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Abstract

Modern tracking technology has made the collection of large numbers of densely sampled
trajectories of moving objects widely available. We consider a fundamental problem encountered
when analysing such data: Given n polygonal curves S in Rd, preprocess S into a data structure
that answers queries with a query curve q and radius ρ for the curves of S that have Fréchet
distance at most ρ to q.

We initiate a comprehensive analysis of the space/query-time trade-off for this data structuring
problem. Our lower bounds imply that any data structure in the pointer model model that
achieves Q(n) +O(k) query time, where k is the output size, has to use roughly Ω

(
(n/Q(n))2

)
space in the worst case, even if queries are mere points (for the discrete Fréchet distance) or line
segments (for the continuous Fréchet distance). More importantly, we show that more complex
queries and input curves lead to additional logarithmic factors in the lower bound. Roughly
speaking, the number of logarithmic factors added is linear in the number of edges added to the
query and input curve complexity. This means that the space/query time trade-off worsens by
an exponential factor of input and query complexity. This behaviour addresses an open question
(see [1, 7]) in the range searching literature concerning multilevel partition trees which may be of
independent interest, namely, whether it is possible to avoid the additional logarithmic factors in
the space and query time of a multilevel partition tree. We answer this question negatively.

On the positive side, we show we can build data structures for the Fréchet distance by using
semialgebraic range searching. The space/query-time trade-off of our data structure for the
discrete Fréchet distance is in line with the lower bound, as the number of levels in the data
structure is O(t), where t denotes the maximal number of vertices of a curve. For the continuous
Fréchet distance, the number of levels increases to O(t2).



1 Introduction

Recent technological advances have made it possible to collect trajectories of moving objects, indoors
and outdoors, on a large scale using various technologies, such as GPS [16], WLAN, Bluetooth,
RFID [18] or video analysis [12]. In this paper we study time-space trade-offs for data structures
that store trajectory data and support similarity retrieval. In particular we focus on the case where
the similarity or distance between two curves is measured by the Fréchet distance. This distance
measure is widely studied in computational geometry and gives high-quality results for trajectory
data. We focus on the case where the query should return all input curves in a specified range,
given by a query curve q and a radius ρ. The range is defined as the set of curves that have Fréchet
distance at most ρ to q, i.e., the metric ball of radius ρ centered at q. Our study is timely as it
coincides with the 6th GIS-focussed algorithm competition hosted by ACM SIGSPATIAL1 drawing
attention to this very problem from the practical domain.

At the same time, our results address a broader question concerning multilevel partition trees, a
very important classical tool from the range searching literature. See the following survey for more
background [4], but briefly, in range searching the goal is to store a set of n points such that the
points in a query region can be found efficiently. One of the most prominent problems is when the
queries are simplicies in Rd, a problem known as simplex range searching . Interestingly, the known
solutions for simplex range searching can be easily repackaged into multilevel data structures that
can even solve more difficult problems, such as simplex-simplex searching: store a set of n simplicies
such that the simplicies that are entirely contained in a query simplex can be found efficiently. For
some illustrative examples on the versatility and power of multilevel data structures see [7].

The concept of multilevel partition tree based data structures is broad and mathematically not
well-defined. Roughly speaking, in a multilevel data structure, first a base data structure is built
that defines some notion of first generation canonical sets. Then on the first generation canonical
sets, a secondary set of data structures are built which in turn defines a second generation canonical
sets. Continuing this “nested” structure for t levels would yield a multilevel data structure with t
levels. This flexibility, allows more complex problems (such as simplex-simplex searching problem
mentioned above) to be solved and with very little effort and by only degrading space or query time
by small factors. It seems intuitively obvious that each additional level should blow up the space or
the query time of the data structure and in fact all known data structures suffer an exponential
factor in t (often a logO(t) n factor). It has been conjectured that this should be the case but not
even a polynomial blow up was proven before (see [1, 7]).

Exponential vs polynomial dependency. To better understand the situation, let us momen-
tarily focus on planar data structures with linear or near-linear space. For the main problem of
simplex range reporting, there exist data structures with O(n) space and O(n1−1/d + k) query time
where k is the output size. This query time is conjectured to be optimal and there exist lower
bounds that almost match it up to a 2O(

√
logn) factor ([1]) or log n factor ([8]). Thus, the base

problem of simplex range reporting is well-understood. However, beyond this, things are less clear.
In particular, we would like to know what happens if the query regions or the input are more
complex objects. Assume the input is a set of n points but the query is a tuple of t hyperplanes that
define a polytope. To report the set of points inside the query polytope, we can triangulate the query
polytope into O(td) simplices and then we can ask a simplex range searching query for each resulting

1 6th ACM SIGSPATIAL GISCUP 2017, see also http://sigspatial2017.sigspatial.org/giscup2017/
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simplex. This will not alter the space consumption at all and it will only blow up the query time by
a factor O(td) but for a constant d, this factor is a fixed polynomial of the query complexity, t. This
example shows that such “obviously more complex” queries can actually be handled very efficiently.
Now consider what happens if both queries and input are complex objects. Consider a problem in
which the input is a set containing n tuples where the i-th tuple pi is composed of t points, i.e.,

pi = (p
(1)
i , . . . ,p

(t)
i ) where each p

(j)
i ∈ Rd, and the query is a tuple of t simplices (σ1, . . . , σt). The

goal is to report all the input tuples pi such that p
(j)
i lies inside σj for every 1 ≤ j ≤ t. In this case,

seemingly, the best thing to do is to build a multilevel data structure composed of t levels. Such a
data structure will consume O(n logt−1 n) space and will have the query time of O(n1−1/d logt−1 n)
using the best known results in the literature on multilevel data structures [7]. The crucial difference
here is that both space and query time degrade exponentially in t as opposed to the polynomial
dependency in the previous case. The main open question here is whether this exponential factor is
required.

The picture becomes more interesting once one looks at the history of multilevel data structures
and once one realizes that there are many ways to build them. In Matoušek’s [17] original paper,
one would sacrifice a log2 n factor for space and a log n factor for the query time but this comes at
a larger pre-processing time. If one wishes to reduce the preprocessing time, then the loss increases
to an unspecified number of log n factors per level. Chan [7] offers the currently best known way
to build multilevel data structures at only one log n factor loss for space and query time per level
(in fact, in some cases, we can do even better). This brings us to the main lower bound question
regarding multilevel data structures.

Question 1. Is it possible to avoid the additional logarithmic factors for every level in the space
and query time of a multilevel data structure?

We at least partially settle this open question by showing that the space/query time tradeoff
must blow up by at least a roughly log n factor for every increase in t. To do that, we show that a
particular problem that can be solved using multilevel data structures is hard.

We remark that the above question is ambiguous since we did not provide a mathematically
precise definition of a “multilevel data structure”. Such a definition would have to capture the
versatility of the multilevel approach to data structuring. For instance, multilevel partition trees
can have different fan-outs at different levels, they can selectively use duality restricted to individual
levels, or they can use different auxiliary data structures mixed in with them. A crucial and arguably
most useful property of the multilevel structures is that different levels can handle completely
independent subproblems. By lack of a precise definition that is commonly agreed upon and perhaps
in the hope to prove an even stronger statement, we take a different approach: We prove a lower
bound for a concrete relevant multilevel data structuring problem (Problem 3 on page 4).

The problem only involves independent points and simplicies (the basic components of a simplex
range reporting problem) and thus any multilevel data structure must be able to solve the problem.
This means, a lower bound for this problem gives a lower bound for the general class of multilevel
data structures. From this point of view, our lower bound is in fact stronger: it shows that the
multilevel stabbing problem is strictly more difficult than the ordinary simplex range searching
problem, even if we are not restricted to use “multilevel data structures.”

Not only that, but we also show that the lower bound also generalizes to geometric search
structures based on Fréchet distance: preprocess a set of n polygonal curves of complexity t such
that given a query polygonal curve of complexity t, we can find all input curves within some distance
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ρ of the query (Problems 1 and 2 on page 3). This lower bound is not obvious and it also provides
additional motivation to study multilevel data structures. The fact that we can extend our lower
bound to such a practically relevant problem emphasizes the relevance of our lower bounds.

2 Definitions and Problem Statement

A polygonal chain s is a sequence of vertices s1, . . . , st ∈ Rd. The discrete Fréchet distance of two
chains s and q is defined using the concept of traversals. A traversal is a sequence of pairs of indices
{(i1, j1), (i2, j2), . . . , (ik, jk)} such that i1 = 1, j1 = 1, ik = ts, and jk = tq and one of the following
holds for each pair (im, jm) with m > 1: (i) im = im−1 and jm = jm−1 + 1, or (ii) im = im−1 + 1 and
jm = jm−1 + 1, or (iii) im = im−1 + 1 and jm = jm−1. The discrete Fréchet distance is defined as

dF (s, q) = min
T∈T

max
(i,j)∈T

‖si − qj‖ (1)

Finding the traversal that minimizes the Fréchet distance is called the alignment problem.

The continuous Fréchet distance is defined for continuous curves. For a polygonal chain s,
we obtain a polygonal curve by linearly interpolating si and si+1, i.e., adding the edge sisi+1 =
{αsi + (1 − α)si+1 | α ∈ [0, 1]} in between each pair of consecutive vertices. The curve s has a
uniform parametrization that allows us to view it as a parametrized curve s : [0, 1] → Rd. The
Fréchet distance between two such parametrized curves is defined as

dF (s, q) = min
f :[0,1]→[0,1]

max
α∈[0,1]

‖s(α)− q(f(α))‖, (2)

where f ranges over all continuous and monotone bijections with f(0) = 0 and f(1) = 1.

In this paper we consider the following two problems based on the Fréchet distance.

Problem 1 (Discrete Frechet Queries). Let S be an input set of n polygonal chains in Rd where
each polygonal chain has size at most ts. Given a parameter ρ, we would like to store S in a data
structure such that given a query polygonal chain q of length at most tq, we can find all the chains
in S that are within the discrete Frechet distance ρ of q, see Equation (1).

Problem 2 (Continuous Frechet Queries). Let S be an input set of n polygonal curves in Rd where
each polygonal curve consists of at most ts vertices. Given a parameter ρ, we would like to store S
in a data structure such that given a query polygonal curve q consisting of tq vertices, we can find
all the curves in S that are within the continuous Frechet distance ρ of q, see Equation (2).

For both problems, the output size is the number of input curves that match the query
requirements.

Since we will be working with tuples of points and geometric ranges, we introduce the following
notations to simplify the description of our results.

A t-point p in Rd is a tuple of t points (p(1),p(2), . . . ,p(t)) where each p(i) is a point in Rd. The
concepts of t-hyperplanes and t-halfspaces, and etc. are defined similarly. A slab s is the region
between two parallel hyperplanes. The thickness of s is the distance between the hyperplanes and it
is denoted by τ(s). A t-slab s in Rd is a tuple of t slabs (s(1), s(2), . . . , s(t)) where each s(i) is a slab.
The thickness of s is defined as

∏t
j=1 τ(s(j)). A t-point p is inside a t-slab s if p(i) is inside s(i) for
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every 1 ≤ i ≤ t. We will adopt the convention that the i-th point p in a t-point is denoted by p(i).
The same applies to the other definitions.

We will also show a lower bound for the following concrete problem.

Problem 3 (Multilevel Stabbing Problem). Let S be an input set containing n t-slabs. We would
like to store S in a data structure such that given a query t-point p we can find all the t-slabs s ∈ S
such that s contains p.

The pointer machine model. The model of computation that we use for our lower bound is
the pointer machine model. This model is very suitable for proving lower bounds for range reporting
problems. Consider an abstract data structure problem where the input is a set S of elements and
where a query q (implicitly) specifies a subset Sq ⊂ S that needs to be output by the data structure.
In the pointer machine model, the storage of the data structure is represented using a directed
graph M with constant out-degree where each vertex in M corresponds to one memory cell. Each
memory cell can store one element of S. The constant out-degree requirement means that each
memory cell can point to at most a constant number of other memory cells. The elements of S are
assumed to be atomic, meaning, to answer a query q, for each element v ∈ Sq, the data structure
must visit at least one vertex (i.e., cell) that stores v. To visit that subset of cells, the data structure
starts from a special vertex of M (called the root) and follows pointers: the data structure can visit
a memory cell u only if it has already visited a cell v such that v points to u. There is no other
restriction on the data structure, i.e., it can have unlimited information and computational power.
The size of the graph M lower bounds the storage usage of the data structure and the number of
nodes visited while answering a query lower bounds the query time of the data structure. Thus,
when proving lower bounds in the pointer machine model, it is sufficient to show that if the data
structure operates on a small graph M , then during the query time, it has to visit a lot of cells (or
vice versa).

3 Related Work on Fréchet Queries

Few data structures are known which support Fréchet queries of some type. We review the space
and query time obtained by these data structures. In the following, let n denote the number of
curves in the data structure and let t denote the maximum number of vertices of each curve. The
data structures can be distinguished by the type of queries answered: (i) nearest neighbor queries
[15, 11], (ii) range counting queries [10, 13],

Before we discuss these data structures, we would like to point out that under certain complexity-
theoretic assumptions both (i) and (ii) above become much harder for long curves, and in particular
for t ∈ ω(log n). More specifically, there is a known reduction from the orthogonal vectors problem
which implies that, unless the orthogonal vectors hypothesis fails, there exists no data structure for
range searching or nearest neighbor searching under the (discrete or continuous) Fréchet distance
that can be built in O

(
n2−εpoly(t)

)
time and achieves query time in O

(
n1−εpoly(t)

)
for any ε > 0

(see also the discussion in [11]).
A data structure by Indyk supports approximate nearest-neighbor searching under the discrete

Fréchet distance [15]. The query time is in O
(
tO(1) log n

)
and the approximation factor is in

O(log t+ log logn). The data structure uses space in O
(
|X|
√
t(t
√
tn)2

)
, where |X| is the size of the

domain on which the curves are defined. The data structure precomputes all answers to queries
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with curves of length
√
t, leading to a very high space consumption. A recent result by Driemel and

Silvestri [11] shows that it is possible to construct locality-sensitive hashing schemes for the discrete
Fréchet distance. One of the main consequences is a O(t)-approximate near-neighbor data structure
that achieves O(t log n) query time and O(n log n+ tn) space.

As for the continuous Fréchet distance, de Berg, Gudmundsson and Cook study the problem
of preprocessing a single polygonal curve into a data structure to support range counting queries
among the subcurves of this curve [10]. The data structure uses a multilevel partition tree to store
compressed subcurves. This representation incurs an approximation factor of 2 + 3

√
2 in the query

radius. For any parameter n ≤ s ≤ n2, the space used by the data structure is in O(s polylog(n)).

The queries are computed in time in O
(
n√
s

polylog(n)
)

. However, the data structure does not

support more complex query curves than line segments.
The motivation to study the subcurves of a single curve originated from the application of

analyzing single trajectories of individual team sports players during the course of an entire game. A
different application, namely the map matching of trajectories onto road maps [5] led Gudmundsson
and Smid to study slightly more general input—consider the geometric graph that represents a
road map and a range query among the set of paths in the graph. Gudmundsson and Smid study
the case where the input belongs to a certain class of geometric trees [13]. Based on the result
of de Berg, Gudmundsson and Cook they describe a data structure which supports approximate
range emptiness queries and can report a witness path if the range is non-empty. Furthermore, the
queries can be more complex than mere line segments. The data structure has size O(n polylog(n)),
preprocessing time in O(n polylog(n)) and answers queries with polygonal curves of t vertices in
O(t polylog(n)) time.

It should be noted that the latter two data structures [10, 13] make strict assumptions on the
length of the edges of the query curves with respect to the query radius which seems to simplify the
problem. While it is widely believed, based on complexity-theoretic assumptions, that there is no
O(t2−ε)-time algorithm for any ε > 0 that can decide if the discrete or continuous Fréchet distance
between two curves is at most a given value of δ (see Bringmann [6]), this problem drastically
simplifies if δ is smaller than half of the maximal length of an edge of the two curves. In particular,
a simple linear scan can solve the decision problem in O(t) time. Our results do not make any
assumptions on the length of the edges of the curves or the distribution of the edges.

4 Our Results

We show the first upper and lower bounds for exact range searching under the discrete and continuous
Fréchet distance. Our lower bounds are in fact obtained for the multilevel stabbing problem and it
proves that the space S(n) required for answering the multilevel stabbing queries in Q(n) +O(k)
time must obey

S(n) = Ω((
n

Q(n)
)2) ·

(
log(n/Q(n))
log logn

)t−1
2O(2t)

as well as S(n) = Ω

(
n

Q(n)

)2

Θ

(
log(n/Q(n))

t3+o(1) log log n

)t−1−o(1)
.

(3)

Here k is the size of the output and t is the number of levels. Based on what we have discussed,
not only this proves the first separation between the simplex range reporting data structures and
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multilevel data structures, but it also shows space should increase exponentially in t, as long as
t ≤ (log n)1/3−ε.

For the Fréchet distance queries, a set of n polygonal curves in Rd is given as input, where each
input curve consist of at most ts vertices. A query with a curve of tq vertices and query radius ρ
returns the set of input curves that have Fréchet distance at most ρ to q.

(i) Assume there exists a data structure that achieves Q(n) query time and uses S(n) space in
the pointer model. We show that the S(n) must obey the same lower bound in Eq. 3 where
t ≤ min(ts/4, tq/2).

In addition, we show how to build multilevel partition trees for the discrete and the continuous
Fréchet distance using semi-algebraic range searching:
(ii) For the discrete Fréchet distance we descibe a data structure which uses space inO

(
n(log log n)ts−1

)
and achieves query time in O

(
n1−1/d · logO(ts) n · tO(d)q

)
, assuming tq = logO(1) n.

(iii) For the continuous Fréchet distance we describe a data structure for d = 2 which uses space

in O
(
n(log log n)O(t2s)

)
and achieves query time in O

(√
n logO(t2s) n

)
, assuming tq = logO(1) n.

For the second data structure, the query radius has to be known at preprocessing time.

5 Outlines of the Technical Proofs

5.1 Outline of the lower bounds

We first prove lower bounds for the reporting variant of the multilevel stabbing problem in the
pointer machine model. By what we discussed, this gives a lower bound for multilevel data structures.
Next, we build sets of input curves and query curves that show the same lower bounds can be
realized under the Fréchet distance. Before we sketch the lower bound construction, we say a few
words about the lower bound framework we use.

5.1.1 The framework of the proofs

Our reporting lower bound uses a volume argument by Afshani [1]. This argument can be used
to show lower bounds for stabbing reporting queries, i.e., the input is a set of ranges and a query
with a point returns all ranges that contain this point. Imagine, we want to answer any query in
Q(n) + O(k) time where k is the size of the output. In order to set up the volume argument we
need to define a set of queries Q that has volume one and a set of input ranges, such that (i) each
query point is covered by sufficiently many ranges (by at least Q(n) ranges), and (ii) the volume of
the intersection of any subset of ` ranges is sufficiently small, i.e., at most v. Then, the framework
shows that the space is asymptotically lower bounded by Q(n)v−12−O(`). The intuition of why the
framework works is the following: the intersection of some subset of ranges is the locus of (query)
points that must output those particular subset of ranges. Thus, if the intersection of every subset
of ` ranges is small, then our set of queries Q contains many different queries that each output a
different subset of input ranges. Thus, precomputing (and implicitly storing) partial answers must
increase the space according to these volumes.

5.1.2 Multilevel Stabbing Problem

We start with the unit cube Q in R2t where t denotes the number of levels. In particular, we view Q
as the Cartesian product of t unit squares: Q = Q1 × · · · × Qt. The input is a set of n t-slabs in Q.
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The query is a t-point in Q. The main part of the proof is an intricate construction of the t-slabs.
The main result here is Lemma 1 (see page 11). We will not repeat the exact technical claim

and instead we will focus on the general ideas and the intuition behind them. The first step is to
build r = Q(n) different sets of t-slabs S1, . . . ,Sr of roughly n/r size, such that the slabs in each set
Si tile Q, i.e., any t-point is covered by exactly one t-slab. This will directly satisfy condition (i)
of the framework described in Section 5.1.1. The difficult part is to find a good construction that
guarantees that every subset of ` t-slabs have a small intersection.

To build Si, we build a set Si,j of two-dimensional slabs in each unit square Qj such that they
together tile Qj . Then, Si is taken to be the set of t-slabs that one obtains by creating the Cartesian
product of all the slabs created in Q1, . . . ,Qt. See Figure 5 on page 20 for an illustration. In order
to obtain small intersection volume we would like to adjust the thickness of the two-dimensional
slabs. While adjusting the thickness of the slabs in each universe, we make sure that we create
roughly n/r t-slabs in Si: This boils down to making sure that the product of the thicknesses of the
two-dimensional slabs is a fixed value τ . We have t degrees of freedom to pick the orientation of the
slabs and thus we can represent the set of angles that define the orientation of the slabs in each Qj
by a point in Rt; we call these points, “parametric points”. Thus, every set Si has one parametric
point and in our construction there are r parametric points in total.

The parametric points need to be placed very carefully. In particular our construction places
the parametric point such that the volume of the smallest axis-aligned rectangle created by any two
parametric points is maximized (see Lemma 3 in page 14). Intuitively, this means that if the points
are “well-spread” so that no small axis-aligned box can contain two points, then the volume of the
intersection of the slabs is also going to be large.

Regarding the thicknesses of the slabs, we have t− 1 degrees of freedom since the product of
the thicknesses is set to be a fixed value τ . However, we need to place more restrictions on the
thicknesses. We make sure that the different thicknesses are sufficiently different. In particular,
we set the width to be in the form of Rw for some fixed parameter R and some integer w. This
means that for each slab we allow roughly a logarithmic number of different possible thicknesses.
Thus, the t− 1 degrees of freedom in choosing the thicknesses are translated to freedom in choosing
t− 1 integers in some narrow range (between 0 and roughly logR n). Note that this freedom is only
present for the first t− 1 two-dimensional slabs, that is, in Q1, . . . ,Qt−1 and the thickness of the
last slab is determined based these values and the value of τ . This further implies that the sum
of the integers that we choose should also be within the same narrow range. Nonetheless, unlike
the case of angles, our choices in picking these integers are represented combinatorially as a single
value and we treat it like a color. In other words, we define a set of all the available colors (roughly
((logR n)/t)t−1) and then associate each set Si with a color; the color determines the thickness of
slabs in Q1,Q2, . . . ,Qt.

Thus, after placing r parametric points in Rt, we need to color each point with a color. This
coloring needs to be done carefully as well. The placement and the coloring of the points are done
using one lemma (Lemma 3 in page 14).

However, more work is required to make the construction work. We need to impose some
favorable combinatorial structure on the set of colors that we create by removing some of the colors.
This is done by sampling a small number of colors.

Finally, we try to bound the volume of the intersection of any ` of the n t-slabs that we created.
Any two slabs in Si are disjoint and thus for a non-zero intersection, the ` slabs should come from `
different sets, e.g., S1, . . . ,S`. The straightforward argument gives us a bound on v that ultimately
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gives the same lower bound as simplex range reporting. So we perform a non-obvious analysis.
We look at two possible cases: Either (i) two of the parametric points of S1, . . . ,S` have the same
color and in this case we use the properties of our coloring (see Lemma 3 in page 14) to ensure
that such points are “well-spread”; in particular, if we have nc colors, we can make sure that the
parametric points of each color are a factor roughly nc “better spread”, meaning, the volume of
the smallest axis-aligned rectangle that contains two points of the same color is a factor nc larger
than the volume of the smallest rectangle that contains two points of different colors. Ultimately,
this buys us a nc factor in our lower bound. Observe that the value nc grows exponentially on t
(up to some maximum value). The other case is when (ii) all the parametric points of S1, . . . ,S`
have distinct colors. By using the favorable combinatorial property that we had imposed earlier
on the set of colors, we find 3 colors among the many different distinct colors and an index j such
that these colors have three distinct values at coordinate j. This in turn implies that the slabs in
Qj have 3 distinct thicknesses. However, thicknesses differ by at least a factor R and thus further
analysis buys us a factor R on value of v. By combining the two cases, we show that we can improve
our lower bound by either a factor nc or factor R. We set our parameters such that R and nc are
roughly equal and we obtain the lower bound.

5.1.3 Constructions for the Fréchet Distance

In order to apply the above construction to the Fréchet range searching we dualize the Fréchet query
ranges to some extent. Our dualization differs significantly between the two variants of the problem.
For the discrete Fréchet distance we observe that the set of points that lie within Fréchet distance ρ
to a line segment are contained in the intersection of the two circles of radius ρ centered at the two
endpoints. We call the intersection of two circles a lens. Thus, we create a set of lenses as input
instead of a set of slabs and we let the vertices of the query curve act as stabbing queries. Refer to
Figure 1 on page 9 for an illustration of this straight-forward approach. We observe that inside the
unit square, lenses can be made to almost look like slabs, that is, for any slab, we can create a lens
that is fully contained in the slab such that the area of the symmetric difference between the slab
and the lens is made arbitrarily small. As a result, after a little bit more work, we can show that
the construction for the multilevel stabbing problem directly gives a lower bound for the discrete
Fréchet queries problem.

In contrast, our construction for the continuous Fréchet distance dualizes the lines supporting
the edges of the query curve, creating a separate “universe” for every odd edge (in lieu of a universe
for every vertex). Here, our construction is such that the locus of query curves in the dual space
that lie within Fréchet distance ρ to a specific input curve forms a set of slabs—one in each universe.
To this end we let the input curve follow a zig-zag shape. We use one zig-zag curve per universe.
Refer to Figure 7 on page 23 for an example of a zig-zag used in the construction. Our analysis uses
the basic fact that the set of lines intersecting a vertical interval in the primal space corresponds
to the set of points enclosed in a slab in the dual space. We combine this fact with a well-known
connection between the Fréchet distance and ordered line-stabbing initially observed by Guibas
et al. [14]. This observation says that the line supporting the query edge needs to stab the disks of
radius ρ centered at the input curve in their correct order. For our zig-zag curves this has the effect
that the line needs to intersect the vertical interval formed by the two intersection points of the
circles of radius ρ centered at the two corners of the zig-zag. We can control the width, orientation
and position of the resulting slab in the dual space by varying the length and the position of this
vertical interval. Using these proof elements, we can show that the lower bound of the multilevel

8



q

s

Q1 Q2 Q3

Figure 1: Illustration of the lower bound construction for the discrete Fréchet distance showing
universes Q1, Q2 and Q3. For every i, a query curve q has its ith vertex inside Qi. The intersection
of two disks centered at the vertices of the ith odd edge of an input curve s forms a “near-slab” and
needs to contain the ith vertex of a query curve if s is contained in the query range centered at q.

stabbing problem which is analyzed in the beginning, carries over to the continuous Fréchet distance
as well.

5.2 Outline of the data structures

To obtain our upper bounds, we perform an extensive analysis of the definition of the Fréchet
distance that allows us to restate the alignment problem using a sequence of semialgebraic range
queries. One of the challenges here is to design a set of filters that do not create duplicates in the
output across the different range queries that need to be performed. We first focus on the discrete
Fréchet distance, where the analysis is significantly cleaner and simpler. The dynamic programming
algorithm which is commonly used to compute the discrete Fréchet distance uses a Boolean matrix,
the so-called free space matrix, to decide which alignments between the curves are feasible. The
entry (i, j) of this matrix indicates if the Euclidean distance between the ith vertex of one curve
and the jth vertex of the other curve is at most ρ. The two curves have Fréchet distance at most ρ
if and only if there exists a traversal that only uses the 1-entries in the free-space matrix. The set
of possible truth assignments to this matrix induces a partition on the input curves with respect
to their free space matrix with the query curve. Furthermore, each set in this partition is either
completely contained in the query range or it is completely disjoint from the query range. We show
how to construct a multilevel data structure that allows us to query independently for each of those
sets which are contained in the query range.

Our query processing works in three phases. First, we compute all feasible free space matrices
based on the arrangement of balls centered at vertices of the query. Next, we refine this arrangement
to obtain cells of constant complexity that can be described by the zero set of a polynomial function.
In the third phase we query the data structure with each free space matrix separately, using
semialgebraic range searching in each level of the data structure to filter the input curves that have
their ith vertex inside a specific cell of the refined arrangement. To see how this works, consider the
set of ith vertices of the input curves that lie in a fixed cell of the arrangement of balls centered at
the vertices of the query curve. The corresponding input curves share the same truth assignment in

9



q1

q2

q3
q4

q5

s1 s2 s3 s4

q1 1 0 0 1
q2 1 0 0 0
q3 0 1 0 0
q4 1 0 1 0
q5 0 0 0 1

Figure 2: Example of a query matrix for the discrete Fréchet distance with a feasible traversal
(right). The truth assignment in a fixed column corresponds to a cell in the arrangement of balls
centered at the vertices of the query curve (left). The figure also shows three input curves that have
this free-space matrix with the query curve and would thus be reported.

the ith column of the free-space matrix with q. Refer to Figure 2 for an example.
We now build a standard multilevel partition tree on the polygonal chains. In the ith level we

store the ith points of the input curves. Our query algorithm processes the free-space matrix in a
column-by-column fashion, where we use the convention that the column index refers to a point
on the input curves and a row index refers to a point on the query curve. This makes the storage
layout of the data structure independent of the number of vertices of the query curve.

For the continuous Fréchet distance the approach is similar, at least on a high level. The
main difference is that the Boolean matrix that guides the queries is more complicated, since we
operate on the continuous free-space diagram instead of the discrete free-space matrix. We first
define high-level predicates that carry enough information to decide the Fréchet distance. Each
predicate involves a constant number of edges and vertices from the input and query curves, e.g.,
testing the feasibility of a monotone path for a combination of a row and two vertical lines in the
free-space diagram. Next we show how to represent these predicates using more basic operations,
e.g., above-below relationships between points and lines that can be dualized. Finally, the query
algorithm will test groups of these predicates for each feasible truth assignment separately. Also
here we manage to keep the layout of the data structure independent of the complexity of the query
curve.

There are two main challenges in dealing with the continuous case. One is to obtain the more
complicated discrete matrix that captures all possible free-space diagrams of the fixed query curve
with any arbitrary possible input curve. The second challenge is to make sure we can express all our
predicates in the framework of semialgebraic range searching in two dimensions. Our solution is
non-obvious since the Fréchet distance is not defined as a closed-form algebraic expression. This
second challenge is the main issue that prevents us from directly generalizing our data structure to
higher dimensional queries.

10



5.3 Organization

We prove the lower bounds in Section 6. We first show the lower bound for the multilevel stabbing
problem. The construction is given in Section 6.2. We discuss the range reporting lower bound
in Section 6.3. In Section 6.4 we show how to implement the construction for the two variants
of Fréchet queries. We describe our data structures in Section 7. In Section 7.1 we describe the
machinery that we use to build our data structures. In Section 7.2 we develop a data structure
for discrete Fréchet queries. In Section 7.3 we extend these ideas and develop a data structure for
continuous Fréchet queries. We conclude with some open problems in Section 8.

6 Lower Bounds

As discussed, we prove lower bounds for a concrete problem, that is, the multilevel stabbing problem.
To do that, we need to construct a “difficult” input instance of n t-slabs with certain desirable
properties. This construction is at the heart of our lower bounds and this is what we are going to
attempt in this section.

6.1 Definitions

Our lower bounds for the multilevel stabbing problem is based on an intricate construction that we
outline in this subsection. Define the space Q = Q1 ×Q2 × . . .Qt where each Qi is the unit cube in
the plane. Q now represents the set of all possible queries: a query t-point p is represented by the
point p ∈ Q which corresponds to a point p(i) in Qi, for every 1 ≤ i ≤ t. Observe that the points
p(i) are completely independent. Similarly, an input t-slab s is represented by picking t independent
slabs, one slab s(i) in Qi for each 1 ≤ i ≤ t.

Consider a (measurable) subset f ⊂ RD′ that lies in a D-dimensional flat V of RD′ , D ≤ D′. We
denote the D-dimensional Lebesgue measure of f with VolD(f). For a set of points q1, . . . , qs ∈ RD,
we denote the smallest axis-aligned box that contains them all with BoxD(q1, . . . , qs). Finally, for

two t-slabs s1 and s2, we say s1 is a translation of s2 if for every index j, the slabs s
(j)
1 and s

(j)
2 are

parallel and have the same thickness.

6.2 The 2D Construction

Lemma 1. Consider parameters t, τ, r, R, nc and ` under constraints to be specified shortly. We
can build a set S of r t-slabs such that τ(s) = τ , for every s ∈ S. Furthermore, (i) for any `
t-slabs s1, s2, . . . , s` ∈ S and any ` t-slabs s′1, . . . , s

′
t such that s′j is a translation of sj, we have

Vol2t(s
′
1 ∩ s′2 ∩ · · · ∩ s′`) ≤ max

{
τ2rtt+o(t)

nc
, τ

2rtt+o(t)

R

}
.

The constraints are that Ω(1) ≤ r ≤ n/2, Ω(1) ≤ R ≤ n1/(2t), 2 ≤ ` < r and that nc is defied as

nc = ( logR nt )t−1 when ` ≥ 2t and nc = Θ(( logR nt )t−12−t( logR nt )−t/`) when ` < 2t.

As we shall see later, combined with the existing framework, the above lemma offers our desired
lower bounds with only little bit more work. Thus, the main challenge is actually proving the above
lemma. The main idea is the following: To define each t-slab in S, we have the freedom to pick
t different angles, one angle for each universe Qj , 1 ≤ j ≤ t. We also have the freedom to alter
the thickness of the slabs we constructed in each Qj . Thus, we have “t degrees of freedom” to
pick the angles and “t − 1 degrees of freedom” to pick the slab thickness. The former t degrees
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Figure 3: Each si is defined as the Cartesian product of t 2-dimensional slabs. The thickness of s
(j)
i

is R−w
(j)
i .

of freedom are represented as points (that we call “parametric points”) in Rt and the latter are
represented combinatorially as “colors”. To make the construction work, we do not allow for all
possible combinations of “colors” and instead we prune the colors using a combinatorial technique.
We ultimately isolate a sub-problem that is very connected to orthogonal range searching. This is a
very satisfying since it was suspected that there could be connections between orthogonal range
searching and multilevel non-orthogonal range searching 2. As a result, we manage to incorporate
some techniques from orthogonal range searching lower bound in our construction (see Theorem 2).
However, combining the colors (i.e., the “orthogonal component”) and the set of parametric points
(the non-orthogonal component) requires a careful analysis.

6.2.1 Parameters Defining the t-slabs.

To construct each slab in S, we use 2t − 1 parameters: assume, we would like to construct a

slab si ∈ S. We use t real-valued parameters α
(1)
i , α

(2)
i , . . . , α

(t)
i and t − 1 integral parameters

w
(1)
i , w

(2)
i , . . . , w

(t−1)
i . We call these 2t − 1 parameters the defining parameters of si. α

(j)
i is the

angle slab s
(j)
i makes with the X-axis, and the thickness of s(j) is defined as τ(s

(j)
i ) = R−w

(j)
i , for

1 ≤ j ≤ t− 1. However, since we would like to end up with a t-slab si such that τ(si) = τ , we define

w
(t)
i = logR(τ−1)−∑t−1

j=1w
(j)
i and τ(s

(t)
i ) = R−w

(t)
i . Note that w

(t)
i is not necessarily an integer. We

have:

Observation 1.

τ(si) =
∏

1≤j≤t
τ(s

(j)
i ) = τ(s

(t)
i )

∏
1≤j≤t−1

τ(s
(j)
i ) = R−(logR(τ−1)−

∑t−1
j=1 w

(j)
i )−

∑t−1
j=1 w

(j)
i = τ.

Definition 1. Consider a t-slab si ∈ S. Let α
(1)
i , . . . , α

(t)
i and color (w

(1)
i , . . . , w

(t)
i ) be the defining

parameters of si. We call the point φ(si) = (α
(1)
i , . . . , α

(t)
i ) ∈ Rt the parametric point of si and

denote it with φ(si) and with the tuple (w
(1)
i , w

(2)
i , . . . , w

(t−1)
i ) being its color.

We have to make very careful choices when picking the defining parameters of si. We discuss
how to pick the colors in Section 6.2.3.

We now establish some basic facts about this construction.

Observation 2. Consider ` t-slabs s1, . . . , s`. We have Vol2t(s1 ∩ s2 ∩ . . . s`) =
∏t
i=1 Vol2(s

(i)
1 ∩

s
(i)
2 ∩ · · · ∩ s

(i)
` ).

2For example, Chan [7] compares non-orthogonal multilevel data structures to d-dimensional range trees that can
be viewed as d-levels of 1-dimensional data structures.
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α

τ (s1)

τ (s2)

s1
s2

Figure 4: Distance between the parallel lines forming slabs s1 and s2 is τ(s1) and τ(s2) respectively.
If the angle between the slabs is α, then the area of the shaded region is Θ(τ(s1)τ(s2)/α).

We will also use the following elementary geometry observation regarding the area of the
intersection of two slabs.

Observation 3. Consider two 2-dimensional slabs s1 and s2 of thickness τ(s1) and τ(s2) respectively.
And let α be the angle between them. Then, Vol2(s1 ∩ s2) = O(τ(s1)τ(s2)/α). (See Figure 4.)

Lemma 2. Let s1, s2 ∈ S be two t-slabs and let φ(s1) and φ(s2) be the parametric points of s1 and
s2 respectively. Then regardless of the colors of these two t-slabs, Vol2t(s1 ∩ s2) is asymptotically
bounded by

τ2

Vol t(Box t(φ(s1), φ(s2))
.

Proof. By Observations 3 and 2, Vol2t(s1 ∩ s2) is asymptotically upper bounded by

t∏
i=1

τ(s
(i)
1 )τ(s

(i)
2 )

|α(i)
1 − α

(i)
2 |

.

By Observation 1, the nominator equals τ2 since the thickness of both s1 and s2 is τ . Then, the

lemma then follows from observing that
∏t
i=1 |α

(i)
1 − α

(i)
2 | is exactly Volt(Boxt(φ(s1), φ(s2)).

6.2.2 Coloring and the Parametric Points

In this subsection, we will discuss how to pick the parametric points of the slabs in S. Essentially,
we will place a set of r points in Rt using the upcoming constructions. We extend the following
construction that is used in lower bounds for the orthogonal problems.

Theorem 1. [2, 3, 9] For any parameter N , we can place a set P of N points inside the unit
cube in RD such that for any two points p, q ∈ P , we have VolD(BoxD(p, q)) = Ω(1/N) where the
constant in the asymptotic notation depend on D.

To choose the parametric points, we use the method in [2]. But since in our case, the dimension
t is not longer considered a constant, we need to provide a tight analysis, and determine its precise
dependency on the dimension (by using the prime number theorem).

Theorem 2. For any parameter N , we can place a set P of N points inside the cube [N ]D in RD

such that for any two points p, q ∈ P we have VolD(BoxD(p, q)) = Ω( ND−1

DD+o(D) ).
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Proof. We use the same construction in [2]: We pick the first D − 1 prime numbers a1, . . . , aD−1
and we place N points on the integer points in [N − 1]D. The coordinates of the i-th point
pi is pi = (i(a1), i(a2), . . . , i(aD−1), i), for 0 ≤ i < N , where i(x) is the “reversed” (or inverted)
representation of i in base x using blogxNc+ 1 digits 3. In [2], it is only proved that the volume of
the axis-aligned box that contains 2 points is Ω( 1

N ) with a “constant” that depends on D. Here, we
need to make the dependence on D explicit.

Consider two points pk, pk′ such that k < k′. Let d = k′ − k. Observe that if xy divides d but
xy+1 does not, then the representation of d in base x contains exactly y leading zeros (and as a
conclusion, d(x) contains exactly zeros at its y most significant digits). This implies that for any

natural number z such that, z+ d < N , z(x) and z + d(x) agree on exactly y of their most significant

digits, which yields the bound |z(x) − z + d(x)| < N/xy. Let B be the smallest box that contains pk
and pk′ , L1, . . . , LD be the side lengths of B and v be its volume. Thus, L1L2 . . . LD = v. Let `i
be the integer such that N/a`i−1i > Li ≥ N/a`ii . Based on the above observation, (k′ − k)(ai) must

contain `i − 1 leading zeros or in other words, a`i−1i divides k′ − k. Let F = a`1−11 a`2−12 . . . a
`D−1−1
D−1 .

Since ai’s are relatively prime, it follows that F also divides k′ − k. However, observe that

F = a`11 a
`2
2 . . . a

`D−1

D−1 ≥
ND−1

L1L2 . . . LD−1
=
ND−1LD

v
=
ND−1(k′ − k)

v
.

Let X =
∏D−1
i=1 ai. We claim v ≥ ND−1/(2DX), since otherwise we will reach a contradiction. To

see this, assume to the contrary that v < ND−1/(2DX). Assuming this, we get

F = a`1−11 a`2−12 . . . a
`D−1−1
D−1 ≥ ND−1(k′ − k)

Xv
> k′ − k (4)

which is a contradiction since F must divide k′ − k.
It remains to estimate X. By Prime number theorem, we know that ai = O(i log i). Thus, using

Stirling’s approximation, we have

X =
D−1∏
i=1

O(i log i) ≤ 2O(D) ·D! · (logD)D = DD+o(D).

Using the above theorem, we prove the following result.

Lemma 3. Consider the unit cube Q in RD. Let N and nc be two integral parameters such that
nc < N/2. We can place a set W of N points in Q and assign each an integer color from 0 to nc such
that the following hold: (i) for any two points p and q we have VolD(BoxD(p, q)) = Ω( 1

NDD+o(D) ) and
(ii) for any two points p and q that have the same color we have VolD(BoxD(p, q)) = Ω( nc

NDD+o(D) ).

Proof. Consider the unit cube U ′ in RD+1. We use Theorem 2 (after re-scaling the cube [N ] to the
unit cube), and we place a set W ′ of N points in U ′.

We now define the set W . Consider a point p′ ∈W ′ and let x be the value of the last coordinate
of p′. We project p′ into the first D-dimensions to get a point p and color it with color i = bxncc.

3That is, if i = c0 + c1x+ c2x
2 + · · ·+ cblogx Nc+1x

blogx Nc+1, then ix = cblogx Nc+1 + cblogx Ncx+ · · ·+ c0x
blogx Nc+1.

Basically, we write i in base x with the most significant digits to the left and then read the digits from right to left to
obtain ix.
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We show that the projected points satisfy the two claims in the lemma. Claim (i) is trivial: By
Theorem 2, for any two points p, q ∈W that were obtained from the two points p′, q′ ∈W ′ we have
VolD(BoxD+1(p

′, q′)) = Ω( 1
NDD+o(D) ). Simply observe that

VolD(BoxD(p, q)) ≥ VolD+1(BoxD+1(p
′, q′)) = Ω(

1

NDD+o(D)
).

Thus, it remains to prove claim (ii). Consider two points p, q ∈ W with the same color that
correspond to two points p′, q′ ∈W ′. Since p and q have the same color, it follows that the difference
between the value of their D-th coordinate is at most 1/nc. This fact combined by Theorem 2
implies

VolD(BoxD(p, q)) ≥ VolD+1(BoxD+1(p
′, q′))nc = Ω(

nc

NDD+o(D)
).

6.2.3 Choosing the Colors.

In the previous subsection, we discussed constructions that will help us place the parametric points.
Here, we will pick the set of colors that are used to color them. First, we establish an invariant.

Invariant (I). Let X := logR τ
t . We will maintain one invariant that w

(j)
i ≥ 0 and w

(j)
i < X, for

each 1 ≤ j ≤ t− 1. This invariant is to make sure that our construction is well-defined, in particular,

to make sure that for each slab si ∈ S, τ(s
(j)
i ), for all 1 ≤ j ≤ t, are in the valid range (0, 1]. As a

result, any tuple of t− 1 integers that satisfy this invariant, will yield well-defined values for the
thickness of the slabs used in our construction.

We will first need to estimate the total number of different colors that satisfy this invariant.
Let C be the set of all the colors satisfying Invariant (I). In other words, C is the set of all t− 1
tuples (w1, . . . , wt−1) where each wj , 1 ≤ j ≤ t − 1, is a non-negative integer and furthermore,

0 < R−w
(j) ≤ 1, for 1 ≤ j ≤ t where w(t) = logR(τ−1)−∑t−1

j=1w
(j).

Observation 4. |C | ≥ Xt−1.

Proof. If we force 0 ≤ wj < X, for 1 ≤ j ≤ t−1, then we will have w(t) = logR(τ−1)−∑t−1
j=1w

(j) > 0

and thus 0 < R−w
(j) ≤ 1, for 1 ≤ j ≤ t. Clearly, the number of tuples is at least as claimed.

Pruning the colors. Fix an integral parameter `. We call a subset C ⊂ C of ` colors an `-subset.
We say an `-subset C is bad if by looking at the dimensions of the colors in C, we see only 2
distinct values at each dimension and C is good if it is not bad. Alternatively, C is good if we

can find three colors c1, c2, c3 ∈ C, c1 = (w
(1)
1 , w

(2)
1 , . . . , w

(t−1)
1 ), c2 = (w

(1)
2 , w

(2)
2 , . . . , w

(t−1)
2 ), and

c3 = (w
(1)
3 , w

(2)
3 , . . . , w

(t−1)
3 ), and an index j such that w

(j)
1 , w

(j)
2 , and w

(j)
3 are all distinct. Let Cg be

the largest subset of C that contains no bad `-subsets (in other words, every `-subset of Cg is good).

Lemma 4. If ` > 2t−1, then C contains no bad `-subset and thus Cg = C .

Proof. Consider a bad `-subset C. We can have at most 2 distinct values at each coordinate of the
tuples in C. Therefore the number of tuples in C cannot exceed 2t−1. In turn, there are no bad
`-subsets if ` > 2t−1.
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Lemma 5. If ` ≤ 2t−1, then |Cg| = Ω(Xt−12−tΘ(X)−2t/`).

Proof. We claim that there exists a subset C ′ ⊂ C that contains the claimed number of colors
without containing any bad `-subset and this clearly proves the lemma.

We prove the claim using random sampling: we take a random sample of small enough size and
then remove the bad subsets.

Let p be a parameter to be determined later. Let C ′ be a subset of C where each color is
sampled independently and with probability p. Clearly, we have E(|C ′|) = p|C | = pXt−1. From
each bad `-subset, we remove one color. The set of remaining colors will be the claimed set C ′.
By construction, C ′ will not contain any bad `-subsets but the main point is to show that C ′ will
actually retain a significant fraction of the colors.

Let #bad be the total number of bad `-subsets C ∈ C . We first estimate #bad. By definition of a
bad `-subset, for every dimension we see only 2 distinct values among tuples in C. Thus,

(
X
2

)
is the

total number of ways we can choose these distinct values, at a particular dimension. After choosing
the distinct values, for every tuple, every dimension has only 2 possible choices. Thus we have,

#bad ≤
((

X

2

)
2`
)t−1

.

Now, consider a bad `-subset C ⊂ C . Observe that C survives in C ′ with probability p` and
thus the expected number of colors that we will remove is at most #badp

`. If we can choose the
parameter p such that #badp

` ≤ 1, then we are expected to only remove one color and thus the
expected number of colors left in C ′ after the pruning step is at least pXt−1/2. Thus, we need to
pick a value p such that

#bad · p` ≤
((

X

2

)
2`
)t−1

p` ≤ 1⇐=

Θ (X)2t 2t`p` ≤ 1⇐=

p = 2−tΘ (X)−
2t
` .

Picking p as above, implies that the number of points left in C ′ is at least

Xt−12−tΘ (X)−
2t
` .

6.2.4 The Final Construction.

We use Lemmas 4 and 5 (depending on the value of `), to pick the set Cg of colors. Then, we use
Lemma 3, where D is set to t, N is set to r and nc is set to |Cg|. Thus, Lemma 3 yields us a point
set W . The coordinates of the i-th point φi in W defines the parametric point of si and the color of
φi defines the thickness of the two-dimensional slabs that create si. Thus, the set W completely
defines the set S of r t-slabs that we aimed to build.

The last challenge is to bound the volume of the intersection of these slabs. We will do this in
the remainder of this subsection.

16



Lemma 6. Consider ` t-slabs s1, . . . , s` ∈ S where the defining parameters of si are (α
(1)
i , α

(2)
i , . . . , α

(t)
i )

and (w
(1)
i , w

(2)
i , . . . , w

(t)
i ). Then Vol(s1 ∩ s2 · · · ∩ s`) is asymptotically upper bounded by

t∏
i=1

min
j,j′,j 6=j′

τ(s
(i)
j )τ(s

(i)
j′ )

|α(i)
j − α

(i)
j′ |

 .

Proof. Consider Qi and observe that s
(i)
1 , s

(i)
2 , . . . , s

(i)
` are slabs in Qi. Clearly, the region s

(i)
1 ∩ s

(i)
2 ∩

· · · ∩ s
(i)
` is contained inside every region s

(i)
j ∩ s

(i)
j′ , for 1 ≤ j < j′ ≤ `. Thus,

Vol2(s
(i)
1 ∩ s

(i)
2 ∩ · · · ∩ s

(i)
` ) ≤ min

1≤j<j′≤`

{
Vol2(s

(i)
j ∩ s

(i)
j′ )
}
.

The lemma follows from Observation 3 since we have Vol2(s
(i)
j ∩ s

(i)
j′ ) =

τ(s
(i)
j )τ(s

(i)

j′ )

|α(i)
j −α

(i)

j′ |
.

We now present the main result of this subsection. We recall the claim made in Lemma 1.

Lemma 1. Consider parameters t, τ, r, R, nc and ` under constraints to be specified shortly. We
can build a set S of r t-slabs such that τ(s) = τ , for every s ∈ S. Furthermore, (i) for any `
t-slabs s1, s2, . . . , s` ∈ S and any ` t-slabs s′1, . . . , s

′
t such that s′j is a translation of sj, we have

Vol2t(s
′
1 ∩ s′2 ∩ · · · ∩ s′`) ≤ max

{
τ2rtt+o(t)

nc
, τ

2rtt+o(t)

R

}
.

The constraints are that Ω(1) ≤ r ≤ n/2, Ω(1) ≤ R ≤ n1/(2t), 2 ≤ ` < r and that nc is defied as

nc = ( logR nt )t−1 when ` ≥ 2t and nc = Θ(( logR nt )t−12−t( logR nt )−t/`) when ` < 2t.

Proof. Observe that the volume of the intersection any number of t-slabs is invariant under trans-
lation. Thus, it suffices to look at the intersection of s1, s2, . . . , and s`. Let φ1, . . . , φ` be their
(colored) parametric points. We consider a few cases.

Case I. In this case, we assume that two of the parametric points have the same color. W.l.o.g,
assume the points φ1, φ2 have the same color. Using Lemma 3 we know that Volt(Boxt(φ1, φ2)) =
Ω(nc/(rt

t+o(t))) where nc = |Cg|. We can now bound

Vol2t(s1 ∩ s2 ∩ · · · ∩ s`) ≤ Vol2t(s1 ∩ s2) = O

(
τ2

Volt(Boxt(φ1, φ2))

)
≤ O

(
τ2rtt+o(t)

nc

)
.

Case II. In this case, all the ` colors associated to φ1, . . . , φ` are distinct. By construction of
our set of colors, we know that the set of ` colors assigned to φ1, . . . , φ` is a good `-subset. This

means, w.l.o.g, we can find three parametric points φ1 = (α
(1)
1 , . . . , α

(t)
1 ), φ2 = (α

(1)
2 , . . . , α

(t)
2 ), and

φ3 = (α
(1)
3 , . . . , α

(t)
3 ) with colors (w

(1)
1 , . . . , w

(t−1)
1 ), (w

(1)
2 , . . . , w

(t−1)
2 ), and (w

(1)
3 , . . . , w

(t−1)
3 ) such

that there is an index j < t where w
(j)
1 , w

(j)
2 , and w

(j)
3 are all distinct.

To simplify the notation, let us rename w1 = w
(j)
1 , w2 = w

(j)
2 , and w3 = w

(j)
3 , τ1 = τ(s

(j)
1 ),

τ2 = τ(s
(j)
2 ), and τ3 = τ(s

(j)
3 ), and α1 = α

(j)
1 , α2 = α

(j)
2 , and α3 = α

(j)
3 . Remember that we have
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constructed the slabs such that τ(s
(j)
i ) = R−w

(j)
i and thus τ1 = R−w1 , τ2 = R−w2 , and τ3 = R−w3 .

W.l.o.g, we can assume α1 and α2 make the closest pair among the three values of α1, α2, and α3

and that w1 > w2. We use Lemma 6:

Vol2t(s1 ∩ s2 ∩ s3) ≤
t∏
i=1

min

{
τ(s

(i)
1 )τ(s

(i)
2 )

|α(i)
1 − α

(i)
2 |

,
τ(s

(i)
1 )τ(s

(i)
3 )

|α(i)
1 − α

(i)
3 |

,
τ(s

(i)
2 )τ(s

(i)
3 )

|α(i)
2 − α

(i)
3 |

}
. (5)

To upper bound the above, we consider two further cases.

Case II.A. In this case, we assume w3 > w2. In the right hand side of Equation 5 above, for
every index i 6= j, we pick the first term. In other words, we can write,

Vol2t(s1 ∩ s2 ∩ s3) ≤ min

{
τ1τ2

|α1 − α2|
,

τ1τ3
|α1 − α3|

,
τ2τ3

|α2 − α3|

}
·

t∏
i=1,i 6=j

τ(s
(i)
1 )τ(s

(i)
2 )

|α(i)
1 − α

(i)
2 |

.

However, since |α2 − α1| ≤ |α3 − α2|, |α3 − α1|, we have:

Vol2t(s1 ∩ s2 ∩ s3) ≤
min {τ1τ2, τ1τ3, τ2τ3}

|α1 − α2|
·

t∏
i=1,i 6=j

τ(s
(i)
1 )τ(s

(i)
2 )

|α(i)
1 − α

(i)
2 |

= min {τ1τ2, τ1τ3, τ2τ3} ·
∏t
i=1,i 6=j τ(s

(i)
1 )τ(s

(i)
2 )

Volt(Boxt(φ1, φ2))

= min {τ1τ2, τ1τ3, τ2τ3} ·
τ
τ1

τ
τ2

Volt(Boxt(φ1, φ2))
.

We now claim τ1τ3 ≤ τ1τ2/R: remember that by our choice of index j, all the values w1, w2 and
w3 are distinct integers. Thus, w3 > w2 implies w3 ≥ w2 − 1 which in turn implies τ3 ≤ τ2/R
and thus τ1τ3 ≤ τ1τ2/R. Using this and the fact that by Lemma 3, we have Volt(Boxt(φ1, φ2)) =
Ω(1/(rtt+o(t))), we get that

Vol2t(s1 ∩ s2 ∩ s3) ≤
rτ2tt+o(t)

R
.

Case II.B. The remaining case is w3 < w2 which combined with the assumption that w2 < w1

implies w3 < w2 < w1. As before, since w1, w2, and w3 are distinct integers, it follows that τ1 ≤ τ2/R,
and τ2 ≤ τ3/R.

Because of the special geometry of the line, if (α1, α2) is the closest pair, then it follows that
|α1 − α3| = Θ(|α2 − α3|).

In Eq. 5 and for every index i 6= j we pick the third term inside each minimization term. In
other words, we write,

Vol2t(s1 ∩ s2 ∩ s3) ≤ min

{
τ1τ2

|α1 − α2|
,

τ1τ3
|α1 − α3|

,
τ2τ3

|α2 − α3|

}
·

t∏
i=1,i 6=j

τ(s
(i)
2 )τ(s

(i)
3 )

|α(i)
2 − α

(i)
3 |

≤ τ1τ3
|α1 − α3|

·
t∏

i=1,i 6=j

τ(s
(i)
2 )τ(s

(i)
3 )

|α(i)
2 − α

(i)
3 |
≤ τ1τ3

Θ(|α2 − α3|)
·

t∏
i=1,i 6=j

τ(s
(i)
2 )τ(s

(i)
3 )

|α(i)
2 − α

(i)
3 |

= τ1τ3 ·
τ
τ2

τ
τ3

Θ(Volt(Boxt(φ2, φ3)))
=

Θ(τ2)

RVolt(Boxt(φ1, φ2))
≤ O

(
τ2rtt+o(t)

R

)
.
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Putting it all together. Combining all the above cases, we have shown that

v = Vol2t(s1 ∩ s2 ∩ · · · ∩ sm) ≤ max

{
τ2rtt+o(t)

nc
,
τ2rtt+o(t)

R

}
.

6.3 Multilevel Reporting Lower Bound

To prove a lower bound for the multilevel reporting problem, we use the following theorem by
Afshani. We need the notion of a geometric stabbing problem: the input is a set R of n geometric
regions inside a D-dimensional region Q of volume 1. An element of R is called a range. The queries
are points of Q and the output of a query q is the subset of ranges that contain q.

Theorem 3. Assume we have a data structure for a geometric stabbing problem that uses at most
S(n) space and answers queries within Q(n) +O(k) time in which n is the input size and k is the
output size. Assume for this problem we can construct an input set R of n ranges such that (i)
every point of Q is contained in at least r ranges in which r is a parameter greater than Q(n) and
(ii) the volume of the intersection of every α ranges is at most v, for two parameters α < r and v.
Then, we must have S(n) = Ω(rv−1/2O(α)) = Ω(Q(n)v−1/2O(α)).

Theorem 4. Consider an algorithm A that given any set of n t-slabs in R2, builds a pointer-
machine data structure D of size S(n) that solves the MSP in Q(n) + O(k) time, where k is the
size of the output. In other words, given any t-point p, the data structure can output all the input

t-slabs s that contain p in Q(n) + O(k). Then, S(n) = Ω(( n
Q(n))

2) ·
(

log(n/Q(n))
log logn

)t−1

2O(2t)
as well as

S(n) = Ω
(

n
Q(n)

)2
Θ
(

log(n/Q(n))

t3+o(1) log logn

)t−1−o(1)
.

Proof. We use Lemma 1, where we set the parameter r = Q(n), τ = 2O(t)r/n, parameter ` to be

determined, and R = (log n)t, which implies X = logR(n/r)
t = log(n/r)

t2 log logn
. The lemma gives us a set S

containing r t-slabs of thickness τ . We now create a set R of n t-ranges in the following way. For
every si ∈ S, we create a set Si containing O(n/r) disjoint translations of si such that the t-slabs in

Ri cover Q entirely. To be specific, consider a t-slab si = (s
(1)
i , . . . , s

(t)
i ). We tile Qj using disjoint

copies of s
(j)
i to obtain a set Si,j of two-dimensional slabs in Qj (see Figure 5). The set Si is the

Cartesian produce of these sets, that is, Si = Si,1× · · · × Si,t. Since each Si,j tiles Qj , it follows that
the set of slabs in Si tile Q. Furthermore, the number of slabs in Si,j is Θ( 1

τ(s
(j)
i )

). This implies, the

number of t-slabs in Si is

|Si| ≤
t∏

j=1

Θ(
1

τ(s
(j)
i )

) = O

(
ct

1

τ(si)

)
= O

(
ct

1

τ

)
.

Since we have set τ = 2O(t)r/n, we can pick the constant in the exponent large enough such that
|Si| ≤ n/r.

We let R = S1 ∪ · · · ∪ Sr. By what we have just proved, R contains at most n t-slabs.
We look at the maximum volume, v, of the intersection of ` ranges s1, . . . , s`. If two of these `

t-slabs are the translations of the same t-slab from S, then by construction, the volume of their
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Figure 5: We tile each Qj , then define the set of t-slabs in our construction to be the Cartesian
produce of these two-dimensional slabs.

intersection is empty. Otherwise, we obtain a bound on v by using Lemma 1. Since nc ≤ Xt−1,

this implies R ≥ nc and thus r3

n2nc
≥ r3

Rn2 and thus Lemma 1 gives us v ≤ r32O(t)tt+o(t)

n2nc
= r3tt+o(t)

n2nc
. If

we pick ` > 2t−1 (in particular, if we set ` = 2t) we have nc = Xt−1 =
(

log(n/r)
t2 log logn

)t−1
. Using the

notation a� b to denote a = Ω(b), Theorem 3, gives the following lower bound

S(n)� Q(n) ·
n2Θ

(
log(n/Q(n))
t2 log logn

)t−1
Q(n)3tt+o(t)

· 1

2O(2t)
�
(

n

Q(n)

)2

·

(
log(n/Q(n))
log logn

)t−1
2O(2t)

.

For small values of t (e.g., constant t), this lower bound shows that the space/query time trade-
off should increase by roughly a log n factor for every increase in t. However, for larger values
of t the above lower bound degrades too quickly because of the 2O(2t) factor so we switch to
the other branch in Lemma 1. We set ` to be a value smaller than 2t and obtain the bound
nc = Θ(Xt−12−tX−t/`)t−1. Note that we can again pick R = (log n)t which still satisfies R ≥ nc.

Thus, we have X := logR(n/r)
t = log(n/r)

t2 log logn
. In turn, we get that

nc = Θ(Xt−12−tX−2t/`) = Θ

(
log(n/r)

t2 log log n

)t−1
·
(

log(n/r)

t2 log logn

)−2t/`
.

This gives the lower bound

S(n)� Q(n) ·
n2Θ

(
log(n/Q(n))
t2 log logn

)t−1
·
(
log(n/Q(n))
t2 log logn

)−t/`
Q(n)3tt+o(t)

· 1

2O(`)

�
(

n

Q(n)

)2 Θ
(

log(n/Q(n))

t3+o(1) log logn

)t−1
2O(`) ·

(
log(n/Q(n))
t2 log logn

)t/` .
We now can set ` = Θ(

√
t log( logn/Q(n)

t )) to balance out the two terms in the denominator. This
gives us the space lower bound of

S(n)�
(

n

Q(n)

)2

Θ

(
log(n/Q(n))

t3 log log n

)t−1−o(1)
.
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Figure 6: We approximate a slab using the intersection of two circles. Given a slab s, we can find
two circles C1 and C2 of equal radius such that their intersection is fully inside s and when confined
to the unit square U , their intersection almost covers the same area too. The symmetric difference
of the slab and the intersection of the circles is shaded in grey. For any ε > 0, we can find the circles
such that the area of the grey region is less than ε.

6.4 The Lower Bound for Fréchet Queries in 2D

We show how to use the construction from the previous section to prove the same lower bound for
Fréchet queries for polygonal curves in the plane. We first consider discrete Fréchet queries as a
warm up, since they are much easier to adapt our lower bound to.

6.4.1 Discrete Fréchet queries

The main idea is to simulate the phenomenon of a point stabbing a slab using a point and intersection
of two equal-sized circles. In particular, we use the following observation (see Figure 6).

Observation 5. Given a slab s and for any ε we can find a value ρε,s such that for any value
ρ ≥ ρε, we can place two circles C1 and C2 of radius ρ in the plane such that C1 ∩ C2 ⊂ s and the
area of their error area, U ∩ s \ (C1 ∩ C2), is less than ε where U is the unit square.

The idea is now very straightforward: we can replace the set of slabs used in our construction,
with a set of lenses, i.e., the intersection of circles.

Fix a global parameter ε. Let R be the set of t-slabs used in the proof of Theorem 4. To iterate,
every t-slab s ∈ R is an element of the Cartesian product of t two-dimensional slabs s(1), . . . , s(t).
Using Observation 5, we can approximate every slab s = s(j) with a lens formed by the intersection
of two circles of radius at least ρε,s. Let ρε be the maximum value of this radius, over all slabs s(j)

and over all the t-slabs s ∈ R.
We create t unit square Q1, . . . ,Qt and place them such that the distance between them is

greater than 10ρε (see Figure 1 on page 9; the unit squares are drawn closer in the figure for the
purpose of illustration so one should imagine them far enough that the circles intersecting a unit
square Qj , do not intersect any other unit square.). For every slab s ∈ R we create a chain c(s) of
size 2t, by connecting the centers of the circles that give rise to the lens that approximates s(j). A
query t-point p is simply represented by another chain q(p) that connects the points p(j), 1 ≤ j ≤ t.
See Figure 1.

The only issue we are left with is that the lenses only approximate the slabs, meaning, there will
be t-points p ∈ Q that behave differently with respect to the slabs compared to the lenses. Inside
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every unit square Qj , we have created n lenses such that the error area of each lens is at most ε.
Thus, the error area of all the slabs created inside Qj is at most nε. Over all unit squares Qj , this
error area is ntε. Remember that we had defined Q = Q1 × · · · × Qt. Define Q′ as the subset of Q
that includes all the t-points p such that none of the points p(j) is inside an error area. By what we
have observed, Vol2t(Q′) ≥ 1− ntε. By picking ε small enough, we can ensure that Vol2t(Q′) ≥ 1/2.

For a unit square Qj , we have placed all the centers of the circles that create the slabs inside Qj ,
within distance of ρε of Qj . Since we have placed the unit squares Qj far apart, it means that a
point of q(p) inside Qj can only be matched to the centers of the circles that create the slabs inside
Qj . Thus, a query t-point p ∈ Q′ is inside a t-slab s if and only the chain q(p) is within discrete
Fréchet distance ρε of the chain c(s).

Observe that in the framework of Afshani (Theorem 3), the region Q is the set of all possible
queries and it is only required to have volume one. To finish off, we rescale Q and all the slabs
used in our construction by a constant factor such that the volume of Q′ equals one. Then, we
apply the framework to the set of lenses (i.e., t-lenses) instead of t-slabs. Consider the requirement
(i) in Theorem 3. The construction in the previous section ensures that for every t-points p =
(p(1), . . . ,p(t)) ∈ Q′, there are r t-slabs s1, . . . , sr that contain p. Observe that this directly implies
the existence of r t-lenses that contain p because p(j) is not contained in any error region, for all
1 ≤ j ≤ t. The requirement (ii) is trivially satisfied since lenses are created to be subsets of their
corresponding slabs, meaning, the volume of an intersection of lenses will have a smaller volume
than the intersection of their corresponding slabs.

Thus, the lower bound of Theorem 4 also applies to discrete Fréchet queries where the input
chains have complexity 2t and the query curves have complexity t.

6.4.2 The continuous case

The construction in the previous subsection does not apply to the continuous Fréchet case. The
main problem here is that unlike the discrete case, it is not required for vertices of the query chain
to be mapped to the vertices of the input chain. As a result, an input chain c(s) may match a query
q(p) even though the t-point p is not contained in the t-slab s.

To resolve this issue, we describe a construction of input curves that will take the role of the
t−slabs and we define a suitable set of query curves. Our construction does not vary the radius of
the queries, we set the radius to 1.

In the following, a polygonal curve is implicitly defined by a sequence of vertices. To obtain the
explicit curve, consecutive vertices need to be linearly interpolated. The Cartesian product of two
sets of polygonal curves simply concatenates the sequence of vertices thereby effectively inserting
the line segment that connects the endpoints of the corresponding curves.

Zig-zag gadget Our input construction consists of concatenatenations of basic gadgets which we
call zig-zag gadgets and which are described as follows. The gadget is constructed using parameters
x1, x2, x3 ∈ [−1, 1]. It is a polygonal curve with four vertices p1, p2, p3, p4 defined as follows

π(x1, x2, x3) =

(
(0,−4),

(
x1 + cos(θ),

x2 + x3
2

)
,

(
x1 − cos(θ),

x2 + x3
2

)
, (0, 4)

)
with θ defined by the equality sin(θ) = |x2−x3|

2 . An example is depicted in Figure 7. Note that the
two interior vertices p2 and p3 of the curve are chosen such that the two unit circles centered at p2
and p3 intersect on the vertical line segment from (x1, x2) to (x1, x3).
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Figure 7: Zig-zag gadget given by p1, p2, p3 and p4 (black curve) and query edge given by q1 and q2
(blue edge). Any query edge that outputs the zigzag gadget needs to intersect the vertical interval
bounded by the two points (x1, x2) and (x1, x3).

Queries To simplify our analysis we will restrict the set of queries to polygonal curves that have
odd vertices on the vertical line at −4 and even vertices on the vertical line at 4. We define the
set of queries Q = Q1 ×Q2 × . . .Qt, where Qi is the set of left-to-right line segments with vertices
q1 = (−4, y1) and q2 = (4, y2) for y1, y2 ∈ [−1, 1]. Each such query can be represented by an ordered
set of lines `1, . . . , `t, such that `i is the line supporting the ith left-to-right edge of the query. Each
line ` : y = ax+ b can be represented as a point p` = (a, b) in the dual space of lines. We intend to
use the volume argument of Theorem 3 in this dual space.

Observation 6. The set Qi in the dual space forms a parallelogram of area 1/2.4 This follows
from the fact that a line ` supports a line segment in Qi if and only if it intersects the two vertical
intervals that define the set Qi. In the dual space this corresponds to the intersection of two slabs
bounded by the lines y = 4x+ 1, y = 4x− 1, y = −4x+ 1 and y = −4x− 1.

Lemma 7. For any zig-zag gadget p = π(x1, x2, x3) with x1, x2, x3 ∈ [−1, 1] and |x2 − x3| ≤ 1 and
any line segment q ∈ Qi we have dF (p, q) ≤ 1 if and only if q is supported by a line `, whose dual p`
lies in the slab that has slope x1 and intersects the y-axis in the interval [x2, x3].

Proof. In the following, we refer to the intersection of the unit disks that are centered at p2 and p3
as the lens and we denote with I the vertical interval formed by the two intersection points (x1, x2)
and (x1, x3). Guibas et al. [14] proved that for a line segment q it holds that dF (p, q) ≤ 1 if and
only if q stabs the unit disks centered at the vertices of p in the order along p. In the lemma by
Guibas et al., the ordered stabbing requires a sequence of points on q to exist, in the order in which
they appear on q, such that the ith point lies inside or on the boundary of the ith disk centered at
the vertices along the curve p. We claim that q is an ordered stabber in this sense if and only if it
intersects the interval I. Since q ∈ Qi, it must be that it intersects the disk at p1 and p4 in the
right order. This also implies that the slope of q lies in the interval [−1

4 ,
1
4 ] and that q is directed

from left to right. Therefore, q needs to stab the disks at p2 and p3 in the lens. Since we ensured
|x2 − x3| ≤ 1, the slope of a line that stabs the lens outside I is either larger or equal

√
3 or smaller

or equal −
√

3, thus the range of slopes of such lines is disjoint from the range of slopes of query

4Technically speaking, in order to obtain a set of queries with area 1 the space of queries needs to be scaled by a
factor 2. However, this scaling does not affect our asymptotic bounds on the volumes.
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line segments in Qi. Therefore, q intersects I if and only if dF (p, q) ≤ 1. Now, the set of lines that
intersects I corresponds to the set of points in the dual space that lies in the intersection of two
parallel halfspaces bounded by the lines y = x1x+ x2 and y = x1x+ x3. This is the slab with slope
x1 which intersects the y-axis in the interval [x2, x3].

Input As in the previous section, we build r different input sets S1,S2, . . . , Sr such that: (i)
each Si contains Θ(n/r) input curves (ii) for any two input curves s1, s2 ∈ Si, the set of queries
that contains s1 is disjoint from the set of queries that contains s2. The set Si is defined as the
Cartesian product of the sets Si,1 × Si,2 × . . . Si,t, where each Si,j is a set of zig-zag gadgets defined

by parameters α = α
(j)
i and W = W

(j)
i ; W here will play the role of the thickness.

We define a series of zig-zag gadgets with indices 1 ≤ i′ ≤
⌈

2
W

⌉
: πi′ = π(xi

′
1 , x

i′
2 , x

i′
3 ) with

xi
′
1 = tan(α)

xi
′
2 = (i′ − 1)W − 1

xi
′
3 = i′W − 1

The elements of this series form the set Si,j .
Following Lemma 7, we call the slab with slope x

(i′)
1 and y-intercept [x

(i′)
2 , x

(i′)
3 ] the dual slab of

the corresponding zig-zag gadget πi′ . Furthermore, we call the Cartesian product of t dual slabs,
each corresponding a zig-zag gadget of an element of Si,j , a dual t-slab of the corresponding element
of Si. Note that Lemma 7 puts some conditions on the parameters α and W . In order to use
the described representation in the dual space we need that −1 ≤ x1 ≤ 1, which translates to
−π

4 ≤ α ≤ π
4 , and we need |x2 − x3| ≤ 1 which translates to 0 < W ≤ 1. However, this does not

prevent us from using the lower bound construction from the previous section as long as the range
of angles for α is constant.

Observation 7. The angle of a dual slab of a zig-zag gadget in Si,j is equal to α
(j)
i and the width

of this slab is at most W
(j)
i .

Observation 8. The number of dual t-slabs in Si is Θ(n/r).

Lemma 8. For any two input curves s1, s2 ∈ Si, the volume of the intersection of their corresponding
dual t-slabs is zero.

Proof. Note that the vertical intervals that define the zig-zag gadgets in Si,j tile the section of the
vertical line at xi

′
1 which lies between the horizontal lines at −1 and 1. It follows, by Lemma 7, that

the zig-zag gadgets of Si,j tile the set Qi in the dual space using a series of pairwise disjoint slabs.
Therefore, the query curves of entire Q are partitioned by the t-slabs of the set of query curves of
Si such that the volume of the intersection of any two dual t-slabs is zero.

Thus, by combing the two constructions that we presented in this and the previous section, we
have proved the following theorem.

Theorem 5. Assume we have built a data structure for a given set S of n polygonal curves of size
t, and a fixed radius ρ, such that for any query polygonal chain q of size t, we can find all the input
curves within the continuous or discrete Fréchet distance ρ of q, in Q(n) +O(k) time where k is the
size of the output.

Then, S(n) = Ω(( n
Q(n))

2) ·
(

log(n/Q(n))
log logn

)t−1

2O(2t)
as well as S(n) = Ω

(
n

Q(n)

)2
Θ
(

log(n/Q(n))

t3+o(1) log logn

)t−1−o(1)
.
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7 A Data Structure

In this section, we will focus on building data structures to perform range searching on polygonal
curves based on the notion of Fréchet distance. Our data structures will ultimately use the recent
results on semialgebraic range searching, however, getting to the point where we can do that is
non-trivial, specially for the continuous Fréchet queries.

Our data structures have two components: one component that is based on recent results on
semialgebraic range searching and the second component that focuses on the Fréchet distance and
tries to break down the data structure problem into sub-problems that are instances of semialgebraic
range searching. Among these, the first component is very standard and not particularly interesting
for the expert reader. The second component is where our contributions lie.

In the next subsection, we will briefly go over the standard existing techniques in range searching,
combine them with the new results on semialgebraic range searching and show how we can build
multilevel data structures that can handle more complex semialgebraic input and query objects. In
the two subsequent chapters, we will consider the discrete and continuous Fréchet queries.

7.1 Multi-level Semialgebraic Range Searching

We will use the following recent result from semialgebraic range searching. Before stating the
theorem, we will quickly cover some of the related definitions. By RD[x1, . . . , xd] we denote the
set of all d-variate polynomials of degree at most D (on variables x1, . . . , xd). For a polyno-
mial h ∈ RD[x1, . . . , xd], we denote the set of zeros of h with Z(h). In other words, Z(h) ={

(x1, . . . , xd) ∈ Rd | h(x1, . . . , xd) = 0
}

. For a given set P of points, we say Z(h) crosses P if Z(h)
intersects any connected subset of Rd that contains P . A semialgebraic set is a subset of Rd that
satisfies some, n1, number of polynomial inequality of some degree, n2, and using logical operands
∧,∨, and ¬.

Theorem 6 (The Semialgebraic Partition Theorem). Let P be a set of n points in Rd and let r be
a parameter. There exists a constant K that only depends on d such that the following hold.

We can find d integers r ≤ r1, . . . , rd ≤ rK such that we can partition P into subsets P =
P ∗
⋃d
i=1

⋃ti
j=1 Pij in which P ∗ contains at most rK points, each Pij contains at most n/ri points,

ti = rO(1), and crucially, for any d-variate polynomial h ∈ RD[x1, . . . , xd] where D is another

constant Z(h) intersects at most O(r
1−1/d
i ) of the subsets Pi,1, . . . , Pi,ti.

Furthermore, each subset Pij is contained in a semialgebraic set ∆ij that is defined by at most
O(rO(1)) polynomial inequalities of degree O(rO(1)). For any d-variate polynomial h ∈ RD[x1, . . . , xd]

Z(h) intersects at most O(r
1−1/d
i ) of the subsets ∆i,1, . . . ,∆i,ti.

Using the semialgebraic partition theorem, we can solve the following multilevel semialgebraic
range searching problem. The input is a set P n of t-points in Rd. The query is tuple of t
semialgebraic sets (ψ1, . . . ,ψt), where each semialgebraic set is defined by a constant number of
polynomial inequalities of constant degree, and the goal is to find all the points p = (p(1), . . . ,p(t)) ∈
P such that the point p(i) is contained in ψi, for 1 ≤ i ≤ t; say that such a t-point p is contained
in the tuple (ψ1, . . . ,ψt).

As mentioned above, using the semialgebraic partition tree, and using classical techniques, we
can prove the following theorem. The proof is included for completeness and also because of the
fact that the existing literatures do not explicitly mention such a data structure.
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Theorem 7. Let P be a set of n t-points in Rd. We can store P in a data structure using
O(nO(log log n)t−1) space that can answer the following queries. Given a tuple of t semialgebraic
sets (ψ1, . . . ,ψt) where each ψi is a semialgebraic set determined by a constant number of polyno-
mial inequalities of constant degree, we can output all the t-points p such that p is contained in
(ψ1, . . . ,ψt). The query time is O(n1−1/d logO(t) n+ k) where k is the size of the output.

The rest of this section is devoted to the proof of the above theorem. We start with the
description of the data structure.

The Data Structure. We will describe a data structure D(P) that is a multilevel data structure
based on the Semialgebraic Partition Theorem. Let P1 be the set of first points of all the t-points
in P. We use the Semialgebraic Partition Theorem with P set to P1 and with parameter r
set to nε for small enough constant ε to be determined later. This partitions P1 into subsets
P1 = P ∗

⋃d
i=1

⋃ti
j=1 Pij . We call these subsets “canonical sets”. Let Pij be the canonical set that

contains t-points whose first point is in the set Pij . Let P ′
ij be the set of (t− 1)-points obtained by

removing the first point of every t-point in Pij . Note that if t = 1, then P ′
ij is an empty set. For

every subset Pij we do two different kinds of recursion. Our first recursion is to build D(Pij). Our
second recursion is to build D(P ′

ij). Our recursion stops as soon as P contains a constant number
of points.

Space Analysis. We first analyze the space complexity of the data structure. Let Sk(n) be the
space complexity of the data structure if it is run on an input of n k-points. Our goal is to estimate
St(n). We have

Sk(n) = |P ∗|+
d∑
i=1

t∑
j=1

Sk(|Sij |) +

d∑
i=1

t∑
j=1

Sk−1(|S′ij |).

It is easy to see that S1(n) = O(n) since the second recursion step do not happen if t = 1 and
thus each point is only stored in one sub-problem. We guess that Sk(n) solves to O(nO(log log n)k−1)
and try to prove this with induction. Thus, we can re-write the recursion as

Sk(n) = |P ∗|+
d∑
i=1

t∑
j=1

Sk(|Sij |) +O(nO(log log n)k−2).

Note that by the choice of r, each set Pij has size at most n/ri ≤ n/r = n1−ε. Thus, there are
O(log log n) levels of recursion. Observe that at each recursion level we are dealing with disjoint set
of subproblems. This means that Sk(n) = O(nO(log log n)k−1).

The Query Algorithm. Consider a query tuple ψ of t semialgebraic sets ψ1, . . . ,ψt. Let Pψ be
the set of t-points in P that satisfy the query, i.e., Pψ contains all the points p = (p(1), . . . ,p(t)) ∈P
such that the point p(i) is contained in ψi, for 1 ≤ i ≤ t. Let Pψ,1 be the set of t-points in P such
that only p(1) is contained in ψ1. Clearly, Pψ ⊂ Pψ,1. Our goal is to find the set Pψ,1 as the
disjoint union of a number of canonical sets, that is, to find a set Cψ1 of canonical sets such that
Pψ,1 =

⋃
c∈Cψ1

c. We use the data structure D(P). Remember that in the data structure D(P) we

have partitioned P1 (the set of first points of P) into subsets P1 = P ∗
⋃d
i=1

⋃ti
j=1 Pij . We explicitly

process the t-points by looking at all the points in P ∗ (that is, if we are solving a range reporting
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variant, we output them all, or if we are solving a semigroup variant, we add up all the weights
corresponding to t-points of P ∗). Next, we process the subsets Pi1, Pi2, . . . , Piti starting from i = 1.
By the Semialgebraic Partition Theorem, each Pij is contained in a semialgebraic set ∆ij and that

each polynomial defining the set ψ1 intersects only O(r
1−1/d
i ) of the sets ∆i1,∆i2, . . . ,∆iti . Thus,

the polynomial defining the set ψ1 intersect at most O(r
1−1/d
i ) sets. We go through all the sets

∆i1,∆i2, . . . ,∆iti and for each ∆ij determine (case a) if ∆ij is completely outside ψ1 (in which case
we ignore it), or (case b) ∆ij is completely inside ψ1 (in which case we add Pij as a canonical set to
Cδ′) or (case c) if ∆ij intersects the boundary of ψ1 and in this case we recurse on the data structure
D(Pij). Since each ∆ij is determined by rO(1) polynomials of degree rO(1), and ti = rO(1), these
tests will take rO(1) time in total. By the end of the recursion, we will have the desired set Cψ1 .

We have following recursion to describe the number of canonical sets f(n) placed in the set Cψ1 .

f(n) = rO(1) +
d∑
i=1

O(r
1−1/d
i )f(n/ri).

Note that we have r = nε and that ri ≥ r. This is a standard recursion in the range searching area
and it is not too difficult to see that is solves to f(n) = O(n1−1/d logO(1) n).

Having computed an implicit representation of Cψ1 , we do the following. Remember that for
every canonical set c ∈ Cψ1 , we have build another data structure D(c′) where c′ is the set of
(t− 1)-points obtained by removing the first point of the t-points in c. Any t-point p represented by
the canonical sets in Cψ1 has the property that the point p(1) is contained in ψ1. Thus, it remains
to narrow the search such that p(i) is also contained in ψi for 2 ≤ i ≤ t. However, this is exactly
equivalent to searching for points p′ = (p(2), . . . ,p(t)) using the t− 1 query tuples ψ2, . . . ,ψt. Thus,
we can simply recurse on each c′ (using D(c′)) for every c ∈ Cψ1 . Let fk(n) be the total number of
canonical sets obtained after having recursed on a set containing n k-points. We have the following
recursion.

fk+1(n) ≤ rO(1) +
d∑
i=1

ti∑
j=1

fk(|Pij |) +
d∑
i=1

O(r
1−1/d
i )fk+1(n/ri).

We guess that fk(n) = O(n1−1/d logCk n) for a constant C. Since the sets Pij form a partition of
the set P and they contain at most n t-points in total, the recursion simplifies to

fk+1(n) ≤ rO(1) +O(n1−1/d logCk n) +
d∑
i=1

O(r
1−1/d
i )fk+1(n/ri).

Using the standard analysis from the range searching literature, it is not too difficult to show that
by picking C large enough we get fk+1 = O(n1−1/d logC(k+1) n).

7.2 Discrete Frechet Queries

Let S be a set of n polygonal chains in Rd where each chain s ∈ S contains at most ts vertices.
For simplicity, we can assume every chain contains exactly ts vertices (by adding extra dummy
vertices). Consider a query polygonal chain q of size tq and a chain s ∈ S. Imagine we would like to
determine if the discrete Frechet distance between q and s is at most ρ, for some parameter ρ. This
can be done using the so-called free-space-matrix, which can be described as follows. Let Mq,s be
the 0 − 1-matrix with tq rows and ts columns, where the entry m(i, j) at row i and column j of
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Mq,s is 0 if the distance between the i-th vertex of q and the j-th vertex of s is greater than ρ and 1
otherwise. Testing if the Fréchet distance between s and q is at most ρ now amounts to testing if
there exists an xy-monotone path connecting m(1, 1) to m(tq, ts) that passes through the 1 entries.
We treat each input chain s as a ts-point and build the data structure from the previous subsection.

We now describe the query procedure. Let q be the query chain of tq vertices. Consider spheres
of radius ρ centered on the vertices of q. Let A be the arrangement created by the spheres. It is
easy to see that the complexity of A is O(td+1

q ) by just lifting them to halfspaces in Rd+1. Now,
consider a chain s ∈ S and the corresponding free-space matrix M = Mq,s. Every column of M

corresponds to a region in the arrangement A. In other words, there are at most t
O(d)
q 0-1 vectors

could possibly appear as a column in matrix M . This in turn implies that the total number of

matrices that can be the free-space matrix of some chain in S is upper bounded by t
O(ni)
q . Let M

be the set of these matrices. We can compute M easily in t
O(ni)
q time.

During the query time, we will go through the following stages. First, we generate the set of
matrices in M . For every matrix M ∈M , we will only output chains s with Mq,s = M . Clearly,
this will output all the valid chains since M contains all the possible valid free-space diagrams and
it will not produce any duplicates since Mq,s is unique. Note that this blows up the query time

by a t
O(ts)
q factor. Thus, in the second stage, we have a fixed matrix M ∈M and we would like

to output the set of chains s such that Mq,s = M . To do that, we “triangulate” A: we lift the
arrangement of spheres into d+ 1 dimension and triangulate the resulting arrangement of halfspaces,
and then project back to Rd. This corresponds to decomposing A into O(td+1

q ) cells where each cell
is a semialgebraic set determined by a constant number of polynomials of degree two. Let A′ be the
resulting triangulation. Consider a chain s such that Mq,s = M and consider the i-th column vi of
M . The bit vector vi encodes exactly which points of q are within distance r of the i-th vertex of
s. In other words, the bit vector vi identifies a unique cell δi in the arrangement A such that the
i-th vertex of s must be contained in that cell. We are now almost done. Ideally, we would like
to issue one query (δ1, . . . , δts) to find exactly what we want. However, the semialgebraic set δi
might not be made using a constant number of polynomial inequalities. So we simply switch to the
triangulated arrangement A′. Let δi,1, . . . , δi,xi be the set of cells formed in A′ from triangulating δi
where each cell is a semialgebraic cell formed by a constant number of polynomial inequalities of
constant degree. We now form

∏ts
i=1 xi queries by creating the Cartesian product of these cells, that

is, {δ1,1, . . . , δ1,x1} × {δi,2, . . . , δ2,x2} ×
{
δi,ts , . . . , δi,xts

}
.

Putting all these together, we can bound the total query time with

O(n1−1/d logO(ts) n · tO(ts)
q · tO(d)

q ) = O(n1−1/d logO(ts) n · tO(ts)
q )

assuming tq = O(logO(1) n).

Theorem 8. Given a set S of n polygonal curves in Rd where each curve contains ts vertices, we
can store S in a data structure of O

(
n(log log n)ts−1

)
size such that given a query polygonal chain

of size tq and a parameter ρ, it can output all the input curves within discrete Fréchet distance of ρ

to the query in O
(
n1−1/d · logO(ts) n · tO(d)q

)
, assuming tq = logO(1) n.

7.3 Continuous Frechet Queries

Let S be a set of polygonal chains as before. We now consider the range-searching problem for
the continuous Fréchet distance. Consider a query polygonal chain q of size tq and a chain s ∈ S.
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Imagine we would like to determine if the Fréchet distance between q and s is at most ρ, for some
parameter ρ. This can be done using the so-called free-space diagram which is a continuous version
of the free-space matrix.

Free-space diagram We can interpret the polygonal chains s and q as continous curves s :
[0, 1]→ R2 and q : [0, 1]→ R2 by linearly interpolating consecutive vertices of the chain. Consider
the parametric space [0, 1] × [0, 1] of the two curves. The vertices of the curves partition this
parametric space into rectangular cells, such that each cell corresponds to the parametric space of
two edges, one from each curve. The free-space is the subset of points (x, y) ∈ [0, 1]× [0, 1] such
that ‖s(x)− p(y)‖ ≤ ρ. The free-space within each cell can be described as an ellipse clipped to the
cell and is therefore convex. Now, testing if the Fréchet distance of the two curves is smaller or
equal to r amounts to testing if there exists a (x, y)-monotone path that starts at (0, 0) and ends at
(1, 1) and stays inside the free-space. We call such a path feasible.

7.3.1 High-level Predicates

We would like to encode reachability in the free-space diagram combinatorially using a small set of
predicates. This will help us to build an efficient data structure for the range-reporting problem.
We denote the vertices of s with s1, . . . , sts and the vertices of q with q1, . . . , qtq .

(P1) (Endpoints (start)) This predicate returns true if and only if ‖s1 − q1‖ ≤ ρ

(P2) (Endpoints (end)) This predicate returns true if and only if ‖sts − qtq‖ ≤ ρ

(P3) (Vertex-edge (horizontal)) Given an edge of s, sjsj+1, and a vertex qi of q, this predicate
returns true iff there exist a point p ∈ sjsj+1, such that ‖p− qi‖ ≤ ρ.

(P4) (Vertex-edge (vertical)) Given an edge of q, qiqi+1, and a vertex sj of s, this predicate returns
true iff there exist a point p ∈ qiqi+1, such that ‖p− sj‖ ≤ ρ.

(P5) (Monotonicity (horizontal)) Given two vertices of s, sj and sk with j < k and an edge of q,
qiqi+1, this predicate returns true if there exist two points p1 and p2 on the line supporting
the directed edge, such that p1 appears before p2 on this line, and such that ‖p1 − sj‖ ≤ ρ
and ‖p2 − sk‖ ≤ ρ.

(P6) (Monotonicity (vertical)) Given two vertices of q, qi and qk with i < k and an directed edge of
s, sjsj+1, this predicate returns true if there exist two points p1 and p2 on the line supporting
the directed edge, such that p1 appears before p2 on this line, and such that ‖p1 − qi‖ ≤ ρ
and ‖p2 − qk‖ ≤ ρ.

Lemma 9. Given the truth values of all predicates (P1)-(P6) of two curves s and q for a fixed value
of ρ, one can determine if dF (s, q) ≤ ρ.

Before we prove Lemma 9, we introduce the notion of a valid sequence of cells in the free-space
diagram and the set of predicates that are induced by such a sequence. In the following, we denote
with Ci,j the cell of the free-space diagram that corresponds to the edges qiqi+1 and sjsj+1. We call
a sequence of cells C = ((i1, j1), (i2, j2), . . . , (ik, jk)) valid if i1 = 1, j1 = 1, ik = tq − 1, jk = ts − 1
and if for any two consecutive cells (im, jm) and (im+1, jm+1) it holds that either im = im+1 and
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jm+1 = jm + 1 or jm = jm+1 and im+1 = im + 1. Note that a sequence is valid if there exists a
feasible path which passes through the sequence of cells in the right order. At the same time, there
exists a valid sequence of cells for any such path. Any valid sequence of cells C induces a set of
predicates P as follows.

(i) (P1) ∈P and (P2) ∈P

(ii) (P3)(i,j) ∈P iff (i, j − 1), (i, j) ∈ C

(iii) (P4)(i,j) ∈P iff (i− 1, j), (i, j) ∈ C

(iv) (P5)(i,j,k) ∈P iff (i, j − 1), (i, k) ∈ C and j < k

(v) (P6)(i,j,k) ∈P iff (i− 1, j), (k, j) ∈ C and i < k

We say that a valid sequence of cells is feasible if the conjunction of its induced predicates is
true. We claim that any feasible path through the free-space induces a feasible sequence of cells
and vice versa. Before we prove this claim, we prove the following helper lemma. Note the subtle
difference to the definition of the monotonicity predicate.

Lemma 10. Let C be a feasible sequence of cells and consider a monotonicity predicate P of the set
of predicates P induced by C . Let a1 and a2 be the vertices and let e be the directed edge associated
with P . There exist two points p1 and p2 on e, such that p1 appears before p2 on e, and such that
‖p1 − a1‖ ≤ ρ and ‖p2 − a2‖ ≤ ρ.

Proof. Assume P is a horizontal monotonicity predicate (P5)(i,j,k) in P (the arguments for vertical
monotonicity predicates are similar). The predicate P was added because of cells C(i,j−1) and C(i,k)

being present in C . Since C is valid, it must be that C(i,j) and C(i,k−1) are also present (possibly
with j = k − 1). Therefore, P also contains horizontal vertex-edge predicates (P3)(i,j) and (P3)(i,k).
If all three predicates are true, then we want to follow that there exist points p1 and p2 on the edge
(not just the supporting line) qiqi+1 such that ‖p1 − sj‖ ≤ ρ and ‖p2 − sk‖ ≤ ρ.

We consider two cases, based on whether the common intersection of the line ` supporting
the edge qiqi+1 and the two disks of radius ρ centered at sj and sk is empty, or in other words
if Disk(sj , ρ) ∩ Disk(sk, ρ) ∩ ←−−→qiqi+1 = ∅. If the intersection is empty, then the line intersects
the disks in two disjoint intervals. In this case any pair of points p1 ∈ qiqi+1 ∩ Disk(sj , r) and
p2 ∈ qiqi+1 ∩Disk(sk, r) appears on ` in the correct order. Two such points p1 and p2 must exist
since both vertex-edge predicates are true.

If the common intersection is not empty, then we argue that the edge qiqi+1 must intersect this
common intersection. Indeed, since both vertex-edge predicates are true, the edge intersects both
disks. Since the edge is a connected set, it must also intersect the common intersection which lies in
between the intersections of the line with the two disks. Now, if the edge intersects the common
intersection, then we can choose p1 = p2 from this common intersection. We can make a similar
argument for each vertical monotonicity predicate.

This implies that the points p1 and p2 of the monotonicity predicates are realizable on the
corresponding edges as claimed.

Proof of Lemma 9. We claim that any feasible path through the free-space induces a feasible
sequence of cells and vice versa. Assume there exists a feasible path π that passes thorough the
sequence of cells C . Consider the endpoint predicate (P1) (and respectively (P2)). The existence of
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π implies that (0, 0) (and respectively (1, 1)) lies inside the free-space, which is equivalent to this
predicate being true. Now, consider a horizontal vertex-edge predicate (P3)(i,j) for consecutive pair
of cells C(i,j−1), C(i,j) in the sequence C . The path π is a feasible path that passes through the cell
boundary between these two cells. This implies that the there exists a point on the edge qiqi+1

which lies within distance ρ to the vertex sj . This implies that the predicate is true. A similar
argument can be made for each vertical vertex-edge predicate.

Next, we will discuss the monotonicity predicates. Consider a subsequence of cells of C that lies
in a fixed row i and consider the set of predicates P ′ ⊆P that consists of horizontal monotonicity
predicates (P5)(i,j,k) for fixed i. Let pj , pj+1, . . . , pk be the sequence of points along q that correspond
to the vertical coordinates where the path π passes through the corresponding cell boundaries
corresponding to vertices sj , sj+1 . . . , sk. The sequence of points lies on the directed line supporting
the edge qiqi+1 and the points appear in their order along this line in the sequence due to the
monotonicity of π. Since π is a feasible path it lies in the free-space and therefore we have ‖pk′−sk′‖
for every j ≤ k′ ≤ k. This implies that all predicates in P ′ are true. We can make a similar
argument for the vertical monotonicity predicates (P6)(i,j,k) for a fixed column j. This shows that a
feasible path π that passes through the cells of C implies that the conjunction of induced predicates
P is true.

It remains to show the other direction: Any feasible sequences of cells implies the existence of a
feasible path. It is clear that the relationship between a feasible path π and the endpoint predicates
as well as the vertex-edge predicates, as described above, gives us the existence of a continuous (not
necessarily monotone) path π that stays inside the free-space and connects (0, 0) with (1, 1). We
now have to argue that the monotonicity predicates imply that there always exists such a path that
is also (x, y)-monotone.

Assume for the sake of contradiction that the conjunction of predicates in P is true, but there
exists no feasible path through the sequence of cells C . In this case, it must be that either a
horizontal passage or a vertical passage is not possible. Concretely, in the first case, there must be
two vertices sj and sk and a directed edge e = qiqi+1, such that there exist no two points p1 and p2
on e, such that p1 appears before p2 on e, and such that ‖p1 − sj‖ ≤ ρ and ‖p2 − sk‖ ≤ ρ. However,
(P5)i,j,k is contained in P and by Lemma 10 two such points p1 and p2 must exist. We obtain a
contradiction. In the second case, the argument is similar. Therefore, a feasible sequences of cells
implies a feasible path, as claimed.

Lemma 11. Given a truth assignment to all predicates of two curves q and s, we can decide if
there exists a feasible sequence of cells in O(tstq(ts + tq)) time without knowing q or s.

Proof. Let Ci,j denote the cell in the free space diagram that corresponds to the ith edge on q (the
ith row) and the jth edge on s (the jth column). For the sake of this proof, we re-define the notion
of a valid sequence of cells. We keep the definition as before, except that we drop the requirement
that ik = tq − 1, jk = ts − 1. That is, a valid path may end at any cell. Such a path is feasible if
the conjunction of its induced predicates is true, as before. We want to process these cells in the
lexicographical ordering of their indices (i, j) and determine for each cell whether it is reachable by
such a feasible sequence of cells. Concretely, this happens for a cell Ci,j if and only if there exists a
feasible sequence of cells that ends with (i, j). Furthermore, we are interested in the second-to-last
step. If there exists a feasible sequence that ends with the two pairs (i− 1, j), (i, j) we say that Ci,j
is reachable from below, and similarly if there exists a feasible sequence that ends with the two pairs
(i, j − 1), (i, j) we say that Ci,j is reachable from the left. In addition, for each processed cell Ci,j ,
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we maintain two indices:

(i) if Ci,j is reachable from the left, we maintain the maximal column index j′ ≤ j such that Ci,j′

is reachable from below.

(ii) if Ci,j is reachable from the below, we maintain the maximal row index i′ ≤ j such that Ci′,j
is reachable from the left.

We call these indices the previous right turn and the previous left turn. Intuitively, the indices
describe the index of the cell where the feasible path that reached the cell from below previously
turned left, and respectively where the feasible path that reached the cell from the left previously
turned right.

We now describe the algorithm. If (P1) ∧ (P2) evaluates to false, the algorithm returns false.
Otherwise, we mark the cell C1,1 as reachable from below and reachable from the left. Processing a
cell Ci,j is done by executing the following steps:
• If Ci−1,j is reachable from the left and if (P3)i,j evaluates to true, then we mark Ci,j as

reachable from below and we set its previous left turn to i− 1.
• If Ci−1,j is reachable from below, let i′ denote its previous left turn. If (P3)i,j evaluates to

true and if (P6)i,j,i′′ evaluates to true for i′ ≤ i′′ ≤ i− 1, then we mark Ci,j as reachable from
below and we set its previous left turn to i′.
• If Ci,j−1 is reachable from below and if (P4)i,j evaluates to true, then we mark Ci,j as reachable

from the left and we set its previous left turn to j − 1.
• If Ci,j−1 is reachable from below, let j′ denote its previous right turn. If (P4)i,j evaluates to

true and if (P5)i,j,j′′ evaluates to true for j′ ≤ j′′ ≤ j − 1, then we mark Ci,j as reachable from
the left and we set its previous right turn to j′.
• Finally, if in the above steps we marked Ci,j both as reachable from below and reachable from

the left, we set the previous right turn to j and the previous left turn to i.
Clearly, processing each cell takes time at most O(tq + ts). In total we are processing O(tqts)

cells. Therefore the total running time is O(tqts(tq + ts)). The correctness of the algorithm can be
proven by induction on the cells in their processing order.

7.3.2 Low-level Predicates

In the following, we describe a set of simpler predicates that help us build a data structure. Each
group of low-level predicates will be used to represent one high-level predicate. Let a1 be the vertex
and let b1b2 be the edge of a vertex-edge predicate (P3) (respectively, (P4)). We define the following
three predicates.
(a) ‖a1 − b1‖ ≤ ρ.
(b) ‖a1 − b2‖ ≤ ρ.
(c) a1 is contained in the rotated rectangle R with side lengths 2r by ‖b1 − b2‖ which is contained

in the Minkowski sum of the edge with the disk of radius ρ. (Refer to Figure 8 (left))

Lemma 12. Given the truth values of the predicates (a)-(c) one can determine the truth value of
the predicate (P3) (respectively, (P4)).5

Proof. Consider a vertex-edge predicate with corresponding vertex a1 and edge b1b2 and assume
we know the true values of predicates (a),(b) and (c). We can determine the truth value of the

5This property was also used in the data structure by de Berg et al. [10]
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Figure 8: Geometric objects involved in the low-level predicates.

high-level certificate as a ∨ b ∨ c. Indeed, the union of the two disks and the rectangle is equal to
the Minkowski sum of the edge with a disk of radius ρ. This is exactly the locus of values for a1 for
which the predicate should return true.

We also want to break down the monotonicity predicates into a constant number of simpler
predicates. Let a1, a2 be the vertices and let ` be the line supporting the directed edge e of a
monotonicity predicate (P5) (respectively, (P6)). We begin with the following simple predicates
(d) The line ` intersects the circle of radius ρ centered at a1.
(e) The line ` intersects the circle of radius ρ centered at a2.
(f) The angle between the translation vector (a2 − a1) and the edge e is at most π

2 .

In addition, we will distinguish the case that the two circles of radius ρ centered at the two vertices
intersect each other. This is captured by the following predicate.
(g) ‖a1 − a2‖ ≤ 2ρ

Lemma 13. If d ∧ e ∧ f evaluates to true, then the corresponding monotonicity predicate evaluates
to true. Furthermore, if g evaluates to false or if the line does not intersect the lens formed by the
two disks at a1 and a2, then d ∧ e ∧ f is equivalent to the corresponding monotonicity predicate.

Proof. Consider a parametrized representation of the line given by a point p` ∈ R2 and a direction
vector v` ∈ R2 with ‖v`‖ = 1

` : {p` + tv` | t ∈ R}.
Let a′1 = p`+〈a1−p`, v`〉v` and let a′2 = p`+〈a2−p`, v`〉v`, where 〈·, ·〉 denotes the inner product.

Note that the point a′1 (respectively a′2) is an orthogonal projection onto the line ` and minimizes the
distance to a1 (respectively, a2). Therefore (d) implies ‖a1 − a′1‖ ≤ ρ and (e) implies ‖a2 − a′2‖ ≤ ρ.
Furthermore, (f) implies that a′1 appears before a′2 on the line. This implies that the corresponding
monotonicity predicate evaluates to true. Now, if (g) evaluates to false, then the line ` intersects
the two disks in disjoint intervals. In this case, the order along ` of any two points from these two
intervals (p1 in the intersection interval with the disk at a1 and p2 in the intersection interval with
the disk at a2) indicates the correct truth value of the monotonicity predicate. Therefore also a′1
and a′2 do. The same argument holds for the case that (g) evaluates to true and the line does not
intersect the lens formed by the two disks.

In case (g) evaluates to true, let b1 and b2 be the two intersection points of the two circles. For
this case we introduce the following additional predicates.
(h) The line ` passes in between the two points b1 and b2
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Figure 9: Examples of the two cases analyzed in the proof of Lemma 14.

(i) The angle of ` is contained in the range of angles of tangents of the circular arc between b1 and
b2 of the circle of radius ρ centered at a1. (Refer to Figure 8 (right))

The purpose of the next lemma is to describe the cases in which the line intersects the lens
that is formed by the two disks at a1 and a2. If (g) evaluates to false, the two points b1 and b2 are
undefined and we define the below predicates to be false.

Lemma 14. If and only if h∨(d ∧ e ∧ i) evaluates to true, then the line ` intersects the lens formed
by the two disks of radius ρ at a1 and a2.

Proof. Clearly, if (h) evaluates to true, then the line intersects the lens, since the line segment
between b1 and b2 is contained in the lens. For the remainder of the proof we intend to do a case
analysis based on the angle of ` with respect to the truth value of (i). Refer to Figure 9.

In the following we denote with πv(U) the projection of a set U onto the subspace spanned by v:

πv(U) = {〈v, p〉 | p ∈ U}.

Let v be the normal to the line ` and consider the projections of the two disks onto this
subspace I1 = πv(Disk(a1, r)) and I2 = πv(Disk(a2, r)) as well as the projection of the lens
I∩ = πv(Disk(a1, r) ∩Disk(a2, r))

Note that, by symmetry of the lens, the range of angles of tangents is the same on both arcs of
the lens. Therefore, if (i) evaluates to true then the angle of ` lies in this range. In this case, we
have that I∩ = I1 ∩ I2, since the two bounding tangents to the lens which are parallel to ` are also
tangents—one to each of the two disks. Therefore, the projection of any line `′ parallel to ` lies in
the interval I1 ∩ I2 if and only if it intersects the lens. This condition is equivalent to (d ∧ e).

Now assume that (i) evaluates to false. Consider the projection of the line segment bounded
by b1 and b2 onto the same subspace as before Ib1,b2 = πv

(
b1b2

)
For this range of angles (when (i)

evaluates to false), we have that I∩ = Ib1,b2 . Therefore, in this case, the line intersects the lens if
and only if it intersects the line segment bounded by b1 and b2. This condition is equivalent to
(h).
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Lemma 15. Assume (g) evaluates to true. If the line ` intersects the lens formed by the two disks
at a1 and a2, then the corresponding monotonicity predicate evaluates to true.

Proof. Let p denote some point in the intersection of the line with the lens. We have that ‖p−a1‖ ≤ ρ
and ‖p− a2‖ ≤ ρ, since the intersection point lies inside the intersection of the two disks. We can
set p1 = p and p2 = p to satisfy the condition for the monotonicity predicate to be true.

Lemma 16. Given the truth values of the predicates (d)-(i) one can determine the truth value of
the predicate (P5) (respectively, (P6)).

Proof. We can determine the truth value of the corresponding monotonicity predicate as follows

(d ∧ e ∧ f) ∨(h ∨(d ∧ e ∧ i)) (6)

Indeed, together, Lemma 13, Lemma 14 and Lemma 15 testify that Equation (6) implies the
high-level predicate. In the other direction, we argue based on the case whether the line intersects
the lens. If the line does not intersect the lens, or the lens does not exist (i.e., (g) evaluates to false),
then by Lemma 13, the predicate implies Equation (6). If the line does intersect the lens, then the
predicate must be true and by Lemma 14, Equation (6) must be true as well.

7.3.3 The Data Structure

We start by describing a set of binary matrices that will guide the layout of the data structure and
the query algorithm. The matrices play a role similar to the free-space matrix in Section 7.2. The
entries of these matrices together define a truth assignment to the overall set of predicates. The
query algorithm will process the matrices column by column. We describe four matrices, one for
each group of high-level predicates. The predicates (P1) and (P2) are tested separately.

1. Horizontal vertex-edge predicates
The matrix M(P3) consists of tq rows and 6 · ts columns. We group the columns in ts groups of
6 columns each. The entries of the jth group in the ith row are associated with the high-level
predicate (P3)(i,j). For each i and j, the predicate is a function of the vertex qi of the query
curve and the edge sjsj+1. Each entry stores the truth value of a low-level predicate associated
with this high-level predicate. We define these low-level predicates as follows. Consider
the rotated rectangle R around sjsj+1 defined in predicate (c). Denote with `1 and `2 the
two lines that bound R from above and denote with `3 and `4 the two lines that bound R
from below. A point p is included in the R if and only if p lies below `1 and `2 and p lies
above `3 and `4. The 6 entries of the jth group of columns in row i are defined as follows:
(1) sj ∈ Disk(qi, r) (2) sj+1 ∈ Disk(qi, r) (3) dual(`1) lies below dual(qi) (4) dual(`2) lies below
dual(qi) (5) dual(`3) lies above dual(qi) (6) dual(`4) lies above dual(qi).

2. Vertical vertex-edge predicates
Similar to the matrix M(P3), the matrix M(P4) consists of tq rows and 6 · ts columns. We
group the columns in ts groups of 6 columns each. The entries of the jth group in the ith row
are associated with the high-level predicate (P4)(i,j). For each i and j, the predicate (P4)(i,j)
is a function of the vertex sj and the edge qiqi+1 of the query curve. Consider the rotated
rectangle R around qiqi+1 defined in predicate (c). Denote with `1 and `2 be the two lines
that bound R from above and denote with `3 and `4 be the two lines that bound R from
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below. The 6 entries are defined as follows: (1) sj ∈ Disk(qi, r) (2) sj ∈ Disk(qi+1, r) (3) sj
lies below `1 (4) sj lies below `2 (5) sj lies above `3 (6) sj lies above `4.

3. Horizontal monotonicity predicates
The matrix M(P5) consists of tq rows and 9

2 ts(ts − 1) columns. We group the columns in
ts(ts−1)

2 groups of 9 columns each. Each group is associated with a fixed value of j and k,
with j < k and j, k ∈ [ts]. The entries of a specific group in the ith row are associated with
the high-level predicate (P5)(i,j,k). This predicate is a function of the two vertices sj and sk
and the edge qiqi+1 of the query curve. Let αq ∈ [0, 2π] be the angle of the translation vector
(qi+1 − qi) with the x-axis and let αs be the angle of the translation vector (sk − sj) with the
x-axis. We denote with ` the line that supports qiqi+1. Let `+ and `− be two lines parallel to
` which lie at distance ρ to ` and such that `+ lies above `−. If the circles of radius ρ centered
at sj and sk intersect, then let b+ and b− denote their intersection points, such that b+ has
the larger y-coordinate of the two points. Consider the range of angles of tangents to the
intersection of the two disks at sj and sk. This range consists of two disjoint intervals of the
circular range of angles [0, 2π]. At least for one of the two intervals the left endpoint is smaller
than the right endpoint (i.e., the interval does not contain 2π). Let [α−, α+] ⊆ [0, 2π] be this
interval. Let α` ∈ [0, 2π] be one of the two angles of the undirected line ` (we need to query
with both of them). The 9 entries are defined as follows: (1) sj lies below `+ (2) sj lies above
`− (3) sk lies below `+ (4) sk lies above `− (5) αs ∈ [αq − π

2 , αq + π
2 ] (6) b+ lies above ` (7) b−

lies below ` (8) α− ≤ α` (9) α+ ≥ α`.

4. Vertical monotonicity predicates

The matrix M(P6) consists of
tq(tq−1)

2 rows and 8 · ts columns. We group the columns in ts
groups of 8 columns each. Each row is associated with a fixed value of i and k, with i < k
and i, k ∈ [ts]. The entries of the jth group of columns in a specific row associated with some
value of j and k are associated with the high-level predicate (P5)(i,j,k). This predicate is a
function of the two vertices qi and qk and the edge sjsj+1. Let αq ∈ [0, 2π] be the angle of the
translation vector (qk − qi) with the x-axis and let αs be the angle of the translation vector
(sj+1 − sj) with the x-axis. We denote with ` the line that supports sjsj+1. Let `+ and `− be
two lines parallel to ` which lie at distance ρ to ` and such that `+ lies above `−. If the circles
of radius ρ centered at qi and qk intersect, then let b+ and b− denote their intersection points,
such that b+ has the larger y-coordinate. Let Iq be the (not necessarily connected) range of
angles of tangents to the intersection of the two disks at qi and qk. The 8 entries are defined
as follows: (1) dual(`+) lies above dual(qi) (2) dual(`−) lies below dual(qi) (3) dual(`+) lies
above dual(qk) (4) dual(`−) lies below dual(qk) (5) αs ∈ [αq − π

2 , αq + π
2 ] (6) dual(`) lies below

dual(b+) (7) dual(`) lies above dual(b−) (8) αs ∈ Iq.

Following the lemmas in Section 7.3 we can make the following observation.

Observation 9. Given an instance of each matrix M(P3),M(P4),M(P5), and M(P6) and given the
values of the two predicates (P1) and (P2), one can determine the values of the high-level predicates
using Lemma 13, Lemma 14 and Lemma 15.

Observation 10. The total number of columns of the matrices M(P3),M(P4),M(P5), and M(P6) is
bounded by O(t2s).
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We are now ready to state our problem in the terms of a multilevel semialgebraic range searching
problem. The input for the multilevel semialgebraic range searching problem is a set P of n t-points
in R2 which we define as follows. Each of the columns of the matrices M(P3),M(P4),M(P5), and
M(P6) defines a point p ∈ R2 (or a value p ∈ R, in this case we set the second coordinate to 0)
derived from each input curve. Let c be the total number of columns of the four matrices6. We
define a t-point (p(1),p(2), . . . ,p(t)) for each input curve s with t = c+ 2 such that p(k) for k ≤ c is
the point of s that is defined by the predicate in the kth column, where k ∈ [1, c] uniquely identifies
a column across the four matrices. For k = c+ 1 we define p(k) = s1 and for k = c+ 2 we defined
p(k) = sts . Note that these two point sets are associated with the predicates (P1) and (P2), which
are not captured by the matrices. We define the set of t-points obtained this way to be the set P.

Before we describe the queries, we note that using the data structure described in Section 7.1
we use space in S(n) = O(nO(log log n)t−1), where t is in O(t2s) by Observation 10.

In the following, we describe the queries. As before, each query is a tuple of t semialgebraic sets
(ψ1, . . . ,ψt), where each semialgebraic set is defined by a constant number of polynomial inequalities
of constant degree.

Each entry of the matrices M(P3),M(P4),M(P5), and M(P6) defines a query range derived from
the query curve that is either a disk or a halfspace. In the first phase of the query algorithm we
compute the arrangement of these ranges for each column. Every cell of the partition corresponds
to a truth assignment to this column. In this way we generate all possible truth assignments that
correspond to non-empty query ranges. Each truth assignment to a column can be stored as a bit
vector. The Cartesian product of the set of bit vectors generated this way yields a set of truth
assignments to the matrices M(P3),M(P4),M(P5), and M(P6). From this set we want to use those
truth assignments only that have a feasible sequence of cells. We can test this for each generated
matrix using Observation 9 and Lemma 11 in O(tstq(ts + tq)) time.

In the second phase of the query algorithm we have a fixed truth assignment and for each column
we compute the cell of the arrangement corresponding to this truth assignment. We now refine
the cells as described in Section 7.2, by lifting circular ranges to R3 and mapping back the edges
of the triangulation to R2 in order to obtain cells that can be described by a constant number of
polynomial inequalities of constant degree. This generates a set of ranges for each column. Finally,
we take the Cartesian product of these ranges as done in Section 7.2.

Putting all of the above together, we can bound the total query time with

O(
√
n logO(t2s) n · tO(t2s)

q ) = O(
√
n logO(t2s) n)

assuming tq = O(logO(1) n).

Theorem 9. Given a set S of n polygonal curves in Rd where each curve contains ts vertices, we

can store S in a data structure of O
(
n(log log n)O(t2s)

)
size such that given a query polygonal chain

of size tq and a parameter ρ, it can output all the input curves within continuous Fréchet distance

of ρ to the query in O
(√

n · logO(t2s) n
)

, assuming tq = logO(1) n.

6 Indeed, the ordering of the columns does not matter as long as it is consistent throughout the data structure and
query algorithm.
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8 Conclusions

We studied the space/query-time tradeoff of multi-level data structures for range searching under
the Fréchet distance. The aim of our study was two-fold. On the one hand, we wanted to answer
a fundamental question related to range searching: Do multilevel data structures need to have
an exponential dependency on the number of levels? We answer the question to the negative by
proving a lower bound on the space/query time tradeoff for a concrete problem which we refer to as
multilevel stabbing problem. In particular, our lower bound shows that finding a general technique
for removing the exponential dependency on the number of levels is not feasible. On the other hand,
we were interested in the complexity of range searching among polygonal curves under the Fréchet
distance. Previous to our work, the complexity of this problem was largely open. We give upper
and lower bounds on the space/query-time tradeoff for both the discrete and continuous versions of
the Fréchet distance. The fact that we can extend our lower bound to such a practically relevant
problem further supports our claimed negative answer to the broader range searching question
mentioned above. Our data structures invoke semialgebraic range searching within the framework
of multilevel partition trees. Here, the major challenge lies in the Fréchet distance not being defined
as a closed form algebraic expression. In other words, previous to our work, it was not at all obvious
how semialgebraic range searching could be applied to range searching under the Fréchet distance.
Our upper bounds for this problem are in line with the lower bounds, as the number of levels is in
the order of t, the complexity of the polygonal curves. For the continuous Fréchet distance, the
number of levels increases to O(t2). We think that it can be reduced to O(t) by selectively using
dualization in some of the levels. However, doing so requires dealing with more technical details
and given the technical nature of the current results, we have decided to pursue this improvement
as a part of future work.

Finally, we can identify a number of interesting open problems that remain. We close our
discussion by stating some of them in no particular order.

1. Can the use of semialgebraic range searching be circumvented for Fréchet queries? A positive
answer could help us solve the following open question.

2. Can we develop data structures for (discrete or continuous) Fréchet queries that match the
lower bounds in the high-space/low-query-time regime?

3. How fast can we do approximate range searching under the (discrete or continuous) Fréchet
distance? Using the standard (1 + ε)-approximation of spherical ranges, we can use simplex-
range searching to get the full spectrum of the space/query time tradeoff, but even more
efficient data structures might be possible.

4. Can we prove lower bounds for answering approximate Fréchet distance queries? One particular
challenge here is that the known lower bound frameworks cannot handle approximations. For
example, this might mean that we need to extend the pointer machine lower bound framework
of Afshani [1].

5. Can we do range searching under the continuous Fréchet distance among polygonal curves
in three or higher dimensions? In particular, we are interested in a data structure that uses

O(n logt
O(1)

n) space and answers queries in O(n1−1/d logt
O(1)

n) time where t is the maximum
complexity of a query or input curve. We suspect the answer might be negative.

6. Can we do range searching under related distance measures such as dynamic time warping?
7. Do our lower bounds extend to multilevel stabbing queries in the semigroup model?
8. Can we prove stronger lower bounds for polygonal curves in three or higher dimensions? We
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hope that our upper bounds for the discrete Fréchet distance could be matched.
For resolving the last two questions, the main challenge lies in proving the equivalent of Theorem 2

on page 13 and a case analysis such as the one in Section 6.2.4.
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