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The cake cutting problem models the fair allocation of a heterogeneous divisible resource 
among multiple players. The central fairness criterion is envy-freeness and a major open 
question in this domain is the design of a bounded protocol that can compute an envy-
free allocation of the cake for any number of players. The only existing finite envy-free 
cake cutting protocol for any number of players, designed by Brams and Taylor [4], has 
the property that its runtime can be made arbitrarily large by setting up the valuation 
functions of the players appropriately. Moreover, there is no closed formula that relates 
the valuation functions to the number of queries required by the protocol.
In this note we show that when the valuations can be represented as polynomial functions, 
there exists a protocol in the standard query model that is much simpler conceptually and 
has a runtime bound depending on the maximum degree over all polynomials.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Cake cutting is a fundamental model in fair division; 
it represents the problem of allocating a heterogeneous 
divisible resource – such as land, time, clean water, min-
eral deposits, and computer memory – among players with 
different preferences. The cake cutting problem has been 
studied by Banach, Knaster, and Steinhaus [17] since World 
War II; since then, a growing body of literature in mathe-
matics, political science, economics, and computer science 
has been devoted to its study, including two books by 
Brams and Taylor [5], Robertson and Webb [16], and a line 
of recent papers [14,8,9,3,2,13,1,12,7,6].

The classical cake cutting literature includes two com-
plementary research directions, namely (i) establishing 
the existence of allocations with desirable properties 
and (ii) designing protocols to compute such allocations 
(see [15]). All the known discrete cake cutting protocols 
model the interaction between the center and the play-
ers using a standard query model, which was formalized 
by Robertson and Webb [16] and used in a line of work 
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studying the complexity of cake cutting (Edmonds and 
Pruhs [10,11], Woeginger and Sgall [19], Procaccia [14], 
Kurokawa, Lai, and Procaccia [12]).

Arguably the most prominent criterion of fairness in 
cake cutting is envy-freeness and an outstanding open 
question in this domain is the design of a bounded, gen-
eral protocol that can compute an envy-free allocation of 
the cake for any number of players. The problem of find-
ing an envy-free protocol for any number of players in 
the Robertson–Webb model was open for almost half a 
century, until Brams and Taylor [4] announced a solution. 
However, the runtime of the Brams–Taylor protocol is un-
bounded: the number of queries required can be made 
arbitrarily large by setting up the valuation functions of 
the players appropriately. Moreover, there is no closed for-
mula that relates the valuation functions to the number of 
steps required by the protocol.

In a recent paper, Kurokawa, Lai, and Procaccia [12]
designed an envy-free cake cutting protocol in the Rob-
ertson–Webb model for a succinct type of valuations, 
namely continuous piecewise-linear functions. Their pro-
tocol is guaranteed to produce an envy-free allocation 
within O (n6k ln k) queries on any given instance, where 
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n is the number of players and k is the number of break 
points in the valuations (break points are discontinuities 
in the derivatives of the valuation functions). Kurokawa, 
Lai, and Procaccia [12] also showed that if a protocol can 
compute envy-free allocations for the class of piecewise 
uniform valuations (i.e. for which the value density func-
tion of any given player can take only one of two values, 
namely zero or some constant), then it can also solve the 
envy-free cake cutting problem for general valuations. The 
result of Kurokawa, Lai, and Procaccia suggests that the 
main difficulty is detecting the break points in the value 
density function (and possibly its derivative). Polynomial 
valuations are interesting from the point of view of envy-
free cake cutting because no such discontinuities exist, yet 
no bounded protocol is known for this class. In this note, 
we show that polynomial valuations admit a conceptually 
intuitive protocol for which the query complexity depends 
on the maximum degree of the polynomials.

2. Background

Let N = {1, . . . , n} be a set of players. The cake is mod-
eled as the interval [0, 1]. A piece of cake X is a finite set 
of disjoint intervals of [0, 1].

Each player is endowed with an integrable, non-nega-
tive value density function vi(x) that induces a value for 
each possible piece of cake. Formally, the value of player i
for a piece X is given by:

V i(X) =
∑
I⊂X

∫
I

vi(x)dx.

By definition, the valuations of the players are additive, i.e. 
V i(X ∪ Y ) = V i(X) + V i(Y ) if X and Y are disjoint; and 
non-atomic, i.e. V i([x, x]) = 0, for all x ∈ [0, 1]. We assume 
that each player has a value of one for the entire cake: 
V i([0, 1]) = 1 for all i ∈ N . This assumption is without loss 
of generality for the purposes of this paper.

An allocation A = (A1, . . . , An) is a partition of the 
cake among the players, that is, each player i receives the 
piece Ai , the pieces are disjoint, and 

⋃
i∈N Ai = [0, 1].

The central criteria for determining the fairness of an 
allocation are proportionality and envy-freeness. An alloca-
tion A is proportional if V i(Ai) ≥ 1

n , for all i ∈ N , and it is 
envy-free if V i(Ai) ≥ V i(A j), for all i, j ∈ N . Envy-freeness 
is a strong fairness notion which implies proportionality 
when the entire cake is allocated.

The standard query model in cake cutting – which cap-
tures all the classical discrete cake cutting protocols – was 
proposed by Robertson and Webb [16]; it models the in-
teraction between the protocol and the players using two 
types of queries:

1. Evaluatei(x, y):
Player i is asked to output α such that V i([x, y]) = α.

2. Cuti(x, α):
Player i is asked to output y such that V i([x, y]) = α.

The number of steps of a discrete cake cutting protocol 
is measured by the number of Cut and Evaluate queries 
made during its execution. The protocol has unlimited 
computational power, and once it has retrieved enough in-
formation about the valuations of the players in the given 
query model, it can simply output an envy-free allocation 
of the cake that is consistent with the answers of the play-
ers.

3. Protocol for polynomial value density functions

In this section we describe the envy-free protocol for 
polynomial valuations. First note that if the value density 
functions can be expressed as polynomials, then for each 
player i ∈ N , we have: vi(x) = ∑di

j=0 ai, j · x j , where di ∈ N

and ai, j ∈ R, for all j ∈ {0, . . . , di}. Recall that value densi-
ties are always non-negative and normalized to give equal 
weight to all the players. Thus vi(x) ≥ 0, for all x ∈ [0, 1]
and 

∫ 1
0 vi(x)dx = 1.

For each player i, let Pi(x) = V i([0, x]), for all x ∈ [0, 1]. 
Then by the definition of the value densities, we have:

Pi(x) =
x∫

0

vi(y)dy

=
x∫

0

( di∑
j=0

ai, j y j

)
dy =

di∑
j=0

ai, j

x∫
0

y jdy

=
di∑

j=0

(
ai, j

j + 1

)
x j+1

Then Pi is a polynomial of degree di + 1 over [0, 1]
with the following properties: Pi(0) = 0, Pi(1) = 1, and 
(Pi(x))′ = vi(x). It is a standard calculus fact that each 
polynomial Pi can be completely recovered given di + 2
pairs of distinct points with their values: 〈x1, Pi(x1)〉, . . . ,
〈xdi+1, Pi(xdi+1)〉, where x j ∈ [0, 1] for all j ∈ {1, . . . ,
di + 2}.

By definition of Pi , each tuple 〈x j, Pi(x j)〉 has the prop-
erty that V i([0, x j]) = Pi(x j). If the center knows the max-
imum degree, d, it can address each player i ∈ N the 
queries Evaluatei(0, x j) and use the answers to determine 
the unique interpolating polynomial Pi ; this completely re-
covers the player’s value density function, vi . An envy-free 
allocation with n − 1 cuts is guaranteed to exist for any 
cake cutting instance (see [18]), and so once the valuations 
are recovered, the center can simply output such a con-
tiguous envy free allocation. Finally, the center can deter-
mine the maximum degree by iteratively trying increasing 
integer values of d, starting from d = 0. The pseudocode is 
given in Algorithm 1.

Theorem 1. There exists a protocol in the Robertson–Webb 
communication model such that on every n-player cake cutting 
instance with value density functions given by polynomials, the 
protocol is guaranteed to terminate with an envy-free allocation 
using O (d · n2) queries, where d is the maximum degree of any 
polynomial in the representation.

Proof. Algorithm 1 starts by assuming that the players 
have valuations given by polynomials of degree zero (i.e. 
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Algorithm 1: Envy-Free Cake Cutting with Polynomial 
Valuations.
1 input: Set of players N = {1, . . . , n}
2 output: Envy-free allocation A = (A1, . . . , An)

3 d ← 0 // Running upper bound on the degrees of the polynomials
4 while (true) do
5 foreach (i ∈ N) do
6 xi,d ← 1

d+1
7 yi,d ← Evaluatei([0, xi,d])
8 Pi(x) ← Interpolate((0, 0), (xi,0, yi,0), . . . , (xi,d, yi,d))

9 wi(x) ← (Pi(x))′ // Player i’s value density function assuming 
it’s a polynomial of max degree d

10 // Compute a contiguous envy-free allocation w.r.t. {w1, . . . , wn}
11 A ← Contiguous envy-free allocation w.r.t. {w1, . . . , wn}
12 // Ask the players if A is envy-free

13 foreach ((i, j) ∈ N2) do
14 W i, j ← Evaluatei(A j)

15 if (Envy-Free(W )) then
16 return A // Output and exit

17 else
18 d ← d + 1 // Increase the maximum degree and try again

constant) and increases the degrees with every iteration. 
Consider the iteration in which the correct upper bound 
has been reached: d = max{d1, . . . , dn}. Then the answers 
of player i to the evaluate queries on the intervals:{
[0,0],

[
0,

1

d + 1

]
,

[
0,

1

d

]
, . . . , [0,1]

}
can be used to obtain d + 2 values for the unique interpo-
lating polynomial, of maximum degree d + 2. That is, the 
protocol has obtained the following values:{

Pi(0), Pi

(
1

d + 1

)
, Pi

(
1

d

)
, . . . , Pi(1)

}
By taking the derivative of the interpolating polynomial 
(Line 9), the protocol can find the exact value density func-
tion of player i. Since d is an upper bound on the degrees 
of all the players, it follows that all the value density func-
tions have been guessed correctly, and so the allocation A
computed in this iteration (Line 11) is guaranteed to be 
envy-free.

It is immediate that the protocol terminates after at 
most d + 1 iterations, and the number of Evaluate queries 
asked in each iteration is n2 + n. Thus the total num-
ber of queries required to output an envy-free alloca-
tion when the maximum degree is d is bounded by (d +
1)(n2 + n). �

An interesting open question is whether there exists a 
bounded algorithm for envy-free cake cutting with poly-
nomial valuations, where the runtime of the protocol is 
only a function of the number of players. A negative result 
for this class would also answer the existence question for 
general valuations.
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