Subexponential lower bounds for randomized pivoting rules for the simplex algorithm

Oliver Friedmann1 \hspace{1cm} Thomas Dueholm Hansen2 \hspace{1cm} Uri Zwick3

1 Department of Computer Science, University of Munich, Germany.

2 Department of Management Science and Engineering, Stanford University, USA.

3 School of Computer Science, Tel Aviv University, Israel.

The Fields Institute, November 29, 2013
Outline

- Linear programming and the simplex algorithm.
- Related work and results.
- The simplex algorithm for shortest paths.
- Framework: Lower bounds for the simplex algorithm utilizing shortest paths.
- On the lower bound for RandomEdge.
- (On the lower bound for RandomFacet.)
- Open problems.
Let \(A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \) and \(c \in \mathbb{R}^n. \)

A **linear program** (LP) in **standard form** is an optimization problem of the form:

\[
\min \ c^T x \\
\text{s.t.} \quad Ax = b \\
\quad \quad \quad x \geq 0
\]

The set of **feasible solutions** is a **convex polytope**.
Basic feasible solutions

\[
\begin{align*}
\min \quad & c^T x \\
\text{s.t.} \quad & Ax = b \\
\quad & x \geq 0
\end{align*}
\]

- A **basis** is a subset \(B \subseteq \{1, \ldots, n\} \) of \(m \) columns of \(A \) such that the corresponding matrix \(A_B \in \mathbb{R}^{m \times m} \) is invertible.
- Every **basis** defines a **basic feasible solution** \(x^B = A_B^{-1} b \) by setting **non-basic** variables, \(x_i \) for \(i \not\in B \), to zero.
- **Vertices** (or corners) are **basic feasible solutions**.
The simplex algorithm, Dantzig (1947)

\[
\begin{align*}
\min \quad & c^T x \\
\text{s.t.} \quad & Ax = b \\
\quad & x \geq 0
\end{align*}
\]

- **Pivoting**: Exchange a basic and a non-basic variable in a **basis** to move from one **basic feasible solution** to another.

- A **basic feasible solution** is **optimal** if there are no **improving pivots** w.r.t. its **basis**.

- The **simplex algorithm**: Repeatedly perform **improving pivots**.
Several **improving pivots** may be available for a given **basis**. The edge is chosen by a **pivoting rule**.

I.e., a pivoting rule decides which basic and non-basic variables to exchange.
Deterministic pivoting rules

- **LargestCoefficient**, Dantzig (1947)
 - The non-basic variable with *most negative reduced cost* enters the basis.

- **Bland’s rule**, Bland (1977)
 - Pick the available variable with the *smallest index*, both for entering and leaving the basis.
 - This pivoting rule is guaranteed not to cycle.

- Others:
 - **LargestIncrease**
 - **SteepestEdge**
 - **ShadowVertex**
 - **LeastEntered**
 - ...
Exponential lower bounds

- Klee and Minty (1972): The **LargestCoefficient** pivoting rule may require exponentially many steps; the Klee-Minty cube.\(^1\)
- Essentially all known natural deterministic pivoting rules are now known to be exponential:
 - **LargestIncrease**: Jeroslow (1973).
 - **SteepestEdge**: Goldfarb and Sit (1979).
 - **Bland’s rule**: Avis and Chvátal (1978).
- See Amenta and Ziegler (1996) for a unified view.

\(^1\) Picture from Gärtner, Henk and Ziegler (1998)
Randomized pivoting rules

- **RandomEdge**
 - Perform *uniformly random improving pivots*.

 - Pick a uniformly random facet that contains the current vertex, and recursively find an optimal solution within that facet. If possible, make an improving pivot leaving the facet and repeat.

Expected subexponential time: $2^{O\left(\sqrt{m \log n}\right)}$ expected steps.

Prior to our work no superpolynomial lower bounds were known for RandomEdge and Randomized Bland’s rule.

Lower bounds for the simplex algorithm
Randomized pivoting rules

- **RandomEdge**
 - Perform **uniformly random improving pivots**.

 - Pick a **uniformly random facet** that contains the current vertex, and recursively find an optimal solution within that facet. If possible, make an **improving pivot** leaving the facet and repeat.

Expected subexponential time: $2^{O(\sqrt{n \log n})}$ expected steps.

No subexponential upper bounds are known for RandomEdge and Randomized Bland's rule.

Prior to our work no superpolynomial lower bounds were known for randomized pivoting rules.
Randomized pivoting rules

- **RandomEdge**
 - Perform uniformly random improving pivots.

 - Pick a uniformly random facet that contains the current vertex, and recursively find an optimal solution within that facet. If possible, make an improving pivot leaving the facet and repeat.
 - Expected subexponential time: $2^{O(\sqrt{m \log n})}$ expected steps.
Randomized pivoting rules

- **RandomEdge**
 - Perform **uniformly random improving pivots**.

 - Pick a **uniformly random facet** that contains the current vertex, and **recursively find an optimal solution** within that facet. If possible, make an **improving pivot** leaving the facet and repeat.
 - Expected **subexponential** time: $2^{O(\sqrt{m\log n})}$ expected steps.

- **Randomized Bland’s rule**
 - Randomly **permute** the variables and use Bland’s rule.
Randomized pivoting rules

- **RandomEdge**
 - Perform uniformly random improving pivots.

 - Pick a uniformly random facet that contains the current vertex, and recursively find an optimal solution within that facet. If possible, make an improving pivot leaving the facet and repeat.
 - Expected subexponential time: $2^{O(\sqrt{m \log n})}$ expected steps.

- **Randomized Bland’s rule**
 - Randomly permute the variables and use Bland’s rule.

No subexponential upper bounds are known for RandomEdge and Randomized Bland’s rule.
Randomized pivoting rules

- **RandomEdge**
 - Perform ***uniformly random improving pivots***.

 - Pick a ***uniformly random facet*** that contains the current vertex, and **recursively find an optimal solution** within that facet. If possible, make an **improving pivot** leaving the facet and repeat.
 - Expected ***subexponential*** time: \(2^{O(\sqrt{m \log n})}\) expected steps.

- **Randomized Bland’s rule**
 - Randomly **permute** the variables and use **Bland’s rule**.

- No subexponential upper bounds are known for **RandomEdge** and **Randomized Bland’s rule**.

- Prior to our work no superpolynomial lower bounds were known for randomized pivoting rules.
We prove lower bounds for the expected number of pivoting steps:

\begin{align*}
\text{RandomEdge:} & \quad 2\Omega(m^{1/4}) \\
\text{RandomFacet:} & \quad 2\tilde{\Omega}(m^{1/3}) \\
\text{Randomized Bland’s rule:} & \quad 2\tilde{\Omega}(m^{1/2})
\end{align*}

where m is the number of equality constraints, and the number of variables is $n = \tilde{O}(m)$.

Note: In our SODA 2011 paper we studied a modified RandomFacet pivoting rule and incorrectly claimed that the expected running time was the same. We have repaired the analysis, but with a worse bound.

Initially, we used Markov decision processes for the constructions. We now use shortest paths for RandomFacet and Randomized Bland’s rule.
Results

We prove lower bounds for the expected number of pivoting steps:

RandomEdge: \(2\Omega(m^{1/4})\)

RandomFacet: \(2\tilde{\Omega}(m^{1/3})\)

Randomized Bland’s rule: \(2\tilde{\Omega}(m^{1/2})\)

where \(m\) is the number of equality constraints, and the number of variables is \(n = \tilde{O}(m)\).

- **Note:** In our SODA 2011 paper we studied a modified **RandomFacet** pivoting rule and **incorrectly** claimed that the expected running time was the same. We have repaired the analysis, but with a worse bound.
We prove lower bounds for the expected number of pivoting steps:

\begin{align*}
\text{RandomEdge:} & \quad 2\Omega(m^{1/4}) \\
\text{RandomFacet:} & \quad 2\tilde{\Omega}(m^{1/3}) \\
\text{Randomized Bland’s rule:} & \quad 2\tilde{\Omega}(m^{1/2})
\end{align*}

where m is the number of equality constraints, and the number of variables is $n = \tilde{O}(m)$.

- **Note:** In our SODA 2011 paper we studied a modified RandomFacet pivoting rule and incorrectly claimed that the expected running time was the same. We have repaired the analysis, but with a worse bound.

- **Initially,** we used Markov decision processes for the constructions. We now use shortest paths for RandomFacet and Randomized Bland’s rule.
Previous lower bounds were proved by studying linear programs directly.

The new lower bounds are based on linear programs for shortest paths and Markov decision processes (MDPs), for which the behavior of the simplex algorithm can be more easily understood.

- MDPs can be viewed as **stochastic shortest paths**: edges can result in stochastic transitions.

We prove lower bounds for corresponding **PolicyIteration** algorithms for MDPs, which immediately translate to lower bounds for the simplex algorithm.
Friedmann (2009) and Fearnley (2010) gave a similar lower bound construction for Howard’s `PolicyIteration` algorithm for solving MDPs (and *parity games*).
Related work

- Friedmann (2009) and Fearnley (2010) gave a similar lower bound construction for Howard’s PolicyIteration algorithm for solving MDPs (and parity games).
- Friedmann (2011) used the same technique to prove a lower bound of subexponential form, $2^{\Omega(\sqrt{m})}$, for Zadeh’s LeastEntered pivoting rule (1980).

Superpolynomial lower bounds for RandomEdge and RandomFacet were previously only known in an abstract setting (Acyclic Unique Sink Orientations):
- Matoušek and Szabó (2006): $2^{\Omega(m^{1/3})}$ lower bound for RandomEdge.
Friedmann (2009) and Fearnley (2010) gave a similar lower bound construction for Howard’s PolicyIteration algorithm for solving MDPs (and parity games).

Friedmann (2011) used the same technique to prove a lower bound of subexponential form, $2^{\Omega(\sqrt{m})}$, for Zadeh’s LeastEntered pivoting rule (1980).

Superpolynomial lower bounds for RandomEdge and RandomFacet were previously only known in an abstract setting (Acyclic Unique Sink Orientations):

- Matoušek and Szabó (2006): $2^{\Omega(m^{1/3})}$ lower bound for RandomEdge.
Linear programming and the simplex algorithm.

Related work and results.

⇒ The simplex algorithm for shortest paths.

Framework: Lower bounds for the simplex algorithm utilizing shortest paths (and Markov decision processes).

On the lower bound for RANDOMEDGE.

(On the lower bound for RANDOMFACET.)

Summary of open problems.
Single target shortest paths

\[
\begin{align*}
\minimize & \quad \sum_{(u,v) \in E} c(u,v) x(u,v) \\
\text{s.t.} & \quad \forall v \in V: \sum_{w:(v,w) \in E} x(v,w) - \sum_{u:(u,v) \in E} x(u,v) = b_v \\
& \quad \forall (u,v) \in E: x(u,v) \geq 0
\end{align*}
\]
Single target shortest paths

\[
\begin{align*}
\text{minimize} & \quad \sum_{(u, v) \in E} c(u, v) x(u, v) \\
\text{subject to} & \quad \sum_{w : (v, w) \in E} x(v, w) - \sum_{u : (u, v) \in E} x(u, v) = b_v \\
& \quad \forall (u, v) \in E: x(u, v) \geq 0
\end{align*}
\]
Single target shortest paths

\[\begin{align*}
\text{minimize} & \quad \sum_{(u,v) \in E} c_{(u,v)} x_{(u,v)} \\
\text{s.t.} & \quad \forall v \in V : \sum_{w : (v,w) \in E} x_{(v,w)} - \sum_{u : (u,v) \in E} x_{(u,v)} = b_v \\
& \quad \forall (u, v) \in E : x_{(u,v)} \geq 0
\end{align*} \]
minimize \[\sum_{(u,v) \in E} c(u,v)x(u,v) \]

\[\text{s.t. } \forall v \in V : \sum_{w : (v,w) \in E} x(v,w) - \sum_{u : (u,v) \in E} x(u,v) = b_v \]

\[\forall (u,v) \in E : x(u,v) \geq 0 \]
Basic feasible solutions

minimize \[\sum_{(u,v) \in E} c_{(u,v)} x_{(u,v)} \]

s.t. \(\forall v \neq t : \sum_{w:(v,w) \in E} x_{(v,w)} - \sum_{u:(u,v) \in E} x_{(u,v)} = 1 \)

\(\forall (u, v) \in E : \hspace{1cm} x_{(u,v)} \geq 0 \)

- The flow through every vertex is at least 1.

Flow conservation:

\[x_1 = 1 \quad x_2 = 6 \]
\[x_3 = 4 \quad x_4 = 2 \]
\[x_1 + x_2 = 1 + x_3 + x_4 \]
minimize \[\sum_{(u,v) \in E} c(u,v) x(u,v) \]

s.t. \(\forall v \neq t : \sum_{w : (v,w) \in E} x(v,w) - \sum_{u : (u,v) \in E} x(u,v) = 1 \)

\(\forall (u,v) \in E : x(u,v) \geq 0 \)

- The flow through every vertex is at least 1.
- For a **basic feasible solution**, at most one edge leaving every vertex has non-zero flow.
Basic feasible solutions

\[
\text{minimize} \quad \sum_{(u,v) \in E} c(u,v) x(u,v)
\]

\[
\text{s.t.} \quad \forall v \neq t : \sum_{w : (v,w) \in E} x(v,w) - \sum_{u : (u,v) \in E} x(u,v) = 1
\]

\[
\forall (u,v) \in E : \quad x(u,v) \geq 0
\]

- The flow through every vertex is at least 1.
- For a **basic feasible solution**, at most one edge leaving every vertex has non-zero flow.
- There is a one-to-one correspondence between **basic feasible solutions** and shortest paths trees (or **policies**).

Flow conservation:

\[
x_1 = 7 \quad x_2 = 0 \\
x_3 = 4 \quad x_4 = 2 \\
x_1 + x_2 = 1 + x_3 + x_4
\]
For every policy π (shortest paths tree), let $val_\pi(v)$ be the length of the path from v to t in π:

$$\forall (u, v) \in \pi : \quad val_\pi(u) = c_{(u,v)} + val_\pi(v)$$
For every policy π (shortest paths tree), let $val_\pi(v)$ be the length of the path from v to t in π:

$$\forall (u, v) \in \pi : \quad val_\pi(u) = c_{(u, v)} + val_\pi(v)$$

An edge (u, v) is an improving pivot (or improving switch) w.r.t. π if it improves the value of u:

$$c_{(u, v)} + val_\pi(v) < val_\pi(u)$$
Multiple **improving switches** can be performed in parallel, which gives a more general class of algorithms:

Function `PolicyIteration(π)`

```
while ∃ improving switch w.r.t. π do
    Update π by performing improving switches

return π
```

The simplex algorithm is the special case where only one improving switch is performed in every iteration.

Friedmann, Hansen, and Zwick
Multiple **improving switches** can be performed in parallel, which gives a more general class of algorithms:

```markdown
**Function** `PolicyIteration(\pi)`

```markdown
while \exists \text{ improving switch} \ w.r.t. \ \pi \ do

[Update \ \pi \ \text{by performing \ \textbf{improving switches}}]

return \ \pi
```

- The simplex algorithm is the special case where only one **improving switch** is performed in every iteration.
To prove a lower bound for a given pivoting rule, we construct a family of graphs (or MDPs) $G_n$ such that the corresponding PolicyIteration algorithm simulates an $n$-bit binary counter.

We define a way to interpret a policy $\pi$ as a configuration of the binary counter:

- $b_i \implies bit_i(\pi) = 0$
- $\neg b_i \implies bit_i(\pi) = 1$
To prove a lower bound for a given pivoting rule, we construct a family of graphs (or MDPs) $G_n$ such that the corresponding PolicyIteration algorithm simulates an $n$-bit binary counter.

We define a way to interpret a policy $\pi$ as a configuration of the binary counter:

- $b_i \Rightarrow \text{bit}_i(\pi) = 0$
- $b_i \Rightarrow \text{bit}_i(\pi) = 1$

We then show that (with high probability) a run of the PolicyIteration algorithm generates all $2^n$ counting configurations.
The graph is acyclic, and every bit $i$ is associated with a level consisting of four vertices: $b_i, a_i, w_i, u_i$.

- $w_{n+1} = u_{n+1} = t$. 
A simplified construction, $n = 3$

Friedmann, Hansen, and Zwick  Lower bounds for the simplex algorithm
Case: $val_\pi(w_{i+1}) = val_\pi(u_{i+1})$

$\forall \pi, i 
\begin{align*}
val_\pi(w_{i+1}) &= val_\pi(u_{i+1}) \\
val_\pi(w_i) &= val_\pi(u_i) \\
\text{bit}_i(\pi) &= 0, \text{ stable.}
\end{align*}$
Case: \( \text{val}_\pi(w_{i+1}) = \text{val}_\pi(u_{i+1}) \)

\[
\text{val}_\pi(w_{i+1}) = \text{val}_\pi(u_{i+1})
\]

\[
\text{val}_\pi(w_i) = \text{val}_\pi(u_i)
\]

- \( \text{bit}_i(\pi) = 1 \), transitioning.
Case: \( \text{val}_\pi(w_{i+1}) = \text{val}_\pi(u_{i+1}) \)

\[
\text{val}_\pi(w_{i+1}) = \text{val}_\pi(u_{i+1})
\]

\[
\begin{align*}
\text{val}_\pi(w_i) &= \text{val}_\pi(u_i) + 2^{2i} \\
\text{bit}_i(\pi) &= 1, \text{ transitioning, lower bits are unstable: reset.}
\end{align*}
\]
Case: \( val_\pi(w_{i+1}) = val_\pi(u_{i+1}) \)

\[
val_\pi(w_{i+1}) = val_\pi(u_{i+1})
\]

\[
val_\pi(w_i) = val_\pi(u_i) + 2^i
\]

- \( \text{bit}_i(\pi) = 1 \), transitioning, lower bits are unstable: reset.
Case: $val_\pi(w_{i+1}) = val_\pi(u_{i+1})$

$val_\pi(w_{i+1}) = val_\pi(u_{i+1})$

$w_{i+1}$

$u_{i+1}$

$b_i$

$w_i$

$a_i$

$u_i$

$2^{2i}$

$2^{2i + 1} + 1$

$0$

$2^{2i}$

$0$

$2^{2i + 1}$

$0$

$0$

$val_\pi(w_i) = val_\pi(u_i)$

$\bullet \; bit_i(\pi) = 1$, stable.
Case: $\text{val}_\pi(w_{i+1}) \geq \text{val}_\pi(u_{i+1}) + 2^{2i+2}$

- $\text{val}_\pi(w_{i+1}) \geq \text{val}_\pi(u_{i+1}) + 2^{2i+2}$

- $\text{val}_\pi(w_i) = \text{val}_\pi(u_i)$

- $\text{bit}_i(\pi) = 1$, unstable, resetting.
Case: $\text{val}_\pi(w_{i+1}) \geq \text{val}_\pi(u_{i+1}) + 2^{2i+2}$

$\text{val}_\pi(w_{i+1}) \geq \text{val}_\pi(u_{i+1}) + 2^{2i+2}$

$\text{val}_\pi(w_i) = \text{val}_\pi(u_i) + 2^{2i}$

- $bit_i(\pi) = 0$, stable, lower bits are unstable: reset.
- $w_i$ is updated when bit $i + 1$ stabilizes.
Bland’s rule for shortest paths: Perform the first improving switch according to a permutation of the edges.
Bland’s rule for shortest paths: Perform the first improving switch according to a permutation of the edges. It is easy to define a permutation of the edges, $\sigma$, such that we get the described behavior, giving an exponential lower bound:

- $(b_i, w_{i+1})$ edges are placed last, and $\sigma(b_i, w_{i+1}) < \sigma(b_j, w_{j+1})$ for $i < j$.
- $(a_i, b_i)$ edges are placed next, and $\sigma(a_i, b_i) < \sigma(a_j, b_j)$ for $i < j$.
- The remaining edges are placed first in arbitrary order.
**Bland’s rule** for shortest paths: Perform the first **improving switch** according to a permutation of the edges. It is easy to define a permutation of the edges, $\sigma$, such that we get the described behavior, giving an exponential lower bound:

- $(b_i, w_{i+1})$ edges are placed last, and $\sigma(b_i, w_{i+1}) < \sigma(b_j, w_{j+1})$ for $i < j$.
- $(a_i, b_i)$ edges are placed next, and $\sigma(a_i, b_i) < \sigma(a_j, b_j)$ for $i < j$.
- The remaining edges are placed first in arbitrary order.

To implement a lower bound for **RandomEdge** we need a gadget to delay improving switches like $(b_i, w_{i+1})$ and $(a_i, b_i)$. 
Outline

- Linear programming and the simplex algorithm.
- Related work and results.
- The simplex algorithm for shortest paths.
- Framework: Lower bounds for the simplex algorithm utilizing shortest paths (and Markov decision processes).

⇒ On the lower bound for RandomEdge.

(On the lower bound for RandomFacet.)

- Summary of open problems.
Delays 3

By replacing a vertex by a chain of vertices, a specific sequence of improving switches has to be performed to get the same effect as performing one improving switch originally.

At any time there is only one edge for which it is improving to move into the chain.
By replacing a vertex by a chain of vertices, a specific sequence of improving switches has to be performed to get the same effect as performing one improving switch originally.

At any time there is only one edge for which it is improving to move into the chain.
By replacing a vertex by a chain of vertices, a specific sequence of improving switches has to be performed to get the same effect as performing one improving switch originally.

At any time there is only one edge for which it is improving to move into the chain.
By replacing a vertex by a chain of vertices, a specific sequence of improving switches has to be performed to get the same effect as performing one improving switch originally.

At any time there is only one edge for which it is improving to move into the chain.
Competing chains

- Suppose a short chain of length $\ell_i$ is competing with a longer chain of length $\ell_{i+1}$.
- There is exactly one improving switch in both chains, and `RANDOMEDGE` performs either one of them with equal probability.
Competing chains

- Suppose a short chain of length $\ell_i$ is competing with a longer chain of length $\ell_{i+1}$.
- There is exactly one improving switch in both chains, and \textsc{RandomEdge} performs either one of them with equal probability.
- Let $X$ be the number of heads observed in $\ell_i + \ell_{i+1}$ coin tosses, then by a \textbf{Chernoff bound}:

  $$\Pr[X \leq \ell_i] \leq e^{\frac{(\ell_{i+1}-\ell_i)^2}{2(\ell_{i+1}+\ell_i)}}$$

- Setting $\ell_k = \Theta(k^2 n)$, the probability of failure, $X < \ell_i$, is at most $e^{-n}$. 
Competing chains

- Suppose a short chain of length $\ell_i$ is competing with a longer chain of length $\ell_{i+1}$.
- There is exactly one improving switch in both chains, and $\text{RANDOMEdge}$ performs either one of them with equal probability.
- Let $X$ be the number of heads observed in $\ell_i + \ell_{i+1}$ coin tosses, then by a Chernoff bound:

  $$\Pr[X \leq \ell_i] \leq e^{\frac{(\ell_{i+1}-\ell_i)^2}{2(\ell_{i+1}+\ell_i)}}$$

- Setting $\ell_k = \Theta(k^2 n)$, the probability of failure, $X < \ell_i$, is at most $e^{-n}$.
- With $n$ such chains this results in $N = O(n^4)$ vertices, giving a lower bound of $2^{\Omega(N^{1/4})}$ expected pivoting steps for $\text{RANDOMEdge}$. 

Friedmann, Hansen, and Zwick
Lower bounds for the simplex algorithm
Moving in the other directions happens much faster since all edges are improving switches simultaneously.
We need to reset the progress made in chains at higher bits in order for the analysis to work.
We need to reset the progress made in chains at higher bits in order for the analysis to work.

The graph should not be acyclic: higher bits must have access to lower bits.
Problem

- We need to reset the progress made in chains at higher bits in order for the analysis to work.
- The graph should not be acyclic: higher bits must have access to lower bits.
- No vertex in a chain should get the benefit of setting a bit before this event occurs.
  - \textsc{RandomEdge} solves shortest paths in $O(NM)$ expected iterations, where $N$ is the number of vertices and $M$ is the number of edges.
- We need to reset the progress made in chains at higher bits in order for the analysis to work.
- The graph should not be acyclic: higher bits must have access to lower bits.
- No vertex in a chain should get the benefit of setting a bit before this event occurs.
  - `RANDOMEdge` solves shortest paths in $O(NM)$ expected iterations, where $N$ is the number of vertices and $M$ is the number of edges.
  - Use the power of MDPs: Introduce stochastic transitions.
We need to reset the progress made in chains at higher bits in order for the analysis to work.

The graph should not be acyclic: higher bits must have access to lower bits.

No vertex in a chain should get the benefit of setting a bit before this event occurs.

- **RandomEdge** solves shortest paths in $O(NM)$ expected iterations, where $N$ is the number of vertices and $M$ is the number of edges.
- Use the power of MDPs: Introduce stochastic transitions.

To reset $b_i$-chains we need additional $c_i$-chains, resulting in alternating behavior.
Construction for \textsc{RandomEdge}

\[\begin{align*}
\text{\(w_{i+1}\)} & \quad \text{\(2^{2i}\)} \quad \text{\(0\)} \quad \text{\(2^{2i+1} + 1\)} \\
\text{\(w_i\)} & \quad \text{\(0\)} \quad \text{\(b_i\)} \\
\text{\(a_i\)} & \quad \text{\(0\)} \\
\text{\(u_i\)} & \quad \text{\(2^{2i}\)} \quad \text{\(u_{i+1}\)}
\end{align*}\]
Construction for $\textsc{RandomEdge}$

\[
\begin{align*}
    w_i + 1 & \quad 2^{2i} \\
    2^{2i} & \quad 0 \\
    b_i & \quad 2^{2i+1} + 1 \\
    & \quad 2^{2i+1} \\
    a_i & \quad 0 \\
    g & \quad 0 \\
    u_i & \quad 2^{2i} \\
    u_{i+1} & \quad 2^{2i+1} + 1 \\
    w_{i+1} & \quad 0
\end{align*}
\]
Construction for $\text{RandomEdge}$
Construction for \textsc{RandomEdge}

\[
\begin{align*}
\ell_i + 1 &< u_i + 1, \\
\ell_i &< u_i, \\
\ell_i &< b_i, \\
2^{2i} &< 2^{2i+1} + 1.
\end{align*}
\]
Construction for \textsc{RandomEdge}

\[
\begin{array}{c}
\text{Construction for } \textsc{RandomEdge} \\
\end{array}
\]
Setting a bit

\[ \text{val}_\pi(w_1) = \text{val}_\pi(u_1) \]
Setting a bit

\[ \text{val}_\pi(w_1) = \text{val}_\pi(u_1) \]
Setting a bit

\[ \text{bit}_i(\pi) = 1 \]

\[ 2^{2^i} (1 - \epsilon) \]

\[ 2^{2^i} \]

\[ 2^{2^i+1} + 1 \]

\[ 2^{2^i+1} + 2 \]

\[ \text{val}_\pi(w_1) = \text{val}_\pi(u_1) \]
Setting a bit

\[
\begin{align*}
\text{val}_\pi(w_i) &= \text{val}_\pi(u_1) + 2^i \\
\text{val}_\pi(w_{i+1}) &= \text{val}_\pi(u_{i+1}) + 2^i \\
\end{align*}
\]
Setting a bit

\[ \text{bit}_i(\pi) = 1 \]

\[ \text{val}_\pi(w_1) = \text{val}_\pi(u_1) + 2^{2i} \]
Setting a bit

\[ \pi(w_1) = \pi(u_1) = val_{\pi}(w_1) = val_{\pi}(u_1) \]

\[ bit_i(\pi) = 1 \]

\[ w_{i+1} \rightarrow w_i \quad 2^{2i} \quad 1 - \epsilon \quad 0 \quad c_i \quad 0 \quad u_{i+1} \]

\[ b_i \quad \ell_i \quad 0 \quad 0 \quad 2^{2i+1} + 1 \quad 0 \quad 2^{2i} \]

\[ a_i \quad g \quad 2^{2i+1} + 2 \quad 2^{2i+1} \]

\[ w_1 \rightarrow w_i \quad 0 \quad 0 \quad u_1 \]
Theorem (Friedmann, Hansen, and Zwick (2011))

The worst-case expected number of pivoting steps performed by RandomEdge on linear programs with $m$ equalities and $n = 2m$ non-negative variables is $2^{\Omega(m^{1/4})}$. 
Outline

- Linear programming and the simplex algorithm.
- Related work and results.
- The simplex algorithm for shortest paths.
- Framework: Lower bounds for the simplex algorithm utilizing shortest paths (and Markov decision processes).
- On the lower bound for RandomEdge.
  ⇒ (On the lower bound for RandomFacet.)
- Summary of open problems.

1. Pick a uniformly random facet $f$ that contains the current basic feasible solution $x$.
2. Recursively find the optimal solution $x'$ within the picked facet $f$.
3. If possible, make an improving pivot from $x'$, leaving the facet $f$, and repeat from (1). Otherwise return $x'$. 
The **RandomFacet** pivoting rule

  1. Pick a uniformly random facet $f$ that contains the current basic feasible solution $x$.
  2. Recursively find the optimal solution $x'$ within the picked facet $f$.
  3. If possible, make an improving pivot from $x'$, leaving the facet $f$, and repeat from (1). Otherwise return $x'$.

- A **dual** variant of the **RandomFacet** pivoting rule was discovered independently by Matoušek, Sharir, and Welzl (1992).
The **RandomFacet** pivoting rule

- Pick a uniformly random facet $f_i$ that contains the current basic feasible solution $x$. 
The **RandomFacet** pivoting rule

- Pick a uniformly random facet $f_i$ that contains the current basic feasible solution $x$. 
The RandomFacet pivoting rule

Recursively find the optimal solution $x'$ within the picked facet $f_i$. 

Friedmann, Hansen, and Zwick

Lower bounds for the simplex algorithm
The RandomFacet pivoting rule

If possible, make an improving pivot from $x'$, leaving the facet $f_i$, and repeat from the beginning. Otherwise return $x'$. 
Note that if the facets $f_1, \ldots, f_d$ containing $x$ are ordered according to their optimal value, then from $x''$ we never visit $f_1, \ldots, f_i$ again.
The **RandomFacet** pivoting rule

- The number of pivoting steps for a linear program with dimension $d$ and $n$ inequalities is at most:

  $f(d, n) \leq f(d - 1, n - 1) + 1 + \frac{1}{d} \sum_{i=1}^{d} f(d, n - i)$

  with $f(d, n) = 0$ for $n \leq d$. 

The **RandomFacet** pivoting rule

The number of pivoting steps for a linear program with dimension $d$ and $n$ inequalities is at most:

$$f(d, n) \leq f(d - 1, n - 1) + 1 + \frac{1}{d} \sum_{i=1}^{d} f(d, n - i)$$

with $f(d, n) = 0$ for $n \leq d$.

Solving the corresponding recurrence gives:

$$f(d, n) \leq 2^O(\sqrt{(n-d) \log n})$$
minimize \[ \sum_{(u,v) \in E} c(u,v)x(u,v) \]

s.t. \[ \forall v \neq t : \sum_{w: (v,w) \in E} x(v,w) - \sum_{u: (u,v) \in E} x(u,v) = 1 \]

\[ \forall (u,v) \in E : \quad x(u,v) \geq 0 \]

- Staying within a facet means that the corresponding inequality is tight, meaning that a variable is fixed to zero. This corresponds to removing the edge.

- The \texttt{RandomFacet} pivoting rule removes random unused edges and solves the corresponding problem recursively.
Interpretation for shortest paths

minimize \[ \sum_{(u,v) \in E} c(u,v) x(u,v) \]

s.t. \[ \forall v \neq t : \sum_{w:(v,w) \in E} x(v,w) - \sum_{u:(u,v) \in E} x(u,v) = 1 \]

\[ \forall (u,v) \in E : x(u,v) \geq 0 \]

- Staying within a facet means that the corresponding inequality is tight, meaning that a variable is fixed to zero. This corresponds to removing the edge.
- The RandomFacet pivoting rule removes random unused edges and solves the corresponding problem recursively.
- Note that delaying a switch, as for Bland’s rule, can also be viewed as removing the edge.
When constructing lower bounds for \textsc{RandomFacet}, the challenge is to make sure that certain edges are not removed before certain other edges.

Suppose an edge $e$ must not be removed before another edge $e'$. To achieve this with high probability we make use of redundancy: Let $e$ and $e'$ be copied $k$ times, in such a way that we only require that at least one copy of $e'$ is removed before all copies of $e$ are removed. The probability of failure, i.e. removing all $k$ copies of $e$ before one copy of $e'$, is then:

$$\frac{k!}{(2k)!} \leq \frac{1}{2^k}.$$
Different challenges

- When constructing lower bounds for \textsc{RandomFacet}, the challenge is to make sure that certain edges are not removed before certain other edges.
- Suppose an edge $e$ must not be removed before another edge $e'$.
Different challenges

- When constructing lower bounds for `RANDOMFACE`, the challenge is to make sure that certain edges are not removed before certain other edges.

- Suppose an edge $e$ must not be removed before another edge $e'$.

- To achieve this with high probability we make use of redundancy: Let $e$ and $e'$ be copied $k$ times, in such a way that we only require that at least one copy of $e'$ is removed before all copies of $e$ are removed.

\[ \frac{k \prod_{i=1}^{k} i}{(2k)!} \leq \frac{1}{2^k} \]
Different challenges

- When constructing lower bounds for \textsc{RandomFacet}, the challenge is to make sure that certain edges are not removed before certain other edges.

- Suppose an edge $e$ must not be removed before another edge $e'$. 

- To achieve this with high probability we make use of redundancy: Let $e$ and $e'$ be copied $k$ times, in such a way that we only require that at least one copy of $e'$ is removed before all copies of $e$ are removed.

- The probability of failure, i.e. removing all $k$ copies of $e$ before one copy of $e'$, is then:

$$\prod_{i=1}^{k} \frac{i}{i + k} = \frac{(k!)^2}{(2k)!} \leq \frac{1}{2^k}$$
Lower bound construction

\[ w_i, 1, 1, 1, \ldots, a_i, r, 1, s \]

\[ b_i, 1 \]

\[ b_i, 2 \]

\[ b_i, r, s \]

\[ w_i \]

\[ u_i \]

\[ u_{i+1} \]

\[ 2^{2i+1} + 1 + (rs - 1)\epsilon \]

\[ 2^{2i+1} + 1 + \epsilon \]

\[ 2^{2i+1} + 1 + \epsilon \]

\[ 2^{2i+1} + (s - 1)\epsilon \]

\[ 2^{2i+1} + \epsilon \]

\[ 2^{2i} \]
Analysis: simulate a “randomized bitcounter”

Start with \( n \) bits with value 0: 00000
Pick a random bit \( i \) and fix it: 00000
Count recursively with the remaining \( n - 1 \) bits: 11011
Increment the \( i \)'th bit: 11111
Reset the \( i - 1 \) lower bits: 11100
Count recursively with the \( i - 1 \) lower bits: 11100

- Expected number of increments:

\[
\begin{align*}
  f(0) &= 0 \\
  f(n) &= f(n - 1) + 1 + \frac{1}{n} \sum_{i=0}^{n-1} f(i) \quad \text{for} \quad n > 0
\end{align*}
\]

- Solving the recurrence gives: \( f(n) = 2^{\Theta(\sqrt{n})} \)
Open problems

- Subexponential upper bounds for \textsc{RandomEdge} and \textsc{Randomized Bland’s rule}?
- Close the gap between the $2^{\tilde{\Omega}(m^{1/3})}$ and $2^{O(\sqrt{m\log n})}$ bounds for \textsc{RandomFacet} for linear programs.
- The polynomial Hirsch conjecture: A polynomial upper bound for the diameter of polytopes?
- Strongly polynomial time algorithm for linear programming? A variant of the simplex algorithm?
  - This question remains open already for Markov decision processes.
Thank you for listening!
The **diameter** of a polytope $P$ is the maximum distance between any two vertices in the edge graph of $P$.

The diameter gives a lower bound for any pivoting rule for the simplex algorithm.

Hirsch conjecture (1957): The diameter of any $n$-facet convex polytope in $d$-dimensional Euclidean space is at most $n - d$.

Kalai and Kleitman (1992): $O(n \log n)$ upper bound on the diameter.

Counter-example by Santos (2010): Existence of polytopes with diameter $(1 + \epsilon)(n - d)$.

- It remains open whether the diameter is polynomial, or even linear, in $n$ and $d$.

Our results are unrelated to the diameter: The constructed polytopes have low diameter.