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Quantum theory

Point-free Topology

The axiom of choice is used to construct ideal points
(e.g. max. ideals).
Avoiding points one can avoid choice and non-constructive
reasoning (Joyal, Mulvey, Coquand).
Slogan: using the axiom of choice is a choice!
Examples: Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach,
Gelfand, Zariski, ...

Barr’s Theorem: If a geometric sentence is deducible from a
geometric theory in classical logic, with the axiom of choice, then
it is also deducible from it constructively.
Classifying topos can often be constructed explicitly.
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Quantum theory

Adjunction

Frame: complete lattice where ∧ distributes over
∨

.
Morphisms preserve ∧,

∨
.

Locales are the opposite category of frames

There is an adjunction between spaces and locales.
With choice this restrict to an equivalence on compact Hausdorff
spaces and compact regular locales.
A formula is positive when it uses only ∧,

∨
.

A geometric formula is an implication between to positive formulas.
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Geometric type theory

We want to avoid infinitary logic(
∨

), not absolute.
Generalise to predicate logic.
Instead, define some geometric types (Vickers):

I free algebras: N, list(A), FA, ...

I coproducts, coequalizers, e.g. quotients: Z,Q, ...

I free models of Cartesian theories (=partial Horn logic), e.g.
syntax of type theory, ...

I ...

Those constructions are preserved by geometric morphisms.
Importantly, not the power set!
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Dedekind reals

Reals as a geometric theory with the natural topology

I (∃q : Q)L(q)

I (∀q, q′ : Q)(q < q′ ∧ L(q′)→ L(q))

I (∀q : Q)(L(q)→ (∃q′ : Q)(q < q′ ∧ L(q′)))

I (∃r : Q)R(r)

I (∀r , r ′ : Q)(r ′ < r ∧ R(r ′)→ R(r))

I (∀r : Q)(R(r)→ (∃r ′ : Q)(r ′ < r ∧ R(r ′)))

I (∀q : Q)(L(q) ∧ R(q)→ ⊥)

I (∀q, r : Q)(q < r → L(q) ∨ R(r))
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Commutative C*-algebras

For X ∈ CptHd, consider C (X ,C).

It is a complex vector space: (f + g)(x) := f (x) + g(x),
(z · f )(x) := z · f (x).

It is a complex associative algebra: (f · g)(x) := f (x) · g(x).
It is a Banach algebra: ‖f ‖ := sup{|f (x)| : x ∈ X}.
It has an involution: f ∗(x) := f (x).

It is a C*-algebra: ‖f ∗ · f ‖ = ‖f ‖2.

It is a commutative C*-algebra: f · g = g · f .

In fact, X can be reconstructed from C (X ):
one can trade topological structure for algebraic structure.
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Gelfand duality

There is a categorical equivalence (Gelfand duality):

CommC∗
Σ //

CptHdop

C(−,C)
oo ⊥

The structure space Σ(A) is called the Gelfand spectrum of A.

To avoid choice want to define the spectrum geometrically.
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Riesz space
The self-adjoint (‘real’) part of a C*-algebra is a Riesz space.

Definition
A Riesz space (vector lattice) is a vector space with ‘compatible’
lattice operations ∨,∧.
E.g. f ∨ g + f ∧ g = f + g .

We assume that Riesz space R has a strong unit 1: ∀f ∃n.f ≤ n · 1.
Prime (‘only’) example:
vector space of real functions with pointwise ∨,∧.

A representation of a Riesz space is a Riesz homomorphism to R.
The representations of the Riesz space C (X ,R) are x̂(f ) := f (x).

Theorem (Classical Stone-Yosida)

Let R be a Riesz space. Let Max(R) be the space of
representations. The space Max(R) is compact Hausdorff and
there is a Riesz embedding ·̂ : R → C (Max(R)). The uniform
norm of â equals the norm of a.
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Formal space Max(R)

Geometric theory of representations
D(a) ‘=’ {φ ∈ Max(R) : â(φ) > 0}. a ∈ R, â(φ) = φ(a)

1. D(a) ∧ D(−a) = 0;
(D(a),D(−a) ` ⊥)

2. D(a) = 0 if a ≤ 0;

3. D(a + b) ≤ D(a) ∨ D(b);

4. D(1) = 1;

5. D(a ∨ b) = D(a) ∨ D(b)

6. D(a) =
∨

r>0 D(a− r).

Max(R) is compact completely regular (cpt Hausdorff)
Pointfree description of the space of representations Max(R)
‘Every Riesz space is a Riesz space of functions’
[Coquand, Coquand/Spitters (inspired by Banaschewski/Mulvey)]
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Retract

Every compact regular space X is retract of a coherent spaceY
f : Y � X , g : X � Y , st f ◦ g = id in Loc
f : X � Y , g : Y � X , st g ◦ f = id in Frm
Strategy: first define a finitary cover, then add the infintary part
and prove that it is a conservative extension. (Coquand, Mulvey)

Above: The interpretation D(a) :=
∨

r>0 D(a− r) defines a
embedding g : Y � X in Frm validating axiom 6
Finitary proof of Stone-Yosida and Gelfand duality.
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Quantum theory

Bohr toposes

Relate algebraic quantum mechanics to topos theory
to construct new kind of quantum spaces.

— A spectral invariant for non-commutative algebras —
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Quantum theory

Classical physics

Standard presentation of classical physics:
A phase space Σ.
E.g. Σ ⊂ Rn × Rn (position, momentum)

An observable is a function a : Σ→ R
(e.g. position or energy)

An observable a and an interval ∆ ⊆ R together define
a proposition ‘a ∈ ∆’ by the set a−1∆.

Classical (sets) or geometric (spaces) logic
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Quantum theory

Quantum

How to generalize to the quantum setting?

1. Identifying a quantum phase space Σ.

2. Defining subsets of Σ acting as propositions of quantum
mechanics.

3. Describing states in terms of Σ.
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Quantum theory

Old-style quantum logic

von Neumann proposed:

1. A quantum phase space is a Hilbert space H.

2. Elementary propositions correspond to closed linear subspaces
of H.

3. Pure states are unit vectors in H.

Von Neumann later abandoned this.
No implication, no deductive system.
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Bohrification

In classical physics we have a spatial logic.
Want the same for quantum physics. So we consider two
generalizations of topological spaces:

I C*-algebras (Connes’ non-commutative geometry)

I toposes and locales (Grothendieck)

We connect the two generalizations by:

1. Algebraic quantum theory

2. Constructive Gelfand duality

3. Bohr’s doctrine of classical concepts

[Heunen, Landsman, S]
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C*-algebras

A C*-algebra is a complex Banach algebra with involution (−)∗

satisfying ‖a∗ · a‖ = ‖a‖2.

Slogan: C*-algebras are non-commutative topological spaces.

Prime example:
B(H) = {f : H → H | f bounded linear}, for H Hilbert space.

is a complex vector space: (f + g)(x) := f (x) + g(x),
(z · f )(x) := z · f (x),

is an associative algebra: f · g := f ◦ g ,
is a Banach algebra: ‖f ‖ := sup{‖f (x)‖ : ‖x‖ = 1},
has an involution: 〈fx , y〉 = 〈x , f ∗y〉
satisfies: ‖f ∗ · f ‖ = ‖f ‖2,

but not necessarily: f · g = g · f .
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Quantum theory

Classical concepts

Bohr’s “doctrine of classical concepts” states that we can only
look at the quantum world through classical glasses, measurement
merely providing a “classical snapshot of reality”. The combination
of all such snapshots should then provide a complete picture.

Let A be a C*-algebra (quantum system)
The set of as ‘classical contexts’, ‘windows on the world’:

C(A) := {V ⊆ A | V commutative C*-algebra}

A is not entirely determined by C(A): C(A) = C(Aop)

Doering and Harding, Hamhalter
the Jordan structure can be retrieved.
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Internal C*-algebra

Internal reasoning: topological group = group object in Top.
Internal C*-algebras in SetC are functors of the form C→ CStar.
‘Bundle of C*-algebras’.

We define the Bohrification of A as the internal C*-algebra

A : C(A)→ Set,

V 7→ V .

in the topos T (A) = SetC(A), where
C(A) := {V ⊆ A | V commutative C*-algebra}.

The internal C*-algebra A is commutative!
This reflects our Bohrian perspective.
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Quantum theory

Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in QM.
More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.

Mathematically:
It is impossible to assign a value to every observable:
there is no v : Asa → R such that v(a2) = v(a)2

Isham-Döring: a certain global section does not exist.
We can still have neo-realistic interpretation by considering also
non-global sections.
In quantum gravity there can be no external observer.
In fact, algebraic quantum field theory provides a topos with an
internal C*-algebra.
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Isham-Döring: a certain global section does not exist.
We can still have neo-realistic interpretation by considering also
non-global sections.
In quantum gravity there can be no external observer.
In fact, algebraic quantum field theory provides a topos with an
internal C*-algebra.

Bas Spitters Bohrification: topos theory and quantum theory



Quantum theory

Phase object in a topos

Apply constructive Gelfand duality (Banachewski, Mulvey) to the
Bohrification to obtain the (internal) spectrum Σ.
This is our phase object. (motivated by Döring-Isham).

Kochen-Specker = Σ has no (global) point.
However, Σ is a well-defined interesting compact regular locale.
Pointless topological space of hidden variables.
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Externalizing

PSh(P) ≡ Sh(IdlP), Scott topology.
LocSh(X ) ≡ Loc/X
There is an external locale Σ→ Idl(C(A)) equivalent to Σ in T (A)
When applied to the lattice of projections of a Hilbert space we
turn old style quantum logic into a Heyting algebra.

Our definition of the spectrum is geometric.
Hence, Σ can be computed fiberwise: points (C , σ)
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Points

Is Σ spatial (have enough points)?
1. Yes, frame of a topological space
2. It is constructively locally compact!
2a. Σ is compact regular in Sh(Idl(C(A)))
2b. Idl(C(A)) is locally compact (Scott domain)
2c. Locally compact maps compose
2d. Locally compact locales are classically spatial

S/Vickers/Wolters
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Locally compact

LocSh(X ) ≡ Loc/X
Hyland TFAE:

I Y locally compact

I The exponential SY exists; S=Sierpiński locale

I Y is exponentiable

Theorem: If Y → X locally compact in Sh(X ), X locally compact.
Then Y is locally compact.
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Geometric logic

Constructive transformation of points from X to Y gives a
locale map from X to Y , even if X ,Y are not spatial.
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Quantum theory

Locally compact
Theorem: Y → X locally compact in Sh(X ), X locally compact.
Then Y is locally compact.
Proof: Need to construct SY (opens of Y ).

Locales by geometric theories
Continuous map: constructive transformations of points
Continuous map as a bundle
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Locally perfect

Perfect maps correspond to internal compact locales
Locally perfect maps correspond to internal locally compact locales
New theorem in topology:
Locally perfect maps compose (needs some separation).
Corollary:
the external spectrum is locally compact and hence spatial
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Conclusions

Application of constructive algebra to QM via topos theory.
Bohr’s doctrine suggests a topos making a C*-algebra
commutative

I Spatial quantum logic via topos logic

I Phase space via internal Gelfand duality

I Spectral invariant for non-commutative algebras.

I States (non-commutative integrals) become internal integrals.

I Recent connections to MBQC

Geometric mathematics makes computations manageable.
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States in a topos

An integral is a pos lin functional I on a commutative C*-algebra,
with I (1) = 1.
A state is a pos lin functional ρ on a C*-algebra,
with ρ(1) = 1.

Mackey: In QM only quasi-states can be motivated (linear only on
commutative parts)
Theorem(Gleason): Quasi-states = states (dim H > 2)

Theorem: There is a one-to-one correspondence between
(quasi)-states on A and integrals on C (Σ) in A.
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Quantum theory

States in a topos

Integral on commutative C*-algebras C (X ) (Daniell,Segal/Kunze)
An integral is a positive linear functional on a space of continuous
functions on a topological space

Prime example: Lebesgue integral
∫

Linear:
∫

af + bg = a
∫

f + b
∫

g
Positive: If f (x) ≥ 0 for all x , then

∫
f ≥ 0

Other example: Dirac measure δt(f ) := f (t).
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Quantum theory

Riesz representation theorem

Riesz representation: Integral = Regular measure = Valuation
A valuation is a map µ : O(X )→ R, which is lower
semicontinuous and satisfies the modular laws.

Theorem (Coquand/Spitters)

The locales of integrals and of valuations are homeomorphic.

Proof The integrals form a compact regular locale, presented by a
geometric theory. Similarly for the theory of valuations.
By the classical RRT the models(=points) are in bijective
correspondence.
Hence by the completeness theorem for geometric logic
we obtain a bi-interpretation/a homeomorphism.

Once we have first-order formulation (no DC), we obtain a
transparent constructive proof by ‘cut-elimination’.
Non-commutative state on a C*-algebra become internal integrals
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