
CPT Notes, Graph Non-Isomorphism,

Zero-Knowledge for NP and Exercises

Ivan Damg̊ard

1 Graph Nonisomorphism

We look at the problem of graph nonisomorphism. In this protocol, P is trying to convince
V that two graphs G0 and G1 are not isomorphic. We will prove that the protocol below
is perfect zero-knowledge.

We assume that the graphs have the same number n of vertices and the same number
of edges (otherwise the protocol is not very interesting!). Let B = {0, 1}. For a graph
G with n vertices, making a random isomorphic copy of G will mean: choose a random
permutation φ on n points and compute φ(G).

The protocol now goes as follows:

Protocol for Graph Nonisomorphism

1. V chooses a random bit α, and constructs a graph H as a random isomorphic copy of
Gα.
He then does the following for i = 1...s:
Choose αi ∈ B. Construct a pair (H i

0, H
i
1) of graphs, such that if αi = 0, then H i

0 is a
random isomorphic copy of G0, H i

1 a random isomorphic copy of G1. Otherwise, H i
0 is

a random isomorphic copy of G1, H i
1 a random isomorphic copy of G0.

He sends H and all pairs (H i
0, H

i
1) to P .

2. P chooses b1, ..., bs at random in B, and sends them to V .
3. For each i = 1...s, V sends the following to P :

If bi = 0, the isomorphisms between (H i
0, H

i
1) and (G0, G1) are sent. If bi = 1, an

isomorphism from H to one of (H i
0, H

i
1) is sent.

4. For each value of i, P checks that the appropriate isomorphisms were sent. If not, he
stops. Otherwise, he computes (perhaps using his infinite computing power) b such
that Gb is isomorphic to H, and sends b to V . If no such b exists, he sends a randomly
chosen value.

5. V accepts, if α = b, otherwise he rejects.

The above steps are repeated n times.
For intuition, one may first think of a simplified protocol, where V constructs H, sends

it to P who computes b and sends it to V who checks that α = b. This is an interactive



proof system, which can be argued in a way similar to the theorem below: a cheating
prover cannot do better than trying to guess α. It is not zero-knowledge, however. The
problem is that the verifier may not follow the protocol. If he does not know which of
G0, G1 H is isomorphic to, P is giving away information that it may be hard for the verifier
to compute on his own. Therefore, the purpose of the additional steps is to convince P
that V knows an isomorphism from H to G0 or G1, but without revealing which is the
case.

Theorem 1. The above protocol is an interactive proof system for graph nonisomorphism.

Proof. First, it is clear that if G0 is not isomorphic to G1 and (P, V ) follows the protocol,
then V always accepts: V can always send the correct isomorphisms in step 3, and H can
only be isomorphic to one of G0, G1, whence α must equal b in step 5.

On the other hand, if G0 IS isomorphic to G1, then H is isomorphic to both of G0, G1,
and the information in step 3 reveals no information about which of the isomorphisms
from H to G0, G1 is known by V . Hence the probability that α = b is at most 1/2 in each
round, so V accepts with probability at most 2−k

Theorem 2. The above protocol is perfect zero-knowledge.

Proof. For any verifier V ∗, we describe a simulator MV ∗ . It begins by putting a suitable
number of independent random bits on the random tape of V ∗. It then executes the
following steps 1-4 to simulate 1 round of the protocol, and repeats this n times to simulate
all n rounds.

1. MV ∗ waits to receive H and s pairs (H i
0, H

i
1) from V ∗.

2. MV ∗ chooses and sends b1, ..., bs as the prover would have done.
3. MV ∗ waits to receive from V ∗ a bit string I containing information about isomophisms

between H, the (H i
0, H

i
1)’s and G0, G1 as described in step 3 of the protocol.

If I does not contain the correct isomorphisms, the simulator stops.
Otherwise we run the following which will either produce an isomorphism between H
and one of G0, G1, or will prove that no such isomorphism exists. More precisely, we
run the following two loops in parallel, and stop when one of the loops exit.
Loop1 .

(a) Rewind V ∗ to the point just after H and the (H i
0, H

i
1)’s were received.

(b) Choose a new set of independent values b′1, ..., b
′
s and send them to V ∗.

(c) Wait to receive a bit string I ′ from V ∗ containing some isomorphisms.
If I ′ is correctly constructed, and if there exists an i such that bi 6= b′i, find from
I and I ′ isomorphisms from G0, G1 to (H i

0, H
i
1), and from one of (H i

0, H
i
1) to H.

Use these to find an isomorphism from H to one of G0, G1, and exit the loop.
Otherwise go to step 3a



Loop2 .

(a) Arrange all n! permutations on n elements in some fixed order, let φi be the
i’th permutation, and set i = 1.

(b) If φi(H) is G0 or G1, exit the loop. Set i = i + 1. If i > n!, exit the loop.
Otherwise go to step 3b.

The information now found can be used to compute a correct value of b: either we
know an isomorphism from H to Gb, b = 0 or 1, so we send b to V . Or we know that
no isomorphism exists because we tried all possibilities. In this case we do what the
prover would do, namely send a random bit to V .

First, it is clear that the conversation produced by the simulation is distributed exactly
as the real conversation: the messages in the first 3 steps are computed by the same
algorithms, and the simulation of P ’s final answer is not sent until we have proof that it
is correct.

It is therefore enough to prove that the simulation takes expected polynomial (in n)
time. For this, consider the set of 2s challenges that P can send to V ∗ in step 2. Call a
challenge ”good”, if V ∗ answers it correctly, and let g be the number of good challenges.

For convenience, define the time needed to execute steps 1-3 in the protocol to be 1
time unit. Let us now find the mean time M needed to simulate one round:

The probability that we enter the loops above is g/2s. So

M =
2s − g

2s
+

g

2s
(T + 1)

where T is the expected number of iterations of the loops. Thus M = 1 if g = 0. If g > 1,
we finish at the latest when we find one good challenge that has not been used in step 2,
since this will cause Loop 1 to exit. Hence

M ≤ 2 +
g

2s

2s

g − 1
≤ 4

Finally, if g = 1, we finish at the latest when Loop 2 exits, which happens after at most
n! iterations. So in this case,

M ≤ 2 +
n!

2s

So we are done if we choose s, such that n!/2s does not grow too quickly. It is easy to
see that n! ≤ 2nlog(n), so by choosing s = nlog(n), we get that the mean time needed to
simulate the whole protocol is less than 4n

Graph non-isomorphism is not known to be in NP, indeed it is hard to imagine a short
witness that would convince you that no isomorphism exists between two graphs. Thus
the above shows that the class of languages that have perfect zero-knowledge proofs is
probably not contained in NP.



2 Zero-Knowlegde for all of NP

In this section, we will look at how bit commitments can allow us to give a zero-knowledge
proof for any problem in NP. Whereas this may look impossible at first sight, fortunately
the theory of NP completeness comes to rescue, as we shall see.

Let G be a directed graph on n nodes. We say that G is Hamiltonian, if it contains
a so called Hamiltonian cycle, namely a path starting in some node that visits all nodes
in the graph exactly once, and comes back to the starting node. The graph Hamiltonicity
problem is to decide, given G, whether it is Hamiltonian. This problem is NP complete
which will be extremely useful in the following.

To see why this is useful, first recall that if a language L is in NP this means by
definition that for any x ∈ L there exists a so called witness w such that given w, it can
be verified in polynomial time that indeed x ∈ L, whereas if x 6∈ L of course no such
witness exists. For instance, L might be the language consisting of composite integers, in
which case w may be a non-trivial factorization of x. This means that if P claims that
x ∈ L for some L ∈ NP , we may assume that the prover knows a witness w: either he can
compute it as a result of having infinite computing power (as assumed in the interactive
proof model), or it may be that he knows w in advance - in the factorization example, it
may be the case that P constructed x himself by choosing the prime factors first.

Now, the graph Hamiltonicity problem is NP complete via a so called Karp reduction,
which for us means the following: there is a polynomial time algorithm which given any
x will compute a graph Gx such that Gx is Hamiltonian if and only if x ∈ L. So both
P and V can compute Gx. Furthermore, there is also a polynomial time algorithm which
from x ∈ L and a witness w will compute a Hamiltonian cycle in Gx. So we see that in
order to make a zero-knowledge proof system for L ∈ NP , it suffices to construct one for
the Graph Hamiltonicity problem.

To describe this protocol, we need the incidence matrix MG of a graph G. This is
simply a matrix that completely specifies G: if G has n nodes, MG is an n × n matrix,
such that the (i, j)’th entry is 1 if there is an edge in G from node i to node j, and is 0
otherwise. Note that if we have a permutation φ on n elements and apply it to G as in
the graph isomorphism protocol, we can obtain the incidence matrix of φ(G) easily from
MG by permuting the rows and columns of MG according to φ. The resulting matrix is
called φ(MG). Note that a Hamiltonian cycle σ in G can be specified by pointing out a
set of n entries in MG such that all the entries are 1, and such that they specify a cycle
that visits every node exactly once. When applying a permutation φ to G, we will let φ(σ)
mean the set of entries in φ(MG) that correspond under φ to entries in σ. Of course, if σ
is a Hamiltonian cycle in G, then φ(σ) is a Hamiltonian cycle in φ(G).

The protocol assumes that a bit commitment scheme is available and goes as follows:



Protocol Graph Hamiltonicity

1. Execute the set-up procedure of the bit commitment scheme, with security parameter
value n. This results in a public key pk being produced. More precisely, if the commit-
ment scheme is computationally binding, V will run a generator G(1n), get a public
key pk and send it to P . If the scheme is unconditionally binding, P will run G and
send pk to V .

2. Now, given graph G on n nodes, repeat the following n times:

(a) P chooses a random permutation φ and computes φ(MG) and commits to all
bits in this matrix. This results in a matrix C of commitments, where Cij =
commitpk(bij, rij) , where bij is the ij’th entry in φ(MG) and where rij is a ran-
dom string chosen by the prover. P sends C to V

(b) V chooses a random bit b.
(c) If b = 0, P must send φ to V and open all commitments in C. V checks that all

commitments were correctly opened and that the resulting matrix of bits is indeed
φ(MG).
If b = 1, P uses his knowledge of a Hamiltonian path p in G: he opens precisely the
entries in C that correspond to entries in φ(p). V checks that all opened commit-
ments were correctly opened, that a 1 was opened in all cases, and that the entries
opened specify a path that visits all nodes exactly once.

We can now prove two results on this protocol, that differ in their conclusions depending
on what type of commitment scheme is used.

2.1 Interactive Argument for NP

Theorem 3. If a perfectly hiding and computationally binding commitment scheme is
used, then the Graph Hamiltonicity protocol is a perfect zero-knowledge interactive argu-
ment for Graph Hamiltonicity.

Remark 1. If we had used a commitment scheme that was not perfect, but only uncondi-
tionally hiding, the protocol would have been statistically and not perfect zero-knowledge.
This can be shown in much the same way as we show perfect ZK here, but the proof is
longer and more tedious.

To prove the theorem, first observe that completeness is clear by inspection of the
protocol. In particular, since arguments restrict provers to polynomial time, there must
be an efficient algorithm for the honest prover, given some private auxiliary input. It is
clear that the prover in our protocol above runs in polynomial time, as long as he knows
a Hamiltonian cycle for G in advance. For soundness, we need the following



Lemma 1. Consider any matrix of commitments C sent in step (a). Let R0 be a possible
reply from a (not necessarily honest) prover to b = 0, similarly R1 is a possible reply to
b = 1. If V accepts both R0 and R1 and if every commitment from C that is opened in R1

is also opened to reveal 1’s in R0, then G is Hamiltonian.

Proof. This can be seen by just noting that R1 specifies a Hamiltonian path by opening
a set of commitments in C to 1’s, since V accepts R1. Since these commitments are
also opened to reveal 1’s in R0, this tells us how to transform this path using φ−1 to a
Hamiltonian cycle in G.

We can now prove soundness. Recall that for an interactive argument, the soundness
requirement says that for any polynomial time prover, and any non-Hamiltonian input
graph G, the probability that V accepts is negligible. So for contradiction, let a poly-
nomial time prover P ∗ be given such that for infinitely many values of n, there exists a
non-Hamiltonian graph G on n nodes, for which P ∗ can convince the verifier with non-
negligible probability, i.e., larger than 1/f(n), for some polynomial f(). We will show that
our assumptions on P ∗ imply we can efficiently break the binding property of the com-
mitment scheme, thus contradicting the assumption that the scheme was computationally
binding.

So suppose someone gives us a public key pk generated with security parameter value
n. Then we can run the following algorithm to break the binding property w.r.t. pk. The
idea of the algorithm is to play verifier against the prover and execute the protocol, but
use rewinding to try to make him answer both b = 0 and b = 1 in one of the n iterations.

1. Start P ∗ with a random set of coins rand, i.e. rand is simply a random bit string
(which we keep fixed in the following). Give pk to P ∗.

2. Get a matrix C of commitments from P ∗. Now we send b = 0 to P ∗ and get his answer
R0. If R0 is correct, save the state St0 that P ∗ is in now.

3. Rewind P ∗ to its state just before we sent b = 0, send b = 1 and get a reply R1. If R1

is correct, save the state St1 that P ∗ is in now.
Now, if both R0 and R1 are correct, it follows from the above Lemma that we can now
output a commitment c plus two different openings of c. If this was not the case, then
it would follow that G was Hamiltonian which is a contradiction. If none of the replies
were correct, we stop and output failure. If only one of the replies, say Rb was correct,
we put P ∗ in state Stb. If we have now completed the last of the n iterations of the
protocol, stop and output failure. Otherwise go to Step 2.

Let ε(n) be P ∗’s probability of making the verifier accept, and εrand(n) be P ∗’s probability
of making the verifier accept, given that the set rand of coins is used. So ε(n) is the average
of all the εrand(n)’s. Since we assumed that ε(n) is large (≥ 1/f(n)), many of the εrand(n)’s
must be relatively large, since otherwise the average could not be large. More precisely, we



have ε(n) =
∑

rand εrand(n)Pr(rand) where the sum is over all choices of rand. From this
and ε(n) ≥ 1/f(n), it follows that with probability at least 1/(2f(n)), a random choice
will produce a rand for which εrand(n) ≥ 1/(2f(n)).

So assume we have chosen such a value of rand initially in the above procedure. We
can now observe that the procedure always finds the first time where P ∗ can answer both
b = 0 and b = 1, and only fails if no such situation occurs. But if no such situation occurs,
then P ∗ can answer at most one b value in every of the n iterations, thus his probability
of making V accept would be at most 2−n. This is a contradiction, since 2−n < 1/(2f(n))
for all large enough n. So summarizing, we have constructed an algorithm which breaks
the binding property of the commit() function with probability at least 1/(2f(n)), for
infinitely many values of n. This contradicts the computational binding property of the
commitment scheme, so no prover of the type we assumed can exist, and the protocol is
therefore a sound interactive argument.

To argue perfect zero-knowledge, we observe that in the the protocol the verifier first
sends a public key pk to the prover, and then follows something that has exactly the
form required for the rewinding lemma that we covered earlier. It is therefore sufficient
to construct an honest verifier simulator M that uses pk as input. The actual simulator
would first receive pk from the (arbitrary) verifier V ∗, stop if pk is invalid (as P would have
done) and otherwise run the simulation (based on M) that follows from the rewinding
lemma.

The algorithm for M is as follows:

1. M chooses a random bit b.
2. If b = 0, follow the prover’s algorithm to construct C as a set of commitments to

φ(MG) for a randomly chosen φ.
3. If b = 1, construct C as follows: choose a random set of entries rentr in C, such that

rentr specifies a path that visits every node exactly once. For instance, we can start
in node 1, and then we keep moving to a randomly chosen node that we did not visit
yet, until we have visited all nodes, and finally we go back node 1. One can observe
that this means that rentr corresponds to a Hamiltonian path in φ(G) for a uniformly
chosen φ. For every entry in rentr, put a commitment to 1, for all other entries put a
commitment to 0.

4. Output C, b and opening information for the relevant commitments in C (all of them
if b = 0, the ones from the path rentr if b = 1.

To see why this works, we can use an argument very similar to the one for graph
isomorphism: observe that the perfect hiding property means that commitments to 0
have the same distribution as commitments to 1. Therefore the matrices of commitments
C produced by P have the same distribution as the C’s produced in the simulation,
regardless of the choice of c. b is a random bit as it should be for an honest verifier, and
the final message clearly has exactly the right distribution, given the first two.



2.2 Interactive Proof System for NP

Theorem 4. If a computationally hiding and unconditionally binding commitment scheme
is used, then the Graph Hamiltonicity protocol is a computational zero-knowledge interac-
tive proof system for Graph Hamiltonicity.

The proof for this is similar in structure to the proof of the previous result. Complete-
ness is still trivial. As for soundness, this follows again from Lemma1: in this case, the
(cheating ) prover P ∗ sends pk to the verifier. By definition of unconditional binding, the
verifier accepts an incorrectly generated public key with negligible probability. On the
other hand, if the function is correctly generated, it is impossible to open a commitment
in two distinct ways. The above Lemma therefore immediately implies that if G is not
Hamiltonian, then P ∗ can answer at most one b-value in each iteration (regardless of his
computing power), and so the overall error probability, given that pkwas good, is at most
2−n.

Zero-knowledge can be demonstrated using the same simulator algorithm as above,
with only one change, namely that initially, the simulator generates and sends pk to V ∗.
After this, we apply the simulation that is used in the proof of the rewinding lemma,
based on honest verifier simulator M as constructed above. In this case, we will not get
perfect zero-knowledge, but we will argue below that M using a computationally hiding
commitment scheme will produce conversations that computationally indistinguishable
from real conversations by honest prover and verifier. Since the rewinding lemma holds
also for computational indistinguishability, we are done.

The required result on M follows immediately from the lemma below which gener-
alizes the computational hiding property from one commitment to the case where many
commitments are given (as in the first message of the Graph Hamiltonicity protocol).

Lemma 2. Let pk be the public key of a computationally hiding bit commitment scheme.
Then for any two bit strings B0 = b1, .., bm, B1 = b′1, ..., b

′
m, the distributions C0, C1 defined

by

C0 : pk, commitpk(b1, r1), ..., commitpk(bm, rm) C1 : pk, commitpk(b
′
1, r

′
1), ..., commitpk(b

′
m, r′m)

are computationally indistinguishable.

Proof. We define a sequence of machines M0, ...,Mm. Machine Mi will output a public
key pk and commitments to b1, .., bm−i, b

′
m−i+1, .., b

′
m. Clearly, M0 produces C0 as output

while Mm produces C1. We claim that Mi ∼c Mi−1. If bi = b′i, this is clear. Otherwise,
assume for contradiction that we have a successful distinguisher D for Mi, Mi−1. We will
show that we can use D to break the hiding property of the commitment scheme. Say
we are given pk and a commitment c. Construct a string of commitments by putting



commitments to b1, ..., bi−1, then c, and then commitments to b′i+1, ..., b
′
m. Finally give pk

and the commitments to D. If D says it thinks the string was from Mi−1, we output “c
contains b′i”, else we output “c contains bi”. This breaks the hiding property, since if c
really contains b′i (bi), we have generated exactly the same kind of output as Mi−1(Mi).
From a previous exercise, we now have that Mi−1 ∼c Mi implies M0 ∼c Mm.

Note that the lemma is true, even if m is allowed to grow polynomially with the security
parameter n. The lemma implies that the first message generated by M is computationally
indistinguishable from the message generated by the prover, the challenge bit has the same
distribution in the two cases, and the final message is also exactly correctly generated by
M , given the first two messages.

3 Exercises

EXERCISE 1. Consider the following language consisting of pairs of k-bit integers:
L = {n, x | there exists y, such that y2 = x mod n and gcd(n, x) = 1}. We will consider
a zero-knowledge proof for L, i.e. the prover shows the verifier integers n, x and claims
that x is a square modulo n, in other words, x is a quadratic residue. As we shall see, if
the prover knows y such that y2 = x mod n, then he can efficiently conduct the protocol
below.

In the following, Zn = {0, 1, ..., n− 1}, and Z∗
n will denote {x ∈ Zn | gcd(x, n) = 1}.

1. V checks that gcd(x, n) = 1 and rejects if this is not the case.
2. Repeat the following k times:

(a) P chooses r at random in Z∗
n and sends a = r2 mod n to V .

(b) V chooses a random bit b and sends it to P .
(c) P sends z = ryb mod n to V , who checks that z2 = axb mod n and that gcd(z, n) =

1.

Show that this protocol is a perfect zero-knowledge proof system for L.

EXERCISE 2. This exercise shows a way for a prover to show in perfect zero-knowledge
that a given pair (x, n) satisfies that x is not a square mod n, that is, that there exist no
y such that y2 mod n = x. The protocol is only secure against cheating by a polynomial
time bounded prover, that is, it is an interactive argument (rather than a proof).

The protocol works as follows, where we assume that the prover knows the factorization
of n in advance.

1. The verifier V checks that gcd(x, n) = 1 and rejects if not. V sends to the prover P
the public key pk for a perfectly hiding commitment scheme. P checks the key and
stops the protcol is verification fails.



2. V chooses a bit b at random, y ∈ Z∗
n at random and sends a = y2xb mod n to P .

3. P stops if a 6∈ Z∗
n. Else, he computes a bit c, where c = 0 if a is a square mod n and

c = 1 otherwise. He sends d = commitpk(r, c) to V .
4. V sends b, y to P .
5. P checks that a = y2xb mod n, and stops the protocol is not. Otherwise, he sends r, c

to V (opens the commitment).
6. V checks that c = b and rejects if not.

The above is repeated k times where k is the bit length of n.
Answer the following:

1. Show that if x is not a square modulo n, then a = y2x mod n is not a square mod
n either. Use this to show that the protocol is complete. You may use without proof
that if the prover knows the factorization of n, then he can efficiently decide if a given
number is a square mod n.

2. Show that if x is a square mod n, then it is impossible to decide the value of b given
a = y2xb mod n. This essentially implies soundness, although a formal proof is needed
to show that one has to break the binding property of the commitment scheme to
cheat. You are not required to give this proof here (but you are welcome to giving it
a try!).

3. Consider the following simulator:
(a) Get pk and a from V ∗. If pk is invalid, stop (as P would have).
(b) Commit to a random bit c and send the commitment d to V ∗.
(c) Get b, y from V ∗. If they are incorrect, stop. Otherwise, we have a problem, because

the prover at this point would open his commitment, and what we have committed
to is a random bit which is not always correct. But instead, we can use that we
now know what the right answer is, so we can rewind and then commit to the right
bit. Run the following loop:
i. Rewind V ∗ to point where it receives a commitment from P . Commit to the

(correct) value b, using commitment d′ = commitpk(b, r
′).

ii. if V ∗ in response to d′ sends incorrect values b′, y′, go to step 3(c)i. If correct
values b, y are sent, output conversation pk, a, d′, (b, y), (b, r′) and stop the loop.

Show that this runs in expected polynomial time. For this this, consider the probability
p that V ∗ sends correct values b, r it step 4 after seeing a random commitment, and
do an argument similar to (but simpler than) the one for the graph non-isomorphism
simulator. Finally argue (informally) that the simulator output is distributed exactly
as the real conversation.

EXERCISE 3. This exercise concerns a protocol for proving that a given element in a
group is contained in the subgroup generated by another element. For concreteness, we



describe it in the multiplicative group modulo a prime number p, i.e., Z∗
p . Consider the

following protocol for P and V :

– Input to P and V : a prime p and α, x ∈ Z∗
p, k = log2(p).

– Input to P : y, so that αy = x mod p.

1. V checks that gcd(x, p) = gcd(α, p) = 1 and rejects if this is not the case.
2. P chooses r at random in [0, p− 2], and sends a = αr mod p to V .
3. V chooses b at random {0, 1} and sends b to P .
4. P sends z = (r + by) mod (p− 1) to V .
5. V checks that αz = axb mod p. If OK, then accept, otherwise reject.

The above steps are repeated k times.

Now show the following:

– If x ∈< α >, V always accepts.
– If x 6∈< α >, V accepts with probability at most 2−k on interaction with any prover

P ∗.
– (P, V ) is perfect zero-knowledge, i.e. there exists a simulator, which produces output

distributed exactly as the conversation between an arbitrary verifier V ∗ and P .

EXERCISE 4. Consider the unconditionally hiding commitment scheme based on dis-
crete logarithms, where the public key is pk = (p, g, y) for a prime p a generator g of
Z∗

p and y ∈ Z∗
p . And a commitment to b using randomness r has form commitpk(r, b) =

ybgr mod p. The randomness r is chosen uniformly from Zp−1 = {0, 1, ..., p− 2}.
Suppose a prover P has committed to bits b1, b2 using commitments c1, c2 where b1 6=

b2. Now P wants to convince the verifier V that the bits are different. We claim he can
do this by sending to V a number s ∈ Zp−1 such that c1c2 = ygs mod p.

– Show how an honest P can compute the required s, and argue that the distribution of
s is the same when (b1, b2) = (0, 1) as when (b1, b2) = (0, 1). This means that V learns
nothing except that b1 6= b2.

– Argue that if P has in fact committed in c1, c2 to (0, 0) or (1, 1), he cannot efficiently
find s as above unless he can compute the discrete logarithm of y.

– Argue in a similar way that P can convince V that he has committed to two bits that
are equal by revealing s such that c1c

−1
2 = gs mod p.

EXERCISE 5 Assume P commits to two strings b1, ..., bt, b
′
1, ..., b

′
t using commitments

c1, ..., ct, c
′
1, ..., c

′
t as in Exercise 4. He claims that the strings are different, and wants to

convince V that this is the case while revealing no extra information. Note that he cannot
point to an index j where bj 6= b′j and use the above method on cj, c

′
j. This would reveal

where the strings are different. Instead consider the following protocol:



1. P chooses a random permutation π on the set of indices {1, ..., t}. He computes, for
i = 1..t a commitment di = commitpk(si, bπ(i)) and d′i = commitpk(s

′
i, b

′
π(i)) In other

words, permute both strings randomly and commit bit by bit to the resulting strings.
Send d1, ..., dt, d

′
1, ..., d

′
t to V .

2. V chooses a random bit b, sends it to P .
3. If b = 0, P reveals π and uses the above method to convince V for all i that cπ(i)

contains the same bit as di. Similarly for cπ(i) and d′i. If b = 1, P finds a position i,
where bπ(i) 6= b′πi and uses the above method to convince V that di, d

′
i contain different

bits.

– Completeness: Ague that an honest prover always convinces the verifier.
– Soundness: Show that if P can, for some set of commitments d1, ..., dt, d

′
1, ..., d

′
t answer

V correctly both for b = 0 and b = 1, then there is at least one j, where P can open
cj, c

′
j to reveal different bits. Note that we assume above that P really has committed

to the two bit strings, that is, we assume he knows how to open the commitments
c1, ..., ct, c

′
1, ..., c

′
t. The protocol in this exercise does not verify that P knows this - if

one wants to check this, there are other protocols one can use.
– Zero-Knowledge: Sketch a simulator for this protocol. Hint: given commitment c, if

you set d = cg−s mod p, then cd−1 = gsmod. This means that even if the simulator
does not know how to open c, it can create d and fake a proof that d contains the
same bit as c. You do not have to formally prove that your simulator works


