
Optimal Reachability and a Space-Time Tradeoff for Distance
Queries in Constant-Treewidth Graphs

Krishnendu Chatterjee† Rasmus Ibsen-Jensen† Andreas Pavlogiannis†
† IST Austria

{kchatterjee, ribsen, pavlogiannis}@ist.ac.at

Abstract

We consider data-structures for answering reachability and distance queries on constant-treewidth graphs with
n nodes, on the standard RAM computational model with wordsize W = ⇥(log n). Our first contribution is a
data-structure that after O(n) preprocessing time, allows (1) pair reachability queries in O(1) time; and (2) single-
source reachability queries in O(

n
logn) time. This is (asymptotically) optimal and is faster than DFS/BFS when

answering more than a constant number of single-source queries. The data-structure uses at all times O(n) space.
Our second contribution is a space-time tradeoff data-structure for distance queries. For any ✏ 2 (0, 1], we provide a
data-structure with O(n) preprocessing time that allows pair queries in O(n1�✏ ·↵2

(n)) time, where ↵ is the inverse
of the Ackermann function, and at all times uses O(n✏

) working space, where the input graph G only belongs to the
input space and does not contribute to the working space.

Keywords: Graph algorithms; Constant-treewidth graphs; Reachability queries; Distance queries

1 Introduction

In this work we consider two of the most classic graph algorithmic problems, namely the reachability and distance
problems, on low-treewidth graphs. We consider the case where the input is a graph G with n nodes and a tree-
decomposition Tree(G) of G with b = O(n) bags and width t. The computational model is the standard RAM with
wordsize W = ⇥(log n).

Low-treewidth graphs. A very well-known concept in graph theory is the notion of treewidth of a graph, which is
a measure of how similar a graph is to a tree (a graph has treewidth 1 precisely if it is a tree) [34]. The treewidth of
a graph is defined based on a tree decomposition of the graph [27], see Section 2 for a formal definition. Beyond the
mathematical elegance of the treewidth property for graphs, there are many classes of graphs which arise in practice
and have low (even constant) treewidth. An important example is that the control flow graph for goto-free programs for
many programming languages are of constant treewidth [37]. Also many chemical compounds have treewidth 3 [39].
For many other applications see the surveys [11, 14]. Given a tree decomposition of a graph with low treewidth t,
many problems on the graph become complexity-wise easier (i.e., many NP-complete problems for arbitrary graphs
can be solved in time polynomial in the size of the graph, but exponential in t, given a tree decomposition [4, 8, 10]).
Even for problems that can be solved in polynomial time, faster algorithms can be obtained for low-treewidth graphs,
for example, for the distance (or the shortest path) problem [18]. The constant treewidth of control flow graphs has also
been shown to lead to faster algorithms for interprocedural analysis [16], quantitative verification [17], and analysis of
concurrent programs [15].

Reachability/distance problems. The pair reachability (resp., distance) problem is one of the most classic graph
algorithmic problems that, given a pair of nodes u, v, asks to compute if there is a path from u to v (resp., the weight
of the shortest path from u to v). The single-source variant problem given a node u asks to solve the pair problem u, v

for every node v. Finally, the all pairs variant asks to solve the pair problem for each pair u, v. While there exist many
classic algorithms for the distance problem, such as A⇤-algorithm (pair) [29], Dijkstra’s algorithm (single-source) [21],
Bellman-Ford algorithm (single-source) [6, 25, 32], Floyd-Warshall algorithm (all pairs) [24, 38, 35], and Johnson’s
algorithm (all pairs) [30] and others for various special cases, there exist in essence only two different algorithmic
ideas for reachability: Fast matrix multiplication (all pairs) [23] and DFS/BFS (single-source) [20].

Previous results. The algorithmic question of the distance (pair, single-source, all pairs) problem for low-treewidth
graphs has been considered extensively in the literature, and many data-structures have been presented [2, 18, 33, 1,
5, 19]. The previous results are incomparable, in the sense that the best data-structure depends on the treewidth and
the number of queries. The pair query reachability for low-treewidth graphs has been considered in [40]. Despite
many results for constant (or low) treewidth graphs, none of them improves the complexity for the basic single-source
reachability problem, i.e., the bound for DFS/BFS has not been improved in any of the previous works.

Our results. Our algorithms take as input a graph G with n nodes, and a tree decomposition of width t with O(n)
bags. Our main contributions are as follows (summarized in Table 1 and Table 2):

1. Our first contribution is a data-structure that supports reachability queries in G. The computational complexity
we achieve is as follows: (i) O(n · t2) preprocessing (construction) time; (ii) O(n · t) space; (iii) O(dt/ log ne)
pair-query time; and (iv) O(n · t/ log n) time for single-source queries. Note that for constant-treewidth graphs,
the data-structure is optimal in the sense that it only uses linear preprocessing time, and supports answering
queries in the size of the output (the output for single-source queries requires one bit per node, and thus has
size ⇥(n/W) = ⇥(n/ log n)). Moreover, also for constant-treewidth graphs, the data-structure answers single-
source queries faster than DFS/BFS, after linear preprocessing time (which is asymptotically the same as for
DFS/BFS). Thus there exists a constant c

0

such that the total of the preprocessing and querying time of the
data-structure is smaller than that of DFS/BFS for answering at least c

0

single-source queries. To the best of our
knowledge, this is the first data-structure which is faster than DFS/BFS for solving single-source reachability
on an important class of sparse graphs. While our data-structure achieves this using so-called word-tricks,
DFS/BFS have not been made faster using word-tricks.

2. Second, we present a space-time tradeoff data-structure that supports distance queries in G and given a number
✏ in (0, 1]. The weights of G come from the set of integers Z, but we do not allow negative cycles. The
computational complexity we achieve is as follows: (i) O(n·t2) preprocessing (construction) time; (ii) O(n✏ ·t2)
working space; and (iii) O(n1�✏ · t2 · ↵2

(n)) time for pair queries, where ↵ is the inverse Ackermann function.
The above data-structure considers that a tree decomposition of G is part of the input, and does not contribute
to the space complexity. Instead, if only the graph G is given as input, we present a data-structure for constant-
treewidth graphs that for any ✏ 2 [1/2, 1] operates in (i) polynomial preprocessing time; (ii) O(n✏

) working
space; and (iii) O(n1�✏ · ↵2

(n)) time for pair queries.

Table 1: Data-structures for pair and single-source reachability queries, on a directed graph G with n nodes, and a
tree decomposition of width t. The model of computation is the standard RAM model with wordsize W = ⇥(log n).
Rows 1 and 2 are previous results, and row i is the result of this paper.

Row Preprocessing time Space usage Pair query time Single-source query time From
1 O(n · log n) O(n · log n) O(log n) O(n · log n) a [40] b

2 – O(dn/ log ne) – O(n · t) = O(m) DFS/BFS [20]
i O(n · t2) O(n · t) O(

l
t

logn

m
) O(

n·t
logn

) Theorem 2

a Obtained by multiplying the time for a pair query by n.
b The result is only stated for constant treewidth.

Technical contributions. Our results rely on three key technical contributions:

1. A core component in both of our results is computing local distances (or reachability) in the bags of a tree-
decomposition, namely, for every pair of nodes u, v that appear in a bag, compute the distance from u to v, (or
whether v is reachable from u). This computation has been considered before, e.g. in [2, 18, 31]. The existing

2

Table 2: Data-structures for pair and single-source distance queries, on a weighted directed graph G with n nodes, m
edges, and a tree decomposition of width t, height h and b bags (and b � n/t). The number ✏ can be any fixed number
in (0, 1]. We use eO to hide polynomial factors of ↵(n), which is the inverse Ackermann function. When measuring
space complexity, we do not count the input size. Rows 1-6 are previous results, and row i is the result of this paper.

Row Preprocessing time Space usage Pair query time Single-source query time From
1 O(n2 · t) O(n2

) O(1) O(n) [33] a

2 O(n · t3) O(n · t3) eO(t3) O(n · t3) [18]
3 O(n · t3 · log h) O(b · t2) O(t2 · log log n) O(n · t2 · log log n) b [2]
4 O(n · t2 · log2 n) O(n · t · log n) O(t · log n) O(n · t · log n)b [1]
5 O(n · t · log n) O(n · t · log n) O(t2 · log2 n) O(n · t2 · log2 n) b [5, 19]
6 Not given O(n✏ · t2 · log2 n) c O(n1�✏ · t · log n) – d [2] e

i O(n · t2) O(n✏ · t2) eO(n1�✏ · t2) – d Theorem 5
a This data-structure solves the all pairs problem in the given time and space bounds.
b Obtained by multiplying the time for a pair query by n.
c This is the space usage after preprocessing.
d Not given since the size of the output is larger than the data-structure.
e Note that [2] does not explicitly state the tradeoff given (they only state linear space), but it follows from their

technique by picking other values for their variable k.

solutions are “bag-centric”, as they rely on applying an all-pairs (transitive closure) computation in the bags
of the tree-decomposition. We develop a new algorithm for this problem which is “node-centric”, and saves a
factor t in the time and space complexity compared to the existing methods. The correctness is based on a newly
introduced notion of “U-shaped paths”, which may be of general interest.

2. For pair reachability queries, the key idea is to store reachability information from each node to O(log n) other
nodes. For single-source queries, for some nodes this reachability information might be of size ⇥(n), but on
average remains O(log n). In addition, our data-structure computes reachability information in such a way
that allows for compact representation and fast retrieval using word tricks, which for constant-treewidth graphs
leads to asymptotically optimal preprocessing and query (both pair and single-source) bounds. The idea of
storing O(log n) information per node has appeared before ([40, 18]) however those algorithms follow different
approaches, where word tricks do not seem to be applicable (at least not without significantly modifying the
algorithms).

3. For distance queries, we also introduce the notion of summary trees, which lead to a family of preprocessing vs
query time tradeoffs. The latter is a rather technical result, and is presented only in the full version, which is
attached in the Appendix. Our space efficient data-structure uses the techniques of U-shaped paths and summary
trees together with a space efficient way to partition a tree decomposition into components, which leads to the
stated space-time tradeoff.

2 Preliminaries

Graphs. We consider weighted directed graphs G = (V,E,wt) where V is a set of n nodes, E ✓ V ⇥ V is an edge
relation of m edges, and wt : E ! Z is a weight function where Z is the set of integers. In the sequel we write
graphs for directed graphs, and explicitly mention if the graph is undirected. Given a set X ✓ V , we denote by G[X]

the subgraph (X,E \ (X ⇥ X)) of G induced by the set of nodes X . A path P : u v is a sequence of nodes
(x

1

, . . . , x
k

) such that u = x
1

, v = x
k

, and for all 1  i  k � 1 we have (x
i

, x
i+1

) 2 E. The path P is simple if
every node appears at most once in P . The length of P is k � 1, and a single node is by itself a 0-length path. We
denote by E⇤ ✓ V ⇥ V the transitive closure of E, i.e., (u, v) 2 E⇤ iff there exists a path P : u v. Given a path
P , a node u, and a set of nodes A, we use the set notation u 2 P to denote that u appears in P , and A \ P to refer
to the set of nodes that appear in both P and A. The weight function is extended to paths, and the weight of a path

3

1

8

9

2

10

3

6

4

7 5

8, 9, 10

1, 8, 9

2, 8, 10

2, 3, 10

7, 8, 9

6, 7, 9

4, 6, 9 5, 6, 7

Figure 1: A graph G with treewidth 2 (left) and a corresponding tree-decomposition Tree(G) (right).

P = (x
1

, . . . , x
k

) is wt(P) =

P
k�1

i=1

wt(x
i

, x
i+1

) if k > 1, else wt(P) = 0. For u, v 2 V , the distance from u to v
is defined as d(u, v) = min

P :u v

wt(P), where P ranges over simple paths in G (and d(u, v) = 1 if no such path
exists). We consider that G does not have negative cycles.

Trees. A (rooted) tree T = (V
T

, E
T

) is an undirected graph with a distinguished node r which is the root such that
there is a unique simple path P v

u

: u v for each pair of nodes u, v. The size of T is |V
T

|. Given a tree T with root r,
the level Lv(u) of a node u is the length of the simple path P r

u

from u to the root r, and every node in P r

u

is an ancestor
of u. If v is an ancestor of u, then u is a descendant of v. Note that a node u is both an ancestor and descendant of
itself. For a pair of nodes u, v 2 V

T

, the lowest common ancestor (LCA) of u and v is the common ancestor of u and
v with the largest level. The parent u of v is the unique ancestor of v in level Lv(v) � 1, and v is a child of u. A leaf
of T is a node with no children. For a node u 2 V

T

, we denote by T (u) the subtree of T rooted in u (i.e., the tree
consisting of all descendants of u). The tree T is binary if every node has at most two children. The height of T is
max

u

Lv(u) (i.e., it is the length of the longest path P r

u

), and T is balanced if its height is O(log |V
T

|). Given a tree
T , a connected component C ✓ V

T

of T is a set of nodes of T such that for every pair of nodes u, v 2 C, the unique
simple path P v

u

in T visits only nodes in C.

Tree decompositions. Given a graph G, a tree-decomposition Tree(G) = (V
T

, E
T

) is a tree with the following
properties.

T1: V
T

= {B
1

, . . . , B
b

: for all 1  i  b. B
i

✓ V } and
S

B

i

2V

T

B
i

= V .
T2: For all (u, v) 2 E there exists B

i

2 V
T

such that u, v 2 B
i

.
T3: For all B

i

, B
j

and any bag B
k

that appears in the simple path B
i

 B
j

in Tree(G), we have B
i

\B
j

✓ B
k

.

The sets B
i

which are nodes in V
T

are called bags. The width of a tree-decomposition Tree(G) is the size of the
largest bag minus 1, and the treewidth of G is the width of a minimum-width tree decomposition of G. Let G be a
graph, T = Tree(G), and B

0

be the root of T . For u 2 V , we say that a bag B is the root bag of u if B is the
bag with the smallest level among all bags that contain u. By definition, for every node u there exists a unique bag
which is the root of u. We often write B

u

for the root bag of u, i.e., B
u

= argmin

B

i

2V

T

: u2B

i

Lv (B
i

), and denote
by Lv(u) = Lv (B

u

). A bag B is said to introduce a node u 2 B if either B is a leaf, or u does not appear in any child
of B. In this work we consider only binary tree decompositions (if not, a tree decomposition can be made binary by a
standard process that increases its size by a constant factor while keeping the width the same).

See Figure 1 for an example of a graph and a tree-decomposition of it. The following lemma states a well-known
“separator property” of tree decompositions.
Lemma 1. Consider a graph G = (V,E), a binary tree-decomposition T = Tree(G), and a bag B of T . Let
(C

i

)

1i3

be the components of T created by removing B from T , and let V
i

be the set of nodes that appear in bags

4

of component C
i

. For every i 6= j, nodes u 2 V
i

, v 2 V
j

and path P : u v, we have that P \B 6= ; (i.e., all paths
between u and v go through some node in B).

Proof. Examine any such path P . If there exists an x 2 P \ V
i

\ V
j

, then there exists bags B
i

2 C
i

and B
j

2 C
j

with
x 2 B

i

\ B
j

. Since B 2 B
i

 B
j

, by property T3 we have x 2 B. Otherwise there exists a last node y
i

of P with
y
i

2 V
i

, and if y
j

is the node of P following y
i

, we have (y
i

, y
j

) 2 E. By property T2, (y
i

, y
j

) 2 B0 for some bag
B0, and by the choice of y

i

, y
j

, it can only be B0
= B, hence y

i

, y
j

2 B.

Using Lemma 1, we prove the following stronger version of the separator property, which will be useful throughout
the paper.
Lemma 2. Consider a graph G = (V,E) and a tree-decomposition Tree(G). Let u, v 2 V , and consider two distinct
bags B

1

and B
j

such that u 2 B
1

and v 2 B
j

. Let P 0
: B

1

, B
2

, . . . , B
j

be the unique simple path in T from B
1

to
B

j

. For each i 2 {2, . . . , j} and for each path P : u v, there exists a node x
i

2 (B
i�1

\B
i

\ P).

Proof. Let T = Tree(G). Fix a number i 2 {2, . . . , j}. We argue that for each path P : u v, there exists a node
x
i

2 (B
i�1

\ B
i

\ P). We construct a tree T 0, which is similar to T except that instead of having an edge between
bag B

i�1

and bag B
i

, there is a new bag B, that contains the nodes in B
i�1

\B
i

, and there is an edge between B
i�1

and B and one between B and B
i

. It is easy to see that T 0 satisfies the properties T1-T3 of a tree-decomposition of
G. By Lemma 1, each bag B0 in the unique path P 00

: B
1

, . . . , B
i�1

, B,B
i

, . . . , B
j

in T 0 separates u from v in G.
Hence, each path u v must go through some node in B, and the result follows.

The following lemma states that for nodes that appear in bags B, B0 of the tree-decomposition T = Tree(G), their
distance can be written as a sum of distances d(x

i

, x
i+1

) between pairs of nodes (x
i

, x
i+1

) that appear in bags B
i

that
constitute the unique B B0 path in T .
Lemma 3. Consider a weighted graph G = (V,E,wt) and a tree-decomposition Tree(G). Let u, v 2 V , and P 0

:

B
1

, B
2

, . . . , B
j

be a simple path in T such that u 2 B
1

and v 2 B
j

. Let A = {u}⇥
⇣Q

1<ij

(B
i�1

\B
i

)

⌘
⇥ {v}.

Then d(u, v) = min

(x

1

,...,x

j+1

)2A

P
j

i=1

d(x
i

, x
i+1

).

Proof. Consider a witness path P : u v such that wt(P) = d(u, v). By Lemma 2, there exists some node x
i

2
(B

i�1

\B
i

\P), for each i 2 {1, . . . , j}. It easily follows that d(u, v) =
P

j

i=1

d(x
i

, x
i+1

) with x
1

, . . . x
j+1

2 A.

Nice tree decompositions. A tree-decomposition T = Tree(G) is called nice if every bag B is one of the following
types:

Leaf. |B| = 1.
Forget. B has exactly one child B0, and B ⇢ B0 and |B| = |B0|� 1.
Introduce. B has exactly one child B0, and B0 ⇢ B and |B0| = |B|� 1.
Join. B has exactly two children B

1

, B
2

, and B = B
1

= B
2

.

For technical convenience, we also require the root of a nice tree decomposition to have size 1. Thus in a nice tree
decomposition every bag is the root bag of at most one node.

Model and word tricks. We consider the standard RAM model with word size W = ⇥(log n), where poly(n) is the
size of the input. Our reachability algorithm (in Section 4) uses so called “word tricks” heavily. We use constant-time
lowest common ancestor queries which also require word tricks [7].

Iterated logarithms.

For � 2 N, we use the �-iterated logarithm, defined as:

log

(�)⇤ n =

(
0 if x  1

1 + log

(�)⇤
⇣
log

(��1)⇤ n
⌘

if x > 1

5

where log

(0)⇤ n = log n and log

(1)⇤ n = log

⇤ n. Furthermore, we use the inverse of the Ackermann function [3]. The
Ackermann function is:

A(i, j) =

8
><

>:

2j if i = 0 and j � 0

1 if i � 1 and j = 0

A(i� 1, A(i, j � 1)) if i, j � 1

The inverse Ackermann function is ↵(n) = argmin

j

(A(j, j) � n). We have that log(�)⇤ n = argmin

j

(A(�+ 1, j) �
n), and hence log

(↵(n)�1)⇤ n = argmin

j

(A(↵(n), j) � n)  ↵(n).

Graph queries. In this work we consider the following queries on the graph G.

1. Given nodes u, v 2 V , the pair reachability query returns true iff (u, v) 2 E⇤.
2. Given a node u 2 V , the single-source reachability query returns the set {v : (u, v) 2 E⇤} of nodes reachable

from u.
3. Given nodes u, v 2 V , the pair distance query returns the distance d(u, v).
4. Given a node u 2 V , the single-source distance query returns the distance d(u, v) from u to v, for all v such

that (u, v) 2 E⇤.

3 Local Distance Computation

Consider a graph G = (V,E), with a tree-decomposition Tree(G) = (V
T

, E
T

) of |V
T

| = O(n) bags and width t. In
this section we present an algorithm for computing “local distances” in each bag, namely, the distance d(u, v) between
every pair of nodes u, v that appear in some bag B. The result of this section is used in later sections for answering
reachability (which is a special case of distance) and distance queries on G.

Local distances. Given a tree-decomposition T = Tree(G) of a graph G and a node u 2 V , we define the local
forward and backward maps FWD

u

, BWD
u

: B
u

! Z [{1} of u as

FWD
u

(v) = d(u, v); BWD
u

(v) = d(v, u)

i.e., FWD
u

(resp., BWD
u

) stores the forward (resp., backward) distances to and from nodes that appear in the root bag
of u. For any bag B 2 V

T

, we define the local distance map of B as

LD

B

: B ⇥B ! Z [{1} such that for all u, v 2 B, we have LD

B

(u, v) = d(u, v)

Note that actually storing all LD
B

explicitly requires ⌦(n · t2) space. The following lemma implies that the distance
between any two nodes that appear in some bag is captured in the local forward and backward maps. Hence the local
distance maps LD

B

are stored implicitly in the forward and backward maps.
Lemma 4. For every B 2 V

T

and u, v 2 B, we have u 2 B
v

iff Lv(v) � Lv(u).

Proof. Consider some (u, v) 2 E, such that Lv(v) � Lv(u). By the definition of tree decomposition, there exists
some B

i

2 V
T

such that u, v 2 B
i

. Then u appears in all bags B
j

in the simple path P : B
i

 B
u

, and since
Lv(v) � Lv(u), the bag B

v

appears in P . Hence u 2 B
v

.

The task of this section is to compute the local forward and backward maps of each node fast. We establish the
following theorem.
Theorem 1. Given a weighted graph G = (V,E,wt) and a tree-decomposition Tree(G) of G of width t and O(n)
bags, the local forward and backward maps of all nodes can be computed in total O(n · t2) time and O(n · t) space.

6

Ordered set and map data-structures. We fix a total order on the vertices V of G. A set A ✓ V is represented
as an ordered set by enumerating the elements of A in increasing order. For A ✓ V , a map M : A ! Z [{1}
is represented as an ordered map by a pair of lists (L

1

, L
2

), where L
1

is an ordered set representation of A, and L
2

such that in position i it contains the image under M of the element of L
1

in position i. Intersecting two ordered sets
requires linear time in the size of the sets. Given two maps M

1

: A
1

! Z [{1}, M
2

: A
2

! Z [{1} represented
as ordered maps, computing the map M : A

1

\ A
2

! Z [{1} with M(u) = min(M
1

(u),M
2

(u)) also requires
linear time in the size of M

1

, M
2

.

We assume that the bags of Tree(G) are stored using the ordered set data-structure (if not, this can be done in O(n ·
t · log t) time). Clearly all forward and backward maps can be stored as ordered maps in O(n · t) space (using O(t)
space per map). Given the forward and backward maps as ordered maps, the local distance map LD

B

for any bag B
can be constructed in O(t2) time, by examining all O(t) maps FWD

u

, BWD
u

for each u 2 B. In the following we
present algorithm LocDis for computing the maps FWD

u

and BWD
u

of each node u.

Subsuming tree-decomposition. Given a nice tree-decomposition T 0
= (V 0

T

, E0
T

) and a tree-decomposition T =

(V
T

, E
T

) of a graph G, we say that T 0 subsumes T if the following conditions hold.

1. For every B0 2 V 0
T

there exists B 2 V
T

such that B0 ✓ B.
2. For every B 2 V

T

, there exists B0 2 V 0
T

with B = B0.

We present our algorithm LocDis for the local distance computation on a nice tree decomposition. In order to apply
LocDis on any tree-decomposition T , we first construct a nice tree-decomposition T 0 that subsumes T , and then
execute LocDis on T 0. It is straightforward to verify that for any bag B of T , we have LD

B

= LD

B

0 where B0 is
a bag of T 0 such that B = B0. Here we describe a slightly technical construction of such a T 0 such that T 0 uses
asymptotically the same space as T .
Lemma 5. For every tree-decomposition T = (V

T

, E
T

) with b bags and width t there exists a nice tree-decomposition
T 0

= (V 0
T

, E0
T

) of O(b · t) bags and width t that subsumes T . Moreover, T 0 uses O(b · t) space and can be constructed
in O(b · t · log t) time.

Proof. Let B
1

, . . . B
b

be the bags of V
T

. We present an informal outline of the construction. Along the construction,
we build a map f : V 0

T

! {1, . . . , b}. First, create T 0 identical to T , and for each B
i

2 V 0
T

, sort the nodes of B
i

in
some order, and let f(B) = i. Then, as long as one of the following cases holds, proceed accordingly.

1. If there exists a B 2 V 0
T

with two children B1, B2 such that B 6= B1 or B 6= B2, insert bags B
1

and B
2

in V 0
T

such that B
1

= B
2

= B. Make each B
i

a child of B, and parent of Bi. Set f(B
i

) = f(B).
2. If there exists a B 2 V 0

T

which is the root bag of k > 1 nodes u
1

, . . . , u
k

, insert a line of k � 1 bags
B1, . . . , Bk�1, where Bi is the parent of Bi+1, and Bi

= B \ {u
i+1

, . . . , u
k

}. Make Bk�1 the parent of
B and B1 a child of the parent of B in T , and set f(Bi

) = f(B) for all i.
3. If there exists a B 2 V 0

T

which introduces k > 1 nodes u
1

, . . . , u
k

, insert a line of k � 1 bags B1, . . . , Bk�1,
where Bi is the child of Bi+1, and Bi

= B \ {u
i+1

, . . . , u
k

}. Make Bk�1 the unique child of B, and make B1

the parent of all children of B in T , and set f(Bi

) = f(B) for all i.

Finally, in the above construction each B 2 V 0
T

is not stored explicitly as a set, but implicitly as a pointer f(B) to a
bag B

f(B)

of T , and (optionally) two integers i
B

, j
B

. A node u 2 B
f(B)

is considered to belong to B if one of the
following holds.

1. B
f(B)

is not the root bag of u, and u is not introduced in B
f(B)

.
2. B

f(B)

is the root bag of u and u is the i-th node with root bag B
f(B)

and i  i
B

.
3. u is the jth node introduced in B

f(B)

and j  j
B

.

It follows from the definition of tree-decompositions that if none of the above three cases holds, T 0 is a nice tree-
decomposition that subsumes T . The construction requires O(b · t · log t) time to sort the nodes in each bag of T , and
O(b · t) time to construct the O(b · t) bags of T 0. The space used is O(b · t) for storing the original T , plus O(b · t) for
storing a pointer and index in each bag of T 0.

7

Remark 1. It is known that every graph with treewidth t has a nice tree decomposition of O(n · t) bags and width
t [13, Lemma 7] . We note that Lemma 5 is different, in that T 0 is made to subsume some other tree-decomposition T .
This has the advantage that the local distance maps of T 0 carry over to T , while T has some other desired properties
(in later sections we require that T is balanced).

Algorithm LocDis. Given a graph G and a tree-decomposition T = Tree(G) with O(n) bags and width t, we present
an algorithm LocDis for computing the local forward and backward maps. First, construct a nice tree-decomposition
T 0

= (V 0
T

, E0
T

) of O(n · t) bags which subsumes T , using the construction of Lemma 5. The rest of the computation
is then performed as a two-way pass on T 0, which has the property that every bag is the root bag of at most one node
x. For each node u 2 V maintain two ordered maps FWD0

u

, BWD0
u

: B
u

! Z [{1}. For notational convenience,
we think of the maps FWD0

u

, BWD0
u

as variables. Initially set FWD0
u

(v) = wt(u, v) and BWD0
u

(v) = wt(v, u) for all
u 2 V (if (u, v) 62 E or (v, u) 62 E, then the corresponding entry is 1). Given any bag B and nodes u, v 2 B, we
write LD

0
B

(u, v) = w if either FWD0
u

(v) = w or BWD0
v

(u) = w. Since T 0 is nice, LD0
B

(u, v) is well-defined. Note
that as the maps FWD0

u

and BWD0
u

are modified by the algorithm, the maps LD0
B

are modified accordingly.

1. First pass. Traverse T 0 level by level starting from the leaves (bottom-up), and for each encountered bag
B

x

that is the root bag of node x, execute the following steps: For every pair of nodes u, v 2 B
x

, let
z = min(LD

0
B

x

(u, v), LD0
B

x

(u, x) + LD

0
B

x

(x, v)). If Lv(u) � Lv(v), then assign FWD0
u

(v) = z, otherwise
assign BWD0

v

(u) = z.
2. Second pass. Traverse T 0 level by level starting from the root (top-down), and for each encountered bag B

x

that is the root bag of node x, execute the following steps: For every pair of nodes u, v 2 B
x

, let z
1

=

min(LD

0
B

x

(x, v), LD0
B

x

(x, u) + LD

0
B

x

(u, v)), and z
2

= min(LD

0
B

x

(v, x), LD0
B

x

(u, x) + LD

0
B

x

(v, u)). Assign
FWD0

x

(v) = z
1

and BWD0
x

(v) = z
2

.

In the following we establish that at the end of the second pass it holds that FWD0
u

= FWD
u

and BWD0
u

= BWD
u

for
each u 2 V . We rely on the property that T 0 is nice only for the following facts: (i) every bag is the root bag of at
most one node, and (ii) the leaves and the root of T 0 have size 1. We say that a path P : x

1

, . . . , x
k

, is U-shaped in a
bag B if x

1

, x
k

2 B and either k = 2, or for every 1 < i < k, the root bag B
x

i

of node x
i

is in T (B). The following
lemma captures a property of U-shaped paths which is used for obtaining Theorem 1.
Lemma 6. Given a bag B and nodes u, v 2 B such that exists a simple path (or simple cycle) P : u v which is U-
shaped in B, either |P | = 1 or P = (u, y

1

, . . . , y
k

, v) and for x = argmin

i

Lv(y
i

), we have that B
x

is a descendant
of B and P is U-shaped in B

x

.

Proof. Decompose P to P
1

: u x and P
2

: x v, and we first argue that each P
i

is U-shaped in B
x

. We only focus
on P

1

, as the proof is similar for P
2

. For any intermediate node y of P
1

, the LCA L of B
x

and B
y

is B
x

, otherwise
it follows from Lemma 1 that P

1

would go through some node of L that has smaller level than Lv(x), contradicting
our choice of x. Hence, every B

y

of intermediate nodes y of P
1

is contained in T (B
x

), and it remains to show that
u 2 B

x

. Since P is U-shaped in B, we have that B
x

is a descendant of B. If B = B
x

we are done, otherwise let B0

be the parent of B
x

. By Lemma 2, there is a node y 2 B0 \ B
x

\ P
1

, and it follows that Lv(y) < Lv(x). The only
such node in P

1

is u, thus P
1

is U-shaped in B
x

. The same argument holds for P
2

, and since P is simple, it follows
that P is U-shaped in B

x

.

Lemma 7. At the end of LocDis, for each node u 2 V , we have FWD0
(u) = FWD(u) and BWD0

(u) = BWD(u).

Proof. It is clear that for all nodes u and v, the map FWD0
u

(v) (resp. BWD0
u

(v)) always stores the weight of a u v
(resp. v u) path. The proof focuses on showing that z = min

P

wt(P), where P is a simple u v (resp. v u)
path.

We first claim that after the first pass processes a bag B, for all u, v 2 B we have LD

0
B

(u, v)  min

P

wt(P), where
P ranges over simple u v paths that are U-shaped in B. The claim follows by induction on the levels processed by
the bottom-up pass.

1. It is trivially true for B being a leaf since T 0 is nice and thus |B| = 1.

8

2. If B is not a leaf, by Lemma 6 either |P | = 1, or P = (u, y
1

, . . . , y
k

, v) and P is U-shaped in B
x

, where
x = argmin

i

Lv(y
i

). If |P | = 1, the claim follows from the initialization of FWD0 and BWD0. Otherwise, if
B

x

6= B, the proof follows from the induction hypothesis, as by Lemma 6 every such P is also U-shaped in B
x

,
and B

x

is a descendant of B. Finally, if B
x

= B, decompose P to P
1

: u x and P
2

: x v. Note that since
P is simple, both P

1

and P
2

are U-shaped in B. Since x is not an intermediate node in either P
1

or P
2

, both paths
are U-shaped in some descendant B0 of B

x

and by the induction hypothesis we get that LD0
B

(u, x)  wt(P
1

)

and LD

0
B

(x, v)  wt(P
2

) after B0 has been examined, hence the inequalities hold when LocDis starts to examine
B. In all cases, it follows that after LocDis processes B, it will hold that LD0

B

(u, v)  wt(P).

We now claim that after the second pass processes a bag B
x

that is the root bag of some node x, it holds that
FWD0

x

(v) = d(x, v) and BWD0
x

(v) = d(v, x) for every v 2 B
x

. The claim follows by induction on the levels
processed by the top-down pass.

1. The statement holds trivially if B
x

is the root, since T 0 is nice and thus |B
x

| = 1.
2. We now proceed inductively to some internal bag B

x

examined by the algorithm in the second pass. We only
focus on FWD0

x

(the argument is similar for BWD0
x

). Consider any simple path P : x v. Let u be the first
node in P for which B

u

is not in T (B
x

) and decompose P to P
1

: x u and P
2

: u v. By the choice
of u, we have that P

1

is U-shaped in B
x

, thus by the first pass we have LD

0
B

x

(x, u)  wt(P
1

). By condition
T3 of the tree-decomposition, B

v

and B
u

are ancestors of B
x

. Since T 0 is nice, we have that B
v

, B
u

are
strictly ancestors of B

x

(i.e., neither B
v

nor B
u

is B
x

) and hence the induction hypothesis applies to provide
that FWD0

u

(v) = d(u, v) or BWD0
v

(u) = d(u, v), and thus LD0
B

x

(u, v) = d(u, v) when LocDis starts to examine
B

x

. It follows that after the second pass processes B
x

, we have FWD0
x

(v) = d(x, v), as desired.

Figure 2 depicts the two passes. At the end of the computation, for all x 2 V we have FWD0
(x) = FWD(x) and

BWD0
(x) = BWD(x), as desired.

u

x

v

P
1

P
2

LD0
B

x

(u, x)  wt(P
1

)

LD0
B

x

(x, v)  wt(P
2

)

x

u

v

P
1 P

2

LD0
B

x

(x, u)  wt(P
1

) LD0
B

x

(u, v)  wt(P
2

)

Figure 2: Illustration of the two passes for the local distance computation. In the left, P
1

and P
2

are any U-shaped
paths in B

x

. In the right, P
1

is any U-shaped path in B
x

, and P
2

is any u v path. The inequalities hold when
LocDis starts to examine B

x

. Afterwards we have LD

0
B

x

(u, v)  wt(P
1

� P
2

) (left) and LD

0
B

x

(x, v)  wt(P
1

� P
2

)

(right), where P
1

� P
2

is the concatenation of the two paths.

Lemma 8. Algorithm LocDis requires O(n · t2) time and O(n · t) space.

Proof. For each u 2 V , the maps FWD0
u

and BWD0
u

take O(t) space, and represented as ordered sets, their initialization
requires O(t·log t) time, hence O(n·t·log t) time in total. By Lemma 5, the construction of T 0 is done in O(n·t·log t)
time and O(n · t) space. The algorithm LocDis examines each of the O(n · t) bags B once in each pass, hence it spends
O(n · t) time in traversing T 0. For each bag B

x

, LocDis spends O(t2) time to iterate over all pairs u, v 2 B
x

, and
O(t) time to update each of the at most 2 · t maps FWD0 and BWD0, using the ordered set data-structure. Hence LocDis
spends O(t2) time in total in B

x

. There are n such bags B
x

that are the root bags of some node x, hence the total time
of LocDis is O(n · t2). The space bound follows from the size of all forward and backward sets, and the size required
to store T and T 0.

Lemma 7 and Lemma 8 lead to Theorem 1.

9

Remark 2. The algorithm LocDis detects the existence of negative cycles, by discovering that LD0
B

(u, u) < 0 for
some u.
Remark 3 (Comparison to previous work). The concept of local distance has been used before, such as in [2], [18]
and [31]. However, the algorithms in all cases use ⌦(b · t2) space and ⌦(b · t3) time (or ⌦(b · t4) in case of [18]), where
b is the number of bags in Tree(G), by storing explicitly all-pairs distances in each bag, and running Bellman-Ford or
Floyd-Warshall type of algorithms in each pass. The contribution of this section is twofold: (i) the notion of forward
and backward maps (FWD and BWD) shows that O(n · t) space is enough for storing local distances, and (ii) the notion
of U-shaped paths is used to show that O(b + n · t2) time is enough for computing them. In both cases we obtain an
improvement by a factor of at least t, as typically b = ⇥(n).

4 Optimal Reachability for Low-Treewidth Graphs

In this section we present a data-structure Reachability which takes as input a graph G of n nodes and treewidth t,
and preprocess it in order to answer single-source and pair reachability queries fast. In particular, we establish the
following.
Theorem 2. Given a graph G of n nodes and treewidth t, let T (G) be the time and S(G) be the space required for
constructing a balanced tree-decomposition Tree(G) of O(n) bags and width O(t) on a standard RAM with wordsize
W = ⇥(log n). The data-structure Reachability correctly answers reachability queries and requires

1. O(T (G) + n · t2) preprocessing time;
2. O(S(G) + n · t) preprocessing space;
3. O

⇣l
t

logn

m⌘
pair query time; and

4. O
⇣

n·t
logn

⌘
single-source query time

For constant treewidth graphs we have that T (G) = O(n) and S(G) = O(n) ([9, Lemma 2]), and thus along with
Theorem 2 we obtain the following corollary.
Corollary 1. Given a graph G of n nodes and constant treewidth, the data-structure Reachability requires O(n)
preprocessing time and space, and correctly answers (i) pair reachability queries in O(1) time, and (ii) single-source
reachability queries in O

⇣
n

logn

⌘
time.

Intuition. Informally, the preprocessing consists of first obtaining a binary and balanced tree-decomposition T of G,
and computing the local reachability information in each bag B (i.e., the pairs (u, v) 2 E⇤ with u, v 2 B) using
algorithm LocDis from Section 3. Then, the whole of preprocessing is done on T , by constructing two types of sets,
which are represented as bit sequences and packed into words of length W = ⇥(log n). Initially, every node u receives
an index i

u

, such that for every bag B, the indices of nodes whose root bag is in T (B) form a contiguous interval.
Additionally, for every appearance of node u in a bag B, the node u receives a local index lB

u

in B. For brevity, we
denote by (Ai

)

0ik

the sequence (A0, A1, . . . Ak

). When k is implied, we simply write (Ai

)

i

. The following two
types of sets are constructed.

1. Sets that store information about subtrees. Specifically, for every node u, the set F
u

stores the relative indices of
nodes v that can be reached from u, and whose root bag is in T (B

u

). These sets are used to answer single-source
queries.

2. Sets that store information about ancestors. Specifically, for every node u, two sequences of sets are stored
(F

i

u

)

0iLv(u), (Ti

u

)

0iLv(u), such that Fi

u

(resp., Ti

u

) contains the local indices of nodes v in the ancestor bag
Bi

u

of B
u

at level i, such that (u, v) 2 E⇤ (resp., (v, u) 2 E⇤). These sets are used to answer pair queries.

The sets of the first type are constructed by a bottom-up pass, whereas the sets of the second type are constructed by a
top-down pass. Both passes are based on the separator property of tree decompositions (recall Lemma 1 and Lemma 2),
which informally states that reachability properties between nodes in distant bags will be captured transitively, through
nodes in intermediate bags. Figure 3 illustrates the constructed sets on a small example.

10

Reachability Preprocessing. We now give a formal description of the preprocessing of Reachability that takes as input
a graph G of n nodes and treewidth t, and a balanced, binary tree-decomposition T = Tree(G) of width O(t). After
the preprocessing, Reachability supports single-source and pair reachability queries. We say that we “insert” set A to
set A0 meaning that we replace A0 with A [A0. Sets are represented as bit sequences where 1 denotes membership
in the set, and the operation of inserting a set A “at the i-th position” of a set A0 is performed by taking the bit-wise
logical OR between A and the segment [i, i+ |A|] of A0. The preprocessing consists of the following steps.

1. Preprocess T to answer LCA queries in O(1) time [28].
2. Compute the local forward and backward maps of each node u 2 V wrt reachability (from Theorem 1). Thus

for any bag B and nodes u, v 2 B, we have LD

B

(u, v) = 1 iff (u, v) 2 E⇤.
3. Apply a pre-order traversal on T , and assign an incremental index i

u

to each node u at the time the root bag B
of u is visited. If there are multiple nodes u for which B is the root bag, assign the indices to those nodes in
some arbitrary order. Additionally, store the number s

u

of nodes whose root bag is in T (B) and have index at
least i

u

. Finally, for each bag B and u 2 B, assign a unique local index lB
u

to u, and store in B the number of
nodes a

B

contained in all ancestors of B, and the number b
B

of nodes in B.
4. For every node u, initialize a bit set F

u

of length s
u

, pack it into words, and set the first bit to 1.
5. Traverse T bottom-up, and for every bag B execute the following step. For every pair of nodes u, v 2 B such

that B is the root bag of v and i
u

< i
v

and LD

B

(u, v) = 1, insert F
v

to the segment [i
v

� i
u

, i
v

� i
u

+ s
v

] of
F

u

(the nodes reachable from v now become reachable from u, through v).
6. For every node u initialize two sequences of bit sets (Ti

u

)

0iLv(u), (Fi

u

)

0iLv(u), and pack them into consec-
utive words. Each set Ti

u

and F

i

u

has size b
B

i

u

, where Bi

u

is the ancestor of B
u

at level i.
7. Traverse T top-down, and for B the bag currently visited, for every node x 2 B, maintain two sequences of bit

sets (T
i

x

)

0iLv(B)

and (F

i

x

)

0iLv(B)

. Each set T
i

x

and F

i

x

has size b
B

i , where Bi is the ancestor of B at level
i. Initially, B is the root of T (hence Lv(B) = 0), and set the position lB

w

of F
0

x

(resp., T
0

x

) to 1 for every node
w such that LD

B

(x,w) = 1 (resp., LD
B

(w, x) = 1). For each other bag B encountered in the traversal, do as
follows. Let S = B \B0, where B0 is the parent of B in T , and let x range over S.

(a) For each set sequence of a node x, create a set T
x

(resp., F
x

) of 0s of length b
B

, and for every w 2 B such
that LD

B

(x,w) = 1 (resp., LD
B

(w, x) = 1), set the lB
w

-th bit of F
x

(resp., T
x

) to 1. Append the set T
x

(resp., F
x

) to (T

i

x

)

i

(resp., (F
i

x

)

i

). Now each set sequence (T

i

x

)

i

and (F

i

x

)

i

has size a
B

+ b
B

.
(b) For each u 2 B whose root bag is B, initialize set sequences (F

i

u

)

i

and (T

i

u

)

i

with 0s of length a
B

+ b
B

each, and set the bit at position lB
u

of F
Lv(B)

u

and T

Lv(B)

u

to 1. For every w 2 B with LD

B

(u,w) = 1 (resp.,
LD

B

(w, u) = 1), insert (F
i

w

)

i

to (F

i

u

)

i

(resp., (T
i

w

)

i

to (T

i

u

)

i

). Finally, set (Fi

u

)

i

equal to (F

i

u

)

i

(resp.,
(T

i

u

)

i

equal to (T

i

u

)

i

).

Figure 3 illustrates on a small example the sets F
u

, (Fi

u

)

i

and (T

i

u

)

i

constructed during the preprocessing.

It is fairly straightforward that at the end of the preprocessing, the i-th position of each set F
u

is 1 only if (u, v) 2 E⇤,
where v is such that i

v

�i
u

= i. The following lemma states the opposite direction, namely that each such i-th position
will be 1, as long as the path P : u v only visits nodes with certain indices.
Lemma 9. At the end of preprocessing, for every node u and v with i

u

 i
v

 i
u

+s
u

, if there exists a path P : u v
such that for every w 2 P , we have i

u

 i
w

 i
u

+ s
u

, then the (i
v

� i
u

)-th bit of F
u

is 1.

Proof. We prove inductively the following claim. For every ancestor B of B
v

, if there exists w 2 B and a path
P
1

: w v, then exists x 2 B \ P
1

such that i
x

 i
v

 i
x

+ s
x

and the i
v

� i
x

-th bit of F
x

is 1. The proof is by
induction on the length of the simple path P

2

: B B
v

.

1. If |P
2

| = 0, the statement is true by taking x = v, since the 0-th bit of F
v

is 1.
2. If |P

2

| > 0, examine the child B0 of B in P
2

. By Lemma 2, there exists x 2 B \ B0 \ P , and let P
3

: x v.
By the induction hypothesis there exists some y 2 B0 \ P

3

with i
y

 i
v

 i
y

+ s
y

and the i
v

� i
y

-th bit of
F

y

is 1. If y 2 B, we take x = y. Otherwise, B0 is the root bag of y, and by the local distance computation of
Theorem 1, it is LD

B

0
(x, y) = 1. Additionally, by the choice of x, y, we have i

x

< i
y

and s
x

� s
y

+ i
y

� i
x

,

11

1

8

9

2

10

3

6

4

7 5

(a)

8, 9, 10

1, 8, 9

2, 8, 10

2, 3, 10

7, 8, 9

6, 7, 9

4, 6, 9 5, 6, 7

(b)

u iu Bit-set Fu

0 1 2 3 4 5 6 7 8 9
2 0 1 1 1 1 0 0 1 0 1 1
8 1 1 0 0 0 0 0 0 0 1
10 2 1 1 0 0 1 0 1 1
9 3 1 0 0 1 0 1
7 4 1 1 1 1
6 5 1 1 0
4 6 1
5 7 1
1 8 1
3 9 1

(c)

i = 0 i = 1 i = 2 i = 3

v 2 8 10 8 9 10 7 8 9 6 7 9

l
Bi

6

v 0 1 2 0 1 2 0 1 2 0 1 2
(Fi

6

)i 1 1 1 1 1 1 0 1 1 1 0 1
(Ti

6

)i 0 0 0 0 0 0 1 0 0 1 1 0

(d)

Figure 3: (a), (b): A graph G and a tree-decomposition Tree(G). (c): The sets F
u

constructed from step 5 to answer
single-source queries. The j-th bit of a set F

u

is 1 iff (u, v) 2 E⇤, where v is such that i
u

� i
v

= j. (d): The set
sequences (Fi

u

)

i

and (T

i

u

)

i

constructed from step 6 to answer pair queries, for u = 6. For every i 2 {0, 1, 2, 3} and
ancestor Bi

6

of B
6

at level i, every node v 2 Bi

u

is assigned a local index l
B

i

6

v

. The j-th bit of set Fi

6

(resp. Ti

6

) is 1 iff
(6, v) 2 E⇤ (resp. (v, 6) 2 E⇤), where v is such that lB

i

6

v

= j.

12

thus i
x

 i
v

 i
x

+ s
x

. Then in step 5, F
y

is inserted in position i
y

� i
x

of F

x

, thus the bit at position
i
y

� i
x

+ i
v

� i
y

= i
v

� i
x

of F
x

will be 1, and we are done.

When B
u

is examined, by the above claim there exists x 2 P such that i
x

 i
v

and the i
v

� i
x

-th bit of F
x

is 1. If
x = u we are done. Otherwise, by the choice of P , we have i

u

< i
x

, which can only happen if B
u

is also the root bag
of x. Then in step 5, F

x

is inserted in position i
x

� i
u

of F
u

, and hence the bit at position i
x

� i
u

+ i
v

� i
x

= i
v

� i
u

of F
x

will be 1, as desired.

Lemma 10. At the end of preprocessing, for every node u, for every v 2 Bi

u

where Bi

u

is the ancestor of B
u

at level
i, we have that if (u, v) 2 E⇤ (resp., (v, u) 2 E⇤), then the l

B

i

u

v

-th bit of Fi

u

(resp., Ti

u

) is 1 .

Proof. The proof is by application of Lemma 2 inductively on the path Bi

u

 B, similarly to Lemma 9.

Lemma 11. Given a graph G with n nodes and treewidth t, let T (G) be the time and S(G) be the space required for
constructing a balanced binary tree-decomposition of G with O(n) bags and width O(t). The preprocessing phase of
Reachability on G requires O(T (G) + n · t2) time and O(S(G) + n · t) space.

Proof. First, we construct a binary tree-decomposition Tree(G) of G with b = O(n) bags, height h = O(log n) and
width t0 = O(t) in T (G) time and S(G) space. We establish the complexity of each preprocessing step separately.

1. By a standard construction for balanced trees, preprocessing T to answer LCA queries in O(1) time requires
O(b) = O(n) time.

2. By Theorem 1, this step requires O(n · t02) = O(n · t2) time and O(n · t0) = O(n · t) space.
3. Every bag B is visited once, and each operation on B takes constant time. We make O(t0) such operations in

B, hence this step requires O(b · t0) = O(n · t) time in total.
4-5. The space required in this step is the space for storing all the sets F

u

of size s
u

each, packed into words of length
W :

X

u2V

l s
u

W

m
=

hX

i=0

X

u:Lv(u)=i

l s
u

W

m


hX

i=0

X

u:Lv(u)=i

⇣ s
u

W
+ 1

⌘

=

1

W
·

hX

i=0

X

u:Lv(u)=i

s
u

+

hX

i=0

X

u:Lv(u)=i

1  1

W
·

hX

i=0

n · (t0 + 1) + n = O(n · t)

since h = O(log n), t0 = O(t) and W = ⇥(log n). Note that we have
P

u:Lv(u)=i

s
u

 n · (t0 + 1) because
|
S

u

F

u

|  n (as there are n nodes) and every element of
S

u

F

u

belongs to at most t0 + 1 such sets F
u

(i.e., for
those u that share the same root bag at level i). The time required in this step is O(n · t) in total for iterating
over all pairs of nodes (u, v) in each bag B such that B is the root bag of either u or v, and O(n · t2) for the set
operations, by amortizing O(t) operations per word used.

6. The time and space required for storing each sequence of the sets (Fi

u

)

0iLv(u) and (T

i

u

)

0iLv(u) is:

X

u2V

2 ·
⇠
a
B

u

+ b
B

u

W

⇡
 2 · n ·

⇠
(t0 + 1) · h

W

⇡
= O(n · t)

since a
B

u

+ b
B

u

 (t0 + 1) · h, h = O(log n) and W = ⇥(log n).
7. The space required is the space for storing the set sequences (T

i

v

)

i

and (F

i

v

)

i

, which is O(t2) by a similar
argument as in the previous item. The time required is O(t) for initializing every new set sequence (T

i

u

)

i

and
(F

i

u

)

i

and this will happen once for each node u at its root bag B
u

, hence the total time is O(n · t).

13

Reachability Querying. Given the preprocessing of Reachability, each query is answered as follows.

Pair query. Given a pair query (u, v), find the LCA B of bags B
u

and B
v

. Obtain the sets FLv(B)

u

and T

Lv(B)

v

of size
b
B

. Both sets start in bit position a
B

of the sequences (Fi

u

)

i

and (T

i

v

)

i

. Return True iff the logical-AND of the
sets FLv(B)

u

and T

Lv(B)

v

contains an entry which is 1.
Single-source query. Given a single-source query u, create a bit set A of size n, initially all 0s. For every node x 2 B

u

with i
x

 i
u

, if the lBu

x

-th bit of FLv(u)
u

is 1, insert F
x

to the segment [i
x

, i
x

+ s
x

] of A. Then traverse the path
from B

u

to the root of T , and let Bi

u

be the ancestor of B
u

at level i < Lv(B
u

). For every node x 2 Bi

u

, if the
l
B

i

u

x

-th bit of Fi

u

is 1, set the i
x

-th bit of A to 1. Additionally, if Bi

u

has two children, let B be the child of Bi

u

that is not ancestor of B
u

, and j
min

and j
max

the smallest and largest indices, respectively, of nodes whose root
bag is in T (B). Insert the segment [j

min

� i
x

, j
max

� i
x

] of F
x

to the segment [j
min

, j
max

] of A. Report that the
set of nodes v reached from u is those v for which the i

v

-th bit of A is 1.
Lemma 12. After the preprocessing phase of Reachability, pair and single-source reachability queries are answered
correctly in O

⇣l
t

logn

m⌘
and O

⇣
n·t
logn

⌘
time respectively.

Proof. The correctness of the pair query comes immediately from Lemma 10 and Lemma 1, which implies that every
path u v must go through the LCA of B

u

and B
v

. The time complexity follows from the O
�⌃

t

W

⌥�
word operations

on the sets FLv(B)

u

and T

Lv(B)

v

of size O(t) each.

Now consider the single-source query from a node u and let v be any node such that there is a path P : u v. Let B be
the LCA of B

u

, B
v

, and by Lemma 1, there is a node y 2 B \P . Let x be the last such node in P , and let P 0
: x v

be the suffix of P from x. It follows that P 0 is a path such that for every w 2 P 0 we have i
x

 i
w

 i
x

+ s
x

.

1. If B
v

is an ancestor of B
u

, then necessarily x = v, and by Lemma 10, the lB
v

-th bit of FLv(B)

u

is 1. Then the
algorithm sets the i

v

-th bit of A to 1.
2. Else, B

x

is an ancestor of B
v

(recall that a bag is an ancestor of itself), and by Lemma 9, the (i
v

� i
x

)-th bit of
F

x

is 1.
(a) If B is B

u

, the algorithm will insert F
x

to the segment [i
x

, i
x

+ s
x

] of A, thus the i
x

+ i
v

� i
x

= i
v

-th bit
of A is set to 1.

(b) If B is not B
u

, it can be seen that j
min

 i
v

 j
max

, where j
min

and j
max

are the smallest and largest
indices of nodes whose root bag is in T (B0

), with B0 the child of B that is not ancestor of B
u

. Since
the (i

v

� i
x

)-th bit of F

x

is 1, the (i
v

� j
min

)-th bit of the [j
min

, j
max

] segment of F

x

is 1, thus the
j
min

+ i
v

� j
min

= i
v

-th bit of A is set to 1.

Regarding the time complexity, the algorithm performs O(h · t0) = O(h · t) set insertions to A. For every position j
of A, the number of such set insertions that overlap on j is at most t0 + 1 (once for every node in the LCA of B

u

and
B

v

, where v is such that i
v

= j). Hence if H
i

is the size of the i-th insertion in A, we have
P

i

H
i

 n · (t0 + 1).
Since the insertions are word operations, the total time spent for the single source query is

hX

i=0

⇠
H

i

W

⇡
 h+

hX

i=0

H
i

W
 h+

n · (t0 + 1)

W
= O

✓
n · t
log n

◆

since h = O(log n), t0 = O(t) and W = ⇥(log n).

5 Distance Queries in Low-Treewidth Graphs

In this section we describe a method for preprocessing low-treewidth graphs in order to answer distance queries. We
provide a data-structure called Distance which is parametric on some � 2 N, and yields the following result.

14

Theorem 3. Given a graph G of n nodes and treewidth t, let T (G) be the time and S(G) be the space required
for constructing a nice tree-decomposition Tree(G) of O(n) bags and width t. For any � 2 N, the data-structure
Distance correctly answers distance queries on G and requires

1. O
⇣
T (G) + (�+ 2) · n · t2 · log(�)⇤ n

⌘
preprocessing time;

2. O
⇣
S(G) + (�+ 2) · n · t · log(�)⇤ n

⌘
space;

3. O
�
(�+ 1) · t2

�
pair query time; and

4. O(n · t) single-source query time.

The algorithms of this section are based on Lemma 3 which states that for nodes that appear in bags B, B0 of the
tree-decomposition T = Tree(G), their distance can be written as a sum of distances d(x

i

, x
i+1

) between pairs of
nodes (x

i

, x
i+1

) that appear in bags B
i

that constitute the unique B B0 path in T . Recall that the local distance
computation of Section 3 provides a way for computing such distances d(x

i

, x
i+1

) fast. Here we build on top of the
local distance computation to develop a data-structure called Distance for answering distance queries. The main part
of the preprocessing consists of manipulating summary trees. Intuitively, given a tree-decomposition T , a summary
tree T of T consists of a subset of bags of T , such that:

1. The tree T is obtained from T by removing some bags and adding edges from their parents to their children.
2. For bags B with children B0 in T , for all u 2 B and v 2 B0, the distances d(u, v) and d(v, u) are stored in B0.

Hence, in such a summary tree T , the distances between all nodes in B and B0 have been summarized and can be
retrieved fast, regardless of the length of the B B0 path in T (which we would otherwise have to pay as a cost for
retrieving them using Lemma 3). The preprocessing of the data-structure applies recursive summarizations of T , so
that in the end, for any two nodes u, v 2 V , the distance d(u, v) can be written as a sum of O(� + 1) summarized
distances, which can be retrieved by looking up O((�+1) · t2) such summarized distances. The algorithmic technique
is an adaptation of [3]. A direct application results in higher preprocessing time, space, and query time complexities
by at least a factor of t (as in [18]).

A note on preprocessing. Most of this section focuses on answering pair distance queries d(u, v). Such a query is
computed by retrieving the distances d(u, x) and d(x, v), where x ranges over nodes of the bag B that is the LCA
of B

u

and B
v

in Tree(G). For ease of presentation, we describe the preprocessing phase of Distance for handling
queries d(u, v) where B

u

is an ancestor of B
v

. The case where B
u

is a descendant of B
v

is follows by straightforward
modifications of the former case, and is omitted.

Summary trees. Given a tree-decomposition T = Tree(G), a summary tree of T is a pair (T ,BS) where:

1. T = (V
T

, E
T

) is a (connected) tree with V
T

✓ V
T

, and each bag of T is a child of its lowest ancestor in T that
appears in T .

2. BS are collections of summary maps defined as follows. For each node u such that B is a smallest-level bag
in T that contains u, and B0 is the parent of B in T , the backward summary map of u in T is defined as
BS

B

u

: B0 ! Z with BS

B

u

(v) = d(v, u).

Observe that for any bag B and ancestor B0 of B in T , every intermediate bag B00 in the simple path B B0 in T
is also an intermediate bag in the simple path B B0 in T . It follows from property T3 of tree-decompositions that
B00 ✓ B \ B0. Similarly to tree-decompositions, we say that a bag B “forgets” a node u, if u 2 B and u 62 B0 for
every ancestor B0 of B in T . In contrast to tree-decompositions, u might have more than one forget bags.

Operations on summary trees. The preprocessing phase of Distance on the tree-decomposition T = Tree(G)

constructs a summary tree T out of T , and further preprocesses it, using the following operations. Given a summary
tree T , we partition it into components and apply recursive summarizations on the components. To achieve certain
bounds on the partitions, we first make T binary, and then apply the partitioning. Then, the root and leaf distance map
computation is applied in each component, to calculate the distances to nodes appearing in the root and leaves of the
component. Finally the summarization procedure constructs a new summary tree from the roots of the components, and
the process repeats recursively. The operations of tree binarization, tree f(k)-partitioning, root and leaf distance map

15

computation, and tree summarization are described below. Based on them, we afterwards give a formal description of
the preprocessing.

T

T
i

...

Step 3 for �

T
j

...

Step 3 for �

Step 3 for �� 1

T
0

Figure 4: Scheme of the Step 3 recursion of the preprocessing of Distance for a given �. A summary tree T of size k
is partitioned into components of size f(k) each, and the root and leaf distance set computation is executed. The root
bags are shown in boldface. The recursion is then two-fold: (1) the roots of the components form a new summary tree
T

0
which is recursively processed for � � 1, and (2) each component is itself a summary tree, recursively processed

for �.

Tree binarization. Given a summary tree (T ,BS) of some T = Tree(G), the binarization of T is done as follows.
For every bag B with children B

1

, . . . B
j

, if j � 3, then introduce j � 2 copies of B, namely, bB
2

, bB
3

, . . . , bB
j�1

. The
transformation is as follows: B has two children, bB

2

and B
1

; for all 2  i  j � 2 the two children of bB
i

are B
i

and
bB
i+1

; and finally, the last copy bB
j�1

has bags B
j

and B
j�1

as children. If T has k bags, this process takes O(k · t)
time, and the size of the new tree is at most 2 · k. Note that the binarized tree (T ,BS) is also a summary tree of T . In
the sequel we only consider summary trees (T ,BS) where T is a binary tree.

Tree f(k)-partitioning. Given a function f : N ! N, a k 2 N and a binary summary tree (T ,BS) of some tree-
decomposition T with |V

T

| = k bags, the f(k)-partitioning of T consists of partitioning T into O
⇣

k

f(k)

⌘
connected

components that contain at most f(k) bags each. The partitioning is performed as follows: use a DFS to keep track of
the number of nodes in each subtree eT of T , and whenever the number of nodes in eT becomes at least f(k)

2

cut eT off
into its own component. Note that since (T ,BS) is binary, no component becomes larger than f(k). This partitioning
takes linear time in the size of T . Each component T

i

of the partitioning is a summary tree of T .

Root and leaf distance map computation. Consider a summary tree (T ,BS) and an f(k)- partitioning on T , and
examine each component T

i

with root Bi

0

. For every node u that appears in some bag of T
i

, we compute the root
and leaf distance maps R

u

: Bi

0

! Z [{1} and Lj

u

: Bj

0

! Z [{1} of u defined as R
u

(v) = d(v, u) and
Lj

u

(v) = d(u, v) where Bj

0

is the root of a child component T
j

of T
i

in the partitioning, and that Bj

0

has an ancestor
bag B in T

i

that forgets u. In the following we describe the construction of these maps. We consider that the local
distance computation from Section 3 has been carried out (i.e., for each bag B we have constructed the map LD

B

with
LD

B

(u, v) = d(u, v) for all u, v 2 B).

• (Root distance map computation). For each v 2 Bi

0

, to determine the distance R
u

(v) = d(v, u) for all nodes u
that appear in bags of T

i

, execute the following steps. Execute a BFS in T
i

, and upon examining a bag B, for

16

each node u that B forgets, assign

R
u

(v) = min

y2B

(R
y

(v) + LD

B

(y, u))

• (Leaf distance map computation). The leaf distance computation is similar to the root distance computation: For
every root Bj

0

of a child component T
j

of T
i

and every v 2 Bj

0

, to determine the distance Lj

u

(v) for all nodes
u that appear in bags of T

i

, traverse the path Bj

0

 Bi

0

. For every encountered bag B and u 2 B, let y range
over nodes that B forgets. Assign

Lj

u

(v) = min

y

�
Lj

y

(v) + LD

B

(u, y)
�

The correctness of the construction follows from Lemma 3 and a simple induction on the BFS. The time and space
requirement of the root and leaf distance map computation is as follows: Each root of each component is the source
of at most 2 · (t+ 1) traversals, leading to O

⇣
t · k

f(k)

⌘
traversals of length O(f(k)) each. If each bag of T forgets at

most n0 nodes, then the cost of each step of each traversal is O(t · n0
) for updating the set A and the distance maps of

the n0 nodes for which the current bag of the traversal forgets. Hence the total time spent is O(k · t2 · n0
). The space

required is dominated by the space used for storing the root and leaf distance maps, which is bounded by O(k · t · n0
),

since there exist O
⇣

k

f(k)

· t
⌘

nodes v that appear in the root bag of some component T
i

, and each such node appears
in O(f(k) · n0

) distance maps.

Tree summarization. Consider a summary tree (T ,BS) of size k that has been partitioned into k

f(k)

components, for
some f , and the root and leaf distance map computation has been carried out. The summarization of T is done by
constructing a new summary tree (T

0
,BS0) as follows. The bag set V

T

0 contains all the bags Bi

0

that appeared as the
root of some component T

i

of the partitioning. A bag Bi

0

is a parent of Bj

0

in T
0

iff T
j

is a child component of T
i

in
the partitioning of T . For every node u such that there is a bag Bj

0

in T
0

that forgets u, let Bi

0

be the parent of Bj

0

in
T

0
. Let B be the parent bag of Bj

0

in T . We construct the new backwards summary map BS

0
B

j

0

u

: Bi

0

! Z [{1} as

BS

0
B

j

0

u

(v) = min

y2B

(BS

B

j

0

u

(y) +R
y

(v))

if the bag Bj

0

forgets u in T , otherwise BS

0
u

= R
u

.

If there are at most n0 nodes that each bag of T
0

forgets, the computation of the summary maps requires
O
⇣

k

f(k)

· t2 · (n0
+ 1)

⌘
, since there are O

⇣
k

f(k)

⌘
bags in T

0
, and we spend O(t2) time for each of the O(n0

) nodes that

each such bag forgets (plus some linear in k

f(k)

term for all other nodes). The space required is O
⇣

k

f(k)

· t · (n0
+ 1)

⌘

for storing the newly computed summary maps.

Preprocessing T = Tree(G). Now we describe the preprocessing of T in order to answer distance queries of the
form (u, v), where B

u

is an ancestor of B
v

. We later show how to answer general pair queries. The preprocessing
is parametric on an arbitrarily chosen � 2 N, which results in O((� + 2) · n · t2 log(�)⇤ n) preprocessing time and
O
�
(�+ 1) · t2

�
query time (see Figure 4). The preprocessing phase of Distance is performed as follows.

Step 1 First, use LocDis from Section 3 to compute the local distance maps in T , and construct the summary tree
(T ,BS), of T with V

T

= V
T

. The computation of the summary edges BS is done by traversing T via DFS,
and for each bag B

u

with parent B, constructing LD

B

. Lemma 3 implies that for each v 2 B, we have
d(u, v) = min

y2B

u

\B

(d(u, y) + d(y, v)) and d(v, u) = min

y2B

u

\B

(d(v, y) + d(y, u)). These distances
exist in LD

B

, and are used to construct the backward summary map BS

u

.
Step 2 Apply the root and leaf distance map computation on T , recursively for log(�+1)⇤ n levels, and f(k) = t ·

log

(�)⇤ k. That is, each time consider a summary tree of k bags, partition it into O
⇣

k

t·log(�)⇤
k

⌘
components

of size f(k) each, and compute the root and leaf distance maps. The next level processes summary trees T
i

17

corresponding to components in the current level. Initially we have k = O(n). For every partitioned summary
tree T

i

constructed in this recursion, perform a tree summarization, and let T
0
i

be the resulting summary tree.
Execute Step 3 on T

0
i

for �� 1.
Step 3 Given a summary tree T of size k and some � execute the following steps:

(a) If � � 0, perform an f(k) = log

(�)⇤ k partitioning of T , and compute the root and leaf distance maps for
each component T

i

. If T
i

has size more than one, execute Step 3 on T
i

for �. Perform a summarization
on the partitioned tree T , and let T

0
be the resulting summary tree. Then, execute Step 3 on T

0
for �� 1.

(b) If � = �1, perform an f(k) = 2·k
3

partitioning of T , and compute the root and leaf distance maps for each
component T

i

. If T
i

has size more than one, execute Step 3 on T
i

for �.
Step 4 For every summary tree T in the last level of the recursion of Step 2, perform an all-pairs distance computation

on the subgraph of G induced by nodes u that appear in T .
Step 5 Preprocess each recursion tree generated in Steps 2 and 3 to answer LCA queries in constant time [28].

The time and space of preprocessing. Here we analyze the time and space requirements of Steps 1 to 5 of the
preprocessing.
Lemma 13. Given a nice tree-decomposition T of G and some � 2 N, the preprocessing requires
O
⇣
(�+ 2) · t2 · n · log(�)⇤ n

⌘
time and O

⇣
(�+ 2) · t · n log

(�)⇤ n
⌘

space.

Proof. We discuss the time and space complexity of each step below.

Step 1 LocDis requires O(n · t2) time and O(n · t) space (Lemma 8). The construction of the summary maps BS
u

happens at most once for each node u, requiring O(t2) time for building the local distance map LD

B

of the
parent bag B of B

u

, and O(t2) time for calculating d(u, v) for all v 2 B. Hence this step requires O(n · t2)
time. The space required is O(n · t) for storing the computed summary tree.

Step 3 Given a summary tree of k bags, each bag is the root bag of at most t+1 nodes, so we substitute n0
= (t+1) for

the cost of the distance map computation and tree summarization. Then, the time spent for root and leaf distance
map computation, as well as tree summarization is O(k · t3). Let T

�

(k) denote the time spent in Step 3 on a
summary tree of size k for a parameter �. It is easy to verify that for � = �1, it is T

�

(k) = O
�
t3 · k · log k

�
.

For � � 0, it is

T
�

(k)  k

log

(�)⇤ k
· T

�

⇣
log

(�)⇤ k
⌘
+ T

��1

✓
k

log

(�)⇤ k

◆
+O

�
k · t3

�

and thus T
�

(k) = O
⇣
(�+ 2) · t3 · k log(�+1)⇤ k

⌘
.

Similarly, the space used for Step 3 is O
⇣
(�+ 2) · t2 · k · log(�+1)⇤ k

⌘
.

Step 2 In each level of the recursion of Step 2, every summary tree is a subtree of the nice tree-decomposition T . It
follows that for the distance map computation and tree summarization n0

= 1, since every bag is the root bag of
at most one node. For a summary tree of size k in some level i of the recursion, the time spent for the distance
map computation, summarization, and calls to Step 3 is then

O(k · t2) + T
��1

✓
k

t · log(�+1)⇤ k

◆
= O

�
(�+ 2) · k · t2

�

and since there are O
�
n

k

�
summary trees in level i, the total time spent in processing level i is O((� +

2) · n · t2). Finally, there are O
⇣
log

(�+1)⇤ n
⌘

such levels, and the total time spent in Step 2 is

O
⇣
(�+ 2) · t2 · n log

(�+1)⇤ n
⌘

. Similarly, the space used is O
⇣
(�+ 2) · t · n · log(�+1)⇤ n

⌘

Step 4 Note that every summary tree T in the last level of the recursion of Step 2 has size at most

18

t · log(�)⇤
⇣
t · log(�)⇤

⇣
. . . t · log(�)⇤ O(n)

⌘⌘

| {z }
log

(�+1)⇤
n applications

= t ·
✓
log

(�)⇤ t+ log

(�)⇤
log

(�)⇤ t+ · · ·+ log

((�)⇤)log
(�+1)⇤

n�1

t+O(1)

◆

= O
⇣
t · log(�)⇤ t

⌘

since in discrete context, for all x � 0, we have log

(�)⇤ x  2·x
3

, and hence
P

i

log

((�)⇤)i t  3 · log(�)⇤ t.
Since T is a subtree of a nice tree-decomposition, the total number of nodes that appear in T is O

⇣
t · log(�)⇤ t

⌘
.

It follows by the way edges are stored in T that the number of edges in T is O
⇣
t2 · log(�)⇤ t

⌘
. We conclude

that the all pairs distance computation in T requires O

✓
t3 ·

⇣
log

(�)⇤ t
⌘
2

◆
time, and there are O

⇣
n

t·log(�)⇤
t

⌘

such summary trees T , resulting in O
⇣
t2 · n · log(�)⇤ t

⌘
total time. The space required is O

⇣
t · n · log(�)⇤ t

⌘

for storing n

t·log(�)⇤
t

lookup matrices of size O

✓⇣
t · log(�)⇤ t

⌘
2

◆
each.

Step 5 We can preprocess each recursion tree in time and space proportional to its size [36] so this step adds no
overhead to the complexity.

The desired result follows.

Ancestor pair query. Given u, v 2 V with B
u

being an ancestor of B
v

, the task is to retrieve d(u, v). First, test
whether the query can be answered by the lookup tables constructed in Step 4. If not, perform an LCA query on the
recursion tree of Step 2 to find the smallest component T of T that contains both bags B

u

and B
v

, and it follows that
B

u

and B
v

appear in two different sub-components T
u

and T
v

. We obtain the corresponding root distance map R
v

of
v and the leaf distance map Lj

u

of u, such that Bj

0

is the root of the last component T
j

on the path between T
u

and T
v

(possibly T
j

= T
v

)1. We consider the following cases:

1. If T
v

is a child component of T
u

, then d(u, v) = min

y2B

j

0

(d(u, y) + d(y, v)), where both distances have been
computed in Lj

u

and R
v

respectively. This requires O(t) time.
2. If T

v

is not a child component of T
u

, the process repeats recursively for the recursion of Step 3 and bags Bj

0

and Bv

0

, where Bv

0

is the root of T
v

. Lemma 3 implies that

d(u, v) = min

u

02B

j

0

,v

02B

k

0

(d(u, u0
) + d(u0, v0) + d(v0, v))

and the goal is to retrieve all distances d(u0, v0), as d(u, u0
) and d(v0, v) have been computed in Lj

u

and R
v

respectively. Using the same process as for u, v, all O(t2) distances d(u0, v0) are retrieved recursively. The
process might be repeated further on the recursion of Step 3, for up to � + 1 levels. Hence the worst case time
for answering the query is O((�+ 1) · t2). The core process is depicted in Figure 5.

Pair query. The preprocessing and query phases for answering distance queries (u, v) where B
v

is an ancestor of B
u

is similar to that where B
u

is ancestor of B
v

. In order to handle general pair queries, additionally preprocess T to
answer LCA queries in constant time. Let B be the LCA of B

u

and B
v

. Using the ancestor pair queries from above,
we can compute the maps M,N : B ! Z[{1} such that M(y) = d(u, y) and N(y) = d(y, v) for all y 2 B. Given
these maps, we have d(u, v) = min

y

(M(y) +N(y)).

Single-source queries. The query from a node u consists of accessing the bags of Tree(G) via DFS, starting in
the bag B

u

. The algorithm maintains a map d0
u

(v) for all v 2 V , initialized with d
u

(v) = LD

B

u

(u, v) for all
v 2 B

u

, d0
u

(v) = 1 for all other v. Upon examining a bag B
v

for some v 2 V for which d0
u

(v) = 1, it updates
d0
u

(v) = min

x2B

v

(d0
u

(x) + LD

B

v

(x, v)). Finally, it returns the map d0
u

.
1This can be done using the algorithm in [36] which we currently use for LCA queries

19

B
u

Bj

0

= Bv

0

B
v

T u

T v

u

y

v

d(u, y) 2 L
j

(u)

d(y, v) 2 R(v)

(a)

B
u

Bj

0

Bv

0

B
v

T u

T v

u

u0

v0

v

d(u, u0
) 2 L

j

(u)

d(v0, v) 2 R(v)

d(u0, v0) from Step 3
recursively

(b)

Figure 5: The two cases described in the query (u, v). Boldface bags are the root bags of their components. (a) If T
v

is a child component of T
u

, the answer is retrieved from Step 2 recursion, by combining L
j

(u) and R(v).(b) If T
v

is
not a child component of T

u

, the additional distances d(u0, v0) are retrieved from Step 3 recursion.

Correctness. The preprocessing consists of summarizing distances along paths B B0 of T , for all u 2 B and
v 2 B0, where B and B0 are chosen conveniently to allow for fast queries. The correctness of the queries then follows
directly from Lemma 3.
Remark 4. The algorithmic technique of distance summarization on trees has been developed in [3], and has been
adapted on tree decompositions for the purpose of distance queries in [18], and more general semiring queries in [26].
However, our algorithm Distance utilizes our improved local distance computation (Section 3) and the notion of
summary trees, and leads to a factor t improvement of all resource bounds w.r.t. the previous results, i.e. preprocessing
time, space and query time.

6 Preprocessing Linear in n

In this section we describe a modification of the preprocessing described in Section 5 that reduces the preprocessing
time to linear in n (i.e., O

�
n · t2

�
), at the expense of increasing the pair query time to O(t2 · ↵(n) ·min(log t,↵(n)).

We first describe the result for query time O(t2 · ↵2

(n)), and then remark the required modifications for obtaining
O(t2 · ↵(n) ·min(log t,↵(n)) time.

Note that by using � = ↵(n) � 1 in the preprocessing phase of algorithm Distance of Section 5, we achieve prepro-
cessing time O

�
t2 · n · ↵2

(n)
�
. Intuitively, the super-linear bound in n arises because of O(↵(n)) levels of recursion

in Step 2, each one spawning ↵(n) recursions in Step 3, until the parameter � becomes �1. In this section we modify
Distance to obtain a data-structure called DistanceLP (linear preprocessing for distance) that slightly alters Step 2 to

20

remove the dependency on ↵2

(n). In this direction, we consider only the case where t  n

↵

2

(n)

. The preprocessing
phase of DistanceLP is obtained by applying the following modifications to that of Distance.

1. Instead of Step 2, partition T into O
⇣

n

t·↵2

(n)

⌘
components of size O

�
t · ↵2

(n)
�

each. Perform a summarization

on T , and apply Step 3 on the resulting summary tree T
0

for � = ↵(n)� 1.
2. Skip Step 4.

It follows easily from the analysis of Lemma 13 that the preprocessing of DistanceLP requires O
�
n · t2

�
time and

O(n · t) space.

Ancestor pair query. Given a query (u, v), where B
u

is an ancestor of B
v

, proceed as follows. If B
u

and B
v

belong
to the same component T

i

of the modified Step 2, the query is answered by performing the single-source distance
search in the component T

i

starting from B
u

. This is run as the single-source query of algorithm Distance, with
additionally restricting the DFS to the nodes that appear in T

i

. If B
u

and B
v

appear in different components T
u

and
T

v

respectively, a single-source distance algorithm is executed in each one to determine the distances d(u, u0
) and

d(v0, v) for all u0 2 Bj

0

and v0 2 Bv

0

, where Bj

0

is the the root of the unique child component of T
u

on the path
B

u

 B
v

, and Bv

0

is the root of T
v

. Then for all such u0, v0, the distances d(u0, v0) are determined as in the algorithm
Distance, from the recursion of Step 3, and d(u, v) is then

d(u, v) = min

u

02B

j

0

,v

02B

v

0

(d(u, u0
) + d(u0, v0) + d(v0, v)) .

The query time is then O(↵2

(n) · t2 + ↵(n) · t2) = O(↵2

(n) · t2), where the first term is for the single-source queries
inside each component of size O(↵2

(n) · t), and the second term is for determining d(u0, v0) for all described u0, v0,
using at most ↵(n) levels of recursion of Step 3.

Pair query. The preprocessing and query phases for answering shortest path queries (u, v) where B
v

is an ancestor of
B

u

is similar to that where B
u

is ancestor of B
v

. In order to handle general pair queries, additionally preprocess T to
answer LCA queries in constant time. Let B

i

be the LCA of B
u

and B
v

. Using the ancestor pair queries from above,
we can compute the maps M,N : B ! Z[{1} such that M(y) = d(u, y) and N(y) = d(y, v) for all y 2 B. Given
these maps, we have d(u, v) = min

y

(M(y) +N(y)).

Correctness. The correctness of DistanceLP follows from the correctness of DistanceLP and Distance, and we thus
obtain the following theorem.
Theorem 4. Given a graph G of n nodes and treewidth t, let T (G) be the time and S(G) be the space required
for constructing a nice tree-decomposition Tree(G) of O(n) bags and width t, where t  n

↵

2

(n)

. The data-structure
DistanceLP correctly answers distance queries on G and requires

1. O(T (G) + n · t2) preprocessing time;
2. O(S(G) + n · t) space;
3. O(t2 · ↵2

(n)) pair query time; and
4. O(n · t) single-source query time.

Remark 5. Note that the data-structure DistanceLP requires O(t2 · ↵2

(n)) pair query time compared to the query
time of O(t4 · ↵(n)) from [18], and thus, is slower when t2  ↵(n). To obtain an algorithm which is faster, even
for such small t, in each component created in Step 2, we preprocess the component similarly to the algorithm in [3,
Section 3] with linear preprocessing time in n0 and logarithmic query time in n0 where n0 is the size of the component.
By using the technique of local distance computation introduced in this paper, we obtain an O(n0 · t2) preprocessing
time and O(n0 · t) space for a component of size n0 and query time of O(log(n0

) · t2). Since each component has size
O(↵2

(n)·t) and there are O(

n

↵

2

(n)·t) of them, this requires O(n·t2) time for preprocessing, O(t2 ·log t·log(↵2

(n))) =

O(t2 · log t · ↵(n)) time for a pair query, and O(n · t) space. Thus we obtain bounds that are better than the previous
preprocessing time and space, and pair query time [18].

21

7 Space vs Query Time Tradeoff for Sub-linear Space

The algorithm in Section 6 suggests a way to trade query time for space. Here we present the data-structure LowSpDis
(for low space). The idea is to create sufficiently large components in the initial partitioning of T , for which no pre-
processing is done. Then, a summarization T

0
of T is of sufficiently small size to be preprocessed by DistanceLP.

Answering a query (u, v) is handled similarly as in DistanceLP, but requires additional time for processing the com-
ponents in which u and v appear (since they have not been preprocessed). The results of this section are stated in the
following theorem and corollary.
Theorem 5. Consider (1) a constant ✏ 2 (0, 1]; (2) a weighted graph G = (V,E,wt) with n nodes; and (3) a
nice tree-decomposition Tree(G) of G of width t, for t  n

↵

2

(n)

, that consists of O(n) bags; and (4) for each bag
B 2 Tree(G) the number of bags in the subtree under B. The data-structure LowSpDis correctly answers pair
distance queries on G and requires

1. O(n · t2) preprocessing time;
2. O(n✏ · t2) working space; and
3. O(n1�✏ · t2 · ↵2

(n)) pair query time

In many cases it might not be reasonable to assume that so many things are part of the input tape as described in the
remark. Alternately, if only a weighted graph is in the input we can still trade time for space, but only down to

p
n

space.
Corollary 2. Let (1) a constant ✏ 2 [1/2, 1]; and (2) a weighted graph G = (V,E,wt) with n nodes and of constant
treewidth, be given. Then there exists an algorithm that correctly answers pair distance queries on G and requires

1. Polynomial in n preprocessing time;
2. O(n✏

) working space; and
3. O(n1�✏ · ↵2

(n)) pair query time.

We first describe modifications in the tree partitioning and local distance computation that allows LowSpDis to operate
in the desired space bounds.

Tree partitioning: The algorithm LowSpTreePart. We first present the algorithm LowSpTreePart for computing a
tree partitioning in little space. Given a nice tree-decomposition T = Tree(G) for a given graph G over n nodes and a
number j  n the algorithm LowSpTreePart partitions T into O(

n

j

) connected components forming a component tree,
each containing O(j) bags, in O(n) time and O(

n

j

) extra space. The partitioning is, like in Section 5, based on a post-
order DFS traversal of the tree. In the DFS traversal, the algorithm has a component forest (which forms a component
tree at the end of the traversal), a set of trees, where each tree consists of bags, which are roots of components. Also,
in the DFS traversal, the algorithm has a stack of triples (`, c, L) where ` is a level, c is a number (of bags), and L is a
list of trees in the component forest. Consider a step of the DFS traversal, in which the algorithm considers some bag
B at level i:

1. First, the DFS traversal partitions the children of B recursively, because it is post-order.
2. Second, consider the (at most) two triples on the stack with level i. Let them be (i

`

, c
`

, L
`

) and (i
r

, c
r

, L
r

)

respectively if they exist.
3. If (i

k

, c
k

, L
k

) was not in the stack for k 2 {`, r}, then let (i
k

, c
k

, L
k

) = (i, 0, ;).
4. Let c0 = c

`

+ c
r

be the number of bags cut off below B and let c00 be the number of bags in T (B).
5. If c00 � c0 � j, then

(a) Add B to the component forest, with each B0 2 L
k

, for k 2 {`, r} as children and remove B0 from the
forest.

(b) Add (i� 1, c00, (B)) to the stack, where (B) is the list that contains only B.
6. Otherwise, if c00 � c0 < j and c0 > 0, add (i� 1, c0, L

`

�L
r

) to the stack, where L
`

�L
r

is the concatenation of
the lists L

`

and L
r

.
7. Otherwise, if c00 � c0 < j and c0 = 0, add nothing to the stack.
8. Follow the post-order DFS traversal to the parent of B.

22

Lemma 14. Given a number j, the algorithm LowSpTreePart computes a partitioning of T into O(n/j) partitions
each of size between j and 2 · j, except for one component, in time O(n) and requiring O(n/j) extra space.

Proof. Observe that the number of edges in the component forest is at most the number of cuts, that is at most O(n/j).
Also, at all points, each triple (i, c, L) in the stack, is such that L is not the empty list and each component tree in the
component forest is in precisely one triple of the stack. This shows that it contains at most O(n/j) triples and the sum
of the length of the lists used is also at most O(n/j). Note that the total time used is O(n) for the DFS traversal.

The extended component Ext(C). In a partition with a component C, let component Ext(C) be the component C
together with the bags which are the roots of the child-components of C in the component tree. Note that Ext(C)

contains at most twice the number of bags of C, because the tree-decomposition T was nice (and thus binary).

Local root distance computation: The algorithm LowSpLocDis. Let ✏ > 0 be a given constant, and let A = n✏ · t2.
Consider some component tree T . We now describe how to recursively perform the local distance computation (as
described in Section 3) of roots of components in T (and find negative cycles anywhere). The resulting algorithm
will be called LowSpLocDis and will require O(n · t2) time and O(A) space. We will describe the computation on a
(sub)-component, using recursion. Consider some partitioning of T and a component C and let K be the size of C.
Let {B

1

, B
2

, . . . B
j

} be the set of roots of components in Ext(C). We have two parts, each corresponding to a pass
of the algorithm LocDis. The first pass is as follows:

Base case: If K · t  n✏, execute the following steps:
(a) Compute the first pass of local distance computation in G[C], following LocDis.
(b) Check if there is a negative cycle by testing if d(u, u) < 0 for some u 2 C. If so terminate the recursion

and return “Negative cycle”.
(c) Store the local distances d(u, v) for u, v 2 B

i

as a ((t+ 1)⇥ (t+ 1))-matrix M
i

in B
i

for each i.
(d) Discard everything, but the matrices M

i

constructed in the previous step.
Recursive case: Otherwise, if K · t > n✏, execute the following steps:

Partition step: Partition C up into O(n✏

) sub-components {C
1

, C
2

, . . . , C
j

} forming a component tree bT , such
that each C

i

has size O(

K

n

✏

) using LowSpTreePart.
(a) Consider repeatedly C

i

, such that the first pass of local root distances has been computed for the roots of
all children of C

i

in bT (this is initially the case for the leaves).
i. Compute recursively the first pass of local root distances on Ext(C

i

).
ii. Store the local distances d(u, v) for u, v 2 B

i

as a (t⇥ t)-matrix M
i

in B
i

for each i.
iii. Discard everything, but the matrices M

i

constructed in the previous step.

The second pass is similar (the difference is that the access of sub-components is top-down instead of bottom-up and
that we execute both passes instead of just the first) and formally as follows:

Base case: If K · t  n✏, execute the following steps:
(a) Compute both passes of local distance computation in G[C], following LocDis.
(b) Check if there is a negative cycle by testing if d(u, u) < 0 for some u 2 C. If so terminate the recursion

and return “Negative cycle”.
(c) Store the local distances d(u, v) for u, v 2 B

i

as a (t⇥ t)-matrix M
i

in B
i

for each i.
(d) Discard everything, but the matrices M

i

constructed in the previous step.
Recursive case: Otherwise, if K · t > n✏, execute the following steps:

Partition step: Partition C up into O(n✏

) sub-components {C
1

, C
2

, . . . , C
j

} forming a component tree bT , such
that each C

i

has size O(

K

n

✏

) using LowSpTreePart.
(a) Consider repeatedly C

i

, such that the first pass of local root distances has been computed for the parent of
C

i

in bT (this is initially the case for the root).
i. Compute recursively both passes of local root distances on Ext(C

i

).
ii. Store the local distances d(u, v) for u, v 2 B

i

as a (t⇥ t)-matrix M
i

in B
i

for each i.
iii. Discard everything, but the matrices M

i

constructed in the previous step.

23

Computing the local distances in the roots of the components T then consists of running the above two passes on T ,
where we partition according to T in each Partition step on T .
Lemma 15. Given an ✏ > 0, the algorithm LowSpLocDis requires O(n · t2) time and O(n✏ · t2) space.

Proof. Note that our algorithm for tree partitioning is deterministic and thus we always get the same partitioning
when we recompute it. Also, notice that the second pass recursively calls both the second and the first pass on the
sub-components, but the first pass only recursively calls the first. Since the depth of the recursion is O(

1

✏

) there are at
most O(

1

✏

) recursive calls on a fixed component.

We will now prove the following claim:

Claim 1. A given bag B of the tree decomposition is in at most 2 components at the lowest level.

Proof. Consider a fixed sub-component C with root B0. Let {B
1

, B
2

, . . . , B
j

} be the roots of components which are
in Ext(C) but are not B0. We see that no B

i

, for any i, will become the root of a sub-component (at any level of the
recursion) in Ext(C). This is because B

i

is a leaf in C, and each sub-component (at any level of the recursion) has
size at least t (since K · t > A, and thus K

n

✏

� t) and can therefore not be made out of a leaf alone. Thus, if a bag is a
root of a sub-component at some level, but not the root of the whole tree at the start, then it is in 2 components at the
lowest level, otherwise it is only in 1.

The time to compute the two passes in the base case on a component C is O(bn · t2), where bn is the size of the
component. Hence, the total time for the base case is O(

1

✏

· n · t2), using the claim. Also, in the recursive case, we
spend linear time (for the partitioning) and therefore use O(

1

✏

· n) time for that in total on a fixed level and O(✏�2 · n)
time in total over all levels. Hence, overall we use O(

1

✏

· n · t2 + ✏�2 · n) = O(n · t2) time in total.

The space usage is O(

A

✏

) because, whenever we are at the lowest level of recursion, we store a partitioning on each of
the 1

✏

levels and such a partitioning requires O(A) space (for the matrices in the roots of the O(n✏

) many components
at that level). Furthermore, on the lowest level we use O(bn · t) = O(A) space (because of our criteria for stopping the
recursion), where the size of the component is bn.

Correctness. The correctness of the base case follows directly from Lemma 7 (which shows the correctness of
LocDis). Note that instead of starting the first pass from the leaves and processing bottom-up in LocDis, it suffices
to iterate over bags, such that all bags below the bag have already been processed by the first pass. This gives us the
ordering used in LowSpLocDis on the components. Furtheremore, since LowSpLocDis do not recurse on components
C, but on the extended component Ext(C), we see that all leaves of Ext(C) (which are either leaves of the tree
decomposition or roots of some lower component) have either been processed by the first pass of LowSpLocDis in
case they are roots of some lower components, or are leaves in the tree decomposition. It follows that the first pass
of LowSpLocDis is correct. The correctness of the second pass is similar. We run both passes in the second pass
because the matrices computed in the sub-components would otherwise be thrown away between passes. This give us
the following lemma.
Lemma 16. Given a constant ✏ > 0, and a component tree T , the algorithm LowSpLocDis finds a negative cycle
if it exists in G, and otherwise computes the local distances for the roots of the components in T and in either case
requires O(n · t2) time and O(n✏ · t2) space.

Similarly to LowSpLocDis one can also compute the root and leaf distances, see Section 5, in O(n · t2) time and
O(n✏ · t2) space.

The preprocessing of LowSpDis. We are now ready to describe the preprocessing as performed by LowSpDis. Let
✏ > 0 be given and let s = max(n1�✏ ·↵2

(n), t ·↵2

(n)) (which is less than n by assumption on t). The preprocessing
is as follows:

Step 1 Partition Tree(G) into O(

n

s

) components of size O(s) each.

24

Step 2 For each root of each component apply the local distance computation algorithm LowSpLocDis, and construct
the partitioned summary tree T where each bag corresponds to a root of a component.

Step 3 Preprocess T according to DistanceLP.

Pair querying in LowSpDis. To solve a query from u to v, let C
u

be the component that contains B
u

, and C
v

be the
component that contains B

v

.

1. Test if C
u

= C
v

, by proceeding upward from B
u

and B
v

in the tree decomposition until the root of C
u

and C
v

are reached (the roots of components are marked).
2. If C

u

= C
v

, execute the following steps:
(a) Find the LCA bag L of B

u

and B
v

using the tree decomposition together with the level of B
u

and B
v

.
(b) Partition C

u

into O(s) partitions, such that B
u

and B
v

and L is the root of their corresponding sub-
component, using LowSpTreePart.

(c) Compute local, root and leaf distances on C
u

.
(d) Use the root and leaf distance computation to compute d(u, v) = min

w2L

d(u,w) + d(w, v) and return.
3. Otherwise, if C

u

6= C
v

, execute the following steps:
(a) Let Bu

0

(resp. Bv

0

) be the root bag of C
u

(resp. C
v

).
(b) Compute the LCA component L of Bu

0

and Bv

0

using a constant time LCA query on the component tree.
(c) If L = Bu

0

execute the following steps:
i. Find C 0

v

the last component on the path from Bv

0

to L in T (using the algorithm for constant time
LCA queries). Let B0

v

be the root of C 0
v

.
ii. Partition Ext(C

u

) into O(n✏

) components such that Bu

0

and B0
v

are the root of their respective com-
ponents.

iii. Partition Ext(C
v

) into O(n✏

) components such that Bv

0

is the root of the component that contains it.
iv. Find local, root and leaf distances in Ext(C

u

) and Ext(C
v

) based on the partitioning.
v. Use the root and leaf distances to compute (1) d(u,w

1

), for each w
1

2 B0
v

; and (2) d(w
1

, w
2

) for
each w

1

2 B0
v

and w
2

2 Bv

0

(this root and leaf distance computation was computed as a part of the
preprocessing); and (3) d(w

2

, v), for each w
2

2 Bv

0

.
vi. Compute d(u, v) = min

w

1

2B

0
v

,w

2

2B

v

0

d(u,w
1

) + d(w
1

, w
2

) + d(w
2

, v) and return.
(d) If L = Bv

0

it is similar to the above.
(e) If Bv

0

6= L 6= Bu

0

execute the following steps:
i. Find C 0

v

(resp. C 0
u

) the last component on the path from Bv

0

(resp. Bu

0

) to L in T (using the algorithm
for constant time LCA queries). Let B0

v

(resp. B0
u

) be the root of C 0
v

(resp. C 0
u

).
ii. Partition Ext(L) into O(n✏

) components such that B0
u

and B0
v

are the root of their respective compo-
nents.

iii. Partition Ext(C
u

) into O(n✏

) components such that Bu

0

is the root of the component that contains it.
iv. Partition Ext(C

v

) into O(n✏

) components such that Bv

0

is the root of the component that contains it.
v. Find local, root and leaf distances in Ext(C

u

) and Ext(C
v

) and Ext(L) based on the partitioning.
vi. Use the root and leaf distances to compute (1) d(u,w

1

), for each w
1

2 Bu

0

; and (2) d(w
1

, w
2

) for
each w

1

2 Bu

0

and w
2

2 B0
u

(this root and leaf distance computation was computed as a part of
the preprocessing); and (3) d(w

2

, w
3

) for each w
2

2 B0
u

and B0
v

using Ext(L); and (4) d(w
3

, w
4

)

for each w
3

2 B0
v

and w
4

2 Bv

0

(this root and leaf distance computation was computed as a part of
the preprocessing); and (5) d(w

4

, v), for each w
4

2 Bv

0

. Then inductively compute d(u,w
i+1

) =

min

w

i

d(u,w
i

) + d(w
i

, w
i+1

) for each w
i+1

(note that d(u,w
1

) is already computed).
vii. Return d(u, v) = min

w

4

(d(u,w
4

) + d(w
4

, v))

In all cases, after the computation of some query, remove all the data-structures used.

Correctness. In each case of the algorithm we find the shortest path among paths of the form w
0

= u w
1

 w
2

· · · v = w

k

, where each of w
i

ranges over some bag B
i

. It is easy to see that the bags B
i

are bags on the path from
B

u

to B
v

in T . We see that in any path from u to v there must be a node in each B
i

following Lemma 2. Also, it
is straightforward to see that we compute the distance between each pair w

i

, w
i+1

correctly for all i, using either pair
queries from algorithm Distance in Section 5 or using LowSpLocDis. Finally, it is easy to see that we compute the

25

distance from u to v correctly given that we computed the distance between each pair w
i

, w
i+1

correctly.

Time and space requirements. It is clear that our preprocessing can be done as described in time O(n · t2) and
O(n✏ · t) space. In regards to the query, we see that the local and root and leaf distance preprocessing (of which we do
at most 4) requires O(n1�✏ ·t2 ·↵2

(n)) time (the size of each component times t2) similarly to Lemma 4 and O(n✏ ·t2)
space, using the algorithms LowSpTreePart and LowSpLocDis. In the query we also use our data-structure (computed
in the preprocessing) upto two times, which takes O(t2 · ↵2

(n)) time each and then at the end we use O(t2) time to
answer the query (we only find O(t2) edges and only need to consider certain paths of length at most 5). This then
takes O(n1�✏ · t2 · ↵2

(n)) time and O(n✏ · t2) space.

The above establish Theorem 5. The data-structure LowSpDis uses access to some precomputed tree decomposition of
the graph, and the tree decomposition (and the graph) is not counted for the working space bound of LowSpDis. Since
for constant treewidth graphs, the treewidth can be computed in deterministic logspace [22], LowSpDis combined with
the logspace algorithm leads to Corollary 2.
Corollary 2. Let (1) a constant ✏ 2 [1/2, 1]; and (2) a weighted graph G = (V,E,wt) with n nodes and of constant
treewidth, be given. Then there exists an algorithm that correctly answers pair distance queries on G and requires

1. Polynomial in n preprocessing time;
2. O(n✏

) working space; and
3. O(n1�✏ · ↵2

(n)) pair query time.

Proof. In our preprocessing, instead of having access to the tree decomposition in the input, we can use [22] to
compute each bag of the tree decomposition in deterministic logarithmic space (and thus polynomial time) and then
use that in LowSpDis to compute the summary trees (i.e., whenever a bag is required, it is recomputed using the
logspace algorithm).

In the query from u to v we compute a tree decomposition of the components containing u and v in space and time
linear in their size, using e.g. [12] and then otherwise proceed as LowSpDis. Since the size of the component is
O(n1�✏

)  O(n✏

) (recall that ✏ � 1

2

), we get an data-structure using polynomial in n preprocessing time, but using
O(n✏

) space and O(n1�✏ · ↵2

(n)) pair query time.

References

[1] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance queries on large networks by pruned
landmark labeling. In SIGMOD’13, SIGMOD ’13, pages 349–360, 2013.

[2] T. Akiba, C. Sommer, and K. Kawarabayashi. Shortest-Path Queries for Complex Networks: Exploiting Low
Tree-width Outside the Core. In EDBT, pages 144–155, 2012.

[3] N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries. Technical report, Tel
Aviv University, 1987.

[4] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees .
Discrete Applied Mathematics, 23(1):11 – 24, 1989.

[5] R. Bauer, T. Columbus, I. Rutter, and D. Wagner. Search-space size in contraction hierarchies. In ICALP 13,
pages 93–104, 2013.

[6] R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90, 1958.

[7] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN 2000: Theoretical Informatics.
Springer Berlin Heidelberg, 2000.

[8] M. Bern, E. Lawler, and A. Wong. Linear-time computation of optimal subgraphs of decomposable graphs.
Journal of Algorithms, 8(2):216 – 235, 1987.

26

[9] H. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded treewidth. volume 27,
pages 1725–1746. 1995.

[10] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In ICALP, volume LNCS 317,
pages 105–118. 1988.

[11] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–21, 1993.

[12] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput.,
25(6), Dec. 1996.

[13] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209,
1998.

[14] H. L. Bodlaender. Discovering treewidth. In SOFSEM’05, volume LNCS 3381, pages 1–16. 2005.

[15] K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and A. Pavlogiannis. Algorithms for algebraic path properties
in concurrent systems of constant treewidth components. In POPL, pages 733–747, 2016.

[16] K. Chatterjee, R. Ibsen-Jensen, P. Goyal, and A. Pavlogiannis. Faster algorithms for algebraic path properties in
recursive state machines with constant treewidth. In POPL, 2015.

[17] K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis. Faster algorithms for quantitative verification in constant
treewidth graphs. In CAV, 2015.

[18] S. Chaudhuri and C. D. Zaroliagis. Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms.
Algorithmica, 27:212–226, 1995.

[19] T. Columbus. Search space size in contraction hierarchies. Master’s thesis, Karlsruhe Institute of Technology,
2012.

[20] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction To Algorithms. MIT Press, 2001.

[21] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.

[22] M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of Bodlaender and Courcelle. In
FOCS, 2010.

[23] M. J. Fischer and A. R. Meyer. Boolean Matrix Multiplication and Transitive Closure. In SWAT (FOCS), pages
129–131. IEEE Computer Society, 1971.

[24] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.

[25] L. R. Ford. Network Flow Theory. Report P-923, The Rand Corporation, 1956.

[26] T. Hagerup. Dynamic algorithms for graphs of bounded treewidth. Algorithmica, 27:292–315, 2000.

[27] R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976.

[28] D. Harel and R. Tarjan. Fast Algorithms for Finding Nearest Common Ancestors. SIAM Journal on Computing,
13(2):338–355, 1984.

[29] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths.
IEEE Trans. on Systems Science and Cybernetics, 4(2):100–107, 1968.

[30] D. B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, 24(1):1–13, Jan. 1977.

[31] A. Maheshwari and N. Zeh. I/O-Efficient Algorithms for Graphs of Bounded Treewidth. Algorithmica,
54(3):413–469, 2009.

[32] E. F. Moore. The shortest path through a maze. In Proceedings of the International Symposium on the Theory of
Switching, and Annals of the Computation Laboratory of Harvard University, pages 285–292. Harvard University
Press, 1959.

27

[33] L. R. Planken, M. M. de Weerdt, and R. P. van der Krogt. Computing all-pairs shortest paths by leveraging low
treewidth. In ICAPS-11, pages 170–177. AAAI Press, 2011.

[34] N. Robertson and P. Seymour. Graph minors. III. planar tree-width. Journal of Combinatorial Theory, Series B,
36(1):49 – 64, 1984.

[35] B. Roy. Transitivité et connexité. C. R. Acad. Sci. Paris, 249:216–218, 1959.

[36] B. Schieber and U. Vishkin. On Finding Lowest Common Ancestors: Simplification and Parallelization. SIAM
Journal on Computing, 17(6):1253–1262, 1988.

[37] M. Thorup. All Structured Programs Have Small Tree Width and Good Register Allocation. Information and
Computation, 142(2):159 – 181, 1998.

[38] S. Warshall. A Theorem on Boolean Matrices. J. ACM, 9(1):11–12, Jan. 1962.

[39] A. Yamaguchi, K. F. Aoki, and H. Mamitsuka. Graph complexity of chemical compounds in biological pathways.
Genome Informatics, (14):376–377, 2003.

[40] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida. Fast and scalable reachability queries on graphs by pruned labeling
with landmarks and paths. In CIKM’13, pages 1601–1606, 2013.

28

	Introduction
	Preliminaries
	Local Distance Computation
	Optimal Reachability for Low-Treewidth Graphs
	Distance Queries in Low-Treewidth Graphs
	Preprocessing Linear in n
	Space vs Query Time Tradeoff for Sub-linear Space

