify how the publications
within this thesis [1, 2, 3] relates to algorithmic improvements through a short technical overview.
The subsequent Chapters 2 and 3 contain further details and a less technical introduction.





(3)D
esirable?

Figure 1.1: Image of a cat and dog from [29].
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CHAPTER 1. INTRODUCTION 2

Publication [1]. Chapter 2 concerns a type of machine learning called “boosting.” Boosting algorithms
use training data 〈(x1,y1), . . . ,(xn,yn)〉 to produce a “boosted classifier” f (x) = sign(∑T

j=1 α jh j(x)) where
xi ∈Rd , yi ∈{±1}, α j ∈R and h j :Rd→ [±1] is a “less accurate classifier” from a set of classifiers h j ∈H.
Experimentally, the generalization error of a boosted classifier f (x) improves during training, even when
training after achieving zero training error. Margin theory [8] attributes this desirable generalization
phenomenon to large “margins.” The margin of a training example (xi,yi) is:

margin(xi) :=
yi ∑

T
j=1 α jh j(xi)

∑
T
j=1 |α j|

∈ [−1,1]. (1.1)

A positive margin indicates that the classifier is correct and larger values indicate higher confidence.
Margin theory led to a long line of research with a common goal [10, 12, 24, 43, 44]: find a boosted
classifier f (x) with a large minimal margin1 using few “less accurate classifiers.” This line of research
culminated with the AdaBoostV algorithm [44], which satisfies the following approximation guarantee.
Let p∗ be the best possible minimal margin any linear combination of classifiers from H can achieve on
the training data 〈(x1,y1), . . . ,(xn,yn)〉. AdaBoostV guarantees that it finds a classifier fT (x) with at most
T “less accurate classifiers,” such that fT (x) has minimal margin pT ≥ p∗− v where:

v = O

(√
log(n)

T

)
. (1.2)

It was later conjectured by [40] that AdaBoostV is optimal, that is, no algorithm can promise a better
guarantee than v = Ω(

√
log(n)/T ). Our main contribution is a new algorithm, SparsiBoost, which guar-

antees a better v = O(
√

log(n/T )/T ) and thus refutes the conjecture. Finally, we prove that SparsiBoost
is optimal. From an algorithmic perspective, SparsiBoost presents an algorithmic improvement to the
previous machine learning approximation algorithm AdaBoostV.

Publication [2]. Sections 2.4 and 2.5 concerns margin theory [8]. Margin theory is the motivation
for why [12, 43, 44] want a boosted classifier with a large minimal margin. The goal of a machine
learning classifier is to perform well on “unseen” examples. Formally, one assumes that the training data
S= 〈(x1,y1), . . . ,(xn,yn)〉 contains independently and identically distributed samples (xi,yi)∼D for an un-
known distribution D. The error on “unseen” examples is then the generalization error Pr(x,y)∼D[ f (x)y< 0].
It is difficult to minimize the generalization error because D is unknown. Margin theory address this
difficulty by relating generalization error to margins. Loosely speaking, for a finite set of classifiers H,
Breiman [12] proved that for any “boosting classifiers” f (x), the following holds with high probability
over sampling S∼ Dn:

Pr
(x,y)∼D

[ f (x)y < 0]
︸ ︷︷ ︸

Generalization Error

≤ O
(

ln(|H|) ln(n)

θ̂ 2n

)

︸ ︷︷ ︸
Generalization Upper Bound

where θ̂ := min
i=1,...,n

margin(xi). (1.3)

This allows us to minimize an upper bound on generalization error, by choosing a boosting classifier
f (x) with a large minimal margin on the training data. This is exactly what the minimal margin boosting
algorithms does [10, 12, 24, 43, 44], including our own SparsiBoost [1].

From this perspective, it is desirable that Breiman’s upper bound is tight, that is, one cannot prove
a stronger minimal-margin based upper bound. If one could prove a stronger generalization bound,
SparsiBoost might minimize a sub-optimal upper bound on generalization error. Our main result from [2]
implies that Breiman’s generalization bound is tight. From an algorithmic perspective, our result thus
rules out any potential algorithmic improvements that rely on a stronger minimal margin generalization
upper bound. Finally, our lower bound also applies to a more general case than the minimal margin.
In particular, we can rule out any improvements larger than a multiplicative log(n) factor to the k’th
margin generalization bound [21], which is currently the strongest margin-based generalization bound.

1The minimal margin is θ̂ := minn
i=1 margin(xi).



CHAPTER 1. INTRODUCTION 3

Publication [3]. Chapter 3 concerns faster training of neural networks. Neural networks sometimes
use time-consuming operations on their weight matrices. For example, previous work [31] uses a loss
function that depends on determinants. For a d×d weight matrix W it takes O(d3) time to compute det(W )
naively. Operations like det(W ) are often faster to compute given the Singular Value Decomposition
(SVD) W =UΣV T for diagonal Σ and orthogonal UTU =V TV = I.

|det(W )|= |det(UΣV T )|= |det(U) ·det(Σ) ·det(V T )|= |det(Σ)|=
d

∏
i=1
|Σii|. (1.4)

We can then compute det(W ) in O(d) time, however, computing the SVD takes O(d3) time. Previous
work mitigates the O(d3) time SVD computation by representing W implicitly in its SVD [52]. In theory,
their technique allows faster determinant computations, however, in practice, we find no improvements.
The poor performance in practice occurs because the previous technique is sequential and thus ill-suited
for GPUs. In particular, their method has O(d) sequential stages because the orthogonal matrices U and
V are represented by d Householder matrices. For x,vi ∈ Rd they compute:

x ·U =

Stage 1︷ ︸︸ ︷
x ·H(v1)

Stage 2︷ ︸︸ ︷
· H(v2)

Stage 3︷ ︸︸ ︷
· H(v3) · · ·

Stage d︷ ︸︸ ︷
· H(vd) where H(v) := I−2

vvT

||v||22
. (1.5)

We mitigate this issue with a new algorithm, FastH, which, for a batch size b reduces the number of
sequential stages from O(d) to O(d/b+b). In practice FastH is faster than the sequential algorithm, fast
enough to speed up determinant computations, see Figure 1.2.

From an algorithmic perspective, FastH presents an algorithmic improvement for determinant compu-
tations in Neural Networks. That said, the use of SVDs with FastH goes beyond matrix determinants,
in particular, one can achieve algorithmic improvements for several matrix operations used during the
training of Neural Networks, we present four such examples in Section 3.1.1. Finally, during the writing
of this thesis, we improved FastH by reducing the number of sequential stages from O(d/b+ b) to
O(d/b+ log(b)). We present this improvement in Section 3.4.1.
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Figure 1.2: Time on a GPU when running (1) the naive sequential algorithm from [52], (2) time of O(d3)
determinant computation with PyTorch [41], and (3) our FastH algorithm. FastH is much faster than the
sequential algorithm, it is even fast enough to speed up determinant computations for neural networks.



Chapter 2

Boosting

Much of machine learning boils down to classifying data. As a result, there are many different types
of machine learning classifiers, e.g., support vector machines [17], decision trees [20], and neural
networks [22]. Instead of creating yet another type of machine learning classifier, one may ask if it is
possible to combine classifiers like decision trees “boosting” their individual accuracy. This is possible
with boosting algorithms, which construct a single joint “accurate classifier” by combining several “less
accurate classifiers.”

In machine learning, one gathers independent and identically distributed examples which are split
into training and validation data. The training data is used to train a classifier which is “tested” using the
validation data. During training, validation error may worsen even though training error is improving,
i.e., the classifier is “overfitting” the training data. AdaBoost [19], perhaps the most famous boosting
algorithm, has been found to experience a surprising phenomenon related to overfitting. As demonstrated
by [8], validation error can continue to improve even after reaching 0% training error, see Figure 2.1.

Figure 2.1: Figure from [8]. AdaBoost constructs a joint classifier in iterations: at the t’th iteration, a new
classifier is added which rectifies the mistakes of the previous t−1 classifiers. Just 5 classifiers achieve
0% training error while subsequent training improves validation error.

This generalization phenomenon is desirable, however, it has proven difficult to explain. Arguably,
the most prominent explanation is margin theory [8]. Many algorithms were developed to utilize the
generalization phenomena as described by margin theory [10, 12, 24, 43, 44]. Prior to our work, the state-
of-the-art was AdaBoostV [44]. As alluded to in the introduction, AdaBoostV satisfies a “margin-based”
approximation guarantee. Our algorithm, SparsiBoost [1], has a provably better guarantee. Furthermore,
we manage to prove a lower bound that matches SparsiBoost. In a certain sense, this means that one
cannot hope for a better guarantee than that provided by SparsiBoost. We outline the development from
AdaBoost and AdaBoostV to SparsiBoost in Section 2.1.

4



CHAPTER 2. BOOSTING 5

2.1 From Prior Boosting Algorithms [19, 44] to Our Results [1]

For the sake of simplicity, we consider AdaBoost for binary classification, that is, we are given n training
examples xi ∈ X with labels yi ∈ {±1}. The goal of AdaBoost is to combine individual classifiers
ht : X →{±1} into a “more accurate” classifier C(x).

C(x) = sign( f (x)) where f (x) =
T

∑
t=1

αtht(x) for αt ∈ R. (2.1)

All hypotheses h1, . . . ,hT come from a hypothesis set H, e.g., decision trees or neural networks. AdaBoost
produces the joint classifier C in iterations: at the t’th iteration, AdaBoost trains ht on a reweighed version
of the training data, and assigns ht a carefully chosen weight αt . Informally, [18] proved that the
error of C decreases exponentially fast in T if each ht is “slightly better than random guessing.” In
particular, if we let εt be the error of ht on the reweighed training data, then C has error no larger than
exp(−2∑

T
t=1(1/2− εt)

2) on the original training data. As a result, if all εt ≤ 1/2− c for a fixed c > 0,
then f has error less than 1/n after O(logn) iterations, i.e., it perfectly classifies the training data after
T = O(logn) iterations.

This may raise concerns for overfitting. Surprisingly, continued training after reaching zero training
error can improve validation error. For example, in Figure 2.1 we see that AdaBoost reaches 0% training
error after only 5 iterations, however, further training continues to decrease validation error. The most
prominent attempt at explaining this phenomenon was pioneered by [8] which relies on margins.

margin(x) := yF(x) where F(x) =
f (x)

∑
T
t=1 |αt |

(2.2)

Note that F is just a scaled version of f that ensures F(x)∈ [−1,+1] and thus margin(x)∈ [−1,1]. It may
be useful to think of margin(x) as a number that indicates how much F struggles with a training example
x. If margin(x) is positive C(x) is correct, and larger margin(x) indicates that F(x) is more “confident.”
Experimentally, [8] found that continued training lead to better (larger) margins on the training data.
For example, consider the classifier in Figure 2.1 when it had T = 5 and T = 100 hypotheses. The
T = 100 hypotheses have better validation error but also much better (larger) margins, see Figure 2.2.

Figure 2.2: Figure from [8]. Each line depicts a classifier, we only consider the two dashed lines (T = 5
and T = 100). The plot shows the cumulative distribution of margin, e.g., for T = 5 it shows that roughly
10% of training data has a margin ≤ 0.5.

Inspired by their experimental findings, [8] subsequently proved a margin-based generalization bound,
which, informally, states that larger margins lead to a smaller error on new unseen samples (assuming the
unseen samples and the training samples are independently and identically distributed). One refers to the
error on new unseen samples as “out-of-sample error” since it is the error “outside” the training samples.
Further research led to several improved generalization bounds [8, 12, 21]. Of these, perhaps the simplest
is due to Breimann [12], which we now explain.



CHAPTER 2. BOOSTING 6

A voting classifier is a linear combination f (x) = ∑
T
t=1 αtht(x) if all αt are non-negative and ∑t αt = 1.

For simplicity we consider hypothesis sets H where h∈H implies−h∈H, this allows us to assume αt ≥ 0
by exchanging h and −h. Furthermore, we can scale α j = α j/(∑t αt) without changing the prediction of
C(x). We may thus view the output of AdaBoost as a voting classifier. Notably, Breimann’s generalization
bound states that with high probability over sampling training data S = 〈(x1,y1), . . .(xn,yn)〉 ∼ Dn from
an unknown distribution D, it holds that every voting classifier f satisfies the following inequality:

Pr
(x,y)∼D

[ f (x)y < 0]
︸ ︷︷ ︸

Out-of-sample Error

≤ O
(

log |H| logn
θ 2n

)

︸ ︷︷ ︸
Upper Bound

where θ :=
n

min
i=1

margin(xi).
︸ ︷︷ ︸

Minimal Margin

(2.3)

This variant of Breiman’s bound relies on log |H| and assumes H is finite. One can attain a similar bound
for infinite H by using the famous Vapnik-Chervonenkis (VC) dimensions [49]. The key insight from
Breiman’s bound is that the upper bound decreases with larger minimal margin θ . This suggests that a
larger minimal margin leads to smaller out-of-sample error. Indeed, if we carefully inspect Figure 2.2
and Figure 2.1, we find that the classifier with the largest minimal margin had the lowest validation
error (validation error attempts to approximate out-of-sample error). In particular, the classifier with
T = 5 hypotheses attains a minimal margin around 0.2 with 7% validation error, while the classifier with
T = 100 hypotheses has a minimal margin 0.5 with 3% validation error.

One may then suspect the generalization phenomena relates to margins. However, AdaBoost does not
explicitly maximize the minimal margin. This lead Breimann to introduce an algorithm Arc-GV which
explicitly maximizes the minimal margin [12] which was followed by many subsequent algorithms [10,
24, 43, 44]. Some of these algorithms have provable guarantees for how good the minimal margin of the
produced classifier is. Of these, the best bound is attained by AdaBoostV [44], which we now explain.
Suppose the best possible minimal margin of any voting classifier on the given training data is p∗

p∗ = max
a>0

min
i

yi · ∑h∈H αhh(xi)

∑h∈H αh
. (2.4)

AdaBoostV promises to return a classifier f (x) = ∑
T
t=1 αtht(x) with minimal margin p = p∗− v with an

additive “error” v = O(
√

log(n)/T ). To be consistent with the literature, we shall say that f (x) has a
“gap” v. The number of hypotheses T is linearly proportional to training and prediction time. It is thus
desirable to attain a better (smaller) “gap” using the same number of hypotheses. From an algorithmic
point of view, AdaBoostV is very elegant. The only change relative to AdaBoost is the computation of αt

which indirectly alters the reweighing of the training data.
After AdaBoostV there was no improvements to the v = O(

√
log(n)/T ) bound. This lead [40] to

wonder whether it is impossible to improve AdaBoostV. To this end, [40] pointed out that a seemingly
unrelated lower bound [32] has the following consequences: there exists training data (x1,y1), . . . ,(xn,yn)
and a hypothesis set H such that for any T ∈ [log(n);

√
n] the gap will be at least v = Ω(

√
log(n)/T ).

This means that AdaBoostV is optimal whenever T ∈ [log(n);
√

n]. Furthermore, [40] conjecture that this
lower bound holds for all T ≤ c ·n for some constant c > 0. If true, AdaBoostV would attain the optimal
trade-off between hypotheses T and gap v = Θ(

√
log(n)/T ). Their conjecture was published as an open

problem at the Journal of Machine Learning Research.
We refute the conjectured lower bound from [40] by introducing a new algorithm called Sparsi-

Boost. Assuming T ≤ n/2 SparsiBoost promises a gap v = O(
√

log(n/T )/T ).1 For some T , the
SparsiBoost upper bound v = O(

√
log(n/T )/T ) is better (smaller) than the AdaBoostV upper bound

v = O(
√

log(n)/T )). This is easiest to see in the extreme case where T = n/2. In this case, AdaBoostV
promises v = O(

√
2log(n)/n) = O(

√
log(n)/n) which is asymptotically worse (larger) than SparsiBoost.

v = O

(√
2

log(2 ·n/n)
n

)
= O

(√
1
n

)
. (2.5)

1The T ≤ n/2 ensures that log2(n/T )≥ 1 6= 0. See the full article for general T .
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More generally, SparsiBoost promises an asymptotically better (smaller) v for any T = n1−o(1) since

v = O

(√
log(n/n1−o(1))

T

)
= O

(√
log(no(1))

T

)
= o

(√
log(n)

T

)
. (2.6)

If SparsiBoost is asymptotically better than AdaBoostV, and AdaBoostV matches the [40, 32] lower
bound, it may seem that SparsiBoost violates the lower bound. This is not the case because the lower
bound only holds for T ∈ [log(n);

√
n]. Indeed, for the relevant parameters, the SparsiBoost upper bound

becomes v = O(
√

log(n/T )/T ) = O(
√

log(n)/T ) which does not violate the lower bound.
Notably, SparsiBoost explains why both [32] and [40] could not extend the v = Ω(

√
log(n)/T )

lower bound to hold for all T ≤ c · n for some constant c > 0: such a lower bound is false. This
made us consider whether we could prove the “less restrictive” lower bound v = Ω(

√
log(n/T )/T )

for T ≤ c · n for some constant c > 0. In particular, we proved that there exists training examples
(x1,y1), . . . ,(xn,yn) and a hypothesis set H such that for all relevant values of T , the gap will be at least
Ω(
√

log(n/T )/T ). This implies that SparsiBoost attains the optimal trade-off between hypotheses T and
gap v = Θ(

√
log(n/T )/T ). The following Section 2.2 sketches the core ideas underlying SparsiBoost,

emphasizing our sparsification result which may be of independent interest.

Doubts on Margin Theory. Breiman [12] raised doubts on margin theory. He found that Arc-GV
experimentally got better margins than AdaBoost on 98 percent of the training data. Margin theory would
thus predict Arc-GV generalizes better, however, experimentally AdaBoost attained the best validation
error. It was later found by [45] that the comparison was “unfair.” See the full article for these details.

2.2 Our Algorithm: SparsiBoost [1]

High-level idea. SparsiBoost uses AdaBoostV to train c ·T hypotheses for a carefully chosen c > 1,
even though we must output only T hypotheses. AdaBoostV promises that the resulting classifier has a
gap of at most v = O(

√
log(n)/(cT )) which, for the correct choice of c, is much better (smaller) than our

goal v = O(
√

log(n/T )/T ). SparsiBoost then carefully removes the additional cT −T hypotheses while
attempting to preserve all margins. The resulting T hypotheses has a gap v = O(

√
log(n/T )/T ).

Sketch. Let fcT (x) = ∑
cT
t=1 wtht(x) be the classifier returned from AdaBoostV with weights w ∈ RcT .

We want to remove the additional cT − T hypotheses while attempting to preserve margin(xi) for
i = 1, . . . ,n. Let U be an n× cT matrix that contains the margin of all hypotheses h1, . . .hcT on all
training examples x1, . . .xn, that is, Ui j = yih j(xi). We can normalize w = w/||w||1 without changing the
predictions of sign( f (x)). This conveniently lets us compute margins by

(Uw)i = yi
∑

cT
t=1 wtht(xi)

||w||1
= margin(xi) such that (2.7)

pcT : = “minimal margin of fcT (x)” = min
i
(Uw)i. (2.8)

Removing the additional cT −T hypotheses while preserving all margins can then be phrased as follows:
find a vector w′ ∈RcT with ||w′||1 = 1 that has at most T non-zero entries ||w′||0 ≤ T such that “the error”
||Uw−Uw′||∞ is not too large. 2 Our Sparsification Theorem allows us to do exactly this.

Theorem 1. (Sparsification Theorem [1]) For U ∈ [−1,1]n×m,w ∈ Rm where ||w||1 = 1,T ≤ m and
n/T ≥ 2 there exists a vector w′ where ||w′||1 = 1 and ||w′||0 ≤ T so ||Uw−Uw′||∞ = O(

√
log(n/T )/T ).

Using our Sparsification Theorem, we sketch pseudocode for SparsiBoost in Algorithm 1.

2The infinity norm of x ∈ Rd is defines as ||x||∞ := maxd
i=1 |xi|.
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Algorithm 1 SparsiBoost
Input: Training data 〈(x1,y1), . . . ,(xn,yn)〉 and target hypotheses T .
Output: f (x) = ∑t w′tht(x) with gap v = O(

√
log(n/T )/T ) where ||w′||0 ≤ T .

1: Train fcT (x) = ∑
cT
t=1 wtht(x) using AdaBoostV for c = dlog(n)/ log(n/T )e.

2: Let U ∈ [−1,+1]n×cT with Ui j = yih j(xi).
3: Normalize w = w/||w||1 and use Theorem 1 to find w′.

Return: f (x) = ∑t w′tht(x).

We now sketch how to prove Algorithm 1 promises a gap v = O(
√

log(n/T )/T ). In line 1, Ad-
aBoostV returns fcT (x) promising a minimal margin pcT with gap v = p∗− pcT = O(

√
log(n)/(cT )).

In line 2, the matrix U is defined such that the minimal margin can be written as pcT = mini(Uw)i. Finally,
in line 3, we use Theorem 1 to compute w′ which is used to construct the output f (x) with a minimal
margin p = mini(Uw′)i. Combining these observations allows us to bound the gap of f (x).

v = p∗− p (2.9)

= (p∗− pcT )+(pcT − p) (2.10)

≤ O(
√

log(n)/(cT ))+ ||Uw−Uw′||∞ (2.11)

≤ O(
√

log(n)/(cT ))+O(
√

log(n/T )/T ). (2.12)

By choosing c = dlog(n)/ log(n/T )e, we get that p∗− p = O(
√

log(n/T )/T ).

Preserving All Margins. Theorem 1 guarantees that ||Uw−Uw′||∞ = maxi |(Uw)i− (Uw′)i| is not
too large. SparsiBoost uses the guarantee to preserve the minimal margin. However, the guarantee is
much stronger than the minimal margin, the guarantee holds for all margins. We can thus use Theorem 1
to reduce the number of hypotheses of any voting classifier while approximately preserving all margins.
We demonstrated this with LightGBM [30], an efficient implementation of Gradient Boosting [36, 30].
We first train T = 500 hypotheses with LightGBM and plot margins at T ′ = 80 and T = 500 in Figure 2.3.
We then “sparsify” the T = 500 classifier from 500 to 80 hypotheses by using Theorem 1. The margins
of the sparsified classifier are more similar to the T = 500 classifier than the T ′ = 80 classifier.

To our surprise, the margins of the T = 500 classifier are typically smaller (worse) than the margins
of the T ′ = 80 classifier. Margin theory thus favors the T ′ = 80 classifier, however, contrary to margin
theory, we found that both the T = 500 classifier and the sparsified classifier have better validation error.
Later work clarifies why margins are insufficient for explaining gradient boosting [23]. Informally, [23]
find that most hypotheses (trees) return near-zero values on all but a few training points, barely altering
most predictions. They prove a generalization bound that incorporates the magnitude of these predictions.
Experimentally, their improved bound seems to predict the performance of gradient boosting.

Figure 2.3: Each line represents a classifier, depicting the cumulative margins as done in Figure 2.2.
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2.3 Our Lower Bound: SparsiBoost is Optimal

We claimed there exists training examples (x1,y1), . . . ,(xn,yn) and a hypothesis set H = {h1, ...,hn} such
that for all relevant values of T , any classifier ∑

T
j=1 w jh j will have a gap of at least Ω(

√
log(n/T )/T ).

Let Ai j := h j(xi)yi ∈ {±1} so the minimal margin of ∑
n
j=1 ŵ jh j(xi) is mini(Aw)i. It then suffices to show

that there exists a matrix A ∈ {±1}n×n such that:

ρ∗ : best (largest) minimal margin︷ ︸︸ ︷
max

w∈Rn, ||w||1=1
min

i
(Aw)i −

ρ∗T : best (largest) minimal margin with ≤ T hypotheses︷ ︸︸ ︷
max

w∈Rn, ||w||1=1, ||w||0≤T
min

i
(Aw)i ≥Ω(

√
log(n/T )/T ) (2.13)

For such a matrix A, any data set X and hypothesis set H for which Ai j = h j(xi)yi implies the lower bound.
The following theorem states a suitable matrix A exists.

Theorem 2. [1] There exists a universal constant C > 0 such that for all sufficiently large n and all T
with lnn≤ T ≤ n/C there exists a matrix A ∈ {±1}n×n such that

1) ρ
∗ ≥ − O(1/

√
n) (2.14)

2) ρ
∗
T ≤ −Ω(

√
lg(n/T )/T ) (2.15)

This leads to a lower bound on the best (smallest) possible gap:

ρ
∗−ρ

∗
T ≥−O(1/

√
n)− (−Ω(

√
lg(n/T )/T ) = Ω(

√
lg(n/T )/T ). (2.16)

Note how point 1 and 2 are contrary to each other. Informally, point 1 states that the data set X is not
too hard for H, in the sense that H can attain a larger (better) minimal margin than −O(1/

√
n). On the

other hand, point 2 states that X is not too easy for H, in the sense that any T hypotheses cannot attain a
larger (better) margin than −Ω(

√
lg(n/T )/T ). These two contrary statements, X is not too hard or too

easy for H, ensures that the gap between ρ∗ and ρ∗T is at least Ω(
√

lg(n/T )/T ).
The first idea is to separate these two contrary points. To this end, we prove that any matrix which

satisfies point 2 can be turned into a matrix that satisfies both points. The following lemma states that
there exists a matrix which satisfies point 2.

Lemma 1. [1] There exists a universal constant C > 0 such that for all sufficiently large n and all T with
ln(n)≤ T ≤ n/C, there exists B ∈ {±1}n×n such that for every w ∈ Rn with ||w||0 ≤ T and ||w||1 = 1

min
i
(Bw)i ≤−Ω(

√
ln(n/T )/T ) (2.17)

We now prove Theorem 2 using Lemma 1.

Proof. Let B ∈ {±1}n×n satisfy Lemma 1. Spencer’s theorem [1] states that there exists a vector x ∈
{±1}n such that ||Bx||∞ = O(

√
n ln(en/n)) = O(

√
n). Construct a new matrix Ai j = Bi jx j such that the

j’th column is scaled by x j. Let vi = 1/n then Av = Bx/n so ||Av||∞ = ||Bx||∞/n = O(
√

n/n) = O(1/
√

n).
Because ||x||∞ := maxi |xi| then mini(Av)i ≥−O(1/

√
n) so A satisfies point 1.

It remains to show that A also satisfies point 2. Consider any w ∈ Rd so ||w||0 ≤ T and ||w||1 = 1.
If we let ŵ j = w j · x j then Aw = Bŵ so mini(Aw)i = mini(Bŵ)i. Note that ŵ satisfies the necessary
conditions because x can only flip signs: x ∈ {±1}n implies ||ŵ||1 = ||w||1 = 1 and ||ŵ0||= ||w||0 ≤ T .
As a result mini(Aw)i = mini(Bŵ)i ≤−Ω(

√
ln(n/T )/T ) so A satisfies point 2.

The proof of Lemma 1 is not a part of this thesis. It can be found in the full ArXiV version [1].
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2.4 From Prior Generalization Bounds [8, 12, 21] to Our Bound [2]

In the previous section, we saw how Breiman’s minimal margin generalization bound [8] led to the
development of several algorithms [10, 24, 43, 44]. Breiman’s generalization bound is particularly
simple because it depends only on the minimal margin. There exists other bounds which, in a certain
sense, depends on the margins of all training examples [8, 21, 50]. Similar to how [40] conjectured
it was impossible to improve AdaBoostV, we may question whether it is possible to improve the best
generalization upper bound [21]. Indeed, we managed to prove a margin-based generalization lower
bound, which almost matches the strongest margin-based generalization upper bound. We shall start by
reviewing the previous margin-based generalization upper bounds [8, 12, 21] comparing their relative
strengths. Then, first when we appreciate how the previous upper bounds relate to each other, will we
consider our lower bound.

Recall that ∑t αtht(x) is a voting classifier if αt ≥ 0 and ∑ j α j = 1. The first margin-based gen-
eralization bound was due to Schapire and Freund [8] and takes the following form. Let X be a
set and let D denote an unknown distribution over X ×{−1,+1} and assume we have training data
S = 〈(x1,y1), . . . ,(xn,yn)〉 where (xi,yi) ∼ D. Then, with high probability over sampling S from Dn, it
holds for every margin θ ∈ (0,1] that all voting classifiers f satisfies:

Pr
(x,y)∼D

[ f (x)y < 0]
︸ ︷︷ ︸
Eout : out-of-sample error

≤ Pr
(x,y)∼S

[y f (x)< θ ]

︸ ︷︷ ︸
PrS,θ : fraction of S with margin <θ

+ O




√
log(|H|) log(n)

θ 2n︸ ︷︷ ︸
ΩSF : “complexity” term


 (2.18)

The left-hand side is the out-of-sample error Eout . We want a classifier f that minimizes Eout . This is
difficult because Eout depends on D, which is an unknown distribution. In particular, the only information
we have about D stem from S which contains n independently and identically distributed samples
(xi,yi)∼D. Since the upper bound in Equation (2.18) holds for any voting classifier, we may instead find
a voting classifier f that minimizes the upper bound. Informally, the upper bound is small for f which
have large margins on a large fraction of S.

The upper bound consists of two parts: PrS,θ and ΩSF . The first part PrS,θ uses the notation “(x,y)∼ S”
which means that (x,y) are drawn uniformly at random from S. As a result, PrS,θ is the fraction of training
examples (x,y) from S where margin(x) = y f (x)< θ . The second part ΩSF depends on |H| which limits
how “complicated” the hypothesis set H can be.3 Furthermore, ΩSF decrease with larger θ . The margin
θ thus controls a trade-off between PrS,θ and ΩSF . A large θ improves (decreases) ΩSF but weakens
(increases) Pr(x,y)∼S. We can minimize PrS,θ during training by finding a voting classifier f that maximizes
the margins of most training examples. This is what we meant by “informally, the upper bound is small
for f with large margins on a large fraction of S” in the previous paragraph.

As we have previously seen, Breiman [12] introduced a generalization bound that depends only on
the minimal margin. We restate it here for convenience. With high probability over sampling S∼ Dn it
holds for all voting classifiers f that:

Pr
(x,y)∼D

[ f (x)y < 0]
︸ ︷︷ ︸
Eout : out-of-sample error

≤ O




log(|H|) log(n)

θ̂ 2n︸ ︷︷ ︸
ΩB: “complexity” term


 where θ̂ :=

n
min
i=1

margin(xi).
︸ ︷︷ ︸

minimal margin

(2.19)

The Schapire-Freund bound holds for every margin θ ∈ (0,1], so we can compare it to Breiman’s bound by
considering the special case where θ = θ̂ . This simplifies the Schapire-Freund bound because PrS,θ̂ = 0,

i.e., there are 0 points in S that have a smaller margin θ than the minimal margin θ̂ .

3We assume H is finite. A similar bounds can be proven for infinte H if one replaces |H| by d log(n) where d is the
Vapnik–Chervonenkis (VC) dimension of H. This is true for all three bounds in this section [8, 12, 21].
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Pr
(x,y)∼D

[ f (x)y < 0]
︸ ︷︷ ︸
Eout : out-of-sample error

≤ O




√
log(|H|) log(n)

θ̂ 2n︸ ︷︷ ︸
ΩSF : “complexity” term




where θ̂ :=
n

min
i=1

margin(xi).
︸ ︷︷ ︸

minimal margin

(2.20)

The only difference between these two bounds is a square root in the complexity terms, that is, ΩSF =
√

ΩB.
We care about probabilities < 1 so the square root increases (weakens) the upper bound, therefore
Breiman’s bound is the stronger bound. Even though Breiman’s bound is stronger, the minimal margin is
very sensitive to outliers. In particular, one adversarially chosen outlier may force the minimal margin to
be negative such that Breiman’s bound does not apply.

The currently strongest bound is the k’th margin bound due to [21] which interpolates between the
Schapire-Freund bound and Breiman’s bound. The k’th margin bound states that with high probability
over S it holds for every margin θ ∈ (0,1] and every voting classifier f that

Pr
(x,y)∼D

[ f (x)y < 0]
︸ ︷︷ ︸

Eout

≤ Pr
(x,y)∼S

[y f (x)< θ ]

︸ ︷︷ ︸
PrS,θ

+O




log(|H|) log(n)
θ 2n︸ ︷︷ ︸
Ωk

+

√√√√√√
Pr

(x,y)∼S
[y f (x)< θ ]

︸ ︷︷ ︸
PrS,θ

log(|H|) log(n)
θ 2n︸ ︷︷ ︸
Ωk




(2.21)
If we choose θ = θ̂ then PrS,θ = 0 and the only term left is Ωk which recovers Breiman’s bound.
Furthermore, O(Ωk +

√
PrS,θ Ωk) is no larger than the corresponding term in the Schapire-Freund bound,

O(Ωk +
√

PrS,θ Ωk) = O(
√

Ωk). This is true because (1) PrS,θ ≤ 1 and (2) the bound is meaningful only
when Ωk < 1 for which Ωk <

√
Ωk. Therefore, the k’th margin bound is, asymptotically, never worse than

the Schapire-Freund bound. This concludes our review of the margin-based generalization upper bounds
from [8, 12, 21]. We now turn our attention towards our own margin-based generalization lower bound.

For simplicity, we start by considering a special case of our generalization lower bound which is
comparable to Breiman’s generalization upper bound. This simplifies everything because we only need to
consider the minimal margin instead of “all margins.” Informally, Breiman’s bound tells us that, with high
probability, all voting classifiers with large (good) minimal margin θ̂ leads to low (good) out-of-sample
error Eout ≤ΩB. Conversely, a matching lower bound would tell us that, with at least some probability,
there exist a voting classifiers with large (good) minimal margin θ̂ which has at least out-of-sample error
Eout ≥ΩB. If this was the case, any improvements to Breiman’s generalization upper bound would violate
our generalization lower bound. We state the special case of our lower bound in the following corollary.

Corollary 1. For every sufficiently large integer N, it holds that for every θ ∈ (1/N,1/40) and every
(θ−2 log(N))1+Ω(1) ≤ n≤ 2NO(1)

that there exists a set X, a hypotheses set H over X and a distribution D
over X×{−1,+1} such that log(|H|) = Θ(log(N)) and with probability at least 1/100 over sampling
S∼ Dn there exists a voting classifier f such that

1 : min
(x,y)∈S

f (x)y
︸ ︷︷ ︸

θ̂ : minimal margin

> θ “good” minimal margin

2 : Pr
(x,y)∼D

[ f (x)y < 0]
︸ ︷︷ ︸

Eout

≥Ω




log(|H|) log(n)
θ 2n︸ ︷︷ ︸
Ωk


 “bad” generalization
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Point 1 tells us that the classifier f attains a minimal margin larger than θ (good minimal margin).
Point 2 tells us that f attains larger generalization error than Ωk (bad generalization). If we insert θ̂ ≥ θ

from point 1 into point 2 we get that

Eout ≥Ω

(
log(|H|) log(n)

θ 2n

)
> Ω

(
log(|H|) log(n)

(min(x,y)∈S f (x)y))2n

)
= Ω

(
log(|H|) log(n)

θ̂ 2n

)
. (2.22)

This matches Breiman’s generalization bound and thus rule out any improvements.
The general case of our lower bound relies on all margins instead of the minimal margin θ̂ . In

particular, it relies on PrS,θ ≤ τ for some τ ∈ [0,49/100]. The inequality PrS,θ ≤ τ means that no more
than a fraction τ of the training examples have margin less than θ , i.e., the voting classifier f attains
overall “good margins” removing the emphasis on the minimal margin. Informally, the theorem states
that there exists a classifier with “good margins” that has out-of-sample error Eout which is (almost) at
least that predicted by the k’th margin bound. It is therefore (almost) impossible to improve the k’th
margin generalization upper bound. We clarify what “almost” means after stating the theorem.

Theorem 3. For every sufficiently large integer N, it holds that for every θ ∈ (1/N,1/40),τ ∈ [0,49/100]
and n so (log(N)/θ−2)1+Ω(1) ≤ n ≤ 2NO(1)

that there exists a set X, a hypothesis set H over X and a
distribution D over X ×{−1,+1} such that log(|H|) = Θ(log(N)) and with probability at least 1/100
over sampling S∼ Dn there exists a voting classifier f so

1. Pr
(x,y)∼S

[y f (x)< θ ]

︸ ︷︷ ︸
PrS,θ

≤ τ “good” margins (2.23)

2. Pr
(x,y)∼D

[ f (x)y < 0]
︸ ︷︷ ︸

Eout

≥ τ +Ω




log(|H|) log(n)
θ 2n︸ ︷︷ ︸
ΩB

+

√
τ · log(|H|)

θ 2n


 “bad” generalization (2.24)

Similar to Corollary 1, point 1 tells us that f attains “good” margins and point 2 tells us that f has
“bad” generalization. If we insert PrS,θ ≤ τ from point 1 into point 2 we see that

Eout ≥ Pr
(x,y)∼S

[y f (x)< θ ]+Ω

(
log(|H|) log(n)

θ 2n
+

√
Pr

(x,y)∼S
[y f (x)< θ ] · log(|H|)

θ 2n

)
(2.25)

Comparing this to Equation (2.21), we see that it is only off by a factor log(n) inside the square root.
This is what we meant by the bound being “almost” tight. It is possible one can improve the k’th margin
bound by this factor log(n), however, further improvements are ruled out by our lower bound.

Algorithmic Variant. Theorem 3 tells us there exists a classifier with good margins and bad gener-
alization error. While this is sufficient for a margin-based generalization lower bound, it says nothing
about any particular training algorithm. We proved a variant of Theorem 3 that holds for all training
algorithms. Informally, it states the following: there exists a hypothesis set H such that for any algorithm
A there exists a distribution D such that, with high probability, the classifier fA,S found by A on a sample
S∼ Dn has bad generalization error. We cannot guarantee that fA,S gets good margins (because we make
no assumptions on A), however, we can guarantee that there exists a classifier with good margins which A
could have chosen.

Deriving Corollary 1. To see Corollary 1 follows Theorem 3, choose τ = 0 so PrS,θ = 0. This means
that there are no points with margin less than θ , that is, the minimal margin must be at least θ̂ > θ .
Furthermore, substituting τ = 0 into point 2 gives exactly the bound in Corollary 1. In the following
section we a variant of Corollary 1 (see Theorem 4) without assuming Theorem 3. The goal of proving
Theorem 4 is to prepare the reader for the much more complicated proof of Theorem 3 in [2].
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2.5 Our Generalization Lower Bound: Breiman’s Bound is Optimal

Our proofs in [2] take up 12 pages. This section sketches the minimal margin special case within 1
page. The goal is to prepare the reader for the more involved proof of Theorem 3 (see Theorem 2 in [2]).
Let C(H) := {∑ j α jh j | h j ∈ H,∑ j α j = 1,α j ≥ 0}. Intuitively, we want a hypothesis set H and a “hard”
distribution D over X , such that, with constant probability over sampling S∼ Dn, there exists a classifier
f ∈C(H) with “good” margins but “bad” generalization error.

Theorem 4. For sufficiently large N, every θ ∈ (1/N,1/40) and n so ln(N)/θ 2 ≤ n1/2 and n ≤ 2NO(1)

there exists a set X, hypothesis set H and distribution D, such that: ln(|H|) = Θ(ln(N)) and with
probability at least 49/100 over sampling S∼ Dn there exists a voting classifier f ∈C(H) such that:

1. min
(x,y)∈S

f (x)y≥ θ “good” minimal margin (2.26)

2. E(x,y)∼D[1 f (x)y<0]≥Ω

(
ln(|H|) lnn

θ 2n

)
“bad” generalization (2.27)

Let X = {x1, ...,xu} with labels l(x) = 1 for all x ∈ X . The distribution D then assigns uniform
probability to all points Prx∼D[x = xi] = 1/u. Let u = O(n/ ln(n)) where n = |S|. By a coupon-collector
argument, one can show that, with probability at least 1/2 over sampling S ∼ Dn, there are at least
n1/2 ≥ ln(N)/θ 2 “unseen” points |X\S|. We then create an “adversarial classifer” which wrongly
classifies a set IS ⊆ X\S containing |IS| = ln(N)/θ 2 “unseen” points. The points in IS from X\S are
chosen uniformly at random.

hS(x) :=

{
1 if x 6∈ IS

−1 if x ∈ IS
(2.28)

Note that hS has the best best possible minimal margin min(x,y)∈S hs(x)y = 1. At the same time, we can
lower bound the generalization error of hS:

Ex∼D[1l(x)hS(x)<0] = ∑
x1,...,xu

1l(xi)hS(xi)<0 ·Pr
D
[xi] = ∑

x∈IS

Pr
D
[x] =

|Is|
u
≥Ω

(
ln(N) ln(n)

θ 2n

)
(2.29)

We now construct the hypothesis set H so ln(|H|) = Θ(ln(N)). Instead of showing the existence of H so
hS ∈C(H), we show that there exists H with a f ∈C(H) such that f “approximates” hS.

Lemma 2. (Claim 5 in [2]) For |X | ≤ 2NO(1)
there exists a hypothesis set H with ln(|H|) = Θ(ln(N)) so

Pr
l ∈R L

[∃ f ∈C(H) : ∀x ∈ X : l(x) f (x)≥ θ ]≥ 1−1/N (2.30)

L := {l ∈ {±1}u : |{li =−1}|= ln(N)/θ
2} (2.31)

By l ∈R L we mean that l is chosen uniformly at random from L.

Note that l(hS) := (hS(x1), . . . ,hS(xu)) ∈ L. We now state Equation (2.33) which we justify below.

1−1/N ≤ Pr
l∈RL

[∃ f ∈C(H) : ∀x ∈ X : l(x) f (x)≥ θ ] (2.32)

= Pr
S∼Dn

[∃ f ∈C(H) : ∀x ∈ X : hS(x) f (x)≥ θ | |X\S| ≥ ln(N)/θ
2 ] (2.33)

The equality is true, because, when we condition on |X\S| ≥ ln(N)/θ 2, the resulting l(hS) are distributed
uniformly at random l(hS) ∈R L. To see why l(hS) ∈R L, recall that Prx∼D[x = xi] = Prx∼D[x = x j] for all
i, j and the points in IS are uniformly random from X\S.

There thus exists H with ln(|H|) = Θ(ln(N)) such that, with probability at least 1/2 · (1−1/N) over
sampling S∼Dn, the following two conditions holds: (1) |X\S| ≥ ln(N)/θ 2 and (2) there exists f ∈C(H)
such that hS(x) f (x) ≥ θ for all x ∈ X . We now show that that for N > 100 the two conditions implies
that, with probability at least 49/100, the resulting f has good minimal margin and bad generalization.
Good minimal margin: note that hS(x) = 1 for x ∈ S, so hS(x) f (x) ≥ θ implies that f (x) ≥ θ for all
x ∈ S. Since y = l(x) = 1 we get that min(x,y)∈S f (x)y ≥ θ as wanted. Bad generalization: because
θ > 0 then sign( f ) = sign(h) so Eout( f ) = Eout(h)≥Ω(ln(|H|) ln(n)/(θ 2n)).



Chapter 3

Neural Networks

Neural networks are currently used in many different domains, e.g., protein structure prediction [27], drug
discovery [42], image classification [33] and natural language processing [13]. Recent work on scaling
laws [13, 26] demonstrate that, empirically, certain neural networks consistently improve when one
increase data, parameters and computing power. While this may not sound too surprising, it suggests that
for areas with practically unlimited data, we can improve machine learning models by simply increasing
computational resources. According to estimates by [6], the amount of computing power used to train
large neural networks increased by a factor 300 000 from 2012 to 2018, see Figure 3.1. On average, this
corresponds to a doubling every 3.4 months, much faster than the historic doubling of the number of
transistors on a microchip every 2 years, commonly referred to as Moore’s law [39]. From this perspective,
algorithmic research presents a desirable alternative to naively increasing our computational budget.
If we identify algorithmic problems within neural network training, we may find faster algorithms that
does exactly the same, which would allow us to use more data and more parameters without increasing
our computational resources. This chapter presents such an algorithmic improvement.
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Figure 3.1: Figure from [6]. Each dot show the total amount of compute used to train a model and the
year the model was published. The compute budget seems to have increased faster than Moore’s law.

What are Neural Networks? The literature contains many different types of neural networks. For our
purposes, it is convenient to start with Fully Connected Neural Networks (FCNNs), and extend to other
types only when we need to. A FCNN is a function f : Rd → Rk composed of affine transformations
Li(x) = Wix+ bi where Wi ∈ Rdi×di+1 ,bi ∈ Rdi+1 and entry-wise non-linearities like σ(x) = max(0,x).
For example, f (x) = L1(σ(L2(x))) is a 2-layer FCNN.

14
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3.1 Neural Networks and the Singular Value Decomposition

Neural networks sometimes use time-consuming operations on their weight matrices. For example,
previous work [31] use a loss function which depends on matrix determinants. For a d×d weight matrix
W it takes O(d3) to compute det(W ) naively. We can compute det(W ) faster given the Singular Value
Decomposition (SVD) W =UΣV T for diagonal Σ and orthogonal UTU =V TV = I. In particular, we can
compute |det(W )|= ∏

d
i=1 |Σii| in O(d) time, however, computing the SVD takes O(d3) time. Previous

work mitigate the O(d3) computation by representing W implicitly in its SVD [52].
We now exemplify neural network training. Consider a neural network n(X) = max(WX ,0.1 ·WX)

where X ∈ Rd×m and W ∈ Rd×d . We want to train n(x) with gradient descent while the loss function
depends on |det(W )| as in [15, 16, 31]. The training loop is sketched in Algorithm 2.

Algorithm 2 Training Loop

1: for i = 1 to k do
2: Take mini-batch X ∈ Rd×m with m examples from the training data.
3: Compute the SVD W =UΣV T .
4: Compute D := log |det(W )|= ∑

d
i=1 log(|Σii|).

5: Take the gradient descent step W =W −η∇W loss( X , n(X), D ) for a step size η > 0.
6: end for

Throughout all of training, line 3 takes O(kd3) time, but allows us to compute line 4 in O(kd) time.
Previous work mitigate the SVD computation in line 3 by implicitly representing W in its SVD [52].
In theory, this reduces the time complexity of line 3 and 4 from O(kd3) to O(kd) time, however, we
find no improvements in practice for d < 512, see Figure 3.2. The poor performance occurs because the
technique from [52] is sequential and thus ill-suited for GPUs. In particular, their algorithm performs
O(d) sequential matrix-vector multiplications. [52] tried to mitigate the poor GPU performance by using a
“more parallel” O(kd3) algorithm. While their O(kd3) algorithm is faster in practice, it is, asymptotically,
no faster than computing the SVD naively. Our main result is a new algorithm, FastH, which reduces
the number of sequential stages from O(d) sequential matrix-vector multiplications to O(d/m+m)
sequential matrix-matrix multiplications without increasing the asymptotic time complexity. This allows
us to use SVDs in Neural Networks much faster than naively computing the SVDs, see Figure 3.2.

64 128 256 512 1024 2048
Dimension of Matrix

2
4
8

16
32
64

128
256
512

M
illi

se
co

nd
s Sequential 

SVD
FastH

Figure 3.2: Time of line 2-4 in Algorithm 2 with different approaches to handling the SVD in line 3.
Seq: time of the sequential algorithm from [52]. SVD: time to compute the SVD using PyTorch [41]
FastH: time of our algorithm.

The use of SVDs with FastH goes beyond matrix determinants. One can achieve algorithmic
improvements for several matrix operations used during training of neural networks, we present four
examples in Section 3.1.1. We then sketch the technique from [52] in Section 3.2 and clarify why it
struggles on GPUs. We subsequently introduce our FastH algorithm in Section 3.3. In Section 3.4.1
we show how to decrease the sequential stages used by FastH from O(d/m+m) to O(d/m+ log(m)).
In Section 3.4.2 we show that O(1) sequential stages are sufficient to “express” the SVD.
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3.1.1 Applications

Many operations used by neural networks can be computed faster when given the SVD. In this subsection
we sketch five different applications.

Determinant. As alluded to earlier, some neural networks [15, 16, 31] need to compute the matrix
determinant |det(W )|. The naive algorithm takes O(d3) time. Using the SVD, we see that

|det(W )|= |det(UΣV T )|= |det(U) ·det(Σ) ·det(V )|= |det(Σ)|=
∣∣∣∣∣

d

∏
i=1

Σii

∣∣∣∣∣ . (3.1)

The SVD thus allows us to compute |det(W )|= |∏d
i=1 Σii| in O(d) time.

Inverse. Some neural networks need to compute matrix inverses [15, 16, 31]. The naive algorithm
takes O(d3) time. Using the SVD, we see that

W−1 = (UΣV T )−1 = (V T )−1
Σ
−1U−1 =V Σ

−1UT . (3.2)

Since Σ is diagonal, we can compute its inverse in O(d) time. This subsequently allows us to compute
W−1x for x ∈ Rd in O(d2) time.

Weight Decay. Regularizers help Neural Networks mitigate overfitting. One of the most popular
regularizers is weight decay, which simply adds ||W ||2F := ∑

d
i, j=1W 2

i j to the loss function. It takes O(d2)

time to compute ∑
d
i, j=1W 2

i j. Using the SVD, we see that

||W ||2F = ||UΣV T ||2F = ||Σ||2F =
d

∑
i=1

Σ
2
ii. (3.3)

The SVD thus allows us to compute weight decay ||W ||2F = ∑
d
i=1 Σ2

ii in O(d) time. Furthermore, the
SVD provides fine-grained control over the singular values Σ11, . . . ,Σdd . For example, we may enforce
Σii ∈ [1± ε] for some small ε > 0 as done in [52].

Spectral Normalization [9, 38]. Some neural networks normalize weights to W =W/(maxi Σii). Usu-
ally, one approximates maxi Σii with the power iteration algorithm [38], which takes O(d2r) time, where
larger r reduces approximation errors. If we have access to the SVD, we have access to Σ and can compute
Σ = Σ/(maxi Σii) in O(d) time.

Taylor Series. We can represent symmetric matrices W =W T in their eigendecomposition W =UΣUT .
For any function with a Taylor expansion f (x) = ∑

∞
t=0 ctxt , we can define a “similar” matrix function

f (W ) := ∑
∞
t=0 ctW t . Given W =UΣUT , we can compute f (W ) =U f (Σ)UT where f (Σ)ii = f (Σii) since

f (W ) =
∞

∑
t=0

ctW t =
∞

∑
t=0

ct(UΣUT )t =
∞

∑
t=0

ctUΣ
tUT =U

(
∞

∑
t=0

ctΣ
t

)
UT =U f (Σ)UT (3.4)

For example, this allows us to compute the matrix exponential [51] eW =UeΣUT in O(d) time.
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3.2 From Prior Work [52] to Our Results [3]

Idea from [52]. Consider Algorithm 2. Instead of computing the SVD in line 3, we are going to
represent W in its SVD such that the gradient update in line 5 updates W while maintaining the SVD.
Informally, this allows us to use the SVD all k steps without computing the SVD k times.

Sketch of [52]. Consider line 5 in Algorithm 2 which computes W = W −η∇W . Instead, we will
update each factor of the SVD W =UΣV T .

U =U−η∇U Σ = Σ−η∇Σ V =V −η∇V . (3.5)

Note that Σ remains diagonal under the update Σ = Σ−η∇Σ. This is not true for the orthogonal matrices
U and V . That is, U may not remain orthogonal after the update U = U −η∇U . This issue can be
resolved by representing the orthogonal matrices as vectors v1, ...,vd ∈ Rd through the following product.

V =
d

∏
i=1

H(vi) where H(v) := I−2
vvT

||v||22
. (3.6)

We call H(v) ∈ Rd×d the Householder matrix for v ∈ Rd . For any v 6= 0 the corresponding Householder
matrix H(v) is orthogonal.1 Since products of orthogonal matrices are orthogonal, it follows that V is
orthogonal. One can further prove that any orthogonal matrix can be represented as the product of O(d)
Householder matrices [48].2 Finally, V remains orthogonal under gradient descent updates vi = vi−η∇vi

if vi 6= η∇vi . We then represent W in its SVD with weights u1, ...,ud ,v1, ...,vd ,σ ∈ Rd .

W =

U︷ ︸︸ ︷[
d

∏
i=1

H(ui)

]
·

Σ︷ ︸︸ ︷
diagonal(σ) ·

V T

︷ ︸︸ ︷[
d

∏
i=1

H(vi)

]
(3.7)

This allows us to implicitly represent W in its SVD. Importantly, our SVD representation supports
gradient descent updates with respect to ui,vi and σ . It normally takes O(d2m) time to compute W ·X
for X ∈ Rd×m. We now argue that if W is represented as in Equation (3.7) we can still compute W ·X in
O(d2m) time. Notice that we can evaluate one Householder multiplication H(v) ·X in just O(dm) time:

H(v) ·X =

(
I−2

vvT

||v||22

)
X = X−2

v(vT X)

||v||22
. (3.8)

We can thus compute 2d Householder multiplications in O(d2m) time, if we evaluate the multiplications
sequentially from right to left. For example, we compute V T ·X as follows:

V T ·X =

Stage d︷ ︸︸ ︷
H(v1) · . . .

Stage 3︷ ︸︸ ︷
H(vd−2) ·

Stage 2︷ ︸︸ ︷
H(vd−1) ·

Stage 1︷ ︸︸ ︷
H(vd) ·X (3.9)

Not faster in practice? In practice, we found that the O(d3) SVD computation is often faster than
the O(d2m) implicit SVD representation. In Figure 3.2, we consider m = 32 and d = 128,256, . . . ,2048.
For d ≤ 512 the O(d3) algorithm was faster than the O(d2m) algorithm. The poor performance of the
O(d2m) algorithm occurs because the big-O notation does not consider constant factors and parallelization.
Parallelization is important because the experiments was performed on a GPU, on which neural networks
are almost exclusively trained. In particular, the O(d2m) algorithm requires us to sequentially evaluate
2d Householder multiplications. In other words, for d = 2048, we are asking our highly parallel GPU to
perform 4096 sequential Householder multiplications.

1To see H(v) is orthogonal try to multiple out H(v)T H(v) and realize it gives the identity matrix I.
2The proof Theorem 1 in [48] is particularly insightful, it utilizes a QR algorithm that relies on Householder matrices.
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3.3 Our Algorithm: FastH [3]

Problem. Given X ∈ Rd×m and v1, . . . ,vd ∈ Rd evaluate H(v1) · · ·H(vd) ·X in O(d2m) time with less
than O(d) matrix-matrix multiplications.

Idea. There are two naive algorithms. Sequential: evaluate ∏
d
i=1 H(vi)X sequentially as done in [52].

Parallel: compute V = ∏
d
i=1 H(vi) by multiplying the Householder matrices together in parallel, then,

afterwards, compute the matrix multiplication V X . The sequential algorithm has good time complexity
but poor parallelization, contrary to the parallel algorithm, which has poor time complexity and good
parallelization. It turns out one can make a hybrid algorithm that is “more parallel” than the sequential
algorithm without increasing the good time complexity.

Solution Sketch. Let us first clarify what we mean by the “sequential” and “parallel” algorithm.
The sequential algorithm computes H1(H2(. . .(HdX) . . .)) in the order indicated by the parentheses.
The order of the parentheses ensures that one only multiples Householder matrices with X instead of
multiplying Householder matrices together. This yields the desired O(d2m) time complexity, however, it
is exactly the order of evaluation that makes the algorithm sequential. In contrast, we can rearrange the
parentheses so the Householder matrices are multiplied together in parallel, e.g., for d = 8 we compute:

V = [(H1 ·H2) · (H3 ·H4)] · [(H5 ·H6) · (H7 ·H8)] (3.10)

This order of parentheses allows us to compute several matrix multiplications in parallel. However, if we
evaluate all d matrix multiplications naively it will lead to a O(d4) time complexity.3 This leads us to a
crucial question. Is it possible to exploit the Householder structure to compute Hi · · ·Hi+t faster? A linear
algebra results from 1987 gives us exactly what we need [11]. We paraphrase their results to our needs
and notation in Lemma 3.

Lemma 3. Given v1, . . . ,vt ∈Rd one can compute A,B ∈Rd×t such that I+ABT = ∏
t
i=1 H(vi) in O(dt2)

time with O(t) sequential matrix-matrix multiplications.

The main idea is then to split v1, . . . ,vd into d/t groups. For each group, we use Lemma 3 to compute A
and B such that Gi = I +ABT equals the product of the i’th group and G1 · · ·Gd/t = ∏

d
i=1 H(vi). We can

compute each Gi in parallel. Furthermore, the structure of Gi allow us to compute GiX in O(dtm) time.

GiX = (I +ABT )X = X +A(BT X) (3.11)

We can finally compute WX by sequentially evaluating G1(G2(. . .(Gd/tX) . . .) in O(dtm ·d/t) = O(d2m)
time. In Algorithm 3, we present high-level pseudo-code for the algorithm.

Algorithm 3 FastH: Pseudocode
1: // step 1 (parallel algorithm)
2: Compute G1, . . . ,Gd/t in parallel using Lemma 3.
3:

4: // step 2 (sequential algorithm)
5: Compute G1(G2 · · ·(Gd/tX) · · ·)

Time Complexity. For general t, step 1 takes O(d/t ·dt2) = O(d2t) time while step 2 takes O(d/t ·
dtm) = O(d2m), for a total time complexity of O(d2(t +m)). If we choose t = m, we get the desired
O(d2m) time complexity.

3Even if we exploit the trick from Equation (3.8) to multiply Pi = HiHi+1 in O(d2) time, we end up with d/2 product
matrices Pi which we need to multiply together. If we do not exploit any structure of the Pi’s this will take O(d3) for each
multiplication leading to O(d4).
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Sequential Matrix-Matrix Multiplications. In step 1, we compute each Gi in parallel. However,
to compute the Gi’s we perform O(t) sequential matrix-matrix multiplications. In step 2, we compute
d/t sequential Gi · X matrix-matrix multiplications. The total number of sequential matrix-matrix
multiplications is thus O(d/t + t). For t = m FastH thus performs O(d/m +m) sequential matrix-
matrix multiplications instead of O(d) sequential matrix-vector multiplications without increasing the
asymptotic time complexity. This concludes our introduction to FastH. The introduction has deliberately
disregarded several details, e.g., all gradient computations. We encourage the curious reader to read the
full version for such details. Furthermore, to fully utilize the parallelism of GPUs, we implemented FastH
in CUDA. The implementation with PyTorch bindings can be found at github.com/alexandermath/fasth.

3.4 Later Improvements

3.4.1 From O(d/t + t) to O(d/t + log(t)) Sequential Stages

The above results are the main content of our article [3] accepted for publication at NeurIPS. At the time
of writing, we managed to decrease (improve) the number of sequential matrix-matrix operations. This
section presents the improved algorithm.

FastH performs O(d/t + t) sequential matrix-matrix multiplications. The “+t” sequential matrix-
matrix multiplications is caused by Lemma 3 from Algorithm 3’s Step 1. It is thus sufficient to improve
Lemma 3 from O(t) to O(log t) sequential matrix-matrix operations, this would make FastH perform the
desired O(d/t + log t) matrix-matrix multiplications. We first sketch Lemma 3 and show why it uses O(t)
matrix-matrix operations. We then show how O(t) can be reduced to O(log t).

Lemma 3 with O(t). Given v1, . . .vt ∈ Rd compute At ,Bt ∈ Rd×t such that I +AtBT
t = ∏

t
i=1 H(vi).

We argue by induction. Base case t = 1: let A1 =−2v1/||v1||2 and B1 = v1 it then holds that I +A1BT
1 =

I−2v1vT
1 /||v1||2 = H(v1) by definition of H(v). Induction step: assume that there exists Ak,Bk ∈ Rd×k

such that I +AkBT
k = ∏

k
i=1 H(vk), we want to show the same is true for k+1. Let a =−2vk+1/||vk+1||2

and b = vk+1 so (I +abT ) = H(vk+1), we then construct Ak+1 and Bk+1 as follows:

I +

Ak+1︷ ︸︸ ︷

| |

Ak (I +AkBT
k )a

| |


 ·

BT
k+1︷ ︸︸ ︷


| |

Bk b
| |




T

= I +Ak ·BT
k +(I +AkBT

k )a ·bT (3.12)

= I +AkBT
k +abT +AkBT

k abT (3.13)

= (I +AkBT
k )(I +abT ) =

k+1

∏
i=1

H(vi). (3.14)

This means that Bt has columns bi = vi which require no computation. It is thus sufficient to compute At .
We iteratively compute Ak+1 by adding a new column (I+AkBT

k )a = ∏
k
i=1 H(vi)a to Ak. We can compute

(I+AkBk)a = a+Ak(Bka) with O(1) sequential matrix-vector multiplications in O(dt) time. It thus takes
O(t) sequential matrix-vector multiplications to compute At in O(dt2) time.

Lemma 3 with O(log t). Assume t is a power of 2. Suppose we could merge (I +AkBT
k ) = ∏

k
i=1 H(vi)

and (I+ ÂkB̂T
k ) = ∏

k
i=1 H(v̂i) into (I+A2kBT

2k) = ∏
k
i=1 H(vi)∏

k
i=1 H(v̂i). We could then compute (At ,Bt)

by merging (At/2,Bt/2) with (Ât/2, B̂t/2). We can recursively compute both (At/2,Bt/2) and (Ât/2, B̂t/2) the
same way. The recursion forms a balanced binary tree where each node represents a merge computation.
Notably, all merge computations (nodes) at the same level of the tree do not depend on each other and
can thus be computed in parallel. As a result, the number of sequential stages is no more than the height
of the tree O(log t). In the following we (1) show how to merge, and (2) prove that all merge steps take
no more than O(dt2) time.

https://github.com/alexandermath/fasth
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We constructively prove how to merge by induction. Base case k = 1: we can merge H(v1) and H(v̂1)
with Lemma 3. Induction step: construct A2k and B2k as follows.

I +

A2k︷ ︸︸ ︷

| |

Ak (I +AkBT
k )Âk

| |




BT
2k︷ ︸︸ ︷


| |

Bk B̂k
| |




T

= I +Ak ·BT
k +(I +AkBT

k )Âk · B̂T
k (3.15)

= I +AkBT
k + ÂkB̂T

k +AkBT
k ÂkB̂T

k (3.16)

= (I +AkBT
k )(I + ÂkB̂T

k ) =
k

∏
i=1

H(vi)
k

∏
i=1

H(v̂i). (3.17)

So B2k has columns v1, . . . ,vk, v̂1, . . . , v̂k which require no computation. We compute A2k by adding the k
columns (I +AkBk)Âk to Ak, which takes O(dk2) time and O(1) sequential matrix-matrix multiplications.

It is now left to show that all merge computations take no more than O(dt2) time. Consider all merge
computations ((Ak,Bk),(Âk, B̂k)) of size k = 2i. There are t/(2 · k) = t/2i+1 such merge computations,
each take O(dk2) = O(d2i·2) time, so for size k = 2i all merges take O(t/2i+1 ·d2i·2) = O(dt2i−1) time.
The time to merge all sizes k = 20,21, . . . ,2log(t)−1 is thus:

O

(
log2(t)−1

∑
i=0

dt2i−1

)
= O(dt2) (3.18)

This allows us run FastH in O(d2t) time with O(d/t + log(t)) sequential matrix-matrix multiplications.
We note that the above “merge generalization” was introduced by [11], however, they were unable to use
it in their QR algorithm because the Householder matrices are computed sequentially (step 1 on page
12 is computed by Algorithm 4.1). The reason it works in our setting, is that we need not compute the
Householder vectors sequentially, we already know all of them because they are our weights.

3.4.2 O(1) Sequential Stages are Sufficient for Expressivity [4]

The sequential algorithm from [37, 52] computes H(v1) · · ·H(vd) ·X in O(d2m) time with O(d) sequential
matrix-vector multiplications. Informally, the main difficulty lies in handling the d Householder matrices.
FastH groups these d matrices and rely on the WY decomposition to use only O(d/m+ log(m)) sequential
matrix-matrix multiplications without increasing the time complexity. This is faster than computing the
SVD, however, there is still room for improvement. In particular, one may wonder whether it is possible
to create an algorithm with just O(1) sequential stages.

This lead us to consider a different approach. Instead of using d Householder matrices, we tried to
find a way to compute a Householder vector v = f (x) such that one Householder matrix H( f (v)) can
represent any product of Householder matrices. In other words, can we find a function f : Rd → Rd

such that H( f (x))x = ∏
d
i=1 H(vi)x = Ux for x ∈ Rd? This would allow us to perform any orthogonal

transformation with just one sequential multiplication (excluding those used to compute f ).
Since neural networks are universal function approximators, it seemed likely that a sufficiently

powerful neural network f would be capable of finding a Householder transformation specific for x such
that H( f (x))x = Ux. However, it turns out that we do not even need a neural network, if we choose
f (x) = (I−U)x it holds that H( f (x))x = Ux for any x ∈ Rd . The proof is surprisingly simple if one
accepts the following fact: for x,y∈Rd with ||x||2 = ||y||2 then H(x−y)x = y. Using this fact, we see that
for W = I−U it follows that H(Wx)x = H(x−Ux)x =Ux for all x ∈ Rd because orthogonal matrices U
preserve norm ||Ux||= ||x||. Notably, the transformation g(x) = H(Wx)x takes O(d2m) time to compute
for m examples while using only O(1) sequential multiplications.

We intended to use g(x) in invertible neural networks [15, 16, 31], however, it is not clear whether
g(x) is invertible.
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Problem. Given y = g(x) = H(Wx)x and invertible W is x unique and can we compute x?

At first glance this problem may seem trivial. The main difficulty arise from the way y depends on x
in two ways, which makes it hard to solve for x. Nonetheless, we managed to find conditions on W for
which y = H(Wx)x has an unique solution x. 4 Unfortunately, the restrictions on W are rather strict: we
require that W =W T and put an awkward inequality on the eigenvalues 2/3 ·λmin(W )> λmax(W ).

Theorem 5. Let g(x) = H(Wx)x with g(0) := 0, then g is invertible on Rd with d ≥ 2 if W =W T and W
has eigenvalues which satisfy 3/2 ·λmin(W )> λmax(W ).

Proof Sketch. We want to show that g is invertible, i.e., for invertible W =W T ∈ Rd we want to show
that for every y ∈ Rd there exists an unique x such that y = g(x) = H(Wx)x. Our first insight is to show
that g is invertible on Rd if f is “approximately invertible” on the unit sphere Sd−1 = {x ∈Rd | ||x||22 = 1}.
The notion of “approximately invertible” we use is that g(x) has a non-zero Jacobian determinant

J := det
(

∂g(x)
∂x

)
6= 0. (3.19)

It then suffices to show that g has a non-zero Jacobian determinant on the unit sphere Sd−1. We then
prove the following formula for the Jacobian determinant of g(x).

J = H(Wx)A−2
WxxTW
||Wx||2 where A = I−2

xTW T x
||Wx||2 W. (3.20)

This formula has a lot of structure. Besides containing a Householder multiplication, we can write it as a
rank-1 update, i.e., the formula has the form M+uvT for a matrix M and vectors u,v. This allows us to
use the matrix determinant lemma det(M+uvT ) = det(M)(1+ vT M−1u) to prove that

det(J) =−det(A)


1+2 · v

T A−1u
||u||2︸ ︷︷ ︸

Γ


 where vT = xTW, u =Wx and A = I−2

xTW T x
||Wx||2 W.

Notice that det(J) 6= 0 if both det(A) 6= 0 and 1+2 ·Γ 6= 0. We can bound Γ by an interval that depends
on the eigenvalues of A−1, because Γ cannot attain a larger (or smaller) value than when u = v is the
eigenvector of A−1 with the largest (or smallest) eigenvalue. The eigenvalue bound on Γ allows us to
prove 1+2 ·Γ 6= 0 if W T =W and 2/3 ·λmin(W )> λmax(W ). This condition also ensures that A−1 exists
which means that det(A) 6= 0.

4The proof was based on helpful discussion with Mikael Møller Høgsgaard, Chris Schwiegelshohn, Allan Grønlund, Kasper
Green Larsen and Ben Grossmann. The discussion with Ben went through the online forum www.math.stackexchange.com and
can be found online.
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3.5 Related Work

Orthogonal Matrices in Neural Networks. Training of Neural Networks can be halted by exploding
or vanishing gradients. To mitigate this issue, [7] suggested using unitary matrices UTU = I where U
is the complex conjugate of U ∈ Cd×d . Unitary matrices preserve norms ||Ux||2 = ||x||2 for any x ∈ Cd ,
which ensures that the norm of gradients do not explode or vanish during training. They chose to represent
an unitary matrix U with O(d) parameters so UX takes O(md logd) time to compute for X ∈Rd×m. Their
representation cannot represent all unitary matrices.

The work by [37] proved, loosely speaking, that for the type of neural network used in [7], one can
represent a neural network with “small” unitary matrices by another neural network with “slightly larger”
orthogonal matrices. This led [37] to represent an orthogonal matrix Q ∈ Rd×d with O(d) Householder
matrices. Their representation can represent any orthogonal matrix using O(d2) parameters, and it takes
O(d2m) time to compute Q ·X . To mitigate the slow O(d) sequential stages, their experiments less than d
Householder matrices, e.g., they used 16 Householder matrices to represent a 128×128 matrix.

The work by [25] represents an orthogonal matrix using a scaled Cayley transform (I+W )−1(I−W )D
for a skew symmetric matrix W T = −W and a diagonal matrix D. Their representation takes O(d2)
parameters and can express any orthogonal matrix, however, in general the matrix inversion takes O(d3)
time to compute. Notably, they circumvent O(d) sequential stages.

The work by [34] represents orthogonal matrices by using the matrix exponential eW of a skew
symmetric matrix W T =−W . Their representation uses O(d2) parameters and can express any orthogonal
matrix with det(Q) = +1 but not those with det(Q) =−1. They approximate eW to machine precision
using a O(d3) time algorithm, circumventing O(d) sequential stages.

The work by [52] extended the use of orthogonal matrices from [37] to represent a matrix W in its
SVD W =UΣV T . While W is not norm-preserving, the SVD allows them to bound how much W can
skew norms by fixing the singular values Σii ∈ [1± ε]. Their representation also relies on Householder
matrices. To circumvent the many sequential operations, they suggest using a O(d3) algorithm to compute
the product of the d Householder matrices.

Our work [3] represents Q by d Householder matrices, which use O(d2) parameters and can represent
any orthogonal matrix. FastH computes Q ·X in O(d2m) time with O(d/m+ log(m)) sequential stages.
For m > 1 this circumvents both the O(d) sequential stages and the O(d3) time complexity. To do this
FastH utilizes techniques similar to those found in “parallel” QR algorithms [11, 46]. The main difference
between FastH and “parallel” QR algorithms, is that FastH is given Householder matrices and asked to
compute H1 ·Hd ·X , while QR algorithms are given A and asked to compute QR = A where Q = H1 · · ·Hd .
This difference is important, because it allows us to circumvent sequentially computing Hi+1 dependent
on Hi · · ·H1 ·A

Simultaneously to our work, [35] tried to mitigate the O(d) sequential stages of the Householder
approach by using the CWY decomposition Q = I−US−1UT for triangular S. Their method relies on
a matrix inversion, which in general takes O(d3) time. That said, they only need to invert a triangular
matrix, for which they could use the backward substitution algorithm to compute S−1X in O(d2m) time
but O(d) sequential stages.
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Optimal Minimal Margin Maximization with Boosting

Allan Grønlund*† Kasper Green Larsen‡ Alexander Mathiasen§

Abstract

Boosting algorithms produce a classifier by iteratively combining base hypotheses. It has
been observed experimentally that the generalization error keeps improving even after achieving
zero training error. One popular explanation attributes this to improvements in margins. A
common goal in a long line of research, is to maximize the smallest margin using as few base
hypotheses as possible, culminating with the AdaBoostV algorithm by [Rätsch and Warmuth,
2005]. The AdaBoostV algorithm was later conjectured to yield an optimal trade-off between
number of hypotheses trained and the minimal margin over all training points [Nie et al., 2013].
Our main contribution is a new algorithm refuting this conjecture. Furthermore, we prove a
lower bound which implies that our new algorithm is optimal.

1 Introduction

Boosting is one of the most famous and succesful ideas in learning. Boosting algorithms are meta
algorithms that produce highly accurate classifiers by combining already existing less accurate clas-
sifiers. Probably the most famous boosting algorithm is AdaBoost by Freund and Schapire [Freund
and Schapire, 1995], who won the 2003 Gödel Prize for their work.

AdaBoost was designed for binary classification and works by combining base hypotheses
learned by a given base learning algorithm into a weighted sum that represents the final classifier.
This weighed set of base hypotheses is constructed iteratively in rounds, each round constructing a
new base hypothesis that focuses on the training data misclassified by the previous base hypotheses
constructed. More precisely, AdaBoost takes training data D = {(xi , yi ) | xi ∈ Rd , yi ∈ {−1,+1}}n

i=1
and constructs a linear combination classifier sign(

∑T
t=1αt ht (x)), where ht is the base hypothesis

learned in the t ’th iteration and αt is the corresponding weight.
It has been proven that AdaBoost decreases the training error exponentially fast if each base

hypothesis is slightly better than random guessing on the weighed data set it is trained on [Freund
et al., 1999]. Concretely, if εt is the error of ht on the weighed data set used to learn ht then the
linear combination has training error at most exp(−2

∑T
t=1 (1/2−εt )2). If each εt is at most a half

minus a fixed constant, then the training error is less than 1/n after O(lgn) rounds which means the
all training points are classified correctly. Quite surprisingly, experiments show that continuing the
AdaBoost algorithm even after the training data is perfectly classified, making the model more and
more complex, continues to improve generalization [Schapire et al., 1998]. The most prominent
approach to explaining this generalization phenomenon considers margins [Schapire et al., 1998].

*All authors contributed evenly.
†Aarhus University. Email: jallan@cs.au.dk.
‡Aarhus University. Email: larsen@cs.au.dk. Supported by a Villum Young Investigator Grant and an AUFF Starting Grant.
§Aarhus University. Email: alexander.mathiasen@gmail.com. Supported by an AUFF Starting Grant.
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The margin of a point xi is

margin(xi ) = yi
∑T

t=1αt ht (xi )
∑T

t=1|αt |
.

For binary classification, if each ht (x) ∈ [−1,+1], then the margin of a point is a number between
-1 and +1. Notice that a point has positive margin if it is classified correctly and negative margin
if it is classified incorrectly. It has been observed experimentally that the margins of the training
points usually increase when training, even after perfectly classifying the training data. This has
inspired several bounds on generalization error that depend on the distribution of margins [Schapire
et al., 1998, Breiman, 1999, Koltchinskii et al., 2001, Wang et al., 2008, Gao and Zhou, 2013]. The
conceptually simplest of these bounds depend only on the minimal margin, which is the margin
of the point xi with minimal margin. The point xi with minimal margin can be interpreted as the
point the classifier struggles the most with. This has inspired a series of algorithms with guarantees
on the minimal margin [Breiman, 1999, Grove and Schuurmans, 1998, Bennett et al., 2000, Rätsch
and Warmuth, 2002, Rätsch and Warmuth, 2005].

These algorithms have the following goal: Let H be the (possibly infinite) set of all base hypothe-
ses that may be returned by the base learning algorithm. Suppose the best possible minimal margin
on some training data for any linear combination of h ∈H is ρ∗, i.e.

ρ∗ = max
α6=0

(
min

i

yi
∑

h∈Hαhh(xi )∑
h∈H |αh |

)
.

Given some precision parameter v , the goal is to construct a linear combination with minimal
margin at least ρ = ρ∗− v using as few hypotheses as possible. In this case we say that the linear
combination has a gap of v . The current state of the art is AdaBoostV [Rätsch and Warmuth, 2005].
It guarantees a gap of v using O(lg(n)/v2) hypotheses. It was later conjectured that there exists
data sets D and a corresponding set of base hypotheses H, such that any linear combination
of base hypotheses from H must use at least Ω(lg(n)/v2) hypotheses to achieve a gap of v for
any

√
lgn/n ≤ v ≤ a1 for some constant a1 > 0. This would imply optimality of AdaBoostV. This

conjecture was published as an open problem in the Journal of Machine Learning Research [Nie
et al., 2013].

Our main contribution is a refutal of this conjecture. We refute the conjecture by introducing a
new algorithm called SparsiBoost, which guarantees a gap of v with just T =O(lg(nv2)/v2) hypothe-
ses. When v ≤ no(1)/

p
n, SparsiBoost has T =O(lg(no(1))/v2) = o(lg(n)/v2), which is asymptotically

better than AdaBoostV’s T =O(lg(n)/v2) guarantee. Moreover, it also refutes the conjectured lower
bound. Our algorithm involves a surprising excursion to the field of combinatorial discrepancy
minimization. We also show that our algorithm is the best possible. That is, there exists data sets D
and corresponding set of base hypotheses H, such that any linear combination of base hypotheses
from H with a gap of v , must use at least T =Ω(lg(nv2)/v2) hypotheses.

This work thus provides the final answer to over a decade’s research into understanding the
trade-off between minimal margin and the number of hypotheses: Given a gap v , the optimal
number of hypotheses is T =Θ(lg(nv2)/v2) for any

p
1/n ≤ v ≤ a1 where a1 > 0 is a constant. Notice

that smaller values for v are irrelevant since it is always possible to achieve a gap of zero using n +1
base hypotheses. This follows from Carathéodory’s Theorem.

2
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1.1 Previous Work on Minimal Margin

Upper Bounds. [Breiman, 1999] introduced Arc-GV, which was the first algorithm that guaranteed
to find a finite number of hypotheses T <∞ with gap zero (v = 0). As pointed out by [Rätsch and
Warmuth, 2005], one can think of Arc-GV as a subtle variant of AdaBoost where the weights αt of
the hypotheses are slightly changed. If AdaBoost has hypothesis weight αt , then Arc-GV chooses
the hypothesis weight α′

t =αt +x for some x that depends on the minimal margin of h1, . . . ,ht . A
few years later, [Grove and Schuurmans, 1998] and [Bennett et al., 2000] introduced DualLPBoost
and LPBoost which both have similar guarantees.

[Rätsch and Warmuth, 2002] introduced AdaBoostρ , which was the first algorithm to give a
guarantee on the gap achieved in terms of the number of hypotheses used. Their algorithm takes a
parameter ρ ≤ ρ∗ that serves as the target margin one would like to achieve. It then guarantees a
minimal margin of ρ−µ using T =O(lg(n)/µ2) hypotheses. One would thus like to choose ρ = ρ∗.
If ρ∗ is unknown, it can be found up to an additive approximation of v by binary searching using
AdaBoostρ . This requires an additional O(lg1/v) calls to AdaBoostρ , resulting in O(lg(n)/v2) lg(1/v)
iterations of training a base hypothesis to find the desired linear combination of T =O(lg(n)/v2)
base hypotheses. Similar to Arc-GV, AdaBoostρ differs from AdaBoost only in choosing the weights
αt . Instead of having the additional term depend on the minimal margin of h1, . . . ,ht , it depends
only on the estimation parameter ρ.

A few years later, [Rätsch and Warmuth, 2005] introduced AdaBoostV. It is a clever extension
of AdaBoostρ that uses an adaptive estimate of ρ∗ to remove the need to binary search for it. It
achieves a gap of v using T =O(lg(n)/v2) base hypotheses and no extra iterations of training.

Lower Bounds. [Klein and Young, 1999] showed a lower bound for a seemingly unrelated game
theoretic problem. It was later pointed out by [Nie et al., 2013] that their result implies the following
lower bound for boosting: there exists a data set of n points and a corresponding set of base
hypotheses H, such that any linear combination of T ∈ [lgn;

p
n] base hypotheses must have a gap

of v =Ω(
√

lg(n)/T ). Rewriting in terms of T we get T =Ω(
lg(n)/v2

)
for

√
lg(n)/n1/4 ≤ v ≤ a1 for

some constant a1 > 0.
[Nie et al., 2013] conjectured that Klein and Young’s lower bound of v =Ω(

√
lg(n)/T ) holds for

all T ≤ a1 ·n for some constant a1 > 0. Rewriting in terms of T , they conjecture that T =Ω(lg(n)/v2)
holds for

p
a2/n ≤ v ≤ a3 where a2, a3 > 0 are some constants.

1.2 Our Results On Minimal Margin

Our main result is a novel algorithm, called SparsiBoost, which refutes the conjectured lower bound
in [Nie et al., 2013]. Concretely, SparsiBoost guarantees a gap of v with just T = O(lg(nv2)/v2)
hypotheses. At a first glance it might seem SparsiBoost violates the lower bound of Klein and Young.
Rewriting in terms of v , our upper bound becomes v =O(

√
lg(n/T )/T ). When T ≤p

n (the range
of parameters where their lower bound applies), this becomes v = O(

√
lg(n)/T ) which does not

violate Klein and Young’s lower bound. Moreover, our upper bound explains why both [Klein and
Young, 1999] and [Nie et al., 2013] were not able to generalize the lower bound to all T =O(n): When

T = n1−o(1), our algorithm achieves a gap of v =O(
√

lg(no(1))/T ) = o(
√

lg(n)/T ).
The high level idea of SparsiBoost is as follows: Given a desired gap v , we use AdaBoostV to find

m =O(lg(n)/v2) hypotheses h1, . . . ,hm and weights w1, . . . , wm such that
∑

i wi hi achieves a gap of
v/2. We then carefully “sparsify” the vector w = (w1, . . . , wm) to obtain another vector w ′ that has at
most T =O(lg(nv2)/v2) non-zeroes. Our sparsification is done such that the margin of every single

3
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data point changes by at most v/2 when replacing
∑

i wi hi by
∑

i w ′
i hi . In particular, this implies

that the minimum margin, and hence gap, changes by at most v/2. We can now safely ignore all
hypotheses hi where w ′

i = 0 and we have obtained the claimed gap of at most v/2+ v/2 = v using
T =O(lg(nv2)/v2) hypotheses.

Our algorithm for sparsifying w gives a general method for sparsifying a vector while approxi-
mately preserving a matrix-vector product. We believe this result may be of independent interest and
describe it in more detail here: The algorithm is given as input a matrix U ∈ [−1,+1]n×m and a vector
w ∈Rm where ‖w‖1 = 1. It then finds a vector w ′ such that ‖U w−U w ′‖∞ =O(lg(n/T )/T ),‖w ′‖0 ≤ T
and ‖w ′‖1 = 1. Here ‖x‖1 =

∑
i |xi |, ‖x‖∞ = maxi |xi | and ‖x‖0 denotes the number of non-zero en-

tries of x. When we use this result in SparsiBoost, we will define the matrix U as the “margin matrix”
that has ui j = yi h j (xi ). Then (U w)i = margin(xi ) and the guarantee ‖U w −U w ′‖∞ =O(lg(n/T )/T )
will ensure that the margin of every single point changes by at most O(lg(n/T )/T ) if we replace the
weights w by w ′. Our algorithm for finding w ′ is based on a novel connection to the celebrated but
seemingly unrelated “six standard devitations suffice” result by [Spencer, 1985] from the field of
combinatorial discrepancy minimization.

When used in SparsiBoost, the matrix U is defined from the output of AdaBoostV, but the
vector sparsification algorithm could just as well be applied to the hypotheses output by any
boosting algorithm. Thus our results give a general method for sparsifying a boosting classifier
while approximately preserving the margins of all points.

We complement our new upper bound with a matching lower bound. More concretely, we prove
that there exists data sets D of n points and a corresponding set of base hypotheses H, such that
any linear combination of T base hypotheses must have a gap of at least v =Ω(

√
lg(n/T )/T ) for any

lgn ≤ T ≤ a1n where a1 > 0 is a constant. Rewriting in terms of T , one must use T =Ω(lg(nv2)/v2)
hypotheses from H to achieve a gap of v . This holds for any v satisfying

p
a2/n < v ≤ a3 for

constants a2, a3 > 0. Interestingly, our lower bound proof also uses the discrepancy minimization
upper bound by [Spencer, 1985] in a highly non-trivial way. Our lower bound also shows that our
vector sparsification algorithm is optimal for any T ≤ n/C for some universal constant C > 0.

1.3 Doubts on Margin Theory and other Margin Bounds

The first margin bound on boosted classifiers was introduced by [Schapire et al., 1998]. Shortly after,
[Breiman, 1999] introduced a sharper minimal margin bound alongside Arc-GV. Experimentally
Breimann found that Arc-GV produced better margins than AdaBoost on 98 percent of the training
data, however, AdaBoost still obtained a better test error. This seemed to contradict margin the-
ory: according to margin theory, better margins should imply better generalization. This caused
Breimann to doubt margin theory. It was later discovered by [Reyzin and Schapire, 2006] that
the comparison was unfair due to a difference in the complexity of the base hypotheses used by
AdaBoost and Arc-GV. [Reyzin and Schapire, 2006] performed a variant of Breimann’s experiments
with decision stumps to control the hypotheses complexity. They found that even though Arc-GV
produced a better minimal margin, AdaBoost produced a larger margin on almost all other points
[Reyzin and Schapire, 2006] and that AdaBoost generalized better.

A few years later, [Wang et al., 2008] introduced a sharper margin bound than Breimann’s
minimal margin bound. The generalization bound depends on a term called the Equilibrium
Margin, which itself depends on the margin distribution in a highly non-trivial way. This was
followed by the k-margin bound by [Gao and Zhou, 2013] that provide generalization bounds based
on the k’th smallest margin for any k. The bound gets weaker with increasing k, but stronger with
increasing margin. In essence, this means that we get stronger generalization bounds if the margins

4
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are large for small values of k.
Recall from the discussion in Section 1.2 that our sparsification algorithm preserves all margins

to within O(
√

lg(n/T )/T ) additive error. We combined this result with AdaBoostV to get our algo-
rithm SparsiBoost which obtained an optimal trade-off between minimal margin and number of
hypotheses. While minimal margin might be insufficient for predicting generalization performance,
our sparsification algorithm actually preserves the full distribution of margins. Thus according
to margin theory, the sparsified classifier should approximately preserve the generalization per-
formance of the full unsparsified classifier. To demonstrate this experimentally, we sparsified a
classifier trained with LightGBM [Ke et al., 2017], a highly efficient open-source implementation
of Gradient Boosting [Mason et al., 2000, Friedman, 2001]. We compared the margin distribution
and the test error of the sparsified classifier against a LightGBM classifier trained directly to have
the same number of hypotheses. Our results (see Section 4) show that the sparsified classifier has a
better margin distribution and indeed generalize better than the standard LightGBM classifier.

2 SparsiBoost

In this section we introduce SparsiBoost. The algorithm takes the following inputs: training data D , a
target number of hypotheses T and a base learning algorithm A that returns hypotheses from a class
H of possible base hypotheses. SparsiBoost initially trains c ·T hypotheses for some appropriate
c, by running AdaBoostV with the base learning algorithm A. It then removes the extra c ·T −T
hypotheses while attempting to preserve the margins on all training examples.

In more detail, let h1, ...,hcT ∈ H be the hypotheses returned by AdaBoostV with weights
w1, ..., wcT . Construct a margin matrix U that contains the margin of every hypothesis h j on
every point xi such that ui j = yi h j (xi ). Let w be the vector of hypothesis weights, meaning that the
j ’th coordinate of w has the weight w j of hypothesis h j . Normalize w = w/‖w‖1 such that ‖w‖1 = 1.
The product U w is then a vector that contains the margins of the final linear combination on all
points: (U w)i = yi

∑cT
j=1 w j h j (xi ) = margin(xi ). Removing hypotheses while preserving the margins

can be formulated as sparsifying w to w ′ while minimizing ‖U w −U w ′‖∞ subject to ‖w ′‖0 ≤ T and
‖w ′‖1 = 1.

See Algorithm 1 for pseudocode.

Algorithm 1 SparsiBoost

Input: Training data D = {(xi , yi )}n
i=1 where xi ∈ X for some input space X and yi ∈ {−1,+1}. Target

number of hypotheses T and base learning algorithm A.
Output: Hypotheses h1, . . . ,hk and weights w1, . . . , wk with k ≤ T , such that

∑
i wi hi has gap

O(
√

lg(2+n/T )/T ) on D .

1. Run AdaBoostV with base learning algorithm A on training data D to get cT hypotheses
h1, . . . ,hcT and weights w1, . . . , wcT for the integer c = dlg(n)/ lg(2+n/T )e.
2. Construct margin matrix U ∈ [−1,+1]n×cT where ui j = yi h j (xi ).
3. Form the vector w with i ’th coordinate wi and normalize w ← w/‖w‖1 so ‖w‖1 = 1.
4. Find w ′ such that ‖w ′‖0 ≤ T , ‖w ′‖1 = 1 and ‖U w −U w ′‖∞ =O(

√
lg(2+n/T )/T ).

5. Let π( j ) denote the index of the j ’th non-zero entry of w ′.
6. Return hypotheses hπ(1), . . . ,hπ(‖w ′‖0) with weights w ′

π(1), . . . , w ′
π(‖w ′‖0).

We still haven’t described how to find w ′ with the guarantees shown in Algorithm 1 step 4., i.e. a w ′

5
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with ‖U w −U w ′‖∞ =O(
√

lg(2+n/T )/T ). It is not even clear that such w ′ exists, much less so that
it can be found efficiently. Before we dive into the details of how to find w ′, we briefly demonstrate
that indeed such a w ′ would be sufficient to establish our main theorem:

Theorem 2.1. SparsiBoost is guaranteed to find a linear combination w ′ of at most T base hypotheses
with gap v =O(

√
lg(2+n/T )/T ).

Proof. We assume throughout the proof that a w ′ with the guarantees claimed in Algorithm 1 can
be found. Suppose we run AdaBoostV to get cT base hypotheses h1, ...,hcT with weights w1, ..., wcT .
Let ρcT be the minimal margin of the linear combination

∑
i wi hi on the training data D, and

let ρ∗ be the optimal minimal margin over all linear combinations of base hypotheses from H.
As proved in [Rätsch and Warmuth, 2005], AdaBoostV guarantees that the gap is bounded by
ρ∗−ρcT =O(

√
lg(n)/(cT )). Normalize w = w/‖w‖1 and let U be the margin matrix ui j = yi h j (xi )

as in Algorithm 1. Then ρcT = mini (U w)i . From our assumption, we can efficiently find w ′ such
that ‖w ′‖1 = 1, ‖w ′‖0 ≤ T and ‖U w −U w ′‖∞ = O(

√
lg(2+n/T )/T ). Consider the hypotheses

that correspond to the non-zero entries of w ′. There are at most T . Let ρT be their minimal
margin when using the corresponding weights from w ′. Since w ′ has unit `1-norm, it follows that
ρT = mini (U w ′)i and thus |ρT −ρcT | ≤ maxi |(U w)i − (U w ′)i |, i.e. |ρcT −ρT | ≤ ‖U w −U w ′‖∞ =
O(

√
lg(2+n/T )/T ). We therefore have:

ρ∗−ρT = (ρ∗−ρcT )+ (ρcT −ρT ) ≤

O(
√

lg(n)/(cT ))+O(
√

lg(2+n/T )/T ).

By choosing c = lg(n)/ lg(2+n/T ) (as in Algorithm 1) we get that ρ∗−ρT =O(
√

lg(2+n/T )/T ).

The core difficulty in our algorithm is thus finding an appropriate w ′ (step 4 in Algorithm 1) and
this is the focus of the remainder of this section. Our algorithm for finding w ′ gives a general method
for sparsifying a vector w while approximately preserving every coordinate of the matrix-vector
product U w for some input matrix U . The guarantees we give are stated in the following theorem:

Theorem 2.2. (Sparsification Theorem) For all matrices U ∈ [−1,+1]n×m , all w ∈Rm with ‖w‖1 = 1
and all T ≤ m, there exists a vector w ′ where ‖w ′‖1 = 1 and ‖w ′‖0 ≤ T , such that ‖U w −U w ′‖∞ =
O(

√
lg(2+n/T )/T ).

Theorem 2.2 is exactly what was needed in the proof of Theorem 2.1. Our proof of Theorem 2.2
will be constructive in that it gives an algorithm for finding w ′. To keep the proof simple, we will
argue about running time at the end of the section.

The first idea in our algorithm and proof of Theorem 2.2, is to reduce the problem to a simpler
task, where instead of reducing the number of hypotheses directly to T , we only halve the number
of hypotheses:

Lemma 2.1. For all matrices U ∈ [−1,+1]n×m and w ∈ Rm with ‖w‖1 = 1, there exists w ′ where
‖w ′‖0 ≤ ‖w‖0/2 and ‖w ′‖1 = 1, such that ‖U w −U w ′‖∞ =O(

√
lg(2+n/‖w‖0)/‖w‖0).

To prove Theorem 2.2 from Lemma 2.1, we can repeatedly apply Lemma 2.1 until we are left with
a vector with at most T non-zeroes. Since the loss O(

√
lg(2+n/‖w‖0)/‖w‖0) has a

p
1/‖w‖0 factor,

we can use the triangle inequality to conclude that the total loss is a geometric sum that is asymp-
totically dominated by the very last invocation of the halving procedure. Since the last invocation
has ‖w‖0 > T (otherwise we would have stopped earlier), we get a total loss of O(

√
lg(2+n/T )/T )

as desired. The formal proof can be found in Section 2.1.
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The key idea in implementing the halving procedure Lemma 2.1 is as follows: Let π( j ) denote
the index of the j ’th non-zero in w and letπ−1( j ) denote the index i such that wi is the j ’th non-zero
entry of w . First we construct a matrix A where the j ’th column of A is equal to the π( j )’th column
of U scaled by the weight wπ( j ). The sum of the entries in the i ’th row of A is then equal to the i ’th
entry of U w (since

∑
j ai j =

∑
j wπ−1( j )uiπ−1( j ) =

∑
j :w j 6=0 w j ui j =

∑
j w j ui j = (U w)i ). Minimizing

‖U w −U w ′‖∞ can then be done by finding a subset of columns of A that approximately preserves
the row sums. This is formally expressed in Lemma 2.2 below. For ease of notation we define a ± [x]
to be the interval [a −x, a +x] and ±[x] to be the interval [−x, x].

Lemma 2.2. For all matrices A ∈ [−1,1]n×T there exists a submatrix Â ∈ [−1,1]n×k consisting of k ≤
T /2 distinct columns from A, such that for all i , it holds that

∑k
j=1 âi j ∈ 1

2

∑T
j=1 ai j±

[
O(

√
T lg(2+n/T ))

]
.

Intuitively we can now use Lemma 2.2 to select a subset S of at most T /2 columns in A. We
can then replace the vector w with w ′ such that w ′

i = 2wi if i = π−1( j ) for some j ∈ S and w ′
i = 0

otherwise. In this way, the i ’th coordinate (U w ′)i equals the i ’th row sum in Â, scaled by a factor two.
By Lemma 2.2, this in turn approximates the i ’th row sum in A (and thus (U w)i ) up to additively
O(

√
T lg(2+n/T )).

Unfortunately our procedure is not quite that straightforward since O(
√

T lg(2+n/T )) is way
too large compared to O(

√
lg(2+n/‖w‖0)/‖w‖0) = O(

√
lg(2+n/T )/T ). Fortunately Lemma 2.2

only needs the coordinates of A to be in [−1,1]. We can thus scale A by 1/maxi |wi | and still satisfy
the constraints. This in turn means that the loss is scaled down by a factor maxi |wi |. However,
maxi |wi | may be as large as 1 for highly unbalanced vectors. Therefore, we start by copying the
largest T /3 entries of w to w ′ and invoke Lemma 2.2 twice on the remaining 2T /3 entries. This
ensures that the O(

√
T lg(2+n/T )) loss in Lemma 2.2 gets scaled by a factor at most 3/T (since

‖w‖1 = 1, all remaining coordinates are less than or equal to 3/T ), while leaving us with at most
T /3+ (2T /3)/4 = T /3+T /6 = T /2 non-zero entries as required. Since we normalize by at most 3/T ,
the error becomes ‖U w −U w ′‖∞ =O(

√
T lg(2+n/T )/T ) =O(

√
lg(2+n/T )/T ) as desired. As a last

technical detail, we also need to ensure that w ′ satisfies ‖w ′‖1 = 1. We do this by adding an extra
row to A such that a(n+1) j = w j . In this way, preserving the last row sum also (roughly) preserves
the `1-norm of w and we can safely normalize w ′ as w ′ ← w ′/‖w‖1. The formal proof is given in
Section 2.2.

The final step of our algorithm is thus to select a subset of at most half of the columns from a
matrix A ∈ [−1,1]n×T , while approximately preserving all row sums. Our idea for doing so builds on
the following seminal result by Spencer:

Theorem 2.3. (Spencer’s Theorem [Spencer, 1985]) For all matrices A ∈ [−1,+1]n×T with T ≤ n, there
exists x ∈ {−1,+1}T such that ‖Ax‖∞ =O(

p
T ln(en/T )). For all matrices A ∈ [−1,+1]n×T with T > n,

there exists x ∈ {−1,+1}T such that ‖Ax‖∞ =O(
p

n).

We use Spencer’s Theorem as follows: We find a vector x ∈ {−1,+1}T with ‖Ax‖∞ =O(
p

T ln(en/T ))
if T ≤ n and with ‖Ax‖∞ =O(

p
n) =O(

p
T ) if T > n. Thus we always have ‖Ax‖∞ =O(

√
T lg(2+n/T )).

Consider now the i ’th row of A and notice that |∑ j :x j=1 ai j −
∑

j :x j=−1 ai j | ≤ ‖Ax‖∞. That is, for
every single row, the sum of the entries corresponding to columns where x is 1, is almost equal
(up to ±‖Ax‖∞) to the sum over the columns where x is −1. Since the two together sum to the full
row sum, it follows that the subset of columns with xi = 1 and the subset of columns with xi =−1
both preserve the row sum as required by Lemma 2.2. Since x has at most T /2 of either +1 or −1,
it follows that we can find the desired subset of columns. We give the formal proof of Lemma 2.2
using Spencer’s Theorem in Section 2.3

7
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Algorithm 2 Sparsification

Input: Matrix U ∈ [−1,1]n×m , vector w ∈Rm with ‖w‖1 = 1 and target T ≤ m.
Output: A vector w ′ ∈Rm with ‖w ′‖1 = 1,‖w ′‖0 ≤ T and ‖U w −U w ′‖∞ =O(

√
lg(2+n/T )/T ).

1. Let w ′ ← w .
2. While ‖w ′‖0 > T :
3. Let R be the indices of the ‖w ′‖0/3 entries in w ′ with largest absolute value.
4. Let ω := maxi∉R |wi | be the largest value of an entry outside R.
5. Do Twice:
6. Let π(1),π(2), . . . , ...,π(k) be the indices of the non-zero entries in w ′ that are not in R.
7. Let A ∈ [−1,1](n+1)×k have ai j = uiπ( j )w ′

π( j )/ω for i ≤ n and a(n+1) j = |w ′
π( j )|/ω.

8. Invoke Spencer’s Theorem to find x ∈ {−1,1}k such that ‖Ax‖∞ =O(
√

k lg(2+n/k)).
9. Let σ ∈ {−1,1} denote the sign such that xi =σ for at most k/2 indices i .
10. Update w ′

i as follows:
11. If there is a j such that i =π−1( j ) and x j =σ: set w ′

i ← 2w ′
i .

12. If there is a j such that i =π−1( j ) and x j 6=σ: set w ′
i ← 0.

13. Otherwise (i ∈ R or w ′
i = 0): set w ′

i ← w ′
i .

14. Update w ′ ← w ′/‖w ′‖1.
15. Return w ′.

We have summarized the entire sparsification algorithm in Algorithm 2.
We make a few remarks about our sparsification algorithm and SparsiBoost.

Running Time. While Spencer’s original result (Theorem 2.3) is purely existential, recent follow
up work [Lovett and Meka, 2015] show how to find the vector x ∈ {−1,+1}n in expected Õ((n +T )3)
time, where Õ hides polylogarithmic factors. A small modification to the algorithm was suggested
in [Larsen, 2017]. This modification reduces the running time of Lovett and Meka’s algorithm to
expected Õ(nT +T 3). This is far more desirable as T tends to be much smaller than n in boosting.
Moreover, the nT term is already paid by simply running AdaBoostV. Using this in Step 7. of
Algorithm 2, we get a total expected running time of Õ(nT +T 3). We remark that these algorithms
are randomized and lead to different vectors x on different executions.

Non-Negativity. Examining Algorithm 2, we observe that the weights of the input vector are only
ever copied, set to zero, or scaled by a factor two. Hence if the input vector w has non-negative
entries, then so has the final output vector w ′. This may be quite important if one interprets the
linear combination over hypotheses as a probability distribution.

Importance Sampling. Another natural approach one might attempt in order to prove our sparsi-
fication result, Theorem 2.2, would be to apply importance sampling. Importance sampling samples
T entries from w with replacement, such that each entry i is sampled with probability |wi |. It then
returns the vector w ′ where coordinate i is equal to sign(wi )ni /T where ni denotes the number of
times i was sampled and sign(wi ) ∈ {−1,1} gives the sign of wi . Analysing this method gives a w ′

with ‖U w −U w ′‖∞ =Θ(
√

lg(n)/T ) (with high probability), i.e. slightly worse than our approach
based on discrepancy minimization. The loss in the lg is enough that if we use importance sampling
in SparsiBoost, then we get no improvement over simply stopping AdaBoostV after T iterations.

8
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2.1 Repeated Halving

As discussed earlier, our matrix-vector sparsification algorithm (Theorem 2.2 and Algorithm 2) was
based on repeatedly invoking Lemma 2.1, which halves the number of non-zero entries. In this
section, we prove formally that the errors resulting from these halving steps are dominated by the
very last round of halving. For convenience, we first restate the two results:

Restatement of Theorem 2.2. (Sparsification Theorem) For all matrices U ∈ [−1,+1]n×m , all w ∈Rm

with ‖w‖1 = 1 and all T ≤ m, there exists a vector w ′ where ‖w ′‖1 = 1 and ‖w ′‖0 ≤ T , such that
‖U w −U w ′‖∞ =O(

√
lg(2+n/T )/T ).

Restatement of Lemma 2.1. For all matrices U ∈ [−1,+1]n×m and w ∈Rm with ‖w‖1 = 1, there exists
w ′ where ‖w ′‖0 ≤ ‖w‖0/2 and ‖w ′‖1 = 1, such that ‖U w −U w ′‖∞ =O(

√
lg(2+n/‖w‖0)/‖w‖0).

We thus set out to prove Theorem 2.2 assuming Lemma 2.1.

Proof. Let us call the initial weight vector w (0) = w . We use Lemma 2.1 repeatedly and get w (1), w (2), ..., w (k) =
w ′ such that ‖w ′‖0 ≤ T as wanted and every w (i ) has ‖w (i )‖1 = 1. Let Ti = ‖w (i )‖0 and notice this
gives a sequence of numbers T0,T1, ...,Tk where Ti ≤ Ti−1/2, Tk−1 > T and Tk ≤ T . In particular, it
holds that Tk−12k−i−1 ≤ Ti . The total difference ‖U w (0) −U w (k)‖∞ is then by the triangle inequality
no more than

∑k−1
i=0 ‖U w (i ) −U w (i+1)‖∞. Each of these terms are bounded by Lemma 2.1 which

gives us

O

(
k−1∑
i=0

√
lg(2+n/Ti )/Ti

)
=O

(
k−1∑
i=0

√
lg(2+n/Tk−1)/(Tk−12k−i−1)

)
=

O

( ∞∑
i=0

√
lg(2+n/Tk−1)/(Tk−12i )

)
=O

((√
lg(2+n/Tk−1)/Tk−1

) ∞∑
i=0

1/
√

2i

)
=

O
(√

lg(2+n/T )/T
)

.

The last step follows since Tk−1 > T . We have thus shown that the final vector w ′ = w (k) has
‖w ′‖0 ≤ T , ‖w ′‖1 = 1 and ‖U w−U w ′‖∞ = ‖U w (0)−U w (k)‖∞ =O

(√
lg(2+n/T )/T

)
. This completes

the proof of Theorem 2.2.

2.2 Halving via Row-Sum Preservation

In this section, we give the formal details of how to use our result on row-sum preservation to halve
the number of non-zeroes in a vector w . Let us recall the two results:

Restatement of Lemma 2.1. For all matrices U ∈ [−1,+1]n×m and w ∈Rm with ‖w‖1 = 1, there exists
w ′ where ‖w ′‖0 ≤ ‖w‖0/2 and ‖w ′‖1 = 1, such that ‖U w −U w ′‖∞ =O(

√
lg(2+n/‖w‖0)/‖w‖0).

Restatement of Lemma 2.2. For all matrices A ∈ [−1,1]n×T there exists a submatrix Â ∈ [−1,1]n×k

consisting of k ≤ T /2 distinct columns from A, such that for all i , it holds that
∑k

j=1 âi j ∈ 1
2

∑T
j=1 ai j ±[

O(
√

T lg(2+n/T ))
]
.

We now use Lemma 2.2 to prove Lemma 2.1.

9
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Proof. Our procedure corresponds to steps 2.-13. in Algorithm 2. To clarify the proof, we expand
the steps a bit and introduce some additional notation. Let w be the input vector and let R be the
indices of the ‖w‖0/3 entries in w with largest absolute value. Define w̄ such that w̄i = wi if i ∈ R
and w̄i = 0 otherwise, that is, w̄ contains the largest ‖w‖0/3 entries of w and is zero elsewhere.
Similarly, define ŵ = w − w̄ as the vector containing all but the largest ‖w‖0/3 entries of w .

We will use Lemma 2.2 twice in order to obtain a vector w ′′ with ‖w ′′‖0 ≤ ‖ŵ‖0/4, ‖w ′′‖1 ∈
‖ŵ‖1±[O(

√
lg(2+n/‖w‖0)/‖w‖0)] and ‖U ŵ−U w ′′‖∞ =O(

√
lg(2+n/‖w‖0)/‖w‖0). Moreover, w ′′

will only be non-zero in entries where ŵ is also non-zero. We finally set w ′ = (w̄ +w ′′)/‖w̄ +w ′′‖1

as our sparsified vector.
We first argue that if we can indeed produce the claimed w ′′, then w ′ satisfies the claims

in Lemma 2.1: Observe that ‖w ′‖0 = ‖w̄‖0 +‖w ′′‖0 ≤ ‖w‖0/3+ (2‖w‖0/3)/4 ≤ ‖w‖0/2 as desired.
Clearly we also have ‖w ′‖1 = 1 because of the normalization. Now observe that:

‖U w −U w ′‖∞ ≤ ‖U w −U (w̄ +w ′′)‖∞+‖U (w̄ +w ′′)−U w ′‖∞
= ‖U (w̄ + ŵ)−U (w̄ +w ′′)‖∞+‖U (w ′‖w̄ +w ′′‖1)−U w ′‖∞
= ‖U ŵ −U w ′′‖∞+‖U w ′(‖w̄ +w ′′‖1 −1)‖∞
= O(

√
lg(2+n/‖w‖0)/‖w‖0)+‖U w ′‖∞(‖w̄ +w ′′‖1 −1)

= O(
√

lg(2+n/‖w‖0)/‖w‖0)+‖U w ′‖∞(‖w̄‖1 +‖w ′′‖1 −1).

In the last step, we used that w ′′ has non-zeroes only where ŵ has non-zeroes (and thus the
non-zeroes of w̄ and w ′′ are disjoint). Since ‖w ′‖1 = 1 and all entries of U are in [−1,1], we get
‖U w ′‖∞ ≤ 1. We also see that:

‖w̄‖1 +‖w ′′‖1 −1 ∈ ‖w̄‖1 +‖ŵ‖1 −1± [O(
√

lg(2+n/‖w‖0)/‖w‖0)]

= ‖w̄ + ŵ‖1 −1± [O(
√

lg(2+n/‖w‖0)/‖w‖0)]

= ‖w‖1 −1± [O(
√

lg(2+n/‖w‖0)/‖w‖0)]

= ±[O(
√

lg(2+n/‖w‖0)/‖w‖0)].

We have thus shown that

‖U w −U w ′‖∞ =O(
√

lg(2+n/‖w‖0)/‖w‖0)

as claimed. So what remains is to argue that we can find w ′′ with the claimed properties. Finding
w ′′ corresponds to the Do Twice part of Algorithm 2 (steps 3.-12.). We first compute ω= maxi |ŵi |
and let w ′′ = ŵ . We then execute the following twice:

1. Define π(1), . . . ,π(`) as the list of all the indices i where w ′′
i 6= 0. Also define π−1( j ) as the index

i such that i =π( j ), i.e. π−1( j ) is the index of the j ’th non-zero coordinate of w ′′.

2. Form the matrix A ∈ [−1,1](n+1)×` where ai j = uiπ( j )w ′′
π( j )/ω for i ≤ n and a(n+1) j = |w ′′

π( j )|/ω.

3. Invoke Lemma 2.2 to obtain a matrix Â consisting of no more than k ≤ `/2 distinct columns
from A where for all rows i , we have

∑k
j=1 âi j ∈ 1

2

∑`
j=1 ai j ±

[
O(

√
T lg(2+n/T ))

]
.

4. Update w ′′ as follows:

10
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(a) We let w ′′
i ← 2w ′′

i if there is a j such that i =π−1( j ) and j is a column in Â.

(b) Otherwise we let w ′′
i ← 0.

After the two executions, we get that the number of non-zeroes in w ′′ is at most ‖ŵ‖0/4 as claimed.
Step 4. above effectively scales every coordinate of w ′′ that corresponds to a column that was
included in Â by a factor two. It sets coordinates not chosen by Â to 0. What remains is to argue that
‖U ŵ −U w ′′‖∞ = O(

√
lg(2+n/‖w‖0)/‖w‖0) and that ‖w ′′‖1 ∈ ‖ŵ‖1 ± [O(

√
lg(2+n/‖w‖0)/‖w‖0)].

For this, let A ∈ [−1,1](n+1)×T denote the matrix formed in step 2. during the first iteration. Then
T = ‖ŵ‖0. Let Ā ∈ [−1,1](n+1)×k denote the matrix returned in step 3. of the first iteration. Similarly,

let Â denote the matrix formed in step 2. of the second iteration and let ˆ̂A ∈ [−1,1](n+1)×k ′
denote

the matrix returned in step 3. of the second iteration. We see that Â = 2Ā. By Lemma 2.2, it holds for
all rows i that:

2
k ′∑

j=1

ˆ̂ai j ∈
k∑

j=1
âi j ±

[
O(

√
k lg(2+n/k))

]

= 2
k∑

j=1
āi j ±

[
O(

√
k lg(2+n/k))

]

⊆
(

T∑
j=1

ai j ±
[

O(
√

k lg(2+n/k))
])

±
[

O(
√

T lg(2+n/T ))
]

⊆
T∑

j=1
ai j ±

[
O(

√
T lg(2+n/T ))

]
.

But 2
∑k ′

j=1
ˆ̂ai j =

∑
j ui j w ′′

j /ω= (U w ′′)i /ω and
∑T

j=1 ai j =
∑

j ui j ŵ j /ω= (U ŵ)i /ω. Hence:

(U w ′′)i /ω ∈ (U ŵ)i /ω±
[

O(
√

T lg(2+n/T ))
]
⇒

(U w ′′)i ∈ (U ŵ)i ±
[

O(ω
√

T lg(2+n/T ))
]

which implies that ‖U ŵ −U w ′′‖∞ =O(ω
√

T lg(2+n/T )). But T = ‖ŵ‖0 ≤ ‖w‖0 and ω= maxi |ŵ |i .
Since ‖w‖1 = 1 and w̄ contained the largest ‖w‖0/3 entries, we must have ω≤ 3/‖w‖0. Inserting
this, we conclude that

‖U ŵ −U w ′′‖∞ =O(
√
‖w‖0 lg(2+n/‖w‖0)/‖w‖0) =O(

√
lg(2+n/‖w‖0)/‖w‖0).

The last step is to prove that ‖w ′′‖1 ∈ ‖ŵ‖1 ± [O(
√

lg(2+n/‖w‖0)/‖w‖0)]. Here we focus on row
(n +1) of A and use that we showed above that 2

∑k ′
j=1

ˆ̂a(n+1) j =
∑T

j=1 a(n+1) j ±
[
O(

√
T lg(2+n/T ))

]
.

This time, we have
∑T

j=1 a(n+1) j =
∑T

j=1 |ŵ j |/ω= ‖ŵ‖1/ω and 2
∑k ′

j=1
ˆ̂a(n+1) j =

∑
j |w ′′

j |/ω= ‖w ′′‖1/ω.

Therefore we conclude that ‖w ′′‖1 ∈ ‖ŵ‖1±
[
O(ω

√
T lg(2+n/T ))

]⊆ ‖ŵ‖1±[O(
√

lg(2+n/‖w‖0)/‖w‖0)]
as claimed.

2.3 Finding a Column Subset

In this section we give the detailed proof of how to use Spencer’s theorem to select a subset of
columns in a matrix while approximately preserving its row sums. The two relevant lemmas are
restated here for convenience:
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Restatement of Lemma 2.2. For all matrices A ∈ [−1,1]n×T there exists a submatrix Â ∈ [−1,1]n×k

consisting of k ≤ T /2 distinct columns from A, such that for all i , it holds that
∑k

j=1 âi j ∈ 1
2

∑T
j=1 ai j ±[

O(
√

T lg(2+n/T ))
]
.

and

Restatement of Theorem 2.3. (Spencer’s Theorem [Spencer, 1985]) For all matrices A ∈ [−1,+1]n×T

with T ≤ n, there exists x ∈ {−1,+1}T such that ‖Ax‖∞ = O(
p

T ln(en/T )). For all matrices A ∈
[−1,+1]n×T with T > n, there exists x ∈ {−1,+1}T such that ‖Ax‖∞ =O(

p
n).

We now prove Lemma 2.2 using Spencer’s Theorem:

Proof. Let A ∈ [−1,1]n×T as in Lemma 2.2 and let ai denote the i ’th row of A. By Spencer’s Theorem
there must exist x ∈ {−1,+1}T s.t. ‖Ax‖∞ = maxi |〈ai , x〉| = O(

p
T ln(en/T )) if T ≤ n and ‖Ax‖∞ =

O(
p

n) =O(
p

T ) if T > n. This ensures that ‖Ax‖∞ =O(
√

T lg(2+n/T )) Either the number of +1’s or
−1’s in x will be ≤ T

2 . Assume without loss of generality that the number of +1’s is k ≤ T
2 . Construct

a matrix Â with columns of A corresponding to the entries of x that are +1. Then Â ∈ [−1,1]n×k for
k ≤ T

2 as wanted. It is then left to show that Â preserves the row sums. For all i , we have:

|〈ai , x〉| =
∣∣∣∣∣

T∑
j=1

ai j x j

∣∣∣∣∣=O(
√

T lg(2+n/T )) ⇒
∑

j
ai j x j ∈±

[
O(

√
T lg(2+n/T ))

]

⇒
∑

j :x j=+1
ai j −

∑
j :x j=−1

ai j ∈±
[

O(
√

T lg(n/T ))
]

⇒
∑

j :x j=+1
ai j ∈

∑
j :x j :−1

ai j ±
[

O(
√

T lg(n/T ))
]

.

Using this we can bound the i ’th row sum of Â

k∑
j=1

âi j =
∑

j :x j=+1
ai j =

1

2

∑
j :x j=+1

ai j +
1

2

∑
j :x j=+1

ai j

∈ 1

2

∑
j :x j=+1

ai j +
1

2

( ∑
j :x j=−1

ai j ±
[

O(
√

T lg(2+n/T ))
])

= 1

2

∑
j

ai j ±
[

O(
√

T lg(2+n/T ))
]

.

This concludes the proof.

3 Lower Bound

This section concerns our lower bound, which states that there exist a data set and corresponding
set of base hypotheses H, such that if one uses only T of the base hypotheses in H, then one cannot
obtain a gap smaller thanΩ(

√
lg(n/T )/T ). Similarly to the approach taken in [Nie et al., 2013], we

model a data set D = {(xi , yi )}n
i=1 of n data points and a corresponding set of k base hypotheses

H= {h1, . . . ,hk } as an n ×k matrix A. The entry ai , j is equal to yi h j (xi ). We prove our lower bound
for binary classification where the hypotheses take values only amongst {−1,+1}, meaning that
A ∈ {−1,+1}n×k . Thus an entry ai , j is +1 if hypothesis h j is correct on point xi and it is −1 otherwise.
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We remark that proving the lower bound under the restriction that h j (xi ) is among {−1,+1} instead
of [−1,+1] only strengthens the lower bound.

Notice that if w ∈Rk is a vector with ‖w‖1 = 1, then (Aw)i gives exactly the margin on data point
(xi , yi ) when using the linear combination

∑
j w j h j of base hypotheses. The optimal minimum

margin ρ∗ for a matrix A is thus equal to ρ∗ := maxw∈Rk :‖w‖1=1 mini (Aw)i . We now seek a matrix A

for which ρ∗ is at leastΩ(
√

lg(n/T )/T ) larger than mini (Aw)i for all w with ‖w‖0 ≤ T and ‖w‖1 = 1.
If we can find such a matrix, it implies the existence of a data set (rows) and a set of base hypotheses
(columns) for which any linear combination of up to T base hypotheses has a gap ofΩ(

√
lg(n/T )/T ).

The lower bound thus holds regardless of how an algorithm would try to determine which linear
combination to construct.

When showing the existence of a matrix A with a large gap, we will fix k = n, i.e. the set of base
hypotheses H has cardinality equal to the number of data points. The following theorem shows the
existence of the desired matrix A:

Theorem 3.1. There exists a universal constant C > 0 such that for all sufficiently large n and all T
with lnn ≤ T ≤ n/C , there exists a matrix A ∈ {−1,+1}n×n such that: 1) Let v ∈Rn be the vector with
all coordinates equal to 1/n. Then all coordinates of Av are greater than or equal to −O(1/

p
n). 2)

For every vector w ∈Rn with ‖w‖0 ≤ T and ‖w‖1 = 1, it holds that: mini (Aw)i ≤−Ω(√
lg(n/T )/T

)
.

Quite surprisingly, Theorem 3.1 shows that for any T with lnn ≤ T ≤ n/C , there is a matrix
A ∈ {−1,+1}n×n for which the uniform combination of base hypotheses

∑n
j=1 h j /n has a minimum

margin that is much higher than anything that can be obtained using only T base hypotheses. More
concretely, let A be a matrix satisfying the properties of Theorem 3.1 and let v ∈Rn be the vector
with all coordinates 1/n. Then ρ∗ := maxw∈Rk :‖w‖1=1 mini (Aw)i ≥ mini (Av)i =−O(1/

p
n). By the

second property in Theorem 3.1, it follows that any linear combination of at most T base hypotheses
must have a gap of −O(1/

p
n)−(−Ω(√

lg(n/T )/T
))=Ω(√

lg(n/T )/T
)

. This is precisely the claimed
lower bound and also shows that our vector sparsification algorithm from Theorem 2.2 is optimal for
any T ≤ n/C . To prove Theorem 3.1, we first show the existence of a matrix B ∈ {−1,+1}n×n having
the second property. We then apply Spencer’s Theorem (Theorem 2.3) to “transform” B into a matrix
A having both properties. We find it quite surprising that Spencer’s discrepancy minimization result
finds applications in both our upper and lower bound.

The following lemma states that there exists a matrix with the second property in Theorem 3.1

Lemma 3.1. There exists a universal constant C > 0 such that for all sufficiently large n and all T
with lnn ≤ T ≤ n/C , there exists a matrix A ∈ {−1,+1}n×n such that for every vector w ∈ Rn with
‖w‖0 ≤ T and ‖w‖1 = 1 it holds that: mini (Aw)i ≤−Ω(p

ln(n/T )/T
)

.

We now show how to prove Theorem 3.1 by using Lemma 3.1 and Spencer’s Theorem.

Proof. Let B be a matrix satisfying the statement in Lemma 3.1. Using Spencer’s Theorem (Theo-
rem 2.3), we get that there exists a vector x ∈ {−1,+1}n such that ‖B x‖∞ =O(

p
n ln(en/n)) =O(

p
n).

Now form the matrix A which is equal to B , except that the i ’th column is scaled by xi . Then A1 = B x
where 1 is the all-ones vectors. Normalizing the all-ones vector by a factor 1/n yields the vector v
with all coordinates equal to 1/n. Moreover, it holds that ‖Av‖∞ = ‖B x‖∞/n =O(1/

p
n), which in

turn implies that mini (Av)i ≥−O(1/
p

n).
Now consider any vector w ∈Rn with ‖w‖0 ≤ T and ‖w‖1 = 1. Let w̃ be the vector obtained from

w by multiplying wi by xi . Then Aw = B w̃ . Furthermore ‖w̃‖1 = ‖w‖1 = 1 and ‖w̃‖0 = ‖w‖0 ≤ T . It
follows from Lemma 3.1 and our choice of B that mini (Aw)i = mini (B w̃)i ≤−Ω(p

ln(n/T )/T
)

.
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Figure 1: The plot depicts the cumulative margins of three classifiers: (1) a LightGBM classifier with
500 hypotheses (2) a classifier sparsified from 500 to 80 hypotheses and (3) a LightGBM classifier
with 80 hypotheses.

The proof of Lemma 3.1 is omitted in this thesis. It can be found in the full ArXiV version of
[Grønlund et al., 2019].

4 Experiments

Gradient Boosting [Mason et al., 2000, Friedman, 2001] is probably the most popular boosting
algorithm in practice. It has several highly efficient open-source implementations [Chen and
Guestrin, 2016, Ke et al., 2017, Prokhorenkova et al., 2018] and obtain state-of-the-art performance in
many machine learning tasks [Ke et al., 2017]. In this section we demonstrate how our sparsification
algorithm can be combined with Gradient Boosting. For simplicity we consider a single dataset in
this section, the Flight Delay dataset [air, ], see Appendix A for similar results on other dataset.

We train a classifier with T = 500 hypotheses using LightGBM [Ke et al., 2017] which we sparsify
using Theorem 2.2 to have T ′ = 80 hypotheses. The sparsified classifier is guaranteed to preserve all
margins of the original classifier to an additive O(

√
lg(n/T ′)/T ′). The cumulative margins of the

sparsified classifier and the original classifier are depicted in Figure 1. Furthermore, we also depict
the cumulative margins of a LightGBM classifier trained to have T ′ = 80 hypotheses. First observe
the difference between the LightGBM classifiers with T = 500 and T ′ = 80 hypotheses (blue and
orange in Figure 1). The margins of the classifier with T = 500 hypotheses vary less. It has fewer
points with a large margin, but also fewer points with a small margin. The margin distribution of the
sparsified classifier with T ′ = 80 approximates the margin distribution of the LightGBM classifier
with T = 500 hypotheses. The T = 500 classifier had best generalization error, so we might expect the
sparsified classifier to generalize better than the T ′ = 80 classifier. To investigate this, we performed
additional experiments computing AUC and classification accuracy of several sparsified classifiers
and LightGBM classifiers on a test set (we show the results for multiple sparsified classifiers due to
the randomization in the discrepancy minimization algorithms). The experiments indeed show that
the sparsified classifiers outperform the LightGBM classifiers with the same number of hypotheses.
See Figure 2 for test AUC and test classification accuracy.

Further Experiments and Importance Sampling. Inspired by the experiments in [Wang et al.,
2008, Ke et al., 2017, Chen and Guestrin, 2016] we also performed the above experiments on the
Higgs [Whiteson, 2014] and Letter [Dheeru and Karra Taniskidou, 2017] datasets. See Appendix A
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Figure 2: The plot depicts test AUC and test classification accuracy of a LightGBM classifier during
training as the number of hypotheses increase (in blue). Notice the x-axis is logarithmically scaled.
The final classifier with 500 hypotheses was sparsified with Theorem 2.2 multiple times to have
between T /2 to T /16 hypotheses. The green triangles show test AUC and test accuracy of the
resulting sparsified classifiers. The red cross represents the sparsified classifier used to plot the
cumulative margins in Figure 1.

for (1) further experimental details and (2) for cumulative margin, AUC and test accuracy plots on
all dataset for different values of n and T .

As mentioned in Section 2, one could use importance sampling for sparsification. It has a
slightly worse theoretical guarantee, but might work better in practice. Appendix A also contains
test AUC and test accuracy of the classifiers that result from using importance sampling instead of
our algorithm based on discrepancy minimization. Our algorithm and importance sampling are
both random so the experiments were repeated several times. On average over the experiments, our
algorithm obtains a better test AUC and classification accuracy than importance sampling.

Minimal Margin Experiment: AdaBoostV guarantees a gap of v for T =O(lg(n)/v2) hypotheses
while SparsiBoost guarantees the same gap using just T =O(lg(nv2)/v2) hypotheses. It might be
that the asymptotic bounds do not reflect the relative practical performance of the two algorithms.
To investigate this, we compare the minimal margin obtained by SparsiBoost against that of Ad-
aBoost and AdaBoostV in the experimental setting of [Reyzin and Schapire, 2006] using T = 100
decision stumps. The experiment is performed on the Letter, Breast Cancer, Diabetes, Ionosphere
and German dataset, all available in the UCI repository[Dua and Graff, 2017]1. Since this experiment
only concerns minimal margin, and not whether minimal margin predicts test error, we train on the
entire dataset. See Figure 3 for a plot of minimal margin during training for the Letter and Diabetes
datasets, all other plots can be found in Figure 11 located in the appendix. AdaBoostV significantly
outperforms AdaBoost as one would expect, since AdaBoostV explicitly maximize the minimal
margin which AdaBoost does not. SparsiBoost obtains an even better minimal margin on the Letter
and Diabetes dataset. Throughout all datasets (see Figure 11 in the appendix), SparsiBoost obtains
similar or better minimal margin compared to both AdaBoostV and AdaBoost.

A Python/NumPy implementation of our sparsification algorithm (Theorem 2.2) can be found
at:

https://github.com/AlgoAU/DiscMin
1For convenience we loaded the breast cancer data using scikit learn [Pedregosa et al., 2011].
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Figure 3: Minimal margin obtained by AdaBoost, AdaBoostV and SparsiBoost on the Letter and
Diabetes data set using decision trees of depth 1. The trees are trained using sklearns [Pedregosa
et al., 2011] DecisionTreeClassifier.

5 Conclusion

A long line of research into obtaining a large minimal margin using few hypotheses [Breiman,
1999, Grove and Schuurmans, 1998, Bennett et al., 2000, Rätsch and Warmuth, 2002] culminated
with the AdaBoostV [Rätsch and Warmuth, 2005] algorithm. AdaBoostV was later conjectured by [Nie
et al., 2013] to provide an optimal trade-off between minimal margin and number of hypotheses. In
this article, we introduced SparsiBoost which refutes the conjecture of [Nie et al., 2013]. Furthermore,
we show a matching lower bound, which implies that SparsiBoost is optimal.

The key idea behind SparsiBoost, is a sparsification algorithm that reduces the number of
hypotheses while approximately preserving the entire margin distribution. Experimentally, we
combine our sparsification algorithm with LightGBM. We find that the sparsified classifiers obtains
a better margin distribution, which typically yields a better test AUC and test classification error
when compared to a classifier trained directly to the same number of hypotheses.
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A Additional Experiments and Experimental Details

We train a LightGBM classifier and sparsify it in two ways: Theorem 2.2 and importance sampling.
Both sparsification algorithms are random so we repeated both sparsifications 10 times. The
experiment was performed on the following dataset:

• Inspired by the XGBoost article [Chen and Guestrin, 2016] we used the Higgs dataset [White-
son, 2014]. We shuffled the 107 training examples and selected the first 106 examples for
training and the following 106 points for examples.

• Inspired by the LightGBM article [Ke et al., 2017] we used the Flight Delay dataset [air, ]. The
dataset contain delay times and was turned into binary classification by predicting if the
flight was delayed or not. All features of the 107 training examples were one-hot encoded with
the Pandas [McKinney et al., 2010] function get_dummies() which yielded 660 features. We
shuffled the 107 training examples and selected the first 106 examples for training and the
following 106 examples for testing.

• Inspired by the equivalence margin article [Wang et al., 2008] we used the Letter dataset
[Dheeru and Karra Taniskidou, 2017]. It was turned into a binary classification problem as
done in [Wang et al., 2008]. We shuffled the 20000 examples and used the first 10000 for
training and the last 10000 for testing.

The initial classifiers were trained with LightGBM using default parameters (except for the Letter
dataset where we used LightGBM decision stumps inspired by [Wang et al., 2008]). The rest of
this article contain figures that show different variants our experiments. Each figure concerns
a single dataset for a choice of number of hypotheses T and number of points n. For example
Figure 4 contains results for our experiment on the Flight Delay dataset with T = 100 hypotheses
and n = 250000 training and test points. It contains a margin plot similar to Figure 1 and test
AUC/accuracy plot similar to Figure 2. See Table 1 for an overview of all experiments.

Dataset n T
Letter 10000 100
Flight Delay 250000 100
Flight Delay 500000 250
Flight Delay 1000000 500
Higgs 250000 100
Higgs 500000 250
Higgs 1000000 500

Table 1: The different experimental settings.

Finally, we would like to acknowledge the NumPy, Pandas and Scikit-Learn libraries [Oliphant,
2006, McKinney et al., 2010, Pedregosa et al., 2011].
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A.1 Correcting Sparsified Predictions

In some cases the classification accuracy of a sparsified classifier is very poor even though the
test AUC is good (e.g. accuracy 60% but AUC 0.80). The AUC depends on the relative ordering of
predictions while classification accuracy depends on whether each prediction is above or below
zero. This lead us to believe that the poor test classification accuracy was caused by a bad offset.
Maybe we should predict +1 if points where above −0.01 instead of 0. In other words, it seemed that
the sparsified classifiers skewed the bias term of the original classifier. To fix this we computed the
bias term that yielded the largest classification accuracy on the training set. This can be done by
sorting predictions and then trying every possible offset, one for each point, taking just O(n lg(n))
time. For the airline dataset this typically improved the sparsified classifiers accuracy from 60% to
80%.

In this way we "corrected" the bias of all sparsified predictions. All test classification accuracies
reported are corrected in this sense (including Figure 2).
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Figure 4: Similar to Figure 2 and Figure 1, but for Flight Delay with T = 100 and 250000 training and
test points.
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Figure 5: Similar to previous plot, but for Higgs with T = 100 hypotheses and 250000 training and
test points.
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Figure 6: Similar to previous plot, but for Flight Delay with T = 250 hypotheses and 500000 training
and test points.
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Figure 7: Similar to previous plot, but for Higgs with T = 250 hypotheses and 500000 training and
test points.
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Figure 8: Similar to previous plot, but for Flight Delay with T = 500 hypotheses and 1000000 training
and test points.

24



Article: Optimal Minimal Margin Maximization with BoostingArticle: Optimal Minimal Margin Maximization with BoostingArticle: Optimal Minimal Margin Maximization with Boosting

12.5 25 50 100 200 400
# Hypotheses

0.65

0.70

0.75

0.80

AU
C

Higgs T=500 n=1000000

LightGBM
Sparsified
Sampling

12.5 25 50 100 200 400
# Hypotheses

0.625

0.650

0.675

0.700

0.725

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

Higgs T=500 n=1000000

LightGBM
Sparsified
Sampling

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e 

Fr
eq

ue
nc

y

Higgs T'=241
LightGBM T=500
LightGBM T'=241
Sparsified to T'=241

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e 

Fr
eq

ue
nc

y

Higgs T'=166
LightGBM T=500
LightGBM T'=166
Sparsified to T'=166

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e 

Fr
eq

ue
nc

y

Higgs T'=112
LightGBM T=500
LightGBM T'=112
Sparsified to T'=112

0.04 0.02 0.00 0.02 0.04
Margin

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e 

Fr
eq

ue
nc

y

Higgs T'=79
LightGBM T=500
LightGBM T'=79
Sparsified to T'=79

Figure 9: Similar to previous plot, but for Higgs with T = 500 hypotheses and 1000000 training and
test points.
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Figure 10: Similar to previous plot, but for Letter with T = 100 and n = 10000 training and test
points. Furthermore, LightGBM used decision stumps (inspired by [Wang et al., 2008]), that is, we
choose num_leaves = 2. Quite surprisingly the sparsified classifiers obtain a better classification
accuracy than the original classifier. All sparsified classifiers predictions were corrected as described
in Appendix A.1. Since the original classifier has better AUC than the sparsified ones, we believe this
is caused by a poor bias for the original classifier.
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A.2 Minimal Margin Experiments

Figure 11 contain plots of minimal margin during training of AdaBoost, AdaBoostV and SparsiBoost.
SparsiBoost obtains similar or better minimal margin on all dataset. Similar to the AUC experiments,
the sparsification was repeated 10 times. On Letter, Diabetes and German, SparsiBoost obtains
a better minimal margin than AdaBoost and AdaBoostV. On the Ionosphere and Breast dataset
it obtains a similar minimal margin to AdaBoost and AdaBoostV. Notice that on those datasets
the difference between AdaBoost and AdaBoostV is almost zero, especially if compared with the
difference on Letter, Diabetes and German. It might be that AdaBoost and AdaBoostV obtain close
to the best minimal margin possible with decision stumps, which would then leave SparsiBoost no
room for improvement.

Surprisingly Good minimal margin. We found that in some cases, classifiers with very few hy-
potheses beat all other classifiers by achieving a minimal margin of 0. On the dataset were this
phenomena occurred, the final classifier produced by AdaBoostV has negative minimal margin.
Since a minimal margin of 0 is better than any negative minimal margin, the sparsification algorithm
improves the performance of the final classifier of AdaBoostV by removing most of its hypotheses.
It turns out that the sparsification algorithm finds the trivial hypothesis f (x) = 0 which obtains a
minimal margin of 0. This can be seen by the definition of the margin of a point xi :

margin(xi ) = yi
∑T

t=1αt ht (xi )
∑T

t=1|αt |
= yi

∑T
t=1αt 0

∑T
t=1|αt |

= 0.

We found experimentally that the sparsification algorithm is capable of exploiting this as follows.
Firstly, we found that AdaBoostV sometimes produces the same decision stump with opposite
weights, i.e. αl hl =−αk hk for indices l ,k. When this happens, the sparsification algorithm could
then remove all hypotheses except hl and hk . The minimal margin of such as classifier is 0 which
can be seen as follows:

margin(xi ) = yi (αk hk −αk hk )

|αk |+ |αk |
= 0
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Figure 11: Plot of minimal margin during training of AdaBoost, AdaBoostV and SparsiBoost.
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Margin-Based Generalization Lower Bounds for Boosted
Classifiers

Allan Grønlund * Lior Kamma † Kasper Green Larsen ‡

Alexander Mathiasen § Jelani Nelson ¶

Abstract

Boosting is one of the most successful ideas in machine learning. The most well-accepted
explanations for the low generalization error of boosting algorithms such as AdaBoost stem
from margin theory. The study of margins in the context of boosting algorithms was initiated by
Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and
generalization bounds. To date, the strongest known generalization (upper bound) is the kth
margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds
that have been proved over the last two decades, nothing is known about the tightness of these
bounds. In this paper, we give the first margin-based lower bounds on the generalization error
of boosted classifiers. Our lower bounds nearly match the kth margin bound and thus almost
settle the generalization performance of boosted classifiers in terms of margins.

1 Introduction

Boosting algorithms produce highly accurate classifiers by combining several less accurate classifiers
and are amongst the most popular learning algorithms, obtaining state-of-the-art performance on
several benchmark machine learning tasks [KMF+17, CG16]. The most famous of these boosting
algorithm is arguably AdaBoost [FS97]. For binary classification, AdaBoost takes a training set
S = 〈(x1, y1), . . . , (xm , ym)〉 of m labeled samples as input, with xi ∈X and labels yi ∈ {−1,1}. It then
produces a classifier f in iterations: in the j th iteration, a base classifier h j :X → {−1,1} is trained
on a reweighed version of S that emphasizes data points that f struggles with and this classifier is
then added to f . The final classifier is obtained by taking the sign of f (x) =∑

j α j h j (x), where the
α j ’s are non-negative coefficients carefully chosen by AdaBoost. The base classifiers h j all come
from a hypothesis set H, e.g. H could be a set of small decision trees or similar. As AdaBoost’s
training progresses, more and more base classifiers are added to f , which in turn causes the training
error of f to decrease. If H is rich enough, AdaBoost will eventually classify all the data points in the
training set correctly [FS97].
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†Computer Science Department. Aarhus University. Supported by a Villum Young Investigator Grant
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Early experiments with AdaBoost report a surprising generalization phenomenon [SFBL98].
Even after perfectly classifying the entire training set, further iterations keeps improving the test
accuracy. This is contrary to what one would expect, as f gets more complicated with more
iterations, and thus prone to overfitting. The most prominent explanation for this phenomena is
margin theory, introduced by Schapire et al. [SFBL98]. The margin of a training point (xi , yi ) is
a number in [−1,1], which can be interpreted, loosely speaking, as the classifier’s confidence on
that point. Formally, we say that f (x) =∑

j α j h j (x) is a voting classifier if α j ≥ 0 for all j . Note that
one can additionally assume without loss of generality that

∑
j α j = 1 since normalizing each αi

by
∑

j α j leaves the sign of f (xi ) unchanged. The margin of a point (xi , yi ) with respect to a voting
classifier f is then defined as

margin(xi ) := yi f (xi ) = yi
∑

j
α j h j (xi ) .

Thus margin(xi ) ∈ [−1,1], and if margin(xi ) > 0, then taking the sign of f (xi ) correctly classifies
(xi , yi ). Informally speaking, margin theory guarantees that voting classifiers with large (positive)
margins have a smaller generalization error. Experimentally AdaBoost has been found to continue
to improve the margins even when training past the point of perfectly classifying the training set.
Margin theory may therefore explain the surprising generalization phenomena of AdaBoost. Indeed,
the original paper by Schapire et al. [SFBL98] that introduced margin theory, proved the following
margin-based generalization bound. Let D be an unknown distribution over X ×{−1,1} and assume
that the training data S is obtained by drawing m i.i.d. samples from D. Then with high probability
over S it holds that for every margin θ ∈ (0,1], every voting classifier f satisfies

Pr
(x,y)∼D

[y f (x) ≤ 0] ≤ Pr
(x,y)∼S

[y f (x) < θ]+O



√

ln |H| lnm

θ2m


 . (1)

The left-hand side of the equation is the out-of-sample error of f (since sign( f (x)) 6= y precisely
when y f (x) < 0). On the right-hand side, we use (x, y) ∼ S to denote a uniform random point from
S. Hence Pr(x,y)∼S [y f (x) < θ] is the fraction of training points with margin less than θ. The last term
is increasing in |H| and decreasing in θ and m. Here it is assumed H is finite. A similar bound can
be proved for infinite H by replacing |H| lgm by d lg2 m, where d is the VC-dimension of H. This
holds for all the generalization bounds below as well. The generalization bound thus shows that f
has low out-of-sample error if it attains large margins on most training points. This fits well with the
observed behaviour of AdaBoost in practice.

The generalization bound above holds for every voting classifier f , i.e. regardless of how f was
obtained. Hence a natural goal is to design boosting algorithms that produce voting classifiers with
large margins on many points. This has been the focus of a long line of research and has resulted in
numerous algorithms with various margin guarantees, see e.g. [GS98, Bre99, BDST00, RW02, RW05,
GLM19]. One of the most well-known of these is Breimann’s ArcGV [Bre99]. ArcGV produces a voting
classifier maximizing the minimal margin, i.e. it produces a classifier f for which min(x,y)∈S y f (x) is
as large as possible. Breimann complemented the algorithm with a generalization bound stating
that with high probability over the sample S, it holds that every voting classifier f satisfies:

Pr
(x,y)∼D

[y f (x) ≤ 0] ≤O

(
ln |H| lnm

θ̂2m

)
, (2)

where θ̂ = min(x,y)∈S y f (x) is the minimal margin over all training examples. Notice that if one
chooses θ as the minimal margin in the generalization bound (1) of Schapire et al. [SFBL98], then

2
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the term Pr(x,y)∼S[y f (x) < θ] becomes 0 and one obtains the bound

Pr
(x,y)∼D

[y f (x) ≤ 0] ≤O

(√
ln |H| lnm

θ̂2m

)
,

which is weaker than Breimann’s bound and motivated his focus on maximizing the minimal margin.
Minimal margin is however quite sensitive to outliers and work by Gao and Zhou [GZ13] proved a
generalization bound which provides an interpolation between (1) and (2). Their bound is known
as the kth margin bound, and states that with high probability over the sample S, it holds for every
margin θ ∈ (0,1] and every voting classifier f that:

Pr
(x,y)∼D

[y f (x) < 0] ≤ Pr
(x,y)∼S

[y f (x) < θ]+O

(
ln |H| lnm

θ2m
+

√
Pr

(x,y)∼S
[y f (x) < θ]

ln |H| lnm

θ2m

)
.

The kth margin bound remains the strongest margin-based generalization bound to date (see
Section 1.2 for further details). The kth margin bound recovers Breimann’s minimal margin bound
by choosing θ as the minimal margin (making Pr(x,y)∼S[y f (x) < θ] = 0), and it is always at most
the same as the bound (1) by Schapire et al. As with previous generalization bounds, it suggests
that boosting algorithms should focus on obtaining a large margin on as large a fraction of training
points as possible.

Despite the decades of progress on generalization upper bounds, we still do not know how
tight these bounds are. That is, we do not have any margin-based generalization lower bounds.
Generalization lower bounds are not only interesting from a theoretical point of view, but also from
an algorithmic point of view: If one has a provably tight generalization bound, then a natural goal is
to design a boosting algorithm minimizing a loss function that is equal to this generalization bound.
This approach makes most sense with a matching lower bound as the algorithm might otherwise
minimize a sub-optimal loss function. Furthermore, a lower bound may also inspire researchers to
look for other parameters than margins when explaining the generalization performance of voting
classifiers. Such new parameters may even prove useful in designing new algorithms, with even
better generalization performance in practice.

1.1 Our Results

In this paper we prove the first margin-based generalization lower bounds for voting classifiers. Our
lower bounds almost match the kth margin bound and thus essentially settles the generalization
performance of voting classifiers in terms of margins.

To present our main theorems, we first introduce some notation. For a set X and hypothesis
set H, let C (H) denote the family of all voting classifiers over H, i.e. C (H) contains all functions
f :X → [−1,1] that can be written as f (x) =∑

h∈Hαhh(x) such that αh ≥ 0 for all h and
∑

hαh = 1.
For a (randomized) learning algorithm A and a sample S of m points, let fA,S denote the (possibly
random) voting classifier produced by A when given the sample S as input. With this notation, our
first main theorem is the following:
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Theorem 1. For every large enough integer N , every θ ∈ (1/N ,1/40) and every τ ∈ [0,49/100] there
exist a set X and a hypothesis set H over X , such that ln |H| =Θ(ln N ) and for every m =Ω(

θ−2 ln |H|)

and for every (randomized) learning algorithm A, there exist a distribution D over X × {−1,1} and a
voting classifier f ∈C (H) such that with probability at least 1/100 over the choice of samples S ∼Dm

and the random choices of A

1. Pr
(x,y)∼S

[y f (x) < θ] ≤ τ; and

2. Pr
(x,y)∼D

[y fA,S(x) < 0] ≥ τ+Ω
(

ln |H|
mθ2 +

√
τ · ln |H|

mθ2

)
.

Theorem 1 states that for any algorithm A, there is a distribution D for which the out-of-sample
error of the voting classifier produced by A is at least that in the second point of the theorem. At
the same time, one can find a voting classifier f obtaining a margin of at least θ on at least a 1−τ
fraction of the sample points. Our proof of Theorem 1 not only shows that such a classifier exists,
but also provides an algorithm that constructs such a classifier. Loosely speaking, the first part of the
theorem reflects on the nature of the distribution D and the hypothesis set H. Intuitively it means
that the distribution is not too hard and the hypothesis set is rich enough, so that it is possible to
construct a voting classifier with good empirical margins. Clearly, we cannot hope to prove that
the algorithm A constructs a voting classifier that has a margin of at least θ on a 1−τ fraction
of the sample set, since we make no assumptions on the algorithm. For example, if the constant
hypothesis h1 that always outputs 1 is in H, then A could be the algorithm that simply outputs h1.
The interpretation is thus: D and H allow for an algorithm A to produce a voting classifier f with
margin at least θ on a 1−τ fraction of samples. The second part of the theorem thus guarantees that
regardless of which voting classifier A produces, it still has large out-of-sample error. This implies
that every algorithm that constructs a voting classifier by maximizing margins on the training
examples, must have a large error. Formally, Theorem 1 implies that if Pr(x,y)∼S[y fA,S(x) < θ] ≤ τ

then

Pr
(x,y)∼D

[y fA,S(x) < 0] ≥ Pr
(x,y)∼S

[y fA,S(x) < θ]+Ω

 ln |H|

mθ2 +
√
τ · ln |H|

mθ2


 .

The first part of the theorem ensures that the condition is not void. That is, there exists an algorithm
A for which Pr(x,y)∼S [y fA,S(x) < θ] ≤ τ. Comparing Theorem 1 to the kth margin bound, we see that
the parameter τ corresponds to Pr(x,y)∼S[y f (x) < θ]. The magnitude of the out-of-sample error in
the second point in the theorem thus matches that of the kth margin bound, except for a factor lnm
in the first term inside theΩ(·) and a

p
lnm factor in the second term. If we consider the range of

parameters θ,τ, ln |H| and m for which the lower bound applies, then these ranges are almost as
tight as possible. For τ, note that the theorem cannot generally be true for τ> 1/2, as the algorithm
A that outputs a uniform random choice of hypothesis among h1 and h−1 (the constant hypothesis
outputting −1), gives a (random) voting classifier fA,S with an expected out-of-sample error of 1/2.
This is less than the second point of the theorem would state if it was true for τ> 1/2. For ln |H|,
observe that our theorem holds for arbitrarily large values of |H|. That is, the integer N can be as
large as desired, making ln |H| =Θ(ln N ) as large as desired. Finally, for the constraint on m, notice
again that the theorem simply cannot be true for smaller values of m as then the term ln |H|/(mθ2)
exceeds 1.

Our second main result gets even closer to the kth margin bound:
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Theorem 2. For every large enough integer N , every θ ∈ (1/N ,1/40), τ ∈ [0,49/100] and every(
θ−2 ln N

)1+Ω(1) ≤ m ≤ 2N O(1)
, there exist a set X , a hypothesis set H over X and a distribution D

over X × {−1,1} such that ln |H| = Θ(ln N ) and with probability at least 1/100 over the choice of
samples S ∼Dm there exists a voting classifier fS ∈C (H) such that

1. Pr
(x,y)∼S

[y fS(x) < θ] ≤ τ; and

2. Pr
(x,y)∼D

[y fS(x) < 0] ≥ τ+Ω
(

ln |H| lnm
mθ2 +

√
τ · ln |H|

mθ2

)
.

Observe that the second point of Theorem 2 has an additional lnm factor on the first term in
Ω(·) compared to Theorem 1. It is thus only off from the kth margin bound by a

p
lnm factor in

the second term and hence completely matches the kth margin bound for small values of τ. To
obtain this strengthening, we replaced the guarantee in Theorem 1 saying that all algorithms A
have such a large out-of-sample error. Theorem 2 demonstrates the existence of a voting classifier
fS (that is chosen as a function of the sample S) that simultaneously achieves a margin of at least
θ on a 1−τ fraction of the sample points, and yet has out-of-sample error at least that in point 2.
Since the kth margin bound holds with high probability for all voting classifiers, Theorem 2 rules
out any strengthening of the kth margin bound, except for possibly a

p
lnm factor on the second

additive term. Finally, we mention that both our lower bounds are proved for a finite hypothesis set
H. This only makes the lower bounds stronger than if we proved it for an infinite H with bounded
VC-dimension, since the VC-dimension of a finite H, is no more than lg |H|.

1.2 Related Work

We mentioned above that the kth margin bound is the strongest margin-based generalization
bound to date. Technically speaking, it is incomparable to the so-called emargin bound by Wang
et al. [WSJ+11]. The kth margin bound by Gao and Zhou [GZ13], the minimum margin bound by
Breimann [Bre99] and the bound by Schapire et al. [SFBL98] all have the form Pr(x,y)∼D[y f (x) < 0] ≤
Pr(x,y)∼S[y f (x) < θ]+Γ(θ,m, |H|,Pr(x,y)∼S[y f (x) < θ]) for some function Γ. The emargin bound has
a different (and quite involved) form, making it harder to interpret and compute. We will not discuss
it in further detail here and just remark that our results show that for generalization bounds of the
form studied in most previous work [SFBL98, Bre99, GZ13], one cannot hope for much stronger
upper bounds than the kth margin bound.

2 Proof Overview

The main argument that lies in the heart of both proofs is a probabilistic method argument. Let X
be a set of size u. With every labeling ` ∈ {−1,1}u we associate a distribution D` over X × {−1,1}. We
then show that with some positive probability if we sample ` ∈ {−1,1}u , D` satisfies the requirements
of Theorem 2. We thus conclude the existence of a suitable distribution. We next give a more detailed
high-level description of the proof for Theorem 2.

5
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Constructing a Family of Distributions. We start by first describing the construction of D` for
` ∈ {−1,1}u . Our construction combines previously studied distribution patterns in a subtle manner.

Ehrenfeucht et al. [EHKV89] observed that if a distributionD assigns each point inX a fixed (yet
unknown) label, then, loosely speaking, every classifier f , that is constructed using only information
supplied by a sample S, cannot do better than random guessing the labels for the points in X \ S.
Intuitively, consider a uniform distribution D` over X . If we assume, for example, that |X | ≥ 10m,
then with very high probability over a sample S of m points, many elements of X are not in S.
Moreover, assume that D` associates every x ∈ X with a unique "correct" label `(x). Consider
some (perhaps random) learning algorithm A, and let fA,S be the classifier it produces given a
sample S as input. If ` is chosen randomly, then, loosely speaking, for every point x not in the
sample, fA,S(x) and `(x) are independent, and thus A returns the wrong label with probability 1/2.
In turn, this implies that there exists a labeling ` such that A is wrong on a constant fraction of
X when receiving a sample S ∼Dm

`
. While the argument above can in fact be used to prove an

arbitrarily large generalization error, it requires |X | to be large, and specifically to increase with m.
This conflicts with the first point in Theorem 2, that is, we have to argue that a voting classifier f
with good margins exist for the sample S. If S consists of m distinct points, and each point in X can
have an arbitrary label, then intuitively H needs to be very large to ensure the existence of f . In
order to overcome this difficulty, we set D` to assign very high probability to one designated point
in X , and the rest of the probability mass is then equally distributed between all other points. The
argument above still applies for the subset of small-probability points. More precisely, if D` assigns
all but one point in X probability 1

10m , then the expected generalization error (over the choice of `)
is stillΩ

( 1
10m |X |). It remains to determine how large can we set |X |. In the notations of the theorem,

in order for a hypothesis set H to satisfy ln |H| =Θ(ln N ), and at the same time, have an f ∈C (H)
obtaining margins of θ on most points in a sample, our proof (and specifically Lemma 3, described
hereafter) requires X to be not significantly larger than ln N

θ2 , and therefore the generalization error

we get isΩ
(

ln |H|
θ2m

)
.

Anthony and Bartlett [AB09, Chapter 5] additionally observed that for a distribution D that
assigns each point in X a random label, if S does not sample a point x enough times, any classifier
f , that is constructed using only information supplied by S, cannot determine with good probability
the Bayes label of x, that is, the label of x that minimizes the error probability. Intuitively, consider
once more a distribution D` that is uniform over X . However, instead of associating every point
x ∈X with one correct label `(x), D` is now only slightly biased towards `. That is, given that x is
sampled, the label in the sample point is `(x) with probability that is a little larger than 1/2, say
(1+α)/2 for some small α ∈ (0,1). Note that every classifier f has an error probability of at least
(1−α)/2 on every given point in X . Consider once again a learning algorithm A and the voting
classifier fA,S it constructs. Loosely speaking, if S does not sample a point x enough times, then
with good probability fA,S(x) 6= `(x). More formally, in order to correctly assign the Bayes label of x,
an algorithm must seeΩ(α−2) samples of x. Therefore if we set the bias α to be

√
|X |/(10m), then

with high probability the algorithm does not see a constant fraction of X enough times to correctly
assign their label. In turn, this implies an expected generalization error of (1−α)/2+Ω(

√
|X |/m),

where the expectation is over the choice of `. By once again letting |X | = ln N
θ2 we conclude that there

exists a labeling ` such that for S ∼Dm
`

, the expected generalization error of fA,S is 1−α
2 +Ω

(√
ln |H|
θ2m

)
.

This expression is almost the second term inside theΩ-notation in the theorem statement, though
slightly larger. We note, however, for large values of m, the in-sample error is arbitrarily close to
1/2. One challenge is therefore to reduce the in-sample-error, and moreover guarantee that we can
find a voting classifier f where the (mτ)’th smallest margin for f is at least θ, where τ,θ are the
parameters provided by the theorem statement.

6
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To this end, our proof subtly weaves the two ideas described above and constructs a family of
distributions {D`}`∈{−1,1}u . Informally, we partition X into two disjoint sets, and conditioned on the
sample point x ∈X belonging to each of the subsets, D` is defined similarly to be one of the two
distribution patterns defined above. The main difficulty lies in delicately balancing all ingredients
and ensuring that we can find an f with margins of at least θ on all but τm of the sample points,
while still enforcing a large generalization error. Our proof refines the proof given by Ehrenfeucht
et al. and Anthony and Bartlett and shows that there exists a labeling ` such that fA,S has large
generalization error with respect to D` (with probability at least 1/100 over the randomness of A,S).

Small yet Rich Hypothesis Sets. The technical crux in our proofs is the construction of an ap-
propriate hypothesis set. Loosely speaking, the size of H has to be small, and most importantly,
independent of the size m of the sample set. On the other hand, the set of voting classifiers C (H) is
required to be rich enough to, intuitively, contain a classifier that with good probability has good
in-sample margins for a sample S ∼Dm

`
with a large fraction of labelings ` ∈ {−1,1}u . Our main

technical lemma presents a distribution µ over small hypothesis sets H⊂X → {−1,1} such that for
every sparse ` ∈ {−1,1}u , that is `i =−1 for a small number of entries i ∈ [u], with high probability
over H∼µ, there exists some voting classifier f ∈C (H) that has minimum margin θ with ` over the
entire set X . In fact, the size of the hypothesis set does not depend on the size of X , but only on the
sparsity parameter d . More formally, we show the following.

Lemma 3. For every θ ∈ (0,1/40), δ ∈ (0,1) and integers d ≤ u, there exists a distribution µ =
µ(u,d ,θ,δ) over hypothesis sets H ⊂ X → {−1,1}, where X is a set of size u, such that the follow-
ing holds.

1. For all H ∈ supp(µ), we have |H| = N ; and

2. For every labeling ` ∈ {−1,+1}u , if no more than d points x ∈X satisfy `(x) =−1, then

Pr
H∼µ

[∃ f ∈ C(H) : ∀x ∈X . `(x) f (x) ≥ θ] ≥ 1−δ ,

where N =Θ
(
θ−2 lnu ln(θ−2 lnuδ−1)eΘ(θ2d)

)

To show the existence of a good voting classifier in C (H) our proof actually employs a slight
variant of the celebrated AdaBoost algorithm, and shows that with high probability (over the choice
of the random hypothesis setH), the voting classifier constructed by this algorithm attains minimum
margin at least θ over the entire set X .

Existential Lower Bound. Our proof of Theorem 2 uses many of the same ideas as the proof of
Theorem 1. The difference between the generalization lower bound (second point) in Theorem 1
and 2 is an lnm factor in the first term inside theΩ(·) notation. That is, Theorem 2 has anΩ( ln |H| lnm

θ2m )

where Theorem 1 has anΩ( ln |H|
θ2m ). This term originated from having ln |H|/θ2 points with a proba-

bility mass of 1/10m in D` and one point having the remaining probability mass. In the proof of
Theorem 2, we first exploit that we are proving an existential lower bound by assigning all points the
same label 1. That is, our hard distribution D assigns all points the label 1 (ignoring the second half
of the distribution with the random and slightly biased labels). Since we are not proving a lower
bound for every algorithm, this will not cause problems. We then change |X | to about m/lnm and
assign each point the same probability mass lnm/m in distribution D. The key observation is that

7
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on a random sample S of m points, by a coupon-collector argument, there will still be mΩ(1) points
from X that were not sampled. From Lemma 3, we can now find a voting classifier f , such that
sign( f (x)) is 1 on all points in x ∈ S, and −1 on a set of d = ln |H|/θ2 points in X \ S. This means that
f has out-of-sample errorΩ(d lnm/m) =Ω( ln |H| lnm

θ2m ) under distribution D and obtains a margin of
θ on all points in the sample S.

As in the proof Theorem 1, we can combine the above distribution D with the ideas of Anthony
and Bartlett to add the terms depending on τ to the lower bound.

3 Margin-Based Generalization Lower Bounds

In this section we prove 2 assuming Lemma 3, whose proof is deferred to Section 4, and we start
by describing the outlines of the proofs. To this end fix some integer N , and fix θ ∈ (1/N ,1/40). Let
u be an integer, and let X = {ξ1, . . . ,ξu} be some set with u elements. With every ` ∈ {−1,1}u we
associate a distribution D` over X × {−1,1}, and show that with some constant probability over a
random choice of `, a voting classifier of interest has a high generalization probability with respect
to D`. By a voting classifier of interest we mean one constructed by a learning algorithm in the
proof of Theorem 1 and an adversarial classifier in the proof of Theorem 2. We additionally show
existence of a hypothesis set Ĥ such that with very high (constant) probability over a random choice
of ` ∈ {−1,1}u , C (Ĥ) contains a voting classifier that attains high margins with ` over the entire
set X . Finally, we conclude that with positive probability over a random choice of ` ∈ {−1,1}u

both properties are satisfied, and therefore there exists at least one labeling ` that satisfies both
properties.

We start by constructing the family {D`}`∈{−1,1}u of distributions over X × {−1,1}. To this end,
let d ≤ u be some constant to be fixed later, and let ` ∈ {−1,1}u . We define D` separately for
the first u −d points and the last d points of X . Intuitively, every point in {ξi }i∈[u−d ] has a fixed
label determined by `, however all points but one have a very small probability of being sampled
according to D`. Every point in {ξi }i∈[u−d ,u], on the other hand, has an equal probability of being
sampled, however its label is not fixed by ` rather than slightly biased towards `. Formally, let
α,β,ε ∈ [0,1] be constants to be fixed later. We construct D` using the ideas described earlier in
Section 2, by sewing them together over two parts of the set X . We assign probability 1−β to
{ξi }i∈[u−d ] and β to {ξi }i∈[u−d+1,u]. That is, for (x, y) ∼D`, the probability that x ∈ {ξi }i∈[u−d ] is 1−β.
Next, conditioned on x ∈ {ξi }i∈[u−d ], (ξ1,`1) is assigned high probability (1−ε) and the rest of the
measure is distributed uniformly over {(ξi ,`i )}i∈[2,u−d ]. That is

Pr
D`

[(ξ1,`1)] = (1−β)(1−ε) , and ∀ j ∈ [2,u −d ]. Pr
D`

[(ξ j ,` j )] = (1−β)ε

u −d −1
.

Finally, conditioned on x ∈ {ξi }i∈[u−d+1,u], x distributes uniformly over {ξi }i∈[u−d+1,u], and condi-
tioned on x = ξi , we have y = `i with probability 1+α

2 . That is

∀ j ∈ [u −d +1,u]. Pr
D`

[(ξ j ,` j )] = (1+α)β

2d
, and Pr

D`

[(ξ j ,−` j )] = (1−α)β

2d
.

In order to give a lower bound on the generalization error for some classifier f of interest, we
define new random variables such that their sum is upper bounded by Pr(x,y)∼D`

[y f (x) < 0], and
give a lower bound on that sum. To this end, for every ` ∈ {−1,1}u and f :X →R, denote

Ψ1(`, f ) = (1−β)ε

u −d −1

∑
i∈[2,u−d ]

1`i f (ξi )<0 ; Ψ2(`, f ) = αβ

d

∑
i∈[u−d+1,u]

1`i f (ξi )<0 . (3)

8
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When f ,` are clear from the context we shall simply denote Ψ1,Ψ2. We show next that indeed
proving a lower bound onΨ1 +Ψ2 implies a lower bound on the generalization error.

Claim 4. For every `, f we have Pr
(x,y)∼D`

[y f (x) < 0] ≥ β(1−α)
2 +Ψ1 +Ψ2.

Proof. We first observe that

Pr
(x,y)∼D`

[y f (x) < 0] = E(x,y)∼D`
[1y f (x)<0]

=
∑

i∈[u−d ],y∈{−1,1}
1y f (ξi )<0 Pr

D`

[(ξi , y)]+
∑

i∈[u−d+1,u],y∈{−1,1}
1y f (ξi )<0 Pr

D`

[(ξi , y)]
(4)

For every i ∈ [u −d ] and y ∈ {−1,1}, if y 6= `i then PrD`
[(ξi , y)] = 0. Moreover, if i ≥ 2 and y = `i then

PrD`
[(ξi , y)] = (1−β)ε

u−d−1 . Therefore

∑
i∈[u−d ],y∈{−1,1}

1y f (ξi )<0 Pr
D`

[(ξi , y)] ≥ (1−β)ε

u −d −1

∑
i∈[2,u−d ]

1y f (ξi )<0 =Ψ1 . (5)

Next, for every i ∈ [u −d +1,u] we have that

∑
y∈{−1,1}

1y f (ξi )<0 Pr
D`

[(ξi , y)] =1`i f (ξi )<0 Pr
D`

[(ξi ,`i )]+1`i f (ξi )>0 Pr
D`

[(ξi ,−`i )]

= (1−α)β

2d
+1`i f (ξi )<0

αβ

d
,

and therefore

∑
i∈[u−d+1,u],y∈{−1,1}

1y f (ξi )<0 Pr
D`

[(ξi , y)] = (1−α)β

2
+ αβ

d

∑
i∈[u−d+1,u]

1`i f (ξi )<0 . (6)

Plugging (5) and (6) into (4) we conclude the claim.

To prove existence of a "rich" yet small enough hypothesis set Ĥ we apply Lemma 3 together
with Yao’s minimax principle. In order to ensure that the hypothesis sets constructed using Lemma 3
is small enough, and specifically has size NO(1), we need to focus our attention on sparse labelings

` ∈ {−1,1}u only. That is, the labelings cannot contain more thanΘ
(

ln N
θ2

)
entries equal to −1. More

formally, we define a set of labelings of interest L(u,d) as the set of all labelings ` ∈ {−1,1}u such
that the restriction to the first u −d entries is d-sparse. That is

L(u,d) := {` ∈ {−1,1}u : |{i ∈ [u −d ] : `i =−1}| ≤ d} . (7)

We next show that there exists a small enough (with respect to N ) hypothesis set Ĥ that is rich
enough. That is, with high probability over choosing ` uniformly at random from ` ∈R L(u,d), there
exists a voting classifier f ∈C (Ĥ) that attains high minimum margin with ` over the entire set X .
Note that the following result, similarly to Lemma 3 does not depend on the size of X , but only on
the sparsity of the labelings in question.

Claim 5. If u ≤ 2N O(1)
and d ≤ ln N

θ2 then there exists a hypothesis set Ĥ satisfying that ln |Ĥ| =Θ (ln N )
and

Pr
`∈RL(u,d)

[∃ f ∈ C(Ĥ) : ∀i ∈ [u]. `i f (ξi ) ≥ θ] ≥ 1−1/N .

9
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Proof. Let µ=µ(u,d ,θ,1/N ), be the distribution whose existence is guaranteed in Lemma 3. Then
for every labeling ` ∈ L(u,d), with probability at least 1−1/N over H ∼ µ, there exists a voting
classifier f ∈ C (H) that has minimal margin of θ. That is, for every i ∈ [u], `i f (ξi ) ≥ θ. By Yao’s
minimax principle, there exists a hypothesis set Ĥ ∈ supp(µ) such that

Pr
`∈RL(u,d)

[∃ f ∈ C(Ĥ) : ∀i ∈ [u]. `i f (xi ) ≥ θ] ≥ 1−1/N .

Moreover, since Ĥ ∈ supp(µ), then |Ĥ| = Θ
(
θ−2 lnu · ln(Nθ−2 lnu) ·eΘ(θ2d)

)
. Since θ ≥ 1/N , since

u ≤ 2N O(1)
and since d ≤ ln N

θ2 and thus eθ
2d ≤ N we get that there exists some universal constant

C > 0 such that |Ĥ| =Θ(NC ), and thus ln |Ĥ| =Θ(ln N ).

3.1 Proof Algorithmic Lower Bound

This section is devoted to the proof of Theorem 1. That is, we show that for every algorithm A,
there exist some distribution D ∈ {D`}`∈{−1,1}u and some classifier f̂ ∈C (Ĥ) such that with constant
probability over S ∼Dm , f̂ has large margins on points in S, yet fA,S has large generalization error.
To this end we now fix u to be 2ln N

θ2 and d = u
2 = ln N

θ2 . For these values of u,d we get that L(u,d) is, in
fact, the set of all possible labelings, i.e. L(u,d) = {−1,1}u . Next, fix A to be a (perhaps randomized)
learning algorithm. For every m-point sample S and let that fA,S denote the classifier returned by
A when running on sample S.

The main challenge is to show that there exists a labeling ˆ̀∈ {−1,1}u such that C (Ĥ) contains a
good voting classifier for ˆ̀ and, in addition, fA,S has a large generalization error with respect to D ˆ̀.

Lemma 6. If α≤
√

u
40βm , then there exists ˆ̀∈ {−1,1}u such that

1. There exists f̂ = f̂ ˆ̀ ∈ C(Ĥ) such that for every i ∈ [u], ˆ̀
i f̂ (ξi ) ≥ θ ; and

2. with probability at least 1/25 over S ∼Dm
ˆ̀ and the randomness of A we have

Pr
(x,y)∼D ˆ̀

[
y fA,S(x) < 0

]≥ (1−α)β

2
+ (1−β)ε

24
+ αβ

24
.

Before proving the lemma, we first show how it implies Theorem 1

Proof of Theorem 1. Fix some τ ∈ [0,49/100]. Assume first that τ ≤ u
300m , and let ε = u

10m and

β=α= 0. Let ˆ̀, f̂ be as in Lemma 6, then for every sample S ∼Dm
ˆ̀ , Pr(x,y)∼S[y f̂ (x) < θ] = 0 ≤ τ, and

moreover with probability at least 1/25 over S and the randomness of A

Pr
(x,y)∼D ˆ̀

[y fA,S(x) < 0] ≥ (1−β)ε

24
≥ τ+Ω

( u

m

)
= τ+Ω


 ln |Ĥ|

mθ2 +
√
τ ln |Ĥ|

mθ2


 .

where the last transition is due to the fact that u = 2θ−2 ln N =Θ(θ−2 ln |Ĥ|) and τ=O(u/m).

Otherwise, assume τ> u
300m , and let ε= u

10m , α=
√

u
2560τm and β= 64τ

32−31α . Since τ≥ u
300m , then

α ∈ [0,1]. Moreover, if m >Cu for large enough but universal constant C > 0, then 32−31α≥ 64· 49
100 ≥

64τ, and hence β ∈ [0,1]. Moreover, since α≤ 1 then β≤ 64τ, and therefore α=
√

u
2560τm ≤

√
u

40βm .

Let therefore ˆ̀, f̂ be a labeling and a classifier in C (Ĥ) whose existence is guaranteed in Lemma 6.
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Let
〈

(x1, y1), . . . , (xm , ym)
〉∼Dm

ˆ̀ be a sample of m points drawn independently according to D ˆ̀. For

every j ∈ [m], we have E[1y j f̂ (x j )<θ] = (1−α)β
2 . Therefore by Chernoff we get that for large enough N ,

Pr
S∼Dm

ˆ̀

[
Pr

(x,y)∼S

[
y f̂ (x) < θ]≥ τ

]
= Pr

S∼Dm
ˆ̀

[
1

m

∑
j∈[m]

1ŷ j f̂ (x j )<θ ≥
(1−31α/32)β

2

]

≤ e−Θ(α2βm) ≤ e−Θ(u) ≤ 10−3 ,

where the inequality before last is due to the fact that α2βm = uβ
2560τ =Ω(u), since β≥ 2τ. Moreover,

by Lemma 6 we get that with probability at least 1/25 over S and A we get that

Pr
(x,y)∼D ˆ̀

[y fA,S(x) < 0] ≥ (1−α)β

2
+ αβ

32
= (1−31α/32)β

2
+ αβ

64
= τ+Ω

(√
τu

m

)

≥ τ+Ω

 ln |Ĥ|

mθ2 +
√
τ ln |Ĥ|

mθ2


 ,

where the last transition is due to the fact that τ=Ω(u/m). This completes the proof of Theorem 1.

For the rest of the section we therefore prove Lemma 6. We start by lower bounding the expected
value of Ψ1 +Ψ2, where the expectation is over the choice of labeling ` ∈ {−1,1}u , S ∼ Dm

`
and

the random choices made by A. Intuitively, as points in {ξ2, . . . ,ξu} are sampled with very small
probability, it is very likely that the sample S does not contain many of them, and therefore the
algorithm cannot do better than randomly guessing many of the labels. Moreover, if α is small
enough, and S does not sample a point in {ξu/2+1, . . . ,ξu} enough times, there is a larger probability
that A does not determine the bias correctly.

Claim 7. If α≤
√

u
40βm , then E`∈{−1,1}u

[
EA,S

[
Ψ1(`, fA,S)+Ψ2(`, fA,S)

] ]≥ (1−β)ε
6 + αβ

6 .

Proof. To lower bound the expectation, we lower bound the expectations of Ψ1 and Ψ2 sepa-
rately. For every i ∈ [2,u −d ] \ {1}, if ξi ∉ S then `i and fA,S(ξi ) are independent, and therefore
E`[1`i fA,S (ξi )<0] = 1

2 . Let S be the set of all samples for which |S ∩ {ξ2, . . . ,ξu−d }| ≤ u−d−1
2 , then for

every S ∈S ,

E`

[ ∑
i∈[2,u−d−1]

1`i fA,S (ξi )<0

]
≥ u −d −1−|S ∩ {ξ2, . . . ,ξu−d }|

2
≥ u −d −1

4
,

As this holds for every S ∈S , we conclude that

EA,S
[
E`

[
Ψ1(`, fA,S)

] ∣∣S ∈S ]≥ (1−β)ε

u −d −1
· u −d −1

4
= (1−β)ε

4
.

Next, for large enough N a Chernoff bound gives PrS∼Dm [S] ≥ 1 − e−Θ(u) ≥ 2/3, and therefore

EA,S
[
E`

[
Ψ1(`, fA,S)

] ]≥ (1−β)ε
6 , and by Fubini’s theorem E`

[
EA,S[Ψ1(`, fA,S)]

]≥ (1−β)ε
6 .

Next, let i ∈ [u −d +1,u]. Denote by σi ∈ [m] the number of times ξi was sampled into S. Then

E`
[
EA,S

[
1`i fA,S (ξi )<0

]]=
m∑

n=0
E`

[
EA,S

[
1`i fA,S (ξi )<0

∣∣σi = n
]] ·Pr[σi = n] (8)

11
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For every x > 0 and y ∈ (0,1), let Φ(x, y) = 1
4

(
1−

√
1−exp

(−x y2

1−y2

))
, then a result by Anthony and

Bartlett [AB09, Lemma 5.1] shows that

E`
[
EA,S

[
1`i fA,S (ξi )<0

∣∣σi = n
]]≥Φ(n +2,α)

Plugging this into (8), by the convexity ofΦ(·,α) and Jensen’s inequality we get that

E`
[
EA,S

[
1`i fA,S (ξi )<0

]]≥
m∑

n=0
Φ(n +2,α) ·Pr[σi = n] ≥Φ(E[σi ]+2,α) .

Since E[σi ] = 2βm
u , and SinceΦ(·,α) is monotonically decreasing we get that

E`
[
EA,S

[
1`i fA,S (ξi )<0

]]≥Φ
(

4βm

u
,α

)
.

Summing over all i ∈ [u −d +1,u] we get that E`
[
EA,S[Ψ2(`, fA,S)]

]≥αβΦ
(

4βm
u ,α

)
. The claim then

follows from the fact that for every α≤
√

u
40βm we haveΦ( 8βm

u ,α) ≥ 1
6 .

We next show that for small values of α, a large fraction of labelings ` ∈ {−1,1}u satisfy that
Ψ1 +Ψ2 is large with some positive constant probability over the random choices of A and the
choice of S ∈S .

Claim 8. If α≤
√

u
40βm , then with probability at least 1/11 over the choice of ` ∈ {−1,1}u we have

Pr
A,S

[
Ψ1(`, fA,S)+Ψ2(`, fA,S) ≥ (1−β)ε

24
+ αβ

24

]
≥ 1

25
.

Proof. First note that by substituting every indicator in (3) with 1 we get that with probability 1 over
all samples S, labelings ` and random choices of A we have

Ψ1 +Ψ2 ≤ (1−β)ε+αβ , (9)

and therefore Pr`
[
EA,S[Ψ1 +Ψ2] ≤ (1−β)ε+αβ] = 1. Furthermore, for every α ≤

√
u

40βm we get

from Claim 7 that E`
[
EA,S[Ψ1 +Ψ2]

] ≥ 1
6

(
(1−β)ε+αβ)

. Denote X = EA,S[Ψ1 +Ψ2] and a = (1−
β)ε+αβ. In these notations we have that (9) states that Pr`[X ≤ a] = 1, and Claim 7 states that
E`[X ] ≥ a/6. Therefore a −X is a non-negative random variable, and from Markov’s inequality we
get that

Pr
`

[X ≤ a/12] = Pr
`

[a −X ≥ 11a/12] ≤ Pr
`

[a −X ≥ 1.1E[a −X ]] ≤ 10/11

and therefore Pr`[EA,S[Ψ1 +Ψ2] ≥ 1
12 ((1−β)ε+αβ)] ≥ 1/11.

Next, fix some ` ∈ {−1,1}u for which EA,S [Ψ1+Ψ2] ≥ 1
12 ((1−β)ε+αβ). Once again, as PrA,S [Ψ1+

Ψ2 ≤ 12EA,S[Ψ1 +Ψ2]] = 1 we get from Markov’s inequality that with probability at least 1/25 we
have

Pr
A,S

[
Ψ1 +Ψ2 ≥

(1−ε)β

24
+ αβ

24

]
≥ Pr

A,S

[
Ψ1 +Ψ2 ≥

1

2
EA,S[Ψ1 +Ψ2]

]
≥ 1

25
.

12
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To finish the proof of Lemma 6, observe that from Claims 5 and 8 we get that with positive prob-
ability over ` ∈ {−1,1} there exists a voting classifier f ∈C (Ĥ) such that for every i ∈ [u], `i f (xi ) ≥ θ
and in addition PrA,S

[
Ψ1 +Ψ2 ≥ (1−ε)β

24 + αβ
24

]
≥ 1

25 . As this occurs with positive probability, we con-

clude that there exists some labeling ˆ̀∈ {−1,1}u satisfying both properties. Since for every set of
random choices of A, and every S ∼Dm

ˆ̀ , Claim 4 guarantees that

Pr
(x,y)∼D ˆ̀

[y fA,S(x)] ≥ (1−α)β

2
+Ψ1( ˆ̀, fA,S)+Ψ2( ˆ̀, fA,S) ,

this concludes the proof of Lemma 6, and thus the proof of Theorem 1 is now complete.

3.2 Proof of Existential Lower Bound

This section is devoted to the proof of Theorem 2. That is, we show the existence of a distribution
D ∈ {D`}`∈{−1,1}u such that with a constant probability over S ∼Dm there exists some voting classifier
fS ∈ C (Ĥ) such that fS has large margins on points in S, but has large generalization probability

with respect to D. To this end, let m be such that ln N
θ2 < ( m

lnm

)9/10, and note that m =
(

ln N
θ2

)1+Ω(1)
.

Let u = 40m
lnm ≤ 2N O(1)

, and let d = ln N
θ2 .

Similarly to the proof of Theorem 1, the main challenge is to show the existence of a labeling
that satisfies all desired properties. We draw the reader’s attention to the fact that unlike the
previous proof, the distribution over labelings is not uniform over the entire set {−1,1}u , but rather
a designated subset of sparse labelings.

With every labeling ` ∈ {−1,1}u and an m-point sample S, we associate a classifier h`,S as
follows. Intuitively, h`,S "adverserially changes" at most d labels of points in {ξ2, . . . ,ξu−d } that
were not picked by S, and chooses the majority label for points in {ξu−d+1, . . . ,ξu}. Formally, let
IS ⊆ {ξ2, . . . ,ξu−d } \ S be a set of size at most d chosen uniformly at random, then for every x ∈
{ξ1, . . . ,ξu−d }, h`,S(x) = −`(x) if and only if x ∈ IS , and for every x ∈ {ξu−d+1, . . . ,ξu}, h`,S(x) is the
majority of labels of x in S. That is h`,S(x) = 1 if and only if (x,1) appears in S more times than
(x,−1). Break ties arbitratily.

Lemma 9. If α≤
√

d
40βm then there exists ˆ̀∈ {−1,1}u such that

1. For every i ∈ [u −d ], ˆ̀
i = 1;

2. With probability at least 99/100 over the choice of sample S ∼Dm
ˆ̀ , there exists a voting classifier

fS ∈C (Ĥ) such that fS(ξi )h ˆ̀,S(ξi ) ≥ θ for all i ∈ [u]; and

3. with probability at least 1/25 over S ∼Dm
ˆ̀ we have

Pr
(x,y)∼D ˆ̀

[yh ˆ̀,S(x) < 0] ≥ (1−α)β

2
+ (1−β)εd

8(u −d −1)
+ αβ

24
.

We first show that the lemma implies Theorem 2.

Proof of Theorem 2. Fix some τ ∈ [0,49/100]. Assume first that τ≤ d
50u , and let ε= 1

2 and β=α= 0.
With probability 1/25 over S we have

Pr
(x,y)∼D ˆ̀

[yh ˆ̀,S(x) < 0] ≥ (1−β)εd

8u
≥ τ+Ω

(
d

u

)
= τ+Ω


 ln |Ĥ| lnm

mθ2 +
√
τ ln |Ĥ| lnm

mθ2


 ,
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where the last transition is due to the fact that d = θ−2 ln N =Θ(θ−2 ln |Ĥ|) and τ=O(d/u). Moreover,
with probability 99/100 over S there exists fS ∈C (Ĥ) such that fS(ξi )h ˆ̀,S(ξi ) ≥ θ for all i ∈ [u]. We

get that with probability at least 1/100 over the sample S there exists fS ∈C (Ĥ) such that

Pr
S

[y j fS(x j ) < θ] = Pr
S

[y j h ˆ̀,S(x j ) < 0] = 0 ≤ τ ,

and moreover

Pr
(x,y)∼D ˆ̀

[y fS(x) < 0] = Pr
(x,y)∼D ˆ̀

[yh ˆ̀,S(x) < 0] ≥ τ+Ω

 ln |Ĥ| lnm

mθ2 +
√
τ ln |Ĥ| lnm

mθ2


 .

Otherwise, assume τ > d
50u , and let ε = 1

2 , α =
√

d
2560τm and β = 64τ

32−31α . Since τ ≥ d
50u , then

α ∈ [0,1]. Moreover, for large enough constant C > 0, if m >C d , then 32−31α≥ 64 · 499
1000 ≥ 64 · 101

100τ,
and therefore β ∈ [0,100/101].

Next, let
〈

(x1, y1), . . . , (xm , ym)
〉∼Dm

ˆ̀ be a sample of m points drawn independently according

to D ˆ̀. For every j ∈ [m], let E j be the event that (x j , y j ) ∈ {(ξi ,− ˆ̀
i )}i∈[u−d+1,u], then we have

1y j fS (x j )<0 <1E j . Moreover, E[1E j ] = (1−α)β
2 , and {1E j } j∈[m] are independent. Therefore by Chernoff

we get that for large enough N ,

Pr
S∼Dm

ˆ̀

[
Pr

(x,y)∼S

[
yh ˆ̀,S(x) < 0

]
≥ τ

]
≤ Pr

S∼Dm
ˆ̀

[
1

m

∑
j∈[m]

1E j ≥
(1−31α/32)β

2

]

≤ e−Θ(α2βm) = e−Θ(d) ≤ 10−3 ,

where the inequality before last is due to the fact that α2βm = dβ
2560τ =Ω(d), since β≥ 2τ.

Moreover, since α≤ 1 then β≤ 64τ, and therefore α=
√

d
2560τm ≤

√
d

40βm . Thus with probability

at least 1/25 over S we get that

Pr
(x,y)∼D ˆ̀

[yh ˆ̀,S(x) < 0] ≥ (1−α)β

2
+ (1−β)εd

u −d −1
+ αβ

32
= (1−31α/32)β

2
+ (1−β)εd

u −d −1
+ αβ

64

= τ+Ω

d

u
+

√
τd

m


≥ τ+Ω


 ln |Ĥ| lnm

mθ2 +
√
τ ln |Ĥ|

mθ2


 ,

Therefore with probability at least 1/50 over the sample S we get that Pr(x,y)∼S

[
yh ˆ̀,S(x) < 0

]
≤ τ and

moreover

Pr
(x,y)∼D ˆ̀

[yh ˆ̀,S(x) < 0] ≥ τ+Ω

 ln |Ĥ| lnm

mθ2 +
√
τ ln |Ĥ|

mθ2


 .

Finally, from Lemma 9 and similarly to the first part of the proof, we get that with probability 1/100
over the choice of S there exists fS ∈ C (Ĥ) such that h ˆ̀,S(ξi ) fS(ξi ) ≥ θ for all i ∈ [u]. For all these

samples S we get that Pr(x,y)∼S
[

y fS(x) < θ]= Pr(x,y)∼S

[
yh ˆ̀,S(x) < 0

]
≤ τ and moreover

Pr
(x,y)∼D ˆ̀

[y fS(x) < 0] = Pr
(x,y)∼D ˆ̀

[yh ˆ̀,S(x) < 0] ≥ τ+Ω

 ln |Ĥ| lnm

mθ2 +
√
τ ln |Ĥ|

mθ2


 .
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For the rest of the section we therefore prove Lemma 9. We start by lower bounding the expected
value ofΨ1(`,h`,S)+Ψ2(`,h`,S) over a choice of a labeling ` and samples S ∈D`. We consider next
the subset L′ of L(u,d) containing all labelings ` satisfying `i = 1 for all i ∈ [u −d ]. Intuitively, by a
coupon-collector like argument we show that with very high probability over the sample S, there
are at least d points in {ξi }i∈[u−d ] not sampled into S.

Claim 10. If α≤
√

d
40βm then

E`∈L′
[
ES

[
Ψ1(`,h`,S)+Ψ2(`,h`,S)

]]≥ (1−ε)βd

2(u −d −1)
+ αβ

6
.

Proof. Let S be the set of all m-point samples S for which |{ξ2, . . . ,ξu−d } \ S| ≥ d . For every S ∈S we
have |IS | = d , and therefore

∑
i∈[2,u−d ]

1`i h`,S (ξi )<0 =
∑

i∈[2,u−d ]
1h`,S (ξi )<0 = |IS | = d .

Therefore E`[ES [Ψ1(`,h`,S)|S ∈S]] = (1−ε)βd
u−d−1 . We will show next that PrS [S] ≥ 1/2, and conclude that

E`[ES[Ψ1(`,h`,S)]] ≥ (1−ε)βd
2(u−d−1) . To see this, consider a random sampling S ∼Dm

`
. We will show by

a coupon-collector argument that with high probability, no more than (u −d −1)−d elements of
{ξ2, . . . ,ξu−d } are sampled to S, and therefore S ∈ S . Consider the set of elements of {ξ2, . . . ,ξu−d }
sampled by S. For every k ∈ [u−2d −1], let Xk be the number of samples between the time (k −1)th
distinct element was sampled from {ξ2, . . . ,ξu−d } and the time the kth distinct element was sampled
from {ξ2, . . . ,ξu−d }. Then Xk ∼Geom

(
pk

)
, where pk = (1−β)ε · u−d−k

u−d−1 . Denote X :=∑
k∈[u−2d−1] Xk ,

then

E[X ] =
∑

k∈[u−2d−1]

1

pk
=

∑
k∈[u−2d−1]

u −d

(1−β)ε(u −d −k)
= u −d −1

(1−β)ε

u−d−1∑
k=d+1

1

k

≥ (u −d −1)[ln(u −d −1)− ln(d +1)−1] ≥ 1

2
u ln

u

d
≥ 1

20
u lnu ≥ 4

3
m

Therefore by letting λ= 3
4 , and p∗ = mink∈[u−2d−1] pk = (1−β)ε · u−d−(u−2d−1)

u−d−1 ≥ d
u then known tail

bounds on the sum of geometrically-distributed random variable (e.g. [Jan18, Theorem 3.1]) we get
that for large enough values of m,

Pr
S∼Dm

[S ∉S] = Pr[X ≤ m] ≤ Pr[X ≤λE[X ]] ≤ e−p∗E[X ](λ−1−lnλ) ≤ e−Ω(lnu) ≤ 1/2 . (10)

The lower bound on the expectation ofΨ2 is proved identically to the proof in Claim 7.

Similarly to Claim 8, we conclude the following.

Claim 11. For α≤
√

d
40βm , then with probability at least 1/11 over the choice of ` ∈L′ we have

Pr
S∼Dm

`

[
Ψ1(`,h`,S)+Ψ2(`,h`,S) ≥ (1−β)εd

4(u −d −1)
+ αβ

12

]
≥ 1

25
.

We next want to show that there exists a labeling ` ∈ L′ such that with high probability over
S ∼ Dm

`
, there exists a voting classifier fS ∈ C (Ĥ) attaining high margins with h`,S . Since the

distribution induced on {ξi }i∈[u−d+1,u] by D` is uniform, we conclude the following for a large
enough value of N .
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Claim 12. With probability at least 99/100 over the choice of a labeling ` ∈L′,

Pr
S∼D`

[∃ fS ∈ C(Ĥ) : ∀i ∈ [u]. h`,S(ξi ) fS(ξi ) ≥ θ]≥ 99

100
.

Proof. For two labelings ` ∈L(u,d) and `′ ∈L′ we say that ` and `′ are similar, and denote `≡ `′ if
for all i ∈ [u −d +1,u], `i = `′i . From Claim 5 we know that

1−1/N ≤ Pr
`∈RL(u,d)

[∃ f ∈ C(Ĥ) : ∀i ∈ [u]. `i f (ξi ) ≥ θ] =

=
∑
`′∈L

Pr
`∈RL(u,d)

[∃ f ∈ C(Ĥ) : ∀i ∈ [u]. `i f (ξi ) ≥ θ|`≡ `′] · Pr
`∈RL(u,d)

[`≡ `′]

=
∑
`′∈L

Pr
S∼Dm

`′
[∃ fS ∈ C(Ĥ) : ∀i ∈ [u]. h`′,S(ξi ) f (ξi ) ≥ θ|`≡ `′] · Pr

`∈RL(u,d)
[`≡ `′]

For a large enough value of N we conclude that with probability at least 99/100 over a choice of
`′ ∈ L′, for at least a 99/100 fraction of samples S ∼Dm

`′ there exists a voting classifier fS ∈ C (Ĥ)
attaining high margins with h`′,S .

Combining Claims 12 and 11 we conclude that if α≤
√

d
40βm then there exists ˆ̀∈L′ satisfying

the guarantees in Lemma 9. The proof of the lemma, and therefore of Theorem 2 is now complete.

4 Existence of a Small Hypotheses Set

This section is devoted to the proof of Lemma 3. That is, we present a distribution µ over fixed-size
hypothesis sets and show that for every fixed labeling ` with not too many negative labels, with high
probability over H∼µ, C (H) contains a voting classifier f that attains good margins with respect to
`. In fact, our proof not only shows existence of such a voting classifier, but also presents a procedure
for constructing one. The presented algorithm is an adaptation of the AdaBoost algorithm.

More formally, fix some θ ∈ (0,1/40), δ ∈ (0,1) and an integer d ≤ u. Let γ= 4θ ∈ (0,1/10) and let

N = 2γ−2 lnu·ln γ−2 lnu
δ ·eO(θ2d).We define the distributionµ via the following procedure, that samples

a hypothesis setH∼µ. Let ĥ :X → {−1,1} be defined by ĥ(x) = 1 for all x ∈X . Sample independently
and uniformly at random N hypotheses h1, . . . ,hN ∈R X → {−1,1}, and define H := {ĥ}∪ {h j } j∈[N ].

Clearly every H ∈ supp(µ) satisfies |H| = N +1. We therefore turn to prove the second property.
To this end, let k = γ−2 lnu. In order to show existence of a voting classifier, we conceptually change
the procedure defining µ, and think of the random hypotheses as being sampled in k equally sized
"batches", each of size N /k, and adding ĥ to each of them. Denote the batches by H1,H2, . . . ,Hk .
We consider next the following procedure to construct a voting classifier f ∈C (H) given H∼µ. We
will use the main ideas from the AdaBoost algorithm. Recall that AdaBoost creates a voting classifier
using a sample S = 〈(x1, y1), . . . , (xm , ym)〉 in iterations. Staring with f0 = 0, in iteration j , it computes
a new voting classifier f j = f j−1 +α j h j for some hypothesis h j ∈H and weight α j . The heart of the
algorithm lies in choosing h j . In each iteration, AdaBoost computes a distribution D j over S and
chooses a hypothesis h j minimizing

ε j = Pr
i∼D j

[h j (xi ) 6= yi ].

The weight it then assigns is α j = (1/2) ln((1−ε j )/ε j ) and the next distribution D j+1 is

D j+1(i ) = D j (i )exp(−α j yi h j (xi ))

Z j
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where Z j is a normalization factor, namely

Z j =
m∑

i=1
D j (i )exp(−α j yi h j (xi )).

The first distribution D1 is the uniform distribution.
We alter the above slightly assigning uniform weights on the hypotheses, and setting α j =

1
2 ln 1+2γ

1−2γ for all iterations j . The algorithm is formally described as Algorithm 1.

Input: (H1, . . . ,Hk ) ∼µ
Output: f ∈C

(⋃
j∈[k]H j

)

1: let α= 1
2 ln 1+2γ

1−2γ
2: let f (x) = 0 for all x ∈X
3: let D1(i ) = 1

u for all i ∈ [u].
4: for j = 1 to k do
5: Find a hypothesis h j ∈H j satisfying

∑
i∈[u] D j (i )1yi 6=h j (xi ) ≤ 1

2 −γ.
If there is no such hypothesis, return fail.

6: f j ← f j−1 +h j .
7: Z j ←

∑
i∈[u] D j (i )exp(−αyi h j (xi )).

8: For every i ∈ [u] let D j+1(i ) = 1
Z j

D j (i )exp(−αyi h j (xi )).

9: return 1
k fk .

Algorithm 1: Construct a Voting Classifier

We will prove that the algorithm fails with probability at most δ (over the choice of H), and that
if the algorithm does not fail, then it returns a voting classifier with minimum margin at least θ.
First note that if f is the classifier returned by the algorithm, then clearly f = 1

k

∑
j∈[k] h j ∈C (H) is a

voting classifier.

Claim 13. Algorithm 1 fails with probability at most δ.

Proof. Since H1, . . . ,Hk are independent, it is enough to show that for every j ∈ [k], for every w ∈∆u

with probability at least 1−δ/k there exists h j ∈H j such that

∑
i∈[u]

wi1yi 6=h j (xi ) ≤
1

2
−γ , (11)

where∆u is the u-dimensional simplex. First note that if
∑

i∈[u]:yi=−1 wi ≤ 1
2 −γ, then ĥ ∈H j satisfies

(11). We can therefore assume
∑

i∈[u]:yi=−1 wi > 1
2 −γ. Next, note that for every h : X → {−1,1} we

have

∑
i∈[u]

wi1yi 6=h(xi ) =
∑

i∈[u]

1

2
(wi −wi yi h(xi )) = 1

2

( ∑
i∈[u]

wi −
∑

i∈[u]
wi yi h(xi )

)
= 1

2
− 1

2

∑
i∈[u]

wi yi h(xi )

Therefore
∑

i∈[u] wi1yi 6=h(xi ) > 1
2 −γ if and only if

∑
i∈[u] wi yi h(xi ) < 2γ. We want to show that with

probability at most δ
k every h ∈H j satisfies

∑
i∈[u] wi yi h j (xi ) < 2γ. We claim that it is enough to

show that

Pr
h∈RX→{−1,1}

[ ∑
i∈[u]

wi yi h(xi ) ≥ 2γ

]
≥

k ln k
δ

N
= 1

2
e−Θ(γ2d) (12)
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To see why this is enough assume that (12) is true, then since sampling H j means independently
and uniformly sampling N /k hypotheses h ∈R X → {−1,1}, the probability that there exists h ∈H j

such that (11) holds is at least

1− (1−
k ln k

δ

N
)N /k ≥ 1−exp

(
−

k ln k
δ

N
· N

k

)
= 1− δ

k
.

We thus turn to prove that (12) holds. To this end, let M := {i ∈ [u] :βi < 0}. Recall that |M | ≤ d and
that we assumed

∑
i∈M wi =

∑
i∈M |yi wi | ≥ 1

2 −γ. From a known tail bound by Montgomery-Smith
[MS90] on the sum of Rademacher random variables we have that since γ ∈ (0,1/10),

Pr

[ ∑
i∈[u]

wi yi h(xi ) ≥ 2γ

]
≥ Pr

[ ∑
i∈M

wi yi h(xi ) ≥ 2γ and
∑

i∈[u]\M
wi yi h(xi ) ≥ 0

]
≥ 1

2
e−Θ(γ2d)

Claim 14. If Algorithm 1 does not fail, then for every i ∈ [u], yi f (xi ) ≥ θ.

Proof. We first show by induction that for all j ∈ [k] we have that for all i ∈ [u]

exp(−αyi f j (xi )) = u ·D j+1(i )
∏
`∈[ j ]

Z` .

To see this observe that for all i ∈ [u], D2(i ) = D1(i )
Z1

exp(−αyi h1(xi )). Since h1 = f1 and by rearranging

we get that exp(−αyi f1(xi )) = D2(i )Z1
D1(i ) = u ·D2(i )Z1. For the induction step we have that

exp(−αyi f j (xi )) = exp(−αyi ( f j−1(xi )+h j (xi ))) = exp(−αyi f j−1(xi )) ·exp(−αyi h j (xi ))

= u ·D j (i )
∏

`∈[ j−1]
Z` ·

Z j D j+1(i )

D j (i )

= u ·D j+1(i )
∏
`∈[ j ]

Z`

Since
∑

i∈[u] Dk+1(i ) = 1, we get that
∑

i∈[u]
exp(−αyi fk (xi )) = u

∏
`∈[k]

Z` . (13)

We turn therefore to bound Z` for ` ∈ [k]. Denote ε` =
∑

i∈[u] D`(i ) ·1h`(xi ) 6=yi . Then

Z` =
∑

i∈[u]
D`(i )exp(−αyi h`(xi )) =

∑
i∈[u]

D`(i )exp

(
−1

2
ln

(
1+2γ

1−2γ

)
yi h`(xi )

)

=
∑

i∈[u]
D`(i )

(
1+2γ

1−2γ

)− 1
2 yi h`(xi )

= ε`
(

1+2γ

1−2γ

) 1
2

+ (1−ε`)

(
1+2γ

1−2γ

)− 1
2

=
(

ε`

1−2γ
+ 1−ε`

1+2γ

)√
(1+2γ)(1−2γ)

By the condition in line 5 we know that ε` ≤ 1
2 −γ. Since

(
ε`

1−2γ +
1−ε`
1+2γ

)
is increasing as a function of

ε` we therefore get that

Z` ≤
(

1
2 −γ

1−2γ
+

1
2 +γ

1+2γ

)√
(1+2γ)(1−2γ) =

√
(1+2γ)(1−2γ) ≤ 1−2γ2 ,
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where the last inequality follows from the fact that 1−4γ2 ≤ (1−2γ2)2. Substituting in (13) we get
that for every i ∈ [u],

exp(−αyi fk (xi ) ≤
∑

i∈[u]
exp(−αyi fk (xi )) = u

∏
`∈[k]

Z` ≤ u · (1−2γ2)k ≤ exp(lnu −2kγ2) ,

and therefore

yi f (xi ) = 1

k
yi fk (xi ) ≥ 1

kα
(2kγ2 − lnu) . (14)

Since ln(1+x) ≤ x for all x ≥ 0 we get that

α= 1

2
ln

(
1+2γ

1−2γ

)
= 1

2
ln

(
1+ 4γ

1−2γ

)
≤ 2γ

1−2γ
≤ 4γ ,

where the last inequality follows from the fact that γ ∈ (0,1/4). Substituting in (14) we get that

yi f (xi ) ≥ 1

4kγ
(2kγ2 − lnu) = γ

2
− lnu

4kγ
.

Recall that k = γ−2 lnu, and therefore yi f (xi ) ≥ γ/4 = θ.

5 Conclusions

In this work, we showed almost tight margin-based generalization lower bounds for voting classifiers.
These new bounds essentially complete the theory of generalization for voting classifers based on
margins alone. Closing the remaining gap between the upper and lower bounds is an intriguing
open problem and we hope our techniques might inspire further improvements. Our results
come in the form of two theorems, one showing generalization lower bounds for any algorithm
producing a voting classifier, and a slightly stronger lower bound showing the existence of a voting
classifier with poor generalization. This raises the important question of whether specific boosting
algorithms can produce voting classifiers that avoid the lnm factor in the second lower bound
via a careful analysis tailored to the algorithm. As a final important direction for future work,
we suggest investigating whether natural parameters other than margins may be used to better
explain the practical generalization error of voting classifiers. At least, we now have an almost tight
understanding, if no further parameters are taken into consideration.
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What if Neural Networks had SVDs?

Alexander Mathiasen∗ Frederik Hvilshøj∗ Jakob Rødsgaard Jørgensen∗

Anshul Nasery∗ † Davide Mottin∗

Abstract

Various Neural Networks employ time-consuming matrix operations like matrix
inversion. Many such matrix operations are faster to compute given the Singular
Value Decomposition (SVD). Techniques from [10, 17] allow using the SVD in
Neural Networks without computing it. In theory, the techniques can speed up
matrix operations, however, in practice, they are not fast enough. We present an
algorithm that is fast enough to speed up several matrix operations. The algorithm
increases the degree of parallelism of an underlying matrix multiplication H ·X
whereH is an orthogonal matrix represented by a product of Householder matrices.

1 Introduction
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Figure 1: Time consumption of matrix
inversion in Neural Networks. The plot
compares FastH against the sequential
algorithm from [17] (see Section 4).

What could be done if the Singular Value Decomposition
(SVD) of the weights in a Neural Network was given?
Time-consuming matrix operations, such as matrix inver-
sion [6], could be computed faster, reducing training time.
However, on d × d weight matrices it takes O(d3) time
to compute the SVD, which is not faster than computing
the matrix inverse in O(d3) time. In Neural Networks, one
can circumvent the SVD computation by using the SVD
reparameterization from [17], which, in theory, reduces the
time complexity of matrix inversion from O(d3) to O(d2).
However, in practice, the SVD reparameterization attains
no speed-up for matrix inversion on GPUs.

The difference between theory and practice occurs because the previous technique increases sequential
work, which is not taken into account by the time complexity analysis. On a d× d weight matrix,
the previous technique entails the computation of O(d) sequential inner products, which is ill-fit for
parallel hardware like a GPU because the GPU cannot utilize all its cores. For example, if a GPU has
4000 cores and computes sequential inner products on 100-dimensional vectors, it can only utilize
100 cores simultaneously, leaving the remaining 3900 cores to run idle.

We introduce a novel algorithm, FastH, which increases core utilization, leaving less cores to run idle.
This is accomplished by increasing the degree of parallelization of an underlying matrix multiplication
H ·X where H is an orthogonal matrix represented by a product of Householder matrices. FastH
retains the same desirable time complexity as the sequential algorithm from [17] while reducing the
number of sequential operations. On a mini-batch of size m > 1, FastH performs O(d/m + m)
sequential matrix-matrix operations instead of O(d) sequential vector-vector operations.

In practice, FastH is faster than all algorithms from [17], e.g., FastH is 27 times faster than their
sequential algorithm, see Figure 1. Code www.github.com/AlexanderMath/fasth.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

∗Aarhus University, {alexander.mathiasen, fhvilshoj, mrjakobdk}@gmail.com, davide@cs.au.dk
†Indian Institute of Technology, Bombay, anshulnasery@gmail.com
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2 Background

2.1 Fast Matrix Operations Using SVD

The SVD allows faster computation of many matrix operations commonly used by Neural Networks.
A few examples include matrix determinant [3], matrix inverse [7], Spectral Normalization [11], the
matrix exponential [8], the Cayley transform [4], weight decay, condition number and compression
by low-rank approximation [16]. Proofs can be found in most linear algebra textbooks, see, e.g., [12].

2.2 The SVD Reparameterization

This subsection describes how [17] allows for using the SVD of the weight matrices in Neural
Networks without computing them, and in particular, how this approach is limited by the computation
of sequential inner products. Let W = UΣV T be the SVD of a weight matrix W where Σ is a
diagonal matrix and U, V are orthogonal matrices, i.e, UT = U−1 and V T = V −1. The goal is to
perform gradient descent updates to W while preserving the SVD. Consider updating U,Σ, V a small
step η ∈ R in the direction of gradients∇U ,∇Σ,∇V .

Σ′ = Σ− η∇Σ, U ′ = U − η∇U , V ′ = V − η∇V .
While Σ′ remains diagonal, both U ′ and V ′ are in general not orthogonal, which is needed to preserve
the SVD. To this end, [17] suggested using a technique from [10] which decomposes an orthogonal
matrix as a product of d Householder matrices H1, . . . ,Hd:

U =
d∏

i=1

Hi Hi = I − 2
viv

T
i

||vi||22
vi ∈ Rd. (1)

Householder matrices satisfy several useful properties. In particular, the matrix U remains orthogonal
under gradient descent updates vi = vi − η∇vi [10]. Furthermore, all products of Householder
matrices are orthogonal, and any d × d orthogonal matrix can be decomposed as a product of d
Householder matrices [14]. Householder matrices thus allow us to perform gradient descent over
orthogonal matrices, which allows us to preserve the SVD of W during gradient descent updates.

Multiplication. One potential issue remains. The Householder decomposition might increase
the time it takes to multiply UX for a mini-batch X ∈ Rd×m during the forward pass. Computing
UX = H1 · · · (Hd−1(Hd ·X)) takes dHouseholder multiplications. If done sequentially, as indicated
by the parenthesis, each Householder multiplication can be computed in O(dm) time [17]. All d
multiplications can thus be done in O(d2m) time. Therefore, the Householder decomposition does
not increase the time complexity of computing UX .

Unfortunately, the O(d2m) time complexity comes at the cost of multiplying each Householder
matrix sequentially, and each Householder multiplication entails computing an inner product, see
Equation (1). The multiplication UX then requires the computation of O(d) inner products sequen-
tially. Such sequential computation is slow on parallel hardware like GPUs, much slower than normal
matrix multiplication. To exploit GPUs, [17] suggested using a parallel algorithm that takes O(d3)
time, but this is no faster than computing the SVD.

We are thus left with two options: (1) an O(d2m) sequential algorithm and (2) an O(d3) parallel
algorithm. The first option is undesirable since it entails the sequential computation of O(d) inner
products. The second option is also undesirable since it takes O(d3) which is the same as computing
the SVD, i.e., we might as-well just compute the SVD. In practice, both algorithms usually achieve
no speed-up for the matrix operations like matrix inversion as we show in Section 4.2.

Our main contribution is a novel parallel algorithm, FastH, which resolves the issue with sequential
inner products without increasing the time complexity. FastH takes O(d2m) time but performs
O(d/m+m) sequential matrix-matrix operations instead ofO(d) sequential vector-vector operations
(inner products). In practice, FastH is up to 6.2× faster than the parallel algorithm and up to 27.1×
faster than the sequential algorithm, see Section 4.1.

Mathematical Setting. We compare the different methods by counting the number of sequential
matrix-matrix and vector-vector operations. We count only once when other sequential operations can
be done in parallel. For example, processing v1, ..., vd/2 sequentially while, in parallel, processing
vd/2+1, ..., vd sequentially, we count d/2 sequential vector-vector operations.

2
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Orthogonal Gradient Descent. The SVD reparameterization performs gradient descent over
orthogonal matrices. This is possible with Householder matrices, however, other techniques, such
as [2, 9], rely on the matrix exponential and the Cayley map, respectively. For d× d matrices both
techniques spend O(d3) time, which is no faster than computing the SVD.

3 Fast Householder Multiplication (FastH)

3.1 Forward Pass

Our goal is to create an O(d2m) algorithm with few sequential operations that solves the following
problem: Given an inputX ∈ Rd×m with d > m > 1 and Householder matricesH1, ...,Hd, compute
the output A = H1 · · ·HdX . For simplicity, we assume m divides d.

Since each Hi is a d×d matrix, it would take O(d3) time to read the input H1, ...,Hd. Therefore, we
represent each Householder matrix Hi by its Householder vector vi such that Hi = I−2viv

T
i /||vi||22.

A simplified version of the forward pass of FastH proceeds as follows: divide the Householder product
H1 · · ·Hd into smaller products P1 · · ·Pd/m so each Pi is a product of m Householder matrices:

Pi = H(i−1)·m+1 · · ·Hi·m i = 1, ..., d/m. (2)

All d/m products Pi can be computed in parallel. The output can then be computed by A =
P1 · · ·Pd/mX instead of A = H1 · · ·HdX , which reduces the number of sequential matrix multipli-
cations from d to d/m.

This algorithm computes the correct A. However, the time complexity increases due to two issues.
First, multiplying each product Pi with X takes O(d2m) time, a total of O(d3) time for all d/m
products. Second, we need to compute all d/m products P1, ..., Pd/m in O(d2m) time, so each
product Pi must be computed in O(d2m/(d/m)) = O(dm2) time. If we only use the Householder
structure, it takes O(d2m) time to compute each Pi, which is not fast enough.

Both issues can be resolved, yielding an O(d2m) algorithm. The key ingredient is a linear algebra
result [1] that dates back to 1987. The result is restated in Lemma 1.

Lemma 1. For anymHouseholder matricesH1, ...,Hm there existsW,Y ∈ Rd×m st. I−2WY T =
H1 · · ·Hm. Computing W and Y takes O(dm2) time and m sequential Householder multiplications.

For completeness, we provide pseudo-code in Algorithm 1. Theorem 1 states properties of Algorithm 1
and its proof clarify how Lemma 1 solves both issues outlined above.

Theorem 1. Algorithm 1 computes H1 · · ·HdX in O(d2m) time with O(d/m + m) sequential
matrix multiplications.

Proof. Correctness. Each iteration of Step 2 in Algorithm 1 utilizes Lemma 1 to compute Ai =
Ai+1 − 2Wi(Y

T
i Ai+1) = PiAi+1. Therefore, at termination, A1 = P1 · · ·Pd/mX . In Step 1, we

used Lemma 1 to compute the Pi’s such that A = H1 · · ·HdX as wanted.

Time Complexity. Consider the for loop in Step 1. By Lemma 1, each iteration takes O(dm2)
time. Therefore, the total time of the d/m iterations is O(dm2d/m) = O(d2m). Consider iteration
i of the loop in Step 2. The time of the iteration is asymptotically dominated by both matrix
multiplications. Since Ai+1, Xi and Yi are d×m matrices, it takes O(dm2) time to compute both
matrix multiplications. There are d/m iterations so the total time becomes O(dm2d/m) = O(d2m).

Number of Sequential Operations. Each iteration in Step 2 performs two sequential matrix mul-
tiplications. There are d/m sequential iterations which gives a total of O(d/m) sequential matrix
multiplications. Each iteration in Step 1 performs m sequential Householder multiplications to
construct Pi, see Lemma 1. Since each iteration is run in parallel, the algorithm performs no more
than O(d/m+m) sequential matrix multiplications.

Remark. Section 3.2 extends the techniques from this section to handle gradient computations.
For simplicity, this section had Algorithm 1 compute only A1, however, in Section 3.2 it will be
convenient to assume A1, ..., Ad/m are precomputed. Each Ai = Pi · · ·Pd/mX can be saved during
Step 2 of Algorithm 1 without increasing asymptotic memory consumption.

3
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3.2 Backwards Propagation

This subsection extends the techniques from Section 3.1 to handle gradient computations. Our
goal is to create an O(d2m) algorithm with few sequential operations that solves the following
problem: Given A1, . . . , Ad/m+1, P1, ..., Pd/m and ∂L

∂A1
for some loss function L, compute ∂L

∂X and
∂L
∂v1

, ..., ∂L∂vd , where vj is a Householder vector st. Hj = I − 2vjv
T
j /||vj ||22.

Since each Pi is a d×dmatrix, it would takeO(d3/m) time to read the input P1, ..., Pd/m. Therefore,
we represent each Pi by its WY decomposition Pi = I − 2WY T .

On a high-level the backward pass of FastH has two steps.

Step 1. Sequentially compute ∂L
∂A2

, ∂L
∂A3

, ..., ∂L
∂Ad/m+1

by

∂L

∂Ai+1
=

[
∂Ai
∂Ai+1

]T
∂L

∂Ai
= PTi

∂L

∂Ai
(3)

This also gives the gradient wrt. X since X = Ad/m+1.

Step 2. Use ∂L
∂A1

, ..., ∂L
∂Ad/m

from Step 1 to compute the gradient ∂L
∂vj

for all j. This problem can be

split into d/m subproblems, which can be solved in parallel, one subproblem for each ∂L
∂Ai

.

Details. For completeness, we state pseudo-code in Algorithm 2, which we now explain with the
help of Figure 2. Figure 2a depicts a computational graph of Step 1 in Algorithm 2. In the figure,
consider ∂L

∂A1
and PT1 , which both have directed edges to a multiplication node (denoted by ·). The

output of this multiplication is ∂L
∂A2

by Equation (3). This can be repeated to obtain ∂L
∂A2

, ..., ∂L
∂Ad/m+1

.

Step 2 computes the gradient of all Householder vectors ∂L
∂vj

. This computation is split into d/m

distinct subproblems that can be solved in parallel. Each subproblem concerns ∂L
∂Ai

and the product
Pi, see line 8-10 in Algorithm 2.

To ease notation, we index the Householder matrices of Pi by Pi = Ĥ1 · · · Ĥm. Furthermore, we let
Âm+1 := Ai+1 and Âj := ĤjÂj+1. The notation implies that Â1 = Ĥ1 · · · ĤmÂm+1 = PiAi+1 =
Ai. The goal of each subproblem is to compute gradients wrt. the Householder vectors v̂m, ..., v̂1 of
Ĥm, ..., Ĥ1. To compute the gradient of v̂j , we need Âj+1 and ∂L

∂Âj
, which can be computed by:

Âj+1 = Ĥ−1
j Âj = ĤT

j Âj
∂L

∂Âj+1

=

[
∂Âj

∂Âj+1

]T
∂L

∂Âj
= ĤT

j

∂L

∂Âj
(4)

Figure 2b depicts how Â2, ..., Âm+1 and ∂L

∂Â2
, ..., ∂L

∂Âm+1
can be computed given Â1 and ∂L

∂Â1
. Given

Âj+1 and ∂L

∂Âj
, we can compute ∂L

∂v̂j
as done in [10, 17]. For completeness, we restate the needed

equation in our notation, see Equation (5).

P T
d/m P T

i P T
1P T

d/m−1

∂L
∂A1····

∂L
∂A2

(
∂L
∂Ai

)(
∂L

∂Ai+1

)
∂L

∂Ad/m−1

∂L
∂Ad/m

∂L
∂X = ∂L

∂Ad/m+1

X · · ··
Ad/m+1 Ad/m Ad/m−1 Ai+1 Ai A2 A1

Pd/m Pi P1Pd/m−1

(a) Step 1: Sequential part of Algorithm 2.

· ··

···

ĤT
m ĤT

j ĤT
1

Âm Âj+1 Âj Â2 Â1 = Ai

∂L
∂Â1

=
(
∂L
∂Ai

)
∂L
∂Â2

∂L
∂Âj

∂L
∂Âj+1

∂L
∂Âm

(
∂L

∂Ai+1

)
= ∂L

∂Âm+1

Ai+1 = Âm+1

(b) Step 2: The i’th subproblem in Algorithm 2.

Figure 2: Computational graph of Step 1 and the i’th subproblem in Step 2 from Algorithm 2.
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Let a(l) be the l’th column of Âj+1 and let g(l) be the l’th column of ∂L

∂Âj
. The sum of the gradient

over a mini-batch of size m is then:

− 2

||v̂j ||22

m∑

l=1

(v̂Tj a
(l))g(l) + (v̂Tj g

(l))a(l) − 2

||v̂j ||22
(v̂Tj a

(l))(v̂Tj g
(l))v̂j (5)

Theorem 2 states properties of Algorithm 2.

Theorem 2. Algorithm 2 computes ∂L
∂X and ∂L

∂v1
, ..., ∂L∂vd in O(d2m) time with O(d/m+m) sequen-

tial matrix multiplications.

Proof. See the Supplementary Material 8.1.

Algorithm 1 FastH Forward

1: Input: X ∈ Rd×m and H1, ..., Hd ∈ Rd×d.

2: Output: A1 = H1 · · ·HdX .

3: // Step 1
4: for i = d/m to 1 do in parallel
5: Compute Yi,Wi ∈ Rd×m st.

Pi = I − 2WiY
T
i . O(dm2)

by using Lemma 1.
6: end for
7: // Step 2
8: Ad/m+1 = X.
9: for i = d/m to 1 do sequentially

10: Ai = Ai+1−2Wi(Y
T
i Ai+1). . O(dm2)

11: end for
12: return A1.

Algorithm 2 FastH Backward

1: Input: A1, ..., Ad/m+1, P1, ..., Pd/m and ∂L
∂A1

.

2: Output: ∂L
∂X

and ∂L
∂vk

for all k where Hk = I−2 vkv
T
k

||vk||22
.

3: // Step 1
4: for i = 1 to d/m do sequentially
5: ∂L

∂Ai+1
= PT

i
∂L
∂Ai

eq. (3). . O(dm2)

6: end for

7: // Step 2
8: for i = 1 to d/m do in parallel
9: Let ∂L

∂Â1
=
(

∂L
∂Ai

)
.

10: To ease notation, let Pi = Ĥ1 · · · Ĥm.
11: for j = 1 to m do
12: Compute Âj+1,

∂L

∂Âj
see eq. (4). . O(dm)

13: Compute ∂L
∂v̂j

using Âj+1,
∂L

∂Âj
, eq. (5). . O(dm)

14: end for
15: end for
16: return ∂L

∂X
= ∂L

∂Ad/m+1
and ∂L

∂vk
for all k = 1, ..., d.

3.3 Extensions

Trade-off. Both Algorithm 1 and Algorithm 2 can be extended to take a parameter k that controls
a trade-off between total time complexity and the amount of parallelism. This can be achieved
by changing the number of Householder matrices in each product Pi from the mini-batch size
m to an integer k. The resulting algorithms take O(d2k + d2m) time, O(d2m/k) space and has
O(d/k + k) sequential matrix multiplications. This extension has the practical benefit that one can
try different values of k and choose the one that yields superior performance on a particular hardware
setup. Note that we never need to search for k more than once. The number of sequential matrix
multiplications O(d/k + k) is minimized when k = O(

√
d). For a constant c > 1, we can find

the best k ∈ {2, 3, ..., cd
√
de} by trying all O(

√
d) values. The search needs to be done only once

and takes O(
√
d(d2k + d2m)) = O(d3 + d2.5m) time. In practice, the time it took to find k was

negligable, e.g., on the hardware we describe in Section 4 we found k in less than 1s for d = 784.

Rectangular Matrices. We can use the SVD reparametrization for rectangular W ∈ Rn×m. Use
orthogonal U ∈ Rn×n, V ∈ Rm×m and diagonal Σ ∈ Rn×m and let W = UΣV T .

Convolutional Layers. So far, we have considered the SVD reparameterization for matrices
which corresponds to fully connected layers. The matrix case extends to convolutions by, e.g., 1× 1
convolutions [7]. The SVD reparameterization can be used for such convolutions without increasing
the time complexity. On an input with height h and width w FastH performs O(d/m + mhw)
sequential matrix multiplications instead of the O(d) sequential inner products.
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Figure 3: Comparisons of the running times for FastH against previous algorithms. The sequential
algorithm from [17] crashed when d > 448. (a) Running times of different algorithms for d × d
matrices. (b) Running times of FastH relative to previous algorithms, i.e., the mean time of a previous
algorithm divided by the mean time of FastH.

Recurrent Layers. The SVD reparameterization was developed for Recurrent Neural Networks
(RNNs) [17]. Let r be the number of recurrent applications of the RNN. FastH performsO(d/m+rm)
sequential matrix operations instead of the O(d) sequential inner products.

4 Experiments

This section contains two experiments. Section 4.1 compares the running time of FastH against
alternatives. Section 4.2 shows that FastH speeds up matrix operations. To simulate a realistic
machine learning environment, we performed all experiments on a standard machine learning server
using a single NVIDIA RTX 2080 Ti.

4.1 Comparing Running Time

This subsection compares the running time of FastH against four alternative algorithms. We compare
the time all algorithms spend on gradient descent with a single orthogonal matrix, since such
constrained gradient descent dominates the running time of the SVD reparameterization.

We first compare FastH against the parallel and sequential algorithm from [17], all three algorithms
rely on the Householder decomposition. For completeness, we also compare against approaches that
does not rely on the Householder decomposition, in particular, the matrix exponential and the Cayley
map [2]3. See Supplementary Material 8.2 for further details.

We measure the time of a gradient descent step with a weight matrix W ∈ Rd×d and a mini-batch
X ∈ Rd×m, where m = 32 and d = 1 · 64, 2 · 64, ..., 48 · 64. We ran each algorithm 100 times, and
we report mean time µ with error bars [µ− σ, µ+ σ] where σ is the standard deviation of running
time over the 100 repetitions.

Figure 3a depicts the running time on the y-axis, as the size of the d× d matrices increases on the
x-axis. For d > 64, FastH is faster than all previous approaches. At d = 64 FastH is faster than all
previous approaches, except the parallel algorithm. Previous work employ sizes d = 192 in [7] and
d = 784 in [17].

Figure 3b depicts how much faster FastH is relative to the previous algorithms, i.e., the mean time of
a previous algorithm divided by the time of FastH, which we refer to as relative improvement. For
d > 500, the relative improvement of FastH increases with d.

At d = 448 FastH is roughly 25× faster than the sequential algorithm. FastH is even faster with
d = 3072 than the sequential algorithm with d = 448. Previous work like [6, 15] use the Householder
decomposition with the sequential algorithm. Since FastH computes the same thing as the sequential
algorithm, it can be used to reduce computation time with no downside.

3For the matrix exponential and the Cayley map we used the open-source implementation
https://github.com/Lezcano/expRNN from [2]. For the Householder decomposition, we used the open-source im-
plementation https://github.com/zhangjiong724/spectral-RNN of the sequential and parallel algorithm from [17].
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Table 1: Relating standard method to matrix decompositions for computing matrix operations.
Matrix Operation Standard Method SVD or Eigendecomposition

Determinant TORCH.SLOGDET(W)
∑d
i=1 lg |Σii|

Inverse TORCH.INVERSE(W) V Σ−1UT

Matrix Exponential Padé Approximation [2] UeΣUT

Cayley map TORCH.SOLVE(I-W, I+W) U(I−Σ)(I+Σ)−1UT

4.2 Using the SVD to Compute Matrix Operations

This subsection investigates whether the SVD reparameterization achieves practical speed-ups for
matrix operations like matrix inversion. We consider four different matrix operations. For each
operation, we compare the SVD reparameterization against the standard method for computing the
specific matrix operation, see Table 1.
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Figure 4: Running time of matrix operations.
Solid lines depict approaches which use the
SVD reparameterization and dashed lines de-
pict standard methods like TORCH.INVERSE.

Timing the Operations. The matrix operations
are usually used during the forward pass of a Neu-
ral Network, which change the subsequent gradient
computations. We therefore measure the sum of
the time it takes to compute the matrix operation,
the forward pass and the subsequent gradient com-
putations.

For example, with matrix inversion, we measure
the time it takes to compute the matrix operation
Σ−1, the forward pass W−1X = V Σ−1UTX and
the subsequent gradient computation wrt. U,Σ, V
and X . The measured time is then compared with
TORCH.INVERSE, i.e, we compare against the total
time it takes to compute TORCH.INVERSE(W), the
forward pass W−1X , and the subsequent gradient
computation wrt. W and X .

Setup. We run the SVD reparameterization with three different algorithms: FastH, the sequential
and the parallel algorithm from [17]. For each matrix operation, we consider matrices V,Σ, U,W ∈
Rd×d and X ∈ Rd×m, where m = 32 and d = 1 · 64, 2 ·64, ..., 48 · 64. We repeat the experiment 100
times, and report the mean time µ with error bars [µ− σ, µ+ σ] where σ is the standard deviation of
the running times over the 100 repetitions. To avoid clutter, we plot only the time of FastH for the
matrix operation it is slowest to compute, and the time of the sequential and parallel algorithms for
the matrix operation they were fastest to compute.

Figure 4 depicts the measured running time on the y-axis with the size of the d×dmatrices increasing
on the x-axis. Each matrix operation computed by a standard method is plotted as a dashed line, and
the different algorithms for the SVD reparameterization are plotted as solid lines. In all cases, FastH
is faster than the standard methods. For example, with d = 768, FastH is 3.1× faster than the Cayley
map, 4.1× faster than the matrix exponential, 2.7× faster than inverse and 3.5× faster than matrix
determinant. The sequential algorithm is not fast enough to speed up any matrix operation.

5 Related Work

The Householder Decomposition. The Householder decomposition of orthogonal matrices has
been used in much previous works, e.g., [6, 10, 13, 15, 17]. Previous work typically use a type
of sequential algorithm that performs O(d) sequential inner products. To circumvent the resulting
long computation time on GPUs, previous work often suggest limiting the number of Householder
matrices, which limits the expressiveness of the orthogonal matrix, introducing a trade-off between
computation time and expressiveness.

7
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FastH takes the same asymptotic time as the sequential algorithm, however, it performs less sequential
matrix operations, making it up to 27× faster in practice. Since FastH computes the same output as
the previous sequential algorithms, it can be used in previous work without degrading the performance
of their model. In particular, FastH can be used to either (1) increase expressiveness at no additional
computational cost or (2) retain the same level of expresiveness at lower computational cost.

SVDs in Neural Networks. The authors of [17] introduced a technique that provides access to
the SVD of the weights in a Neural Network without computing the SVD. Their motivation for
developing this technique was the exploding/vanishing gradient issue in RNNs. In particular, they
use the SVD reparameterization to force all singular values to be within the range [1± ε] for some
small ε.

We point out that although their technique, in theory, can be used to speed up matrix operations, their
algorithms are too slow to speed-up most matrix operations in practice. To mitigate this problem, we
introduce a new algorithm that is more suitable for GPUs, which allows us to speed up several matrix
operations in practice.

Different Orthogonal Parameterizations. The SVD reparameterization by [17] uses the House-
holder decomposition to perform gradient descent with orthogonal matrices. Their work was followed
by [4] that raises a theoretical concern about the use of Householder decomposition. Alternative
approaches based on the matrix exponential and the Cayley map have desirable provable guarantees,
which currently, it is not known whether the Householder decomposition possesses. This might make
it desirable to use the matrix exponential or the Cayley map together with the SVD reparameteriza-
tion from [17]. However, previous work spend O(d3) time to compute or approximate the matrix
exponential and the Cayley map. These approaches are therefore undesirable, because they share the
O(d3) time complexity with SVD and thus cannot speed up SVD computations.

Normalizing Flows. Normalizing Flows [3] is a type of generative model that, in some cases
[6, 7], entails the computation of matrix determinant and matrix inversion. [7] propose to use the
PLU decomposition W = PLU where P is a permutation matrix and L,U are lower and upper
triangular. The decomposition allows the determinant computation in O(d) time instead of O(d3).
[6] point out that a fixed permutation matrix P limits flexibility. To fix this issue, they suggest using
the QR decomposition where R is a rectangular matrix and Q is orthogonal. They suggest making Q
orthogonal by using the Householder decomposition which FastH can speed up. Alternatively, one
could use the SVD decomposition instead of the QR or PLU decomposition.

6 Code

To make FastH widely accessible, we wrote a PyTorch implementation of the SVD reparameterization
which uses the FastH algorithm. The implementation can be used by changing just a single line of
code, i.e, change NN.LINEAR to LINEARSVD. While implementing FastH, we found that Python did
not provide an adequate level of parallelization. We therefore implemented FastH in CUDA to fully
utilize the parallel capabilities of GPUs. Code: github.com/AlexanderMath/fasth/.

7 Conclusion

We pointed out that, in theory, the techniques from [10, 17] allow decreasing the time complexity
of several matrix operations used in Neural Networks. However, in practice, we demonstrated that
the techniques are not fast enough on GPUs for moderately sized use-cases. We proposed a novel
algorithm, FastH, that remedies the issues with both algorithms from [17], which is up to 27× faster
than the previous sequential algorithm. FastH introduces no loss of quality, it computes the same
result as the previous algorithms, just faster. FastH brings two immediate benefits: (1) improves
upon the techniques from [17] in such a way that it is possible to speed up matrix operations, and (2)
speeds up previous work that employ the Householder decomposition as done in, e.g., [6, 13, 15].
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Broader Impact

Our algorithm speeds up the use of Householder decompositions in Neural Networks. This can
positively impact researchers who use Householder decompositions, since they will be able to
execute experiments faster. This is particularly beneficial for researchers with a constraint on their
computational budget, in other words, a PhD student with one GPU stands to benefit more than a lab
with state-of-the-art GPU computing infrastructure. The reduction in computing time also decrease
power consumption and thus carbon emissions. However, as a potential negative impact, it is possible
that the decrease in computation time will increase the usage of Neural Networks and thus increase
overall carbon emission.
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8 Supplementary Material

8.1 Proof of Theorem 2.

Theorem. Algorithm 2 computes ∂L
∂X and ∂L

∂v1
, ..., ∂L∂vd inO(d2m) time withO(d/m+m) sequential

matrix multiplications.

Proof. Correctness. FastH computes gradients by the same equations as [17], so in most cases, we
show correctness by clarifying how FastH computes the same thing, albeit faster.

Consider ∂L
∂X computed in Step 1:

∂L

∂X
=

∂L

∂Ad/m+1
= PTd/m · · ·PT1

∂L

∂A1

= HT
d · · ·HT

1

∂L

∂A1
. eq. (2)

This is the same as that computed in [17].

Consider Step 2. Both ∂L
∂v̂j

and ∂L

∂Âj
are computed as done in [17]. Âj+1 is computed using

Equation (4) similar to backpropagation without storing activations [5], but using the fact that
ĤT
j = Ĥ−1

j .

Time Complexity. In Step 1, the for loop performs d/m matrix multiplications. Due to the WY
decomposition PTi = (I − 2WY T )T = I − 2YWT which can be multiplied on ∂L

∂Ai
∈ Rd×m in

O(dm2) time since W,Y ∈ Rd×m. The computation is repeated d/m times, and take a total of
O(d2m) time.

Step 2 line 12 in Algorithm 3 performs two Householder matrix multiplications which take O(dm)
time, see Equation (4). In line 13, the gradient is computed by Equation (5), this sum also takes
O(dm) time to compute. Both computations on line 12 and 13 are repeated d/m ·m times, see line
8 and line 11. Therefore, the total time is O(d2m).

Number of Sequential Operations. Step 1 performs O(d/m) sequential matrix operations. Lines
11-14 of Step 2 perform O(m) sequential matrix multiplications. Since each iteration of line 8-15 is
run in parallel, the algorithm performs no more than O(d/m+m) sequential matrix multiplications.

Algorithm 3 FastH Backward

1: Input: A1, ..., Ad/m+1, P1, ..., Pd/m and ∂L
∂A1

.

2: Output: ∂L
∂X

and ∂L
∂vk

for all k where Hk = I − 2
vkv

T
k

||vk||22
.

3: // Step 1
4: for i = 1 to d/m do sequentially
5: ∂L

∂Ai+1
= PT

i
∂L
∂Ai

eq. (3). . O(dm2)

6: end for

7: // Step 2
8: for i = 1 to d/m do in parallel
9: Let ∂L

∂Â1
=
(

∂L
∂Ai

)
.

10: To ease notation, let Pi = Ĥ1 · · · Ĥm.
11: for j = 1 to m do
12: Compute Âj+1,

∂L

∂Âj
see eq. (4). . O(dm)

13: Compute ∂L
∂v̂j

using Âj+1,
∂L

∂Âj
, eq. (5). . O(dm)

14: end for
15: end for
16: return ∂L

∂X
= ∂L

∂Ad/m+1
and ∂L

∂vk
for all k = 1, ..., d.

11
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8.2 Comparing Running Time

This subsection clarifies how the matrix exponential and the Cayley map was used in combination
with the SVD reparameterization from [17]. It also provides further details on the exact computations
we timed in the experiment. These details were left out of the main article as they require the
introduction of some notation regarding a reparameterization function.

Let V ∈ Rd×d be a weight matrix and let φ be a function that reparameterizes V so φ(V ) is
orthogonal, and we can perform gradient descent wrt. V . The Householder decomposition can be
used to construct such a function φ, by letting the columns of V be Householder vectors and φ(V ) be
the product of the resulting Householder matrices.

There exist alternative ways of constructing φ which does not rely on the Householder decomposition.
For example, the matrix exponential approach where φexp(V ) = eV and the Cayley map approach
where φC(V ) = (I − V )(I + V )−1 [2].

We record the joint time it takes to compute φ(V )X and the gradients wrt. V and X for a dummy
input X ∈ Rd×M . To simplify the gradient computation of V , we use a dummy gradient G ∈ Rd×M

st. the gradient wrt. V is [∂φ(V )·X
∂V ]TG. It might be useful to think of G as the gradient that arises by

back-propagating through a Neural Network.

Both the dummy input and the dummy gradient have normally distributed entriesXij , Gij ∼ N(0, 1).

Implementation Details. The parallel algorithm from [17] halted for larger values of d. The
failing code was not part of the main computation. This allowed us to remove the failing code and
still get a good estimate of the running time of the parallel algorithm. We emphasize that removing
the corresponding code makes the parallel algorithm faster. The experiments thus demonstrated that
FastH is faster than a lower bound on the running time of the parallel algorithm.

8.3 Using the SVD to Compute Matrix Operations

This section requires first reading Section 4.1 and Section 4.2. Recall that we, in Section 4.2, want
to measure the total time it takes to compute both the matrix operation, the forward pass and the
gradient computations. For example, with matrix inversion, we want to compute the matrix operation
Σ−1, the forward pass V Σ−1UTX and the gradient computations wrt V,Σ, U,X .

The time of the forward pass and gradient computations is no more than two multiplications and two
gradient computations, which is exactly two times what we measured in Section 4.1. We re-used
those measurements, and add the time it takes to compute the matrix operation, e.g., Σ−1.

Over Estimating the Time of FastH. The matrix exponential and the Cayley map require one
orthogonal matrix instead of two, i.e., UΣUT instead of UΣV T . The WY decomposition then only
needs to be computed for U and not both U and V . By re-using the data, we measure the time of two
orthogonal matrices, this thus estimates an upper-bound of the real running time of FastH.
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ONE REFLECTION SUFFICE

Alexander Mathiasen Frederik Hvilshøj

ABSTRACT

Orthogonal weight matrices are used in many areas of deep learning. Much previ-
ous work attempt to alleviate the additional computational resources it requires to
constrain weight matrices to be orthogonal. One popular approach utilizes many
Householder reflections. The only practical drawback is that many reflections
cause low GPU utilization. We mitigate this final drawback by proving that one
reflection is sufficient if the reflection is computed by an auxiliary neural network.

1 INTRODUCTION

Orthogonal matrices have shown several benefits in deep learning, with successful applications in
Recurrent Neural Networks, Convolutional Neural Networks and Normalizing Flows. One popular
approach can represent any d × d orthogonal matrix using d Householder reflections (Mhammedi
et al., 2017). The only practical drawback is low GPU utilization, which happens because the d re-
flections needs to be evaluated sequentially (Mathiasen et al., 2020). Previous work often increases
GPU utilization by using k � d reflections (Tomczak & Welling, 2016; Mhammedi et al., 2017;
Zhang et al., 2018; Berg et al., 2018). Using fewer reflections limits the orthogonal transformations
the reflections can represent, yielding a trade-off between representational power and computation
time. This raises an intriguing question: can we circumvent the trade-off and attain full representa-
tional power without sacrificing computation time?

We answer this question with a surprising “yes.” The key idea is to use an auxiliary neural network
to compute a different reflection for each input. We prove that one such “auxiliary reflection” can
represent any number of normal reflections.

1.1 OUR RESULTS

The Householder reflection of x ∈ Rd around v ∈ Rd can be represented by a matrixH(v) ∈ Rd×d.

H(v)x =

(
I − 2

vvT

||v||2
)
x.

An auxiliary reflection uses a Householder matrix H(v) with v = n(x) for a neural network n.

f(x) = H(n(x))x =

(
I − 2

n(x)n(x)T

||n(x)||2
)
x.

One auxiliary reflection can represent any composition of Householder reflections. We prove this
claim even when we restrict the neural network n(x) to have a single linear layer n(x) = Wx for
W ∈ Rd×d such that f(x) = H(Wx)x.

Theorem 1. For any k Householder reflections U = H(v1) · · ·H(vk) there exists a neural network
n(x) =Wx with W ∈ Rd×d such that f(x) = H(Wx)x = Ux for all x ∈ Rd\{0}.

Previous work (Mhammedi et al., 2017; Zhang et al., 2018) often employ k � d reflections and com-
pute Ux as k sequential Householder reflectionsH(v1) · · ·H(vk)·xwith weights V = (v1 · · · vk).
It is the sequential evaluation of these Householder reflections that cause low GPU utilization (Math-
iasen et al., 2020), so lower values of k increase GPU utilization but decrease representational power.
Theorem 1 states that it is sufficient to evaluate a single auxiliary reflection H(Wx)x instead of k
reflections H(v1) · · ·H(vk) · x, thereby gaining high GPU utilization while retaining the full repre-
sentational power of any number of reflections.

1
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The use of auxiliary reflections is straightforward for Fully Connected Neural Networks and Re-
current Neural Networks, however, we needed additional ideas to support auxiliary reflections in
Normalizing Flows. In particular, we developed further theory concerning the inverse and Jacobian
of f(x) = H(Wx)x. Note f is invertible if there exists an unique x given y = H(Wx)x and W .
Theorem 2. Let f(x) = H(Wx)x with f(0) := 0, then f is invertible on Rd with d > 2 if
W =WT and has eigenvalues which satisfy 3/2 · λmin(W ) > λmax(W ).

Finally, we present a matrix formula for the Jacobian of the auxiliary reflection f(x) = H(Wx)x.
This matrix formula is used in our proof of Theorem 2, but it also allows us to simplify the Jacobian
determinant (Lemma 1) which is needed when training Normalizing Flows.
Theorem 3. The Jacobian of f(x) = H(Wx)x is:

J = H(Wx)A− 2
WxxTW

||Wx||2 where A = I − 2
xTWTx

||Wx||2 W.

We prove Theorem 1 in Appendix A.1.1 while Theorems 2 and 3 are proved in Section 2.

2 NORMALIZING FLOWS

2.1 BACKGROUND

Let z ∼ N(0, 1)d and f be an invertible neural network. Then f−1(z) ∼ Pmodel defines a model
distribution for which we can compute likelihood of x ∼ Pdata (Dinh et al., 2015).

log pmodel(x) = log pz(f(x)) + log

∣∣∣∣det
(
∂f(x)

∂x

)∣∣∣∣ (1)

This allows us to train invertible neural networks as generative models by maximum likelihood.
Previous work demonstrates how to construct invertible neural networks and efficiently compute the
log jacobian determinant (Dinh et al., 2017; Kingma & Dhariwal, 2018; Ho et al., 2019).

2.2 INVERTIBILITY AND JACOBIAN DETERMINANT (PROOF SKETCH)

To use auxiliary reflections in Normalizing Flows, we need invertibility. That is, for every y ∈ Rd
there must exist a unique x ∈ Rd so f(x) = H(Wx)x = y.1 We find that f is invertible if its
Jacobian determinant is non-zero for all x in Sd−1 = {x ∈ Rd | ‖x‖ = 1}.
Theorem 4. Let f(x) = H(Wx)x with f(0) := 0, then f is invertible on Rd with d > 2 if the
Jacobian determinant of f is non-zero for all x ∈ Sd−1 and W is invertible.

The Jacobian determinant of H(Wx)x takes the following form.
Lemma 1. The Jacobian determinant of f(x) = H(Wx)x is:

−det(A)

(
1 + 2

vTA−1u
||u||2

)
where vT = xTW,u =Wx and A = I − 2

xTWTx

||Wx||2 W.

It is then sufficient that det(A) 6= 0 and 1 + 2vTA−1u/||u||2 6= 0. We prove that this happens if
W =WT with eigenvalues 3/2 ·λmin(W ) > λmax(W ). This can be achieved with W = I+V V T

if we guarantee σmax(V V
T ) < 1/2 by spectral normalization (Miyato et al., 2018). Combining

these results yields Theorem 2.
Theorem 2. Let f(x) = H(Wx)x with f(0) := 0, then f is invertible on Rd with d > 2 if
W =WT and has eigenvalues which satisfy 3/2 · λmin(W ) > λmax(W ).

Computing the Inverse. In practice, we use Newton’s method to compute x so H(Wx)x = y.
Figure 1 show reconstructions n−1(n(x)) = x for an invertible neural network n with auxiliary
reflections using Newton’s method, see Appendix A.2.1 for details.

1Note that we do not know H(Wx) so we cannot trivially compute x = H(Wx)−1y = H(Wx)y.
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x
n

1 (
n(

x)
)

Figure 1: CIFAR10 (Krizhevsky et al., 2009) images x and reconstructions n−1(n(x)) for an in-
vertible neural network n called Glow (Kingma & Dhariwal, 2018). The network uses auxiliary
reflections and we compute their inverse using Newton’s method, see Appendix A.2.1 for details.

2.3 PROOFS

The goal of this section is to prove that f(x) = H(Wx)x is invertible. Our proof strategy has two
parts. Section 2.3.1 first shows f is invertible if it has non-zero Jacobian determinant. Section 2.3.2
then presents an expression for the Jacobian determinant, Lemma 1, and prove the expression is
non-zero if W =WT and 3/2 · λmin(W ) > λmin(W ).

2.3.1 NON-ZERO JACOBIAN DETERMINANT IMPLIES INVERTIBILITY

In this section, we prove that f(x) = H(Wx)x is invertible on Rd if f has non-zero Jacobian
determinant. To simplify matters, we first prove that invertibility on Sd−1 implies invertibility on Rd.
Informally, invertibility on Sd−1 is sufficient because H(Wx) is scale invariant, i.e., H(c ·Wx) =
H(Wx) for all c 6= 0. This is formalized by Lemma 2.
Lemma 2. If f(x) = H(Wx)x is invertible on Sd−1 it is also invertible on Rd\{0}.

Proof. Assume that f(x) is invertible on Sd−1. Pick any y′ ∈ Rd such that ||y′|| = c for any c > 0.
Our goal is to compute x′ such that H(Wx′)x′ = y′. By normalizing, we see y′/‖y′‖ ∈ Sd−1. We
can then use the inverse f−1 on y′/‖y′‖ to find x such that H(Wx)x = y′/‖y‖. The result is then
x′ = x‖y‖ since H(Wx′)x′ = H(Wx)x||y|| = y due to scale invariance of H(Wx).

The main theorem we use to prove invertibility on Sd−1 is a variant of Hadamards global function
inverse theorem from (Krantz & Parks, 2012). On a high-level, Hadamard’s theorem says that a
function is invertible if it has non-zero Jacobian determinant and satisfies a few additional conditions.
It turns out that these additional conditions are meet by any continuously differentiable function f(x)
when (in the notation of Theorem 5) M1 =M2 = Sd−1.
Theorem 5. (Krantz & Parks, 2012, 6.2.8) Let M1 and M2 be smooth, connected N -dimensional
manifolds and let f : M1 → M2 be continuously differentiable. If (1) f is proper, (2) the Jacobian
of f is non-zero, and (3) M2 is simply connected, then f is invertible.

For M1 =M2 = Sd−1 the additional conditions are met if f is continuously differentiable.
Corollary 1. Let f : Sd−1 → Sd−1 with d > 2 be continuously differentiable with non-zero
Jacobian determinant, then f is invertible.

Proof. Note that Sd−1 is smooth and simply connected if d > 2 (Lee, 2013). Continuous functions
on Sd−1 are proper. We conclude f is invertible on Sd−1 by Theorem 5.

We now show that f(x) = H(Wx)x is continuously differentiable on Sd−1.
Lemma 3. The function f(x) = H(Wx)x is continuously differentiable on Sd−1 ifW is invertible.

Proof. Compositions of continuously differentiable functions are continuously differentiable by the
chain rule. All the functions used to construct H(Wx)x are continuously differentiable, except
the division. However, the only case where division is not continuously differentiable is when
||Wx|| = 0. Since W is invertible, ||Wx|| = 0 iff x = 0. But 0 /∈ Sd−1 and we conclude f
is continuously differentiable on Sd−1.

3
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Theorem 4. Let f(x) = H(Wx)x with f(0) := 0, then f is invertible on Rd with d > 2 if the
Jacobian determinant of f is non-zero for all x ∈ Sd−1 and W is invertible.

Proof. By Lemma 3, we see f is continuously differentiable since W is invertible, which by Corol-
lary 1 means f is invertible on Sd−1 if f has non-zero Jacobian determinant on Sd−1. By Lemma 2,
we get that f is invertible on Rd if it has non-zero Jacobian on Sd−1.

2.3.2 ENFORCING NON-ZERO JACOBIAN DETERMINANT

The goal of this section is to present conditions on W that ensures the Jacobian determinant of f(x)
is non-zero for all x ∈ Sd−1. We first present a matrix formula for the Jacobian of f in Theorem 3.
By using the matrix determinant lemma, we get a formula for the Jacobian determinant in Lemma 1.
By investigating when this expression can be zero, we finally arrive at Lemma 4 which states that
the Jacobian determinant is non-zero (and f thus invertible) if W =WT and 3/2 · λmin > λmax.

Theorem 3. The Jacobian of f(x) = H(Wx)x is:

J = H(Wx)A− 2
WxxTW

||Wx||2 where A = I − 2
xTWTx

||Wx||2 W.

See Appendix A.2.2 for PyTorch implementation of J and a test case against PyTorch autograd.

Proof. The (i, j)’th entry of the Jacobian determinant is, by definition,

∂(x− 2 · WxxTWT x
||Wx||2 )i

∂xj
= 1i=j − 2 ·

∂(Wx)i · x
TWT x
||Wx||2

∂xj
.

Then, by the product rule, we get

∂(Wx)i · x
TWT x
||Wx||2

∂xj
=
∂(Wx)i
∂xj

· x
TWTx

||Wx||2 + (Wx)i ·
∂ x

TWT x
||Wx||2

∂xj

=Wij ·
xTWTx

||Wx||2 + (Wx)i ·
∂xTWTx · 1

||Wx||2

∂xj
.

The remaining derivative can be found using the product rule.

∂xTWTx · 1
||Wx||2

∂xj
=
∂xTWTx

∂xj
· 1

||Wx||2 + xTWTx ·
∂ 1
||Wx||2

∂xj
.

First, (Petersen & Pedersen, 2012) equation (81) gives ∂xTWT x
∂xj

= ((WT + W )x)j . Second
||Wx||−2 can be found using the chain rule:

∂(||Wx||2)−1
∂xj

=
∂(||Wx||2)−1
∂||Wx||2

∂||Wx||2
∂xj

= − 1

||Wx||4
(
∂xTWTWx

∂x

)

j

= − 1

||Wx||4 ((W
TW + (WTW )T )x)j (Petersen & Pedersen, 2012, equ. 81)

= − 1

||Wx||4 2(W
TWx)j .

Combining everything we get

Jij = 1i=j−2
[
xTWTx

||Wx||2 ·Wij + (Wx)i

(
1

||Wx||2 · ((W
T +W )x)j −

2xTWTx

||Wx||4 · (W
TWx)j

)]
.

4
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In matrix notation, this translates into the following, if we let A = I − 2 · xTWT x
||Wx||2 W .

J = I − 2

[
xTWTx

||Wx||2 ·W +Wx

(
1

||Wx||2 · x
T (W +WT )− 2xTWTx

||Wx||4 · x
TWTW

)]

= I − 2 · x
TWTx

||Wx||2 ·W − 2 · WxxTW

||Wx||2 − 2 · WxxTWT

||Wx||2
(
I − 2 · x

TWTx

||Wx||2 W
)

= A− 2 · WxxTW

||Wx||2 − 2 · WxxTWT

||Wx||2 A

=

(
I − 2 · WxxTWT

||Wx||2
)
A− 2 · WxxTW

||Wx||2 = H(Wx)A− 2 · WxxTW

||Wx||2 .

This concludes the proof.

Theorem 3 allows us to write J as a rank one update M + abT for a, b ∈ Rd, which can be used to
simplify det(J) as stated in the following lemma.
Lemma 1. The Jacobian determinant of f(x) = H(Wx)x is:

− det(A)

(
1 + 2

vTA−1u
||u||2

)
where vT = xTW,u =Wx and A = I − 2

xTWTx

||Wx||2 W.

Proof. The matrix determinant lemma allows us to write det(M + abT ) = det(M)(1+ bTM−1a).
Let M = H(Wx)A and bT = −2 · xTW/||Wx||2 and a = Wx. The Jacobian J from Theorem 3
is then J =M + abT . The determinant of J is then:

det(J) = det(M)(1 + bTM−1a)

= det(H(Wx) ·A)
(
1− 2

xTW (H(Wx) ·A)−1Wx

||Wx||2
)

= −det(A)

(
1 + 2

xTWA−1Wx

||Wx||2
)
.

This is true because H(Wx)−1 = H(Wx), H(Wx) ·Wx = −Wx and det(H(Wx)) = −1.

We can now use Lemma 1 to investigate when the Jacobian determinant is non-zero. In particular,
the Jacobian determinant must be non-zero if both det(A) 6= 0 and 1+2vTA−1u/||u||2 6= 0. In the
following lemma, we prove that both are non-zero if W =WT and 3/2 · λmin > λmax.
Lemma 4. Let W = WT and 3/2 · λmin > λmax then λi(A−1) < −1/2 for A from Lemma 1.
These conditions imply that det(A) 6= 0 and 1 + 2vTA−1u/||u||2 6= 0 with vT , u from Lemma 1

Proof. We first show that the inequality 3/2 · λmin(W ) > λmax(W ) implies λi(A−1) < −1/2.

λi(A
−1) =

1

λi(A)
=

1

1− 2x
TWT x
||Wx||2 λi(W )

If γi := xTWT x
||Wx||2 ·λi(W ) ∈ (1/2, 3/2) we get that 1/(1−2γi) ∈ (−∞,−1/2) so λi(A−1) < −1/2.

If we let y := Wx we get x
TWT x
||Wx||2 = yTW−1y

||y||2 . This is the Rayleigh quotient of W−1 at y, which
for W = WT is within [λmin(W

−1), λmax(W
−1)]. Therefore γi ∈ [ 1

λmax(W ) ,
1

λmin(W ) ] · λi(W ).
Note first that γmin ≤ 1 and γmax ≥ 1. It is left to show that γmin ≥ λmin/λmax > 1/2 and
γmax ≤ λmax/λmin < 3/2. Both conditions on eigenvalues are met if 3/2 · λmin > λmax.

We now want to show that det(A) 6= 0 and 1 + 2vTA−1u/||u||2 6= 0. First, notice that det(A) =∏d
i=1 λi(A) 6= 0 since λi(A) < −1/2. Second, note that W = WT implies that the vT from

Lemma 1 can be written as vT = xTW = xTWT = uT . This means we only need to ensure
uTA−1u/||u||2, the Rayleigh quotient of A−1 at u, is different to −1/2. But W = WT implies
A = AT because A = I − 2xTWTx/||Wx||2 ·W . The Rayleigh quotient is therefore bounded by
[λmin(A

−1), λmax(A
−1)], which means it is less than −1/2 since λi(A−1) < −1/2. We can then

conclude that also 1 + 2vTA−1u/||u||2 = 1 + 2uTA−1u/||u||2 < 1 + 2 · −1/2 = 0.
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So det(J) 6= 0 by Lemma 4 and Lemma 1, which by Theorem 4 implies invertibility (Theorem 2).

Remark. Note that the constraints W = WT and 3/2 · λmin > λmax were introduced only
to guarantee det(A) 6= 0 and 1 + 2vTA−1u/||u||2 6= 0. Any argument or constraints on W that
ensures det(A) · (1 + vTA−1u/||u||2) 6= 0 are thus sufficient to conclude f(x) is invertible.

3 RELATED WORK

Orthogonal Weight Matrices. Orthogonal weight matrices have seen widespread use in deep
learning. For example, they have been used in Normalizing Flows (Hoogeboom et al., 2019), Varia-
tional Auto Encoders (Berg et al., 2018), Recurrent Neural Networks (Mhammedi et al., 2017) and
Convolutional Neural Networks (Bansal et al., 2018).

Different Approaches. There are several ways of constraining weight matrices to remain or-
thogonal. For example, previous work have used Householder reflections (Mhammedi et al., 2017),
the Cayley map (Lezcano-Casado & Martı́nez-Rubio, 2019) and the matrix exponential (Casado,
2019). These approaches are sometimes referred to as hard orthogonality constraints, as opposed
to soft orthogonality constraints, which instead provide approximate orthogonality by using, e.g.,
regularizers like ||WWT − I||F (see (Bansal et al., 2018) for a comprehensive review).

Reflection Based Approaches. The reflection based approaches introduce sequential computa-
tions, which is, perhaps, their main limitation. Authors often address this by reducing the number of
reflections, as done in, e.g., (Tomczak & Welling, 2016; Mhammedi et al., 2017; Berg et al., 2018).
This is sometimes undesirable, as it limits the expressiveness of the orthogonal matrix. This moti-
vated previous work to construct algorithms that increase parallelization of Householder products,
see, e.g., (Mathiasen et al., 2020; Likhosherstov et al., 2020).

Similar Ideas. Normalizing Flows have been used for variational inference, see, e.g., (Tomczak
& Welling, 2016; Berg et al., 2018). Their use of reflections is very similar to auxiliary reflections,
however, there is a very subtle difference which has fundamental consequences. For a full apprecia-
tion of this difference, the reader might want to consult the schematic in (Tomczak & Welling, 2016,
Figure 1), however, we hope that the text below clarifies the high-level difference.

Recall that auxiliary reflections compute H(Wx)x so H(Wx) can depend on x. In contrast, the
previous work on variational inference instead compute H(v)z where v and z both depend on x.
This limits H(v) in that it can not explicitly depend on z. While this difference is subtle, it means
our proof of Theorem 1 does not hold for reflections as used in (Tomczak & Welling, 2016).
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A APPENDIX

A.1 PROOFS

A.1.1 THEOREM 1

Our proof of Theorem 1 use Lemma 5 which we state below.
Theorem 1. For any k Householder reflections U = H(v1) · · ·H(vk) there exists a neural network
n(x) =Wx with W ∈ Rd×d such that f(x) = H(Wx)x = Ux for all x ∈ Rd\{0}.

Proof. LetW = I−U thenH(Wx)x = H(x−Ux)x = Ux for all x ∈ Rd since ||Ux|| = ||x||.

Lemma 5. Let ||x|| = ||y|| then H(x− y)x = y.

Proof. The result is elementary, see, e.g., (Wang, 2015). For completeness, we derive it below.

H(x− y)x = x− 2
(x− y)(x− y)T
||x− y||2 x

= x− 2
xxT + yyT − xyT − yxT
xTx+ yT y − 2xT y

x

= x− 2
xxTx+ yyTx− xyTx− yxTx

xTx+ yT y − 2xT y

= x− 2
x||x||+ yyTx− xyTx− y||x||

2||x||2 − 2xT y

= x− (x− y)||x||2 + (y − x)(yTx)
||x||2 − xT y

= x− (x− y)||x||2 + (y − x)(yTx)
||x||2 − xT y

= x− (x− y)(||x||2 − xT y)
||x||2 − xT y

= x− (x− y) = y

8
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A.2 PYTORCH EXAMPLES AND TEST CASES

To ease the workload on reviewers, we opted to use small code snippets that can be copied into
www.colab.research.google.com and run in a few seconds without installing any dependencies.
Some PDF viewers do not copy line breaks, we found viewing the PDF in Google Chrome works.

A.2.1 TEST CASE: INVERSE USING NEWTON’S METHOD

Given y we compute x such that H(Wx)x = y using Newton’s method. To be concrete, the
code below contains a toy example where x ∈ R4 and W = I + V V T /(2 · σmax(V V

T )) ∈
R4×4. The particular choice of W makes H(Wx)x invertible, because λi(W ) = 1 + λi(V V

T ) =
1 + σi(V V

T ) ∈ [1, 3/2) because V V T is positive definite. Any possible way of choosing the
eigenvalues in the range [1, 3/2) guarantees that 3/2 · λmin > λmax which implies invertibility by
Theorem 2.

import torch
print("torch version: ", torch.__version__)
torch.manual_seed(42)
d = 4
# Create random test-case.
I = torch.eye(d)
V = torch.zeros((d, d)).uniform_()
x = torch.zeros((d, 1)).uniform_()
W = I + V @ V.T / torch.svd(V @ V.T)[1].max()
# Define the function f(x)=H(Wx)x.
def H(v): return torch.eye(d) - 2 * v @ v.T / (v.T @ v)
def f(x): return H(W @ x ) @ x
# Print input and output
print("x\t\t", x.data.view(-1).numpy())
print("f(x)\t", f(x).data.view(-1).numpy())
print("")

# Use Newtons Method to compute inverse.
y = f(x)
xi = y
for i in range(10):

print("[%.2i/%.2i]"%(i+1, 10), xi.data.view(-1).numpy())
# Compute Jacobian using Theorem 3.
A = torch.eye(d) - 2* (xi.T @ W.T @ xi) / torch.norm(W @ xi)**2 * W
J = -2*W @ xi @ xi.T @ W/torch.norm(W@xi)**2 + H(W @ xi) @ A
xi = xi - torch.inverse(J) @ (f(xi)- y)

assert torch.allclose(xi, x, atol=10**(-7))
print("The two vectors are torch.allclose")

torch version: 1.6.0+cu101
x [0.8854429 0.57390445 0.26658005 0.62744915]
f(x) [-0.77197534 -0.49936318 -0.5985155 -0.6120473 ]

[01/10] [-0.77197534 -0.49936318 -0.5985155 -0.6120473 ]
[02/10] [ 0.72816867 0.78074205 -0.02241153 1.0435152 ]
[03/10] [0.7348436 0.6478982 0.14960966 0.8003925 ]
[04/10] [0.8262452 0.6155189 0.2279686 0.6997254]
[05/10] [0.8765415 0.5831212 0.2592551 0.640691 ]
[06/10] [0.8852093 0.5742159 0.26631045 0.6278922 ]
[07/10] [0.88543946 0.5739097 0.26658094 0.62744874]
[08/10] [0.88544315 0.57390547 0.2665805 0.6274475 ]
[09/10] [0.885443 0.57390594 0.26658088 0.6274466 ]
[10/10] [0.8854408 0.57390743 0.2665809 0.6274484 ]
The two vectors are torch.allclose
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Figure 1. Figure 1 contains reconstructions n−1(n(x)) of the variant of Glow (Kingma & Dhari-
wal, 2018). The Glow variant has 1x1 convolutions with auxiliary reflections, i.e., for an input x ∈
Rc×h×w where (c, h, w) are (channels, heigh, width) it computes z:,i,j = H(Wx:,i,j)x:,i,j ∈ Rc
where i = 1, ..., h and j = 1, ..., w. Computing the inverse required computing the inverse of the
auxiliary 1x1 convolutions, i.e., compute x:,i,j givenW and z:,i,j ∀i, j. The weights were initialized
as done in the above toy example.

A.2.2 TEST CASE: JACOBIAN AND AUTOGRAD

import torch
print("torch version: ", torch.__version__)
torch.manual_seed(42)

# Create random test-case.
d = 4
W = torch.zeros((d, d)).uniform_(-1, 1)
x = torch.zeros((d, 1)).uniform_(-1, 1)
I = torch.eye(d)

# Compute Jacobian using autograd.
def H(v): return I - 2 * v @ v.T / (v.T @ v)
def f(x): return H(W @ x ) @ x
J = torch.autograd.functional.jacobian(f, x)[:, 0, :, 0]
print(J)

# Compute Jacobian using Lemma 4.
A = I - 2* (x.T @ W.T @ x) / torch.norm(W @ x)**2 * W
J_ = H(W @ x) @ A -2*W @ x @ x.T @ W/torch.norm(W@x)**2
print(J_)

# Test the two matrices are close.
assert torch.allclose(J, J_, atol=10**(-5))
print("The two matrices are torch.allclose")

torch version: 1.6.0+cu101
tensor([[ 0.2011, -1.4628, 0.7696, -0.5376],

[ 0.3125, 0.6518, 0.7197, -0.5997],
[-1.0764, 0.8388, 0.0020, -0.1107],
[-0.8789, -0.3006, -0.4591, 1.3701]])

tensor([[ 0.2011, -1.4628, 0.7696, -0.5376],
[ 0.3125, 0.6518, 0.7197, -0.5997],
[-1.0764, 0.8388, 0.0020, -0.1107],
[-0.8789, -0.3006, -0.4591, 1.3701]])

The two matrices are torch.allclose

10
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