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Abstract. Consider the following converse of the Mean Value Theo-
rem.

Let f be a differentiable function on [a, b]. If c ∈ (a, b), then there are

α and β in [a, b] such that (f(β) − f(α))/(β − α) = f ′(c).
Assuming some weak conditions to be mentioned in Section 3, Tong and
Braza [3] were able to prove this statement. Unfortunately their proof
does not provide a method to compute α and β. We give a constructive
proof.

1. Introduction

Constructive mathematics tries to determine the constructive or computa-
tional content of mathematics. One sometimes distinguishes several varieties
of constructive mathematics [2]. We prove a result that is acceptable to all
of them, as we avoid non-constructive steps, but do not assume axioms that
are classically false. We have to warn those who are familiar with [1] or [2].
Unlike Bishop we do not demand by definition that continuous functions
are uniformly continuous on compact sets. Nor do we demand by defini-
tion that differentiable functions are uniformly continuous or continuously
differentiable.

In constructive mathematics ‘there exists an x’ is interpreted as ‘there is an
effective construction for x’. A constructive proof of ‘A or B’ is a proof of A
or a proof of B. In order to prove ‘A or not A’ we have to prove or refute A.
As there will always be unsolved problems, we do not recognize the scheme
A ∨ ¬A, Tertium non datur, as a valid principle.

A real number x is a sequence of rational numbers x(0), x(1), . . ., such that
for all k there exists(!) an N satisfying |x(N) − x(n)| < 1/k, for all n > N .
Let x and y be real numbers. x and y are equal (x = y) if for all k there
exists an N such that |x(n) − y(n)| < 1/k, for all n > N .

x is greater than y (x > y) if there are k and N such that |x(N)−y(N +n)| >
1/k, for all n. Notice that if x < y then x < z or z < y for all z.

We express our thanks to the referee whose critical remarks led to some substantial im-
provements of the paper.
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Figure 2.1. The function f

x is not-greater-than y (x ≤ y) if not x > y. Finally, x is apart from y
(x # y) if x > y or(!) x < y. Now x = y if and only if not x # y, but
conversely it is not true in general that if not x = y then x # y. Addition,
subtraction, multiplication, etc. are defined in the usual way.

2. A Constructive Mean Value Theorem

We start by giving weak counterexample in the style of L.E.J. Brouwer for
the Intermediate Value Theorem. Let f be the function (Figure 2.1) from
[0,1] to [0,1] given by:

f(x) := inf(3x/2, 1/2) + sup(3x/2 − 1, 0).

Define a function k99 from N to N by:

k99(n) :=











k if the first block of 99 nines starts at position k in the

decimal expansion of π and k < n,

n if such k does not exist.

Define a function t from N to N by: t(n) := 1
2 + (−1/2)k99(n). Observe that

t is a real number. Suppose we find x such that f(x) = t; then we are able
to decide either x < 2

3 or x > 1
3 . If x < 2

3 , then, if there exists a block of 99
nines in the decimal expansion of π the first one will start at an odd position.
Similarly if x > 1

3 , then, if there exists a block of 99 nines in the decimal
expansion of π, the first one will start at an even position. Both conclusions
are unjustified.

Observe that this difficulty arises as soon as a function is constant on an
interval.

Definition 2.1. Let f be a function on [a, b] and let y be a real number. f
is called densely apart from y if in every interval there exists a real number
x such that f(x) # y. If f is densely apart from all y ∈ R, then f is called
locally nonconstant.
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If p is a polynomial function of degree at least one, then p is locally noncon-
stant (Cf. [1, Problem 17, p63]). The function f in Figure 2.1 is not densely
apart from 1/2.

Lemma 2.2. If f is continuous on [a, b], then there is a countable T ⊂ R,

such that if s # t for all t ∈ T , then f is densely apart from s.

We express this fact as follows: f is densely apart from all but countably

many real numbers.

Proof. Take T := {f(x) : x ∈ Q ∩ [a, b]}. �

Lemma 2.3. [Intermediate Value Lemma] Let f be continuous on [a, b]. If

f(a) < t < f(b) and f is densely apart from t, then there exists c in [a, b]
such that f(c) = t.

Proof. We use successive bisection. Choose x ∈ (a+ b−a
4 , a+ 3(b−a)

4 ) for which
f(x) # t. This means that either f(x) < t or f(x) > t. If f(x) < t let a1 := x
and b1 := b, otherwise let a1 := a and b1 := x. Now f(a1) < t < f(b1)
and b1 − a1 < 3/4. This process, applied recursively, produces sequences
a0 < a1 < . . . and b0 > b1 > . . ., such that for each i, 0 < bi−ai < (3

4)i(b−a)
and f(ai) < t < f(bi).
Therefore c := limi→∞ ai = limi→∞ bi satisfies f(c) = t. �

A direct consequence of Lemma 2.2 and Lemma 2.3 is the following con-
structive version of the Intermediate Value Theorem.

Theorem 2.4. [Intermediate Value Theorem] Let f be continuous on [a, b].
For all but countably many t: if f(a) < t < f(b) then there is c in [a, b]
satisfying f(c) = t.

A countable set of exceptions may indeed occur. Consider Cantor’s function
(Figure 2.2). This is the unique continuous and nondecreasing function f ,
which is constant on every interval outside Cantor’s discontinuum and satis-
fies f(x) = 1/2 for x in [1/3, 2/3], f(x) = 1/4 for x in [1/9, 2/9], f(x) = 3/4
for x in [7/9, 8/9], etc.

We will obtain the Mean Value Theorem as a corollary of the following
theorem.

Theorem 2.5. [Rolle] Let f be differentiable on [a, b]. If f is locally non-

constant and f(a) = f(b), then there exists c ∈ (a, b), such that f ′(c) = 0.

Proof. Choose x close to a+b
2 , such that f(x) # f(a). We assume f(x) >

f(a).
Let α0 = a, β0 = b and γ0 = x. Choose y close to 3a+b

4 and z close to a+3b
4 ,

such that f(y) # f(γ0) and f(z) # f(γ0).
If f(y) > f(γ0), define α1 = α0, β1 = γ0 and γ1 = y.
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Figure 2.2. Cantor’s function.

If this is not the case, but f(z) > f(γ0), define α1 = γ0, β1 = β0 and γ1 = z.
Otherwise define α1 = y, β1 = z and γ1 = γ0.

Continuing in this way we obtain sequences α0 ≤ α1 ≤ . . ., β0 ≥ β1 ≥ . . .
and γ0, γ1, . . . all tending to the same limit, which we call γ. Because f is
continuous and f(a) < f(γ0) ≤ f(γ1) ≤ . . . ≤ f(γ) there is δ > 0 such that
|γ − a| ≥ δ. By a similar argument we see that γ # b. Because for all n:
αn < γn < βn, f(αn) < f(γ) and f(βn) < f(γ), it follows that f ′(γ) = 0. �

Let f be a function on [a, b]. For x and y in [a, b], such that x # y, define
the difference quotient

∆f (x, y) :=
f(x) − f(y)

x − y
.

We omit the subscript when no confusion is possible.

Observe that for each z in [a, b], such that z # x and z # y

∆(x, y) =
(x − z)∆(x, z) + f(z) − f(y)

x − y

= (
x − z

x − y
)∆(x, z) + (1 −

x − z

x − y
)∆(z, y).(2.1)

Theorem 2.6. [Mean Value Theorem] Let f be differentiable on [a, b]. There

is a countable set T , such that for all α and β, if a ≤ α < β ≤ b and ∆(α, β)
is apart from every t in T , then there is c in (α, β) such that f ′(c) = ∆(α, β).
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Proof. Define T := {∆(p, q) : p, q ∈ [a, b] ∩ Q, p # q}. Suppose we have
α, β ∈ [a, b], such that for all t ∈ T , ∆(α, β) # t.
Define

g(x) := f(x) − f(α) − ∆f (α, β)(x − α)

then g(α) = g(β) = 0 and if p, q ∈ [a, b] ∩ Q and p # q, then

g(p) − g(q) = (p − q)(∆f (p, q) − ∆f (α, β)) # 0.

By Rolle’s Theorem there exists c ∈ (a, b) such that g ′(c) = 0, therefore
f ′(c) = ∆(α, β). �

3. A constructive converse of the Mean Value Theorem

We will obtain a converse of the Mean Value Theorem in which we do not
have to make exceptions as in the Theorems of Section 2. We need a few
preparations.

Lemma 3.1. Let f be differentiable on [a, b]. If ∆(a, b) > t, then there is

y ∈ [a, b], satisfying f ′(x) > t. If f ′(z) < t for some z in [a, b] and f ′(x) ≤ t
for all x in [a, b], then ∆(a, b) < t.

Proof. Suppose ∆(a, b) > t, say ∆(a, b) = t + ε. Because f ′(a) ≤ t there
is an a′ such that ∆(a, a′) < t + 1

2ε. Now (t + 1
2ε, t + ε) is uncountable, so

by the Intermediate Value Theorem (2.4) we construct x ∈ (a′, b) such that
∆(a, x) > t+ 1

2ε. Moreover we choose ∆(a, x) outside the set of exceptions of
the Mean Value Theorem (2.6) in order to find y in (a, x) satisfying f ′(y) =
∆(a, x) > t + 1

2ε.

Assume z ∈ (a, b) and f ′(z) < t. Because f ′(z) = limy→z ∆(z, y) there is
y0 > z such that ∆(z, y0) < t. Now apply the argument above to [a, z] and
[y0, b] and conclude that ∆(a, z) ≤ t and ∆(y0, b) ≤ t. Applying Formula 2.1
twice we find first ∆(a, y0) < t, and then ∆(a, b) < t. �

Lemma 3.2. Let f be differentiable on [a, b]. If t < f ′(x) and δ > 0, then

for all z < x there exists w in (x − δ, x) apart from z, such that t < f ′(w)
and ∆(z, w) # t.

Proof. Choose y ∈ (x−δ, x), such that z < y, ∆(x, y) > (f ′(x)+t)/2 and, by

Lemma 3.1, f ′(y) > t. Let r := z−x
z−y

and choose ε < (f ′(x)−t)
2

1−r
r

. Now either

|∆(z, x)− t| > ε/2 or |∆(z, x)− t| < ε. In the former case use Lemma 3.1 to
take w close enough to x. In the latter case:

∆(z, y) = r∆(z, x) + (1 − r)∆(x, y) by Formula 2.1

≥ r(t − ε) + (1 − r)(f ′(x) + t)/2

≥ t + (1 − r)(f ′(x) − t)/2 − εr

> t by choice of ε

So in this case let w := y. �
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Theorem 3.3. Let f be differentiable on [a, b] and ε > 0. If a < c1 < c2 < b
and f ′(c1) < t < f ′(c2), then there exist α and β such that α < β and

∆(β, α) = t and α ∈ (c1, c1 + ε) or β ∈ (c2 − ε, c2).

The condition f ′(c1) < t < f ′(c2) is necessary: consider the function f :
[−1, 1] → R given by f(x) = x3 and let t := 0.

Proof. Because f ′(c1) = limy→c1 ∆(c1, y), there exists y0 such that ∆(c1, y0) <
t and c1 < y0 < c2. Lemma 3.2 provides z0 in (y0, c2) such that t < f ′(z0)
and ∆(c1, z0) # t. By taking z0 close enough to c2 we ensure ∆(c2, z0) > t.
Now there are two possibilities: 1. ∆(c1, z0) > t or 2. ∆(c1, z0) < t. We first
consider case 1.

In classical mathematics one could simply define α := c1 and then use suc-
cessive bisection in order to find β such that ∆(α, β) = t. In constructive
mathematics we have to construct both α and β, but we may ensure that α
is not too far away from c1.

Let α0 := c1. Now ∆(α0, z0) > t and ∆(α0, y0) < t. Since ∆ is contin-
uous, there exists an open interval I containing α0 such that for all x in
I: ∆(x, z0) > t and ∆(x, y0) < t. Let y := z0+y0

2 . Lemma 3.2 applied to
−f provides α1 < y0 in I ∩ (α0 − ε/2, α0 + ε/2) satisfying f ′(α1) < t and
∆(y, α1) # t. If ∆(α1, y) > t let y1 := y0 and z1 := y, if ∆(α1, y) < t let

y1 := y and z1 := z0. Thus α1 ∈ (α0 − ε/2, α0 + ε/2) and |z1 − y1| < |z0−y0|
2 .

By repeating the above construction, we obtain sequences (αn)n∈N, (yn)n∈N

and (zn)n∈N such that for all n: ∆(αn, yn) < t and ∆(αn, zn) > t. Let
α := limn→∞ αn and β := limn→∞ yn = limn→∞ zn, and observe ∆(α, β) = t
and |α − c1| < ε.
In case 2 we follow a similar construction and obtain the conclusion |β−c2| <
ε. �

By taking t = f ′(c) in the previous theorem one obtains a constructive weak
converse of the Mean Value Theorem, in which α and β are found such
that f ′(c) = ∆(β, α), possibly not satisfying α < c < β. For the stronger
conclusion we need two more lemmas.

Lemma 3.4. If f is differentiable on [a, b], then f ′ is strongly extensional,

i.e. if c, d ∈ [a, b] and f ′(c) # f ′(d), then c # d.

Proof. Observe that either c # d or, as we will assume, c and d are close

enough to each other to find x, such that ∆(c, x) # ∆(d, x), i.e. f(c)−f(x)
c−x

#
f(d)−f(x)

d−x
. So f(c) − f(x) # f(d) − f(x) or c − x # d − x. In the latter case

the proof is complete. In the former case we remake that f is continuous
and therefore c # d. �
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Lemma 3.5. [Darboux]Let f be differentiable on [a, b]. If f ′(d) < t < f ′(e)
and f ′ is densely apart from t, then there is c between d and e such that

f ′(c) = t.

Proof. Define g(x) := f(x) − tx. Then g ′(d) < 0 < g′(e) and g′ is densely
apart from 0. So g is locally nonconstant.

We assume d < e. Because g′(d) < 0 < g′(e), there is y between d and e,
such that g(y) < inf{g(d), g(e)}. So by the Intermediate Value Lemma (2.3)
there are z1 ∈ [d, y] and z2 ∈ [y, e] such that g(z1) = g(z2). By Rolle’s
Theorem (2.5) there exists c such that g ′(c) = 0, therefore f ′(c) = t. �

We now prove the promised constructive strong converse of the Mean Value
Theorem. The conditions in this theorem are classically equivalent to: f ′

does not have a local extremum in c and c is not an accumulation point of
Ac := {x ∈ (a, b) : f ′(x) = f ′(c)}. Tong and Braza [3] showed the statement
is not true without these conditions: it suffices to consider the continuous
function g : [−1/2, 1/2] → R satisfying g(x) := x3 sin(1/x) + x|x|/2 for
x # 0, and g(0) := 0.

Theorem 3.6. Let f be differentiable on [a, b] and δ > 0 such that for all x
in (c − δ, c + δ) apart from c: f ′(c) # f ′(x). If for all ε > 0 there exist c1

and c2 in (c − ε, c + ε), satisfying f ′(c1) < f ′(c) < f ′(c2), then there are α
and β in (a, b) such that α < c < β and ∆(α, β) = f ′(c).

Proof. Take c1 and c2 in (c − δ, c + δ) satisfying f ′(c1) < f ′(c) < f ′(c2).
Lemma 3.4 assures that c1 # c, say c1 < c. Suppose that c2 < c, then
the Lemma 3.5 provides y, satisfying c1 < y < c and f ′(y) = f ′(c), which
contradicts the assumptions. Hence c2 ≥ c, moreover because f ′(c2) # f ′(c)
it follows that c2 > c.
Theorem 3.3 provides α and β, such that α < β and ∆(α, β) = f ′(c). We
may decide α < c or c < β. We only consider the case α < c. By Lemma 3.1
we have ∆(α, x) < f ′(c) for x ∈ [α, c]. So α < c < β. �
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