
Anders Møller
Computer Science, Aarhus University

Static Program Analysis
Part 11 – abstract interpretation

https://cs.au.dk/~amoeller/spa/

2

Abstract interpretation

Abstract interpretation provides a solid mathematical foundation
for reasoning about static program analyses

• Is my analysis sound? (Does it safely approximate the actual
program behavior?)

• Is it as precise as possible for the currently used analysis lattice?
If not, where can precision losses arise? Which precision losses
can be avoided (without sacrificing soundness)?

Answering such questions requires a precise definition of the
semantics of the programming language, and precise definitions
of the analysis abstractions in terms of the semantics

Agenda

• Collecting semantics
• Abstraction and concretization
• Soundness
• Optimality
• Completeness
• Trace semantics

3

Sign analysis, recap

4

: is the analysis representation of the given program

5

Program semantics as constraint systems

This is called a reachable states collecting semantics

6

The semantics of expressions

7

Successors and joins

8

Semantics of statements

9

The resulting constraint system

is the semantic representation of the given program

10

Example

the least solution

11

Kleene’s fixed point theorem
for complete join morphisms

If f is a complete join morphism:

(even when L has infinite height!)

cf is a complete join morphism

is a complete lattice (a product of a powerset lattice)

(Proof: Exercise 11.8)

(Exercise 11.9)

12

Tarski’s fixed-point theorem

(Exercise 11.3)

(Proof in Chapter 6)

13

Semantics
vs.

analysis

Agenda

• Collecting semantics
• Abstraction and concretization
• Soundness
• Optimality
• Completeness
• Trace semantics

14

15

Abstraction functions for sign analysis

16

Concretization functions for sign analysis

17

Monotonicity of
abstraction and concretization functions

(A larger set of concrete values should correspond to a larger abstract state, and conversely)

18

Galois connections

(Exercise 11.13)

19

Galois connections
For Galois connections, the concretization function uniquely determines the abstraction function
and vice versa:

(Proof: Exercise 11.20)

20

Galois connections
For this lattice, given the “obvious” concretization function,
is there an abstraction function such that the concretization function
and the abstraction function form a Galois connection?

(Exercise 11.22)

21

Representation functions

Agenda

• Collecting semantics
• Abstraction and concretization
• Soundness
• Optimality
• Completeness
• Trace semantics

22

23

Soundness

24

Soundness

(Exercise 11.17)

25

Sound abstractions

(Exercise 11.31 and Exercise 11.32)

26

Sound abstractions

(Exercise 11.33)

27

The two constraint systems

28

Sound abstractions

29

Sound abstractions

Equivalent, if α and γ form a Galois connection

(Proof: Exercise 11.34)

30

The soundness theorem

31

Specifying and proving soundness
of an analysis

1. Define the analysis (lattice and constraint rules), prove monotonicity

2. Define the collecting semantics, prove monotonicity

3. Define Galois connection (e.g., as concretization function)
between the analysis lattice and the semantic lattice

4. Prove sound abstractions (analysis constraints vs. semantic constraints)

5. Soundness then follows from the soundness theorem

Agenda

• Collecting semantics
• Abstraction and concretization
• Soundness
• Optimality
• Completeness
• Trace semantics

32

33

Optimal abstractions
af is an optimal abstraction of cf if

(compare with slide 28)

34

Optimal abstractions in sign analysis?

Even if we could make optimal, the analysis result is not always optimal:

Agenda

• Collecting semantics
• Abstraction and concretization
• Soundness
• Optimality
• Completeness
• Trace semantics

35

36

Completeness

Sound and complete:

Not the same as (called “exact”)

(Intuitively, the analysis result is the most precise possible for the currently used lattice)

(Intuitively, the analysis result exactly captures the semantics of the program)

(compare with slide 23)

37

Completeness in sign analysis?

Sign analysis is sound and complete for some programs,
but not for all programs

Agenda

• Collecting semantics
• Abstraction and concretization
• Soundness
• Optimality
• Completeness
• Trace semantics

38

39

Limitations of the
reachable states collecting semantics

The reachable states collecting semantics “collects” a set of
concrete states for each program point

That is not always sufficient – a trivial example:

For this program, the collecting semantics doesn’t allow us to express properties
such as “in any execution, the return value is the same as the input value”

40

Trace semantics

for other kinds of nodes

41

Example

42

Reachable states is an abstraction of traces

43

Composition of Galois connections

44

Soundness of reaching definitions analysis
Instrumented trace semantics:

45

Soundness of reaching definitions analysis

Soundness:

Abstraction:

46

Soundness proofs for other analyses

47

Conclusions

Abstract interpretation provides a solid mathematical foundation for reasoning
about soundness and precision of static program analyses

We need
• the static analysis (the analysis lattices and constraint rules)
• the language semantics (a suitable collecting semantics)
• abstraction/concretization functions that specify the meaning of the

elements in the analysis lattice in terms of the semantic lattice

... and then
• if each constituent of the analysis is a sound abstraction of its semantic counterpart,

then the analysis is sound (according to the soundness theorem)
• if an abstraction is optimal, then it is as precise as possible (yet sound),

relative to the choice of analysis lattice
• if the analysis is sound and complete, then the analysis result is as precise as possible

(yet sound), relative to the choice of analysis lattice

