Verifiably Truthful Mechanisms

Simina Brânzei
Aarhus University, Denmark

Joint with Ariel Procaccia (Carnegie Mellon University)
Mechanism $M(\theta_1, \ldots, \theta_n)$
Mechanism M is **strategyproof** if $u_i(M(\theta_i, \theta_{-i})) \geq u_i(M(\theta'_i, \theta_{-i}))$, for each agent i and profile θ'_i.

When do agents follow the protocol?
- If strategyproof, etc
Optimal mechanisms can get really hairy in richer settings (with and without money)

To be or not to be truthful?

When is a mechanism “simple” enough to be implemented in “reality”?
Goal: Design truthful mechanisms for which truthfulness can be verified efficiently.
Three Step Approach

I. Specifying the structure of mechanisms

II. Constructing a verification algorithm

III. Measuring the quality of the mechanisms
Case Study

Facility Location Problem: Mayor plans to open a new library

Inquire inhabitants about preferred locations
Facility Location

Decide location based on the reports
Facility Location

Agents $N = \{1, \ldots, n\}$; outcome space: real line

Input of agent i: bliss point x_i

Output: Location of the facility
Objective Functions

Social cost = sum of distances to the facility
Objective Functions

Maximum cost = max distance of any agent from the facility
Deterministic Mechanisms: Structure

Mechanisms: decision trees of bounded size

Internal nodes: input comparisons

Locations in the leaves
(= convex combinations of inputs)
Dictatorship
Average

\[
\frac{x_1 + x_2 + \ldots + x_n}{n}
\]
Decision Trees

Dictatorship

\[x_1 \]

Average

\[\frac{x_1 + x_2 + \ldots + x_n}{n} \]

Median

\[x_1 \geq x_2 \]

\[x_2 \geq x_3 \]

\[x_1 \geq x_3 \]

\[x_2 \]

\[x_3 \]

\[x_1 \]

\[x_3 \]

\[x_1 \]
Deterministic Mechanisms: Verifier

Input: tree mechanism T

Output: decide if T is truthful

For all $i \in \{1, \ldots, n\}$:

For every two leaves L, L':

// Find deviation of i from L to L'

Solve LP in x_1, \ldots, x_n, x'_i

If solution exists Then:

Return **False**

Return **True**

Verifier runtime: polynomial in n and $|T|$
Deterministic Mechanisms: Bounds for Social Cost

Theorem: Deterministic decision trees of polynomial size approximate the social cost within a factor of $\Theta(n/\log(n))$

- Pick the median of the first $\log(n)$ agents
Deterministic Mechanisms: Bounds for Max Cost

Theorem: Deterministic decision trees of polynomial size approximate the max cost within a factor of 2.

- Pick any dictator
- The average is optimal but not truthful
Randomized Mechanisms: Structure

Tree T_i : parameterized by some set of agents Z_i selected according to a distribution D_i
Input: Randomized mechanism \(M \)
Output: decide if \(M \) is universally truthful

For each tree \(T_i \):

Run deterministic verifier for some binding of the agents in \(T_i \)

Verifier runtime: polynomial in \(n \) and \(\sum_{i=1,k} |T_i| \)
Randomized Mechanisms: Bounds for Social Cost

Randomized Mechanism:

Select K agents from $N = \{1, \ldots, n\}$ at random without replacement
- Output the median of the sampled set

$K = n$: Median mechanism

...

$K = 1$: Random dictatorship
Randomized Mechanisms: Bounds for Social Cost

Theorem: For every n and $0 < \varepsilon < 1/10$, there exists a universally truthful randomized decision tree of polynomial size in n that approximates the social cost to a factor of $1 + \varepsilon$.

- Sample a subset S of $O(\ln(n/\varepsilon) / \varepsilon^2)$ agents and output the median of S
Randomized Mechanisms: Bounds for Max Cost

Theorem: For each $\epsilon > 0$, there exists no universally truthful mechanism that approximates the max cost within a factor of $2 - \epsilon$.

- Strict separation from truthfulness in expectation (where the optimal ratio is 3/2)
Discussion

Truthfulness in expectation

Many settings of interest

- Other measures for capturing properties of economic systems?
- Can the mechanisms be learned?