
Faster Algorithms for Quantitative Verification in Constant Treewidth
Graphs

Krishnendu Chatterjee† Rasmus Ibsen-Jensen† Andreas Pavlogiannis†

† IST Austria

Abstract. We consider the core algorithmic problems related to verification of systems with respect to three clas-
sical quantitative properties, namely, the mean-payoff property, the ratio property, and the minimum initial credit
for energy property. The algorithmic problem given a graph and a quantitative property asks to compute the optimal
value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth,
and it is well-known that the control-flow graphs of most programs have constant treewidth. Let n denote the number
of nodes of a graph, m the number of edges (for constant treewidth graphs m = O(n)) and W the largest absolute
value of the weights. Our main theoretical results are as follows. First, for constant treewidth graphs we present an
algorithm that approximates the mean-payoff value within a multiplicative factor of ε in time O(n · log(n/ε)) and
linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we
present an algorithm that for constant treewidth graphs works in time O(n · log(|a · b|)) = O(n · log(n ·W)),
when the output is a

b
, as compared to the previously best known algorithm with running time O(n2 · log(n ·W)).

Third, for the minimum initial credit problem we show that (i) for general graphs the problem can be solved in
O(n2 ·m) time and the associated decision problem can be solved inO(n ·m) time, improving the previous known
O(n3 · m · log(n · W)) and O(n2 · m) bounds, respectively; and (ii) for constant treewidth graphs we present
an algorithm that requires O(n · logn) time, improving the previous known O(n4 · log(n ·W)) bound. We have
implemented some of our algorithms and show that they present a significant speedup on standard benchmarks.

1 Introduction

Boolean vs quantitative verification. The traditional view of verification has been qualitative (Boolean) that classifies
traces of a system as “correct” vs “incorrect”. In the recent years, motivated by applications to analyze resource-
constrained systems (such as embedded systems), there has been a huge interest to study quantitative properties of
systems. A quantitative property assigns to each trace of a system a real-number that quantifies how good or bad the
trace is, instead of classifying it as correct vs incorrect. For example, a Boolean property may require that every request
is eventually granted, whereas a quantitative property for each trace can measure the average waiting time between
requests and corresponding grants.

Variety of results. Given the importance of quantitative verification, the traditional qualitative view of verifica-
tion has been extended in several ways, such as, quantitative languages and quantitative automata for specification
languages [27,17,16,21,15,47,28]; quantitative logics for specification languages [8,10,2]; quantitative synthesis for
robust reactive systems [4,5,20]; a framework for quantitative abstraction refinement [13]; quantitative analysis of
infinite-state systems [22,18]; and model measuring (that extends model checking) [33], to name a few. The core al-
gorithmic question for many of the above studies is a graph algorithmic problem that requires to analyze a graph wrt
a quantitative property.

Important quantitative properties. The three quantitative properties that have been studied for their relevance in
analysis of reactive systems are as follows. First, the mean-payoff property consists of a weight function that assigns to
every transition an integer-valued weight and assigns to each trace the long-run average of the weights of the transitions
of the trace. Second, the ratio property consists of two weight functions (one of which is a positive weight function)
and assigns to each trace the ratio of the two mean-payoff properties (the denominator is wrt the positive function).
The minimum initial credit for energy property consists of a weight function (like in the mean-payoff property) and
assigns to each trace the minimum number to be added such that the partial sum of the weights for every prefix of the
trace is non-negative. For example, the mean-payoff property is used for average waiting time, worst-case execution

time analysis [17,13,18]; the ratio property is used in robustness analysis of systems [5]; and the minimum initial credit
for energy for measuring resource consumptions [9].

Algorithmic problems. Given a graph and a quantitative property, the value of a node is the infimum value of all traces
that start at the respective node. The algorithmic problem (namely, the value problem) for analysis of quantitative prop-
erties consists of a graph and a quantitative property, and asks to compute either the exact value or an approximation of
the value for every node in the graph. The algorithmic problems are at the heart of many applications, such as automata
emptiness, model measuring, quantitative abstraction refinement, etc.

Treewidth of graphs. A very well-known concept in graph theory is the notion of treewidth of a graph, which is a
measure of how similar a graph is to a tree (a graph has treewidth 1 precisely if it is a tree) [44]. The treewidth of a
graph is defined based on a tree decomposition of the graph [31], see Section 2 for a formal definition. Beyond the
mathematical elegance of the treewidth property for graphs, there are many classes of graphs which arise in practice
and have constant treewidth. The most important example is that the control flow graphs of goto-free programs for
many programming languages are of constant treewidth [45], and it was also shown in [30] that typically all Java
programs have constant treewidth. For many other applications see the surveys [6,7]. The constant treewidth property
of graphs has also played an important role in logic and verification; for example, MSO (Monadic Second Order
logic) queries can be solved in polynomial time [?] (also in log-space [29]) for constant-treewidth graphs; parity
games on graphs with constant treewidth can be solved in polynomial time [40]; and there exist faster algorithms for
probabilistic models (like Markov decision processes) [14]. Moreover, recently it has been shown that the constant
treewidth property is also useful for interprocedural analysis [18].

Minimum mean-cycle value Minimum ratio-cycle value

Orlin & Ahuja [41] Karp [36] Our result [Thm 4]
(ε-approximate)

Burns [12] Lawler [38] Our result [Cor 2]

O(n1.5 · log(n ·W)) O(n2) O(n · log(n/ε)) O(n3) O(n2 · log(n ·W)) O(n · log(|a · b|))
Table 1: Time complexity of existing and our solutions for the minimum mean-cycle value and ratio-cycle value
problem in constant treewidth weighted graphs with n nodes and largest absolute weight W , when the output is the
(irreducible) fraction a

b 6= 0.

Bouyer et. al. [9] Our result
[Thm 5, Cor 3]

Our result [Thm 7]
(constant treewidth)

Time (decision) O(n2 ·m) O(n ·m) O(n · logn)
Time O(n3 ·m · log(n ·W)) O(n2 ·m) O(n · logn)
Space O(n) O(n) O(n)

Table 2: Complexity of the existing and our solution for the minimum initial credit problem on weighted graphs of n
nodes, m edges, and largest absolute weight W .

Previous results and our contributions. In this work we consider general graphs and graphs with constant treewidth,
and the algorithmic problems to compute the exact value or an approximation of the value for every node wrt to
quantitative properties given as the mean-payoff, the ratio, or the minimum initial credit for energy. We first present
the relevant previous results, and then our contributions.

Previous results. We consider graphs with n nodes,m edges, and letW denote the largest absolute value of the weights.
The running time of the algorithms is characterized by the number of arithmetic operations (i.e., each operation takes
constant time); and the space is characterized by the maximum number of integers the algorithm stores. The classical
algorithm for graphs with mean-payoff properties is the minimum mean-cycle problem of Karp [36], and the algorithm

2

requires O(n ·m) running time and O(n2) space. A different algorithm was proposed in [39] that requires O(n ·m)
running time and O(n) space. Orlin and Ahuja [41] gave an algorithm running in time O(

√
n ·m · log(n ·W)). For

some special cases there exist faster approximation algorithms [19]. There is a straightforward reduction of the ratio
problem to the mean-payoff problem. For computing the exact minimum ratio, the fastest known strongly polynomial
time algorithm is Burns’ algorithm [12] running in time O(n2 · m). Also, there is an algorithm by Lawler [38] that
uses O(n · m · log(n ·W)) time. Many pseudopolynomial algorithms are known for the problem, with polynomial
dependency on the numbers appearing in the weight function, see [26]. For the minimum initial credit for energy
problem, the decision problem (i.e., is the energy required for node v at most c?) can be solved in O(n2 · m) time,
leading to an O(n3 · m · log(n ·W)) time algorithm for the minimum initial credit for energy problem [9]. All the
above algorithms are for general graphs (without the constant-treewidth restriction).

Our contributions. Our main contributions are as follows.

1. Finding the mean-payoff and ratio values in constant-treewidth graphs. We present two results for constant
treewidth graphs. First, for the exact computation we present an algorithm that requires O(n · log(|a · b|)) time and
O(n) space, where a

b 6= 0 is the (irreducible) ratio/mean-payoff of the output. If a
b = 0 then the algorithm uses

O(n) time. Note that log(|a · b|) ≤ 2 log(n ·W). We also present a space-efficient version of the algorithm that
requires only O(log n) space. Second, we present an algorithm for finding an ε-factor approximation that requires
O(n · log(n/ε)) time and O(n) space, as compared to the O(n1.5 · log(n ·W)) time solution of Orlin & Ahuja,
and the O(n2) time solution of Karp (see Table 1).

2. Finding the minimum initial credit in graphs. We present two results. First, we consider the exact computation
for general graphs, and present (i) an O(n ·m) time algorithm for the decision problem (improving the previous
known O(n2 · m) bound), and (ii) an O(n2 · m) time algorithm to compute value of all nodes (improving the
previous known O(n3 ·m · log(n ·W)) bound). Finally, we consider the computation of the exact value for graphs
with constant treewidth and present an algorithm that requires O(n · log n) time (improving the previous known
O(n4 · log(n ·W)) bound) (see Table 2).

3. Experimental results. We have implemented our algorithms for the minimum mean cycle and minimum initial
credit problems and ran them on standard benchmarks (DaCapo suit [3] for the minimum mean cycle problem,
and DIMACS challenges [1] for the minimum initial credit problem). For the minimum mean cycle problem,
our results show that our algorithm has lower running time than all the classical polynomial-time algorithms. For
the minimum initial credit problem, our algorithm provides a significant speedup over the existing method. Both
improvements are demonstrated even on graphs of small/medium size. Note that our theoretical improvements
(better asymptotic bounds) imply improvements for large graphs, and our improvements on medium size graphs
indicate that our algorithms have practical applicability with small constants.

Technical contributions. The key technical contributions of our work are as follows:

1. Mean-payoff and ratio values in constant-treewidth graphs. Given a graph with constant treewidth, let c∗ be the
smallest weight of a simple cycle. First, we present a linear-time algorithm that computes c∗ exactly (if c∗ ≥ 0)
or approximate within a polynomial factor (if c∗ < 0). Then, we show that if the minimum ratio value ν∗ is the
irreducible fraction a

b , then ν∗ can be computed by evaluating O(log(|a · b|)) inequalities of the form ν∗ ≥ ν.
Each such inequality is evaluated by computing the smallest weight of a simple cycle in a modified graph. Finally,
for ε-approximating the value ν∗, we show that O(log(n/ε)) such inequalities suffice.

2. Minimum initial credit problem. We show that for general graphs, the decision problem can be solved with two
applications of Bellman-Ford-type algorithms, and the value problem reduces to finding non-positive cycles in the
graph, followed by one instance of the single-source shortest path problem. We then show how the invariants of
the algorithm for the value problem on general graphs can be maintained by a particular graph traversal of the
tree-decomposition for constant-treewidth graphs.

3

2 Definitions

Weighted graphs. We consider finite weighted directed graphs G = (V,E,wt,wt′) where V is the set of n nodes,
E ⊆ V × V is the edge relation of m edges, wt : E → Z is a weight function that assigns an integer weight wt(e) to
each edge e ∈ E, and wt′ : E → N+ is a weight function that assigns strictly positive integer weights. For technical
simplicity, we assume that there exists at least one outgoing edge from every node. In certain cases where the function
wt′ is irrelevant, we will consider weighted graphs G = (V,E,wt), i.e., without the function wt′.

Finite and infinite paths. A finite path P = (u1, . . . , uj), is a sequence of nodes ui ∈ V such that for all 1 ≤ i < j
we have (ui, ui+1) ∈ E. The length of P is |P | = j − 1. A single-node path has length 0. The path P is simple
if there is no node repeated in P , and it is a cycle if j > 1 and u1 = uj . The path P is a simple cycle if P is
a cycle and the sequence (u2, . . . uj) is a simple path. The functions wt and wt′ naturally extend to paths, so that
the weight of a path P with |P | > 0 wrt the weight functions wt and wt′ is wt(P) =

∑
1≤i<j wt(ui, ui+1) and

wt′(P) =
∑

1≤i<j wt
′(ui, ui+1). The value of P is defined to be wt(P) = wt(P)

wt′(P) . For the case where |P | = 0, we
define wt(P) = 0, and wt(P) is undefined. An infinite path P = (u1, u2, . . .) of G is an infinite sequence of nodes
such that every finite prefix P of P is a finite path ofG. The functions wt and wt′ assign to P a value in Z∪{−∞,∞}:
we have wt(P) =

∑
i wt(ui, ui+1) and wt′(P) = ∞. For a (possibly infinite) path P , we use the notation u ∈ P to

denote that a node u appears in P , and e ∈ P to denote that an edge e appears in P . Given a set B ⊆ V , we denote
with P ∩ B the set of nodes of B that appear in P . Given a finite path P1 and a possibly infinite path P2, we denote
with P1 ◦ P2 the path resulting from the concatenation of P1 and P2.

Distances and witness paths. For nodes u, v ∈ V , we denote with d(u, v) = infP :u v wt(P) the distance from u to
v. A finite path P : u v is a witness of the distance d(u, v) if wt(P) = d(u, v). An infinite path P is a witness of
the distance d(u, v) if the following conditions hold:

1. d(u, v) = wt(P) = −∞, and
2. P starts from u, and v is reachable from every node of P .

Note that d(u, v) =∞ is not witnessed by any path.

Tree decompositions. A tree-decomposition Tree(G) = (VT , ET) of G is a tree such that the following conditions
hold:

1. VT = {B0, . . . , Bn′−1 : ∀i Bi ⊆ V } and
⋃
Bi∈VT

Bi = V (every node is covered).
2. For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi (every edge is covered).
3. For all i, j, k such that there is a bag Bk that appears in the simple path Bi Bj in Tree(G), we have Bi ∩Bj ⊆
Bk (every node appears in a contiguous subtree of Tree(G)).

The sets Bi which are nodes in VT are called bags. Conventionally, we call B0 the root of Tree(G), and denote with
Lv(Bi) the level of Bi in Tree(G), with Lv(B0) = 0. We say that Tree(G) is balanced if the maximum level is
maxBi Lv(Bi) = O(log n′), and it is binary if every bag has at most two children bags. A bag B is called the root bag
of a node u if B is the smallest-level bag that contains u, and we often use Bu to refer to the root bag of u. The width
of a tree-decomposition Tree(G) is the size of the largest bag minus 1. The treewidth ofG is the smallest width among
the widths of all possible tree decompositions of G. The following lemma gives a fundamental structural property of
tree-decompositions.

Lemma 1. Consider a graph G = (V,E), a binary tree-decomposition T = Tree(G) and a bag B of T . Denote with
(Ci)1≤i≤3 the components of T created by removing B from T , and let Vi be the set of nodes that appear in bags of
component Ci. For every i 6= j, nodes u ∈ Vi, v ∈ Vj and P : u v, we have that P ∩B 6= ∅ (i.e., all paths between
u and v go through some node in B).

Theorem 1. For every graph G with n nodes and constant treewidth, a balanced binary tree-decomposition Tree(G)
of constant width and O(n) bags can be constructed in (1) O(n) time and space [?], (2) deterministic logspace (and
hence polynomial time) [29].

4

In the sequel we consider only balanced and binary tree-decompositions of constant width and n′ = O(n) bags (and
hence of height O(log n)). Additionally, we consider that every bag is the root bag of at most one node. Obtaining this
last property is straightforward, simply by replacing each bag B which is the root of k > 1 nodes x1, . . . xk with a
chain of bags B1, . . . , Bk = B, where each Bi is the parent of Bi+1, and Bi+1 = Bi ∪ {xi+1}. Note that this keeps
the tree binary and increases its height by at most a constant factor, hence the resulting tree is also balanced.

Throughout the paper, we follow the convention that the maximum and minimum of the empty set is −∞ and ∞
respectively, i.e., max(∅) = −∞ and min(∅) = ∞. Time complexity is measured in number of arithmetic and
logical operations, and space complexity is measured in number of machine words. Given a graph G, we denote with
T (G) and S(G) the time and space required for constructing a balanced, binary tree-decomposition Tree(G). We are
interested in the following problems.

The minimum mean cycle problem [36]. Given a weighted directed graphG = (V,E,wt), the minimum mean cycle
problem asks to determine for each node u the mean value µ∗(u) = minC∈Cu

wt(C)
|C| , where Cu is the set of simple

cycles reachable from u in G. A cycle C with wt(C)
|C| = µ∗(u) is called a minimum mean cycle of u. For 0 < ε < 1,

we say that a value µ is an ε-approximation of the mean value µ∗(u) if |µ− µ∗(u)| ≤ ε · |µ∗(u)|.

The minimum ratio cycle problem [32]. Given a weighted directed graph G = (V,E,wt,wt′), the minimum ratio
cycle problem asks to determine for each node u the ratio value ν∗(u) = minC∈Cu wt(C), where wt(C) = wt(C)

wt′(C)

and Cu is the set of simple cycles reachable from u in G. A cycle C with wt(C) = ν∗u is called a minimum ratio cycle
of u. The minimum mean cycle problem follows as a special case of the minimum ratio cycle problem for wt′(e) = 1
for each edge e ∈ E.

The minimum initial credit problem [9]. Given a weighted directed graph G = (V,E,wt), the minimum initial
credit value problem asks to determine for each node u the smallest energy value E(u) ∈ N∪ {∞} with the following
property: there exists an infinite path P = (u1, u2 . . .) with u = u1, such that for every finite prefix P of P we have
E(u) + wt(P) ≥ 0. Conventionally, we let E(u) = ∞ if no finite value exists. The associated decision problem asks
given a node u and an initial credit c ∈ N whether E(u) ≤ c.

3 Minimum Cycle

In the current section we deal with a related graph problem, namely the detection of a minimum-weight simple cycle
of a graph. In Section 4 we use solutions to the minimum cycle problem to obtain the minimum ratio and minimum
mean values of a graph.

The minimum cycle problem. Given a weighted graph G = (V,E,wt), the minimum cycle problem asks to deter-
mine the weight c∗ of a minimum-weight simple cycle in G, i.e., c∗ = minC∈C wt(C), where C is the set of simple
cycles in G.

We describe the algorithm MinCycle that operates on a tree-decomposition Tree(G) of an input graph G, and has the
following properties.

1. If G has no negative cycles, then MinCycle returns the weight c∗ of a minimum-weight cycle in G.
2. If G has negative cycles, then MinCycle returns a value that is at most a polynomial (in n) factor smaller than c∗.

U-shaped paths. Following the recent work of [18], we define the important notion of U-shaped paths in a tree-
decomposition Tree(G). Given a bag B and nodes u, v ∈ B, we say that a path P : u v is U-shaped in B, if one
of the following conditions hold:

1. Either |P | > 1 and for all intermediate nodes w ∈ P , we have B is an ancestor of Bw,
2. or |P | ≤ 1 and B is Bu or Bv (i.e., B is the root bag of either u or v).

Informally, given a bag B, a U-shaped path in B is a path that traverses intermediate nodes that exist only in the
subtree of Tree(G) rooted in B. The following remark follows from the definition of tree-decompositions, and states

5

that every simple cycle C can be seen as a U-shaped path P from the smallest-level node of C to itself. Consequently,
we can determine the value c∗ by only considering U-shaped paths in Tree(G).

Remark 1. Let C = (u1, . . . , uk) be a simple cycle in G, and uj = argminui∈C Lv(ui). Then P =
(uj , uj+1, . . . uk, u1, . . . , uj) is a U-shaped path in Buj , and wt(P) = wt(C).

Informal description of MinCycle. Based on U-shaped paths, the work of [18] presented a method for computing
algebraic path properties on tree-decompositions with constant width, where the weights of the edges come from a
general semiring. Note that integer-valued weights are a special case of the tropical semiring. Our algorithm MinCycle
is similar to the algorithm Preprocess from [18]. It consists of a depth-first traversal of Tree(G), and for each examined
bagB computes a local distance map LDB : B×B → Z∪{∞} such that for each u, v ∈ B, we have (i) LDB(u, v) =
wt(P) for some path P : u v, and (ii) LDB ≤ minP wt(P), where P are taken to be simple u v paths (or
simple cycles) that are U-shaped in B. This is achieved by traversing Tree(G) in post-order, and for each root bag Bx
of a node x, we update LDBx(u, v) with LDBx(u, x) + LDBx(x, v) (i.e., we do path-shortening from node u to node
v, by considering paths that go through x). See Figure 1 for an illustration.

In the end, MinCycle returns minx LDBx
(x, x), i.e., the weight of the smallest-weight U-shaped (not necessarily sim-

ple) cycle it has discovered. Algorithm 1 gives MinCycle in pseudocode. For brevity, in line 5 we consider that if
{u, v} 6∈ E or {u, v} 6⊆ Bi for some child Bi of B, then LDBi(u, v) =∞.

Algorithm 1: MinCycle

Input: A weighted graph G = (V,E,wt) and a balanced binary tree-decomposition Tree(G)
Output: A value c

1 Assign c←∞
2 Apply a post-order traversal on Tree(G), and examine each bag B with children B1, B2

3 begin
4 foreach u, v ∈ B do
5 Assign LDB(u, v)← min(LDB1(u, v), LDB2(u, v),wt(u, v))
6 end
7 Discard LDB1 , LDB2

8 if B is the root bag of a node x then
9 foreach u, v ∈ B do

10 Assign LD′B(u, v)← min(LDB(u, v), LDB(u, x) + LDB(x, v))
11 end
12 Assign LDB ← LD′B
13 Assign c← min(c, LDB(x, x))

14 end
15 return c

u

x

v

P1
P2

LDB(u, x) LDB(x, v)

Fig. 1: Path shortening in line 10 of MinCycle. When Bx is examined, LDBx
(u, v) is updated with the weight of the

U-shaped path P = P1 ◦ P2. The paths P1 and P2 are U-shaped paths in the children bags B1 and B2, and we have
LDBi(u, x) = wt(Pi).

6

In essence, MinCycle performs repeated summarizations of paths in G. The following lemma follows easily from [18,
Lemma 2], and states that LDB(u, v) is upper bounded by the smallest weight of a U-shaped simple u v path in B.

Lemma 2 ([18, Lemma 2]). For every examined bag B and nodes u, v ∈ B, we have

1. LDB(u, v) = wt(P) for some path P : u v (and LDB(u, v) =∞ if no such P exists),
2. LDB(u, v) ≤ minP :u v wt(P) where P ranges over U-shaped simple paths and simple cycles in B.

At the end of the computation, the returned value c is the weight of a (generally non-simple) cycle C, captured as a
U-shaped path on its smallest-level node. The cycle C can be recovered by tracing backwards the updates of line 10
performed by the algorithm, starting from the node x that performed the last update in line 13. Hence, if C traverses k
distinct edges, we can write

c = wt(C) =
k∑
i=1

ki · wt(ei) (1)

where each ei is a distinct edge, and ki is the number of times it appears in C.

Lemma 3. Let h be the height of Tree(G). For every ki in Eq. (1), we have ki ≤ 2h.

Proof. Note that the edge ei = (ui, vi) is first considered by MinCycle in the root bag Bi of node xi, where xi =
argmaxyi∈{ui,vi} Lv(yi) (line 10). As MinCycle backtracks from Bi to the root of Tree(G), the edge ei can be
traversed at most twice as many times in each step (because of line 10, once for each term of the sum LDB(u, x) +
LDB(x, v)). Hence, this doubling will occur at most h times, and ki ≤ 2h. ut

Lemma 4. Let c be the value returned by MinCycle, h be the height of Tree(G), and c∗ = minC wt(C) over all
simple cycles C in G. The following assertions hold:

1. If G has no negative cycles, then c = c∗.
2. If G has a negative cycle, then

(a) c ≤ c∗.
(b) |c| = O

(
|c∗| · n · 2h

)
.

Proof. By Remark 1, we have that c∗ = wt(P) for a U-shaped path P : x x. By Lemma 2, after MinCycle examines
Bx, it will be c ≤ LDBx

(x, x) ≤ c∗, with the equalities holding if there are no negative cycles in G (by the definition
of c∗, as then LDBx(x, x) is witnessed by a simple cycle). By line 10, c can only decrease afterwards, and again by the
definition of c∗ this can only happen if there are negative cycles in G. This proves items 1 and 2a, and the remaining
of the proof focuses on showing that |c| = O

(
|c∗| · n · 2h

)
.

By rearranging the sum of Eq. (1), we can decompose the obtained cycle C into a set of k′+ non-negative cycles C+
i ,

and a set of k′− negative cycles C−i , and each cycle C+
i and C−i appears with multiplicity k+i and k−i respectively.

Then we have

|c| = |wt(C)| =

∣∣∣∣∣∣
k′+∑
i=1

k+i · wt(C
+
i) +

k′−∑
i=1

k−i · wt(C
−
i)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
k′−∑
i=1

k−i · wt(C
−
i)

∣∣∣∣∣∣
≤

k−∑
i=1

k−i · |wt(C
−
i)| ≤ |c

∗| ·
k′−∑
i=1

k−i ≤ |c
∗| ·

k∑
i=1

k−i = O
(
|c∗| · n · 2h

)
(2)

The first inequality follows from c < 0, the third inequality holds by the definition of c∗, and the last inequality holds
since k′− ≤ k. Finally, we have

∑k
i=1 k

−
i = O

(
n · 2h

)
, since k = O(n), and by Lemma 3 we have k−i ≤ 2h. ut

7

Next we discuss the time and space complexity of MinCycle.

Lemma 5. Let h be the height of Tree(G). MinCycle accesses each bag of Tree(G) a constant number of times, and
uses O(h) additional space.

Proof. MinCycle accesses each bag a constant number of times, as it performs a post-order traversal on Tree(G)
(line 2). Because it computes the local distances in a postorder manner, the number of local distance maps LDB
it remembers is bounded by the height h of Tree(G). Since Tree(G) has constant width, LDB requires a constant
number of words for storing a constant number of nodes and weights in each B. Hence the total space usage is O(h),
and the result follows. ut

The following theorem summarizes the results of this section.

Theorem 2. Let G = (V,E,wt) be a weighted graph of n nodes with constant treewidth, and a balanced, binary
tree-decomposition Tree(G) of G be given. Let c∗, be the smallest weight of a simple cycle in G. Algorithm MinCycle
uses O(n) time and O(log n) additional space, and returns a value c such that:

1. If G has no negative cycles, then c = c∗.
2. If G has a negative cycle, then

(a) c ≤ c∗.
(b) |c| = |c∗| · nO(1).

4 The Minimum Ratio and Mean Cycle Problems

In the current section we present algorithms for solving the minimum ratio and mean cycle problems for weighted
graphs G = (V,E,wt,wt′) of constant treewidth.

Remark 2. If G is not strongly connected, we can compute its maximal strongly connected components (SCCs) in
linear time [?], and use the algorithms of this section to compute the minimum cycle ratio ν∗i in every component Gi.
Afterwards, we assign the ratio values ν∗(u) for all nodes u as follows. First, mark every SCC Gi with M(Gi) = ν∗i .
Then, for every bottom SCC Gi, (i) for every u in Gi assign ν∗(u) = M(Gi), (ii) for every neighbor SCC Gj of Gi,
mark Gj with M(Gj) = min(M(Gj),M(Gi)), (iii) remove Gi and repeat. Since these operations require linear time
in total, they do not impact the time complexity. Therefore, we consider graphs G that are strongly connected, and we
will speak about the minimum ratio ν∗ and mean µ∗ values of G.

In light of Remark 2, we consider graphs that are strongly connected, and hence it follows that ν∗(u) is the same for
every node u, and thus we will speak about the minimum ratio ν∗ and mean µ∗ values of G.

Claim 1. Let ν∗ be the ratio value of G. Then ν∗ ≥ ν iff for every cycle C of G we have wtν(C) ≥ 0, where
wtν(e) = wt(e)− wt′(e) · ν for each edge e ∈ E.

Proof. Indeed, for any cycle C we have wt(C) ≥ ν∗ ≥ ν. Then

wt(C) ≥ ν ⇐⇒ wt(C)− ν ≥ 0 ⇐⇒ wt(C)− ν · wt′(C)
wt′(C)

≥ 0

⇐⇒ wt(C)− ν · wt′(C) ≥ 0 ⇐⇒
∑
e∈C

(wt(e)− wt′(e) · ν) ≥ 0 ⇐⇒ wtν(C) ≥ 0

with the equality holding iff wt(C) = ν. ut

8

Hence, given a tree-decomposition Tree(G), for any guess ν of the ratio value ν∗, we can evaluate whether ν∗ ≥ ν
by constructing the weight function wtν = wt− ν and executing algorithm MinCycle on input Gν = (V,E,wtν). By
Item 2a of Theorem 2 and Claim 1 we have that the returned value c of MinCycle is c ≥ 0 iff wtν(C) ≥ 0 for all
cycles C, iff ν∗ ≥ ν (and in fact c = 0 iff ν∗ = ν).

Lemma 6. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with constant treewidth and minimum ratio
value ν∗. Let Tree(G) be a given balanced, binary tree-decomposition of G of constant width. For any rational ν, the
decision problem of whether ν∗ ≥ ν (or ν∗ = ν) can be solved in O(n) time and O(log n) extra space.

Proof. By Claim 1, we can test whether ν∗ ≥ ν by testing whether Gν = (V,E,wtν) has a negative cycle. By
Theorem 2, a negative cycle in Gν can be detected in O(n) time and using O(log n) space. ut

4.1 Exact solution

We now describe the method for determining the value ν∗ of G exactly. This is done by making various guesses ν
such that ν∗ ≥ ν and testing for negative cycles in the graph Gν = (V,E,wtν). We first determine whether ν∗ = 0,
using Lemma 6. In the remaining of this section we assume that ν∗ 6= 0.

Solution overview. Consider that ν∗ > 0. First, we either find that ν∗ ∈ (0, 1) (hence bν∗c = 0), or perform an
exponential search of O(log ν∗) iterations to determine j ∈ N+ such that ν∗ ∈ [2j−1, 2j]. In the latter case, we
perform a binary search of O(log ν∗) iterations in the interval [2j−1, 2j] to determine bν∗c (see Figure 2). Then, we
can write ν∗ = bν∗c + x, where x < 1 is an irreducible fraction a′

b . It has been shown [42] that such x can be
determined by evaluating O(log b) inequalities of the form x ≥ ν. The case for ν∗ < 0 is handled similarly.

Lemma 7. Let ν∗ 6= 0 be the ratio value of G. The value bν∗c can be obtained by evaluating O(log |ν∗|) inequalities
of the form ν∗ ≥ ν.

Proof. First determine whether ν∗ > 0, and assume w.l.o.g. that this is the case (the process is similar if ν∗ < 0).
Perform an exponential search on the interval (0, 2 · bν∗c) by a sequence of evaluations of the inequality ν∗ ≥ νi = 2i.
After logbν∗c + 1 steps we either have bν∗c ∈ (0, 1), or have determined a j > 0 such that ν∗ ∈ [νj−1, νj].
Then, perform a binary search in the interval [νj−1, νj], until the running interval [`, r] has length at most 1. Since
νj − νj−1 = νj−1 ≤ ν∗, this will happen after at most logdν∗e steps. Then either bν∗c = b`c or bν∗c = brc, which
can be determined by evaluating the inequality ν∗ ≥ brc. A similar process can be carried out when ν∗ < 0. Figure 2
shows an illustration of the search. ut

ν0 ν1 ν2 . . . νj−1 νjν∗

Fig. 2: Exponential search followed by a binary search to determine bν∗c

Let Tmax = maxe wt
′(e) be the largest weight of an edge wrt wt′. Since ν∗ is a number with denominator at most

(n− 1) · Tmax, it can be determined exactly by carrying the binary search of Lemma 7 until the length of the running
interval becomes at most 1

((n−1)·Tmax)2
(thus containing a unique rational with denominator at most (n − 1) · Tmax).

Then ν∗ can be obtained by using continued fractions, e.g. as in [37]. We rely in the work of Papadimitriou [42] to
obtain a tighter bound.

9

Lemma 8. Let ν∗ 6= 0 be the ratio value of G, such that ν∗ is the irreducible fraction a
b ∈ (−1, 1). Then ν∗ can be

determined by evaluating O(log b) inequalities of the form ν∗ ≥ ν.

Proof. Consider that ν∗ > 0 (the proof is similar when ν∗ < 0). It is shown in [42] that a rational with denominator
at most b can be determined by evaluating O(log b) inequalities of the form ν∗ ≥ ν. We remark that b is not required
to be known, although the work of [42] assumes that a bound on the denominator of ν∗ is known in advance. ut

Theorem 3. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with constant treewidth, and λ = maxu |au · bu|
such that ν∗(u) is the irreducible fraction au

bu
. Let T (G) and S(G) denote the required time and space for constructing

a balanced binary tree-decomposition Tree(G) of G with constant width. The minimum ratio cycle problem for G can
be computed in

1. O(T (G) + n · log(λ)) time and O(S(G) + n) space; and
2. O(S(G) + log n) space.

Proof. In view of Remark 2 the graph G is strongly connected and has a minimum ratio value ν∗. Let ν∗ = bν∗c+ a′

b

with |a
′

b | < 1. By Lemma 7, bν∗c can be determined by evaluating O(log |ν∗|) = O(log |a|) inequalities of the
form ν∗ ≥ ν, and by Lemma 8, a

′

b can be determined by evaluating O(b) such inequalities. A balanced binary tree-
decomposition Tree(G) can be constructed once in T (G) time and S(G) space, and stored in O(n) space. Tree(G)
is also a tree-decomposition of every Gν required by Claim 1. By Theorem 2 a negative cycle in Gν can be detected
in O(n) time and using O(log n) space. This concludes Item 1. Item 2 is obtained by the same process, but with
re-computing Tree(G) every time MinCycle traverses from a bag to a neighbor (thus not storing Tree(G) explicitly).

ut

Using Theorem 1 we obtain from Theorem 3 the following corollary.

Corollary 1. LetG = (V,E,wt,wt′) be a weighted graph of n nodes with constant treewidth, and λ = maxu |au ·bu|
such that ν∗(u) is the irreducible fraction au

bu
. The minimum ratio value problem for G can be computed in

1. O(n · log(λ)) time and O(n) space; and
2. O(log n) space.

By setting wt′(e) = 1 for each e ∈ E in Corollary 1 we obtain the following corollary for the minimum mean cycle.

Corollary 2. Let G = (V,E,wt) be a weighted graph of n nodes with constant treewidth, and λ = maxu |µ∗(u)|.
The minimum mean value problem for G can be computed in

1. O(n · log(λ)) time and O(n) space; and
2. O(log n) space.

4.2 Approximating the minimum mean cycle

We now focus on the minimum mean cycle problem, and present algorithms for ε-approximating the mean value µ∗

of G for any 0 < ε < 1 in O(n · log(n/ε)) time, i.e., independent of µ∗.

Approximate solution in the absence of negative cycles. We first consider graphsG that do not have negative cycles.
Let C be a minimum mean value cycle, and C ′ a minimum weight simple cycle in G, and note that µ∗ ∈ [0,wt(C ′)].
Additionally, we have

wt(C ′) ≤ wt(C) =⇒ wt(C ′) ≤ n

|C|
· wt(C) =⇒ wt(C ′) ≤ (n) · µ∗

10

Consider a binary search in the interval [0,wt(C ′)], which in step i approximates µ∗ by the right endpoint µi of its
current interval. The error is bounded by the length of the interval, hence µi−µ∗ ≤ wt(C ′) · 2−i ≤ (n− 1) ·µ∗ · 2−i.
To approximate within a factor ε we require

2−i · (n− 1) ≤ ε =⇒ i ≥ log(n) + log(1/ε) (3)

steps.

Remark 3. Note that for the minimum ratio value we have wt(C ′) ≤ W ′ · n · ν∗, where W ′ = maxe∈E wt′(e). For
ε-approximating ν∗ we would need i ≥ log(n ·W ′/ε) steps.

Approximate solution in the presence of negative cycles. We now turn our attention to ε-approximating µ∗ in the
presence of negative cycles in G. Note that uniformly increasing the weight of each edge so that no negative edges
exist does not suffice, as the error can be of order ε · |W−| rather than ε · µ∗, where W− is the minimum edge weight.

Instead, let c be the value returned by MinCycle on input G. Item 2a of Theorem 2 guarantees that for the weight
function wt−|c|(e) = wt(e) + |c|, the graph G−|c| = (V,E,wt−|c|) has no negative cycles (although it might still
have negative edges). The following lemma states that µ∗ can be ε-approximated by ε′-approximating the value µ′∗ of
G−|c|, for some ε′ polynomially (in n) smaller than ε.

Lemma 9. Let µ∗ and µ′∗ be the value of G and G−|c| respectively, and ε some desired approximation factor of µ∗,
with 0 < ε < 1. There exists an ε′ = ε/nO(1) such that if µ′ is an ε′-approximation of µ′∗ in G−|c|, then µ = µ′ − |c|
is an ε-approximation of µ∗ in G.

Proof. By construction, we have µ′∗ = µ∗ + |c|, where c defined above is the value returned by MinCycle on G. Let
c∗ be the weight of a minimum-weight simple cycle in G. By Theorem 2 Item 2b, we have that |c| = |c∗| ·nO(1). Note
that |c∗| ≤ (n− 1) · |µ∗|, hence µ′∗ = µ∗ + |c∗| · nO(1) ≤ |µ∗| · α for α = nO(1). Let ε′ = ε/α. By ε′-approximating
µ′∗ by µ′ we have

|µ′ − µ′∗| ≤ ε′ · |µ′∗| =⇒ |(µ′ − |c|)− (µ′∗ − |c|)| ≤ ε′ · |µ′∗| =⇒ |µ− µ∗| ≤ ε′ · |µ∗| · α ≤ ε · |µ∗|

The desired result follows. ut

Theorem 4. Let G = (V,E,wt) be a weighted graph of n nodes with constant treewidth. For any 0 < ε < 1, the
minimum mean value problem can be ε-approximated in O(n · log(n/ε)) time and O(n) space.

Proof. In view of Remark 2 the graph G is strongly connected and has a minimum mean value µ∗. First, we construct
a balanced binary tree-decomposition Tree(G) of G in O(n · log n) time and O(n) space Theorem 1. Let c be the
value returned by MinCycle on the input graph G. If c ≥ 0, by Lemma 4 we have µ∗ ≥ 0, and by Eq. (3) µ∗ can be
ε-approximated in O(log(n/ε)) steps. If c < 0, we construct the graph G−|c| = (V,E,wt−|c|). By Lemma 9, µ∗ can
be ε-approximated by ε′ approximating the mean value µ′∗ of G−|c|, where ε′ = ε

nO(1) . By construction, G−|c| does
not contain negative cycles, thus µ′∗ ≥ 0, and by Eq. (3) µ′∗ can be approximated in O(log(n/ε′)) = O(log(n/ε))
steps. By Lemma 5, each step requires O(n) time. The statement follows. ut

5 The Minimum Initial Credit Problem

In the current section we present algorithms for solving the minimum initial credit problem on weighted graphs G =
(V,E,wt). We first deal with arbitrary graphs, and provide (i) an O(n ·m) algorithm for the decision problem, and

11

(ii) an O(n2 · m) for the value problem, improving the previously best upper bounds. Afterwards we adapt our
approach on graphs of constant treewidth to obtain an O(n · log n) algorithm for the value problem.

Non-positive minimum initial credit. For technical convenience we focus on a variant of the minimum initial credit
problem, where energies are non-positive, and the goal is to keep partial sums of path prefixes non-positive. Formally,
given a weighted graph G = (V,E,wt), the non-positive minimum initial credit value problem asks to determine
for each node u ∈ V the largest energy value E(u) ∈ Z≤0 ∪ {−∞} with the following property: there exists an
infinite path P = (u1, u2 . . .) with u = u1, such that for every finite prefix P of P we have E(u) + wt(P) ≤ 0.
Conventionally, we let E(u) = −∞ if no finite such value exists. The associated decision problem asks given a node
u and an initial credit c ∈ Z≤0 whether E(u) ≥ c. Hence, here minimality is wrt the absolute value of the energy. A
solution to the standard minimum initial credit problem can be obtained by inverting the sign of each edge weight and
solving the non-positive minimum initial credit problem in the resulting graph.

We start with some definitions and claims that will give the intuition for the algorithms to follow. First, we define the
minimum initial credit of a pair of nodes u, v, which is the energy to reach v from u (i.e., the energy is wrt a finite
path).

Finite minimum initial credit. For nodes u, v ∈ V , we denote with Ev(u) ∈ Z≤0 ∪ {−∞} the largest value with the
following property: there exists a path P : u v such that for every prefix P ′ of P we have Ev(u) + wt(P ′) ≤ 0.
Note that for every pair of nodes u, v ∈ V , we have E(u) ≥ Ev(u) + E(v). Conventionally, we let Ev(u) = −∞ if no
such value exists (i.e., there is no path u v).

Remark 4. For any u ∈ V , let P : u v be a witness path for Ev(u) > −∞. Then

Ev(u) + wt(P) ≤ 0 =⇒ Ev(u) ≤ −wt(P) ≤ −d(u, v)

i.e., the energy to reach v from u is upper bounded by minus the distance from u to v.

Highest-energy nodes. Given a (possibly infinite) path P with wt(P) < ∞, we say that a node x ∈ P is a highest-
energy node of P if there exists a highest-energy prefix P1 of P ending in x such that for any prefix P2 of P we
have wt(P1) ≥ wt(P2). Note that since the weights are integers, for every pair of paths P ′1, P ′2, it is either |wt(P ′1)−
wt(P ′2)| = 0 or |wt(P ′1)− wt(P ′2)| ≥ 1. Therefore the set {wt(Pi)}i of weights of prefixes of P has a maximum, and
thus a highest-energy node always exists when wt(P) <∞. The following properties are easy to verify:

1. If x is a highest-energy node in a path P : u v, then Ev(x) = 0.
2. If x is a highest-energy node in an infinite path P , then E(x) = 0.

The following claim states that the energy E(u) of a node u is the maximum energy Ev(u) to reach a 0-energy node v.

Claim 2. For every u ∈ V , we have E(u) = maxv:E(v)=0 Ev(u).

Proof. The direction E(u) ≥ maxv:E(v)=0 Ev(u) is straightforward. For the other direction, consider that E(u) > −∞
(trivially, −∞ ≤ maxv:E(v)=0 Ev(u)) and let P be a witness path for E(u). Since E(u) > −∞, we have wt(P) <∞,
and P has some highest-energy node x, thus E(x) = 0. Since x is on the witness P of E(u), we have E(u) ≤ Ex(u) ≤
maxv:E(v)=0 Ev(u). The result follows. ut

5.1 The decision problem for general graphs

Here we address the decision problem, namely, given some node u ∈ V and an initial credit c ∈ Z≤0, determine
whether E(u) ≥ c. The following claim states that if E(u) ≥ c, then a non-positive cycle can be reached from u with
initial credit c, by paths of length less than n.

12

Claim 3. For every u ∈ V and c ∈ Z≤0, we have that E(u) ≥ c iff there exists a simple cycle C such that (i) wt(C) ≤
0 and (ii) for every v ∈ C we have that Ev(u) ≥ c, which is witnessed by a path Pv : u v with |Pv| < n.

Proof. For the one direction, if wt(C) ≤ 0 we have wt(Cω) < ∞, thus C contains a 0-energy node w. By Claim 2,
E(u) = maxv:E(v)=0 Ev(u) ≥ Ew(u) ≥ c. For the other direction, let P be a witness path for E(u), and we can assume
w.l.o.g. that P does not contain positive cycles. Then for every prefix Pv : u v of P we have E(u) + wt(Pv) ≤ 0,
thus Ev(u) ≥ E(u) ≥ c, and the n-th such prefix contains a non-positive cycle C. The result follows. ut

Algorithm DecisionEnergy. Claim 3 suggests a way to decide whether E(u) ≥ c. First, we start with energy c from
u, and perform a sequence of n − 1 relaxation steps, similar to the Bellman-Ford algorithm, to discover the set V cu
of nodes that can be reached from u with initial credit c by a path of length at most n − 1. Afterwards, we perform
a Bellman-Ford computation on the subgraph G � V cu induced by the set V cu . By Claim 3, we have that E(u) ≥ c
iff G � V cu contains a non-positive cycle. Algorithm 2 (DecisionEnergy) gives a formal description. The for loop in
lines 6-12 is similar to the procedure ROUND from the algorithm of [9].

Detecting non-positive cycles. It is known that the Bellman-Ford algorithm can detect negative cycles. To detect non-
positive cycles in a graph G with n nodes and weight function wt, we execute Bellman-Ford on G with a slightly
modified weight function wt′ for which wt′(e) = wt(e) − 1

n . Then for any simple cycle C in G we have wt(C) ≤ 0
iff wt′(C) < 0. Indeed,

wt′(C) < 0 ⇐⇒
∑
e∈C

wt(e)−
∑
e∈C

1

n
< 0 ⇐⇒ wt(C) <

|C|
n
⇐⇒ wt(C) ≤ 0

since |C| ≤ n and wt(C) ∈ Z.

Algorithm 2: DecisionEnergy
Input: A weighted graph G = (V,E,wt), a node u ∈ V , an initial energy c ∈ Z≤0

Output: True iff E(u) ≥ c
// Initialization

1 foreach v ∈ V do
2 Assign D(s)←∞
3 end
4 Assign D(u)← c
5 Assign V c

u ← {u}
// n− 1 relaxation steps to discover V c

u

6 for i← 1 to n− 1 do
7 foreach (v, w) ∈ E do
8 if D(w) ≥ D(v) + wt(v, w) and D(v) + wt(v, w) ≤ 0 then
9 Assign D(w)← D(v) + wt(v, w)

10 Assign V c
u ← V c

u ∪ {w}
11 end
12 end
13 Execute Bellman-Ford on G � V c

u

14 return True iff a non-positive cycle is discovered

The correctness of DecisionEnergy follows directly from Claim 3. The time complexity is O(n ·m) time spent in the
for loop of lines 6-12, plus O(n ·m) time for the Bellman-Ford. We thus obtain the following theorem.

Theorem 5. Let G = (V,E,wt) be a weighted graph of n nodes and m edges. Let u ∈ V be an initial node, and
c ∈ Z≤0 be an initial credit. The decision problem of whether E(u) ≥ c can be solved in O(n ·m) time and O(n)
space.

13

5.2 The value problem for general graphs

We now turn our attention to the value version of the minimum initial credit problem, where the task is to determine
E(u) for every node u. The following claim establishes that if for all energies to reach some node v we have Ev(w) < 0,
then Ev(u) = −d(u, v), i.e., the energy to reach v from every node u is minus the distance from u to v.

Claim 4. If for all w ∈ V \ {v} we have Ev(w) < 0, then for each u ∈ V \ {v} we have Ev(u) = −d(u, v).

Proof. Let P : u v be a witness path to the distance, i.e., wt(P) = d(u, v) < ∞ (if d(u, v) = ∞ the statement
is trivially true). Since every highest-energy node x of P has Ev(x) = 0, we have that x = v. Hence, P is a highest-
energy prefix of itself, and for each prefix P ′ of P we have −wt(P) + wt(P ′) ≤ 0 and thus Ev(u) ≥ −wt(P) =
−d(u, v). By Remark 4, it is Ev(u) ≤ −d(u, v). The result follows. ut

An O(n2 ·m) time solution to the value problem. Claim 4 together with Theorem 5 lead to an O(n2 ·m) method for
solving the minimum initial credit value problem. First, we compute the set X = {v ∈ V : E(v) = 0} in O(n2 ·m)
time, by testing whether E(u) ≥ 0 for each node u. Afterwards, we contract the set X to a new node z, and by
Claim 2 for every remaining node u we have E(u) = maxv∈X Ev(u) = Ez(u). Since u 6∈ X , the energy of u is
strictly negative, and thus Ez(u) < 0. Finally, by Claim 4, we have Ez(u) = −d(u, z). Hence it suffices to compute
the distance of each node u to z, which can be obtained in O(n ·m) time.

In the remaining of this subsection we provide a refined solution ofO(k ·n ·m) time, where k = |X|+1 is the number
of 0-energy nodes (plus one). Hence this solution is faster in graphs where k = o(n). This is achieved by algorithm
ZeroEnergyNodes for computing the set X faster.

Determining the 0-energy nodes. The first step for solving the minimum initial credit problem is determining the set
X of all 0-energy nodes of G. To achieve this, we construct the graph G2 = (V2, E2,wt2) with a fresh node z 6∈ V as
follows:

1. The node set is V2 = V ∪ {z},
2. The edge set is E2 = E ∪ ({z} × V),
3. The weight function wt2 : E2 → Z is

wt2(u, v) =

{
0 if u = z
wt(u, v) otherwise

Remark 5. Since for every outgoing edge (z, x) of z we have wt2(z, x) = 0, if z is a highest-energy node in a path of
G2, so is x. Hence every non-positive cycle in G2 has a highest-energy node other than z.

Note that for every u ∈ V , the energy E(u) is the same in G and G2.

Algorithm ZeroEnergyNodes. Algorithm 3 describes ZeroEnergyNodes for obtaining the set of all 0-energy nodes in
G2. Informally, the algorithm performs a sequence of modifications on a graph G , initially identical to G2. In each
step, the algorithm executes a Bellman-Ford computation on the current graph G with z as the source node, as long as
a non-positive cycle C is discovered. For every such C, it determines a highest-energy node w of C, and modifies G
by replacing every incoming edge (x,w) with an edge (x, z) of the same weight, and then removing w. See Figure 3
for an illustration.

As 0-energy nodes are discovered, ZeroEnergyNodes performs a sequence of modifications to the graph G . We denote
with Gk the graph G after the k-th node has been added to X (and G0 = G2). We also use the superscript-k in our
graph notation to make it specific to Gk (e.g. dk(u, z) and Ekz(u) denote respectively the distance from u to z, and the
energy to reach z from u in Gk). The following two lemmas establish the correctness of ZeroEnergyNodes.

Lemma 10. For every w ∈ X we have E(w) = 0.

14

Algorithm 3: ZeroEnergyNodes
Input: A weighted graph G2 = (V2, E2,wt2)
Output: The set {v ∈ V2 \ {z} : E(v) = 0}

1 Initialize sets V ← V2, E ← E2 and map wt ← wt2
2 Let G = (V ,E ,wt)
3 Initialize set X ← ∅
4 while True do
5 Execute Bellman-Ford from source node z in G
6 if exists non-positive cycle C then
7 Determine a highest-energy node w 6= z in C
8 Assign X ← X ∪ {w}
9 foreach edge (x,w) ∈ E do

10 if (x, z) 6∈ E then
11 Assign E ← E ∪ {(x, z)}
12 Assign wt(x, z)← wt2(x,w)

13 else
14 Assign wt(x, z)← min(wt2(x,w),wt(x, z))
15 end
16 end
17 Assign V ← V \ {w}
18 else
19 return X
20 end
21 end

Proof. The proof is by induction on the size of X . It is trivially true when |X| = 0. For the inductive step, let w be
the k+1-th node added in X . By line 7, w is a highest-energy node in a non-positive cycle C of Gk. We split into two
cases.

1. If z 6∈ C, then C is also a cycle of G, hence w is a highest-energy node in the infinite path P = Cω of G, and
E(w) = 0.

2. If z ∈ C, let x be the node before z in C. By the modifications of lines 11 and 14, it is wtk(x, z) = wt2(x,w
′),

where w′ is a node that has been added to X when the algorithm run on G i for some i < k. It follows that w is a
highest-energy node in a path P : z w′ in G2, and thus a highest-energy node in a suffix P ′ : w w′ of P ,
where P ′ is a path in G. Hence Ew′(w) = 0. By the induction hypothesis, w′ is a 0-energy node, i.e., E(w′) = 0,
thus by Claim 2 we have E(w) ≥ Ew′(w) = 0.

The result follows. ut

Lemma 11. For every w ∈ V : E(w) = 0 we have w ∈ X .

Proof. Consider anyw ∈ V : E(w) = 0. For some i ∈ N, we say that G i “is aware ofw” if either G i has a non-positive
cycle C : w w, or w ∈ X when |X| = i. Note that when ZeroEnergyNodes terminates there are no non-positive
cycles in G |X|. Hence, it suffices to argue that there exists a k ∈ N such that for each i ≥ k, G i is aware of w. We first
argue that there exists a k for which Gk is aware of w.

Let P be a witness for E(w) = 0, hence P traverses a non-positive cycle C1 in G, thus C1 exists in G0. Then there
exists a smallest j ∈ N such that some node w′ of P is identified as a highest-energy node in a non-positive cycle
C2 (possibly C1 = C2), and inserted to X . If w = w′, we have that Gj is aware of w. Otherwise, since E(w) = 0
and w′ is a node in the witness P , we have Ew′(w) = 0. By the choice of w′, the path P exists in Gj , therefore
Ejw′(w) = Ew′(w) = 0, and by Remark 4, we have dj(w,w′) ≤ 0. It is straightforward that after the modifications
in lines 11 and 14, we have that dj+1(w, z) ≤ dj(w,w′) ≤ 0, and since wt j(z, w) = wt2(z, w) = 0, we have a

15

non-positive cycle C : w w in Gj+1 through z. Hence either Gj or Gj+1 is aware of w, thus there exists a k ∈ N
for which Gk is aware of w.

Finally, observe that the distance di(w, z) does not increase in any G i for i ≥ k until w is inserted to X , hence for
each i ≥ k, the graph G i is aware of w. The desired result follows. ut

Determining the negative-energy nodes. Having computed the set X of all the 0-energy nodes of G, the second step
for solving the minimum initial value credit problem is to determine the energy of every other node u ∈ V \X . Recall
the graph G |X| = (V |X|,E |X|,wt |X|) after the end of ZeroEnergyNodes.

Lemma 12. For every u ∈ V \X we have E(u) = −d|X|(u, z).

Proof. Consider any node u ∈ V \X = V |X| \ {z}. By Claim 4, in the graph G we have E(u) = maxv:E(v)=0 Ev(u),
and by the correctness of ZeroEnergyNodes from Lemma 10 and Lemma 11 we have X = {v : E(v) = 0}, thus
E(u) = maxv∈X Ev(u). It is straightforward to verify that at the end of ZeroEnergyNodes, we have maxv∈X Ev(u) =

E
|X|
z (u), i.e., the maximum energy to reach the set X in G is the energy to reach z in G |X|. For all v ∈ V |X| \ {z}

it is E|X|z (v) < 0, otherwise we would have E(v) = 0 and thus v ∈ X and v 6∈ V |X|. Then by Claim 4, E|X|z (u) =
−d|X|(u, z). We conclude that E(u) = −d|X|(u, z). ut

Hence, to compute the energy E(u) of every node u ∈ V \ X , it suffices to compute its distance to z in G |X|. This
is straightforward by reversing the edges of G |X| and performing a Bellman-Ford computation with z as the source
node. Figure 3 illustrates the algorithms on a small example. We obtain the following theorem.

G0

u v

w x

y

z

−2

−1

3

−1

−1

0 0

0 0

0

G1

u v

w
0
x

y

z

3

−2

−1

−1

0 0

0

0

G2

0
u v

w
0
x

y

z

3

−1

−1

0

0

00
u

−2
v

−3
w

0
x

−1
y

z

Fig. 3: Solving the value problem using operations on the graph G . Initially we examine G0, and a non-positive cycle
is found (boldface edges) with highest-energy node x. Thus E(x) = 0, and we proceed with G1, to discover E(u) = 0.
In G2 all cycles are positive, and the energy of each remaining node is minus its distance to z.

Theorem 6. Let G = (V,E,wt) be a weighted graph of n nodes and m edges, and k = |{v ∈ V : E(v) = 0}| + 1.
The minimum initial credit value problem for G can be solved in O(k · n ·m) time and O(n) space.

Proof. Lemma 10, Lemma 11 and Lemma 12 establish the correctness, so it remains to argue about the complexity.
The while block of line 4 is executed at most once for each 0-energy node, hence at most k times. Inside the block,
the execution of Bellman-Ford in line 5 requires O(n ·m) time and O(m) space. Since the Bellman-Ford algorithm
uses backpointers to remember predecessors of nodes in distances, a highest-energy node w of a non-positive cycle
C in line 7 can be determined in O(n). Finally, the for loop of line 9 will consider each edge (x,w) at most once,
hence it requires O(m) for all iterations of the while loop. Thus ZeroEnergyNodes uses O(k · n ·m) time and O(n)

16

space in total. The last execution of Bellman-Ford to determine the energy of negative-energy nodes does not affect
the complexity. The result follows. ut

Corollary 3. Let G = (V,E,wt) be a weighted graph of n nodes and m edges. The minimum initial credit value
problem for G can be solved in O(n2 ·m) time and O(n) space.

5.3 The value problem for constant-treewidth graphs

We now turn our attention to the minimum initial credit value problem for constant-treewidth graphs G = (V,E,wt).
Note that in such graphs m = O(n), thus Theorem 6 gives an O(n3) time solution as compared to the existing
O(n4 · log(n · W)) time solution. This section shows that we can do significantly better, namely reduce the time
complexity to O(n · log n). This is mainly achieved by algorithm ZeroEnergyNodesTW for computing the set X of
0-energy nodes fast in constant-treewidth graphs.

Extended + and min operators. Recall the graph G2 = (V2, E2,wt2) from the last section. Given Tree(G), a
balanced and binary tree-decomposition Tree(G2) of G2 with width increased by 1 can be easily constructed by
(i) inserting z to every bag of Tree(G), and (ii) adding a new root bag that contains only z. Let I = Z× V ×Z. For a
map f : V2 × V2 → Z, define the map gf : V2 × V2 → I as

gf (u, v) =

{
(f(u, v), u, 0) if f(u, v) < 0 or v = z
(f(u, v), v, f(u, v)) otherwise

and for triplets of elements α1 = (a1, b1, c1), α2 = (a2, b2, c2) ∈ I, define the operations

1. min(α1, α2) = αi with i = argminj∈{1,2} aj
2. α1 + α2 = (a1 + a2, b, c), where c = max(c1, a1 + c2) and b = b1 if c = c1 else b = b2.

In words, if f is a weight function, then gf (u, v) selects the weight of the edge (u, v), and its highest-energy node (i.e.,
u if f(u, v) < 0, and v otherwise, except when v = z), together with the weight to reach that highest energy node
node from u. Recall that algorithm MinCycle from Section 3 traverses a tree-decomposition bottom-up, and for each
encountered bag B stores a map LDB such that LDB(u, v) is upper bounded by the weight of the shortest U-shaped
simple path u v (or simple cycle, if u = v). Our algorithm ZeroEnergyNodesTW for determining all 0-energy nodes
is similar, only that now LDB stores triplets (a, b, c) where a is the weight of a U-shaped path P , b is a highest-energy
node of P , and c the weight of a highest-energy prefix of P . For two triplets α1 = (a1, b1, c1), α2 = (a2, b2, c2) ∈ I
corresponding to U-shaped paths P1 and P2, min(α1, α2) selects the path with the smallest weight, and α1 + α2

determines the weight, a highest-energy node, and the weight of a highest-energy prefix of the path P1 ◦ P2 (see
Figure 4).

Algorithm ZeroEnergyNodesTW. The algorithm ZeroEnergyNodesTW for computing the set of 0-energy nodes in
constant-treewidth graphs follows the same principle as ZeroEnergyNodes for general graphs. It stores a map of edge
weights wt : E2 → Z ∪ {∞}, and initially wt(u, v) = wt2(u, v) for each (u, v) ∈ E2. The algorithm performs a
bottom-up pass, and computes in each bag the local distance map LDB : B × B → I that captures U-shaped u v
paths, together with their highest-energy nodes. When a non-positive cycle C is found in some bag B, the method
KillCycle is called to modify the edges of a highest-energy node w of C and its incoming neighbors by updating the
map wt . These updates generally affect the distances between the rest of the nodes in the graph, hence some local
distance maps LDB need to be corrected. However, each such edge modification only affects the local distance map
of bags that appear in a path from a bag B′ to some ancestor B′′ of B′. Instead of restarting the computation as in
ZeroEnergyNodes, the method Update is called to correct those local distance maps along the path B′ B′′.

The following lemma establishes the correctness of ZeroEnergyNodesTW. Similarly as for Lemma 10 and Lemma 11
we denote with Gk the graph obtained by considering the edges (u, v) for which wt(u, v) <∞ when |X| = k.

Lemma 13. For every v ∈ V \ {z} we have v ∈ X iff E(v) = 0.

17

b1

c1

a1

P i
1

w
t(
P

i 1
)

b2

c2

a2

P i
2

w
t(
P

i 2
)

b

c

a

P i

w
t(
P

i)

Fig. 4: Illustration of the α1 + α2 operation, corresponding to concatenating paths P1 and P2. The path P ij denotes
the i-th prefix of Pj . We have P = P1 ◦P2, and the corresponding tripplet α = (a, b, c) denotes the weight a of P , its
highest-energy node b, and the weight c of a highest-energy prefix.

Algorithm 4: ZeroEnergyNodesTW
Input: A weighted graph G2 = (V2, E2,wt2) and a binary tree-decomposition Tree(G2)
Output: The set {v ∈ V2 \ {z} : E(v) = 0}
// Initialization

1 Assign X ← ∅
2 foreach u, v ∈ V2 do
3 if (u, v) ∈ E2 then
4 Assign wt(u, v)← wt2(u, v)
5 else
6 Assign wt(u, v)←∞
7 end
8 end
// Computation

9 Apply a post-order traversal on Tree(G), and examine each bag B with children B1, B2

10 begin
11 foreach u, v ∈ B do
12 Assign LDB(u, v)←min(LDB1(u, v), LDB2(u, v), gwt (u, v))
13 end
14 if B is the root bag of a node x then
15 foreach u, v ∈ B do
16 Assign LD′B(u, v)←min(LDB(u, v), LDB(u, x)+ LDB(x, v))
17 end
18 Assign LDB ← LD′B
19 if ∃u ∈ B with LDB(u, u) = (a, b, c) where a ≤ 0 then
20 Assign X ← X ∪ {b}
21 Execute KillCycle on b and B
22 end
23 return X

18

Method 5: KillCycle
Input: A 0-energy node w and a bag B of Tree(G2)
Output: Updates the local distance function LDB

1 foreach edge (x,w) ∈ E2 do
2 Assign wt(x, z)← min(wt2(x,w),wt(x, z))
3 Assign wt(x,w)←∞
4 Assign y ← argmaxu∈{x,w} Lv(u)
5 Let B′ be the smallest-level ancestor of By examined by ZeroEnergyNodesTW so far
6 Execute Update on By and its ancestor B′

7 end
8 return LDB

Method 6: Update
Input: A bag B′ and an ancestor B′′

Output: The local distances LDB along the path B′ B′′

1 Traverse the path B′ B′′ bottom-up, and examine each bag B with children B1, B2

2 begin
3 foreach u, v ∈ B do
4 Assign LDB(u, v)←min(LDB1(u, v), LDB2(u, v), gwt (u, v))
5 end
6 if B is the root bag of a node x then
7 foreach u, v ∈ B do
8 Assign LD′B(u, v)←min(LDB(u, v), LDB(u, x)+ LDB(x, v))
9 end

10 Assign LDB ← LD′B
11 if ∃u ∈ B with LDB(u, u) = (a, b, c) where a ≤ 0 then
12 Assign X ← X ∪ {b}
13 Execute KillCycle on b and B
14 end

19

Proof. We only need to argue that ZeroEnergyNodesTW correctly computes the non-positive cycles in every Gk, as
then the correctness follows from the correctness Lemma 10 and Lemma 11 of ZeroEnergyNodes. Since by Remark 1
every cycle is a U-shaped path in some bag, it suffices to argue that whenever ZeroEnergyNodesTW examines a bag
B (either directly, or through Update), every U-shaped simple cycle in B has been considered by the algorithm. This
is true if no calls to KillCycle are made (if block in line 19), as then ZeroEnergyNodesTW is the same as MinCycle,
and hence it follows from Lemma 2.

Now consider that KillCycle is called andB′ is the smallest-level bag examined by ZeroEnergyNodesTW so far. Let w
be the 0-energy node, x an incoming neighbor of w, and y = argmaxu∈{x,w} Lv(u) (as in line 4 of KillCycle). By the
definition of U-shaped paths, the edge (x,w) appears only in paths that are U-shaped in bags along the path By B′.
Hence, after setting wt(x,w) = ∞ (line 3 of KillCycle), it suffices to update the local distance maps of these bags.
Similarly, after setting wt(x, z)← min(wt2(x,w),wt(x, z)) (line 2 of KillCycle), since Bz is the root of Tree(G2), it
suffices to update the local distance maps in the bags along the path Bx B′. Either x = y, or, by the properties of
tree-decompositions, Bx is an ancestor of By . Hence in either case Bx B′ is a subpath of By B′, and both edge
modifications in lines 2 and 3 are handled correctly by calling Update on By and its ancestor B′. The result follows.

ut

Lemma 14. Algorithm ZeroEnergyNodesTW runs in O(n · log n) time and O(n) space.

Proof. Let h = O(log n) be the height of Tree(G2).

1. The method Update performs a constant number of operations to each bag in the path B′ B′′ where B′′ is
ancestor of B′, hence each call to Update requires O(h) time.

2. The method KillCycle performs a constant number of operations locally and one call to Update for each incoming
edge of w. Hence if w has kw incoming edges, KillCycle requires O(h · kw) time. Since KillCycle sets wt(x,w) =
∞ for all incoming edges of w, the node w will not appear in non-positive cycles thereafter.

3. The algorithm ZeroEnergyNodesTW is similar to MinCycle which runs in O(n) time and space (Lemma 5). The
difference is in the additional if block in line 19. Since KillCycle is called when a non-positive cycle is detected, it
will be called at most once for each node u ∈ V2 \ {z} (from either ZeroEnergyNodesTW or Update). It follows
that the total time of ZeroEnergyNodesTW is

O

(
n+

∑
u

(h · ku)

)
= O(n+ h · |E2|) = O(n · log n)

where ku is the number of incoming edges of node u. Since KillCycle stores constant size of information in each
bag of Tree(G2), the O(n) space bound follows.

ut

After the set X of 0-energy nodes has been computed, it remains to execute one instance of the single-source shortest
path problem on the graph G |X| (similarly as for our solution on general graphs). It is known that single-source
distances in tree-decompositions of constant treewidth can be computed in O(n) time [23,18]. We thus obtain the
following theorem.

Theorem 7. Let G = (V,E,wt) be a weighted graph of n nodes with constant treewidth. The minimum initial credit
value problem for G can be solved in O(n · log n) time and O(n) space.

6 Experimental Results

In the current section we report on preliminary experimental evaluation of our algorithms, and compare them to
existing methods. Our algorithm for the minimum mean cycle problem provides improvement for constant-treewidth
graphs, and has thus been evaluated on low-treewidth graphs obtained from the control-flow graphs of programs. For
the minimum initial credit problem, we have implemented our algorithm for arbitrary graphs, thus the benchmarks
used in this case are general graphs (i.e., not constant-treewidth graphs).

20

6.1 Minimum mean cycle

We have implemented our approximation algorithm for the minimum mean cycle problem, and we let the algorithm run
for as many iterations until a minimum mean cycle was discovered, instead of terminating afterO(log(n/ε)) iterations
required by Theorem 4. We have tested its performance in running time and space against six other minimum mean
cycle algorithms from Table 3 in control-flow graphs of programs. The algorithms of Burns and Lawler solve the more
general ratio cycle problem, and have been adapted to the mean cycle problem as in [26].

Madani [39] Burns [12] Lawler [38] Dasdan-Gupta [25] Hartmann-Orlin [32] Karp [36]

Time O(n2) O(n3) O(n2 · log(n ·W)) O(n2) O(n2) O(n2)

Space O(n) O(n) O(n) O(n2) O(n2) O(n2)

Table 3: Asymptotic complexity of compared minimum mean cycle algorithms.

Setup. The algorithms were executed on control-flow graphs of methods of programs from the DaCapo benchmark
suit [3], obtained using the Soot framework [46]. For each benchmark we focused on graphs of at least 500 nodes.
This supplied a set of medium sized graphs (between 500 and 1300 nodes), in which integer weights were assigned
uniformly at random in the range {−103, . . . , 103}. Memory usage was measured with [11].

Results. Figure 5 shows the average time and space performance of the examined algorithms (bars that exceeded the
maximum value in the y-axis have been truncated). Our algorithm has much smaller running time than each other
algorithm, in almost all cases. In terms of space, our algorithm significantly outperforms all others, except for the
algorithms of Lawler, Burns, and Madani. Both ours and these three algorithms have linear space complexity, but
ours also suffers some constant factor overhead from the tree-decomposition (i.e., the same node generally appears in
multiple bags). Note that the strong performance of these three algorithms in space is followed by poor performance
in running time.

Fig. 5: Average performance of minimum mean cycle algorithms.

21

Madani Burns Lawler Dasdan-Gupta Hartmann-Orlin Karp Ours

antlr 55814 61571 165789 284996 21893 7824 18402
bloat 138416 188356 350302 105145 144171 89949 22391
chart 216962 137112 573767 154062 107229 90717 40890

eclipse 216859 242323 667869 172792 148523 107864 23486
fop 83080 147384 406371 59176 121742 31557 19306

hsqldb 131041 153232 208328 86840 228632 40486 19957
javac 58443 110149 122996 179647 14719 34188 20874
jflex 214297 524822 554093 116820 133323 53329 23860

jython 139106 200922 503766 94052 75569 34864 28760
luindex 199650 217980 1240411 274319 228856 92379 22142
lusearch 433211 447280 1180051 263467 333297 101584 55652

pmd 180551 155118 585315 118578 155682 48326 21978
xalan 120897 156111 394458 81103 96873 47996 14493

Table 4: The time performance of Figure 5 (in µs).

6.2 Minimum initial credit

We have implemented our algorithm for the minimum initial credit problem on general graphs and experimentally eval-
uated its performance on a subset of benchmark weighted graphs from the DIMACS implementation challenges [1].
Our algorithm was tested against the existing method of [9]. The direct implementation of the algorithm of [9] per-
formed poorly, and for this we also implemented an optimized version (using techniques such as caching of intermedi-
ate results and early loop termination). Note that we compare algorithms for general graphs, without the low-treewidth
restriction.

Setup. For each input graph we first computed its minimum mean value µ∗ using Karp’s algorithm, and then subtracted
µ∗ from the weight of each edge to ensure that at least one non-positive cycle exists (thus the energies are finite).

Results. Figure 6 depicts the running time of the algorithm of [9] (with and without optimizations) vs our algorithm. A
timeout was forced at 1010µs. Our algorithm is orders of magnitude faster, and scales better than the existing method.

Fig. 6: Comparison of running times for the minimum initial credit problem.

22

Madani Burns Lawler Dasdan-Gupta Hartmann-Orlin Karp Ours

antlr 16805 21018 11144 486435 489176 322384 168648
bloat 29723 24500 19458 1245272 1249444 826645 306026
chart 27130 30567 18172 2025448 2029294 1347048 278586

eclipse 24215 26488 16293 965063 968595 640720 254393
fop 16845 17975 11052 576174 578646 382338 169738

hsqldb 16798 19309 11144 486435 489096 322384 168648
javac 14681 17047 9664 372697 375453 247019 144721
jflex 24561 26946 16322 1244495 1248036 826743 251549

jython 22518 23337 14899 1059291 1062570 703581 228207
luindex 39309 40223 25604 3521607 3526792 2342833 399076
lusearch 41488 33350 26991 3387914 3393343 2253403 422679

pmd 32204 24481 21021 1391551 1395786 923975 326137
xalan 16798 17763 11144 486435 489102 322384 168648

Table 5: The space performance of Figure 5 (in KB).

n Existing Existing Optimized Ours

50 9453565 1680924 48635

58 39744129 3394193 121774

66 55766874 6201044 267825

74 180080064 12833610 136239

82 267993314 13563936 116518

90 342779026 25453589 383292

98 74622910 12648395 501365

106 791441986 60294150 385799

114 1133055323 80584700 432290

122 1004898322 67982455 564838

130 2354354250 165193753 348112

138 881117317 114743182 636481

146 7050113907 311146051 501314

162 5179877563 324877384 1154447

178 Timeout 589873640 635155

194 3799301931 391240954 2672127

218 Timeout 2596083382 866213

242 Timeout 2774469734 1779512

266 Timeout 2839496222 7676638

290 Timeout 6526762301 1332403

322 Timeout 5929433611 1282258
Table 6: The time performance of Figure 6 in µs.

23

References

1. DIMACS implementation challenges, http://dimacs.rutgers.edu/Challenges/
2. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality. In: ICALP. pp. 15–27 (2013)
3. Blackburn, S.M.e.a.: The dacapo benchmarks: Java benchmarking development and analysis. In: OOPSLA (2006)
4. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives (2015)
5. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In: FMCAD. pp. 85–92 (2009)
6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. (1993)
7. Bodlaender, H.: Discovering treewidth. In: SOFSEM 2005: Theory and Practice of Computer Science, LNCS, vol. 3381.

Springer (2005)
8. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with accumulative values. In: LICS. pp.

43–52 (2011)
9. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints.

In: Formal Modeling and Analysis of Timed Systems, Lecture Notes in Computer Science, vol. 5215, pp. 33–47. Springer
Berlin Heidelberg (2008)

10. Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: CONCUR. pp. 266–280 (2014)
11. Brosius, D.: Java agent for memory measurements, https://github.com/jbellis/jamm
12. Burns, S.M.: Performance analysis and optimization of asynchronous circuits. Tech. rep. (1991)
13. Cerny, P., Henzinger, T.A., Radhakrishna, A.: Quantitative abstraction refinement. In: POPL. pp. 115–128 (2013)
14. Chatterjee, K., Lacki, J.: Faster algorithms for Markov decision processes with low treewidth. In: CAV (2013)
15. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff automaton expressions. CoRR

abs/1006.1492 (2010)
16. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quantitative languages. LMCS 6(3)

(2010)
17. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Log. 11(4) (2010)
18. Chatterjee, K., Goyal, P., Ibsen-Jensen, R., Pavlogiannis, A.: Faster algorithms for algebraic path properties in recursive state

machines with constant treewidth. In: POPL (2015)
19. Chatterjee, K., Henzinger, M., Krinninger, S., Loitzenbauer, V., Raskin, M.A.: Approximating the minimum cycle mean. Theor.

Comput. Sci. (2014)
20. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments.

In: JACM. pp. 380–395 (2015)
21. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. Tech. rep., IST Austria (2014)
22. Chatterjee, K., Velner, Y.: Mean-payoff pushdown games. In: LICS (2012)
23. Chaudhuri, S., Zaroliagis, C.D.: Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms. Algorithmica

(1995)
24. Cochet-terrasson, J., Cohen, G., Gaubert, S., Gettrick, M.M., pierre Quadrat, J.: Numerical computation of spectral elements

in max-plus algebra (1998)
25. Dasdan, A., Gupta, R.: Faster maximum and minimum mean cycle algorithms for system-performance analysis. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on 17(10), 889–899 (Oct 1998)
26. Dasdan, A., Irani, S.S., Gupta, R.K.: An experimental study of minimum mean cycle algorithms. Tech. rep. (1998)
27. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer Publishing Company, Incorporated, 1st edn.

(2009)
28. Droste, M., Meinecke, I.: Weighted automata and weighted mso logics for average and long-time behaviors. Inf. Comput. 220,

44–59 (2012)
29. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Courcelle. In: FOCS (2010)
30. Gustedt, J., MÃ¦hle, O., Telle, J.: The treewidth of java programs. In: Algorithm Engineering and Experiments. LNCS, Springer

(2002)
31. Halin, R.: S-functions for graphs. Journal of Geometry (1976)
32. Hartmann, M., Orlin, J.B.: Finding minimum cost to time ratio cycles with small integral transit times. NETWORKS 23,

567–574 (1993)
33. Henzinger, T.A., Otop, J.: From model checking to model measuring. In: CONCUR. pp. 273–287 (2013)
34. Howard, R.A.: Dynamic Programming and Markov Processes. MIT˜Press, Cambridge, Massachusetts (1960)
35. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathematics 23(3), 309 – 311 (1978)
36. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathematics (1978)
37. Kwek, S., Mehlhorn, K.: Optimal search for rationals. Inf. Process. Lett. 86(1), 23–26 (2003)
38. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Saunders College Publishing (1976)
39. Madani, O.: Polynomial value iteration algorithms for deterministic MDPs. In: UAI’02 (2002)

24

http://dimacs.rutgers.edu/Challenges/
https://github.com/jbellis/jamm

40. Obdrzálek, J.: Fast mu-calculus model checking when tree-width is bounded. In: CAV (2003)
41. Orlin, J.B., Ahuja, R.K.: New scaling algorithms for the assignment and minimum mean cycle problems. Math. Program.

(1992)
42. Papadimitriou, C.H.: Efficient search for rationals. Information Processing Letters 8(1), 1 – 4 (1979)
43. Reed, B.A.: Finding approximate separators and computing tree width quickly. In: STOC (1992)
44. Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. Journal of Combinatorial Theory, Series B (1984)
45. Thorup, M.: All Structured Programs Have Small Tree Width and Good Register Allocation. Information and Computation

(1998)
46. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot - a java bytecode optimization framework. In:

CASCON ’99. IBM Press (1999)
47. Velner, Y.: The complexity of infinitely repeated alternating move games. In: ICALP. pp. 816–827 (2013)

25

	Faster Algorithms for Quantitative Verification in Constant Treewidth Graphs

