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Goal

Relate algebraic quantum mechanics to topos theory to construct
new foundations for quantum logic and quantum spaces.
— A spectrum for non-commutative algebras —
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Classical physics

Standard presentation of classical physics:
A phase space Y.
E.g. ¥ C R" x R" (position, momentum)
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An observable is a function a: ¥ — R
(e.g. position or energy)
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Classical physics

Standard presentation of classical physics:
A phase space Y.

E.g. ¥ C R" x R" (position, momentum)
An observable is a function a: ¥ — R
(e.g. position or energy)

An observable a and an interval A C R together define

a proposition ‘a € A by the set a 1A.

Spatial logic: logical connectives A, V, = are interpreted by N, U,
complement
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Classical physics

Standard presentation of classical physics:
A phase space Y.

E.g. ¥ C R" x R" (position, momentum)
An observable is a function a: ¥ — R
(e.g. position or energy)

An observable a and an interval A C R together define

a proposition ‘a € A by the set a 1A.

Spatial logic: logical connectives A, V, = are interpreted by N, U,
complement

For a phase o in ¥,

o = a € A (in the phase o the proposition a € A holds) iff
a(o) e A
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Quantum

Heunen,Landsman,S generalization to the quantum setting by
1. Identifying a quantum phase ‘space’ ¥.

2. Defining ‘subsets’ of ¥ acting as propositions of quantum
mechanics.

3. Describing states in terms of X.

4. Associating a proposition a € A (C X) to an observable a and
an open subset A C R.

5. Finding a pairing map between states and ‘subsets’ of
(and hence between states and propositions of the type
ac ).
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Old-style quantum logic

von Neumann proposed:
1. A quantum phase space is a Hilbert space H.

2. Elementary propositions correspond to closed linear subspaces
of H.

3. Pure states are unit vectors in H.

4. The closed linear subspace [a € A] is the image E(A)H of the
spectral projection E(A) defined by a and A.

5. The pairing map takes values in [0, 1] and is given by the Born
rule:

(W, P) = (V, PV).
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Old-style quantum logic

von Neumann proposed:
1. A quantum phase space is a Hilbert space H.

2. Elementary propositions correspond to closed linear subspaces
of H.

3. Pure states are unit vectors in H.

4. The closed linear subspace [a € A] is the image E(A)H of the
spectral projection E(A) defined by a and A.

5. The pairing map takes values in [0, 1] and is given by the Born
rule:

(W, P) = (V, PV).

Von Neumann later abandoned this.
No implication, no deductive system.
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Bohrification

In classical physics we have a spatial logic.
Want the same for quantum physics. So we consider two

generalizations of topological spaces:
» C*-algebras (Connes’ non-commutative geometry)
» toposes and locales (Grothendieck)

We connect the two generalizations by:
1. Algebraic quantum theory

2. Constructive Gelfand duality
3. Bohr's doctrine of classical concepts
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Classical concepts

Bohr's "doctrine of classical concepts” states that we can only
look at the quantum world through classical glasses, measurement
merely providing a “classical snapshot of reality”. The combination
of all such snapshots should then provide a complete picture.
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HLS proposal
Let A be a C*-algebra.
The set of as ‘classical contexts’, ‘windows on the world':
C(A):={V C A| V commutative C*-algebra} ordered by
inclusion.
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HLS proposal
Let A be a C*-algebra.
The set of as ‘classical contexts’, ‘windows on the world':
C(A):={V C A| V commutative C*-algebra} ordered by
inclusion.
The associated topos is 7 (A) := Set¢(A)
1. The quantum phase space of the system described by A is the
locale X = X(A) in the topos T (A).
2. Propositions about A are the ‘opens’ in . The quantum logic
of A is given by the Heyting algebra underlying X(A).
Each projection defines such an open.
3. Observables a € Aq, define locale maps §(a) : £ — IR, where
IR is the so-called interval domain. States p on A yield
probability measures (valuations) p, on X.

S —1
4. The frame map O(IR) G (X) applied to an open interval
A C R yields the desired proposition.
5. State-proposition pairing is defined as y,(P) = 1.
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HLS proposal
Let A be a C*-algebra.
The set of as ‘classical contexts’, ‘windows on the world':
C(A):={V C A| V commutative C*-algebra} ordered by
inclusion.
The associated topos is 7 (A) := Set¢(A)
1. The quantum phase space of the system described by A is the
locale X = X(A) in the topos T (A).
2. Propositions about A are the ‘opens’ in . The quantum logic
of A is given by the Heyting algebra underlying X(A).
Each projection defines such an open.
3. Observables a € Aq, define locale maps §(a) : £ — IR, where
IR is the so-called interval domain. States p on A yield
probability measures (valuations) p, on X.

4. The frame map O(IR) 6ﬂ>1 (X) applied to an open interval
A C R yields the desired proposition.
5. State-proposition pairing is defined as y,(P) = 1.
Motivation: Doering-Isham use topos theory for quantum theory.
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Gelfand duality

There is a categorical equivalence (Gelfand duality):
. x
CommC* ____ 1~ CptHd
C(_7(C)

The structure space ¥(A) is called the Gelfand spectrum of A.
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C*-algebras

Now drop commutativity: a C*-algebra is a complex Banach
algebra with involution (—)* satisfying ||a* - a|| = ||a]|?.

Slogan: C*-algebras are non-commutative topological spaces.
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C*-algebras

Now drop commutativity: a C*-algebra is a complex Banach

algebra with involution (—)* satisfying ||a*

+all = lall*.

Slogan: C*-algebras are non-commutative topological spaces.

Prime example:

B(H) ={f : H— H | f bounded linear}, for H Hilbert space.

is a complex vector space:

is an associative algebra:
is a Banach algebra:

has an involution:
satisfies:

but not necessarily:

(f +8)(x) = f(x) + g(x),
(z-F)(x) =2z f(x)
f-g:=fog,

11} := sup{[IFC = lIx|l =1},
(,y) = (x, f'y)

1= £l = 1I£112,

f-g=g-f.

Slogan: C*-algebras are non-commutative topological spaces.
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Toposes

Let A be a C*-algebra. Put
C(A):={V C A| V commutative C*-algebra}.

It is a order under inclusion. Elements V can be viewed as
‘classical contexts’, ‘windows on the world’

The associated topos is the functor topos:
T(A) := Set’™

Sets varying over the classical contexts.
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Internal C*-algebra

Internal C*-algebras in Set® are functors of the form C — CStar.
‘Bundle of C*-algebras’'.

We define the Bohrification of A as the internal C*-algebra

A:C(A) — Set,
V — V.

in the topos 7(A) = Set®™, where
C(A) :={V C A| V commutative C*-algebra}.

The internal C*-algebra A is commutative!
This reflects our Bohrian perspective.
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in quantum
mechanics.
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in quantum
mechanics.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in quantum
mechanics.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.

Mathematically:

It is impossible to assign a value to every observable:

there is no v : Ag; — R such that v(a?) = v(a)?
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in quantum
mechanics.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.

Mathematically:

It is impossible to assign a value to every observable:

there is no v : Ag; — R such that v(a?) = v(a)?

Isham-Doring: a certain global section does not exist.

We can still have neo-realistic interpretation by considering also
non-global sections.

These global sections turn out to be global points of the internal
Gelfand spectrum of the Bohrification A.
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Pointfree Topology

We want to consider the phase space of the Bohrification.

Use internal constructive Gelfand duality.

The classical proof of Gelfand duality uses the axiom of choice
(only) to construct the points of the spectrum.

Solution: use topological spaces without points (locales)!
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Pointfree Topology

Choice is used to construct ideal points (e.g. max. ideals).
Avoiding points one can avoid choice and non-constructive
reasoning (Joyal, Mulvey, Coquand).

Slogan: using the axiom of choice is a choice!

(Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach, Gelfand,
Zariski, ...)

Point free approaches to topology:

» Pointfree topology (formal opens)

» Commutative C*-algebras (formal continuous functions)
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Pointfree Topology

Choice is used to construct ideal points (e.g. max. ideals).
Avoiding points one can avoid choice and non-constructive
reasoning (Joyal, Mulvey, Coquand).

Slogan: using the axiom of choice is a choice!

(Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach, Gelfand,
Zariski, ...)

Point free approaches to topology:

» Pointfree topology (formal opens)

» Commutative C*-algebras (formal continuous functions)

These formal objects model basic observations:

» Formal opens are used in computer science (domains) to
model observations.

» Formal continuous functions, self adjoint operators, are
observables in quantum theory.
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Phase object in a topos

Phase space = constructive Gelfand dual ¥ (spectrum) of the
Bohrification. (motivated by Doring-Isham).

Kochen-Specker = ¥ has no (global) point.

However, ¥ is a well-defined interesting compact regular locale.
Pointless topological space of hidden variables.
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States in a topos

An integral is a pos lin functional / on a commutative C*-algebra,

with /(1) = 1.
A state is a pos lin functional p on a C*-algebra,
with p(1) = 1.

In the foundations of QM one uses quasi-states (linear only on
commutative parts)
Theorem(Gleason): Quasi-states = states (dim H > 2)
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States in a topos

An integral is a pos lin functional / on a commutative C*-algebra,

with /(1) = 1.
A state is a pos lin functional p on a C*-algebra,
with p(1) = 1.

In the foundations of QM one uses quasi-states (linear only on
commutative parts)

Theorem(Gleason): Quasi-states = states (dim H > 2)
Theorem: There is a one-to-one correspondence between
(quasi)-states of A and integrals on C(X) in A.
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States in a topos

An integral is a pos lin functional / on a commutative C*-algebra,

with /(1) = 1.
A state is a pos lin functional p on a C*-algebra,
with p(1) = 1.

In the foundations of QM one uses quasi-states (linear only on
commutative parts)

Theorem(Gleason): Quasi-states = states (dim H > 2)
Theorem: There is a one-to-one correspondence between
(quasi)-states of A and integrals on C(X) in A.

Segal-Kunze developed integration theory using states, with
intended interpretation:

an expectation defined on an algebra of observables.

We will present a variation on this.
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Constructive integration

Integral on commutative C*-algebras of functions

(Daniell,Segal /Kunze)

An integral is a positive linear functional on a space of continuous
functions on a topological space

Prime example: Lebesgue integral [

Linear:[af + bg=a[f+b[g
Positive: If f(x) > 0 for all x, then [f >0
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Constructive integration

Integral on commutative C*-algebras of functions

(Daniell,Segal /Kunze)

An integral is a positive linear functional on a space of continuous
functions on a topological space

Prime example: Lebesgue integral [
Linear:[af + bg=a[f+b[g
Positive: If f(x) > 0 for all x, then [f >0

Other example: Dirac measure 6;(f) := f(t).
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Riesz representation theorem

Riesz representation: Integral = Regular measure = Valuation
A valuation is a map p : O(X) — R, which is lower
semicontinuous and satisfies the modular laws.

Theorem (Coquand/Spitters)
The locales of integrals and valuations are homeomorphic.

Proof The integrals form a compact regular locale, presented by a
geometric theory. Only (A, /).

Similarly for the theory of valuations.

By the classical RRT the models(=points) are in bijective
correspondence.

Hence by the completeness theorem for geometric logic

we obtain a bi-interpretation/a homeomorphism.
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Riesz representation theorem

Riesz representation: Integral = Regular measure = Valuation
A valuation is a map p : O(X) — R, which is lower
semicontinuous and satisfies the modular laws.

Theorem (Coquand/Spitters)
The locales of integrals and valuations are homeomorphic.

Proof The integrals form a compact regular locale, presented by a
geometric theory. Only (A, /).

Similarly for the theory of valuations.

By the classical RRT the models(=points) are in bijective
correspondence.

Hence by the completeness theorem for geometric logic

we obtain a bi-interpretation/a homeomorphism.

Once we have first-order formulation (no DC), we obtain a
transparent constructive proof by ‘cut-elimination’.

Giry monad in domain theory in logical form (cf Jung/Moshier)
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Valuations

This allows us to move internally from integrals to valuations.
Integrals are internal representations of states

Valuations are internal representations of measures on projections
(Both are standard QM)
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Valuations

This allows us to move internally from integrals to valuations.
Integrals are internal representations of states

Valuations are internal representations of measures on projections
(Both are standard QM)

Thus an open ‘§(a) € A’ can be assigned a probability. In general,
this probability is only partially defined, it is in the interval domain.
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Externalizing

There is an external locale X such that Sh(X) in T(A) is
equivalent to Sh(X) in Set.

HLS proposal for intuitionistic quantum logic.

When applied to the lattice of projections of a Hilbert space we
turn old style quantum logic into a Heyting algebra.
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Externalizing

There is an external locale X such that Sh(X) in T(A) is
equivalent to Sh(X) in Set.

HLS proposal for intuitionistic quantum logic.

When applied to the lattice of projections of a Hilbert space we
turn old style quantum logic into a Heyting algebra.

Problem: ¥(C(X)) is not X. Here we propose a refinement.
First, a concrete computation of a basis for the Heyting algebra.
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Externalization

Theorem (Moerdijk)

Let C be a site in S and D be a site in S[C], the topos of sheaves
over C. Then there is a site C x D such that

S[C[D] = S[C x D).
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Presentation using forcing conditions

C(A) :={C | C is a commutative C*-subalgebra of A}.
Let C :=C(A)°? and D = X the spectrum of the Bohrification.
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Presentation using forcing conditions

C(A) :={C | C is a commutative C*-subalgebra of A}.

Let C :=C(A)°? and D = X the spectrum of the Bohrification.

We compute C x D:
The objects (forcing conditions): (C, u),
where C € C(A) and u € X(C).
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Presentation using forcing conditions

C(A) :={C | C is a commutative C*-subalgebra of A}.

Let C :=C(A)°? and D = X the spectrum of the Bohrification.
We compute C x D:

The objects (forcing conditions): (C, u),

where C € C(A) and u € X(C).

Information order (D,v) < (C,u)as D D C and v C u.
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Presentation using forcing conditions

C(A) :={C | C is a commutative C*-subalgebra of A}.

Let C :=C(A)°? and D = X the spectrum of the Bohrification.
We compute C x D:

The objects (forcing conditions): (C, u),

where C € C(A) and u € X(C).

Information order (D,v) < (C,u)as D D C and v C u.
Covering relation (C, u) <(D;, v;): for all i, C C D; and

CIF u<aV, where V is the pre-sheaf generated by the conditions
D; - v; € V. This is a Grothendieck topology.

Theorem
The points of the locale generated by C x D are consistent ideals
of partial measurement outcomes.

Proof: the sites give a direct description of the geometric theory
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Presentation using forcing conditions

C(A) :={C | C is a commutative C*-subalgebra of A}.

Let C :=C(A)°? and D = X the spectrum of the Bohrification.
We compute C x D:

The objects (forcing conditions): (C, u),

where C € C(A) and u € X(C).

Information order (D,v) < (C,u)as D D C and v C u.
Covering relation (C, u) <(D;, v;): for all i, C C D; and

CIF u<aV, where V is the pre-sheaf generated by the conditions
D; - v; € V. This is a Grothendieck topology.

Theorem
The points of the locale generated by C x D are consistent ideals
of partial measurement outcomes.

Proof: the sites give a direct description of the geometric theory
For C(X), the points are points of the spectrum of a subalgebra.
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Measurements

In algebraic quantum theory, a measurement is a (maximal)
Boolean subalgebra of the set of projections of a von Neumann
algebra. The outcome of a measurement is the consistent
assignment of either 0 or 1 to each element (test, proposition) of
the Boolean algebra: an element of the Stone spectrum.
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Measurements

In algebraic quantum theory, a measurement is a (maximal)
Boolean subalgebra of the set of projections of a von Neumann
algebra. The outcome of a measurement is the consistent
assignment of either 0 or 1 to each element (test, proposition) of
the Boolean algebra: an element of the Stone spectrum.
C*-algebras need not have enough projections. One replaces the
Boolean algebra by a commutative C*-subalgebra and the Stone
spectrum by the Gelfand spectrum.

Definition

A measurement outcome is a point in the spectrum of a maximal
commutative subalgebra.

How to include maximality?
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Eventually

We are only interested in what happens eventually, for large
subalgebras: consider =—-topology.
Extra: allows classical logic internally (Boolean valued models).
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Eventually

We are only interested in what happens eventually, for large
subalgebras: consider =—-topology.

Extra: allows classical logic internally (Boolean valued models).
The dense topology on a poset P is defined as p<1 D if D is dense
below p: for all g < p, there exists a d € D such that d < q.

This topos of ——-sheaves satisfies the axiom of choice.
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Eventually

We are only interested in what happens eventually, for large
subalgebras: consider =—-topology.

Extra: allows classical logic internally (Boolean valued models).
The dense topology on a poset P is defined as p<1 D if D is dense
below p: for all g < p, there exists a d € D such that d < q.

This topos of ——-sheaves satisfies the axiom of choice.

The associated sheaf functor sends the presheaf topos P to the
sheaves Sh(P, ——).

The sheafification for V »— W:

~=V(p) = {x € W(p) | ¥q < p3r < qx € V(r)}.
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Eventually

The covering relation for (C(A), =—) x X is (C, u) <(Dj, v;) iff
C C Dj and C I+ u< V-, where V__ is the sheafification of the
presheaf V' generated by the conditions D; IF v; € V. Now,

V — L, where L is the spectral lattice of the presheaf A.

Vo(C) = {u€L(C)|VYD< CIE < D.uc V(E)}.
So, (C, U) Q(D,‘, V,') iff

Theorem

The locale MO generated by (C(A), =) X X classifies
measurement outcomes.
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Eventually

The covering relation for (C(A), =—) x X is (C, u) <(Dj, v;) iff
C C Dj and C I+ u< V-, where V__ is the sheafification of the
presheaf V' generated by the conditions D; IF v; € V. Now,

V — L, where L is the spectral lattice of the presheaf A.

Vo(C) = {u€L(C)|VYD< CIE < D.uc V(E)}.
So, (C, U) Q(D,‘, V,') iff

Theorem

The locale MO generated by (C(A), =) X X classifies
measurement outcomes.

MO(C(X)) = X!
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Theorem (Kochen-Specker)

Let H be a Hilbert space with dim H > 2 and let A= B(H). Then
the ——-sheaf > does not allow a global section.
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Conclusions

Bohr's doctrine suggests a functor topos making a C*-algebra
commutative

» Spatial quantum logic via topos logic

v

Phase space via internal Gelfand duality

v

Intuitionistic quantum logic

v

Spectrum for non-commutative algebras.

v

States (non-commutative integrals) become internal integrals.

Classical logic and maximal algebras
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