Bohrification: topos theory and quantum theory
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_ Qurumter B
Point-free Topology

The axiom of choice is used to construct ideal points

(e.g. max. ideals).

Avoiding points one can avoid choice and non-constructive
reasoning (Joyal, Mulvey, Coquand).

Slogan: using the axiom of choice is a choicel!

Examples: Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach,
Gelfand, Zariski, ...
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_ Qurumter B
Point-free Topology

The axiom of choice is used to construct ideal points

(e.g. max. ideals).

Avoiding points one can avoid choice and non-constructive
reasoning (Joyal, Mulvey, Coquand).

Slogan: using the axiom of choice is a choicel!

Examples: Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach,
Gelfand, Zariski, ...

Barr's Theorem: If a geometric sentence is deducible from a
geometric theory in classical logic, with the axiom of choice, then
it is also deducible from it constructively.

Classifying topos can often be constructed explicitly.
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Adjunction

Frame: complete lattice where A distributes over \/.
Morphisms preserve A, \/.
Locales are the opposite category of frames

There is an adjunction between spaces and locales.

With choice this restrict to an equivalence on compact Hausdorff
spaces and compact regular locales.

A formula is positive when it uses only A,\/.

A geometric formula is an implication between to positive formulas.
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Geometric type theory

We want to avoid infinitary logic(\/), not absolute.
Generalise to predicate logic.
Instead, define some geometric types (Vickers):

free algebras: N, list(A), FA, ...

coproducts, coequalizers, e.g. quotients: Z,Q, ...

v

v

v

free models of Cartesian theories (=partial Horn logic), e.g.
syntax of type theory, ...

Importantly, not the power set!
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 Quanumteoy SRR
Dedekind reals

Reals as a geometric theory with the natural topology
> (39: Q)L(q)

> (Vg,q" : Q)(q < q' AL(q') — L(q))
(Vq Q)(L(q) = (3¢': Q)(q < d' A L(q')))
( R(r)
> (Vr,r Q)(r <r/\R( "y = R(r))
( (R(r) = 3 Q)(r' < r AR(r)))
(Vq Q)(L(q) AR(q) — 1)
( (
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Commutative C*-algebras

For X € CptHd, consider C(X,C).
It is a complex vector space: (f + g)(x) := f(x) + g(x),

(z-F)(x) 1= 2 F(x).

(F - £)() == F(x) - g(x)

It is a complex associative algebra:

It is a Banach algebra: If]] :=sup{|f(x)] : x € X}.
It has an involution: *(x) = f(x).

It is a C*-algebra: |- fl| = [|f]%

It is a commutative C*-algebra: f-g=g-f.

In fact, X can be reconstructed from C(X):
one can trade topological structure for algebraic structure.
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_ Qurumter B
Gelfand duality

There is a categorical equivalence (Gelfand duality):
pu
CommC* 1L CptHd°?
C(_7(C)

The structure space X(A) is called the Gelfand spectrum of A.
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_ Qurumter B
Gelfand duality

There is a categorical equivalence (Gelfand duality):

3
CommC* 1L CptHd°?
C(_7(C)
The structure space X(A) is called the Gelfand spectrum of A.

To avoid choice want to define the spectrum geometrically.
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Riesz space
The self-adjoint (‘real") part of a C*-algebra is a Riesz space.
Definition
A Riesz space (vector lattice) is a vector space with ‘compatible’
lattice operations V, A.
Eg. fvg+fArg=Ff+g.
We assume that Riesz space R has a strong unit 1: Vfdn.f < n-1.
Prime (‘only’) example:
vector space of real functions with pointwise V, A.

Bas Spitters Bohrification: topos theory and quantum theory



Riesz space
The self-adjoint (‘real") part of a C*-algebra is a Riesz space.
Definition
A Riesz space (vector lattice) is a vector space with ‘compatible’
lattice operations V, A.
Eg. fvg+fArg=Ff+g.
We assume that Riesz space R has a strong unit 1: Vfdn.f < n-1.
Prime (‘only’) example:
vector space of real functions with pointwise V, A.
A representation of a Riesz space is a Riesz homomorphism to R.
The representations of the Riesz space C(X,R) are X(f) := f(x).

Theorem (Classical Stone-Yosida)

Let R be a Riesz space. Let Max(R) be the space of
representations. The space Max(R) is compact Hausdorff and
there is a Riesz embedding * : R — C(Max(R)). The uniform
norm of a equals the norm of a.
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Qv theoy
Formal space Max(R)

Geometric theory of representations

D(a) ‘=" {¢ € Max(R) : 3(¢) > 0}. a€ R, 3(¢) = ¢(a)
1. D(a) A D(—a) =0;

(D(a), D(=a) - 1)

D(a) =0if a <0;

D(a+ b) < D(a) v D(b);

D(1) =

D(aV ) D(a) v D(b)
6. D(a) =\ ,-oD(a—r).

Max(R) is compact completely regular (cpt Hausdorff)

Pointfree description of the space of representations Max(R)

‘Every Riesz space is a Riesz space of functions’
[Coquand, Coquand/Spitters (inspired by Banaschewski/Mulvey)]

AN
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Qv theoy
Formal space Max(R)

Geometric theory of representations

D(a) ‘=" {¢ € Max(R) : 3(¢) > 0}. a€ R, 3(¢) = ¢(a)
1. D(a) A D(—a) =0;

(D(a), D(=a) - 1)

D(a) =0if a <0;

D(a+ b) < D(a) v D(b);

D(1) =

D(aV ) D(a) v D(b)
6. D(a) =\ ,-oD(a—r).

Max(R) is compact completely regular (cpt Hausdorff)

Pointfree description of the space of representations Max(R)

‘Every Riesz space is a Riesz space of functions’
[Coquand, Coquand/Spitters (inspired by Banaschewski/Mulvey)]

AN
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Retract

Every compact regular space X is retract of a coherent spaceY
f:Y>X,g:X—Y,stfog=idin Loc

fX>Y, g:¥Y—X,stgof=idin Frm

Strategy: first define a finitary cover, then add the infintary part
and prove that it is a conservative extension. (Coquand, Mulvey)
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Retract

Every compact regular space X is retract of a coherent spaceY
f:Y>X,g:X—Y,stfog=idin Loc

fX>Y, g:¥Y—X,stgof=idin Frm

Strategy: first define a finitary cover, then add the infintary part
and prove that it is a conservative extension. (Coquand, Mulvey)

Above: The interpretation D(a) :=\/,. o D(a — r) defines a
embedding g : Y — X in Frm validating axiom 6
Finitary proof of Stone-Yosida and Gelfand duality.
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Quantum theory

Bohr toposes

Relate algebraic quantum mechanics to topos theory
to construct new kind of quantum spaces.
— A spectral invariant for non-commutative algebras —
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Quantum theory

Classical physics

Standard presentation of classical physics:
A phase space ¥.
E.g. ¥ C R"” x R" (position, momentum)

Bas Spitters Bohrification: topos theory and quantum theory



Quantum theory

Classical physics

Standard presentation of classical physics:
A phase space ¥.

E.g. ¥ C R"” x R" (position, momentum)
An observable is a function a: ¥ — R
(e.g. position or energy)
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Quantum theory

Classical physics

Standard presentation of classical physics:
A phase space ¥.

E.g. ¥ C R"” x R" (position, momentum)
An observable is a function a: ¥ — R
(e.g. position or energy)

An observable a and an interval A C R together define
a proposition ‘a € /' by the set a 1A.

Classical (sets) or geometric (spaces) logic
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Quantum theory

Quantum

How to generalize to the quantum setting?
1. Identifying a quantum phase space ¥.

2. Defining subsets of ¥ acting as propositions of quantum
mechanics.

3. states

Bas Spitters Bohrification: topos theory and quantum theory



Old-style quantum logic

von Neumann proposed:
1. A quantum phase space is a Hilbert space H.

2. Elementary propositions correspond to closed linear subspaces
of H.
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Old-style quantum logic

von Neumann proposed:
1. A quantum phase space is a Hilbert space H.

2. Elementary propositions correspond to closed linear subspaces
of H.

3.

Von Neumann later abandoned this.
No implication, no deductive system.

Bas Spitters Bohrification: topos theory and quantum theory



Quantum theory

Bohrification

In classical physics we have a spatial logic.
Want the same for quantum physics. So we consider two
generalizations of topological spaces:

» C*-algebras (Connes’ non-commutative geometry)
» toposes and locales (Grothendieck)

We connect the two generalizations by:
1. Algebraic quantum theory

2. Constructive Gelfand duality
3. Bohr's doctrine of classical concepts

[Heunen, Landsman, S]

Bohrification: topos theory and quantum theory
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Quantum theory

C*-algebras

A C*-algebra is a complex Banach algebra with involution (—)*

satisfying ||a* - a|| = ||a||%.

Slogan: C*-algebras are non-commutative topological spaces.

Bohrification: topos theory and quantum theory
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C*-algebras

A C*-algebra is a complex Banach algebra with involution (—)*
satisfying ||a* - a|| = ||a||%.

Slogan: C*-algebras are non-commutative topological spaces.

Prime example:
B(H) ={f : H— H | f bounded linear}, for H Hilbert space.

is a complex vector space:  (f + g)(x) := f(x) + g(x),

is an associative algebra: f-g:=fog,

is a Banach algebra: |fl :=sup{||f(x)|| : |Ix]| =1},
has an involution: (tx,y) = (x,*y)

satisfies: £ - f]| = ||

but not necessarily: f-g=g-f.
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Quantum theory

Classical concepts

Bohr's “doctrine of classical concepts” states that we can only
look at the quantum world through classical glasses, measurement
merely providing a “classical snapshot of reality”. The combination
of all such snapshots should then provide a complete picture.
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Quantum theory

Classical concepts

Bohr's “doctrine of classical concepts” states that we can only
look at the quantum world through classical glasses, measurement
merely providing a “classical snapshot of reality”. The combination
of all such snapshots should then provide a complete picture.

Let A be a C*-algebra (quantum system)
The set of as ‘classical contexts’, ‘windows on the world’:

C(A):={V C A| V commutative C*-algebra}
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Quantum theory

Classical concepts

Bohr's “doctrine of classical concepts” states that we can only
look at the quantum world through classical glasses, measurement
merely providing a ‘“classical snapshot of reality”. The combination
of all such snapshots should then provide a complete picture.

Let A be a C*-algebra (quantum system)
The set of as ‘classical contexts’, ‘windows on the world’:

C(A):={V C A| V commutative C*-algebra}
A is not entirely determined by C(A): C(A) = C(A°P)

Doering and Harding, Hamhalter
the Jordan structure can be retrieved.
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Quantum theory

Internal C*-algebra

Internal reasoning: topological group = group object in Top.
Internal C*-algebras in Set® are functors of the form C — CStar.
‘Bundle of C*-algebras’.

We define the Bohrification of A as the internal C*-algebra

A:C(A) — Set,
V- V.

in the topos 7(A) = Set®™, where
C(A):={V C A| V commutative C*-algebra}.

The internal C*-algebra A is commutative!
This reflects our Bohrian perspective.
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in QM.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in QM.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.

Mathematically:

It is impossible to assign a value to every observable:

there is no v : Ag; — R such that v(a?) = v(a)?
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in QM.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.

Mathematically:

It is impossible to assign a value to every observable:

there is no v : Ag; — R such that v(a?) = v(a)?

Isham-Doring: a certain global section does not exist.
We can still have neo-realistic interpretation by considering also
non-global sections.
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in QM.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.

Mathematically:

It is impossible to assign a value to every observable:

there is no v : Ag; — R such that v(a?) = v(a)?

Isham-Doring: a certain global section does not exist.

We can still have neo-realistic interpretation by considering also
non-global sections.

In quantum gravity there can be no external observer.

In fact, algebraic quantum field theory provides a topos with an
internal C*-algebra.
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Quantum theory

Phase object in a topos

Apply constructive Gelfand duality (Banachewski, Mulvey) to the
Bohrification to obtain the (internal) spectrum X.
This is our phase object. (motivated by Déring-Isham).

Kochen-Specker = ¥ has no (global) point.
However, ¥ is a well-defined interesting compact regular locale.
Pointless topological space of hidden variables.
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Quantum theory

Externalizing

PSh(P) = Sh(IdlP), Scott topology.

Locsp(x) = Loc)x

There is an external locale ¥ — IdI(C(A)) equivalent to X in T (A)
When applied to the lattice of projections of a Hilbert space we
turn old style quantum logic into a Heyting algebra.
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Quantum theory

Externalizing

PSh(P) = Sh(IdlP), Scott topology.

Locsp(x) = Loc)x

There is an external locale ¥ — IdI(C(A)) equivalent to X in T (A)
When applied to the lattice of projections of a Hilbert space we
turn old style quantum logic into a Heyting algebra.

Our definition of the spectrum is geometric.

Hence, ¥ can be computed fiberwise: points (C, o)
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Quantum theory

Points

Is X spatial (have enough points)?

2. It is constructively locally compact!

2a. X is compact regular in Sh(Idl(C(A)))

2b. Id1(C(A)) is locally compact (Scott domain)
2c. Locally compact maps compose

S/Vickers/Wolters
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Quantum theory

Locally compact

Locsp(xy = Loc)x

Hyland TFAE:
» Y locally compact
» The exponential SY exists; S=Sierpiriski locale
> Y is exponentiable

Theorem: If Y — X locally compact in Sh(X), X locally compact.
Then Y is locally compact.
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Quantum theory

Geometric logic

Constructive transformation of points from X to Y gives a
locale map from X to Y, even if X, Y are not spatial.
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Quantum theory

Locally compact
Theorem: Y — X locally compact in Sh(X), X locally compact.
Then Y is locally compact.
Proof: Need to construct SY (opens of Y).

p {2}

S y

Locales by geometric theories
Continuous map: constructive transformations of points
Continuous map as a bundle
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Quantum theory

Locally perfect

Perfect maps correspond to internal compact locales

Locally perfect maps correspond to internal locally compact locales
New theorem in topology:

Locally perfect maps compose (needs some separation).

Corollary:

the external spectrum is locally compact and hence spatial
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Quantum theory

Conclusions

Application of constructive algebra to QM via topos theory.
Bohr's doctrine suggests a topos making a C*-algebra
commutative

» Spatial quantum logic via topos logic

v

Phase space via internal Gelfand duality

v

Spectral invariant for non-commutative algebras.

v

States (non-commutative integrals) become internal integrals.
» Recent connections to MBQC

Geometric mathematics makes computations manageable.
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Quantum theory

States in a topos

An integral is a pos lin functional / on a commutative C*-algebra,

with /(1) = 1.
A state is a pos lin functional p on a C*-algebra,
with p(1) = 1.

Mackey: In QM only quasi-states can be motivated (linear only on
commutative parts)
Theorem(Gleason): Quasi-states = states (dim H > 2)
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Quantum theory

States in a topos

An integral is a pos lin functional / on a commutative C*-algebra,

with /(1) = 1.
A state is a pos lin functional p on a C*-algebra,
with p(1) = 1.

Mackey: In QM only quasi-states can be motivated (linear only on
commutative parts)

Theorem(Gleason): Quasi-states = states (dim H > 2)

Theorem: There is a one-to-one correspondence between
(quasi)-states on A and integrals on C(X) in A.
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Quantum theory

States in a topos

Integral on commutative C*-algebras C(X) (Daniell,Segal /Kunze)
An integral is a positive linear functional on a space of continuous
functions on a topological space

Prime example: Lebesgue integral [
Linear:[af + bg=a[f+b[g
Positive: If f(x) > 0 for all x, then [f >0
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Quantum theory

States in a topos

Integral on commutative C*-algebras C(X) (Daniell,Segal /Kunze)
An integral is a positive linear functional on a space of continuous
functions on a topological space

Prime example: Lebesgue integral [
Linear:[af + bg=a[f+b[g
Positive: If f(x) > 0 for all x, then [f >0

Other example: Dirac measure 6;(f) := f(t).
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Quantum theory

Riesz representation theorem

Riesz representation: Integral = Regular measure = Valuation
A valuation is a map p : O(X) — R, which is lower
semicontinuous and satisfies the modular laws.

Theorem (Coquand/Spitters)
The locales of integrals and of valuations are homeomorphic.

Proof The integrals form a compact regular locale, presented by a
geometric theory. Similarly for the theory of valuations.

By the classical RRT the models(=points) are in bijective
correspondence.

Hence by the completeness theorem for geometric logic

we obtain a bi-interpretation/a homeomorphism.
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Quantum theory

Riesz representation theorem

Riesz representation: Integral = Regular measure = Valuation
A valuation is a map p : O(X) — R, which is lower
semicontinuous and satisfies the modular laws.

Theorem (Coquand/Spitters)
The locales of integrals and of valuations are homeomorphic.

Proof The integrals form a compact regular locale, presented by a
geometric theory. Similarly for the theory of valuations.

By the classical RRT the models(=points) are in bijective
correspondence.

Hence by the completeness theorem for geometric logic

we obtain a bi-interpretation/a homeomorphism.

Once we have first-order formulation (no DC), we obtain a
transparent constructive proof by ‘cut-elimination’.
Non-commutative state on a C*-algebra become internal integrals
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